Technology Development for Nuclear Fuel Cycle Waste ...

558
KR0000050 KAERI/RR-1907/98 7H U 1 Technology Development for Nuclear Fuel Cycle Waste Treatment Development of Decontamination, Decommissioning and Environmental Restoration Technology «r 3 1/30

Transcript of Technology Development for Nuclear Fuel Cycle Waste ...

KR0000050

KAERI/RR-1907/98

7HU1

Technology Development for Nuclear FuelCycle Waste Treatment

Development of Decontamination, Decommissioning andEnvironmental Restoration Technology

«r

3 1 / 3 0

KAERI/RR-1907/98

Technology Development for Nuclear FuelCycle Waste Treatment

Development of Decontamination, Decommissioning andEnvironmental Restoration Technology

7l

If flSf

S! &

1999. 3.

0|

O Ofc

I.

II.

13.7] (250 kW, TRIGA Mark-II)

TRIGA Mark-III

2^17] (2 MW,

"A

TRIGA Mark-II ^ I I I

^ - 5 . ^ 3.711

C02

7171

TRIGA Mark I I I

TRIGA MARK 7fl

7}

III.

1^- TRIGA <&-?S.

TRIGA

C02

C02

co2

<H47](granular filter)^]

^ Slfe- HEPA 4

7}

^ X I

TRIGA

- Cs-137

- TRIGA

IV.

TRIGA

^r Co-60

^ B f l o i e i l ^ 304

(Unrestricted release)

IV

£ S , ^#4^(Chemical flushing) tioVaJ-£|

EDTA

71

C02

400 24

Hr

44

: 45 Kg/cm2*]

loose ^ fixed

10mm«q

98%

4

-f-

so

non-Newtonian o]tf shear thinning

- TRIGA

150 m -

L3. TRIGA

V.

-f-TRIGA

VI

3. 4

^ r TRIGA

sol - gel

ffe TRIGA

vnNEXT PAGE(S)

left BLANK

SUMMARY

I. Project Title

Development of Decontamination, Decommissioning and Environmental

Restoration Technology

II. Objective and Importance of the Project

Part 1. Development of Decontamination and Repair Technology for

Nuclear Fuel cycle Facilities

For the purpose of aquiring the technologies in relation

to the decontamination, repair and decommissioning of the domestic

nuclear fuel cycle facilities, Korea Atomic Energy Research

Institute has a plan to develop and demonstrate the decontamination

and decommissioning technologies by using the retired Korea Research

Reactor #1 (250 kW, TRIGA Mark-II) and Korea Research Reactor #2 (2

MW, TRIGA Mark-Ill) which were located at the Seoul site. The

objective of this study is to develop the technologies such as the

reactor coolant system decontamination and the concrete

decontamination, and to demonstrate these technologies by

application to the TRIGA Mark-II research reactor during the

decommissioning activity of it.

The most recent AEC decided the dismantling of TRIGA Mark III

Reactor. Therefore dismantling system technology be

establishing/applying. Of dismantling concrete surface cutting is

the most technology due to waste quantity. So the concrete cutting

apparatus characteristic analysis and the selection of all sorts of

technology is needed. And the dust treatment technology development

IX

be needing in order to prevent decontamination of environment.

Decontamination during the life time of nuclear facilities is

becoming increasingly necessary, to reduce dose to personnel during

repair and maintenance, conventional decontamination processes can

be subdivided into three main categories: chemical decontamination

using chemical solutions for dissolving the radioactivity; water or

other liquids spraying at high pressure ; and solid blasting using

sand, alumina or other solids. These conventional decontamination

methods leave a secondary liquid or solid waste needing disposal.

CO2 blasting decontamination technology can solve this problem, and

has been applied and studied in Europe and USA since 1991. In

domestic, the development of decontamination technology to eliminate

or minimize the use of decontamination chemicalsis becoming

incresingly necessary in order to reduce the dose exposure to

operator and to effectively operate the facility for nuclear fuel

cycle.

Part 2. Development of Dismantling Technology

With the aging of nation's nuclear facilities, dismantling

of a nuclear facility requires technology of proven reliability

mainly because of the hazardous outcome of malpractice of empirical

technology. The presented R&D effect is aimed at providing timely

development of basic dismantling technologies and equipment for on

site testing. These are the development of the under water ranging

robotic vehicle for inspection task of a TRIGA MARK III reactor, and

the analysis of dismantling processes and equipments using the

graphic simulator.

Part 3. Development of Environmental Restoration Technology

The objective of this study is to develop decontamination

technologies applicable to soil or contaminated urban surfaces for

an unrestricted release of decommissioned site of nuclear facility

or to the contaminated area as a result of a nuclear accident and

the other incidents involving the spread of radioactive waste. These

technologies will help ensure that cleanups of contaminated

environment can be performed as safely and quickly as possible.

III. Scope and Contents of the Project

Part 1. Development of Decontamination and Repair Technology for

Nuclear Fuel cycle Facilities

In order to develop the TRIGA research reactor coolant

system decontamination technology, a study for obtaining the basic

technology was performed this year. The structural features, design

and operation data of the TRIGA reactor were analyzed. The analysis

on the application methods of decontamination technology to the

TRIGA reactor, sampling and radiochemical analysis of the

contaminated specimens, fundamental characteristic tests of

decontamination reagents by using aluminum material, and design and

the manufacture of the system decontamination test equipment etc.

were performed.

CO2 Blasting Decontamination Technology Development :

Technical review on the CO2 blasting decontamination

technology

Investigation of production method of a simulated

contamination specimens and characterization of

contamination

- Testing of CO2 blasting decontamination in labaratory scale

This year's R&D analized the generation dust characteristic in

XI

decontamination and decommissioning and developed and analized

pre-filter, midium filter and HEPA filter because of decontamination

and decommissioning system is demanded high removal efficiency of

the generation dust. Through the characteristic analysis of dust

treatment, the effective system is presented and is performed

performance test for minimun cyclone.

Part 2. Development of Dismantling Technology

The R&D efforts of the under water ranging robotic vehicle

are focused on the development of an robotic vehicle which is

capable of precise inspection of contamination of reactor wall

through remotely controlled actuation. For this, a self balanced

vehicle actuated by propellers is fabricated, which consists of

small sized control boards, an absolute position detector, and a

radiation detector. Also, the algorithm for autonomous navigation is

developed and its performance is tested at the swimming pool and the

reactor pool of the research reactor.

The dismantling tools and equipments are selected which are

suitable for remote dismantling processes of the research reactor.

Also, the applicability of these tools to the remote dismantling

processes of the research reactor is analyzed using the graphic

simulator.

Part 3. Development of Environmental Restoration Technology

1. Soil decontamination technology development

- Basic study on the electrokinetic soil decontamination

- Basic study on the soil washing method

- Design and manufacturing of soil decontamination equipment

2. Dry decontamination technology development for an urban

surface

Xll

- Performance improvement of clay decontamination agent and

physicochemical analysis on the clay decontamination agent

- Demonstration of dry decontamination agent using building

materials contaminated with Cs-137

- Design and manufacturing of urban surface dry decontamination

equipment

3. Soil decontamination performance assessment technology

development

- Measurement of input parameters for the application of soil

decontamination performance assessment model

- Prediction of the spreading phenomena of radioactivity around

the TRIGA research reactor

IV. Results of the Project

Part 1. Development of Decontamination and Repair Technology for

Nuclear Fuel cycle Facilities

As a result of the contamination characterization of the

TRIGA reactor coolant system, it was found that the major

contaminants are Co-60 and Cs-137, but the radiation level of it is

very low. The fundamental dissolution data on the aluminum coolant

system material of the TRIGA reator and stainless steel 304 were

obtained from the dissolution tests by using various decontamination

reagents. The results of these tests indicated that fluoboric acid

based decontamination reagent is more effective than other reagents

such as mineral, organic acids or a mixture of these for the

dissolution of aluminium material under the condition of dilute

concentration and low temperature. Also, this reagent could be

applied to the decontamination for the unrestricted release and

XHl

recycle of materials. The coolant system decontamination test

equipment which was designed and manufactured in this year will be

used in next year's tests for comparing the process characteristics

and selection of the process condition.

CO2 Blasting Decontamination Technology Development

a. From the technical review on the CO2 blasting decontamination

technology, the following results were confirmed: CO2 blasting

decontamination technology is a dry process that generates no

secondary waste streams, and a non-destructive method. The use of

CO2 blasting proved very effective at removing loose contamination,

but of significantly effectiveness on fixed contamination.

b. Investigation of production method of a simulated

contamination specimens and characterization of contamination: The

production method of a simulated contamination

specimens was optimized for time and temperature, with

the result that a temperature of 400 C for 24hr was

selected.

c. Testing of CO2 blasting decontamination in laboratory scale:

The highest decontamination efficiency(removal % of 98% above) for

CO2 blasting was obtained at conditions using a blasting pressures

of 45 Kg/cm , a stand-off distance of about 10mm during 2min.

This year's R&D performed the characteristic analysis of

concrete surface cutting and dust treatment system and constructed

electric heating cutting machine and minimum cyclone and performed

test performance improvement of cyclone. For the dust treatment,

that's output widely applied the common dust generation system.

Part 2. Development of Dismantling Technology

The test result of the wall ranging vehicle in underwater

xiv

environment shows that the vehicle can easily navigate into the

arbitrary directions while maintaining its balanced position. The

non-linear predictive controller shows good tracking performance and

the absolute position detector measures the vehicle position within

its tolerant accuracy. Also, the test result at the research reactor

shows that the vehicle firmly attached the wall while measuring the

contamination level of the wall. The optimal sequence of the

dismantling process of the research reactor is obtained by using the

3-D graphic simulator. Also, the analysis result of the graphic

simulation shows that the selected tools can be used for the

remote dismantling processes.

Part 3. Development of Environmental Restoration Technology

1. Soil decontamination technology development

- Removal of more than 80% of cesium ion on soil by applying

the electrokinetic decontamination technology for 72 hours

- Elucidation of cobalt ion leaching mechanism by chelating

agent from soil

- Performance test of soil decontamination equipment

2. Dry decontamination technology development for an urban

surface

- Identification of the characteristics of the developed dry

decontamination agent as non-Newtonian and shear thinning

fluid

- the order of dry decontamination efficiency is wood> red

brick > weight concrete > fire brick > silicate brick

- Performance test of urban surface dry decontamination

equipment

3. Soil decontamination performance assessment technology

development

XV

- The section influenced most critically by redionuclides is

150 m between TRIGA reactor building and a stream

- Radionuclides leaked from TRIGA reactor due to the unexpected

accident was estimated not to influence the area in the

vicinity of TRIGA reactor

V. Proposal for Application

Part 1. Development of Decontamination and Repair Technology for

Nuclear Fuel cycle Facilities

Through the demonstrative applications of the coolant

system and concrete decontamination technologies, and dust treatment

technology, it will be contributted to the cleaning of TRIGA Mark II

coolant system and concrete surface during decommissioning project

of TRIGA. In the future, these technologies could be applied to the

decontamination of commercial nuclear power plants and nuclear

facilities decommissioning.

Part 2. Development of Dismantling Technology

To commercialize the wall ranging vehicle, various

application areas are examined such as the inspection process of

spent fuel storage pools, the decontamination process of the liquid

waste tanks, and the inspection and maintenance processes of the

bridge columns. The graphic simulation technology of dismantling

process can be used as an useful tool for designing the detailed

dismantling processes as well as a training tool for the radiation

workers by providing the virtual models of the nuclear facilities.

Part 3. Development of Environmental Restoration Technology

XVI

The results of study on the development of soil

decontamination technology could be applied to decontaminate

radioactively contaminated soil around the nuclear facility and

prepared to against the nuclear accidents by manufacturing the soil

decontamination equipment. And the results could be used to the

areas contaminated with heavy metal ions. The developed soil

decontamination technology could be used to apply the restoration of

decommissioned area of the TRIGA research reactor.

The results of study on the development of urban surface

decontamination agent could be applied to decontaminate

radioactively contaminate urban surface and prepared to nuclear

accidents by the manufacturing of decontamination equipment. And the

results could be used a new ceramic manufacturing process involving

sol-gel process which control reaction rate. The developed dry

decontamination agent could be used to apply not only urban surface

but also other contaminate surface.

The results of study on the development of assessment technology

of the contaminated area could be applied to assess the contaminated

area by radionuclide around the nuclear facility and to predict

residual radioactive concentration after soil remediation. Also,

The developed assessment technology could be used to apply the

assessment of the contaminated area around the TRIGA research

reactor.

xvuNEXT PAGE(S)

left BLANK

TOTAL CONTENTS

PART 1. DEVELOPMENT OF DECONTAMINATION AND REPAIR TECHNOLOGY

FOR NUCLEAR FUEL CYCLE FACILITIES 1

Chapter 1. Introduction 19

Chapter 2. Development of TRIGA Research Reactor Coolant

System Decontamination Technology 23

Section 1. Introduction 23

Section 2. State of the art 24

Section 3. Contents and results 35

Section 4. Conclusions 101

Chapter 3. CO2 solid blasting decontamination technology 103

Section 1. Introduction 103

Section 2. State of the art on CO2 solid blasting

decontamination 103

Section 3. Contents and results 115

Section 4. Conclusions 124

Chapter 4. Concrete decontamination technology development ••••125

Section 1. Introduction 125

Section 2. State of the art 125

Section 3. Contents and results 191

Section 4. Conclusions 224

Chapter 5. Attainment degree on the research target and

contribution degree to the other area 229

Section 1. Development of TRIGA research reactor coolant

system decontamination technology • 229

Section 2. CO2 solid blasting decontamination technology 229

xix

Section 3. Concrete decontamination technology

development 229

Chapter 6. Application plan of the results 231

Section 1. Development of TRIGA research reactor coolant

system decontamination technology 231

Section 2. CO2 solid blasting decontamination technology 231

Section 3. Concrete decontamination technology

development 231

Chapter 7. References 233

PART 2. DEVELOPMENT OF DISMANTLING TECHNOLOGY 237

Chapter 1. Introduction 249

Chapter 2. Underwater wall raging radiation inspection robot ••••251

Section 1. Introduction 251

Section 2. Design and fabrication of Underwater wall raging

radiation inspection robot 252

Section 3. Development of control algorithm 283

Section 4. Performance test of wall raging radiation

inspection robot 306

Section 5. Concluding remarks 331

Chapter 3. Selection of dismantling equipment and

graphic simulation of dismantling process 333

Section 1. Introduction 333

Section 2. Selection of dismantling equipment 334

Section 3. Graphic simulation of reactor dismantling

process 340

Section 4. Concluding remarks 354

Chapter 4. Conclusion 355

XX

Chapter 5. References • 357

PART 3. DEVELOPMENT OF ENVIRONMENTAL RESTORATION

TECHNOLOGY 361

Chapter 1. Introduction 377

Chapter 2. State of the art 379

Section 1. Understanding of the state of the art 379

Section 2. Comparison and discussion of detail

technologies 380

Chapter 3. Contents and results 385

Section 1. Soil decontamination 385

Section 2. Dry decontamination of urban surface 435

Section 3. Soil remediation performance assessment and

radionuclide migration modeling around the

TRIGA 477

Chapter 4. Attainment degree on the research target and

contribution degree to the other area 541

Chapter 5. Application plan of the results 543

Chapter 6. References 545

xxi

NEXT PAGE(S)left BLANK

jll-

4 1 ^ 4 ^ : 19

4 2 # TRIGA g^-S 7^I#^ll^7l# 7fl 23

4 1 *i 4 £ 23

4 2 ^ ^Ml • *J 7l#7fl^ ^% 24

*)1 3 ^ ^9-7fl^: ^*$ q-g- ^ ^21- 35

*fl 4 ^ ^ -g- 101

11 3 # C02 ^ 4 ^]<g7]^ ?m 103

^ | ] 1 | A-) & 103

^) 2 ^ CO2 £*M<* ^ H • <i\ 7)^7m ^ % 103

^) 3 ^ g ^ H i * ^r*l uB-§- ^ ^ H54 4 | | -g: 124

4 4 % ^ 3 e l S ^ |^7]# 7flt 125

4 1 | M -g 125

125

g 9 2f 191

4 4 | | § 224

4 5 # ^^-7f| - ^-S ^^§S. ^ cfl^7l<HS 229

4 1 *l TRIGA ^ ^ - ^ ^ ^ - 4 ^ 7 ] ^ 7fl^ 229

4 2 | CO2 £ 4 4<*7|# 7Btii 229

4 3 | s.£ie]J=L 4 ^ 7 1 ^ 7B«i 229

4 6 # ^^-711^ ^ 4 ^ f %-§-X|^ 231

4 1 ^ TRIGA ^ ^ - ^ 7^1^-4^71^- 7fl11; 231

xxm

2 ^ C02 I 4 4 ^ 7 | t 7m •••— 231

231

233

237

1 ^ 4 ^ • .......249

2 # ^'jHMg , $ . ^ ^ 4 $%] 7m • — 251

*fl 1 ^ 4 ^ - • • 251

^*|| O 'SJ XJ| t>| "^^liTil^Q- • LiOO

31] c ^ :<£-§. 9^1• ^ n i ^ j » - f *^+ y _' « • • • • . • • • • « . . . • • • . . . • « . • • • « • • • • • • . • • • • • . . . . . . . . . . . 4 . . . . . . . . . . . . . 4 . . . . . . . . . * ! • • • • > • • • * • • j ^ ^

A 1 4 ^ - 333

"-334

340

• 11 4 - ^ ' § • & ' <J54

4 ^ ^ ^ - • 355

5 # ^-a^-*i 357

- 361

...377

379

379

380

XXIV

4

5

385

385

435

7||^ 477

7]<*|j£ 541

543

545

XXV

1 ^ n^y\M^

: 0|

o l

0| 7|

0| ^

• l -

NEXT PAGE(S)left BLANK

CONTENTS

Chapter 1 Introduction 19

Chapter 2 Development of TRIGA Research Reactor Coolant

System Decontamination Technology 23

Section 1. Introduction 23

Section 2. State of the Art 24

1. Decontamination Technologies for Decommissioning of

Nuclear Facilities 24

A. Coolant System Decontamination Technologies of

Nuclear Reactor 25

B. Equipment Decontamination Technologies of

Nuclear Facilities 30

Section 3. Contents and Results 35

1. Charactrization of TRIGA Research Reactor Coolant

System 35

A. Structure and Features of TRIGA Research Reactor

Coolant system 35

B. Analysis on Coolant System Contamination and

Activation of Materials 37

C. Contamination Characterization of TRIGA Reactor

Coolant System 41

2. Study on Decontamination Technology for TRIGA

Research Reactor Coolant System 43

A. Review on the Application Methods of Decontamination

Technologies to TRIGA Reactor Coolant System 50

B. Study on the Characteristics of Candidate

Decontamination Reagents for TRIGA Reactor Coolant

- 3 -

System • 52

C. Manufacture of Test Loop for Coolant System

Decontamination 73

3. Design and Manufacture of Decontamination Kit for

TRIGA Coolant System Application 81

A. Design of Decontamination Kit 81

B. Manufacture of Decontamination Kit 86

C. Decontamination Procedure and Operation of

Decontamination Kit 96

Section 4. Conclusions 101

Chapter 3 CO2 Solid Blasting Decontamination Technology 103

Section 1. Introduction 103

Section 2. State of the Art on CO2 Solid Blasting

Decontamination 103

Section 3. Contents and Results 115

1. Experimental Procedure 115

A. Preparation of the Simulated Contamination

Specimen 115

B. CO2 Solid Blasting Decontamination Test 115

C. CO2 Solid Blasting Decontamination Apparatus 115

D. Experimental Analysis 117

2. Results and Discussions 117

A. Contamination Characteristics of the Simulated

Specimen 117

B. Characteristics of CO2 Solid Blasting

Decontamination 121

Section 4. Conclusions 124

Chapter 4 Concrete Decontamination Technology Development •••125

- 4 -

Section 1. Introduction 125

Section 2. State of the Art 125

1. Dust Treatment and Concrete Cutting Technology 125

A. State of the Art on Dust Treatment Technology 125

B. State of the Art on Concrete Decontamination

Technology 178

Section 3. Contents and Results 191

1. Efficiency Experiment of Minimum Cyclone 191

A. Conformation of Experimental Apparatus "191

B. Design and Construction of Complex Dust

Treatment Apparatus 198

C. Design and Construction of Electric Concrete

Cutting Machine 198

D. Design and Construction of Remote Controlled

Concrete Cutting Machine 204

2. Results and Discussions 206

A. State of the Art on Dust Treatment Technology 206

B. Available Particle Range Degree 210

C. Efficiency Experiment of Minimum Cyclone 210

D. Results and Discussion 224

Section 4. Conclusions 224

Chapter 5 Attainment Degree on the Research Target and

Contribution Degree to the Other Area 229

Section 1. Development of TRIGA Research Reactor Coolant

System Decontamination Technology 229

Section 2. CO2 Solid Blasting Decontamination Technology 229

Section 3. Concrete Decontamination Technology

Development 229

- 5 -

Chapter 6 Application Plan of the Results ••••• 231

Section 1. Development of TRIGA Research Reactor Coolant

System Decontamination Technology • 231

Section 2. CO2 Solid Blasting Decontamination Technology 231

Section 3. Concrete Decontamination Technology

Development 231

Chapter 7 References • 233

-6-

JE.

M & 19

4 2 # TRIGA #^3. 7f§-*tf<*7]# 7H^ 23

1 1 1 ^ 23

24

24

7}. #*}$.$) 7fl^fl<g7l£- 25

U. ^ } ^ 4 ^ 7|7]4^7l# 30

3 | ^^-7)1^ ^r*J a-§- ^ ^ ^ 35

1. TRIGA £ ^ . ^ 4 ^ ] # ^ ^ -^ £*} 35

7}. TRIGA g ^ - 3 . ^ 4 ^ ] # ^ ^ - ^ Ri ^-^ 35

U. ^ 4 ^ 1 ^ i ^ 91 aoV4^ ^ ^ ^ r^ 37cf. TRIGA ^ ^ - ^ ^ 4 ^ ) # ^ ^ . ^ ^ ^ ^Af 41

2. TRIGA <&^-£. 7 ^ ] ^ 4 ^ 7 l ^ ^ 9 - 43

7\. <&^-S. 4 ^ 1 ^ - 4 ^ y o ^ 3-% 50

• 52

73

3. *M-§- ^^-4«g^l ^X| 9J 4 4 81

QA 81

4 4 86

^r^ "A 4-g^f 96

^ 4 | I ۥ 101

4 3 4 co2 £ 4 4 ^ 7 1 ^ 7B^ 103

4 1 I 4 ۥ 103

- 7 -

4 2 £ C02 # 4 4 £ ^ B • £] 7}^?m ^ % 103

4 3 *l <&^-7Vi ^r*3 V-B-8- 9J £2f 115

i. co2 M i ^ ^ -s^s7}. S^-S-^ X\3&*\ *§£, 115

T-K CO2 # 4 4 £ ^ ^ -115

^}. co2 # 4 4 ^ ^ l H5

B>. *1^#*J • -117

2. ^ ^ ^ ^ f ^ 3-*t .117

7>. 4 ^ 1 ^ A ^ ^ J g 117

i-h CO2 # 4 4 ^ " ^ ^ 121

1 4 | | ^ • 124

125

125

125

| ] 9i l l ^ - 125

7\. ^ 1 * 1 * 1 7 1 ^ * ! % ^ 125

4^]^%^^ 178

^ 191

4 1 # ^ ^ 191

7f. ^ ^ ^ 1 9-^ 191

W ^ ^ l * | ] ^ 1 ^ 7 j ] / 1 ^ • 198

^3.5]M. ^ ^ > ^ 1 ^Til/43]- 198

^ a . e l ^ &&#*] A^]/^14 204

2. ^21- 5J J l # • 206

l l 2f 206

210

210

5h ^ 91 -2-% 224

4 ^ ^ ^ 224

^ 91 H ^ ^ 229

TRIGA <£^-S 7f§*fl<g7l^- 7^ 229

C02 £ 4 *||<g7l# 7lf^ 229

| 4 ^ ] ^ Hi 229

231

1 t TRIGA ol^-S X | ^ 4 ^ 7 ] ^ - 7flt 231

2 | C02 £ -4 *fl£7l# 4 y i 231

231

233

- 9 -

NEXT PAGE(S)left BLANK

Table 1-1 BWR PWR£) <ti*H4?fl 3 . ^ ^ - ^ ^ 27

Table 1-2 JPDR <&%} *-J4>W . ^ ^ * f r M £ 3 a ^ s * ^2f .. 28

Table 1-3 Specifications of TRIGA Research Reactors 36

Table 1-4 Shutdown Inventory of Radionuclides in Neutron-

Activated Aluminium Liner of TRIGA Mark-II

Reactor,(Ci/cm3) 42

Table 1-5 MCA Results of the Samples Taken from TRIGA

Research Reactors 49

Table 1-6 Composition of Aluminium-6061 Alloy 60

Table 1-7 Demonstration Work Schedule on Coolant System

Decontamination of TRIGA Research Reactor •••• 85

Table 1-8 ^afl^^lSj ^ S L # £ 1 ^^ % 4<£ 91

Table 1-9 *l|g#*l *W*>SJ nfi- -g- 98

Table 2-1 Decontamonation results in Surry PWRs 112

Table 2-2 Recent CO2 blasting projects-nuclear

applications 114

Table 2-3 Contamination conditions for simulated

specimens 116

Table 3-1 Collection Rate of Particle • 128

Table 3-2 ^ $-<g^- 4°l#^^t ii l *l r*l 132Table 3-3 4°1#^I ^ W * ] ^ S - 139

Table 3-4 ^ - * H 4 ^ $$]<t\ ^^>^<H1 $X<>\M *$^S- 147

Table 3-5 vpf- ^ S J M * ! ^S. 151

Table 3-6 nf^Tj]^^ 7\}*y 152

Table 3-7 4 ° 1 # ^ ^ 1 SX^M 6 H ^ ^ ^ 155

Table 3-8 4O1#^ W l 6«^^^ 162

Table 3-9 Rating Judgement as to the Relative Potential of

-11-

Each Concept Tested in the Cyclonic Wind Tunnel ••••167

Table 3-10 Heating Rods - ^ 201

Table 3-11 Power Controllers - ^ 201

Table 3-12 -&3.B]S. fi£*fl£ 7]^- H].2.^ 225

Table 3-13 ^-3.5]^. S ^ ^ # e l ^ 4 ^ 1 ^ 7\£ HlJ2.^-^ 226

Table 3-14 -&a.elS ^-^#^1 *1|*)ll[7] 7l^ wl^-^:^ 227

i *\

Fig. 1-1 Flow Diagram of TRIGA Mark-II Reactor Coolant

System 38

Fig. 1-2 Photograph of TRIGA Mark-II Reactor Coolant

System 39

Fig. 1-3 Photograph of TRIGA Mark-III Reactor Coolant

System 40

Fig. 1-4 Photograph of Heat Exchanger Installed in

TRIGA Mark-II Reactor Coolant System 44

Fig. 1-5 Photograph of Demineralizer Installed in TRIGA

Mark-III Reactor Coolant System 45

Fig. 1-6 Photographs of Contaminated Pipe Sample Taken from

TRIGA Mark-II Reactor Coolant System 46

Fig. 1-7 MCA Spectrum of the Contaminated Sample Taken from

TRIGA Mark-II Reactor Coolant System 47

Fig. 1-8 MCA Spectrum of the Contaminated Sample Taken from

TRIGA Mark-III Reactor Coolant System 48

Fig. 1-9 Effect of Fluoboric Acid Concentration on

Dissolution Rate of Al-99.9%(open) and Al-6061

(solid) at Various Temperature 55

Fig. 1-10 Effect of Sulfuric Acid Concentration on

Dissolution Rate of Al-99.9%(open) and Al-6061

(solid) at Various Temperature 56

Fig. 1-11 Effect of Nitric Acid Concentration on

Dissolution Rate of Al-99.9%(open) and Al-6061

(solid) at Various Temperature 57

Fig. 1-12 Effect of Oxalic Acid Concentration on

Dissolution Rate of Al-99.9^(open) and

-13-

Al-6061 (solid) at Various Temperature 58

Fig. 1-13 Effect of EDTA Concentration on Dissolution Rate

of Al-99.9%(open) and Al-6061(solid) at Various

Temperature 59

Fig. 1-14 Effect of Temperature on Dissolution Rate of

Al-99.9%(open) and Al-6061(solid) in the Dilute

KAERI Decontamination Solution 61

Fig. 1-15 Effect of Cerium(IV) Ion Addition on Dissolution

Rate of Aluminium in Sulfuric Acid Solution at

28°C and 80 °C. Mole Ratio of Ce(IV)/SA= 0.04 63

Fig. 1-16 Effect of Cerium(IV) Ion Addition on Dissolution

Rate of Aluminium in Nitric Acid Solution at

28°C and 80°C. Mole Ratio of Ce(IV)/NA= 0.04 64

Fig. 1-17 Effect of Concentration on Dissolution Rate of

304 S.S.in Fluoboric Acid Solution for Various

Temperatures 65

Fig. 1-18 Effect of Concentration on Dissolution Rate of

304 S.S. in Sulfuric Acid Solution for Various

Temperatures 66

Fig. 1-19 Linear Dependence of Dissolution Rate of Aluminium

on Fluoboric Acid Concentration at Various

Temperatures 67

Fig. 1-20 Linear Dependence of Dissolution Rate of Aluminium

on Sulfuric Acid Concentration at Various

Temperatures 68

Fig. 1-21 Linear Dependence of Dissolution Rate of Aluminium

on Nitric Acid Concentration at Various

Temperatures 69

Fig. 1-22 Effect of Temperature on Dissolution Rate of

Aluminium at Various Concentrations of Fluoboric

-14-

Acid Solution 70

Fig. 1-23 Effect of Temperature on Dissolution Rate of

Aluminium at Various Concentrations of Sulfuric

Acid Solution 71

Fig. 1-24 Effect of Temperature on Dissolution Rate of

Aluminium at Various Concentrations of Nitric

Acid Solution 72

Fig. 1-25 Linear Dependence of Fluoboric Acid Concentration

on Dissolution Rate of Al-6061 at Various

Temperature 74

Fig. 1-26 Linear Dependence of Sulfuric Acid Concentration

on Dissolution Rate of Al-6061 at Various

Temperature 75

Fig. 1-27 Linear Dependence of Nitric Acid Concentration

on Dissolution Rate of Al-6061 at Various

Temperature 76

Fig. 1-28 Linear Dependence of Oxalic Acid Concentration on

Dissolution Rate of Al-6061 at Various

Temperature 77

Fig. 1-29 Effect of Concentration on Dissolution Rate of

Al-99.9% at 28°C for Various Candidate

Decontamination Reagents 78

Fig. 1-30 Effect of Concentration on Dissolution Rate of

Al-99.9% at 40°C for Various Candidate

Decontamination Reagents 79

Fig. 1-31 Effect of Concentration on Dissolution Rate of

Al-6061 at 401C for Various Candidate

Decontamination Reagents 80

Fig. 1-32 Schematic Diagram of System Decontamination Test

Loop 82

-15-

Fig. 1-33 Photograph of System Decontamination Test Loop 83

Fig. 1-34 P & ID of Coolant System Decontamination Kit •••• 87

Fig. 1-35 Drawing of Demineralizer in Coolant System

Decontamination Kit 88

Fig. 1-36 Drawing of Model Heat Exchanger in Coolant System

Decontamination Kit 89

Fig. 1-37 Layout Drawing of Coolant System Decontamination

Kit • 90

Fig. 1-38 Control Panel Circuit of Coolant System

Decontamination Kit 97

Fig. 1-39 Photograph of Coolant System Decontamination Kit •• 99

Fig. 2-1. Experimental equipment for solid CO2

decontamination •• 118

Fig. 2-2. Residual amount for simulated specimens • 120

Fig. 2-3. Residual amount for simulated specimens 123

Fig. 3-1. Paticle Size Accumulation Curve 127

Fig. 3-2. Cyclone Entrance Block • - — 130

Fig. 3-3. Cyclone Configulation 132

Fig. 3-4. The Kind of the Dust Hopper • • 135

Fig. 3-5. ^ H ^ l S ^ S l ^ K i ...138

Fig. 3-6. ^ ^ 3 &£. 140

Fig. 3-7. 4 ° 1 # ^ I &S.Q ^S.c]} tflst ^ 2 ^ 3 141

Fig. 3-8. ^^Sj-, -g-f- ^3L ^Sl-ffofl cfl*]: ^ * p g ........141

Fig. 3-9. 4 ° l # « i -M*t <£*}$ £ ^ 142

Fig. 3-10. 4 ° 1 # * ^ ^ ^ ti*}^ ••• 143Fig. 3-11. 4 ° I # M <H3j 7}x] ^^V^oll^^ <y- .-145

Fig. 3-12. 4°1#€-£| S.^ VA *Ki2l- ^J£ 149

Fig. 3-13. ^ ^ ^ ^ - ^ - ^ 1 - 7H2 AH#^r^] ^*> ^n}^)^ . . . .150

Fig. 3-14. ^ % ^ - # ^ # 7} 1 4°l#^c>fl t W ^ 4 ^ ) ^ . . . . 1 5 0

Fig. 3-15. ^ ^ ^ 4 ^S. 154

- 1 6 -

Fig. 3-16. ti^H^gl 4 ° ] # ^ r 5 :# 158

Fig. 3-17. rvgj; ^^f^-^d 160

Fig. 3-18. C& JSL^^Kd 160

Fig. 3-19. 4°]-K *1^£^ 164

Fig. 3-20. Sand Filter Configulation 168

Fig. 3-21. 4i*g 4°1#^" ^^1/^14 192

Fig. 3-22. 4°l#^r ^ ] SSa^3 ^#S 193

Fig. 3-23. 4 ° 1 # € ^ t y } S.H^ JL#51 194

Fig. 3-24. 4°1# - ^Vy^#*l A^S. 195

Fig. 3-25. ^}5l*m 4£# ^*H^1 197

Fig. 3-26. £7]7}<iq *tf<g#*l 199

Fig. 3-27. f^ i el l 205

Fig. 3-28. Comparison of Temperature Capability 207

Fig. 3-29. Comparison of Face Velocity 207

Fig. 3-30. Comparison of Dust Treatment Capability 208

Fig. 3-31. Collector Size Comparison • 208

Fig. 3-32. I*lel S. 209

Fig. 3-33. s)-a.# <y4^s:£ 212

Fig. 3-34. H ^ f - n ] ^ <y*fg-Ss. 213

Fig. 3-35. 5 H 1 *!*}^:SJE 214

Fig. 3-36. S|-3.# &£.o\] n ^ £^JL-§- 215

Fig. 3-37. -il;Sl- -f-n| SLO]} xt}^ S ^ ^ # 216

Fig. 3-38. #4}-^ £<H1 nf€- S ^ ^ # 217

Fig. 3-39. -tfSfca-il -3£.<H| ^}€: S ^ J L ^ - 218

Fig. 3-40. tfSJ-^nl-fe- <£f£.6fl n^g. 3E^5L-i- 219

Fig. 3-41. *>SH ^d\] TL}^ 3:$3L-£ 220

Fig. 3-42. r l 4## ^^l^Hl ni^ S^^# 220

Fig. 3-43. 60%, 10 ni/soi|A-|5] tiov#^l ^^fg-SS. 221

Fig. 3-44. 10%, 10 m/s<HW£| ^ # ^ 1 6 « ^ } ^ S £ 222

Fig. 3-45. 60%, 10 m/s<5M£) ^ # ^ ^ 1 <y*}^S£ 223

- 1 7 - I NEXTPAGE(S)I left BLANK

M

91-b 30

(250 kW, TRIGA Mark-II)

(2 MW, TRIGA M a r k - I l l ) # ° l -§-*H 1999^

1^7)(TRIGA Mark-ID

2517](TRIGA

TRIGA Mark-II

TRIGA Mark-II^

7f^5]^L SI^- Ao^-§" ^ 4 ^ a

^ XI 4 1 fl^cH[][l-l~l-4], TRIGA

, TRIGA Mark-II ^ ^ - ^ ^ 1 u ^ 4 9J

1999^

- 1 9 -

. C02

co2

co2 co2

4TRIGA Mark I I I

4

717]

7]71

, DUPIC ^ g , KALIMER

hot particulate

- 2 0 -

sodium# 4-g-tfe KALIMER

ix}5}

^^7l(granular f i l terW

- 2 1 -NEXT PAGE(S)

left BLANK

2 s- TRIGA

TRIGA

>, TRIGA

[1-1.2]

1317] (TRIGA Mark-I I )^

|p.^ o|

7} # 71 ^#<L

o)

6Tuf. - i 1JM7}- -f si

TRIGA Mark-II

- 2 3 -

l ^ h 1999^ 3W*] 2*}

2)

i fe^] , «»]

o|

- 2 4 -

o] 7]71

7171

4.

7K

- 2 5 -

3.71) ^oj j l - t ^ K BWR

. Table 1-

fe Cr

$171 n6H 37}

±= F e , N i , C r ^ + ^ ) l J ] ^ ^ ^

o | < 5 | e ^ CAN-DECON, NS-1 , LOMI

Cr

( N P )

(2)

JPDR*] ^ ^ [ ^ <y^7f|-t 47fl*]

Table l

(7\) CAN-DECON

- 2 6 -

Table 1-1

FeNiCr

£| %

BWR4 ?ms\ <y 1-^4^1

BWR

80-907-101-10

«-Fe2O3(^£)Fe304

NiFe2O4

F e 3 0 4 ( ^ - A ^ )ct -Fe203

NiFe2O4

FeCr2O4

1 B.A^\ ^

PWR

2 0 -2 5 -1 5 -

F e 3 0 4 ( ^

NiFe2O4

FeCr2O4

FeCr2O4

Fe2Cr04

NiCr2O4

406045

*£)

- 2 7 -

Table 1-2 JPDR <&%} *-J4?H 3-§-3 1 ^ 1 £.#3}

"11 T~T * ^ l

CAN-DECON

* * * ! *

LND-1O1A

0. lw»s

- 1 2 0 °C24hl m / s

NP/NS-1 m o d i f i e d

NP fHN03

[KMnO4

0.6w%fO. 5w/o10. lw/o

~ 120136h

lm/s

NS-1

0. 7w%

~120"C24h

lm/s

W-Ce(IV)

REDOX x\]<g

H2S04+Ce4*

0.25M 2mM

70~80°C106h

0.3m/s

7]m^

B4C <&*•}

20w%

^ - &35h

4.8-6. 7m/s

3-90 90-740 300-1,200 200-1,660^ 5 - 9 ^ S 520 ^ ^ 900 5§5- 1,100

15%)

- 2 8 -

DF 3 - 1 1

Cu

NP/NS-1

l, NP(0.5 wt% ^ ^ > / O.lwt*

NP/NS-1 5 . S

500

DF 90-740,

, o)

A S ^ 900

Cr

Ce4+ /Ce3+

DF 300-1,200,

m/s

4.5

01

- 2 9 -

K o]S. Hi^l^ Cr

^r

4.8-6.7

1,1001-

4A]

lBq/cm2

Ce(IV)ofl

^ Cs-1375]

0.5M 2M

DF 200-1 ,660 ,

(Rapsodie)^

REDOX

0.01M

20,

60°C

strippable

(7})

£ gun S ^ lancet

^ 70-1,400

150-700 Pa*]

DF 50-1,0001-

^ 200 Pa

1,400 Pa O| 4

30-45 l/min^l4 DF l,000#

pa 7}

-g-S.

-30-

(Strippable coating)

, #(Brush)

7]71 S^Jl^-Jf^ uH - ^c^l o|H.7]7Mlfe ^-§-6] o^cf. 2 4

-g-

DF

(Uf)

l f e ^ , DF 10

0.1M

200-1,500 m2 $S.$] 7}7]*\]

-31-

(2)

(7f)

-§--§-*} 04

3.7]}

r 240 .2-0 .5 A/cm2,

103~104

horning^

- 3 2 -

Ce(IV) REDOX 3L

4t(Ce+4/Ce+3 =1M H2S04 + 0.05M Ce4t(Ce+4/Ce+3 =

^ s o > ^ CEA 2M H2S04-§-

1.6M

DF 1 0 - 1 5 , # DF 1 , 0 0 0 - 1 ,

1.4Bq/cm2

Gal igur iano -c- 3% 5%

60°C, 30min

- 3 3 -

Savana river^l -^-e]JLij-71^- 7 ^ 4 ^ ^ ] 4 ^ canister

glass £*m103~105 dpm

^ glass frit-i- J L S ^ - ^ ^ S *1I£WSS.>H 2 4

, 24

blast)

5-20, # e } ^ ^ ^ ^ H | ^ ^ ^7]#oi | cH«B 10-100

>i CEA

fe 24C02 ^ 4 a ^ S ^ I G25] eU ) 14 1 # M f r ^ 4 1 ^

^ # %7}$) 3M NaOH

H2SO4 + 3M H3P04#

435g/m2^A-l ^ H N ^ ^ 7 . 2 1/m2, ^ l ^ J L ^ f ^ DF 500i§

- 3 4 -

Pu

^ 4^^-Hfe ^ r ^17]#^ 4%

fe 200~300g^| ^ - ^ 4 500ppm*] PuO2-|- ^ ^

ZL# Ar ^-^71 -§*M ^ 7 1 5 . 7><i -g-g-A]^^- «g*fjl( 5|tfl 109

^ 7 ] ^ e B ^ . -g-g-

s(iookg

1. TRIGA

7>. TRIGA

(TRIGA

1962^ 0.1 MWthS. 7}-^# A|4«rH 1969^^] 0.25

2S.7] (TRIGA Mark-Ill)fe 1972^^] 2 MWthS

^ § - 4 4 34^d VA 24id ^^> 7Hf-51$-lr:h Table

fe TRIGA g

TRIGA

91

- 3 5 -

Table 1-3. Specifications of TRIGA Research Reactors

Reactor name

Reactor type

Thermal power

Neutron flux (max)[nv]

FUEL

U-235 Concentration

Cladding materialChemical

compositionModerator

Coolant

Control rod

Fuel loading(U-235)

Volume of pool water

Research reactor unit-1,TRIGA Mark II

Pool type

250 kW

1 x 10'3

20 %

Aluminium

U-ZrHi.o Alloy

ZrH, H2O

H2O

B4C

2.96 kg

17,146 L

Research reactor unit-2,TRIGA Mark Hi

Pool type

2 MW2,000 MW, 2.8 msec pulse

6.5X1OW

(Pulse, 2.0 X10'6)

20 and 70 %

SUS-304

Er-U-ZrH,.6 Alloy

ZrHi.6, H2O

H2O

B4C

12.6 kg

153,000 L

- 3 6 -

. Fig. 1-loflfe TRIGA Flow

diagram^- 27ffSj

^ 100

11! 250 kw

^ 250 kW

250 kW

Fig. 1-2

Fig.

(Pool),

n}(Skimmer),

^#7), 1 1

17,000 153,000 . TRIGA

43°C

^: FerriteTft

TRIGA Mark-II

- 3 7 -

fLOW-MITM[ v i eIVIO

CONDUCTIVITY

( V2J

JECONOARYPUMPIIUP]

Fig. 1-1 Flow Diagram of TRIGA Mark-II Reactor Coolant System

- 3 8 -

Fig. 1-2 Photograph of TRIGA Mark-11 Reactor Coolant System

- 3 9 -

Fig. 1-3 Photograph of TRIGA Mark-Ill Reactor Coolant System

-40-

#444(Hner) ^JsL-b

Co-58, Co-60, Fe-55, Mn-54, Zn-65

Ni-63

fe ANISN

H S ^ Tfl-f-oj Cs-137, Eu-152 ^ Eu-154

[1-5]. 1JL7H

-2,3]. Table

Table 1-

. TRIGA

TRIGA

2(1/2)"

- 4 1 -

Table 1-4. Shutdown Inventory of Radionuclides in Neutron-Activated

Aluminium Liner of TRIGA Mark-II Reactor (Ci/cm )

Radionuclide

Cr-51

Mn-54

Fe-55

Fe-59

Co-60

Zn-65

Side

4.0E-16

1.4E-15

4.4E-11

8.6E-17

3.3E-13

1.3E-12

Floor:

8.2E-16

2.9E-15

9.1E-11

1.8E-16

6.9E-13

2.7E-12

-42-

SCH40 ^ r n ) ^ - Hjf^(^[o|, 3i0nnn) ^ ^IjL-f(Elbow)t-

(Fig. 1-45] # ^$] afl^fl), <£ -jlL 2£7]o |H*r ^

1(1/2)" SCH40

Fig. l-6<fe 04^-S. 15L7HIA] *fl*l^ 2(1/2)" SCH40

^ # %<^«i 4£o]uK Fig.

1^71 ^ 2 ^ 7 1 ^

(MCA)# ^A]^r}^A^, ZL ^ | 3 f # Fig. 1-7, Fig. 1-8 9J Table

^ ^ ^ TRIGA «1^-S 13.7] ^ 25L7}$>]

^r Co-60 *i Cs

t * ! f ^ S Mn-54# H|^-

Eu-152 J£fe Eu-154

TRIGA

2. TRIGA

- 4 3 -

Fig. 1-4 Photograph of Heat Exchanger Installed in TRIGA Mark-II

Reactor Coolant System

-44-

Fig. 1-5 Photograph of Demineralizer Installed in TRIGA Mark-II

Reactor Coolant System

-45-

Fig. 1-6 Photographs of Contaminated Pipe Sample Taken from

TRIGA Mark-II Reactor Coolant System

-46-

Saaple : elbow § 1

Data collected at 1Bn17:17 on 23-SEP-97Real TlK : BOOSSceidsSeconds Live Tihive JiSe SecoWKlO SecondsDetector :

Calibration :

FILE NAHE : B164MH1 DR5BlNtSK9ADiTECS6a8589399?

14400

Fig. 1-7 MCA Spectrum of the Contaminated Sample Taken from

TRIGA Mark-II Reactor Coolant System

-47-

Sample : pipe 20 c» 6 1

Data collected at 12:05:16 on 23-SEP-9?Real Tine : 20029.42 Seconds Live Tirce : 20000 SecondsDetector :

Calibrat ion :

KII.E NAUE : »: pipe10' |

DRAhlNS QSTE : DS-2B-1997

12000 14400

Fig. 1-8 MCA Spectrum of the Contaminated Sample Taken from

TRIGA Mark-III Reactor Coolant System

-48-

Table 1-5. MCA Results of the Samples Taken from TRIGA Research

Reactors

Samples

Elbow

Pipe

Radionuclides

Co-60

Cs-137

Eu-152

Co-60

Cs-137Mn-54Eu-152Eu-154Ce-144

Energy

(keV)1332.51173.2661.6

1408.0

1332.51173.2661.6834.81408.01274.4133.5

Activity

(cps)0.060.060.07

0.02

0.52

0.551.440.070.030.030.04

Remark

Sample was

taken from

TM-II coolant

system

Sample was

taken from

TM-III coolant

system

* Background

* Count time

Co-60 (1332.5 keV) 0.014 cpsCo-60 (1173.2 keV) 0.016 cpsElbow-50,000 (sec), Pipe-20,000 (sec)

-49-

7}. g^s. ^ 4 7 ^

^ ojnj

TRIGA ^-T-S^l uJ44 :f- (Cooling

circuit) *fl<g<4fe 3W^Hi~§- 4-§"t!: 4^(Chemical flushing)

el-

TRICAR ^ " ^

sasafe

safe ^4^H 6 f l * W I 6-}=## ^7^}^ . ^ s # 90°c

safe

TRIGA

- 5 0 -

^r TRIGA

(1)

^ ( c l a d d i n g ) * !

(gel)

5a

-Le]u} o|

(2)

Inserter

- 5 1 -

24 ^l^^o) a.7il TC #•§• ^ 3 3 Inserter*

EDTA

90°C7f

71-4>

, o] ,rf|

fe 7|7l

[1-5-1-8]

-§-*]fe 7m "A

TR1GA

- 5 2 -

6061

^ B ] ^ J ^ ] ^ 7 O > 304

nfl

(1)

3X

0.1mole/L~3

ic acid,

HBF4),

Ethylenediaminetetraacetic acid(EDTA), • -yy- ];(oxalic acid)

^ £ 99.9%

type 304 25mm?? Xlannt^ 3.7]S.

28-80

- 5 3 -

. Table l-6oflfe

. 0.5* °W # ^ * f e A i ^ - ^ ^ Fe, Mg ^ Si

(2) ^ ^ ^5} £ ^-^

Fig. 1-9 ~ Fig. l

. Fig. l-9fe !-S*^!:<4 ^ - ^ ^ ^ - n l ^ nj ^^-nl^- 6061

^1 tfl*H T^MVH ^^°1^K Fig. 1-10^ %^

4°]^- , Fig. 1-ll^r ^ - g - ^ , Fig. 1-12-b ^-^^-g-64, Fig

EDTA -g-^# 4-§-^}^ l-^-f^: A J ^ 4 ^ ^ a o ^ ^ - S -§-«

M.^ Hj-Af ^o] <y-^-nl^ 6061 4 ^ 7 }

3.4 ^^gSl^cK a ] ^ "t-f-n]^. 6061

Table l-6^]-H # ^ ^ ^ H>5} ^o] o]

HBlJL, Fig. 1-14^ ^ I ^ S . KAERI 4 ^ 1 -g-64(EDTA 1.12 g/L,

Citric acid 0.21 g/L Rj Ascorbic acid 0.18 g/L*] ^ * J # ; #•

0.15

6061^1

3.4 T-Mlv!:^^ ^ ^ 80°C<>M ^>f-n|^- 6061^1

0.16 ^m/hrS, ^ ^ ^ ^ 1 ^ - ^ 0.09 ^m/hrS ^ - ^ £ ] ^ K% Q RED0X

Rj KAERI

- 5 4 -

$(0

c

J3OV)CO

b

uuu

800

600

400

200

0

/ Z^^

AI-6061 Al-99.9%

- V- • 28°C- • - 4 0 ° C --D--40°C

-A- 60°C - -A- • 60°C

- • - 80°C - -O- - 80°C

-

-

_

_.^V A

0.0 0.5 1.0 1.5 2.0 2.5

Concentration of HBF4 (mol/l)

3.0

Fig. 1-9 Effect of Fluoboric Acid Concentration on Dissolution

Rate of Al-99.9%(open) and Al-6061(solid) at Various

Temperature

-55-

E

CO

a:co•5

6 -

4 -

2 -

0 -

-

-

1 • 1 1

AI-6061 AI-99.9%

- -V- - 28°C

- • - 4 0 ° C --D--40°C

- A - 6 0 ° C -A--60°C

- » - 8 0 ° C --O--80°C

X^"°

J&t~—£1 JR"—'

i • i • i • i

^ —

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Concentration of H 2SO 4 (mol/l)

Fig. 1-10 Effect of Sulfuric Acid Concentration on Dissolution

Rate of Al-99.9%(open) and Al-6061(solid) at Various

Temperature

- 5 6 -

CD

co

oCO

AI-6061 AI-99.9%

-•V--28"C

- • - 4 0 ° C --D--40°C

- A - 6 0 ° C --A--60°C

— 80°C --O--80°C

0 -

0.5 1.0 1.5 2.0 2.5

Concentration of HNO (mol/l)

Fig. 1-11 Effect of Nitric Acid Concentration on Dissolution

Rate of Al-99.9^(open) and Al-6061(solid) at Various

Temperature

- 5 7 -

"I

I 1o(A

wb

oAI-6061 AI-99.9%

- • - 4 0 ° C --D--40°C

- A - 6 0 ° C --A--60°C

- • - 8 0 ° C --O--80°C

0.0 0.2 0.4 0.6 0.8 1.0Concentration of Oxalic Acid (mol/l)

Fig. 1-12 Effect of Oxalic Acid Concentration on Dissolution

Rate of Al-99.9%(open) and Al-6061(solid) at Various

Temperature

- 5 8 -

0.10

JZ

I

ion

Rat

eol

ut

0.08

0.06

0.04

0.02

Q0.00 -

AI-60G1 AI-99.9%

- 4 0 ° C --D--40'C

—A—60°C --A--60°C

—•—80°C --O--80°C

0.00 0.02 0.04 0.06 0.08

Concentration of EDTA (mol/l)

0.10

Fig. 1-13 Effect of EDTA Concentration on Dissolution Rate

of Al-99.9%(open) and Al-6061(solid) at Various

Temperature

-59-

Table 1-6. Composition of Aluminium-6061 Alloy

Element

Al

Cr

Cu

Fe

Mg

Mn

Si

Ti

Zn

Fraction (%)

95.85

0.35

0.40

0.70

1.20

0.15

0.80

0.15

0.25

-60-

I

0.16

0.12

ra 0.08

2. 0.04o

bo.oo

-•-AI-6061--O-Al-99.9%

20 40 60 80

Temperature (°C)

Fig. 1-14 Effect of Temperature on Dissolution Rate of Al-99.9%(open) and Al-6061(solid) in the Dilute KAERIDecontamination Solution

- 6 1 -

. Fig.

1-15 ^ Fig. 1-166*1 i_j.El-\fl ^ 4 ^ o ] ^ A > £ %A>CH] Afl-t(IV)o] 0.04

ZLSJ

, Fig. 1-17 iJ Fig. l-186fl i Bfvfl ^BlI^tBl]^^,}- 304

mole/L ^ £ # 71 ^ S . uV .

80 °C, ^fS. 3.0 mole/L S ^ W #5f-fA>^ ^^-fe 6f 7.3 /m/hrS.

^ < 36 fm/hrS. ^5\°] 5^}

^ - T - 80 °C, %•£. 3.0 mole/L

>i7ov 304^ -g-*U^s.fe 0.05

t\X\ «l^--§-c^( Semi-log) Sf^efl ~Le} i ^ K Fig.

1-19 ~ Fig. 1

4

Arrhenius' plot# Fig. 1-22 ~ Fig. 1-24^1

t\. 4

rtf] tfl*> %^^-^lM^HEa)^- Fig. 1-22 ~ Fig. 1-243 7 I #

4 4 , Ea (l-S|-3-^>) = 5.46 kcal/mol, Ea (%*>) = 5.80

kcal/mol H Ea (-^^1:) = 5.91 kcal/mol^.

v = [A • exp(-Ea/RT)] • log [C] (1-1)

- 6 2 -

(D

o

10

8

6

4h

- 2 -O Z h

-

i • i • i •

— • - T=28°C + Ce(IV)

- • - T = 8 0 ° C + Ce(IV)

--D--T=28°C

--O--T=80°C

tdD—grr—--H

1 . 1 i 1 •

1 ' 1 ' 1 ' 1

_ o

---H 5 .i i i > \ i i

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Concentration of Sulfuric Acid (mol/l)

Fig. 1-15 Effect of Cerium(IV) Ion Addition on Dissolution Rate of

Aluminium in Sulfuric Acid Solution at 28°C and 80°C.

Mole Ratio of Ce(IV)/SA= 0.04.

- 6 3 -

E

B

co« 2 -

CO

b

- T=28 C + Ce(IV)

-T=80°C + Ce(IV)

D--T=28"C

O--T=80°C

0 -

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Concentration of Nitric Acid (mol/l)

Fig. 1-16 Effect of Cerium(IV) Ion Addition on Dissolution Rate ofAluminium in Nitric Acid Solution at 28°C and 80°C.

Mole Ratio of Ce(IV)/NA= 0.04.

- 6 4 -

&

i 2Hi

\—T=40 C

--O--T=60°C

—•-T=80°C

O

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Concentration of Fluoboric Acid (mol/l)

Fig. 1-17 Effect of Concentration on Dissolution Rate of 304 S. S.

in Fluoboric Acid Solution for Various Temperatures

-65-

E=3.

a:co

o(0

40

35

30

25

20

15

10

5

0

-5

1 ' 1 •

- --•-•-T=40°C

--O--T=60°C

- • - T = 8 0 ° C

_

:

a — — - • • H - ' - " B -

1 . 1 .

i • i • i • i • i

/ . - - • " ' " " "4------ * :i . i . i . i . i

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Concentration of Sulfuric Acid (mol/l)

Fig. 1-18 Effect of Concentration on Dissolution Rate of 304 S.S.

in Sulfuric Acid Solution for Various Temperatures

-66-

a:o

500

400 •

300 -

200 •

75 100-

0 •

-

••o

T=28°C

T=40°C

T=60°C

T=80°C

B—B-

y

-m—-a—

/

^ © -

—•-B-

-

-a—

0.1 1

Concentration of Fluoboric Acid (mol/l)

Fig. 1-19 Linear Dependence of Dissolution Rate of Aluminium

on Fluoboric Acid Concentration at Various

Temperatures

• 6 7 -

I 2h

o= 1 -o(A/

0 -

0.1 1

Concentration of Sulfuric Acid (mol/l)

Fig. 1-20 Linear Dependence of Dissolution Rate of Aluminium

on Sulfuric Acid Concentration at Various

Temperatures

-68-

3

6-

5 -

4

3

I 21 1

0-

• . . 1

-

••0

-

. . . 1

T=28°C

T=40°C

T=60°C

T=80°C

/

1 1 '

——•— •"D B-

-

-a—

0.1 1Concentration of Nitric Acid (mol/l)

Fig. 1-21 Linear Dependence of Dissolution Rate of Aluminium

on Nitric Acid Concentration at Various Temperatures

-69-

1000

£Z

gowwb

100

10

O 0.5MHBF,1 M HBF4

A 3 M HBF.

2.8 3.0

1/Tx1033.2 3.4

Fig. 1-22 Effect of Temperature on Dissolution Rate of Aluminium

at Various Concentrations of Fluoboric Acid Solution

-70-

£CO

o

" o</>CO

b

2.8 3.0

1/Tx103

Fig. 1-23 Effect of Temperature on Dissolution Rate of Aluminium

at Various Concentrations of Sulfuric Acid Solution

-71-

szE

£CO

o

"o

10

1

0.1

xx.

0 0.5 M HNO3

D 2 M HNO3

A 3 M HNO3

% ^ ^

XXXKX

2.8 3.0

1/Tx1033.2 3.4

Fig. 1-24 Effect of Temperature on Dissolution Rate of Aluminium

at Various Concentrations of Nitric Acid Solution

-72-

kcal/moljsl

^ %SL Fig. 1-25 ~ Fig. 1-27 6061

log

6061

6061^

7f*fjL alt:}. Fig. l-28

6061^] -§•*!!

log

- 3 1 cHl

$5LS. 3.7(1

28°C 9J

^- 6061

, Fig. 1-29 ~ Fig.

(HBF4)

-g-^S.

- 7 3 -

00

OHcg*«•-<

"owv>b

800

600

400

200

0

_

1

D

•O

-

:::g. . . i

T=28°C

T=40°C

T=60°C

T=80°C

,.."""0

" •TT" TT *

#

•"ri"

-

9-*°'"

0.1 1

Concentration of H B F (mol/l)

Fig. 1-25 Linear Dependence of Fluoboric Acid Concentration on

Dissolution Rate of Al-6061 at Various Temperature

-74-

x:E

6 -

a:

3 2^COCO

0 -

••O

B

T=28°C

T=40°C

T=60°C

T=80°C

. . - - ' ' '

JO. -0—'

* - » - - -

#

o

—ft"

o

•ft—

0.1 1Concentration of H 2SO 4 (mol/l)

Fig. 1-26 Linear Dependence of Sulfuric Acid Concentration on

Dissolution Rate of Al-6061 at Various Temperature

-75-

co

15

10

5

0

D

•O

-

-

O

. -

T=28°C

T=40°C

T=60°C

T=80°C

...

q...

ifm

o

• " " •. . 1

q.

•TT"

-

-

. .O - -

•0.1 1

Concentration of H N O (mol/l)

Fig. 1-27 Linear Dependence of Nitric Acid Concentration on

Dissolution Rate of Al-6061 at Various Temperature

-76-

.cE

2g

o

AI-6061

• 40°C

A 60°C

• 80°C

AI-99.9%

•A

O

40°C

60°C

80°C

0.01 0.1 1

Concentration of Oxalic Acid (mol/l)

Fig. 1-28 Linear Dependence of Oxalic Acid Concentration on

Dissolution Rate of Al-6061 at Various Temperature

- 7 7 -

a:o

"o

b

20

15

10

5

0

i ' l ' l ' l • l • l • l

Q -

/

- • - HBF,- O - H2SO4

--D--HNO3- A - H2SO4-Ce(IV)

- V - HNO3-Ce(IV)

/

-

-

0.0 0.5 1.0 1.5 2.0 2.5

Concentration (mol/l)

3.0

Fig. 1-29 Effect of Concentration on Dissolution Rate of Al-99.9*

at 28°C for Various Candidate Decontamination Reagents

-78-

£TO

a:cg

0.5 1.0 1.5 2.0 2.5

Concentration (mol/l)

3.0

Fig. 1-30 Effect of Concentration on Dissolution Rate of Al-99.9%

at 40°C for Various Candidate Decontamination Reagents

-79-

&CO

q

owwb

140

120

100

80

60

40

20

0

-

• y —O— H2SO4

—D— HNO3

>->

^ * -

n

0.0 0.5 1.0 1.5 2.0 2.5

Concentration (mol/l)3.0

Fig. 1-31 Effect of Concentration on Dissolution Rate of Al-6061

at 40°C for Various Candidate Decontamination Reagents

-80-

(2)

Fig.

Fig.

71

3. ^-

7>. 4

(1)

(TRIGA

250kW

(2)

(7})

13171 (TRIGA

-81-

SpecimenChamber

Fig. 1-32 Schematic Diagram of System Decontamination Test Loop

-82-

Fig. 1-33 Photograph of System Decontamination Test Loop

- 8 3 -

skid

71

13171

1999\4 1-7).

250kW

EDTA

4, 80°C

60°C

471

(3)

- 8 4 -

Table 1-7. Demonstration Work Schedule on Coolant System

Decontamination of TRIGA Research Reactor

Activities

o Fundamental technology development• Analysis of TRIGA reactor coolant system• Contamination characterization• Reagent development test• Fabrication of coolant system decontamination

test loop• Reagent decontamination test

oApplication technology development• Decontamination process establishment test• Design and ordering manufacture of coolant

system decontamination equipmento Demonstration of coolant system

decontamination technology• Test operation of decontamination equipment• In-situ decontamination application to TRIGA

mark-II reactor

Year

1997 1998 1999

- 8 5 -

Fig. l-34ofl

fe 4.^# Fig. 1

Fig. 1-35

1 skid #

Fig.

44

( l )

44 fe 4

4444-8- ^-4 ^ 7W

. 44,

44-8-4

Table 1-8^1

4 - r1! 4 4 4 ^

- 8 6 -

M

SB

S i

s

0

© aft

?

118

|

ss3a? \r w v* tfl in

©-

(L

Fig. 1-34 P & ID of Coolant System Decontamination Kit

- 8 7 -

3

31

no,a

\

Fig. 1-35 Drawing of Demineralizer in Coolant System

Decontamination Kit

oseeI

3

I

Fig. 1-36 Drawing of Model Heat Exchanger in Coolant System

Decontamination Kit

-89-

Fig. 1-37 Layout Drawing of Coolant System Decontamination Kit

-90-

Table 1-8

No

1

2

3

4

5

6

7

8

9

10

11

12

€7l7><g7l

.E.'Sl.H^l

^ 7 l

-g-££^7l

^3*1 #*>

- $3 | : ^*^o)l ^°]^1 #*}.- H7l: D=380mmp, H=450mm- tfl^-g-^: 50 L- 4S.- SUS 304

- X-l l 7^1^. 7|ti7l ^

^ ^ 31fe «}^-^ -g-71- H7l: D=600mm?', H=870mm- tfl •¥--§-^: 200L- zflS.: PE ^fe PP- qq-. ^ ^ ^- -§- =: 7 kW (220VAC-§-)- ^^^-^HS.: SUS 304- 7><i7ll- ^ r£^H^- <&*\7} ^ ^ m

^ESl -g-7Hl ^3)o.S. =3"#- ^Efl: ?flE.el^^ (H^#A-2 # a )- 3-7]: 114mm¥>x400mm(*|-f^)

89mm <p x300mm(?>S.2l 1)- ^ ^ ^ - ^ S . : SUS 304

- 3.7]: 90mmpx300mm(S}-T-;;8)- ^ ^ ^ - ^ a : ^4^ /SUS 304- -fr^H: 2~20L/min- ^°JJ-¥-^a: vfl'ti-^^S./SUS 304- ^Efl ^ 3.7]: ^-a/shell&tube ^ ,

D=350mm?>, H=1500mm(£^#A-3 %3i)

- AS.'- ^ °1-3.1- °iZ}^<&%.-- 2(1/2)" s M S ^- %n ^ 3.7}: Shell & tube^,

Shells OD=140mmp, H=400mm- •SJE^ft /•}<&: 1/2°!*] SUS304

- <83: * ^ 7>^i!- -fr^: ~10 L/min- ^^^-^fla: SUS 304- # € : 220VAC/60Hz- ti^«fl^-: 1/2" 4°1S- ^Efl % 3.7}: T£2}£: 3§^sl Skid

- 4S.- SUS 304 (t=lmm)- ^ I M l«fl 71^^-ft-^l- TIC: PID ^lH7l(MDC-10)- RTD: Pt 100i3

(^^-¥- B ] 1 = S . S ^ )

- f efl 5 a7l: £^#A-4 ^-2- °J^^^(220VAC) ^ r ^ ^ l -- T^i-a on/off ^3*1- ^ 5 . on/off i f l a ]- ^7l7}^7l on/off i ^ ^ l- -a:5La^7l(TIC) ^ 1 -1741 (TI) # ^

^ ^

1

2

2

2

1

1

1

1

1

1

1

1

«1 3.

-#sa*i*§ ^ ^

7H1 ^-^

-4^*^1-8-

«fl*°l -8-<>lft ?•2 / ^^1^1 1-8- 4^^- ^ sus^^J-

DS-205

-#t*11J fi-H.4SS}- ^«.sl7 l ^ ^ -JM.&.

-Shell# «fl -:1/2 1 1 SUS304 4°1S

-$ll^a^£,S. IS:' CSW-0042

-Skid 3.71 :W2100XDl 100mm

-RTDTT #7}7}<£

s}^! ^ 1

- 9 1 -

71 ^ #

s k i d " o.]

4

100mm

X-J47],

1200mm

4 9-A^O.^^.BI A ]

4 4 "*=5W"#

Skid*] *f|H2 5| 2^1 ^5] 4

304)

1 1 £ ^A] 1/2"

304)

304

S.)fe Fig. l-34dfl

# Fig. l-35<>fl

Fig. l-36ofl

4 S M 3 ^ 1 Mfl^lSl- Fig. l-37ofl

- 9 2 -

304 >i

Skid l-g- H v%

1-35

(safety ifiji),

sa

.fe 7}<i7l

304

-93-

^ 304

4 rcj-

3.7]if-

2(1/2)' 4 ° 1 ^

- 9 4 -

ir PP

- Skid*] 4l^> 44-§- =a ^ A ] ^ of) £_^ *]

vent-g-

^ flexible hose

on/off,

on/off, 27flS] on/off,

£:# 4-&5L

Fig.

7]7|

-95-

4& PVC Duct Si

output 4fe 4

^ . 717]

Fig. 1-38^1,

Table

(2)

Fig.

7}<£7}

(1)

(Inlet)if

- 9 6 -

2P 220V

2P 20A NFB

FS 1

(2)

C3PL41

-O O- -o o-

Fig. 1-38 Control Panel Circuit of Coolant System Decontamination

Kit

-97-

Table 1-9

No

1

2

3

4

5

6

8

Voltage meter

Ampere meter

•8:SL X]A] *5

ON/OFF ^ 1 * 1

PM

VI

AI

TIC

TI

SW1SW2SW3

- Analog type (4^)

- Analog type (42})- MDC-10- Digital type- Range : 0-100 °C- Digital type- Range : 0-100 °C- -^^-^(Main power) on/off- ^ ^ : ^ ! S on/off- ^7]7}^7] on/off- D150XH600XW500 mm

1

1

1

1

1

111

1

Hi 31

- 9 8 -

Fig. 1-39 Photograph of Coolant System Decontamination Kit

-99-

13.7})$ 7}-g- 220V, 20AS]

(2)

EDTA

- EDTA : 4.48 g/L

: 0.84 g/L

S.til : : 0.72 g/L

: 0.01 g/L

(3)

-100-

44

44

13171 (TRIGA Mark-II)7|-

TRIGA

Co-60 ^J

- 1 0 1 -

> I ^ 304

(Unrestricted release

^ (Chemica l flushing)

EDTA

71

71 Ef

- 1 0 2 -

3 # C02

C02

>g-f

7}

lfe C02

co2 co2

2 ^ co2

1.

- 1 0 3 -

co2 #

dry i

6.-L]- dry ice^l A\3L7\ -§-O]^ *6\] DCJ-B} o]

^U}. ^«14 dry i

7] A ] ^ } ^ ^ . ^ i ^ o H s . dry ice^ ^

. a l4 . 1945VI njSll^-ofl^fe O^BI $] grease

dry ice!- * J ^ * B 1 M , '63^ 5^, Reginald Lindall^

)^! ^ 4 co2 oJ4t- 4-§-^fe »^SLS. ^M- 4\***}%&. 72, Edwin Ricefe dry ice*] J L ^ ^ 4 #

J* £?&*}% o_x$, 77H1 8^, Calvin

OSHA(Occupational safety & Health Act, *] <£ ^ - ^ ^ . ^ i 1 ^ ) ^ EPA(Energy

Policy Act, e^m^] ^ ^ ^ , 9 2 ^ ) ^4^<>fl rcfsf ^1^7l#^A-| dry ice#

4 dry ice ^}7}^ 7fl^# ^-?-^fe «H^ $\A}7} >g^S|$io.af, dry

ice pelletizerif ^ 4 ^ ] 7 > ^>^ 4 ^ ^

l ^ l ^ f S 7 } 3.JL JL7}^A^, 200psi

}. II ^ C02 £ 4 7 ] # o ] ^^^°11 ^SK J I ^ S dry ice pelletso) 7fl

7l^6fl 4-g-S]1?! ^ ^ S . shaved block dry ice Jiuj- t:-]^-

c] ^ | 2 , 5]e5] i c # ^ ^ 7 ] ^ ^ 80psi5]SlSit:}. pellets^

Dry icefe^ 0.03vol.

carbon hydrates*] -^-^t> l>4i

104-

Sj C027|-

C02 tf^Xfe- *Vf-ofl 25,000^^:1- ^ ^ ^r S l - M , o| <£sj 95%

dry icefe -109°F^

j l ] ^ 3 - ^ ^ vapors.

(blasting media)^

4^1^^1 4^§-5|fe co2i] # ^ ^ * m X N 4-§-^fe ^2} ^^ -^ , FDA,EPA * fl 11 I]H^K |*

C02 fe i U 4 4 4. C027> ^ M ^ o f l °l-§-£|fe

nfl < ic-l*l 4 ^ ^ C027f ^ 3 - f e %°) o\t\x$ ^eH5] C02

2. C02 afl

C02#

- dry ice pel lets0]i-} j2_B]3ijii.4|- - f- ]; ^•'H^cJ^H] ^\^ - ^ ^ ^ I T T dry

ice snow -§-.£) JL-^t media-It

C02#

C02(Supercritical fluid carbon dioxide : SFC02)#

;} macroscopic pe l l e t s ^

•S]i?r'5m, dry ice

snow

-105-

coa

. SFC Tife

7f. pellets

pellets7jj£|

pellet

. *|^. 3.7)5] pellet 4 ^

• ^^«> S^^ l^ pellets*^

• pellet^

pellet

macroscopic dry ice pellets

. Snow

snow £ C02

snow

snow

microscopic snow stream^]

^•£ ^l^-*] large snow flakes stream^

4^r snow spray system^ <£*}$ &^-fr7]

3.7]7} a. snow fiake stream^

snow spray7]

3.7]7\

3.715} snow

microscopic snow stream^

C02 source7}

7\*£$\C02 source^,

co2

- 1 0 6 -

C02 af l£#*]-b SFC #*1»J Jicf

SFC

SFCiLrf

^ ^ T f f C02 (Superc r i t i ca l f lu id C02, SFC)

SFCO2 ^ l 7 ( ( f e C02^ - g - n ^ >§^2f ^

. <>l£r 31°C, 72.8atm 0)

^ . ^ , SFC02 ^ l f e

SFC02

^ t > 7)7] ,

. SFC02 ^ 1 1 ^ > ^ ^ ] ^ ^

3.

(5. latm, -56.7°C)o|^ ^7J l^(cr i t ica l pt. 72.8atm, 31.

- ^ ^ o] A > ^ 7 | A O V ^ 6 J | ^ ^ . ^ s j . ^ ^ ^

C02 ^

71 co2oia, 0} ai

C0 2 #

- 1 0 7 -

, C02

fe dry ice

CO2 press.-enthalpy diagram?] Mollier^S.

C02 feed 1 }

snow

C02 cylinder^) liquid C02 7}

C02)7f o r i f i c e ^

C02

7)

C02 source#

57}

yield b ^

> C02 source*] orifice

7]-

(SftOpsi) 2.^

y i e l d s ^6«o]c}. rcj-eM JL^J- C02

^^*f^, source*] ^S., ^-^ofl

^BU a e ] j L snow*]

dry ice 3.71, ^ £

C02

>b^f. <>]

orifice nozzle

co2 snow *(|££ C02 sourcel- 4

4. Medial]

Dry ice

- 1 0 8 -

dry ice block

granules^ & £ ^ 4 -

^ ^ . ^ sugar-crystal 37] S] dry ice granules^]

dry ice

dry ice p e l l e t #

p e l l e t # ^r4*WM- *&&-*] #}*] £-£r%-7M p e l l e t #

. °11- p e l l e t s ^ Ji^f- 0.08-0.12"(2.03-3.05mm)^ ^

0.4"(2.54-10.16mm)^ ^o]M. ^%cf. o) «J-^ofl $a°1>H, dry

QQ 64Ac}" C02# snowS. flashing*! ^ snow# J

t:}. snowfe pellet.^..!. ^ ] ^ nuggetsf ^- 7l7fl^

efl^iS. d i e | | f-sfl i ^ - pellet % B H S ##(extrusion)^i: j- .

$1pellet-

C02

0 . 1 -

^r 7}

media

. 4

5. -4Dry ice

soda bias ting 21- 4

mediafe C02

-pellet^

800HB

sand blasting, plastic bead blasting

7f«y-:g-7]vf- ^ - ^ t : } ^ inert 7}^S. ^r^

K c]

medial, dry i

nfl-f

3-4mili 4°H1 pellet

C027l-

, dry ice ^ 2^}

-109-

., dry ice

^o]z\. C02 <g*\±r

4 T T ^r-E.^ air stream

fe ^ e j , C02 6

HT4fe -109°F(-78°C )S]

H S coating typeofl ^ ^ * f ^ 4 *•}£.& coating^] ^

>4. dry

"T

6.

1981 id<>leH Savannah River

l^^o] ^ 1 ^ , ^ - ^ ^ ^ A C ^ co2

71 # ^ *}q-s. ^ 1

NDC4(Non Destructive Cleaning Inc. )if TTI Eng. A } ^ 1990\l

surry PWR(Virginia Electric Power)*] ^ ^ S J i ^ l ? ! ^ ] : ^o\] C02 -g-

Al~§--erMtool# ^^ zQlWSlK}. ^ l ^ ^ ^ Table 2-

hard too l^ 100%7} 1000dpm/100cm2ol^}7M

o]i} %>7ll chain falls, power hand tool ^ ^ofl afloj^ ^

o] 9ife ^ 4 ^ 4 ^ ^ ^%^^^1 -f- -, !«- ^131 #71 a ^7l manway

- n o -

£# }m£: ^M°} 3~5mrem/h

l f e H E P A 1 1 B l n > o | ^ } i K

Winco ICPP( Idaho Chemical Processing plan

storage area, FSA)^S.-?-Bl affTJ^ RSM stainless steelofl £fl?>

*]-7l ^*H S 4 ? > ^2 f FSA stainless steel •§

^ ^ S 4 ^ ^ l f FSAstainless steely afl ofl 4-g-^ ^ ^ ^ - ^ C02

ICPP 3s}l7l#^el^aHl *\^*} ^ ^ 7 ]

dipping) °

J ^ j j ^ ^ I ^ ^ j l ^ , H ^ l f l ^ ] soft

C02 ^ 4 ^ 1 ^°1 4 ^ ^ 4 >

7H^^ turbine/C02

O] 5 1 1 ^ 1 ^ ^ dry ice pellet#. JL^S|^. wheels.

pe l l e t ^

Winco(Westinghouse Idaho Nuclear Company Inc. H14fe

-§• ^ S | ^1<^^# H]J3L24?> ^ ^ loose AgaflTHfe

i co2

fixed & loose

-§• ^ S | ^1<^^# H]J3L2:4?> ^ ^ loose

e^S. *M,

a ^ ^ ^ , C02

^]^(everyday type cleaning)^]

Qfl-f ^4^ 6r i o l ^ ^ K °|ism ^ # 4 ^ # ^*l| °1 ^ ^ ^ ^ fixed

-111-

Table 2-1. Decontamonation results in Surry PWRs.

* *

Hand tools

Power tool

Chain falls

Spec i a1 ca1i bra ted

equip.

Valves/Pumps parts

Instrument/gauges

Monitors

Cables&hoses

Resipirators

1

2-32-3

10-20

1-3

2-6

varies

1

2-3

1-3

10-20 ft/min

2-3

• loose

• fixed

• loose

• loose

• loose

* fixed

• loose

• fixed

• loose

• -r-H];f:• fixed

• loose

• loose

• loose

i, oil,

-, oil,

>er 100cmZJ

lOOOdpm

~r~M ^ paint

. lOOcpm

lOOOdpm

lOOOdpm

lOOOdpm

. lOOcpm

. lOOOdpm

lOOcpm

. lOOOdpm

-?-*] paint

. lOOcpm

: lOOOdpm

. lOOOdpm

: lOOOdpm

-112-

loose

C02 £ 4 ^ 1 ^ ^ . && <££] fixed

Cs, Zr f - ^S . i<gs} SUS 304L tool<>M

fe 0.125" 5J 0.080"^] pellet d i e #

zflfif^]- A^-f^-oll 45} OT^f die size7}

C02 pellet

filters ^ enclosure

C02 pellet ^ 4 ^ j | ^ ^ 1 1 - *J*]*M 7l^ 4 ^ ^ ^ S . ^A^5|fe sodium waste

Oceaneering International Co. fe R0VC02(The Remote Operated Vehicle

with C02 Blasting) SLSJ.^4: ^ B ^a .S lH H f ^ ^ # jL2f^^-S. ^ 1 ^ ^ ^r

. ROVCO2 S S J l ^ 2^711 ^-S. ^f^l R0VC02 ^ 1 7 } 3.3.

coating^ J L ^ A S -il^*}7fl ^]«g^ ^ StI r<>I ^ 6J5 |5i

4 . ^T, ^ S i M ^r Slfe loose ,2.<g£| 98% .BJJL fixed ^.<g*l 75%# 1

^ S . 4 €-3.e]S ^ s ^ l ^ ] r;fl*H 52.5

tl|>tfSl 85% }^] ^m £ )

$ 0.72 /f2 g

Tecnubel Afe ' 9 1 ^ O|E|) C02 blasting

31 Sa4. , 3fl7]-i- 6i^7](supercompactor), 4 ^

» Mettrology table, Hot cells, Fertilizer production

plant 31 JET (The Joint European Tours) vacuum vessels -§-ofl

Table 2-2if

113-

Table 2-2. Recent CO2 blasting projects-nuclear applications

Facility

Nuclear service

centre

Fuel plant

Fuel plant

JET Culham

Research centre

Research centre

Isotopeproduction,

Cell 27-28

Isotopeproduction,

Cell 28

Fertilizerplant

Materialsupporting

thecontamination

Painted

carb steel

Concrete/epoxy

Brick/painted

Inconel/Inox

Painted

carb steel

Painted

carb steel

Stainless steel

Lead/epoxy

Stainless steel

polypropylene

contaminant

All fissionproducts

UO2 enriched

UO2 enriched

H3Co-60

Co-60

Various fission

products

Various fission

products

Ra-226

Decontaminat ion

factor

3 to 158

12 to 35

53

0 to 14

1.8 to 73

2 to 5

1.3 to 3.6

10 to 100

Measurement

Wipe reading

Direct reading

Direct reading

Wipe reading

Direct reading

Wipe reading

Direct reading

Direct reading

Direct reading

-114-

4 3. C02

7f. £

C02 -S-

" 4?*H, Table 2-

39mm, ^-^1 6mm . 7f^-^H grinding ^ polishing*H ^ % N 4

M l r 4 1 1 ^ H H ^ 7 ^ 4 ^ SUS304

. C02

SUS304 ^ H ^ # CoJSq- Cs-^-S ^ . ^ A ] ^ , i ^ ^ «_Af6i.^(10) 25, 45kg/cm2),

.S, 1.0, 1.5, 3.5, 5.0, lO.Omin), ^ - 7 ^ 1 ( 5 , 10, 15 mm),

.85, 2.9mm) -§^J- ^ ^ C02

, C02 £ 4 4 £ g #

co2

co2 ^ - A J - 4 ^ 7 1 ^ £ 4 W 4 ^ ^ ^ u}4 ^ 1 , co2

1 ^ C02 medium^-ir pelletsf snow# # ^ Sit}.

H 4 pellet

- 1 1 5 -

Table 2-3. Contamination conditions for simulated specimens

Loose SL^

Fixed

IT

1ST

Cl & C2 (- 1 ^ ^ ^ ^ temp.=50C, t=48Hr)

Cll (temp.=650C, t=24Hr)

\ Time\(Hr)

Temp(C)\

400

550

650

8

C3

C8

24

C4

C7

C9

48

C5

CIO

72

C6

-116-

system^] u|*j| *sl*l * | £ C02 snow system^- ^Tfl • * f l ^ H ^ % N 4~§-

C02 s n o w ^ 9£ ^ r 4 ^ * f e Fig. 2-l^f <>1 disassembly if C02

cylinder^. - 7 - ^ 4 . 4-g-S} C 0 2 ^ ^7}SL<* 7}^^ %±&t*}7] ^ * j |

3.&S. C027]- ^ . ^ - ^ 4 . J t # assembly^ 0.80mm£| orifice

J <£:£ f i t t ing^S.

Joule-Thomson

C02

C02 ^ ^ # ^ ° > ^ ^

} ^ ^ # # | ^ f } ^- C02

^-#1- JL " co2

C027} ^ - ° - ^ 3 ^

co2

X-ray Fluorescence(XRF)^o]

4-§-^i XRF^l-b Siemens^]; SRS-303 modelS.^

Rh target^-

2. -S

7K

- 1 1 7 -

PTFE lined flexible stainless tube

pressure valve

pressure gage & regulater

PJFENonleseccndonfce C G O T i n g

Bombeliquid orgas phasecarbon dioxide

Fig. 2-1 Experimental equipment for solid CO2 decontamination

- 1 1 8 -

3.79

r Silt:}

C02 ^ r 4 ^ 1 ^ ^ ° l loose^.^ ^ - ^ o}iJ|e} fi

Table 2 - H

. 4000 ppm^ Coif Cs^^--§-^ 2.5ml# 7}?>

] ^ H I ^ O ) } ^ ^ > Co

5 0 % ^ > I 1 1 4 U

5% nln>(Cs : 2%, Co

4.0-4.796)u)ro] xh^Z\o] i ^ ^ ^ ^ . S . ^ -¥-^^?> ^ r £ ^ #

650C, 8 ^ ) ^ : ^ ^ : ? i < H M 5 . Cs2} Co^l .<g ^ ^ - % f e AA 21%,

7} Cs^^3] 4^^f ^^-^o] 1 4 ^ ^ ^2f# -E|-M|&uK -y^| fixed

Co,

- 1 1 9 -

100

80

0 s

OECO

"co

"(0

Q:

60

40

20

7

XXXX

XXXXXXXXXX•X

XXXXXXXXXy

\\\\\\

<;

X

XXXXXXXXxx

s]\\\\\s

Cs ^ B n o wash V/\ wash

Co K>d no wash | \ \ 1 washi

\

XXXXXXXy

XX

XX

XX

XX

XX

)

\\\\\\\

7

yXXXXXXXXXXXXXXX

\\\\\\ I

XXVX

XX

XX

XX

XX

XJ

\

yxXXXXX

xXXX

xXXXXX

C3 C4 C5 C6 C8 C9 C10 C11

Fig. 2-2. specimens.

-120-

7241^

244 #

4

co2

400C5]

co2

SUS304

co2 , co2

C02

Fig.

C02 3,7}

C02

C02 snow7}

%*}5L

121-

4 ^ J L ^ } 2^£ | ^ 4 ^ 1 H|*D 3.7]}

co2

25 kg/cm2oflA-| 45 kg/cnfe ^

^ 4 f e ^ :4 C027l-

71S] 7} HA%># ^ n

10

C02

- 1 2 2 -

70

60

50

40

DF3020

10

0

70r

60

50

40

mum•1I••••

23

10

0

0.5 tfrrin) 3.5

ftft/A'//'//7/,

A/

ftY/yftft,VA'/AV/,//'/,'//

m'/,ftft

35 45 10 20L(rrrrj>

Fig. 2-3. Residual amount for simulated specimens.

-123-

co2 co2

. C02

fixed ^^^.T:!-^ loose £.<*$)fixed

2. 400 C*] -8:5Lo\}M 24

3. C02 *H, C02 -

- -44^ 45

loose Rj fixed

98%

-124-

7H 1 J -

fe TRIGA Mark I I I

S|£S

1.

7K

(l)

- 1 2 5 -

DUPIC, KALIMER, S/F

, Fission Moly, '

(AT, Kr, Xe), ^l yi^ 7]^(I, Cs, Ru, T), ^ - ^ ^ ^ # ( C o , Mn)

Zr, Cu, Ge, Nb, Rh, Pb, Na, Cl, P, S, Ir -§-o|nJ,

H^l 3-1-cr <s^r-^ JPDR(Japan Power Demonstration Reactor)

Sand-blaster*] ^g-f nl4*> ^^1*] i H ^ o ] 7}% -fe^-t^, JE|cfl 0.5 mm

^ ^ ] ^ ^ ^ ^ J i ^ : 14^ ^°1 FloorScabbler# f ^ ^ f f ^ > t 4

126-

0 0.1 0.2 0.3 0.4 0.5

Particle Size(mm)

Fig. 3.1. Particle Size Accumulation Curve.

- 1 2 7 -

Table 3-1. Collection Rate of Particle

Method

Shot-Blaster

Sand-Blaster

Floor Scabbier

Wall Scabbier

Needle Gun

Particle Generation(g)

19,893

7,246

18,352

13,157

62

Dispersed Particles(g)

126

687

5,550

147

16

Collection Ratio(%)

99.4

91.3

76.8

98.9

79.5

^Pg^f DUP1C, Fission Moly,

91 Cso]

SL h, Kr/Xe, C-14, Cs, Ru, Cl2, C02

Particulate7}

Hot Part i cu la te ^ ^ j ^ - ^

Hot Pa r t i cu l a t e 1=M§Tr 3.7\]

-£• DOG/VOG, sfl 7] ^\ e] -^ JLS. n 2 -^ :^ ^r SlI

1-fe- Voloxidation, -§-Sf|c2i •;o";§) -§-^H, ^ S ] , -n-

B.S. Kr, Xe, C-14, I2/N0x, Ru

DUP1C ^ S/F ^V

Hot

sodium

KALIMER

- 1 2 8 -

part)

3.71

3-143.

- 1 2 9 -

Fig. 3.2. Cyclone Entrance Block

- 1 3 0 -

3-7% #42

#9" 1-1-f- 4°l°fl # 4 ^(deflection vane)#4 ° ) t € # 1 1 ^ o ] 51^4 ^cK ojif ^ ^

and Cone)

cr 1.2-3.6 m

^ 90

fe 50-130 mm

50-150 mm

H20

4

Jtcf

- 1 3 1 -

Dc Body Dia.b Inlet Width

DB Outlet Dia.

aSh

H Overall Height B

Inlet HeightOutlet LengthCylinder HeightDust OutletDia.

Fig. 3.3. Cyclone Configulation.

Table 3-2.

71JL

Dc

Hc

Bc

Sc

Dc

Lc

Zc

JL £•§• &^7]

1.00.50.20.50.51.52.5

1.00.750.8750.8750.751.52.5

Lapple1.00.50.250.6250.5

2.02.0

3.

7}

- 1 3 2 -

4

. o] o)

tl|7] 3E171

- 1 3 3 -

o|

7}

- 1 3 4 -

Slide Gate

a. Single Slide Gate c. Discharge Screw Feeder

("••Si: . «

&»l

b. Rotary Valve d. Automatic Flap Valve

Fig. 3.4. The Kinds of the Dust Hopper.

- 1 3 5 -

$17}

7}

dp

Vp

R

- 1 3 6 -

47] 4i

, [dp]cut =

nt =

Vj =

p p .

B -

Pa =

1/2

(m/sec)

kg/m3

kg/m3

±;V% o |

3-5^

nt

nt=5#

- 1 3 7 -

Particle Dia

Fig. 3.5.

- 1 3 8 -

Table 3-3.

5</im5-20/^m15-40 m

40>

<5050-8080-9595-99

III- € 3£ 7l50-8080-9595-9995-99

n ^ 3-74 3-8^ O. [dp]cut

Ve

^ r F e ,

r = ra

r = r,

r - u = 0 . r = r;

- 1 3 9 -

To"

JO

10

TOSitfJ 5

j

3

— VI

— Bt

IIS

5011/5

-Oc /

^

cc

1

/

/•**

E _- ?

* "*

f

»v

<K- ,

^-

*•*

'-

f *

'&

inches)

Fig. 3.6.

- 1 4 0 -

3 0

2 0

I 00 90 80 70 6i •>

0

• * •

20

rf

30 40 Hi 60

-

00

0 0! 0 03 n M 0 05 0 -.'6 0 10

Fig. 3.7.

Inlet width/cydone diameter ratio Bc/Dc

0 J 0 2 . 0 3 0 * 0 5 0 6 '

3 0

2 5

• 2 . 0

1 5

1.00.90 80.7

0.6

0.5

\ .

^y^y

> <

1

[

y

!

Fig. 3.8. ^a

- 1 4 1 -

Fig. 3.9.

- 1 4 2 -

Fig. 3.10.

- 1 4 3 -

44.

71 fe

r r (3-3)

r,

ZLQ 3-951

.2*} S: 4

24 ^ ^ ^24 ^ ^ ^

3-non

AP*

- 1 4 4 -

eAP-

AP'stat

i

\

t

\

m

C-i

Cl-m

Fig. 3.11.

- 1 4 5 -

* P P( 3 ~ 4 )

.* Pstat Pm.stat (3-5)

t-m i - t

7]

- 1 4 6 -

Table 3-4. $X<>H

',=FJFi

= •¥-

V

V Vi

itch, 2 h*

V Vi

(3-6)

(3-7)

(3-8)

(3-9)

(3-10)

(3-11)

(3-12)

(3-13)

(3-14)

- 1 4 7 -

^ r ^ 3-12<»fl

o] vro]

# 3EE 3-

(3-29)^

e-eij- i-i

- 1 4 8 -

Fig. 3.12.

149-

2

$6

t

* 2fin 2

Dsr IO

ae

2

a3

\

\\

\

1

1i

•&*

1:

NT

t

r'

i

I

b

1

:.

• _ . ; 5

i 6 8 10 2 I S I 10 2 4 SReynolds Number

Fig. 3.13. S S S

)O86

c

a tos a

1

A-

^-

-

a '

*-*

A:• — .

* /r iK.l

,

c

; .

1

i0

*

s

t 6 eio2 2 AS e to3 2 i e 6 to'Reynolds Number

Fig. 3.14.

- 1 5 0 -

Table 3-5.

r =

r* ua

r =

(3-15)

(3-16)

«,-/«*,<0.2

ui#

r =

aT= 1.0-(0.54-0.153lF*e?{W

^7l|(swirl vane

(3-17)

(3-18)

(3-19)

(3-20)

0.85 (3-22)

0.95 (3-23)

- 1 5 1 -

Table 3-6. n

A = A G+ A p (3-24)

fi < 1

fi > 1

3/7)

M

(3-25)

(3-26)

(3-27)

1.49Rez

1.12

+ 0.004

+ 0.004

(3-28)

(3-29)

$] Reynolds ^ Re

Re,=

2k*( ra*-

Reynolds ^ Rei

(3-30)

(3-31)

Froude Fr{=-

0.25

2Tig

ps (3-32)

(3-33)

(3-34)

- 1 5 2 -

dpwr

1 dp2.pt.u

18 rv

, ZLB|JL wr(u5L

(3-35)

(3-36)

(3-37)

- 1 5 3 -

asm

Fig. 3.15. &&

- 1 5 4 -

Table 3-7. A p .

(3-38)

' - . = (Pe+ P u?/2)-(pm+ P vf/2)

(3-39)

(3-40)

(3-41)

(3-42)

(3-43)

(3-44)

(3-45)

(3-46)

(3-47)

(3-48)

(3-49)

155-

Wr = u e f e 7 p * ^

fedl 6] . vMf7f ^ ^ -

( 3 - 5 0 )

104, p,/pfe

<$ 15-20

u '

71*1);§L#J> 7}^

3.7}

M]

01

4c

4c',

- 1 5 6 -

4c'

24*H7J- oj

€- 2*} ^rBlfe

Lapple

© Leith-Liech }

Leith-Liech^

^ l ^ 3.71 Af

l oil-A 4 4 1 - ^4(3-51)^1

? ; - = 1 - E X P [ - 2 ( O ) 1 / 2 M + 2 ] (3-51)

C = 4°1#€--^ 4"r-S-tKCyclone dimmension factor)

^ = *§H§-1£l r( impact ion parameter)

n = ^i51^-4^r(vortex exponent)

- 1 5 7 -

00

80

60

40

20

-

/ /

J

/

1! I; 1i

1r

7•'

^ m

•* . * • "" " -

/ •

/ _ _

1

. - - ^ ^ '

pcivrson ond whitbv

-OIS(I956)

-O IS ( l 95 i ;

- 01S (1970)

_ teilh and Lichi 01?

1

-

(1965)

-

(1972)

Fig. 3.16.

- 1 5 8 -

(3-52)3.

(3-52)

(3-53)

^/:

n

2} Rp/R0

Lapple

Leith liechif

Lapple

-159-

ii) Lapple

d,P O

[ dp] ^

cut[dp]cutX

—J—l

7/

n ? o

—T

1 /

1

1

*

Y-t-

~t/ />i

0

/ /

i//ff/ • /

if

Wf//\if

' 6

Fig. 3.17.

u

sta5

" * Tr

_ —

,

/

^ ^

..

"

• i - I P - -

—-0 1 -

I

Fig. 3.18.

- 1 6 0 -

?i(Lapple)

(3-54)

kg/m3

Pm

g

o]r.}. K c ^ 16,

*l(3-55)

(f ( 3 " 5 5 )

Q :

- 1 6 1 -

JP=K'cpgV2i<>|t:>.

xcfl K'cfe 0.013-0.024^1

6-21

^4. 4

Table 3-8.

^ £ 4 1 mmHaO

200-250100-15050-100

100- V a _1 0 0 - vb) \Cai

: a, b 2,^2]

C : a,

( 3 _ 5 6 )

( 3 - 5 7 )

162-

170~230g/m3

4

2-58^

1 0 0 - v b

v ••

Qa

a, b : 2^^. a, b

1 0 0 - v

100- Va

a,

( 3 _ 5 8 )

fe *} (3-59)

(3-59)

(3-60)

163-

3-194}

a xi

Fig. 3.19. M0\

- 1 6 4 -

n]4tl: ^47}

7]7}

^ 4

4(3-61)5.

v = v p+ 9,(100- (3-61)

-. o|

20

, 5-10

H20, JL

mVmin

50-10 mm H20, # J L #

-^r 250 mm H20

<>1 # J L , ©]

100-150 mm

^ 14-28

67H 7 W ^ 7}

7]^]5o>o| 700-800 mVmin

- 1 6 5 -

ojn]

3.7]]

smooth rotating wall, porous rotating wall,

grooved rotating wall, acoustic field, electrostatic field^

166-

Table 3-9. Rating Judgement as to the Relative Potential of Each

Concept Tested in the Cyclonic Wind Tunnel.

Concept

Smooth Rotating Wall

Porous Rotating Wall

Electrostatic Field

Acoustic Field

Grooved Rotating Wall

IncreaseParticle

SeparationPotential

A

A

B

B

A

ReduceParticle

Reentrainment

B

A

D

F

D

RelativeEase of

ImplementingConcept

in Cyclone

B

D

B

B

D

Overall

Score

B+

B

C+

cc

(A = Excellent, B = Good, C = Fair, D = Foor, F = Failed)

KALIMER4}

Sodium^ -Hi

1 o>

Stl

Hagen-

1980 HEPA

-167-

HEPA

Dirty Gas

3.0-9.7 mm

3.0 mm

1.58 mm

0.28-1.58 mm

0.28 mm

3.0 mm

Cleaned Gas

Fig. 3.20. Sand Filter Configulation.

- 1 6 8 -

3.7)7} 9]^d\] 4 4

3.717}

°-£- 0.3

HEPA ^ ^ ^ A ^ ^ ^ 4 # £l*H 0 . 3 fm DOP H # # M g H l

>l ^ f l ^ ^ 1 )±r 0 . 3

7), -

46JK. W. Leei l - B. Y. H. Li

(penetration)

717}

-§-•£• Spielman4 Goren[3-18] TJ| Dawson[3-19]^°l

Kuwabara-Happel 5]

Stechkina[2-20] £!

Kuwabara -n-^-^'S" l"§"^r]'0'} Friedlander-S]

44

371 ^

- 1 6 9 -

Kuwabara

(3-62)

7 = single fiber efficiency

<z = fiber volume fraction of filter

Pe - Peclet number = uD/lD

u - filtration velocity

Dp - particle diameter

Df - fiber diameter

D - diffusion coefficient of particle

R - interception parameter = DplDf

K - Kuwabara's hydrodynamic factor

#•& Kuwabara

ASLS Re ^ ^ 4 o f o > *}*J, a7\

of

(3~63)

£ - the overall efficiency of filter

L - thickness of filter

37]6j|

-170-

7}

, k - Boltzmann constant

T - absolute Temp.

H - gas viscocity

C - slip correction factor

Kuwabara- Weber^ o|] A-]

(3-65)

, A = mean free path of gas molecules

a, b, c - 2.492, 0.84 and 0.435 according to Fuchs

1) 4 C=l (3-66)

4 C=(a+«^-=3.33-^- (3-67)

^ - ) 1 / 2 (3-68)

for (A/Dp)< 0.075 (3-69)

for 0.075<U/Z^K1.3 (3-70)

for (A/DJ>1.3 (3-71)

- a (3-72)

- 1 7 1 -

•a fi uU/ZX)<0.075 (3-73)

for 0.075<UW<1.3 (3-74)

for UAD,)>1.3 (3-75)

3.7)7}

J2>iPM^i-(Solid volume fraction, a)7\

3.7)7}

^- 0.075<(/l/Z)J>)<1.3

1 /Q

= 2.35U 7—) ( ~ M

rc}e}

- 1 7 2 -

^Tfl Slfe

0^47 } ^ 1 ^ 5 ] ^ -§•<?>

-173-

Baggaleyofl

^ * } # ^ S j £ ^ r Tardosi*

Gutfinger[3-22] ^ Lee [

H. Mori ^ ^ ^

Kuwabara-Happel ^ S

^l^f<^ cfoo>*> ^S.if -S^?> 3.71*] PSL, stearic acid, sodium

chlorideif silver iodide^ # ^ 1 4 o^e| S 7 } ^ ^^ f^^ l cfl*fl

N. Kimura ^ & ^ ^ ^

fe^) Einstein

[3-26].

V®c=(l + kNRa-®c)L5)VeDi (3-78)

- 1 7 4 -

5*103

] # ^ B Happel-Kuwabara

f Kuwabara 2.vg)

SEt> 7]^] slip

Knudsen^jt

D. W. Cooper^ quality factor#

1- 4

Brown

.Pe~m (3-79)

3 sphere efficiency due to Brownian diffusion

a - volume fraction of granular bed

5 a 5 a

Pe - Peclect number ( = —fr)

u = flow velocity

dg = diameter of the collecting bed sphere

dp = particle diameter

D - diffusion coefficient of particle ( = £ j ^

K - Boltzmann constant

T - absolute temperature

C - Cummingham slip correction factor

fj. - gas viscosity

-175-

S F (3-80)» 77 R=s ingle sphere efficiency due to interception

R = interception parameter ( =dp/dg)

X = ( l + 2 a ) / ( 3 - 3 c )

(3-80)^ ^ S ^ ^ l « H < I ^ - f r^M" Kuwabara^

18/*

(3-82)

(3-83)

(3-84)

= <t>gl2,xl2 (3-85)

}7l 4 ^ ^ ! *1 (3-24)51

- 1 7 6 -

(3-84)# *}(

(3-86)

(3_87)Zl LA

(2-81 )£•

( 3 " 8 8 )

51 ?> S ^ - ^

Tardos %<>\] 3]^ r}^ ^^6\) $]*% £ ^ J L u ] - Gebhart ^ ^ r VG7\

3.7}6\]

7] 4 ^ : ^ ! aq^JL^-eHI] ufl«> 7]<H^ nfl-f ^ r> . Gutfinger^ Tardosofl

*> 7] <Hfe Skokes ^ o | 0.1 o]

Gebhart ^ i f Gutfingerif Tardos^l £Jt! ^^11 ^^f0!] ^-§-*fe Stokes

(3-89)

^(3-79),

(3-80)3f (3-88)5]

( 3 - 9 0 )

-177-

S)

=171

(3-89) 1

+ i (3-94)

(1)

, Scabbier, Milling, Drill-Spall, Paving

breaker and chipping hammer^- Expansive grout^-S.

(7})

Vacuum cleaning (VC)

-178-

7}

Brushing, washing, scrubbing

S^-(Fixative/Stabilizer coatings)

-§-§•

glycol),

(Stripping coatings)

-179-

ight ablation)

<& <>M*1 S

}. o]

pinch plasma lamp

laser, xenon flash

ot i)Ooo-2,oo(rc

90dB

1/4

^(Microwave scabb ling)

Oak Ridge Y-12

71

(Flaming)

- 1 8 0 -

4

(Flame scarifying)

o| 7 1 ^ ^

PCB#

fe C02 J£4r N0x

4

spalling

o] 7 ) ^

^^] 3.

- 1 8 1 -

(2)

Scabbier

H ^ «J Spall

^ ^ £ i s . 3e lH S^<H1 30cm£|

spaller# ^o

5cm ^

(e}) Shot Blaster

(nf) Sand Blaster

shot blaster^) «]«){ jL-§-ol

(H}) Cryogenic

C02 7 } ^ # °|-§-5r}o={ Dry Ice

150 PSI ^

)^" Dry

- 1 8 2 -

#^H1 An}-B Dry IceS]

1HH

(3)

^(chisel)

- 1 8 3 -

*r 71

o]

1-

Sit:}.

- 1 8 4 -

O »d

©l«g-

600'C

iLS. ^ 71

(4)

(7}) TMI

1979^ n]^- TMI (Three Mile Island)^^^^

4

-185-

Cs-1374

and dry abrasive blasting technique)2f

, o] 7 1 ^ ^

MOOSE Bj-

EPRI(Electric Power Research Institute)<H]4

100 ftVhr

head

-186-

<^*l(on-board vacuum system )5H°)

r €4^^ (wi re l e s s )

( hard-wi red )

6171

West Valley Demonstartion Project(WVDP)^

3} 3.3.el je

"M00SE"e>

1/16 1

- 1 8 7 -

fe

fe

4-§-*H & 4 * l ^ 3 . *ll?m ^ safe

HEPA(High Efficiency Particulate Air)-Vacuum ^ ] ^SI

(uf) PNL |

PNLoflA-] 1990 4 DOE l ^ ] ^ * H Hanford^] Slfe Hot cell

324^ 325 ^ ^ ^ 1 4^*H*H H S l ^ l - ^«g*}Slt:>. o] ^ ^ n ^ ^ | ^

A}^6fi i i#£i fe ^ . £ # ^4iXl^7l *J*H air lock

cover blocks^- ^-g-*fe ^M, *? Si*flfe

# ^BH(Waste forms)*} ^ ^ ^ - ^ * f e cfl

Cell# ^1 |*H 44-§-^fe^ m^M ALARA

PNL J 324y4^ufl£| aJ-A}5]-^ ^4qo]B 0 i Al-gofl^^. air lock 7^^

v> 1960^ -f 4-g-*H 4^^^-^-^- ^ 1 1 - ^*>^>.Air lock

A i r

ALARA ^ >

-188-

grout# £chipping^ hydromilling*> ^ Hydraulic spall i

fe 3j, c) #£,©- n]

Sll-b ^ ^ ° 1 1 1". PNLtHJA-] 7]| -*> hydraulic concrete

spallerl- 4-§-* |-^^ 3], 3j;g 2.5cm ?Jo| ^ 5 c m^ jfL^^. n | B | ^ J T .

spaller# ^-^ofl ^ H ^ ^ 4^§- 68.9MPa^ hydraulic pump£f push rod

# o|-§-*H HJ- -ofl push rod7} Sl^*]-7|[ *> ufg- »J^ wedge7> ^-^^1

bit7} ^3.B|H ^ # ttl)e|^^ ^^>*>U}. ^ i f l ^ 3.3.Bl^ ^o^e] 3.71

20.3cm ^g£7f 5] Siu}. o]4 ^.T§ ^ > ^ ^ 20.3cm7f 7 } ^ ^

.t^ push rod^f bitAfo]^ -g- Vo aersol lubricant#

^^el# 113 L -g-7H H f e

10 man-hr©] &J5.T-} 4 ^ ° 1 4 ^ 5 ] ^ ^ 6.

2.5cm

Post-refurbishment analysis

«1|^-*fe 4 ^ ^ ^ ^ ^ 10^©)cj-o-^ *t<$x}7\ * ^ ^ # ©1

^ 3i]^-# £|dL§. ^7] ^^©isd*.^

^ 80 mrem/hr©! u} .

Cs-137 ^ Sr

©>S.JE. Saw#

©fl ?fl^HAl^ ^ ^ * } ^ f e cfl,

- 1 8 9 -

inventory^ 50%, Sr-90£| ^ - f 30%7f sfl^M

^r 1.0 ~ 1.5 mmS.

C-CellSj

50 r a d / h r o ] ^ ^

foam cleaner^- 34.5MPa^ water flush iS.>M 200

JPDR 5{{^1S^.J1

Japan Power Demonstartion Reactor(JPDR)

-& 1981

JPDR5]

^ 1995^

JPDR |a 471

> i ^ - Diamond sawing and coring^} Abrasive water jet

- 1 9 0 -

3.7(1 sand-blaster, Shot-balster, Floor

-scabbier, Wall-scabbier, Needle gun Jg- 5 7j-*|5j ^«11- l-8-*f$i^.^

JPDR£) *||£*1|*Mo1fe ^ 5 . Shot-blaster, Scabbier Sand-blaster||-

7}. ^

(1)

^ 3-214

ZL J 3-225} ^ ^

fe ss.ai«# n l 3-234

(2)

ZL^' 3-24^1

^14I^-% Compressorl-

Reciever l 1 H ^

37B ^^*|-5iA^, Air Dryer^-7)

(uf) £ ^

Air DryerSL

-S-7] $m Water bath

-191-

(Humidifier)^

Mixed Bed# Hygrometer

^: humidifier ofl ^ ^ «-# 4-§-

Dc body dia. (60)a inlet height:(30)b inlet width(12)SC

Nnmpnr.laturfl

DhH

outlet length(30) Bchamber height(90)

outlet dia. (30)cylinder height: (90)overall height: (240)dust outlet dia. (22.5)

Fig. 3.21.

- 1 9 2 -

I Reqiired overall efficiency

I Compare particle size distribution

I Correct overall efficiency

I Select fT, fP

Calculate Vj/v,

NO=NO-1 orDc-Dc+0.1 o

M M

1Find Dc, vs

Pick cyclone design ratios1

Calculate Q,1

Calculate No. of cyclone

iCalculate v,

Calculate n, G, x1

Calculate grade efficiency

-^=CI]airpartjcleI^::=*-

Calculate overall efficiency1

Calculate pressure drop

Print output

Fig. 3.22. The Cyclone Design Program Flowchart.

- 1 9 3 -

Input Design Ratio

Input Particle Distribution

Cal. Natural Length Volume

Cal. Core Dia.

Cal. Cyclone Volume

Cal. Cyclone Vol. Const.

Cal. Cyclone Configuration Factor

Cal. Saltation Velocity

Cal. Vortex Exponent

Cal. Cyclone Grade Efficiency

1Cal. Overall Efficiency

1

Fig. 3.23. The Program Flowchart of the Cyclone Efficiency Evaluation.

- 1 9 4 -

Compressor

Silica Gel Column

Air PumpIntergrated Flow Meter

Fig. 3.24.

- 1 9 5 -

By-pass

7] £ S # JL7] JH*fl filter paper# ££*|-&-S.n|, S^ 1 !^ . filter

papers] J2.^7|- -g-oj j-s. . filter paper case#

5. Blower# ^ ^

(3)

Dry Oven^l \$JL 244^>

1~3 yum, -^Sf W * ] ^ 5 //

^r^l^ 6o^ 4 4 3g «?^s^ 0-60% 7}45] ^£^2f^f 2-15 m/s

filter papers] S^1^, ^- Afol^-S.^.

4l*l|^ filter paper*]

IS0T0N II -g-^M- 4-g-*><H Coulter Multisizer

7~15mm

- 1 9 6 -

ParticulateLaden Outer-Vortex

SeparatorPlate

Hopper

CleanInner-Vortex

Turbulence Impact

CollectedParticulate

Fig. 3.25.

- 1 9 7 -

HEPA 0)7]

HEPA

^ DOP ^ ^ 0.3[m

99.97%7f fe

5JHEPA

(l)

(2)

(7}) Steel Bar Heating M/C

© Power : AC 220V 10 1, 2KVA

© Output : 0 ~ 10V, 100A

.ni, 4

-198-

Load Cable : 3M (Remote Cable 3.6m)

Fig. 3.26.

- 1 9 9 -

(3) Control System : Loading Time, Over Heating Controller,

Power Meter, Ampere Meter, Volt Meter, Safety System

(I-}) Heating Rods & Control

® Capacity : 161.333 Resi

© Channel Point : 50P

(3) Safety System : 2 Interlock

(D PID Auto Tuning

© Display : Setting = 0.5% +1 digit

© Feedback Control

(£}) Concrete

© Capacity : 595x595x300

® Power : AC 220V

(3) Up & Down : PID Auto Tuning

(D Display : Setting = 0.5% +ldigit

(§) Feedback Control

© Stroke : 200mm

(ef) 1 z\W*4*} ti^^l^Heating Rods -jf f Power ControlIer5j Tf^# S 3-10 1-

3-nofl 4 4

-200-

Table 3-10. Heating Rods

Diameter

Length

Heating Length

Cold Length

Volts(V)

Resistance

12.3

150

50

100

220

161.33

Table 3-11. Power Controllers

Power Supply

Control Point

Cable

AC 220V 10 12KVA

1-Point

3 Ea

AC 220V 10

50-Point

50 Ea

Heating Rods

Heating Rods^ 14~36W/cnf£J ^ £

Power Controllers

Power Controllers^- Heating Rods-H

$X

(3)

Heating Rodsif Power Controllers^-

- 2 0 1 -

(4) 4 3.

Heating Rodsij- Power Controllers^] 4-§-*fe *1|.§.-b < i ^ ) 7]

Ni-Cr

(5) ^ ^

Heating Rodsl- 25°C ± 5°C

90% ±2%, ^$) -&S. 25°C ±

Heating Rods ij-f- S^<^1 -f-^^I ^r^:# ifK I.|JJL

-f e\7\ $X^ H ] ^ ^ -^^-^-^1 4 ° ! ^ ^ ^ 4%v^r 500V

4 fw

(14)

X[o}6\] ^^ ^bj- 1500V Jl^- **## 7f^}^# ttfl

i.06«H

(6) ^8-5"

-202-

Power Controllers^- Heating Rods# t[^$] *\}o]

(A) 4

4

Heating Rods o\)

(7) Concrete

*m ;?i<fcl~ 150V s.3\ 'S'Ffe 7A 1.5 mA

Concrete

(7\)

Heating rods

heating rods<H] r^?> power7F U}E}L.|-O]:

(v-F) heating

(8) -3.e]S % press M/C

-203-

(1)

(2)

(3)

(4)

3-27^)

2,250 mm

2,200 mm

850 mm

550 Kg

^ 7O>(STS 304)

scabbler

fe X-% LM 7>o|H,

, 4

(5)

50/«m O]AOVO1 ^ «}BA| short blast i ^ sand blast

-204-

; LM Shaft & Ball Bush X

Y * Ball Screw

Timing Belt & Pully

Servo Motor

Fig. 3.27.

- 2 0 5 -

2. £

< H4 4 S]BH tflft < ^ 7 J ^ J=-^ ^oj-iL^oj 4

44

woven ceramic bag)<H2f7],

velocity), -&S]^-5L(col lection efficiency), ^Z] B.7]

(colletor s ize)^ | tfitl wlJ3.ig7f# ^f^uf. ZL^o\] 3£MQ 6-M-b CY :

Cyclone, ESP : Electrostatic Precipitator, FB : Fabric Filter, WCB :

Woven Ceramic Bag, GB : Granular Bed, CFC : Ceramic Fil ter Candle-^-

744 ^\i&c\. 4

. 4

o] ZL^O\]A] 4 0 ] ^ g . ^ . 12 m/s

5. *]•*] t iSlt^.^, 0.04 ~ 0.3

a ^ 3-30*1)^

3-3KH1 «J2HW ^ 1 -f^Km3)^ ^ e m ^ Sllfe 7^1 -§-eo>(m3/s)#

- 2 0 6 -

3-32^

°F1000

800 -

600 -

400 -

200

nCY ESP FB WGB GB CFC

Fig. 3.28. Comparison of Temperature Capability.

m/s20.0

0.30 -

0.10

0.09

0.08

0.07

0.06

0.05

0.04

-

n n

0.26

CY ESP FB WCB GB CFC

Fig. 3.29. Comparison of Face Velocity.

- 2 0 7 -

100

99

98

70

69

CY ESP FB WCB GB CFC

Fig. 3. 30. Comparison od Dust Treatment Capability.

10

CY ESP FB WGB GB CFC

Fig. 3. 31. Collector Size Comparison.

- 2 0 8 -

Compressor

HEPAFilter

Data Acquisition SystemLaser Particle Size Counter

Fig. 3.32. ^ 3 * 1 Bl

- 2 0 9 -

Coulter Multisizer^.

ZL | 3-33 ~ 3-35Af ^ ^ S # 4 4 v J 4 . a ^ 3-334l~3mm *]cfl

30%^

~L^1 3-344 95%

7 } ^

l:^-^, ^ ^ 3-354

(l)

H^J 3-36 ~ 3-384

0.045 g

^r 98.5% ol^-o^

filter

Ac^, H ^ 3-3644 ^-fe4 «B#6o>ol 0.004

60%

fe 0.043gA5.

10HB ^ £ ^7BM- ^ ^ ^ 1 ^ . ^ , ^ l ^ ^ ^ - n ] ^ ^ ^-f-b a ^ 3-37

^o] 5* 1 4 61= 0.038 g OIJL 60 %°i 4 ^ 0.024 g *.$.

(2)

3-39 ~ 3-414

^J44 ife

- 2 1 0 -

o.O45g

98.5% 4 ^

^ 3-40^

O.025g 7

(3)

10

ZL^[ 3-42^)

(4)

n ^ 3-43 ~10 m/s

71

- 2 1 1 -

Particle Size(nm)

Fig. 3.33.

- 2 1 2 -

1.95 73.05 83.15

Particle Size( jjm)

Fig. 3.34.

- 2 1 3 -

0 10 21 33 43 53 63 73 83

Particle Size(nm)

Fig. 3.35.

- 2 1 4 -

tS 0.020

0.015

0.005

Fig. 3.36.

- 2 1 5 -

0.012

10 15

Velocity(m/s)20

Fig. 3.37.

- 2 1 6 -

3

V)

Q

0.040 r

0.035

0.030

0.025

0.020

0.015

0.010

0.005

0.000

1 0

Velocity(m/s)

1 5 2 0

Fig. 3.38. ct|-

- 2 1 7 -

0.045

0.040

0.035

0.030

•§, 0.025

0.020

Q0.015

0.010

0.005

0.00020 40 60

Relative Humodity)%)

80

Fig. 3.39.

- 2 1 8 -

0.012

0.01 h

0.008 *-•3

g>'a) 0.006

\

0.004 h

0.002 ,-

5 m/s10 m/s15 m/s

0 10 20 30 40 50 60 70

Relative Humidity(%)

Fig. 3.40.

- 2 1 9 -

0.000 -

Fig. 3.41.

5.0 r-

4.9 [•

CD

i

Du

st'

4.8

4.7

4.6

4.5

4.4

4.3

4.2

/

-

-

-

5 7 9

Hopper

! 1

11 13

Size(mm)

V

\

\I

I

I15 1

Fig. 3.42.

- 2 2 0 -

nt(

%

o0CLOE

o>

100

90

60

70

60

50

40

30

20

10

0 I

f[•

• ! /

•I /. f fl

A ,i ;' •

/ ' ' /

u ili '

i ' •

] •

1

-TVPi

}

—•—Fe—*—Cr

• Al

40 60

Particle Sfee(mm)

Fig. 3.43. 60%, 10 m/sO\\M^\

-221-

20 40 60

Particle Size(mm)

Fig. 3.44. 10%, 10m/soflA-|o|

- 2 2 2 -

c0o5a.aE

O

70

60

50

40

30

20Cr

Al

20 40 60 80

particle Size(mm)

Fig. 3.45. 60%, 10m/sO||A-i°[

- 2 2 3 -

71

t:\t\5L

7fl

3-12 ~ 3-14<>fi

4

2.

3.

4.

- 2 2 4 -

Table 3-12. ti];2.

7]£U-3-• Vacuum cleaning(VC)

• Brushing, washingand srcubbling

(Fixative/stabilizercoating)

(Stripping coatings)

(Light ablation)

(Microwave scabbling)

• s(-3 441*113

- **4 #.

71

°ll 4# 5.- jl^rfil 3]-

- 5H.e)E. -

7l#°l ^e] ^ - ^7)1 ^-T;]-^1 ^•^l/lg-A}^-g-^ ^ T ]

M*l!" 7rsf<^ §3SlE.lfl ^^•7l-'g'S^ 441

2} 71- B

- 11*11

j i ^I^BI- '3! xfl 3 S.

£fe •§-=ll'^l?lDr*ll-l-S 5 l 4 >ov^

^ TMI-2 ^3HlJ=3 i 4-8-)

- ^£ *l

" 5% %

—i O c>\JxL.\^ -—| '

w}A 4 '

7)71- A-

§• *ll ^33L4 S .3 tV

^7|J , ,H1^^

S)l7ll- I H

•5-°! 3 4

Table 3-13.

• £?PM5'$( Grinding)

• Hf §' spall

'Shot blaster

'Sand blaster

•i- ftj! spalleri- ^o] ^ ^ t}" -S 4 ^

_ 3x<y-3i^ •7l'?'o11 S-Sfl- -S- "s}o %-^[ °-?Jt^-S- 4 ^

- Shor blaster^! «1 «fl a 4 ^-§-

. & *0 ^

afeinl

K

If

Hi

CO

Q)

B)

PI-J

w|n)

Jb

5

fir

oT

-dmIN

D)r

"FT

oU

•HTNi

B'K

Djo^°

< - i *

i

•m

*>i

•Kb

K-1

n>l

i5°

H-i

•*T

<°BJjlU

d-

o T ' 'UHJIT

I

no

of

d-N°

1

ntfo)

Sir

&

oln)

fl"l>j

oTl?J

i

Djo

o|d

-<i1

Jb

1

TO"

•Kb

!

Ord*•oT

flu

hise

l

•R°

^f

or,

f\"qirr-io^z.

•!(|r

o ^

i

5»r-io

B|

I

•J'Hb

K

sTip'!(|flf

Mi

o|p

o^

r-io

oT

a|

a|

U'i

i

•^i)

i li

rrl

IP|J

dJ

i

•10)

1I t

1

T"ijo"

ojffl

o^

o|n)

jjo

w|75"

ret

1

1

i

SBalo

'o'ljo"

Bl'Ho

1

ajo^-T

IwiI

JIJ

<lm#>

1

7S"ojn)

•pi

liR"

ojni

olWW

d-o(r

1

pjo

r-|o o i

^ i o J ^

oT^1"1

d j jW IN

nTJU

p"lio"

i

X r-|J

pj| ?. j

i

•RJ

*>ri

_

lt|BI

Tff"

IflITlJ

o"J-r—

oJ"

1

Pjo

oT

i \

w1

: < -

if-J

i

I

#

JlJ

TJ

•Rr

i

OrR

o|n)

TJ

JU

op7^-j

1

r-io

of

1

•ft

•<1 '

TtLlJJ-P

i

olj

BlB

o|m750

n-

wi75"

If|J

1

T —

1

•S"

- %

ftJcjo

^Jo"

1 1

s

dJ

1

•K-1

K I *o*V

KlW

1 1

r-jo.|op

DJ-J'p"

1 1

JW

r W

-Ito*

1

o|W

oU

oS

1

o|ni

TO"

•nb

wl75"

flj

iui

HiiflU

<!_

1

2•su

1

Pill!

olnS0

* * >UIJ'KJ'S"

1

J7?

1

tHrT^r

•^Kb

•ao"d-

0o|n)

*W"

° ^1

TO

r-io

W

I*"

1

II

<AW1 1

ajoajo

Kb Kb

<i-<r-

1 1

1 nib

"fa ">ISPI

o ) J ^

ItlW 'lo]j

i^o|n)

^ TilD

oT3l|j

ulorlci

1 1

•$>

oT

PiCp"

w^'Sn^in?

1 1

olJo

r-la

ob

wl

75"

rrl

r|J

a(o

elmwl

-p-

Kl

75"win)

1

wl

- p -

Kl

E75"0 H|n!

1

°b

AHoj

-5-

1

8

1

$

•<

ffijo

wlrJ

%

dJ

wl75"

1

•55D

WJll)lo

W

w1

*K "o"

7t BTB|

1

yj| J iTJiL'lo'Sr

1

Ifijo

mini

nit

"rTKh

°o![U

sin

or""1

75"

1

nJ

Ts

pi

ofr

I t7?J

1

75"

^ 7 5 "

7\"

7PJ

dJ

w1

oil!)

tfltl

D)fl'

75C

2!K-1

it|ni

7<"BH'

IU) "3"rrl 'iio"

"o~7<J

1

31

r-jo

mli!

1

Sni

IS?r|ni ^ .

op o y 1=

JlH • JLl JJ|_

1

Ui7?J

0

rc|ni

UJ|

Dis* > t -

T t T

1

oT

TfJ

1

s3 *

- 2 2 7 -

5. Scabbler\§.-£~5!£I

2*}

6.

fe JLS.71)

7. 98.5%

7}

8.

9.

sa-a-

10. 4 ^ HEPA

11.

- 2 2 8 -

TRIGA

TRIGA

TRIGA

2 ^ C02

3j-§- parameter^

C02

7}

-229-

TRIGA

- 2 3 0 -

1 4 TRIGA

TRIGA <?l

X\

71

2 ^ C02

— 231 —

NEXT PAGE(S)left BLANK

7

1-1. - M T ^ * *f, "^9-8- #*K§. 3E11S. W , KAERI/RR-1286/93 (1993).

1-2. % £f, "<£ --§- #*K§. 3EJ15. W , KAERI/RR-1437/94 (1994).

1-3. *\<>m SJ, "#*}3. ^.*H^l7l^ 7H^". KAER/RR-575/86 (1986).

1-4. *\<>m 3], "TRIGA MARK II <&^-£. M^M *%# *H^ ^

^^•", KAERI/IM- 92/87 (1987).

1-5. IAEA-TR-373, "Decommissioning Techniques for Research

Reactors", IAEA (1994).

1-6. IAEA-TR-351, "Planning and Management for the Decommissioning

of Research Reactors and Other Small Nuclear Facilities", IAEA

(1993).

1-7. NEA Group of Experts, "Decontamination Methods as Related to

Decommissioning of Nuclear Facilities", NEA/OECD (1981).

1-8. IMechE Conference, "Decommissioning of Major Radioactive

Facilities", Proceed, of the Institute of Mechanical Engineers

International Conference, London, 11-12, Oct., 1988 (1988).

1-9. IAEA, "Decontamination of Nuclear Facilities to Permit

Operation, Inspection, Maintenance, Modification or Plant

Decommissioning", Technical Reports Series No. 249, IAEA,

Vienna (1985).

3-i.mpR%^, mi-mmm(D^m^m, U > ^ ^ D V , P. 41, APHI1993.

3-2. E. Muschelknautz : Chem.Ing.Techn. 44, 63, 1972.

3-3. E. Muschelknauz. N. Rink : Zyklonabscheider. Handb Fortbildung-

slehrgang "Mehrphasenstromungen", VDI-Bildungswerk, 1975.

3-4. E. Muschelknautz : Hochshchulkurs II. Mechanische

Verfahrenstechnik, Verfahrenstechnil 6 (1972) 3, pp. I/IV.

3-5. E. Muschelknaytz K. Brunner : Chem.Ing.Techn. 39, 531, 1967.

3-6. W. Barth : Brennstoff-Warme-Kraft 8, 1 1956.

- 2 3 3 -

3-7. E. Muschelknauz, W. Lrambrock : Chetn. ing.Techn., 42, 247 1970.

3-8. W. Barth, L. Leineweber : Staub-Reinhaltung Luft 24, 41, 1964.

3-9. A. Ogawa : J. College Eng., Nikon Univ., Series A, 19, 157,

1978.

3-10. T. Hikichi, A. Ogawa : ibid. 19, 167, 1978.

3-11. Y. Fuzita, A. Ogawa : ibid., 19, 185, 1978.

3-12. Y. Fujita, A. Ogawa : ibid., 20, 79, 1979.

3-13. T. Hikichi, A. Ogawa : ibid., 20, 155, 1979.

3-14. R.Spilger : Methodik Uberfuhrung wissenschaftlicher

Informationen aus dem Gebiet der Verfarenstechnik in

problemorieentierte Rechenprogramme, Disseration, Techn.

Univers. Berlin, 1978.

ojij-^]^ ^%^gAf7l^ofl 3*?> £•?-", KAERI/RR-322/91, 1982.

-f-n-^4 *IM <*t -", ^>^«J-S], vol. 16(1), 29, 1984.

3-17. K. W. Lee and B.Y.H.U. Liu, "Om the minimum efficiency and the

most penetrating particle size for fibrous filter", J. Air.

Pollution Cont. Ass., Vol. 30, No. 4, 1980

3-18. L. Spielman and S.L. Goren, "Model for predicting pressure

drop and filtration efficiency in fibrous media", Envir. Sci.

Tech. Vol. 2, No. 4, p279, 1968.

3-19. S.V. Davison, "Theory of collection of airborne particles by

fibrous filter", Ph.D. thesis, the harvard school of public

health, Boston, MA, 1969.

3-20. I. B. Sechkina, A. A. Kirsch and N. A. Fuchs, "Studies on

fibrous aerosol filters-IV. Calculation of aerosol deposition

in model filters in the range of maximum penetration", Ann.

Occup. Hyg. Vol. 12, No. 1, 1969.

3-21. H. C. Yeh and B. Y. H. Liu, "Aerosol filtration by fibrous

^234-

filters - I. Theoretical, Aero. Sci., Vol 5. pl91, 1974.

3-22. Gutfinger, C. and Tardos, G. I., Atmos. Environ., Vol. 13,

p853, 1979.

3-23. K. W. Lee and Gieseke, J. A., Envir. Sci. Tech. Vol. 13, p466,

1979.

3-24. H. Mori, etc., Int. Chem. Eng., Vol. 27, No. 2, 1987.

3-25. N. Kimura, etc., Int. Chem. Eng., Vol. 25, No. 1, 1984.

3-26. N. Kimura, etc., Int. Chem. Eng., Vol. 25, No. 1., 1985.

3-27. K. W. Lee, J. Aero. Sci. Vol. 9, 1978.

3-28. Douglas W. Cooper, J. Air Poll. Cont. Ass. Vol. 32, No. 2,

1982.

3-29. Rosin, P., etc., Ver. Deut. Ing., Vol. 76, No. 18, p433, 1932.

3-30. Leith, D., AIChE Sym. Ser., Vol. 68, No. 126, pl26, 1972.

3-31. Zenz, F. A., Ind. & Engr. Chem. Fund., Vol. 13, p65, 1964.

3-32. Kalen, B. etc., AIChE Sym. Ser. Vol. 70, No. 137, p388, 1974

3-33. Kelsall D. F., Chem. Eng. Ser. Sci., Vol. 2, p254, 1953.

3-34. Bradley D., etc. Trans. Inst. Chem. Engr., Vol. 37, p34, 1959.

3-35. K. Rietema, Chem. Eng. Sci. Vol. 15, p298, 1961.

- 2 3 5 -NEXT PAGE(S)

left BLANK

1=1

HI-—I

el-

o|

- 237 - NEXT PAGE(S)left BLANK

C O N T E N T S

Chapter 1. Introduction 249

Chapter 2. Underwater wall raging radiation inspection robot 251

Section 1. Introduction 251

Section 2. Design and fabrication of Underwater wall raging

radiation inspection robot 251

Section 3. Development of control algorithm 283

Section 4. Performance test of wall raging radiation inspection

Robot 306

Section 5. Concluding remarks 331

Chapter 3. Selection of dismantling equipment and

graphic simulation of dismantling process 333

Section 1. Introduction 333

Section 2. Selection of dismantling equipment 334

Section 3. Graphic simulation of reactor dismantling process 340

Section 4. Concluding remarks 354

Chapter 4. Conclusion 355

Chapter 5. References 357

- 2 3 9 -NEXT PAGE(S)

left BLANK

249

^ ^ g £ 3 4 #*1 A»i 251

1 3* 4^- 251

2 1 ^ ^ # * 1 7(| 1 4 251

1. ^ ^ ^ l £r*H 251

2. ^ ? I 7 | 255

3. Laser local izer 261

4. ^ # «o^Rl ^ S # 269

5. *M-f- 270

6. 314^2: 281

3 | ^M<tJLSl# 283

1. 3& ^ ^ n "A H9 -^ 284

2. ^ l ^ l & a H <y-3-^]# 2903. 7OV6]*> H ] ^ ^ ^ 1 ^ - ^ H -^JLBl-i- 297

4 ^ ^ ^ ^ * | ^ ] ^ ^ ^ ^ 306

1. j e . # l ^ ^ ^ ^ 306

2. ^£^«8#*1S1 ^ ^ - ^ ^ 317

3. TRIGA-III <^9-S - § - ^ ^ 325

5 l ^ ^ 331

- 2 4 1 -

333

333

*fl*fl#a] 334

340

3402. ^ ^ - - g - € ^ } ^ ^ ZLeH^ S.t3}eoT 343

3. «H^)1^-^ 3-&S.4 347

354

355

357

- 2 4 2 -

Table 1 ^ # ^ £ ^ #*1 4<tf 254Table 2 H^§)5] 4<£ 256

Table 3 - g ^ 2.&\ *}<$ 259

Table 4 ^tfl^^]6]Ai *}+**<>) ^Tfl 4<tf 268

Table 5 ^ W ^H§7l 4<>o> 269

Table 6 #-§- }o]7] A } ^ 273

Table 7 ^ B ! * W ,e.J£^ ^ S B ] S ^ xjs . 273

Table 8 * H ] ^ H ^-H5J rH|S5] ^ ^ *},£ 274

Table 9 ^^ l7 l 4 ^ 307

Table 10 4AoV ^1^1^ ^ ^ 4 313

Table 11 $J*1*I*J ^ ^ 4 314

Table 12 TRIGA-III - .- W ^ 4 ^ ^ 327

Table 13 - A ] ^ ^^^§-^(^4^ &7], #*}$. q ^ ^ * ] , ^ ^

9-^# % 44^B *) 335

Table 14 7 ]T | |#*1 ^ ^ ^ - ^ ( s f o ] ^ ^ - , E | 3 . , 7]7(f - f # ) 336

Table 15 ^3.2.]^. ^ - S # ^ ^ ^ ^ ( ^ l - ^ . ^ ^ - pool ^ ) 337

Table 16 g^~g- ^ x } ^ *B^^-^ ^ ^ ^ -fcA -H] 339

- 243 -NEXT PAGE(S)

left BLANK

Fig. 1 ^ # ^ ^«g S^-^f ^ 7J|^JE 253

Fig. 2 ^ ^3 ^ #*1 «£. 253

Fig. 3 ^ ^*g#*l • 255

Fig. 4 S.^ ^ # ^ t > ^ ^ ^ £ - 257

Fig. 5 ^ * 1 - ^ *[7fl;£ 259

Fig. 6 ^?!7] 260

Fig. 7 37fl£] «VA}^]# o]-g-«> 7 ] ^ ^ ^)^<?1^ A ] > ^ ^B] 261

Fig. 8 e W * i >b.?11M 7flsi=£ 263

Fig. 9 ^tl)$.|*loH X\^sJi ^e] 264

Fig. 10 01, $2 ^f-B] a, ^ # 9-^fe -y-JLBl 265

Fig. 11 ^ t f l ^ l ^ H ^^^-^1 BH^ ^d£ 266Fig. 12 ^g-f- %£.£. 267

Fig. 13 zlWQ *)*} <&*\ ,i\}o}x\ >=.7jm 268

Fig. 14 ^ # yoUKi 4 ^ S.# ^ ^ l £ 270

Fig. 15 ^ ^ H d 4 ^ S.# 270

Fig. 16 ^-§-^1^71^ l-^HdS • 271

Fig. 17 3*B]*W iLH SlSJc. 277

Fig. 18 *R1*1H AH SjSS. 278

Fig. 19 J2.B] H B H ^ AH SJ5JS. • 279

Fig. 20 flol JLH S # 280

Fig. 21 £ A } ^ « ) 7fl > ^}S. • 282

Fig. 22 J S A H - ^ • 282

Fig. 23 ^ S ^ H } 4-§-*fe ^ 283

Fig. 24 ^ # S ^ - £ ) 5fS7^1 284

Fig. 25 S.%: s fS^| i f ^cfl s|.S7fl 285

Fig. 26 S.* 4 S ^ H 1 A ^ 4fl^^# -$-4 • 288

Fig. 27 f^!-^ ^]^^^-4<H #^idS. 289

- 2 4 5 -

Fig. 28 § ^ - £ 1 3D CAD SM • 292

Fig. 29 S £ - S j *j*g:?H 293

Fig. 30 $.#2) 3H<HM^(2fl*I£3 313, PID*H7l) 294

Fig. 31 5.^5} 3 | 3 ^ # ^ ( #•§"&*! 313. PID^H7l) • 294

Fig. 32 JH -<q 3 I 3 J H M ^ ( # W # 313, PID^H7]) •• 295

Fig. 33 3.%$) i m ^ ^ i ^ ^ $&, *]#*1£ *W7)) .....295

Fig. 34 ££•£] 3 l 3 < M ^ ( ; W 4 l i l 313. *1#*1£ *H7l) 296

Fig. 35 3.%$) 3 1 3 ^ ^ ( ^ 8 3 ^ 313, Al#*lg afloat) 296

Fig. 36 2 . ^ 7 ^ 1 - ^^-*1 <gJL $ai- 3-M PI ^ H ^ 4 304

Fig. 37 fi^^^l- J2.# ^-f^ PI *H:£2f •• 304

Fig. 38 H]^i^ 6l |^ol7l^ a W ^ -305

Fig. 39 7oi-6l*> a ] ^ ^ cH14 ]<H7l ^1|<H^4 305

Fig. 40 ^ ^ 1 ^ ^ ^ ^ ^ 1 • 307

Fig . 41 ^ * I ^ ^ - ^ ^ ^ ^ ^ • ( ^ Ho

> % ) : ) 308

Fig. 4 2 ^ 5 1 3 ^ - ^ ^ ^ ( ^ I H ) 1 ) • 308

Fig. 43 ^U«o> ^^13} ^^«o> ^*}<H ^-f^ # ^ ^ # 309

Fig. 44 ^Efl^*lSl*! *}+**$] xW ^ ^ % ^ 314

Fig. 45 ej|o|;*f ^?Hu |^ ^ A > 4 <flA|^ ^Bl«L^|o |^ 315

Fig. 46 *Iel«.i!H>a ^ 1 ^ 4 ^*1 l^1 ^ ^ ^ 1 ^ 315

Fig. 47 BiM*!^ ^*Y& ^ ^ ••- -316Fig. 48 ^ < > M £ | ^«VA> ^1-g- tValAfs]- 3i6

Fig. 49 ^ # 4\*]<*m ^ ^ %>g 317

Fig. 50 ^ ^ - £ | ^ ^ ^ ^ • • 318

Fig. 51 ^§^g ^ £ ] ## 319

Fig. 52 ^£-$:S>) ^^Bf l - iS .1- ^ t > ^ ^ r ^ ^ -320

Fig. 53 ^ 5 L ^ 3 ^ N ! ^ « 8 - a « 322

Fig. 54 ^ f J L ^ ^^%> * | ^ ^ - . . • 323

Fig. 55 TRIGA-III ^ J S L ^ 4 ^ $1*1 • 326

Fig. 56 TRIGA-III <&^£. «**££| ^ ^ 1 tioU]->«i ^ ^ t ...328

Fig. 57 ii-g ^ ^ ^ ] ^ 4 ^ ^ ^-^(SPIS, ^ ^ 6 m) 329

-246~

Fig. 58 #^-3. ^3L ^ ^ 5 ] # 4 ^ 1 ? ^ ( A l , ^ 5 m) 329

Fig. 59 ^ * l ^ - b ^ 4 ^ ^ M H * ^ ( S P I O , ^ 6 m) 330

Fig. 60 g^-S. ^ E ^Sj # 4 * 1 *£ ^P§(SP9, 4 ^ 6 m) 330

Fig. 61 HiflB} ^>i>S4 4 ^ ^ n2-^ 342

Fig. 62 £^-g- ^44^-^ -eH«l S i 344

Fig. 63 Bridge Transporter ^H) S ^ 345

Fig. 64 TRIGA MARK III £9~g- ^ 4 ^ . 4 ^ ^ S^ | 346

Fig. 65a <&^-£. 1317](TM-II) *fl^|^-^ #*KE.4-l 348

Fig. 65b <&^-£. 1JL7](TM-II) ^H^l^-^ ^-i>S4~2 349

Fig. 66a <&^-3. 23l7l(TM-III) S f N ^ >il£4-l 350

Fig. 66b <&^-3. 23L7KTM-III) §1|^1^-^ ^ ^ S 4 " 2 351

Fig. 67 Mechanical shear# «l-§-*> internal pipe tf{7\ -^ 352

Fig. 68 Plasma arc torch# o|-g-^ ^ liner *fl7f -g- g 353

- 247 -

NEXT PAGE(S)left BLANK

1962^ TRIGA MARK

40%

TRIGA

safe 4s)-

-249-

MARK

- 2 5 0 -

XT O >*-.

- 2 5 1 -

4

1.

o]

7}

Fig. 1 ^

Fig. 2fe

- 2 5 2 -

l-M o|

Fig.

Fig. 2.

- 2 5 3 -

3. ^ 500X450X240

Table

^ 300

750 mmojuh lfe 47 kgJ*

power supply Rj laser local izer, inclinometer,

Table 1. 3*1Length of UWR

Width of UWR

Height of UWR

Main Hull Length

Main Hull Width

Length of Thruster

Diameter of Thruster

No. of Thruster

Material

Weight in Air

Weight in Water

Tether Length

Tether Diameter

No. of Wheel

CCD Camera

Lamp

Laser Localizer

Inclinometer

Radiation Detector

750 mm

550 mm

300 mm

500 mm

450 mm

300 mm

80 mm

5 EA

Aluminium, Acryl

47 kg

0 kg

25 m

22 mm

4 EA

1 EA

2 EA

1 EA

1 EA

1 EA

-254-

rf2} *}T£O.

bcr 15 fe 0-ring

mm

. Fig. 3 ^

Fig. 3.

2.

7]S.

2-3- 10

30

- 2 5 5 -

128 10 cmoju}. o]ofl Table 2

Table 2. S

Propeller Diameter

Hub Diameter

Pitch

Pitch Ratio (P0.7R/D)

Section Type

Skew Rate

Material

No. of Blade

128 mm

42 mm

100 mm

0.8

Kaplan Type Constant Pitch Propeller

0

Plastic

4

(2 .1 )

A=0.032 m3,

p=1000 kg/m3,

V=Vnax=30 c m / s S o |

O]

CD=0.4,

^ tg-^^- fi, = 5.4

- 2 5 6 -

F a= MTa (2.2)

0.3

7f

Thrust (N)

FTa

FTV

FTd

Ta Tv Tc

Fig. 4.

Fig.

7] ^ *

7>

-4.2

48

fe 14.4^ Fig.

Time(sec)

15 N (5.4+9.6HC}. Fiv

5.4

-*S.*| 44

Trms-TaF Ta+ TVF Tv+ TdF

Td _T +1 a~

T,1.94 (2.3)

fe <$ 13

- 2 5 7 -

Sjsfl

( 2 - 4 )

13 N), p ^

kg/m3), Dfe SS-^e]^} xl^-(0.13 m)-§- ^fB^jL, CTfe

0.25# A]-g-«r> t:K o) ^v

^ n ^ 810 j }

T KQDF Trms /o rS

^ ^ . 0.025^

uf. ir|-eH -7-*H^l-b ^ ^ : S.^^i S H f e 0.169

0.17

A|-6ot . T a b l e 3 o j | T^-EI-T^ ^ K Table 3<>fl

if ^ 1 SB|fe ^.f- ^ 3 S | ^ ^ 7 } 3000

^i<^ 810 rprn^] ^ S . ^ - 3:1 ^•^•7]# 4 - § M > K

M i ^ ^ 1 ^ 1 ^ > ^ ^ f e Fig

fe 5 7H

£ B l ^ Table 3 ^ ^ o ] ^ . ^ 7 1 ^^°fl>M ^ t > -§-s<M ^ - b SANYOAfi]

V406-0H1- ^^«f5it:f. se j i ] s ] ^ # ^ ^ * f 7 ] ^ *

NIDEC SYMP04-21

- 2 5 8 -

Fig.

•b 300

Mechanical Seal#

Jclf 3 ) ^ ^ 80

132 mm,

. Fig. 6(a)-b

Fig. 6(c)b

50 mm, 3

, Fig.

44

Table 3. -tfMotor Type

Rated Speed

Rated Torque

Rated Current

Rated Capacity

Weight

Length

SANYO DC SERVO MOTOR

3000 rpm

1.8 kgf • cm

4.1 A

60 W

0.45 kg

104 mm

Fig. 5.

-259-

(a)

(b)

(c) ^ ^ ^

Fig. 6.

\i '" i

• 2 6 0 -

3. Laser localizer

7}.

position)if ^

61 71] * } ^ ^ , *j-7lSj ^ U l * ] (absolute

Fig.

7]51

Fig. 7.

-261-

c)

inclinometer)!-

ilt angle

sensor), ^|o|^| >i?im( laser scanner), 2 7l|5|

(retro-reflector),

^ ^ M ^-^r^I 9-^fe Fig.

^m A I A ^ ^(spot) %BB^ ^ |O |

spl i t ter)!

45°

-262-

, 4*14

Fig. 8.

Fig. 9fe

#4 ^ At:} 7] E}

Fig. {x,

{x, y}#

A, 4 ^ :

# 4S-7}

. o|

- 2 6 3 -

inclinometer^?-^eading angle) 0

Stl K Inclinometer^-

Vertical wall

A, B:{X, Y}{x, y}:

a,

-reflector)

l^Z^Inclinometer^.

Fig. 9.

Fig.

, _ Dtan(<f> + a)-H)x tan((f>+a)+tan(7r-<f>-a-

dY— dxt?cn.(x— $— a— fi)(2.6)

- 2 6 4 -

Fig.

0 )*=• 344

BSJ

Fig. 10. 0i, 02

02 (0 i. 02 < 2*r)

4sa

- 2 6 5 -

4. ZIZ\B.

a 4 0^Fig. lO^r

A4

(photo coupler) }-L.]-7f7ll

IS. tif^uf. o] A ] ^ ^

4 ^ Fig.

^ Fig. 124

51^, °1 # # £ OP Ampl-

(comparator)!- <>]-§-*M ^ ^ t l ^ r ^ ^ l ^ threshold^-

4 #^^! J l f e 80196 CPU^ HSI (High Speed Input)

Home Sensor

1 _

Encoder

jinjuuutrin. 0 1 2 3

counter reset

Photo TR

e2

A 0 1 2 3

counter reset

Fig. -id:

-266-

Vcc Vcc Vcc

100k

output

Fig. 12. ^ - f S]S.S..

4.nil-el-

£• Table 4 4 Fig. 134 ^ 4 .

690 nm 20 mW

3144 ^ 4 4 4^4 s.^J ^ . Power Techno logy A}*]

i 4-1/344 ^ ioo ^ ^

^ 4 4 1300 ^>i#

R=i3<>}

4 1 - 4 5200

0.0692° 4 4 . 44^14 ^4fe 54 4 4 ^ ^ f e 3,900 rpmo] Qv\.

S

- 2 6 7 -

Table 4.

B M * 1 ^?1M S.BJ

^ 4 (Incl inometer)

0.069

(Encoder 4 *H«M 5200 P/R)^ 15 m5 Hz

690 nm 20 mWBeam dia. - 3.8 mm

10 W Maxon DC motor(4-1/3 Reduction gear + 100 P/R Encoder)

Rpulley = 3

Roverall = 13

Lucas Control SystemsLSXH-90 (2 ea)

Servo type inclinometer3M Scotchlite white 3970G

(Inclinoms^er) g/

CPU a n

Fig. 13. $1*1

- 2 6 8 -

4.

FH 40G

#4*1njo| A}-§-5]^ EBERL1NE4

cf^- Table 5^)4 ^-^RS-232

Table 5.

Model

Detector Type

Size

Detector Dimension

Measuring Range

Energy Range

Battery

FH40G (ESM Eberline)

Proportional counter type

195 mm x 73 mm x 42 mm

25 mm

100 nSv ~ 10 Sv

33 KeV ~ 3 MeV

2 lithium cells 1.5 V

Fig.

83(L)X55(D)

5 mm3]

55(w)x

10

. Fig.

Fig.

-269-

4 1=3 O

CotlimatorfJ}

/'i^J-1

10mm

Strw

3mm

195mm

.inr .i ' i

80mm

73m(r

50mm "$

r16rrn)

45mm

Fig. 14.

^

Fig. 15.

5.

7}.

3.7] 7}

MIW?)

- 2 7 0 -

nfl- 0)7]

^ 7 1 ^ - RS-232C

CPU 1 H# Fig.

(hierarchical structure)JL

e]^|c^7l(supervisory controller) JiJS.7}- &JL H of fl

'lower-level controller)7f

DPRAM

Lower-levelController

#1

OperatingConsole

RS-232C

SupervisoryController

DPRAM

Lower-levelController

#2

Motor •Driver

UnderwaterRobot

DPRAM

Lower-levelController

#3

MotorDriver

Fig. 16.

-271-

fe 2 HRS-232CS ^l^ffe 4

416 bit

converterl-

Intel*] 80C196KC CPU# o)-g-?>r:f. o]

£-tf, 256 ^ > ^ ) ^ PWM port^ 10 bit A/D

, 5].

Table 6 4

CPU JLH

rvisory control) CPU

Intel 80C196KC CPU

Fig. 174

28C256(R0M)

. 80196 CPU^ 16-bit^

64 Kbyte*}

32 Kbyte*]

- 3

-272-

address^}- data bus extension^ 7}*}JL $X^\. <

$}*\ 1 Kbyte-g-^ DPRAM - Afg-*}HS. 3.^ 3 KbyteS]

Kbyte!- DPRAMofl ^r Table

Table 6.

-7 t3

CPU

Memory

Communication

Power

CPU

Memory

Features

CommunicationPowerN-MOSFETPhoto-couplerDC-DCconverter

Intel 80C196KC(Clock freq.: 20 MHz)

32k8 EEPROM (ATMEL 28C256)RS-232C

DPRAM (IDT 7130) x 3

5 V 0.3 AIntel 80C196KC

(Clock freq.: 20 MHz)

32k8 EEPROM (ATMEL 28C256)24-bit Encoder Counter(LS7166) x 2

10-bit A/D Conversion (80196)256 step PWM output (80196)

RS-232C and DPRAM (IDT 7130)5 V 0.3 A

HARRIS-IRFP150TOSHIBA-TLP250

LAMDA-PPD1R5 48-1515

Table 7. 1 H 5 ]

o o

ROM

RAM

DPRAM No.1

DPRAM No.2

DPRAM No.3

- j~- A 6H 6g\ " — O "~1

H00000-H07FFF

H08000-H0F3FF

H0F400-H0F7FF

H0F800-H0FBFF

H0FC0O-HOFFFF

8 bit

8 bit

8 bit

8 bit

8 bit

til JL

0-32 K

32-61 K

61-62 K

62-63 K

63-64 K

- 2 7 3 -

CPU j e . ^

CPU E. 44 \$.<i\

32

DPRAM2]- 2 7H*] 7166 encoder counter^

Fig.

ROM°K§- £ S a a j

^ t l 1 Kbyte-g-

^ Table 8

Table 8.

ROM

DPRAM

LS7166 No.1

LS7166 No.2

H00000-H07FFF

H08000-H083FF

H0A000-H0BFFF

HOCOOO-HODFFF

8 bit

8 bit

8 bit

8 bit

«] JL

0-32 K

32-33 K

40-48 K

48-56 K

4 CPU i £

CPU ^.Hfe

2 7f l l -

Ug: RS-232C

2) 2H - 3 - ^ ^ tiov%^%-§- ^?l7l 2 7H1-

3| ^15l# 80196 1 A/D ^%7j S S I ;

3)

- 2 7 4 -

PI

CPUS] gAVofl £}*1| ^JSfl*]^, CPUvfl*] PWM port l - <>l-§-*H

PWM 3g>i7}- ^ ^ ^ t f . PWM ^ ^ S

7166 *flS^ ^ } ^ ^ f e 24 bit ^}

^ ^ ^ H ^ 1 ^ vfl^-^^.S. up-countif down-count# ^ } ^ ^ -

H ^^°11 nj-ef 4 ^ ) H | { ^ ] ^ ^ Sl-b 7 1 ^ 1 - ^ ^ J L $X°-r$, CPU

71665] # ^ i^|^l>iEiS^-B| 3*1 £) < a ^ ^ t l byte

read/write#

cpuif

(control word)^- ^

eh 5J&1 Hef

H 1 R l l ! ^ ^ ^ ] I PWM

Fig. 19^ HE S.5H

^ H ^ 300

MOSFET r H a r r i s ^ IRFP150o|4. o j ^ . 40 A, 100

^ ^ ^ &fe N-channel power M0SFETo|u}-, N-channel M0SFET#

t:}. M0SFET5] JEsfl^] ^ > 4 ^ - VccAj- &

o] Vcc7f ^S.•^• M0SFET# O n ^ l f e %°]tf. ° l ^ ^ r N-channel MOSFET l

\£- N-channel MOSFET

- 2 7 5 -

4.5-7

DC_DC

4 MOSFET*] Tllo]^^- ^^6^1 o | ^ * H PWM>*d 7} High

LowS. # ^ # nflfe, ^Itfl^ ^ ^ - o | ^>g*]-7lI^*H N-channel

TLP250O]Bfe PHOTO-COUPLER

- 10-35

4.

^ . ^ 4 3 7jf ^ ] efl^ J<H ij_5. riB]jL 37H^ 2-tf SB}o]a1 J i B f

4 4 ^ 4 ^ « t : } . Fig. 20^ o]^7fl 4 4 ^ 1 1<>1 ^ 1 ^ ^

a l4 . Fig. 20(a)iq ^ 1 4*£ 4 ^ ^ - ^ ^ 3.7180X80

^ aqcfl ^ o | ^ 12 mmoli:}. Fig. 20(b)^ *}$ s)]^

r°l-b 15 mmolcK Fig.

^ 80X60 mmol L ^ o | ^ 25

L6203 ^ B H ^ f e ^ ^ l ^ # ^ d )

- L6203 E 5

- 2 7 6 -

P1.2XTAL2 P1.3/PWM1

P1.4/PWM2!NMI P1.5/BRB3JREADY P1.6/HLDR:

P1.7/HOIUj

RESET P3.0;AD0|P3.17AD1

PO.0/ACHCP3-2/AD2P0-KACH1P3-3/AD3;P0.2/ACH2P3.4/AD4;

0-T P0.3IACH2P3.5/AO5B-r, P0.4/ACH4P3.6/AD6

3B-, P0.6/ACH6G— P0.7/ACH/P4.0/AD8;

P4.1/AD9- P2.0/TXOP4.2/AD10T P2.1/RXCP4.3/AD11

0- i P2.2/EXIW1.4/AD120-J.P2.3/T2CEM.57AD13B-J;P2.4/T2RSTI.6;AD141

0-J P2.5/PWNB».7;AD150-J P2.6/T2UP-DN0— P2.7/T2CAELBKEIT

O-| HSI.O0-SHSI.1

BHE/WKH-iflWR/WRT:

R0

0-^HSI.3/HSO.5 INSTBUSW1DTH

JVREFr VCC HSO.O- VPP HSO.1

r-J, ANGNO

'vssVSSVSSEA

HSO.2LSHSO.3 ^6

- 80C196KC

CONNECT TO SUB

ROBOT CONTROLLER SUPERVIS

tUocument Number

Fig. 17.

- 2 7 7 -

XTAL1 P1.0P1 1PI.2

XTAL2 P1.3/PWM1PI 4/PWM2

NM1 P1.5/BRECT

Q-f PO.ZllB

RESET P3.0/ACX)P3.1/AD1

POO/ACHO P3 2/AD2P0.1/ACH1 P3.3/AD3P0.2/ACH2 P3AIAO4

'ACH3 P3.5/AD5P0.4/ACH4 P3.6/AD6P0 5/ACH5 P3 7/AD7P0.6/ACH6P0.7/ACH7 P4 0/AD6

P4.1/AD9P2.O/TXD P4 2/AD10P2.1/RXD P4.3/AD11P2.2/EXINTP4.4/AD12P2.3/T2CLKP4 5/AD13P2.4/T2RSTP4.6/AD14P2.5/PWM0P4 7/AD15P2.6H-2UP-DNP2.7yT2CAPTCEEOUT

HS1.0 WR/WRUHSI 1HSI.2/HSO.4ALE/A0VHSI.3/HSO.5 INST

BUSW1DTHVREFVCCVPP

ANGNOVSSVSSVSSEA

HSO.OHSO.lHSO2HSO3

IOBOT CONTROLLER SUB 1 2 3

Fig. 18.

- 2 7 8 -

pwivp~>

VS=36Vmax0

J1

C0N2

Motor Power

Vcc=5V0

J2

CON2

~ Logic Power

J3

CON2

FROM SUB

Logic powers}3 6V, 4A7} Jl-i-

Lfe S.^- 1 itle

sizeA

Jale

MOTOR DRIVER

Document Number

Wednesday, November •prii ot 0

-ievIV

Fig. 19.

- 2 7 9 -

(a)

(b)

(c)

Fig. 20.

- 2 8 0 -

6.

4. a

n>

-2.4 ^ - b

1 . 2 ( W ) X 1 . 5 ( H )

3- f ^ 6.8

71]

.7]

3.7]fe- 3(L)x

6.8 toni] 1-5]

^ Fig.

Fig.

ufl-f- 3 .7 ] f e 3 . 2 ( L ) x l . 2 ( W ) x i . 8 ( H )

75 mm

- 2 8 1 -

444

1.2m

3m(L)xl.5m|H)x1.2m(W)

•S3 * T«fS«l ?

41*1

gat

. . r . _ 1

Fig. 21.

Fig. 22.

- 2 8 2

Fig.

Fig. 23.

- 2 8 3 -

7f.

Fig.

World coordinate: OXYZ

-> Y

Center of Bouyancy

Center of Gravity

u : velocity in xp: roll rate r x R o b o t coordinate: oxyz

Fig. 24.

fe 4

MV+ C( V, Uf) V+ FG£XP)

XP=J(XP)V

r=RFT

(2.7)

(2.8)

(2.9)

- 2 8 4 -

^[u , v, w, p, q,

6x63-)

inertia)^)- Ma(added mass)^ ^

rigid body

H5]J1 C-

6x6

SfSS.

fe 6x6^

Fig. 2 5 ^

X , Y

0

x, y

u, vrT L T2, T3

Fig. 25.

A

^ + (w+ ywr)wr- Yw \ v\ v+Y= mycu+ mxcv+mr(xcu+ycv) — Nrr | r | r+NT

- 2 8 5 -

x

A

Yv- , ZL

NT=l(T2-T3)si (2.11)

X= ucos <j> — ys inY= Msin (Z> — ycos'<j> = r

(2.12)

, 8, 9]ofl

- 2 8 6 -

r Q(t) + Q(t)=Q(t) (2.13)

6\] H)*1| nfl-f ^ ^

r (2.14)

3 . B M ^4 , CT= 1.67 x 10"3 [N/(rad/s)2] 5 ^fcAS.

4 , CT= 2.93 x 10"3 [N/(rad/s)2]

t - L A t , I t , 0 t J •

••fe- F i g

- 2 8 7 -

ey = -{Xt - (Yt -

(2.15)

yfe 4 4

Fig. 2 7 ^

0

Desired trajectory ""T"1 • ' J ^

p•^r^ Current vehicleaJ posture

• f f s - Target vehicle

k.

Xt X

Fig. 26.

- 2 8 8 -

PathTrackingController

Thrusters AUV f—•

Localizationsensorsystem

Fig. 27.

lfe Fig. 26,

XT(k) = KPxex(k) + Kh ex(k)

(2.16)

KPy, Kp f]^r

[KIx, KIy, Ki f]fe

PID

- 2 8 9 -

2.

[10].

XT(k) = 2 $ - 1) - Exk{k- 1).

). (2 .17)

+ NT(k-

^ , wnx, wny, w n f ^ 4

Ey, Etffe ^1

fe 4

Ey,

MIMO X\

44 l f T2f T30I

7)5]

(2.18)

(2.11)

, Q2 )

^ *} (2.11)4- i1 (2.14)5.^-^1

- 2 9 0 -

cT TK "

(2.19)

] ^ ^ o ) 3D CAD

Fig. 2 8 ^ ^ ^ ] ^ > ] ^ ^ # 3D

m=Al.Vkg, xc = -A.lmm, yc=1.2>mm,

Xii=Yur=7Mkg, Yv=Xvr=7A5kg,

Xuu= 18.24W m, Yvv=25.20kglm,

Nr=l.251kg-m2, Nrr=l.l%kglm2

^r Fig.

changing path) -

instant turning path)

^1^(circular turning path)

^ ut - 0.13

0.5, 1.0, 1.5 m

"• 45, 90, 135°

: 0.5, 0.85 m

Fig. 30~

-291-

30, 33).

o a

ig. 31, 34).

3.71]

^r

sa4(Fig. 32, 35).

Fig. 28. 3D CAD 5L*£.

- 2 9 2 -

I.anc changing path

Instant turning path

Oircular turning path

Fig. 29.

- 2 9 3 -

2.0

1.5 -

1.0 -

~ 0.5 -

0.0

-0.5

r3

case

case

casei

1:

2:

3:

Yd =

r <

<a.

a.

I II

II

0.5m

1.0m

1.5m

0.0 0.5 1.0 1.5 2.0 2.5 3.0

X-coordicate (X), m

3.5 4.0

Fig. 30. PID*H7l).

6

dina

te (Y

'-coo

r

2.0

1.5

1.0

0.5

0.0

\

N. 3

1 . 1 . 1

2

/

/

' case 1: (j>

case 2: <)>d

case 3: <J>i . i . d

/

/

= 45°

= 90°

= 135°

0.0 0.5 1.0 1.5 2.0 2.5 3.0

X-coordicate (X), m

3.5 4.0

Fig. 31. , PID*W7l).

- 2 9 4 -

2.0 ,

1.5

E

p 1.0

8o£ o.o

-0.5

case 1: curvature = 0.85 m

case 2: curvature = 0.5 m

0.0 0.5 1.0 1.5 2.0

X-coordicate (X), m

2.5 3.0

Fig. 32.

a|

o

8

2.0

1.5 -

1.0 -

0.0

-0.5

-

I . I .

/ 3

I2

M/ case 1: Y = 0.5m

case 2: Yd = 1.0m

case 3: Yd = 1.5m

0.0 0.5 1.0 1.5 2.0 2.5 3.0

X-coordicate (X), m

3.5 4.0

Fig. 33.

- 2 9 5 -

I•ao

2.0

1.5

1.0

0.5

0 0

\

I . I . I .

2

/

/

/ 1

/ case 1: 4>d

case 2: <)>

case 3:§

/

/

= 45°

= 90°

= 135°

0.0 0.5 1.0 1.5 2.0 2.5 3.0

X-coordicate (X), m

3.5 4.0

Fig. 34.

2.0

1.5

1.0

| o ,o

8> - 0.0

-0.5

case 1; curvature = 0.85 m

case 2: curvature = 0.5 m

0.0 0.5 1.0 1.5 2.0

X-coordicate (X), m

2.5 3.0

Fig.35.

- 2 9 6 -

3.

17}

Mx(t)+ CDx(t)\x(i)\= FT(t) (2.20)

CD coefficient)O|JL Fr ^

= u,(t) (2.21a)

(2.21b)

4

- 2 9 7 -

(2.22a)

(2.22b)

x *r AoW^J5l x=[x x]Tif ^ o | %$]5]JL f ^

h7f n]^5] ^ ^ - 7f^ 4 , Cf^-^j^ T a y l o r series

^ h7\

-298 -

(2.23)

-(f+gu). (2.24)

2: °I<^ xd(t) = [xd(t) xd(t)]T # 7 ] ^ ^Bim^efjL % ic||, xd(t)

r ^ H ^ u*(t)sU (for all te[0,T])7|- «lH

xd(t+h) £ JEE*> iT (2.25)Af

7]

du(t) ~u-

(2.24)3f *] (2.25)1- *] (2.27)eHUo]

A2

h

e(t) = x ( t ) - xd(t), e ( t )=x( t ) - xd(t).

-299-

(2.25)

(x(t+h)~ xd(t+h))2 + Au(t)2} (2.26)

4^/ ^ -^ ( f l l (2.28)

(2.22aH ^fe *H*1 f*} g7} W W g *} (2.28H

(2.29)

^-Bm f

u(t) = j^-[e(i) + he(t) + -^-} f- xd(t)] (2.30)

= f+gu=(}+ Af)

(2.31)

o

(2.32a)

, Vt (2.32b)

- 3 0 0 -

«(/)= uc(t)+ us(i) (2.33)

4

•§•

=g( uc(t)-u*c(f)+ us(t)).

u *+

e= [e e]T, b= [0 g]T, H.

(2.34)

(2.35)

0 12 __2_^ 2 A

Lyapunov

P = PT > 0 (2.36a)

P ^ ^ ^ . c ^

(2.36a)#

= -Q , Q > 0.

*] (2.35)1- &H'

(2.36b)

- 3 0 1 -

=-4f eTQe+ eTPb{ uc-u*c)+ eTPbus. (2.37)

u,=-sgn(eTPb) | 2 c | l j n (2.38)

) ^ s>0 s<0

7}

(2.39)

t=( -sgn(s)\

| ~(s/ slim) s , i m

s = eTPb

(2.20)ofl aife M^ CD

=14

0.00167 N/s2^. 0.00293 N/s2

= 25+l5sm(\x\f)

(2.41a)

(2.41b)

-302-

CT(f) = 0.00167 + 0.0005cos(d for forward thrust (2.41c)

CT(t) = 0.00293 + 0.0005cos(f) for backward thrust. (2.41d)

FA*

•"* min

Mmin ^ 4 4 ^^H^f ^ ^ ^ 1 - M I M J ! ^t^r Mmax=120

A=0.25 m o]3. T = 10 sec°lt;K

Fig. 36^- ^ # ^ ^

Fig

. Fig. 38^ l ^ ^ ^ #

Fig. 39-b ^ ^

o]-o\. Fig. 384

^ m , Fig.

- 3 0 3 -

0.6

0.5

0.4

§ 0.3

0.2

0.0

-0.1

ForM=70kg, Ca=14N/m

Reference Path

Vehicle's Path

10 15 20

Time (sec)

25 30

Fig. 36. PI

co

0.80.70.60.50.40.30.20.10.0

g -0.1O- -0.2| -0.3^ -0.4> -0.S

-0.6

-0.7

-0.8

For paramter uncertainty and

actuator uncertainty

Reference Path

Vehicle's Path

10 15 20 25 30

Time (sec)

Fig. 37. PI

- 3 0 4 -

0.6

0.5 -

0.4 -

0.3 -

0.2 -

•a o.i -

0.0 L

-0.1

O

moa.

I

ftwDesired path |

Vehicle's path 1 '

i . i . i

10 20 30

Time (sec)

40 50 60

Fig. 38.

co

1D.Sio

I

0.3 -

0.2 -

• = 0 . 1 -

0.0

-0.1

Desired path

Vehicle's path by robust NPC

Vehicle's path by NPC

-^<— Vehicle's path by SMC

1 \I \i \ i \ i \ / V

10 20 30 40

Time (sec)

50

Fig. 39.

- 3 0 5 -

A.

Fig. Jib

b I m x 0 . 8 m x 0 . 6 m

^ 7 1 ]

71 (power supply)^

44el#(ripple)o)

Fig. 414 42b4 0.00167 (N

Vrad2sVrad2), ^ ^ o ^ 4 0.00293 (N

- 3 0 6 -

75 %

ig. 43).

Table 9.

DiameterHub DiameterPitchSection TypeMaterialNo. of BladesTypeRated OutputRated SpeedRated TorqueRated VoltageRated CurrentSizeEncoder Resolution

TypeReduction rate

130 mm42 mm100 mm

Kaplan typePlastic

4DC Servo Motor

60 W3,000 rpm1.8 kgf-cm

24 V4.3 A

41110 mm (Encoder SL^)

1,000 P/R

Planetary Gear

1 : 3

Fig. 40.

- 3 0 7 -

10-

6-

u> 4 -

2 -

20 40 60

Propeller Speed [rad/s]

80

.(fi[rad/s]) vs. ^

FT = 0.00167 * Qz

[N])

Fig. 41.

1 2 -

10-

£• 4 -

2 -

20 30 40 50

Propeller Speed [rad/s]

60 70

rad/s]) vs.

FT = 0.00293 *

[N])

Fig. 42.

- 3 0 8 -

Fig. 43.

K Laser local izer

4 ^ 7 ] sfm Fig. 445}

3.7}$] 4 4 10 cm 4^-

Afo| 130

£ 2 m x 1.4 m

(1) ^JelH.5|]o]^ (Calibration)

Fig.

-309-

o] Oo]

*J*]43l§- £ 0 V7f LjSfo) Sfuf. ^ejJE

o. Fig.

(2<42)

nit

£ s

<p2- <p j < 7T

i i ) p 2 - <P \ > n

- 3 1 0 -

= 6B+ <p(2.43)

, £si, £s2fe 4 4

7J1

Fig. 46^

^ 4 4 4.25°

208.1

(2)

. A 44^-fe Table

fe (0.35 cm,1.05 cm), (0.25 cm, 0.21 cm)A

5 mm

(3)

- 3 1 1 -

-^r Fig.

Fig.

fetl Fig.

. Fig.

2 . 5 m P2

-312 -

PI, P2, P3

4 4 139.7° £f 2.91

Table 10. 4AoV

PI

P2

P3

P4

P5

P6

P7

P8

P9

P10

Pll

P12

P13

Average

x $1*1Average

Error (cm)

0.31

0.34

-0.19

-0.34

-0. 87

-0.06

0.16

0.12

-0.83

-0.21

0.65

-0.24

-0.28

0.35

StandardDeviation

(cm)

0.35

0.29

0.44

0.27

0.18

0.28

0.27

0.24

0.39

0.17

0.16

0.19

0.26

0.25

AverageError (cm)

-0.31

-1.13

-0.61

-1.07

-1.28

-1.37

-0.72

-1.07

-1.04

-0.99

-1.53

-1.10

-1.42

1.05

StandardDeviation

(cm)

0.20

0.14

0.29

0.15

0.19

0.21

0.11

0.22

0.32

0.33

0.29

0.22

0.29

0.21

4°H

^f io %

fe Table

- 3 1 3 -

Table 11.

PI

P2

P3

Average

XAverageError (cm)

3.6

1.2

-3.7

2.8

$1*1Standard

Deviation (cm)

2.1

1.2

1.5

1.6

YAverage

Error (cm)

4.7

4.6

3.9

4.4

$1*1Standard

Deviation (cm)

0.4

0.1

0.2

0.2

Kctrn-rtflcctor

Fig. 44.

-314 -

RA.

Fig. 45.

Retro-reflector

:mVL „_

P12

P5 P8Q |

i i

: i i

• P6

P13

P1-P6: Calibration

P7-P13: ^

Fig. 46. ^5]«.

-315-

sas

(a)

Fig. 47. -A}~§-

-9=1

\

Fig. 48.

- 3 1 6 -

Cylindrical

Reflector

246.4cm

X

Cylindrical

Reflector

0

P, (92.4cm, 36.0cm)

P2 (123.2cm, 36.0cm)

P, (154.0cm, 36.0cm)

Fig. 49. 1*1

2.

5 mi]

7f.

- 3 1 7 -

JOS. 5

m x 5

. Fig. 5 0 ^

ig. 51).

- 5 m

Fig. 50.

- 3 1 8 -

Fig.

6] 0 m 5 m

F. Fig .

5 m

oi l -

- 3 1 9 -

Fig. a»

30

Fig.

4 >HS., Fig.

a) t = Osec

Fig. 52.

- 3 2 0 -

b) t = 7.5sec

c) t = 15sec

Fig. 52.

- 3 2 1 -

a) t = Osec

b) t = 7.5sec

Fig. 53.

- 3 2 2 -

c) t = 15sec

Fig. 53.

a) t = Osec

Fig. 54.

- 3 2 3 -

b) t = 5sec

c) t = lOsec

Fig. 54.

-324-

3. TRIGA-III

TRIGA-III

TRIGA-III

Fig. 55^4^]- o) Al, A2, Bl, B2

6 mV\x] 50 cm^ 7 ^ A S ^^1 SL

, rack/duct ^ ^ 4 5 .

TRIGA-III < £ ^ ^-§-^^6fl4fe ^ 52711 ^

^^t> 4 4^^ ^ 4 ^ ^ &£: Table

2.5 cm 7}

- 3 2 5 -

. Table , A2, Bl, B2

Fig. 566JH

Fig. 56^14 A2

A2 4 .5 m

Zi-2- 4=-

. Table

SP1-SP13 SP5-SP10

Fig. TRIGA-III

A1-B2

B2 Bl

Fig. 55. TRIGA-III

-326-

Table 12. TRIGA-III

BG

A1S

A2S

B1S

B2°j

Sol(m)2.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

1.0

1.5

3.5

4.0

4.5

5.0

5.5

6.0

1.0

3.0

3.5

4.0

4.5

5.0

5.5

6.0

(nSv)90

105

120

115

127

103

313

298

300

294

332

1440

115

120

195

284

3030

6770

38300

55800

20100

953

650

105

87.5

417

337

2260

36500

72700

29100

88

102

107

103

128

226

659

1440

(uSv)7.84E-02

1.01E-01

1.03E-01

1.15E-01

1.21E-01

9.88E-02

3.13E-01

2.91E-01

2.65E-01

2.39E-01

2.84E-01

1.10E+00

1.10E-01

1.15E-01

1.42E-01

2.70E-01

2.25E+00

6.24E+00

2.78E+01

5.14E+01

2.01 E+01

9.29E-01

6.48E-01

8.50E-02

8.61E-02

1.01E-01

3.08E-01

2.19E+00

3.61 E+01

6.97E+01

2.87E+01

8.38E-02

9.82E-02

9.76E-02

9.99E-02

1.17E-01

2.13E-01

6.48E-01

1.43E+00

(uSv)1.04E-01

1.22E-01

1.35E-01

1.30E-01

1.32E-01

1.07E-01

3.40E-01

3.09E-01

3.47E-01

3.00E-01

3.73E-01

1.45E+00

1.16E-01

1.23E-01

2.00E-01

4.12E-01

3.07E+00

6.80E+00

4.04E+01

5.63E+01

2.08E+01

1.54E+00

8.98E-01

1.08E-01

9.99E-02

1.17E-01

3.95E-01

2.26E+00

4.06E+01

7.27E+01

3.00E+01

8.89E-02

1.09E-01

1.12E-01

1.16E-01

1.33E-01

2.37E-01

7.75E-01

1.61E+00

«/ J2

-327-

Table 12. TRIGA-III

SP1

SP2

SP3

SP4

SP5

SP6

SP7

SP8

SP9

SP1O

SP11

SP12

SP13

20/(m)5.0

5.0

5.0

5.0

6.0

6.0

6.0

6.0

6.0

6.0

5.0

4.0

(nSv)2004

908

2000

3850

131000

39600

64900

37100

56300

191000

1300

1400

9.99E+08

(uSv)1.96E+00

7.46E-01

1.85E+00

3.79E+00

1.29E+02

3.91 E+01

6.45E+01

3.41 E+01

5.11 E+01

1.86E+02

1.22E+00

1.35E+00

1.04E-01

*/W(uSv)

2.06E+00

9.26E-01

2.09E+00

3.94E+00

1.36E+02

4.57E+01

6.75E+01

3.72E+01

5.95E+01

2.11E+02

1.40E+00

1.49E+00

9.99E+05

«/ JZ

?Wl^i(isv)» ytH^

100000.00(WmRemJ

10000.00

1000.00

100.00

10.00

—+—A1&- -m - A2&!—*—B1&I- ® •- B2&

1 -

/.o/OS11510588

- i

/ .5 '120120

,87.5

TR

775

IGA

127

284

^ ^

103

3030

102

& Ah

5 .5

313

6770417107

4.0

298

38300337

103

:.,© "

4.5

-A—

5.0

55800 201002260 36500128

-A—B1S - © -B2S '

5.5

55;?P55

1440650

72700\29100659 1440

Sol(m)

Fig. 56. TRIGA-III

- 3 2 8 -

Fig. 57. h=.M 6 m).

Fig. 58. 5 m).

- 3 2 9 -

Fig. 59. 6 m).

Fig. 60. 6 m).

- 3 3 0 -

TRIGA-III

61514.

3.711 ^^11, ^^I7l , laser local izer,

force)#

7} 47B, 2|^ol 130mm,

, 7] 7113} A] ^(mechanical seal) J S

thruster)^

^ ^ ^ o ^ S - ^^15]^ alfe 2 7lf ^?l7l(front

and rear thruster)^ S.^2) xm^°-3.S>) $]# ^ f e ^^ofl-M^ ^r*$

in thruster)^ S.

}(absolute position)if

(posture)!- *I*J*|-7l 4\i% ^ ^ •ofl-M JL6>*> laser local izer X\£

^ ^ 4 4 ^ * i ( t i l t angle sensor), eflo]^ ^ ^ i ^ , 27fl*|

(retro-reflector),

- 3 3 1 -

CPU S.B.7} X|4H?-S(hierarchical structure)^

fe ^SJaW 7] (supervisory

controller) ^H7} $14. ^ ° H 7|l#ol) 37H*] ^RHH^Klower-level

controller)7} ^

TRIGA i ^ ^

| ^^-*> Geiger Miller

1 ] f FH-40G

10

5 m x 5m x

- 3 3 2 -

s i SH*

71

MARK I I ^ TRIGA MARK I I I ) * ]

- 3 3 3 -

-§-7),

7)7)1

. rcj-BH ^ TRIGA MARK II if III

, 16] 5J ^-<H Gundremingen

DOE ^ Decommissioning Handbook[21], -§•

Table 13,

4

Table

}, Vessel Internals liner^

#^- Plasma Arc

Mechanical Nibbler

, Table Pipe, Tank Sfl

Mechanical Shear^f *> aov%1:(Hl4 Disc Cutter7}

fe Circular

Saw

-334-

Table 13.

Arc Saw* 36"

Oxygen

Burner*

Thermic

Lance*

Explosive

Cutting*

Laser

Mechanical

Nibbler

Plasma

Arc*

gasl-

7}

C02

^ • 8 -

liner

A

liner

O

Arc)

-335-

Table 14.

Hack Saws

Circniar

Saw

Guillotine

Saw

Disc

Cutter

Mechanical

Shear

pipe-W- ^ ^

m pipe*! * H ^ H

^1-t 2" o]*f

W f € *

-)# 6'ol*>.

Chord Length

2*o) *> S ^

*| a. 2" O|*|-

pipe

A

pipe

O

pipe

71E}

O

- 3 3 6 -

Table 15. pool

o o

Controlled

Blasting

Wrecking

Ball/Slab

Backhoe

Mounted

Rams

Flame

Cutting

Thermic

Lance

Rock

Splitter

BRISAR

Compound

Water Jet

*1W» »4te T|* 4*

^ 6 V-/S. ^ n^ T?p 1— 1 | ngp

^ * ^ a *

A

A

- 3 3 7 -

Table 15.

Diamond

Sawing

Core Stitch

Drilling

Explosive

Cutting

Paving

Breaker

Drill and

Spall

Scabbier

Water

Cannon

Grinding

2* * ^ *

-7-tg -e | Spall tool#

Scabbier bit^-S. SL<gQ

•a

On x*]l

o

- 3 3 8 -

flat form -§• <^e| 7}*\7\

bridge transporter7} °]n] ^

-^u}, TRIGA

-, bridge transporter^]

kg

TX>e> ^ e ] ^ l Table 16*]]^ i

Table 16. <£-

^^s. a^- - ]T]

ii^-f ^7]

^ H i-a# 47]

^ ^ S . Tank Liner 47]

Plasma arc

Mechanical

Shear(^%) Disc

cutter (^i^)

Circular saw(tH^)

Plasma arc

Mechanical Shear

Plasma arc

Diamond saw

Water jet

Controlled blasting

31^47]

Crane

Manipulator

Crane

Manipulator

Crane

Manipulator

Crane

Crane

Excavator

-339-

ofl

7}.

T2-0!]^^- Silicon Graphics^f-^l Workstation Onyx# h§-*>$g[t:}-. o]

fe R10000 «1^7| Reality Engine^- ^||

S^^H IGRIP

Deneb Robot i c s^WH 7^^} ^-g- i H I ^ M IGRIP (Interactive

Graphics Robot Instruction Program)^ ^V§-*}SSlcK

IGRIP^ 7 l ^ ^ t:}^-^- ^-^r ^ o | air}. [25]

- Part Modeller : Surface Modelling y<H-2] CAD

g • # «1# 4 ^ ^ 4^^1 (Polygon)*] ^^ -^ . ^ ^ - ^ ^ ^

*> CATIA, CADAM, AUTOCAD, Wave Front *§• Ef 7 l # 5 ^ CAD

Animation^!

-340-

4

*]

User Programming 7]-^

<H GSL (Graphic Simulation Language)

Line Interpreter)!

, CLI (Command

: C

(LLTI, Low Level Telerobotic Interface)^

Fig.

-341-

Fig. 61. H

Host workstationSGI Onyx

Graphic Modeller

Motion simulator

Off-line programmer

UNIX OS C-languogeinterface(LLTI)

Motor controllerRobotCameraSensorMotor controller

TW:

"ACAD

. Fig.

4

4 ^ 1 (replay)*fe

nje]

Animation-^- H

record)*|f

01

- 3 4 2 -

LLTI S # (Deneb Robotics

2.

CAD

7f. -f-g-S CAD

4

4 ^]^#^ 4--f >^ 1 ^ # ^ - ^ Fig. 6 2 ^ ] ^ J£^. B f ^ ^o) < ^ ^ ^ 5 ] ^ -7-2:-i-, Center

Channel, Reflector and Specimen Rack, Fuel Element, Reactor Tank,

Internal Tubes, Thermal Column ^ Thermal Column Door -%-°]

- 3 4 3 -

(a)

If1

Core and reflector

BBwB^ * • -

g (EM' S

(c) Center channel

Fig. 62. <£^

(b) Fuel element

ifflmm11

(d) Reactor internals

zj-

4

4

- 5 - ^ ^ <>1

oil" #*)*]

Center Channel, Reflector and

-344-

Specimen Rack, Fuel Element, Reactor Tank, Internal Tubes, Thermal

Column ^ Thermal Column DOOHEH $ 1 - ^ SflaH^HJ-S. 3 - ^ S i , Bridge

Transporter * ^h§ 4^f&4 ^ M 1^1 4§3*

Transporter-^- JsL-

Trolley<>|j -f"4*l't-H

- •*> SchillingAf^l Titan 7 S.^

3] ^ Bridge

^r Slh Trolleyofl

^ > 4^-§- s ^

transporter-^- _<H

d^}. Fig.

:f. Bridge

-^1 Boom^-

^ ^ ° 1 7}

6 3 ^ o]$\

Fig. 63. Bridge Transporter

Fig.

-g-o)

4

- 3 4 5 -

Fig. 64. TRIGA MARK III

-346-

3.

^ a ) , ufl-f- Pipe^ff

Reactor Tank Liner ^7]

Thermal Column , Reactor Core *\}7\,

4 fl-f-

(Tag Point

^ ^ 4 ^5.^L5fl^ IGRIPo]

Simulation Language)^

Interpreter^^

m <d°]^l GSL (Graphic

, IGRIP^I Command Line

4

5]

Fig. 65if Fig. 66^: 4 4

7](Triga Mark-Ill)^

l5.7l(Triga Mark-II)

t:j-. Fi

*H*H.23L7}*)^ l iner z\]7]S>]

^ l ^ . ^ } . °1#, Fig. 672} Fig. 68^] 4 4 mechanical shear

internal pipe# *fl7t*ffe g- g, plasma arc torch# 61>§-*M

- 3 4 7 -

liner

4

Fig. 65a. 1JL7KTM-II)

- 3 4 8 -

mn

I IPiT" \

" 1 3

Fig. 65b. 1S7KTM-II)

- 3 4 9 -

Fig. 66a. 2JL7KTM-III)

- 3 5 0 -

Fig. 66b. 23L7KTM-III)

- 3 5 1 -

mechanical shear

Fig. 67. Mechanical s h e a r # <:>]<§-*> internal pipe *f[7]

- 3 5 2 -

Fig. 68. Plasma arc torch# °|-§-*> ^ liner

-353 -

- 3 5 4 -

*fl 4

TRIGA MARK

3.711 , laser localizer, 4^71

l(absolute position)^ ^>4(posture)

fe laser localizer#

^ EBERLINE

FH 40G

- 3 5 5 -

711

TRIGA

- 3 5 6 -

[I] ^ J i ^ UDC 629.182,

?>^-7]X|«i^-4i JjH| A } 7 l ^ ^ 9 - ^ , 1991.

[2] J. Yuh, Learning Control for Underwater Robotic Vehicles, IEEE

Control Systems, pp.39-46, April, 1994.

[3] US Patent 4,811,228, ."Method of Navigating an Automated Guided

Vehicle," Mar. 7, 1989.

[4] Lucas Electronics, Operations Manual: Inclinometers, 1996.

[5] »JlM, ° I W , C<d<>i5. Tfl *±= 80C196KC, tfl<g4. 1995.

[6] J. Yuh, "Learning Control for Underwater Robotic Vehicles",

IEEE Control Sytems Magazine, Apr. 1994.

[7] L.L. Whitcomb and D.R. Yoerger, Comparative Experiments in the

Dynamics and Model-based Control of Marine Thrusters, Proc.

MTS/ IEEE Oceans 95, October 9-12 1995, San Diego, CA.

[8] L.L. Whitcomb and D.R. Yoerger, Preliminary Experiments in the

Model-Based Dynamic Control of Marine Thrusters, Proc. IEEE

Int. Conf. on Robotics and Automation, pp. 2166-2173, 1996.

[9] A.J. Healey, S.M. Rock, S. Cody, D. Miles, and J.P. Brown,

"Toward an Improved Understanding of Thruster Dynamics for

Underwater Vehicles," IEEE journal of Oceanic Engineering, Vol.

20, No. 4, pp. 354-361, 1995

[10] Younger-Toumi, K. and Ito, 0., A Time Delay Controller for

Systems with Unknown Dynamics, ASME J. of Dynamic Systems,

Measurement, and Control, vol.112, pp.133-142, March 1990.

[II] P. Lu, "Optimal Predictive Control of Continuous Nonlinear

Systems", Int. J. of Control, vol. 62, No. 3, pp.633-649, 1995

[12] Hsia, T. C. and Gao, L. S., Robot Manipulator Control using

Decentralized Linear Time-invariant Time-Delayed Joint

-357 -

Controllers, Proc. IEEE conf. on Robotics and Automation, pp.

2070-2075, 1990.

[13] G. Y. Park, J. S. Yoon, and Y. S. Park, "Robust Nonlinear

Predictive Control of Underwater Wall-Climbing Robot",

Institute of Control, Automation, and System Engineer, vol.4,

no.6, pp.772-779, 1998.

", '97 Korea Automatic Control Conference, FA1-12-3,

PP.237-240, 1997.

[15] A. Baker, I.R. Birss, and G.F. Fish, "Remote Handling Equipment

for the Decommissioning of the Windscale Advanced Gas Cooled

Reactor," Proc. of Seminar on Remote Handling in Nuclear

Facilities, pp.581-597, 1984.

[16] L. Costa, et.al, "Remote Operation in Decommissioning,"

Decommissioning of Nuclear Power Plants, 1989.

[17] N. Eikelpasch et. al., "The KRB A Boiling Water Reactor pilot

dismantling project," Euro Courses-Greifswald, Sept., 1996.

[18] N. Eikelpasch et. al. , "Status of decommissioning at

Gundremmingen unit A," Kerntechnik 56, No.6, pp.367-371, 1991.

[19] N. Eikelpasch et. al., "Eliot Dismantling of the KRB A Boiling

Water Reactor, " Int. Conf on the Decommissioning of Nuclear

Installations, Sept., 1994.

[20] N. Eikelpasch et. al., "Remote techniques for the underwater

dismantling of reactor internals at the nuclear power plant

Gundremmingen unit A, " BNES, Remote Techniques for Hazardous

Environment, pp.14-19, 1995.

[21] Decommissioning Handbook, U.S. Department of Energy, U.S.

Government Printing Office, 1980.

[22] J.J. Fisher, "Applying Robots in Nuclear Applications," RI/SME

Robots Conf., June, 1985.

-358 -

[23] G. Clement, J. Vertut, A. Cregut, P. Antione, and J. Guittet,

"Remote Handling and Transfer Techniques in Dismantling

Strategy," Proc. of the Seminar on Remote Handling in Nuclear

Facilities, pp.556-569, 1984.

[24] K.H. Schaller, "Possible Advances in Remotely Controlled

Operations in the Field of Decommissioning of Nuclear

Installations," Proc. of the Seminar on Remote Handling in

Nuclear Facilities, pp.570-580, 1984.

[25] Deneb Robotics, IGRIP Version 2.3 User Manual, Pittsburgh,

1993.

- 3 5 9 -

NEXT PAGE(S)left BLANK

td ^ n

si

o|

— 3 6 1 -

NEXT PAGE(S)left BLANK

CONTENTS

Chapter 1. INTRODUCTION 377

Chapter 2. STATE OF THE ART 379

Section 1. Understanding of the state of the art 379

Section 2. Comparison and discussion of detail technologies...380

1. Comparison of detai 1 technologies 380

2.Main technical items 380

A. Foreign countries 380

B. Korea 382

Chapter 3. CONTENT AND RESULT. 385

Section 1. Soil decontamination 385

1. Introduction 385

2. Main Item 386

A. Electrokinetic soil decontamination 386

B. Soil washing 412

C. Decontamination equipment 425

3. Concluding remarks 433

Section 2. Dry decontamination of urban surface 435

1. Introduction 435

2. Theory 436

A. Ion exchanger 436

B. Surface contact angle and surface tension of

Decontamination agent 438

C. Rheology 439

3. Urban surface decontamination equipment 440

A. Equipment characteristics and principle 440

B. Equipment arrangement 440

C. Drawing of equipment arrangement 443

- 3 6 3 -

D. Photograph of equipment 443

E. Components and usage of equipment 448

4. Experimental 449

A. Makeup of decontamination agent 449

B. Basic property 451

C. Rheology 453

D. Measurement of surface contact angle 454

E. Preparation of hot specimen 454

F. Decontamination test 455

5. Result and discussion 455

A. Basic Property 455

B. Rheology of clay decontamination agent 463

C. Interfacial property of clay decontamination agent 466

D. Relationship between flowing property and interfacial

property of clay decontamination agent 466

E. Decontamination test 469

6. Concluding remarks 476

Section 3. Soil remediation performance assessment and

radionuclide migration modeling around the TRIGA

research reactor 477

1. Migration of contaminants in the unsaturated zone 477

A. Comparison with the saturated zone 477

B. Hydraulic property of the porous media 478

2. Comparison and analysis of codes 482

A. Input parameter 482

B. Analytical model 485

C. Mathematical model 491

3. Application of decontamination assessment model 493

A. Input parameter measuring method 493

B. Boundary condition establishment method 496

-364-

4. Development of one-dimension non-equilibrium sorption

model 498

5. Residual radioactivity dose analysis after remediation...508

6. Radionuclide migration modeling around the TRIGA research

reactor 518

A. Topography and the underground water table 518

B. Measurement of on-site hydraulic parameters 520

C. Modeling of underground water flowing system 525

D. Radionuclide migration system prediction modeling 532

7. Concluding remark 538

Chapter 4. ATTAINMENT DEGREE ON THE RESEARCH TARGET AND CONTRIBUTION

DEGREE TO THE OTHER AREA 541

Chapter 5. APPLICATION PLAN OF THE RESULT 543

Chapter 6. REFERENCES 545

- 3 6 5 -

NEXT PAGE(S)left BLANK

1 # M £ 377

2 # ^H.SJ 7]^A^ £ % ....379

379

380

H]J2. 380

2. ^ § ^ 1 1 ^ A 7 ]# Lfl-g- 380

7}. $m 380

v}. ^ 382

^ ^^-711 ^ * ^ H ^ - T£ %3\ 385

1 ^ A^S^ 4^71^ 7^ 385

1. *1 . . ' 385

2. ^- § 386

7\. ^-^.7]^ S^]<^7l^ 386

^ ^ > 412

^ l ^ ^ 1 4 ...4253. ^ 433

1 2 | £.*] S ^ ?m 4 ^ 7 1 ^ 7Bt 435

1. M & 4352. <*] -4 JL% 436

7\. °}£: 3. : 11 436

fl£«£| ^ ^ ^ 438

...439

3. SA]S^ ^-i} I ^ ^ l 440

7}. #*1 ^-^ ^ 7^SL 440

^f. ^ 1 TH§ 440K 443

443

448

- 3 6 7 -

4. ^ ^ 449

7j. ;** jg. ^) < [] ^[]3: 449

U. 7 ] £ #A^ 451

t}. - f r ^ ^ 453

5}. S.1^ -^ r^l" ^ ^ 454QL tJWl.yM j£_64 A J ^ -^liS. 454

«>. ^ 1 ^ ^ ^ 455

5. ^ 4 9l 3L% 455

7f. 7}^: # ^ 455

463

466

466

4. 4^ ^ ^ 4696. ^ £• 476

477

477

7}. 3L$\X\<^3}$] ^[O]^ 477

"M". ^ ^ o " ^ 0 ! ^ - ^ "T'5!^-^) 478

2 S ^ 1 ^ ] ^ '*§^rJ%7}S-xzl y]o2.~E"^4... 4827]. B^7|.^^<5i sj AV-^-SS 482

~i\. ^xlS.1^ ti]^^^ 485

5. ^ 1 ^ ^^-^f^ 21-^- ^ 508

6. TRIGA ^ * i ' ^ ^ o l ^ <W S ^ s j 518

7}. *1% 9l ^1^}^1 518

- 3 6 8 -

H"

t l

?'}

7 ^

4 -Q

5 #

6 #

520525

532

538

H£ 541

543

545

- 3 6 9 -

NEXT PAGE(S)left BLANK

Table 3-1. Chemical Composition of Kaolin Clay 398

Table 3-2. Physical Property of Kaol in Clay 398

Table 3-3. Parameter Range of Electrokinetic Decontamination

Process 404

Table 3-4. Physicochemical Properties of Soil 415

Table 3-5. Oxide Composition of Soil 415

Table 3-6. Physical Properties of Certain Cations 437

Table 3-7. Components of Decontamination Kit 448

Table 3-8. Manufacturing Composition of Decontamination Agent. ..452

Table 3-9. Properties of Clay Studied 457

Table 3-10. Composition of Tested Specimen 462

Table 3-11. Power-law Parameters of Modified Clay Suspensions as

Fitted with Equation(3-1) 465

Table 3-12. Input and Output data of Each Code 484

Table 3-13. Status of Codes for Assessment of Soil Decontami-

nation 486

Table 3-14. Component Content of Soi 1 503

Table 3-15. Density, Porosity, Water Content, and pH of Soil 503

Table 3-16. Inhalation Dose Conversion Coefficients 515

Table 3-17. Ingestion Dose Conversion Coefficients(mSv/Bq) 516

Table 3-18. Hydraulic Conductivity of Each Layer 521

Table 3-19. Porosity and Moisture Content of Each Layer 522

Table 3-20. Dispersivity of Sediments 522

Table 3-21. Diffusion Coefficient of Concrete 523

Table 3-22. Distribution Coefficient of Radioactive Nuclides and

Phenol 524

Table 3-23. A Half Life of Nuclides 525

- 3 7 1 -NEXT PAGE(S)

left BLANK

Fig. 3-1. Electrokinetic Transport Phenomena 387

Fig. 3-2. Experimental Apparatus for Soil Decontamination 400

Fig. 3-3. Logo Screen for Monitoring the Soil Decontamination..402

Fig. 3-4. Monitoring Screen for Soil Decontamination ..402

Fig. 3-5. Screen for Analyzing the Experimental Parameter 403

Fig. 3-6. Double Plot of Voltage and Current against Time 405

Fig. 3-7. Accumulated Effluent Volume against Time 406

Fig. 3-8. The Movement of Front against Time at 30 V 408

Fig. 3-9. Change of Cs+ ion Concentration according to the Length

from the Cathode 410

Fig. 3-10. Cs+ ion Concentration of Effluent against Time 411

Fig. 3-11. Sexidendate Octahedral Model of the Co-EDTA ion 416

Fig. 3-12. Amount of Adsorbed Co against Time 420

Fig. 3-13. Desorption of Co according to the Concentration of EDTA

under Various pH 421

Fig. 3-14. Amount of Desorbed Co against pH under Various

Temperature 423

Fig. 3-15. Amount of Dissolved Fe against pH under Various

Temperature 424

Fig. 3-16. Competitive Reaction Mechanism between Co Ion and Fe

Ion on EDTA in Soi 1 Solution 425

Fig. 3-17. Arrangement Drawing of Soil Decontamination Equipment..428

Fig. 3-18. P & ID of Soil Decontamination Equipment 429

Fig. 3-19. Control Circuit of Soil Decontamination Equipment....430

Fig. 3-20. Photograph of Soil Decontamination Equipment(Top and Side

View) 431

Fig. 3-21. Schematic Drawing of Urban Surface Decontamination

Kit. 444

-3 7 3 -

Fig, 3-22. Photograph of Urban Surface Decontamination Kit 445

Fig. 3-23. Photograph of Urban Surface Decontamination Kit (Side

View) 446

Fig. 3-24. Photograph of Spraying Operation 447

Fig. 3-25. Photographs of Specimen; (1) Weight-Concrete (2) Fired

Brick (3) Red Brick (4) Silicate Brick (5) Wood 455

Fig. 3-26. Optical Microphotographs of Silicate Brick(l) and Fire

Brick(2) 459

Fig. 3-27. Optical Microphotographs of Red Brick(3), Weight crete(4)

and Wood(5) 460

Fig. 3-28. X-Ray Diffraction Pattern of Hectorite 461

Fig. 3-29. Non-Newtonian Viscosity of Decontamination Agents... .464

Fig. 3-30. Surface Contact Angle according to Hectorite

Contents 467

Fig. 3-31. Viscosity Parameter n and Surface Contact Angle According

to Hectori te Contents 468

Fig. 3-32. Activity Ratio of Residual to Initial Cs-137 according to

Decontamination Cycle Using HT-type Decontamination Agent

(Contaminated with liquid Cs-137) 471

Fig. 3-33. Activity Ratio of Residual to Initial Cs-137 according to

Decontamination Cycle Using Na-type Decontamination Agent

(Contaminated with liquid Cs-137) ...472

Fig. 3-34. Activity Ratio of Residual to Initial Cs-137 according to

Decontamination Cycle Using HT-type Decontamination Agent

(Contaminated with liquid Cs-137 and Dust) 473

Fig. 3-35. Activity Ratio of Residual to Initial Cs-137 according to

Decontamination Cycle Using Na-type Decontamination Agent

(Contaminated with liquid Cs-137 and Dust) 474

Fig. 3-36. Activity Ratio of Residual to Initial Cs-137 of

contaminated with liquid Cs-137 respect to dust and

liquid Cs-137 according to decontamination(HT-Type)..475

Fig. 3-37. Typical Soi 1 -water Retention Curve 479

Fig. 3-38. Tensiometer Used to Measure Soil-water Potential

-374-

in the Field,,,,, 480

Fig. 3-39. Relationship of Hydraulic Conductivity to Matric

Potential for Wetting and Dying Cycle Illustrating

Hysteresis 481

Fig. 3-40. Unsaturated Hydraulic Conductivity as a Function of Water

Content for Three Temperatures 481

Fig. 3-41. Relative Permeability vs. Moisture Content for Sand,

Clay, Si 1 ty Loam, and Sandy Loam 489

Fig. 3-42. Use of Pressure-head Gradient Boundary Condition to

Simulate a Portion of the Unsaturated Zone 490

Fig. 3-43. Linear Sorption Isotherm with S versus C 494

Fig. 3-44. Nonlinear Sorption Isotherm with S versus C. 495

Fig. 3-45. (a) Nonlinear Langmuir Sorption Isotherm will Reach a

Maximum Sorption Value When S is Plotted versus C

(b) The Langmuir Sorption Isotherm can be Made Linear

by Plotting C/S versus C 497

Fig. 3-46. Apparatus for Solvent Flushing 499

Fig. 3-47. Equilibrium Sorption Coefficient of Co Solution with

the Soil 504

Fig. 3-48. Co Sorption Ratio in the Soil versus Time 505

Fig. 3-49. Experimental results Remediating the Soil of High

Hydraul ic Conductivi ty by Water 506

Fig. 3-50. Experimental and Model Prediction Results Remediating the

Soil of Low Hydraulic Conductivity by Water 506

Fig. 3-51. Experimental Results Remediating the Soil of Low

Hydraulic Conductivity by EDTA Solution 507

Fig. 3-52. Location and topographical Map of Study Area 518

Fig. 3-53. Configuration of Water Table and 4 Layers 519

Fig. 3-54. Kind of Rock and Soil in Study Area 520

Fig. 3-55. (a) Constant-head Test Equipment (b) Falling-head Test

-37 5 -

Equipment 521

Fig. 3-56. Distribution Coefficient Measurement Procedure ..523

Fig. 3-57. Base Map of Study Area 526

Fig. 3-58. Finite Element Net about Study Area 527

Fig. 3-59. Groundwater Flow Modeling in 1 Layer of Study

Area 528

Fig. 3-60. Groundwater Flow Modeling in 2 Layer of Study.

Area 529

Fig. 3-61. Groundwater Flow Modeling in 3 Layer of Study Area...530

Fig. 3-62. Groundwater Flow Modeling in 4 Layer of Study Area...531117

Fig. 3-63. Cs Transport Modeling in 1 Layer of Study Areaafter 5 Years 5331 17

Fig. 3-64. Cs Transport Modeling around Reactor along Time. ...535

Fig. 3-65. 90Sr Transport Modeling around Reactor along Time 536

Fig. 3-66. 60Co Transport Modeling around Reactor along Time 537

-376-

1 S- M

3.3. 4^r

Hanford Site

o] A

m3

n)^- ofl, «I

TRIGA

TRIGA

Cs, Sr,

NH4+

CEC

15 NH4+

TRIGA

TRIGA

TRIGA MODFLOW

TRIGA MT3D

Cs, Co

— 377-NEXT PAGE(S)

left BLANK

ANL, Oak Ridge National Lab., Sandia National Lab., PNNL,

Los Alamos^ ^ t J g ^ f c o M *#*}& SL<& £<£ ^ 1 ^ 7 ] # # 7^ #ofl &

cf. Oak Ridge National Lab. 1996^ E M * 1 ^ * J ,S_<g -*l(K-25 site)

Hanford site*] ^ - ^ # JH*H 1996\1 Flour Daniel Afif %>^ 5\1^> 50<^ $

, KIST

nfl-f ^uf. -f el i^efe ^^1 ^-3.7}

3 D < ^

safe ^AS. sra^nK -f el u}ef£ TRIGA

711

- 3 7 9 -

fe 1995

ICRP 6fr§-

71^ 4-¥- % ^

^ ^ ^ ^ l

^ e l

^>^-^4-^ 711 -

^ 7 }

^r ^ 7} ^

S-<gT£7l]

7 ] ^ ^^^17^1

7Hy^ ^7^1

7 f l ^ ^Tf l

7^ *t*H

^r $ 7] ^ * ^ 71 ^^-^ ^H, ^1

^-^ 4 , ^1

^ 1 ^711

2.

7}.

25

- 3 8 0 -

biodegradation #

- bioventing •#

- soil vapor extraction t|{

soil flushing -fr

soldification/stabi 1 ization t:l|

vitrification -fr

Thermally enhanced soil vapor extraction t:|{

solvent flushing -fr

slurry phase biological treatment £§

controlled slurry phase biological treatment tf|

electrokinetic method •§•

land farming #

soil washing tj]

dehalogenation •§•

chemical reduction/oxidation •§•

low temperature thermal desorption •§•

incineration cfl

o Deterministic

o Stochastic

o Saturation Zone

o Unsaturation Zone

- 3 8 1 -

fe- soilwashing, solvent flushing ^ electrokinetic soil decontamination ^

•§• 7 f l ^ M # ^ soil washing ofl $a<H>H-b bench ^ - S ^ ^l^^l-t

4 l .n|, electrokinetic soil decontamination *g£-

biodegradation

bioventing

soil vapor extraction

soil flushing

soldification/stabilization

vitrification

Thermally enhanced soil vapor extraction

solvent flushing

slurry phase biological treatment

controlled slurry phase biological treatment

electrokinetic method

land farming

soil washing

dehalogenation

chemical reduction/oxidation

low temperature thermal desorption

incineration

-382-

o Deterministic S.

& Stochastic S.^

o Saturation Zone S

o Unsaturation Zone

*}•

— 383 —

NEXT PAGE(S)left BLANK

^ 1

1. 44

e . 4 . Chernobyl ^ 4 ^ 4:2., ^.Bj-^ Goiania,

km2 45 cm

fe 71 igr,

1&-S- ^g-^7]^(electrokinetic)

7 } ^

sa

TRIGA 2002

Cs, Sr, Co o ) ^ - ^

4

- 3 8 5 -

'-'• i__ ii_

7}.

. o]

electromigration ), ^,71 'tHF! electroosmosis ), ^.71 ^-^( electro-

phoresis) o| <&z.\. $_7]

3-1 -8: ^ ^ 7 } ^ O)^^AO>^. ^.o^ ^t ;^ £7]

4~§-(drag interaction)^! 5l*fl 4 ^ -

-fr^t^ ^ ^ ^ r o|-f^(double layer)

^ -S 1 " 10 urn 51

l 51 ?> cfl - ^-£( convective liquid

velocity ) ^ JL*fl S^^ l ^E} ^ ^ ( 5 ), ^^] ^-afl( gradient of

electrical potential)^ ^-51 ft°LS. $S>)V} Z^&Q *\7}^

(electric field strength, E H t)]3ltM. ^l^^l 3.71 AJ- H]J2.*H

&£ ° l##( th in double layer)^} tfl*Jf,

S.fe Helmholtz-Smoluchowski

-386-

Ueo = £?E/J1 (1)

Eiectrophoresismovement of parades

ElectricalDoubleLayer

Electromigdationmovement of ions

Fig. 3-1. Electrokinetic Transport Phenomena

ti]

Ueffi = VZFE (2)

(mobility), F fe

7}

.tLS. -B-S.(pressure-driven)5j-b

-38 7 -

3.7M °]

3.7}o\]

Jit* €-

(imperfection) ^ ^ S]^ ^}^ 7}x\7\]

potential)

10 - 100 mV S)

< )] Tfl ^ . < g # ^ £ ^ - i - W i:B^-( electroosmotic

convection ) if # 7 ] °]^-ofl 5 ] ^ ^^]^ ] 2,^}^ -g-sf{

(transport) £ "L

H20 - • 2H+ + 1/2 02 + 2 e" E° = + 1.23 V (3)

H20 + 2 e" - • 2 OH" + H2 E° = - 0.83 V (4)

- 3 8 8 -

2*} tiKg-o]

2 H+ + 2 e~ -+ H2 t (5)

Men+ + n e" -* Me(s) (6)

-i, Me -

4,

2) ° m ^ wH^[3-l, 2]

7\) H 6O ^ PH

pH

fe ^ % ^ © ^7l^-tifl(electric gradients) ofl y\

ionic migration), (2) ^7] - --f- ^ # ^ ] 7|6]*>

ionic migration)

o]

- 3 8 9 -

7}

E ZiC; = 0 (7)

Z i ^

= [H+] [OH'] (8)

«|*j[ ufEfufe o]

AH u

, D; ^ %^>^1^, ui fe *l-^#5l oj^-s., F fe Faraday

^ , T fe Wll"^ 4^r(tortuosity) oji:].. #

B S , pH 7} ^ ^ f K r ^I^lfe # 4 * f e

; ^-xl #££c^l 51 *U ^ ^ £ j p . ^ pH 7}

(mobility) ofl

PH 7f

. pH 7} ^ 4 .

%\ f i ^ pH

- 3 9 0 -

n+ + nOH" -»• M ( O H ) n j

pH o\)M bizincate °

(10)

2+Zn2+ + 30FT •-> HZnO2" + H20

, 371-

(11)

p H

"^ PH 7}

*H °1:§-*M pH 7}

3L pH 7}

focusingjojel-

PH 7}

. pH

fume

0.001 M 3] % ^ > o l ^ ^ - PH 7} 4

106

^ : 75-95

13

Calcium zincate if calcium chromite ^-S. ^7 ]

- 3 9 1 -

} 0.001 M

37} 3.^$] -§-«HS-^ 102 ~ 103

B pH ^ S H - ^ ^ * } 7 l ^]sfl Af-g-5)^ ^ 1 ^ 1 ^ ^ : bromophenol

blue(pH 3 o]*H>Mfe i-5o^, pH7} 4.8 <>1^6fl^^ ^ ^ : ^ ) ^ Phenol

red(PH 6.8 o j ^ H ^ f e ^^J-, PH7]- 8.4 o)^6f lA^ ^ ^ ^ ) o ) ^ } . ^ ^

5^ ^ 1 A | ^ ^ PH 3 o]*HM-b i^eov, 3 - 6 . 8 ofl>H-b ^ ^ ( g r e e n color),

PH 7}

pH

^ S . pH f

^ ^ pH # ^ o ] £6ol= ^HlJlL ^

Pourbaix diagram $] ^ pH

pH

^ Nernst -i]# 4"§-*H

nF Ili [reduced species]vRT 1 I!; [oxidized species]v

-392-

oxidized species + ne —* reduced species (13)

potential ) #

Nernst ^ ^ .

Cr3+ + 4H20 -> HCrO4" + 7 H+ + 3e E° = +1.35 V (14)

^ t h 1 ^ ferric

pH J ^ ^ f % € ^ H tH*H Pourbaix diagram

Stic}. A>5f5l ^ - f <?] 67}

37} £L# ^>5}1-^ g-q- 5:^*} ^ pH

^ojul-. 37} 3 . ^ - ^

- 3 9 3 -

pH <$<*±

JEL5. 67f

Jit;]- 6 7}

fe pH

7} pH#

t dcD/ CJ(UJ*

3x dx

dhj kh (15)

dx

£, u/ fe ^-^o)^ o^JE, E ^ &$*}, ke

- 3 9 4 -

4 ^ 7 ^ Dj ^ o |£ oj-f-s. UJ

61

= Dj I n (16)

D * z • FU j * = UJ I n = (17)

RT

tortuosity

dt= - V • Jj + nRj (18)

•§-

18 o) 4 l

9E 3E aQ[(U j* + ke) + kh ] + nRj (19)

dDj j

d t dx dx dx dx

, H+

- 3 9 5 -

H20 <-> H+ + OH" (20)

ZLtfES., H+ 2} OH" o ) ^ ^ ty^ o ] § o]^-(coupled t ranspor t ) -^

°1£^7} ^l^S]o]x|^ ^o] ^Qo]t\. H*

Kretardation factor) <H1 *11 ^ ^ 5 | ^ ^ ttj,

a U cy LH d LH

- PH+ + DAH+ ( 2 1 )3X2

OH"

d COH 3 COH 9 COH

d T0H" ax 2 d x- POH" + DAOH" (22)

Pj ^ Sj-^-f1 J °fl tfl*l Peclet number

f. D/y -fe- Damkohler number

^ ^ ^ (14) 4 ] ^

CH+ • COH" = Kw ( 2 3 )

10"14 o ]H

. Faraday ^4}ofl rcfs},

- 3 9 6 -

<£•=*• ^ H ^ flux boundary

condition^ ^S]*K2. -fi- > [4:^ (finite element method)^

pH

#^l pH »!5Hr ^ «

3)

(1) Cesium chloride(CsCl)

Merck 4 $ ] ^ S 99.5 % O|AV^| GR

^ 168.36 o)uK

(2) Bromophenol blue(CigHioBr405S)

Showa chemicals Inc. $] ^--g- ^1

o>^. 669.97 o]c>.

(3) Phenol red(Ci9H14O5S)

Junsei Chemical Co. 3] ^gX

354.38 ojcf.

(4) Kaolin

Showa chemicals Inc. 5] 1-g- A]

#e l^ ^ -^# S 3-2 ofl ^

(1) 0.01 M Cs

(2) 0.01 M Cs -§-«<f 100 ml, 150 g ^ Kaolin, 5 ml S] *]*]<$

(Bromophenol blueif Phenol ^ ^ " - § - < ^ ) # - 3 : ^ * ^ ^ tS" t ! :4 .

(3) 5-^*1-71] ^ ^ ^ S<>OU]S# tapping isMM &7] ce l l ofl

^H^r^K * f l ^ # kaolin £ ^ A | ^ - ^ 122 ± 2g ^$] ).

(4) ^ ^ <^^

(5) ^«U ^ ^

(6) A l # ^ ^ c f l n ^ ^ 7 ] ^ ^ * # « } S 1 -¥•=] ^ P H # ^

- 3 9 7 -

Table 3-1. Chemical Composition of Kaolin Clay.

^ tf &SiO 2

A12O3

Fe2O3

CaO

MgO

H20

72.1019.570.390.800.540.70

100.00

Table 3-2. Physical Property of Kaolin Clay

Parameters

^-§-*J} pH

Value

6.8

300 mesh

7.01 m2/g

0.37 g/cm3

(7)

(10) Kaolin

Cs

0.45

(8) 7HA] 72(9) 71 cell S.-fel kaolin

pH

fe Cs

^-H 3-2^On-line

-398-

(1) *1-

S . ^ 4 ^ #*}£) 31°]^ 41 mData acquisition) ]S. PLC

(Programmable Logic Controller)!-

Hl^-7l^ ^ PC

71^ ^o) 1 7 O ^ ?14^H ^ jo ju} . PLC*] -7-^^ A } ^

CPU JS.1-, ^ H S 2 # ^ ^ * H CPU S #

H ^ 3-2 *1 ^ ^ H l ^ ^ - ^oj 80-10 V <q tllo]e|3- ^O]-1-O|JL CPU S # ^ r ^ l ^ ^ o ] ^ ^ ) E . ( I / F unit)

# ^f-sfH PC^I t-iio]B|i- ^ ^ t l ^ K ° 1 4 CPU s # ^ } PC 4 | ^

RS-232C S. -f-^lSI^, 4<^ SZL^-i- ^ ^ T j u l - CPU S' rrl a i lr lHll i-l >1 O Cl 1 1 *J -71.^1 rtl p j p j].C>l:_O_

CPU £ . #

% ] : FPU81A

=-;£ : lms/step

Lsfl v%2.Z] -g-so> : 10.5K step

g I/O ^ ^ : aitfl 1600^

n i/o ^ : 3}cf 100^

-^399-

A/i

I/F

FTU321A

: 0-10 volt

1 : 0-4000

FFK 120A-C10

!^ : RS-232C/RS-485

: 9600 baud

Signal Converter

Fig. 3-2. Experimental Apparatus for Soil Decontamination

A/I S#2} -y^

7}(Signal Converter)#

PH

PH # ^ ^ : -600 - 400mV to 0 - 1 0 volt

= 1 - 5 0 volt to 0 - 1 0 volt

- 4 0 0 -

: 0 - 20 mA t o 0 - 1 0 v o l t

(2) -tSJE

^ ^ i l ^ ^ & &Q ^^ PH &SL

4i=S^|<H-b Turbo

Dr.Halo % HALO He|[5] ej-o]M.tf B]#

Logo S A l J ^ o l HQ 3-3 21- ^ o | ^.<H^4. LogoZL^ 3-4 if

PH SJ ^ 4 ^o] ^ t > ^ofl

Trend7> ajcfl 1A|^>^ ^-^ .5 . -^o]7} 1 A 1 5 ] £ 4 v}&^}. Trendy ^ ^

^ ^ ^ ^ nelJL PH ^ ^ ^ ^ ^ .

i i )

^ ^ ] ^ f l ] |fe- 4 < y ^ off-line

toolo] ^^ .^uK

(Excel )2f ^ ^ ^-g- ^SH^1<H# o)-§-^ ^ ^ ^ . 1 ^ . , ^ U ^ ^ S # J£

7] ^Sfl^-b ^51 ^ ^ ] 1 - T ^ ^ o ^ a , ^ 4 * ] n>^.^. ^ 7 | 7 | . c^^c}. rcf

95 -g-g-iESa^^l visual basic(Ver 5 )# 4-§-^M S 6O ^

software!- 7H^F$ii:K a^J 3-5 fe 7H

click *M 7 f l ^ ^^1- Trend

- 4 0 1 -

Fig. 3-3. Logo Screen for Monitoring the Soil Decontamination.

W94.. 8.1b-16. 0.36

Current value

i TTJH

Fig. 3-4. Monitoring Screen for Soil Decontamination.

-402-

rRun 70*13 « -

70414 53SOU DFPSOU E ft1011 fflM " j

. 0 1 / \> 1110 b901137 3? 0 10 6 90?V V 1110 billj3 37 J2 010 6 9014 37 V 0 10 6 905 37 3? 010 6 90G37 32 010 6 90

tt

ftata Graph Hint Eat

"'jit

! --1.::•

uJiO 300 400 500 600 700 800

1 •

1 '

l i t

11.Ill

'.A

Fig. 3-5. Screen for Analyzing the Experimental Parameter.

4)

7})

fe ^q-(stainless steel

40 v «y 4 ,

60

27]

30 V( ^ 7 1 ^ - 1 . 5 V/cm ) 7> %|f ^ s . ^ s . ^ j 8 mA

3 0 V S ]

- 4 0 3 -

^ l 30 ± l v 3]

(electroosmotic advective flow )o]s}

Helmholtz-Smoluchowski

Table 3-3. Parameter Range of ElectrokineticDecontamination Process

Parameter

Electrode spacingAppliedApplied

potentialelectric field

Cross sectional areaCurrentCurrent density

0

00.05

10563

Range

20 cm~ 40 V~ 2 V/cm.14 cm2

~ 2. 3 mA0.37 mA/cm2

-404-

30Time, min

50

Fig. 3-6. Double Plot of Voltage and Current against Time.

60

life}.

1.5 2 V/cm( 30 *? 40 V)

%•*>15

3i7| 15 -*]%S ^f-^rS) -^^^g^-jiL ^T"^| -j2-^} -^ ^1-S] e l ec t ro -

osmotic veloci ty^- 1.5 V/cm ^ tcj) 1.04 x 10"4 cm/sec, 2.0 V/cm < tcfl

1.38 x 10"4 cm/sec o]n| o) ^jvg.-f-B] T2-?]; ^ 7 ]5] electroosmotic

coefficient of permeability( Ke )-b 4.27 x 10"6 cm2/V. s o]t:>. o] $g-

Ballou

cm2/V.s

Georgia kaolinite 7}] 10-5

«>-§- packings]^

kaolin S6O>^

- 4 0 5 -

acid/base front

(3), (4)

cr electromigration ^ electroosmotic flow o)t}.

ionic mobility fe 3.6 x 10~3 cm2/Vs,

10~3 cm2/Vs o|t:>.

-47.6 x 10"\

-tl:porosity

-n-jL ionic mobility

4.3 x 10~4 cm2/Vs S. •

ionic mobility

turtuosity factor

1.8

e ^ 4.27 xlO-6

10 15

Time, hr

20 25

Fig. 3-7. Accumulated Effluent Volume against Time.

( 9.3 x 105 cmVs) if ( 5.3 x 1(T cmVs)

-406-

electromigrationofl

electromigration J5.

l^r ^ 6 H V O 1 30 V <y n| A]^> ^ o f l nfg. acid ^ base

H ^ 3-8 <HT S.Al*}-5it:f. * J ^ 2 i 7 H f e acid ^ base*] o

base front 5] ol^^£7|- acid front o]^^^<^| H]*1( £

K Bromophenol blue 7} pH = 3 °]^l"61]^fe Jt^, phenol red

7} pH = 8.4 o]^-6fl^-b ^-^r ^ - ^ S . W ^ H r # ^ ^ ^ 4 , base

front 1 o}^.^.^7} nj f 5£S|-^ oj-fi-fe- acid front if base front7f >

^ ^ ^ 10 ^1#°1 ^^f£lSi-i- it)] acid front ^ 12 cm, base front ^>

5.3 cm 7} o]%.-Q<ftc\. Acid front $] o]^-^^7} base front ofl

2.3 HB WJ -cll O}^. O ] ^ ^ 1 ( ~ 1.7 afl ) off H]*H 3 . ^ . o ] ^ ^y ^ ^ l ^ 1 - ^ ^ ^ 7 ] ^ ^ MAoV, S 6 ^ *}*flS] ^ ^ ^ ^ ^ transport

number ^ H ^ f ^ ^ r 4 ^ ^ ^ I ^ H

porosity# n &.£. 7}^^ ir(f, (19)

l-fe 7]e] xofl $I<H-H^ flux*] 7 | e H r t}^ £ 2 } ^ g| sj-«|-

. ^r^iol^r^l electromigration 2f electo-

osmotic advective flow - - - # ^ ^ ^ ^ ^^-^-S. ^ *|^MRt r

electromigration ^ ^ ^ r electoosmotic advective flow «Hf Hi

pH 7} 4.3

*fe Cselectromigration 6fl $X°]M ^^|S>-§- 5J Cl

electromigration «1 ^ ^ ^ ^ 1

acid front 7f base frontSj

-407-

25 30

Fig. 3-8. The movement of Front According to the Time[ at 30 V] .

- 4 0 8 -

Cs+

10, 20 V ( 0.5, 1 V/cm ) * \

3 cm ^ ^

72

XRF

Cs+

ofl

20 V

10 V

72 Aj

Cs+ o ] ^

72 A]?>O|

Cs+ o]

4 ^.

Z L ^ 3-9

18 cm

15 cm o ] ^ ^ < ^

, 20 V ofl Wl§H 10 V

. ^-, ( 2 )

Cs+

H+

Cs+

0}

Cs+

, Cs+

i e ] 2 pH

Cs+ o j ^ o .

2} *]3.*}&t}. 10 V 5^ $.<go]}M 72

Cs+ o|^-6| 29.1 *, 20 V S]

# AA

3-10

3 cm

Cs+

\^ 53.04 % 7}

20, 30, 40 V cfl*f|

40 V

- 4 0 9 -

42

K ae|L+, 30 gj 40 V

30, 40 V

J 3-2 ofl

Cs+

73%, 80%

, 20

7}

tt||

Hfif

30 V 72

S 10 15

Length from the Cathode, cm

Fig. 3-9. Change of Cs ion Concentration According toLength from the Cathode.

- 4 1 0 -

oX5

g"|c8

iw0

25

2 0

15

10

5

01

/

/A /

/ <i

/V'—- / V/ 7

/ /K

° a

/ A\\\\A

\

a \

—a— 20 v—O— 30 V— a — 40 V

-

- A

^ ~ - -a

Time, hr

Fig. 3-10. Cs Ion Concentration of Effiuent against Time.

2+Sr

| f e 7 l # ^ Cs+

40 V <HW 72 A]^>^. a

> j ^ - Sr

AA S ^

4 cm OJAOV ^

ZL5]JL, 40 V ofl H]*lf 10 V

Sr2+

. 10, 20,

336

r2+ fe Sr2

40 V

Sr 2+

Sr

336

2+

- 4 1 1 -

DOE(Department of Energy)5f

7}

.^ hydrochloric acidi} -^r

$1*H hot sulfuric acid

sodium hypochloritei} ^ ^

E D T A(3-4.5)

DTPA, Ci t r i c acid. . )•§•

-412-

Co-60, Sr-90, Cs-137, Ce-144 ILB\JL Ru-106

60co £

^ H ^ S6o>c»] 60Co

soil washing ^,

Soil washing^

pH Jh&

. Soil Washing^] 4-§"5|fe ^ " ^ 1 ^ - ^ NTA,

c i t r i c acid ^ EDTA -§•©] $luf.

Co if ^ ^ ^oj-g-^- c l^r^r pH 4 ~ 5 ^ ^ 1 ^ ^ ^>^ ^2<HH EDTA

PH si*fe

#oj:g.<t o | ^ g . pH

7} ^>^^©H 4ef1 oj [^^ PH fe

Mnn+ + nOH" - • M(OH)n I

pH 7} tf-Sf- ^7>*}7(f 5J£ bizincate

Zn2+ + 30H" ^ HZnO2" + H20

- 4 1 3 -

Co2t oj^fi. Zn °]£-3\ n}&7}*]3. ^-g-64 ^M ^2-$. & # 4 PH 7}

£ f ^ W *hS: ^ fc£ PHa B U , Co2+ o ] ^ ^ EDTA7J-

(equimolar)

(6) EDTA i f

Co2+ o ] ^ S . PH

Men+ + EDTA -»• Me -EDTAn"4 , K =ffEirrA4" • Kf

Co2t o|^-eH} «T*B Co3+ o | ^ o | EDTA

", Co2t ol£3|- Co3+ o]^.5| o > ^ £ A O ^ - . 4 ^ log K =

17.97 4 logK = 43.49o]HS. Co2+

^ f e Co3+ o l ^ * . S . ^5f^l?l ^ EDTA 2}

Co o ] ^ ^]7 i^fe ^ ^ S - SI4 . o ] 4 , Co3+

Co2+ ^I^r^.5

N-donor g r o u p ^ l EDTA, NH3 - ^ r amine ^ ^ f « > - § - A | ^ O > «>I: | -

EDTA

( 3-6 )

Co2+ o ] ^ - , F e - o x i d e , H e ] 3 . EDTA

2) -y^

7\) sg

(1)

co 2 +

5.58, organic matter 3.5*)-§- ^-^*}3L 100 mesh

- 4 1 4 -

3-4

XRF (Model: SIEMENS SRS 303)# °1«§-*M

Table 3-4. Physicochemical Properties of Soil.

Property

Unit

Soil A

pH(1:5)

5.58

CEC

mnol( + )/kg

102

sand

43

silt

33

clay

— - %

24

0.

3

M.

.5

WaterContent

3.2

Texture

L : loam soil

Table 3-5. Oxide Composition of Soil.

SiO2 A12O3 Fe 2 0 3 FeO K20 P2O5 CaO CuO 71

56.06 21.51 8.14 9.98 2.01 0.974 0.839 0.105 0.382

(2)

&°M tH*> -g- ,^^- ^ ^ # $M Cobalt-Chloride-

Hexahydrate (CoCl2 • 6H20: Mw=237.93g/mol ) # 4-g-*}Sl31, *|-Sf4S>H

EDTA (Ethylene diaminetetraacetic Acid Diammonium sal t (C10H12N2O3

(NH4)2H2-H20; Mw =344.32g/mol))#

Co2+ EDTA5]

(3)

50meshif 100mesh

H2O2 (30%)

^ Hot P l a t ed

20-30^

H2O2I- 2-35]

-415-

to £<£ pH 4 ^A, B<q 4 -g-

pH 4, 75] buffer solution^.5. pH

Calibrationt!:

phosphate

0.5mm

2mm *fl# ^ ^ * > ^ ^ . S ^ 10g

0.1M 5] HC1

500mC tifl^ #e]--£i

sodium hexameta-

2/3

l i

25°c<>fl

Stokes equation^] nfg^h

O

0\ c —-o c 3 0

-o

Fig.3-11 Sexidentate octahedral model ofthe Co-EDTA ion

- 4 1 6 -

V

g

D

d

#<*?.£(cm/sec)

(cm)

_9_ x gh.2 r\D-d)g

(l)

acetate, pH5

carbonate #

20% hydrogen peroxide

0.1M NaCl S

100 mesh g

1M sodium

(2)

Co2tFe

co2+ = 5.5 ofH 72

£ AAS (Analyst 300; Perkin Elmer)# o]

-417-

= Vsoi(Cc-CM)/Wads

i7 : The amount of Metal species adsorbed

(g of Metal / g of adsorbent)

Vsoi : The volume of solution

CM : Metal concentration in the adsorbent supernatant

Cc : The concentration in the control solution

Wads : The weight of adsorbent

i —

• f '• Fraction adsorbed

(g of Metal adsorbed / g of ini t ial Metal)

(3)

ty-AJ-^Ofg^ j g : * ^ ^ ^ - f i f n f ^ ; 7 H S . buffer

PHI- 2L^}^,3., 6a^«> c l ^ : 4 £ # $-x]*}7] J?-l*l| 0.1 M

^ ^ ^ & water bath shaker tflofl*] 200 rpm $] Z^.o\\M ^

^ ^ r 3000 rpm £ S . 10^:^: #<£ ^el*> ^ 0.45/um f i l ter

s. v\x\ <H2]-«H 4-g-*l-S£^}. co2+ o | ^ ^ ^ * ] - ^ ^ ^ r 35 ntfM PH 3,

4, 5, 6 £| S^^lA-1 ^ ^ * } 5 i ^ . ^ , EDTA ^SLfe 0.05M, 6^1 ?> ^ - ^ «K§-

* I & 4 . Al^>Ti ^ rH^^-^ l ^f€r ^ ^ ^ 0.05M EDTA # 4"§-*H 25, 45,

55°C ofl^ 4 4 ^ r * I ^ ^ ^ K EUTA ^ -^J£ ^ifofl cfl^}^fe 35°C, pH=4

0.03M, 0. 07M, 0.1M 3. EDTA $] ^ S # ^^f^f^ 4 4 ^ r W f c

^SrS^ 25, 35, 55°C S. ^.^}^3. <$q°l) ^*H*fb Fe, Co

^ AAS(M 1100B ; Perkin Elmer)#

- 4 1 8 -

3)

3-12^ 4 4 72 A|?> 5J ^7] 24 >M?>

^ - ^ ^ ^ 5 f # i M W . 72

f 72 -M^*}*)^ ^*$ *££ 1.87 X 10"4mole

24

^ % j - so>5] 81.8

BET 1- 4-§-t> »I S ^ 3 | ^-^A) £oo> vfl^ :g.q.o| ^ ^

f ^ 4 , *>-§- 2 7 ] 6

Co 2 +

site

^ 1 - ^ s i t e ofl Co2+

s i t e «Hf ^ ^ ^ 1 Co2+

o2tvfl Co2t o]£.*\ ^^^r slow rate adsorption^

O.^ 3-13 ^r 25 °C^1^ pH ^ EDTA ^-S. ^ 7 H 1 ttj-^- Co2t o]

u>. EDTA 5J ^-S.7} 0.02 M S. # 7 f ^ ttfl^M Co2+

EDTA i f 5 1

. EDTA ^ ^ H 4 4

) fe^K ^., EDTA

(Distribution coefficient) o| ^ H ^ H EDTA %•£.

H r Co2+

711 ^ 4 . J£*>, 0.02 M 0]^$] EDTA

^ 24

- 4 1 9 -

, pH 7}

2 1.0

oo

0.5

O.CM

10 » 30 W 60

I , i _

10 15Time(h)

20 25

2+ .Fig. 3-12. Amount of Adsorbed Co ion against Time

EDTA

EDTA ^

Fe-oxide «2 EDTA, Co2+

\ L~ T-i T T Y T A 2~CoEDTA'", FeEDTA'", Fe(0H)2) CoEDTA"

Co

-420-

pH

PH

PH=4 ] 5513(1.22 x 10"4 mole) i f 35°C (1.32 X 10"4

35 °C 7} ^M)*} %SL£. LfEfJs to^ , pH = 9 O)AOV

0.01 0.02 0.03 0.04

EDTA Concentration[M]0.05

Fig. 3-13. Desorption of Co2+ ion according to the Concentration ofEDTA under Various pH.

EDTA Fe p H

-421-

pH - 4 *J

Fe 5] <#£• 55 °C<>\]*\ 5X10"4 mole S 2.82X10 4 mole *] 35*0 ofl

^ FeO 5} &

pH=4 ^ 4 55 ° C ^ 1 ^ ^ W ^ o ] 35 °C ofl

6\] Hl*l| ^uf jL ^ f e ^ ^ r EDTA ofl ^sfl ^S | -g . ^ B B ^ . ^ ^ Co2+

CoEDTA2"

EDTA ofl Vj*> Co2+ o j ^ - i j S6o>6^g_^.Bj iy-:*J-£.f A}-g-Sl EDTA

pH,

4 7 ] tiKg-cHM, Fe-oxide ^ -g-*fl

Co2+ o l ^ , a e l J L EDTA ^ ^ ^ « > - § - # f-*f<H ^ g - ^ ^^A- ] Co2t

, pH ^ i f (H+ o ] ^ - ^ Fe-oxide

if S^oM ^ * j - ^ Co2+ o } ^ - ^ . ^ . ^ ^ © . s ^ ^ ^ # ^SfAl^lcf) ofl irf

CoEDTA2" ofl 5l*l| ^z$Q ShS- (0 2f ^A]ofl FeO

Fe2t S. °}-&ty- (2) 5] JL, (1) 5} CoEDTA2" # ^

r^I (3) 5 |

CoEDTA2" = Co2+ + EDTA4" (1)

FeO + 2H+ = Fe2t + H20 (2)

Fe2+ + H20 + Co2+ + EDTA4"= FeEDTA2" (3)

FeO + 2H+ + EDTA4"= FeEDTA2" + H20 (4)

h FeO o\] cfl«> PH ^L^fo)] xt}^ H+ *\ ^% Fe-oxide

2f ^ ^ «!-§- (4)oj f A | o | o l ^ o j ^ A S (1) *]5J CoEDTA2" i f

-^l 5|*H EDTA off 5|*> S ^ ^ S . ^ - e | 5 | Co2+

- 4 2 2 -

1.4

1.3

0>O

0O 1.2

10W

Q

1.1

1.04 5

« . i

6 7

pH8 9 10 11

Fig. 3-14. Amount of Desorbed Co + ion agains pH underVarious Temperature.

-423-

2t .Fig. 3-15. Amount of Dissolved Fe ion against pH under Various

Temperature.

-424-

EDTACoEDTA2-

(Co, Ni, Zn..)Metal Complex

cS+

FeEDTA

SoilH+

Fe2+or3+

Metal-Oxide(Fe, Si, AL)

dissolution

Fig. 3-16. Competitive Reaction Mechanism between Co2+ ion and Fen

ion on EDTA in Soil Solution.

A.(l) 7tf.fi.

7} screw feeder

(2) 4

4 TT seamless « .

-425-

STS316

x

butterfly valve 7}

160

sampling

PH

, tiJ:-§-7l 7}<i

thermocoupl

60 °C

-§-<>]*} flange

1/4" f-JL ?J valve

20 mm ^ ^ 1 - ^ ^

band heater ^

3" butterfly valvef-

screw feeder^}

screw feeder

Sat:>. screw feeder^

. screw feeder^ 1/2HP*]

100 - 200°C

screw

feeder^

3 -T-^^-

*>SlcK screw feeder

- STS 3/8"

3/8" ^ H .

-426-

, Sl-g-7]

«>-§-7l

^ ^ ON/OFF, «K§-7]

screw feeder tfl<f ^ £ *]*W ^ ^r

], screw feeder 4f.£ ^

PH

-L^! 3-16, P

& ID ZLQ 3-17, # ^ .^ 3-18 ofl 4 43-19 5J 3-20 ^] ^

- 4 2 7 -

a § %\\

warnsw

Reactor Screw Feader

frTI ITS fraKlS'

Hetarino Pumo

ControlPanel

Fig. 3-17. Arrangement Drawing of Soil Decontamination Equipment.

-428-

Fig. 3-18. P & ID of Soil Decontamination Equipment.

-429-

3P 220V

2P20A NFB

-O I o-

-O O-

(Sh

-o 1 o , o a1 f P!

-o a

-o o-M2

Fig. . Control Circuit of Soil D econtaminati on Kit.

Fig. 3-19. Control Circuit of Soil Decontamination Equipment.

-430-

Fig. 3-20. Photograph of Soil Decontamination Equipment(Top View).

-431-

Fig. 3-20. Photograph of Soil Decontamination Equipment(Side View).

-432-

3.

7f.

Sr 2t

f. 40 V B] 72^1

80

336

Sr2t

fe Cs+

k a o l i n S ^ ^

^-^ Sr2+4 0 v

c m

U. 2+EDTA S] Co '

, EDTA

uf. EDTA(Hi|- N a ) ^ Fe-oxide ^ ^

. H 5 1 U EDTA7f

60Co

irfl

CoEDTA2"

, CoEDTA2" 7} F e - o x i d e

, ZLnfl Co2t

Fe *1 EDTA

% 3

Fe3+ i £ i r Fe2+

a e j H S . , EDTA *

1 A ^ ^ r EDTA

- 4 3 3 -

7}

o ^ 7f<i7l7} screw feeder ofl

- 4 3 4 -

2

1.4

4:2.

(free standing water) 7f ufeo>

CEC (Cation Exchange Capacity) &SJ ^ 15

-435-

^ (Cs-137)

Ji7|

Na-%

(JIC34)

2.

7}.

(ion exchange selectivity) ^.7]

z fe ionic charge 0)3. r^r

^ 27}

«]vg) ^r

(z /r2

z / r2

fe 3steric hinderance

3.71

-436-

pH

caesium

3-6

^ complex

repulsion

Table 3-6. Physical Properties of Certain Cations

Cation

Cs+

K+

Na+

Ca2+

NH4+

Ionic Radius(A)

Crystalline

1.69

1.33

0.97

0.99

1.43

Hydrated

2.35

2.50

3.60

6.10

2.45

CrystallineSurface Charge

z/r2

0.35

0.57

1.06

2.04

0.49

z

0.9960

1.0083

0.9974

1.9940

1.0020

Partial MolarVolume

(cmVmol)

15.9

3.6

-6.6

-26.6

12.4

-437-

51

wetting d\]

liquid channel -§

$1^ liquid channel^

(surface contact angle)

wetting ^ - £ # LjEKfl-b 4&S.4 ^ 4 4 ° 1 4 # ^ ^ - ^^-^^<>| ?\

(active site) # 7}^ ^ $I4[3

^ ] drop

fe ^^-S. wettability ^^g#

v TLV

^ 9/SL

Gibbs' Free Energy fe

AG = AA ( r SL - 7 sv ) + AA r LV cos ( 0 - A 6 )

$ • Contact Angle

/SL : Solid/Liquid Interfacial Tension

- 4 3 8 -

ysv : Solid/Gas Interfacial Tension

y LV : Liquid/Gas Interfacial Tension

A : Contact Area

° M £ r AG = 0, A 0 = 0 o | H S

0 = rsL -/SV + /LV COS#

V 7]- S>

rsv = r s

/LV = /L

r S = / SL + 7 L COS ^

Young equation o]ej-JL

(Rheology) 7 ^ ^ ^

(viscoelastic)

3-22]. ^ « > ^ ^ S . ^ f > ^ -8-^fe &^S. (shear

rate) 7f ^7f^ ttfl ^ £ f e ^ 4 i * f e ^ % ^ ^ ^ 1 ^ . £ j i7 l ^[J£7]-7o|

^ y ^ | log v o\\ K\M- i o g y ^

"power-law"

(3-1)

-439-

7} ; viscosity, [Pa. s]

m ; consistency index, [Pa.sn]

y : shear rate, [s'1]

n ; power-low exponent, [ - ]

£4* m £ n # 7^1 JL ^ U ^ , n o] i ^

;£) 7f SJo} Newtonian -fraf|<*3 ^ - T - ° H , n o| 1

"Pseudoplastic" J £ ^ "shear thinning" -B-*Ht}. H^\JL n o| 1

"dialatant" or "shear thickening" -%-$\}7} Qv}.

3.

OO ^71 el 3-g-

O

l^t^ 4

- 4 4 0 -

$1°H 4 ^r seamless ^ i

1) Pre-mixing Tank

pre-mixing tank fe

3.S>7]-t

1 *H-5

STS316 (1.

ojcf. ^ 3 g ^

^ 10 cm o) 5 cm

10 cm $)

flange

a o] Jj

uf.

outlet

5cm ^ 3/4"

5 cm 1/2" -«.

2) Reactor

reactor -fe- pre-mixing tank •§-;*»£

-441-

STS316 ( i ) # 4

, 3.7]fe- 200(vH^) x 300(^0])

flange ^ ( ^ J2.yj7]# ^-^*>JL

S ^ o ) 5cm ^ 3/4" fl-H.# 9 - ^ # *3L -g-

5cm $}*M 7jo| 5cm^ 1/2" ^ « .

^ # }}] $?t outlet

5cm 3] 3/4" ^ a . # ^ - ^ # #JL - g - ^ ^ f i ^ -

5 cm ^ojofl 7^o] 5cm^ 3/4" ^ « -

3)

4)

4

5)

- 4 4 2 -

n|o)

fg- Zl^ 4-21 ofl uj-

[^ ZL^ 4-22

4-24 off

- 4 4 3 -

Bentonile & Additive Tankwith Vibrator

Chemical Tank

0 Q B

Sprayer(Dry Decontamination

Agent)

Mixer

Air Compressor

Fig. 3-21. Schematic Drawing of Urban Surface Decontamination Kit.

-444-

1. Control Panel 2. Reactor 3. Pre-mixing Tank 4. Mono-

pump 5. Air Compressor 6. Sprayer 7. Chemical Tank

Fig. 3-22. Photograph of Urban Surface Decontamination Kit.

-445-

- ) - •

1. Reactor 2. Pre-mixing Tank 3. Mono-pump

4. Metering Pump 5. Chemical Tank

Fig. 3-23. Photograph of Urban Surface Decontamination Kit (SideView).

-446-

Fig. 3-24. Photograph of Spraying Operation.

-447-

"A

Table 3-7. Components of Decontamination Kit.

l

2

3

4

5

6

7

JX tri xO ^ 1 2 |

JS.ii ^ H : SUS, 1 mVhr,

{%m, DS-20)

cc/min,

SUS 304, 2 se t

Chemical Tank: 20 L

Nalgene(2318-0050)

Air Compressor: 1 Hp,

Oil less Type,

^(YOMD-40)

^ . ^ 7 ] : Flange Type,

360 rpm, 0.2 KW

£ ^ 1 ) : 1200x750x800, ^^> 1.2t

Ball Valve, SUS316, %",

%" (SS-63TS8)

set

set

set

set

set

set

ea

TjJ IIS TCjl £*}3 ~3Ul t 3 > L -O

-448-

4.

7}.

(free standing water) 7f

"A

CEC :&£} «^ 80

*]*1| gelling

hectorite# -

S^[3-24, 4-25]

9}7} $}

h e c t o r i t e [ Nao.eviMg, L i ) 6 Si8O20(OH, F ) 4

] ^ % 1 4 § | ^ ^ ^ l ^ r # ammonium

l-hydroxidel- A}-g-^H -OH q-^# -<H*}Ssl4. °1 -f- £ , hectorite,

NH40H Ri ^-^^] 4

4"A

-449-

^ r 3.7)}

S[3-20] 7\S. ^

7] ^

® ^ S / #%\] -g-<sJ} = 1 / 8.7

© ^ S / hectorite = 2

O H J-)

© hectorite -§-«*] (3 %) *]]Z.

@ hectorite -§-^ (3 %) 1 methyl alcohol

NH4OH

ID© hectorite -g-^ {3 %) *§£.

2) hectorite -g-< (3 %) o\] NH4OH

^7\o\] methyl alcohol

HI)

© hectorite

NH4OH

hectorite ^

ll51-b 4^tiov^^- -§" 1 ^ 4 37M

- 4 5 0 -

I), II) $)

HI)

4 ^ ^

3-7 o\] M-EKJlsiM, ^ ^ «cj- i n ) ^

III) ^ ^•^•oll^ ^ ^ s ^ 3 £ £ i | H hectorite

hectorite - ^^-^r ^ r ^ o ^ 4^t>^>. 3L ^ NH40H (29 Vol.

^ Tixoton ^ S . o|

X-id 5 ] ^ ^ : ^ , ^•^•^r^ 9J EGME (ethylene glycol monoethyl

ether) ofl 5]?>

- 4 5 1 -

Table 3-8. Manufacturing Composition of Decontamination Agent.

SampleNo.

1

2

3

4

5

6

7

8

9

10

11

Composition (wt%)

Bentonite

4.762

5.085

5.344

5.556

5.733

5.882

6.011

6.122

6.220

6.306

6.383

Hectorite

2.273

2.016

1.812

1.645

1.506

1.389

1.289

1.202

1.126

1.059

1

NH4OH(29 %)

7.143

6.356

5.725

5.208

4.777

4.412

4.098

3.827

3.589

3.378

3.192

85.714

86.441

87.023

87.50

87.898

88.235

88.525

88.776

88.995

89.189

89.362

. Van Olphen %• [3-20]

m2/g«LS.

BET

750 m2/g A

. BET

-^^ of 60

: 810 mVg

-452-

~ 3-28]. <y

Carter [3-29] 7} - * 5 . EGME

EGME

30

(60

2 . 5 m l ^ EGME#

EGME

259 mtorr ^

250 mtorr

EGME ^ 7 > ^ A]S. ^-711# v§°] ^ Q EGME

^lSofl ^f-^^ EGME <£# ^ ^ ^-#el^u}o)JE 1 g ^

monolayer^ ^ f e ^ ^ A t l °]^r EGME <£ ( = 1/810 g/m2 = 0.000286

hectorite ofl cfl*> X-

325 nfl4j ^ (sieve)

^ u K X--?d Sl^^r^^l alH^i 4-§-€ 7]7lfe Rigaku

Denki A}*] Reigerflex 7]^-o)r.\. X-^.^ 30 kV ^ - ^ ^ 3 f 15 mA*] ^ ^ -

*H1^1 CuKa ^^^.S-f-^ ti^A]^^.t^ «}4( semi-angle) 20 # 10 -

80 JE7H 1 J£/min 5]

4.

Shear Rate)^ ^Sfofl t t}^

4 ^ f j l 4 ^^u> . ^^6fl 4-g-S} 7l7lfe Concentric

Cylinder Viscometer (Brookfield, Model DV-I1+, Small Sample Adapter)

- 4 5 3 -

^ 1 tappingofl ^ * H *W*}-£Ul 4

oj7] JH*M £*] ^14^ 2.5 £

(shear rate)

wettability

Contact Angle Meter ( FACE, Model: CA-X ) # <>|-§-*M

(Acryl Plate) ofl micro-syringe 3. M& drop •§•

^ 4 # CCD -fc H °m monitor

3 point method ofl ^ H ^^"4# -^*}^4. l^^lfe 4 ^ 3

mm -tg S ^ sampl

nf.

(JIC34) ^

7J-S. -MIS. 4 5 cm, ^*fl# 1 cm

S-fEJ ^ o | 4 mm | blanket^ ^ e j $ ^ ^

. Cs-137 ^ H § -S-^ 7.41 x 103 Bq/cm3# Aj^xg- 2 . 5

cm3

5

£ - 7 . 4 1 x 103 Bq/cm3 S>] Cs-137 -§-«?ofl 325 mesh

0.2 wt% £] ^ ^ t o ] ^-$-5

- 4 5 4 -

blanket

(2) (3) (4) (5)

Fig. 3-25. Photographs of Specimen; (1) Weight-Concrete (2) Fired

Brick (3) Red Brick (4) Silicate Brick (5) Wood.

Sealer Ratemeter SR7) ~L

dectector, Nuc. Enterprise Ltd.,

4 cm3

704?

5.

tft*}

Na20

3-9 ofl1 wt

. o|

4.2 wt

-455-

77.5 meq/100 g

82 % <>M EGME

665 m2/g

Fe203 ^ ^ ^ o ] 61

n ] ^ (HIROX A}, Model; KH-2200) ojj ^*> ^ ^ ^ - # ZL ] 3-26

4 4 ^-l-BKii^K n ^ 3-16. £ ^fi)?WJE ^ # *A i-H^^

] ^ ^ § ^ 1 ^ - f 4f 0.2 - 0.5 mm

(JIC34) ^ ^ - H r >yeMo|js ^ f i n f e ^ . tg^ . ^ l n > c | j^}^ o.l -

0.2 mm l 3.7] S] crack c| njo|

O.^ 3-27 ^ ^ S : ^ # , ^ ^ l ^ fffl

crack o]

5] 3 - f ^ 0.1

0.3 mm ^ ^-tgo] u } ^

crack o|

A}-§-^ hectoriteoil t%Q X-^ ^ ^ ^ ^ 4 ( Rigaku Denki Co.,

Reigerflex, CuKa ^ ^ A}-§-) ^ 2 ^ t ^ - ^ 3-22 < ] 4-E)OJ|&u]-. ^ ^ 1

X-ti S)^6o1:'o1'c>fl ^H*}0^ JCPDS (Joint Committee on Power Diffraction

Standards) 5J mineral powder diffraction f i le [3-29] ^f H]j2.^-^4 *)•

- 4 5 6 -

Table 3-9. Properties of Clay Studied

Constituent

Composition (%)

SiO2

TiO2

A12O3

Fe2O3

MgO

CaO

Na20

K2O

MnO

CEC* (meq/lOOg Clay)

S** (m2/g)

MT*** (%)

Value

50.4

0.6

15.2

4.3

3.4

2.4

4.2

0.7

0.1

77.5

665.0

82

* CEC

#* S

: Cation exchange capacity

•' Surface area, by ethylene glycol

monoethyl ether (EGME) method

: Montmorillonite content, by theoretical

montmorillonite surface area and EGME

surface area

-457-

3L.Q 3-27 £ -g-£ ^ , ^ ^ ^ + M

crack o]

^ ^-f^- 0.1 -

0.3 mm SJ -?-^o| ztf> ^1f^ ^ 14 P) ^fcrack o| ^ ^

hectoriteoi] cHt> X-^i 5 } ^ ^ ( Rigaku Denki Co.,

Reigerflex, CuKc ^d^4 Afg-) ^ 5 f # Z L ^ 3-28 <H1 M-B}-v|5iuK c^^]

X-*i 5 ] ^ ^ o M ^B^}0^ JCPDS (Joint Committee on Power Diffraction

Standards) S] mineral powder diffraction file [3-29] 3} H]iL^:^ *F

o] ZL J-g- ^ . ^ peak intensity 7} tflafliiL 3 . ^ powder diffraction

f i l e af w]j3.*> ^2 f ^^-S-g

^ (XRF)

"^ ^ ^ ^ ^ SiO2 % A12O3

E ^ § ^ . sio2 , AI2O3 ^ Cao

- 4 5 8 -

{1)

Tit).-

Fig. 3-26. Optical Microphotographs of Silicate Brick(l) and Fire

Brick(2).

-459-

(ft

Fig. 3-27. Optical Microphotographs of Red Brick(3), Weight crete(4)

and Wood(5).

-460-

K.G.E H . I , M^clB#r l ' i t r i a l s Ueusioprenl 2C-Pc. VJ'Ju 1- JJ

-c -•=

Fig. 3-28. X-Ray Diffraction Pattern of Hectorite.

-461-

Table 3-10. Compositions of Tested Specimen.

Sio2

A12O3

Fe2O3

K2OMgOTiO2

Na2OCaOP2O5BaOMnOZ1-O2

SrOPt

Rb2OPbO2

CuOZnOV2O5

ClSO3

CO2

RedBrick

69.80019.6803.6483.1000.7840.5850.4140.4040.0720.0410.0250.0200.0150.0110.0090.0090.009

--

FireBrick

69.50026.300

1.8801.5100.1870.261

-0.1290.0640.0220.0320.0200.035

---

0.008--

SilicateBrick

57.70014.8004.5803.1902.6400.6110.872

13.5000.1720.0510.0770.0200.0390.0170.0070.0150.0170.006

-

WeightConcrete

16.6002.760

61.2300.5005.6000.198

-11.5000.072

-0.122

-0.013

----

0.0120.023

D TJD 1

66.821.52.530.4872.9

0.2732.412.82

0.0750.0150.0570.0180.0380.015

-0.0070.007

--

0.0690.068

ri 1

67.30.141

0.0379

28.40.0217

2.250.1940.23

----

0.0133-----

0.0940.65

0.711

-462-

flocculation series test ^ J f #*)! A]£.ofl EflSJH -rM^r *4HH

log v o\\ ^H*H log r 3 & £ S . H^[ 3-29

o| ZL JoflX} STD 3. *$MQ MS-^r hectorite 7}

s"1

<y- ^ 61 uf. ti>i^ hectorite 7}

hectorite

forg. "power- law' *J*1 ^ (3-1)

i l - ^ ^ ^0.015 o]t\S.^\ ±*}7} 7]$]

S 3-11 ofl U E M ^ U K o] SS-f-^ m & £

hectorite ^

hectorite 7} ^-°r^ ^ ^ l^fe non-Newtonian ^-^|] 7i-^#

n ?Jto] 1 oj-sH13} ^ i ^ ^ - * - ^ . ^ £ 7 f ^-fc*fe shear thinning fluid

- 4 6 3 -

Shear Rate [ s"1]

Fig. 3-29. Non-Newtonian Viscosity of Decontamination Agents.

-464-

Table 3-11. Power-law Parameters of Modified Clay Suspensions as

Fitted with Equation (3-1).

Sample No.

1

2

3

4

5

6

7

8

9

10

11

m [Pa sn]

26.6685

23.7848

20.4480

18.7668

17.1471

15.3918

14.0932

13.6502

12.6964

10.8966

9.1405

n [ - ]

0.0538

0.0713

0.0656

0.0656

0.0778

0.0820

0.0799

0.0992

0.1109

0.1450

0.1474

-465-

hectorite

4 3-30

wettability 7]-

hectorite

-, hectorite

hectorite

n

o] -L^o

No>

^-^ 3-31 o\]

wettability 7}

-466-

100

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

Contents of Hectorite [ wt % ]

Fig. 3-30. Surface Contact Angle according to Hectorite Contents.

- 4 6 7 -

0.16 100

0.041.0 1.5 2.0

Contents of HT [ wt% ]

ooi9.

D.W.

Fig. 3-31. Viscosity Parameter n and Surface Contact Angle According

to Hectorite Contents.

-468-

4

M 52 %,

3-32 ^ 3-33 ofl 4

H ^ 3-24) 4

38

61 *, | h g : ^ # 57 *,

H ^ 1 - 24 % <&c\.

7]

3-33)

4 S\ *\}

B]M. 48 28

58 %, M ^ : ^ # 54 %,

^ ^ § 16 %

51fe ^ ^

liquid channel

fe liquid channel^

s i t e #

^ #^§711 51^.

- 4 6 9 -

<* 3-34 £ 3-35 o\) 4 4

^-^ 3-34) $57

40 %),

4 3 as), ^ - ^

H 44

26 *)

53 %(o

30 * ) ,

12

30

ti

^ - ^ 3-35

PH

7]c||

- 4 7 0 -

100

h- 90CO

</>

2 8003

O 70

0313

ioo

f

03

rv

vity

1

60

50

40

30

—O— Silicate Brick

- A - Fire Brick

—V— W-Concrete

- O - Red Brick)

—•— Wood

1 2 3 4

Decontamination Cycle [ - ]

Fig. 3-32. Activity Ratio of Residual to Initial Cs-137 according to

Decontamination Cycle Using HT-type Decontamination Agent

( Contaminated with liquid Cs-137).

-471-

coI

COO

.Is

o

"coZJ

0)

oroo03

DH

o<

100

90

80

70

60

50

40

30

-o— Silicate Brick-A— Fire Brick-v— W-Concrete-•— Red Brick)-n—Wood

1 2 3 4

Decontamination Cycle [ - j

Fig. 3-33. Activity Ratio of Residual to Initial Cs-137 according to

Decontamination Cycle Using Na-type Decontamination Agent

( Contaminated with liquid Cs-137).

-472-

100

00 90

ntia

l Cs

al to

IrR

esid

u;

"oo

Rat

80

70

60

50

•ti 40

30

-O— Silicate Brick

-A- Fire Brick

-y-W-Concrete

- • - Red Brick)

-D— Wood

1 2 3 4

Decontamination Cycle [ - ]

Fig. 3-34. Activity Ratio of Residual to Initial Cs-137 according to

Decontamination Cycle Using HT-type Decontamination Agent (

Contaminated with liquid Cs-137 and Dust).

-473-

CO

(J)O

o<

100

90

~ 80'Eo*!-'— 70(013TJ0)

(D

a:

60

o.2 50

£ 40

30

—O— Silicate Brick- A - F i r e Brick—V— W-Co ncrete- • - R e d Brick)- D - W o o d

1 2 3 4

Decontamination Cycle [ - ]

Fig. 3-35. Activity Ratio of Residual to Initial Cs-137 according to

Decontamination Cycle Using Na-type Decontamination Agent

(Contaminated with liquid Cs-137 and Dust).

-474-

Fig.

100

90

Liq

with

mat

ed

Ero

Con

i

80

70

60

50

40

30

• Wood• Red BrickV Weight Cone.• Fire BrickO Silicate Brick

30 40 50 60 70 80 90 100

Contaminated with Liquid and Dust

137rFig. 3-36. Activity Ratio of Residual to Initial Cs of contaminatedwith liquid ] Cs respect to dust and liquid ' 7Cs accordingto decontamination(HT-Type).

-475-

6.

hectoritel-

CEC 15

fe- non-NewtonianoH shear thinning

"power-law"^

hectorite n

wettability 7} # ^

61 x,

Cs-137

57 x, #%> rHBlS 52 *, 38 %

24

- 4 7 6 -

£ 3.7\] 2?

S ^r^-1- ^r fct^K ^ , 5 ^ 1 ^ (Saturation Zone)^

(Unsaturation Zone or Vadose Zone)°|t:h a^^-^H

1<^(Vadose

f-*H ^]^}^r^l(Water Table)7?\x]

^r Nonaqueous, Liquid, Gaseous Phased.

S-fB] ^ l ^ ^ ^ l ^ M ^ ^1<^^S. S^l^^^-ol t ^ t r f e 9-^>(Capillary

Fringe)^ 3E^?>i:>. o| a . 4 ^ 4 ^ - ^-^>^; ^ ^ ^ S^]<^o]i:}. ^.sSf

^|^S] ^ A ^ ^-^-^^(Pore Water Pressure)©! NagativeSfe ^ O|JL

o] x | ^ ^ *]5H^ ^^r Perched Water Tabled

o|

- 4 7 7 -

7]o]W[3-31]. #3ESftfl6fl>Hfe S ^ ^ ^ (Surface Tension)

°\] -&£{ 6 i ^ (Negative Pressure)^ i-M\H4.

(Capilary Potential) JEE - Matric Potential, <l>,

^ # ^ ^ - Matric Potential*] ^

^ S ^ ^ - ^ ^ ^ l (Soil-Moisture

Potential), 0,fe Matric Potential, Graviational Potential, Osmotic

Potential, Electrochemical Potential^] ti"0]1^. Osmotic Potential2}

Electro- chemical Potential^

Osmotic Potential^} Electrochemical Potential^-

%• S ^ w ^ ^ ^ - l f e Matricij- Graviational Potential^} ^.

0= <i> ( 6 )g + zg

2) S. -1- ^-^d

l fl Matric Potential(Sj^

K a ^ 3-37^

HW o 1, ^^H]fe ^ 5 . S A l W . Matric

Potentialo| ^ x l ^ ^ . S ^ ^ ^ ^ e f £ S.%^ SSf^EH

uf Matric Potentialoj nfl-f- 3. ^% ^ s . ufEf^ afl

o]ttfl.$] Matric Potential^- Bubbling Pressure(hb)

K Matric Potential^] ^o]-^*)] VC}B} ^ - ^

, Matric Potential^]

3)

Matric Potential^ ^^<H]^1 TensiometerS.

-478-

-10 4

MO2

mO

-

1 1

a

n

m

V

1 1

= 0.005

= 2.0

= 0.5

e

i

-

i

0 0.1 0.2 0.3 0.4Water content, 6 (em'/cm')

Fig. 3-37 Typical soil-water retention

0.5 0.6

curve

674. Matric Potent ia l^ # o | -Q c|~§.>g

h Tensiometerfe

te 7}

<% 800 cm*f*l ^ - ^

H^J 3-38^: Matric Potential*] %X[^ ^}7] SftQ JjL 7]|o|

Tensiometer ^Bfll- ufEf^rl-. Tensiometer A^ lOOcm l

4e}nl ^ o | ^1^]^H, w>^6fl Tensiometer B ^

t:f. Tensiometer^ ^

-88cm ejef. ZLe]HS Elevation Head)^

58cmo)t:}. a .

4)

^ B

0.54O) uf.

fe -26cmo]jL,) 3.7] ^ ^ . ^

-479-

o o "Dead-end"

.<=>••

• • . 6

•imU^99:• • • . - . - O - • . ; • . • •

- * P o r o u s c u p •• - ' • •' • • r*.-. •'

. - • • . - . • • . : • . • • • : o ° - . . ; . ^ . ^ .

o • • .

. \ C ° • • •

&o o : o: &

Fig. 3-38 Tensiometer used to measure soil-water potential

in the field

o]

K=

K= K(

^ Matric Potential^

n % ! 3-39^ Matric Potential^]

- 4 8 0 -

^u]-. H ^ 3-40^

-300

-250

-200

I -150

-100 -

-50 -

I x 10" 2x 10" 3 x JO"4 4x 10"Hydraulic conduciivity <cm/sec)

Fig. 3-39 Relationship of hydraulic conductivity to matric potential

for wetting and dying cycle illustrating hysteresis

A 2Co 25C• 45 C

Hanford sandy loam

I I

0.3 0.46 (cmtycm3)

Fig. 3-40 Unsaturated hydraulic conductivity as a function of water

content for three temperatures

- 4 8 1 -

2.

7}.

Fick Lawofl

ep

cstV

9D=aV+dD*

3 ,r 3\Content, U/U)

Density, M/L3)

Darcy Velocity(L/T)

V» : t4HKDivergence)

V : 9-alf(Gradient)

D : r^l7jl^(Dispersion Coefficient, L2/T)

A: #^-g-J]^-^(Material Decay Constant, T)

Q : Water Source/Sink rate(M/T)

Ci : Source/Sink*] ^ . ^ # ^ ^ £ ( M / L 3 )

D*: ^-^>^I^r(Molecular Diffusion Coefficient, L2/T)

a '• -§-^l^]^r( Longitunal or Transverse Dispersivity)

e = vw/ vT105°C a ^

2) ^J£(Bulk Density, p )

-482-

Bulk Density^ ^ 3 W M £ | ^^^-3)cH| cfl*>

3)

^•(Adsorption), ^SJ-g-^HChemisorption),

(Absorption), °]^rJaL%( Ion Exchange)

^ 37H

, Freundlich^*}- ^Bfl, Longmuir^^"

7}) ^ ^ ^ B |

S = KdC

istribution, L/kg)

S = KCN

K, N :

a :

4) ^-^]^r(Dispersion,

Dispersion)ef

^(Transverse Dispersion, L2/T)e}

- ^ g - ^ ^ ^ S . ^ 1 Dynamic Dispersity(L)

5)

- 4 8 3 -

Table 3-12. Input and

cy-a>nfl

^ )

(6D

V

^ ] •g-].^.^. | - ^ -_^( ^=-^- )

^ ^ • ^

^Ldt : Darcy ^-S.

^.4i : Darcy ^-S.

Output data of eachDeterministi

0

0

0

o

o

0

0

0

0

Stochastic

0

0

0

0

o

0

0

0

0

0

0

^ode

0

0

0

0

o

0

0

0

0

0

0

0

0

0

o

o

o :

(Radioactive Decay)°]n}, E^Mr

dC\ _._ In2

>S|-^^(Hydrocarbon)#

iodegradation)<

-484-

Spatial

Variability!- i ^ * M I

^ [3-32,33,34],

M0DFL0W[3-36], MT3D[3-37], TRAFRAP[3-38] f ^ ^ 5.H

#43M-[3-39,40] .

91 «J*I|^ «*7l*l S f^

, A91

91

1) 3DFEMWATER/3DLEWASTE

- 4 8 5 -

7\)

3DFEMWATER(A Three-dimensional Finite Element Model of

Table 3-13 Status of codes for assessment of soil decontamination

nl-3-

= * > .

"'**• T H ^

3DLEWASTE

FE3DGW

FRACMAN

TRAFRAP

MODFLOW

SWIFT

SUTRA-ANE

BioF&T 3-D

PORFLOW

NAPSAC

METIS

MOTIF

GWHRT

HYDRASTAR

3DSEEP

FERM

FREESURF

FEFLOW

aE.vfl-8-4-S"^, 3

4^,3

4* ,3

"i^-,2or3

4 ^ , 3

Hiasi-

^ T - , 3

4 ^ ^ 2

3

Q

4-?-^2or3

4"W" 2

or3

Wellhead ProtectionArea(WHPA)Sutter-Basin,California(1979)Stripa, "a^- PNC(1990)Waste IsolationProject(1982)Stream-Aquifer(1988)Hazardous WasteSite(1987)

Idaho NationalEngineeringLaboratory (1990)Stripa(1990)

INTERVAL Project(1987)

ResearchLaboratory(1984)

Fjallveden, SFR(1988)SKB 91 Project(1991)

-

-

Veitsivaara(1992, 31

Pennsylvania StateUniversityPacific NorthwestLaboratoryGolder AssociateIncorporationInternational GroundwaterModel CenterU.S. Geological Survey

Sandia NationalLaboratoryClifford I. Voss Of theUSGSSci. Software Group

Analytic andComputational ResearchIncorperationHarwell Laboratory

Centre d'InformatiqueGeologique

Whiteshell Laboratory

Swedish Nuclear WasteManagement CoperationSwedish Nuclear WasteManagement Coperation

HLW ManagementLaboratory JAERK1986)Central Research Instituteof Electric Power Industry

Motor Columbus

Consulting Engineers

Nuclear EngineeringLaboratory

H]31

EPA/600/R-92/223PNL-2939

ISSN

IGWMC

USGS

NUREG/CR-3328

ISSN

ISSN

TO CMlO OlN

ISSN

SKB(TR88-10)SKB(TR92-12)

JAERI-M86-09)GEOVAL-90

ISSN

YJT-92-33E

WATER Flow through Saturated-Unsaturated Media)

J^§. ^ H ^ ^ f e ^ISJE.01^, «>i*N 3DLEWASTE(A Hybrid

Three-Pimensional Lagrangian-Eulerian Finite Element Model of WASTE

Transport through Saturated-Unsaturated Media)^

-486-

Sinkif Source!- J L 3 ^ fc,

JL-fe- Dirichlet( Fixed-head SL^ Concentration), Specified-flux,

Neumann(Specified-pressure-head gradient J£^- Specified-dispersive

flux), ZLZ]3L Variable^- 4-g"^: r StteK 3DFEMWATERoflA-|Af Variable

S.-b ^^^KEvaporation), ^^(Infiltration), ^[^(Seepage) -§-o| $i

JL, 3DLEWASTE^]A-^ Mass Infiltration 3t^ Advection J§-o| S^-^-1^,

, Freundlich, ^ f e Langmuir Isotherm^ -*]-§-*fe •§•*}-, ^-t>, J3.B]

3DFEMWATER^ Variably-saturated

(Moisture) &§-£• M^^i°\^M, -f#(Well Production),

(Drought Condition), -^(Rainfall), -^^^(Evapotranspiration)

3-$%t ^r 51 -T-. 3DLEWASTEfe -§-*H^ - $ - ^ # ^ (Dissolved Conta

minants-^ ©1-^i- ^7f*f7l J?|*H 4-§-*f^, 3DFEMWATERofl

•§-^>S.(Flow Data)!-

3DFEMWATER^1

K( s* ) - krKs

^ , L)

Q : Source/Sink(L3/T/L3)

Q : Source/Sink(L3/T/L3)

-487-

Ks :

kr ^r ^ t f l J M ^ . 3 . £<££} SH>HW *}£} 0.0 -f-BJ 1.0

van Genuchten ^ ( 1 9 8 0 ) #

kr=ef[i-{\-

* =( [l + {a\h-ha\YrY for h<ha* ' 1 for

6W~W & WY

n— 6

^5,Y: Soil-specific Exponents

ha : Air Entry Pressure Head(L)

a '• Soil-specific Coefficient(l/L)

Sand, Clay, Silty Loam, and Sandy Loam£]

^ ZL^ 3-414

nfl-or0!] (Drainage

Potentialofl

-488-

Specific Yield)3f

1.0

10

3.3a afld 3i8t£

10

10

io "*B

10

1 0 • * . :

LEGEND

j i i i i i i i I

10 1.0

Fig. 3-41 Relative permeability vs. moisture content for sand,

clay, silty loam, and sandy loam

( Specific Storage)£f

o| 3 C ^ A ) 4-g- 7fe«> ^Tll^^l^r Fixed-Head(Dirichlet),

Specified-Flux(Cauchy), Specified-Pressure-Head Gradient(Neumann),

ae]JL Variable(Head-Dependent Flow) ^ ^ l ^ ^ i w 0 ] ^ . Fixed-Head ^g

h = on Bd

hd =

Bd =

Specified-flux(Cauchy) § ^ 1 ^

Profiled

w • krKs Bc

- 4 8 9 -

n =

qc = Flux*!,*

3DFEMWATER<H1 tfl*> Default Boundary^ qc=0 ° 1 4 .

^ ^ ^ : Specif ied-Pressure-Head Gradient (Neumann)

-n • krKs- v<p = qn{xb,yb,zb,t)on Bn

Bn = Specif ied-Pressure-Head Gradient

nn ARID \ l

%

r J r l M V ,

I

M r ' • 1 M

GroundSurface

-

Water Table

Fig. 3-42 Use of pressure-head gradient boundary condition to

simulate a portion of the unsaturated zone.

- 4 9 0 -

>. Capillary Fri

-n-^NI- OT^HHI 1 * * 1 ^ *1^K£ Specified-Pressure-Head

Gradient %7§3LH

3-42).

Speci fied-Pressure-Head Gradient

tif^|-^^]tt[^- Gravity Drainage Boundary7} Qt\. o|7^^- Horizontal

Bottom Boundary^ 4 ^ ^ &*&£ qn=krKs

4:2. ^ tiH^^^AS 7}^sl Outflow Boundary Condition^

Cf.

, o]

Absorption Isotherm^] 5 *1| ^

7} : Consolidated first-order decay term

7i : First-order decay rate constant for liquid phase

7j s First-order decay rate constant for solid phase

£ : Consolidated zero order source term

£i Zero-order source term for liquid phase

£ s Zero-order source term for solid phase

- 4 9 1 -

. Van Genuchten^ |1 f l ^ ! ^

Column^

C(z,0)=Ci(z)

z=0 *1 S6O> Column

ao, t)=co(t)

Advectionij- Diffusion tf] $)*$ £<£ Column

=0 , t >t0, z=0

Columno]

-492-

x exp -2 i(r/z— vt

ADrf t

xerfc

0)4,

dz

2D J

3.

3-43).

S = KdC

S :

C :

mg/kg)

- 4 9 3 -

Kd : ^rtifl^l^(Distribution, L/kg)

Advection-Dispersion

dC _D d2C dC Pb d(KdQdt dx2 dx 6 dt

dC dC

Factor)ef

c"

(\V i i i i I i I I I I

Fig. 3-43 Linear sorption isotherm with S versus C

uf) Freundlich

- 4 9 4 -

. ^ Freundlich Sorption Isotherm^l^, o]

S = KCN

Freundlich

Sorption

cf(H^ 3-44).

Fig. 3-44 Nonlinear sorption isotherm with S versus C

log5=logif+7VlogC

l o g S t - a B f l ^ i l l ^ ^

%°)t-}(3.m 3-45). Freundlich Sorption

Isotherm^]

1+ ^ -Yff

Spreading Front ° 1 ^ , IM-t-} -2]-^.^ Self-sharpening^]

Freundlich Sorption Isotherm^ °i 3) 1JrW"£| S

- j-c>|] 7}^ ^ 5 ] -^-§-5]°] - f. ° | Isotherm-2]

- 4 9 5 -

3. >y o]e}# %^*H 4-§- 4

Uf) Langmuir

Langmuir

C _ 1 , C

a '• ;

Langmuir ii-^H?£^£- °F5H-2I

S= 1 + aC

Langmuir :§-

i .... Pb t aB

Langmuir

3-45).

(1) Specific V a l u e ( ^ ( ±§-S.), (2)Specified

JL (3) Value-dependent

-496-

0 ' I I I I I I I I I I

c_c*

i I I i i i I

C(b)

Fig. 3-45 (a) Nonlinear Langmuir sorption isotherm will reach a

maximum sorption value when S is plotted versus C

(b) The Langmuir sorption isotherm can be made linear

by plotting C/S versus C

-497-

4.

7}.

^ Solvent Flushingyo^

ten, ^.^^j^o} cjl-f ^^- 4 , ^.elJL ,£.££<£

^ l " ^ o l ^1^1^ 4 Solvent Flushing^^# 4"§"*H

3-43j.

^ S # 4-g-^H - ^ - ^ S ^ ^ Solvent Flushing^; tcfi

T3| m>S7

7] # ^

. Brusseau^f Rao

4 >«1-e.7fl o]^^- 4 Hl^^^^o] ^Ag*H, o] u l ^ ^ * : ^ ^ 040I

Jf^^M-^^-tKIntraggregate Matter Diffusion)^

(Intraorganic Matter Diffusion)olB}^L ^^5![r:}-r3-45f46j. £• t ^ :^ ]4

^ Solvent Flushingtio^# 4-§-*M, 3-^^S. ^ . ^ ^ £.<£& Solvent^.

-498-

Solvent F l u s h i n g ^ ^

Fig.3-46^}-

Solvent^

Solvent

] ^ Solvents

6cm £o]

^ Effluent

Spectroscopyofl

Solvent^ ^

. °1 Effluent^ Atomic Absorption

Fig. 3-46 Apparatus for solvent flushing

2) Solvents

3L

Solvent

-499-

. 1 ^-q-^-3i](Pore Volume)

7] ^*fl ** 134^o) ^]^)5|HS ^ 12

uf. t ^ j l S . uW 134^ O|AOV C o ^^ .6^^ . ^^Alt l^K Solvents.

52.^3=1- ^|<St> ^ Effluent

. °1 Effluent-b -g-7H] ^±°} Atomic Absorption SpectroscopyS.

3) Solvents. EDTA-g- 1-

^ vfl £ ^ # a ^ l S . A^A|^7l JH*1I 0.01#£f Co^-^-i- 3L

, Solvent^ #-§-71 °ti ^^ - ^ S # o ] ^ } ^ 7}#A|*| Co^-§-^#

^<y*M ^ ^ l t l ^ K 1 ^ - ^ - ^ ) # ^^^1^171 ^*H ^ 134^-o] ^ l^ s jHS . ^ 12

1 3 4 ^ o ] # Co^-g-^ ^6HU)t[i:1-. Solvents. EDTA-g-<>J}#

^ Effluent

. o| Effluent^- -§-7]ofl ^lof Atomic Absorption SpectroscopyS.

1) °a^}^ Hl^^l1^- -8- oW 3

Solvent^

- 5 0 0 -

^JELS-Solvent

o] Solvent^

ti]

k2

Si ^ S2i

C feInstantaneous <g^£} ^.^#^-^i(M/M)o]r:K S2^ Rate-Limited^<^£\

. Kp ^ ^ ^ ^ ^ ^ - r 0 ! ^ . ki 3\ k2fe 4 4

trjf,

Si =F Kp C

dS2 /dt = ki Si-k2 S2

Si = k2 S2 S2 =F Kp C

ki/k2 =

f

- 5 0 1 -

oR6C an-2—C.~^r0D~7

W=p{k2-X)S2

F : fraction of instantaneous sorption domains

R : retardation factor

S2 : sorbed concentration in rate-limited domain(M/M)

k2 '• reverse first-order sorption rate coefficient^"1)

C : concentration in solution(M/L3)

t : time(T)

v : pore water velocity(L/T)

D : hydrodynamic dispersion coefficient(L2/T)

X ' radioactive decay constant(T"1)

x ; distance in column(L)

Kp '• equilibrium sorption coefficient(L3/M)

p '• dry bulk density

8 '• volumetric water content

FORTRAN 77 <&<>]$. *H3*1-$EU2-, Linear Basis Function^-

Galerkin ^ - * > ^ L ^ ^ # 4-§-M-^-^, ^ 1 ^ ] ^ ^ - ^«fl Implicit

Difference Scheme^ 4-§-M^-, Matrix# 7fl >Sf7l ^sfl Thomas

Algorithm^-

2) 3-^i

7\)

€ ^ H *]£ ^ ^ -f-^1^]^ * H 1 ^ £ ^ 1 - XRF (X-ray fluore-

scence)# ^ H &<$# %3} £<#<q ^ ^ ^ ^ r ^ Table3-14^|- ^o ) 68.1%

16. 7%°] A12O3 &

110

-502-

Table 3-14. Component Content of Soil

Component Content(%)

SiO2 68.1

AI2O3 16.7

K2O 8.27

Fe2O3 2.2

P2O5 1.63

CaO 1.51

Table -

bulk

] x 100

100

Table 3-15. Density, Porosity, Water Content, and pH of Soil

Dry bulk density (g/ cm3) 1.55

Porisity (%) 36.27

Water Content (%)

pH

12.00

4.30

8.46xlO"4. 2.00mm

-50 3 -

£ f e 0.133 cm/min o]uf. 1.18mm *U(N0.16)

J£fe 2.31xlO"3cm/mino)jL, ^ - ^ - ^ S ^ 0.327 cm/min

Bf)

3-47j

£ 0gata(1970)£|

Mathematica 5

1.5 m2/min

JS

Fig.

0.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1 1.2 1.3

Solute Concectration (g/l)

3-47. Equilibrium sorption coefficient of Co solution with

the soil

AA(Atomic

440.01mol, 0.005mol, 0.0025mol

200ml *]

^ o.3O^ Fig.3-48^

instantaneous sorption ratio)

-504-

co1o

CO

Fig.

0 50 100 150 200 250 300 350

time (min)

3-48. Co Sorption ratio in the soil versus time

h& Fig. 34

1) Solvents !~I

Solvents

fe Fig. 3-494 ;

Solvents

Fig. 3-503} £0]

7f 2.31xl0"3cm/min6] ^

Pore Volumeso] 5 ^ 4 6 | 95%

, 8.46xlO"4cm/min <?]

-s) (Pore Volumes)^]

Brusseau^}

Effluent^ Co

. z i e l ^ a]

- 5 0 5 -

1.2

corocQ>

ucoo0)

lati

coOH

1 . 1 •

1 . 0 <.9 -

.8 -

.7 -

.6 -

.5 -

.4 -

.3 -

.2 -

.1 -

0.00.0 1.0 1.5 2 . 0 2 . 5 3 . 0 3 .5 4 .0 4 . 5 5 .0

Pore Volumes

Fig. 3-49. Experimental results remediating the soil of high

hydraulic conductivity by water

o

co

Io

1.2 T -

1.1 -1 .0 < • -.9 -.8 -.7 -.6 -.5 -.4 -.3 -.2.1 -

0.0 - -0.0

Equilibrium model value

Nonequilibrium model value

/ .Experimental value »

.. •

.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Pore Volumes

Fig.3-50. Experimental and model prediction results remediating the

soil of low hydraulic conductivity by water

Fig. 3-504 °l

2) Solvents.

- 5 0 6 -

EDTA-§-6J|# S o l v e n t s ~48.46xlO~4cm/min

I

oo

0 1 2 3 4 5 6 7 8 9 10

Fig. 3-51.Experimental results remediating the soil of low hydraulic

conductivity by EDTA solution

Effluent ^ £ f e ^711

f

. -LejJL 10^ 4 ^95*^

Sil t Loam ]

^ b 1.5 cm"

8.46xlO"4cm/min*I

Solvents

8. 46xl0"4cm/min^lAo1-o|j7, e | ^ -

fe 0.3 mg/1 514. Solvents

2.31xlO-3cm/min^I

8.46xlO"4cm/min

- 5 0 7 -

5.

7\. 7fl.fi.

4

TRIGA MARK*} SflSfl 3.

71

7 ] ^4*1

NRCL-1- EPA

ICRP Publication

- 5 0 8 -

Uf. ICRP

7} £if

fe 9*4

ICRP 60

7]

4-1 *H As Low As Resonable Achievable (ALARA)7fl

-509-

37(1

1) IAEA

IAEAfe »W$ #^^1 *U A^^i -MSI ^4^1" ^t> 7]

IAEA-TECD0C-987

(cleanup criteria)

7}) Justification

1-}) Optimization

9J ^4^<H1 ai<H4 ^l^sf 4<^# ^flA|

-510-

Protection of the individual and the use of dose constraints

7}

2) US DOE

DOE Order 5400.51-

1 Ao^)^ffe 10 CFR Part 834# ^ } ) 4 ^-f-^^lJL Sl^f. DOE Order<>M

fe 6JyJ ^H^^] tHt> 2.^ tioV4^^%^^--f-^^[ 7H6J ^ ^ t > S . ^ ] # 100

mrem/yr S. f?>*FJL $I^.nf 2. t ^ e ^ 7 f ^ ^ i ^ ^ ^ ^ 4 U ^

^ > l f e 30mrem/yrS.

site

©

(D

©

©

-511-

3) US EPA

514.

4) US NRC

n]^-£| ^ 4 4 ^ -^-4 <M^S)of l^ 10 CFR Part 20, "Standard for

Protection Against Protection Radiation"# tfp^K^. ^-^]

51 nj-u} 5171

514.

. 51

4.

- 5 1 2 -

2)

XI S^ofl *l?f[ sit:}.

3711 37}*) J l

A}-g-(Unrestricted use

Stlfe

i- ^ 4X\

- 5 1 3 -

3)

7f)

(Sv)

T =

DFExt,i - ^ ^ - i ^) 5}?> 51-

(Sv y'VBq cm"2)

(Bq/g)

^r ICRP

surfaced.

-514-

Dinh =

Ub =

Csi =

A -

p =

(m3/y)

(g/cm3)

. (g/cm3)

(sv)

(Sv/Bq)

(Bq/cm3)

(Bq/cm3)

Table 3-16. Inhalation dose conversion coefficients

Mn54C06OSr9O

Cs134Cs137U235U238

Pu238Pu239Am241

1.50E-062.90E-05 ;

1.50E-046.80E-064.80E-067.70E-037.30E-034.30E-024.70E-023.90E-02:

ICRP 30Inhalation (mSv/Bq)

1.70E-064.10E-O53.40E-041.30E-05I8.70E-06'3.20E-023.20E-02;1.20E-01 |1.20E-011.20E-01 '

NUREG/CR-5512

1.81E-06!5.91E-05'3.51E-041.25E-058.63E-063.32E-023.20E-021.06E-011.16E-011.20E-01

RESRAD

1.73E-06I4.05E-053.51E-041.27E-058.65E-06"3.24E-023.24E-021.24E-01 '1.38E-011.41E-01

Uf)

ICRP 6 8 £ ICRP 60

ICRP 60

- 5 1 5 -

„ „ r

= Fa-Ua\Bp-Cs)

DCF i n g

U =

CP -

Ca =

C s =

BP =

kg-1-soil)

Fa =

( k g y_

(Sv y-

Bq-l)

(Bq kg-1) ,

(Bq kg-1) ,

(Bq kg-1).

kg-1-wet wt per Bq

(d kg-1)

Table 3-17 Ingestion Dose Conversion Coefficients (mSv/Bq)

Co60

Sr90

Cs134

Cs137

U235

U238

Pu238

Pu239

Am241

ICRP 68

3.40E-06

2.80E-05

1.90E-05

1.30E-05

4.60E-05

4.40E-05

2.30E-04

2.50E-04

2.00E-04

ICRP 30

7.00E-06

4.00E-05

2.00E-05

1.40E-05

6.90E-05

6.90E-05

9.30E-04

9.60E-04

9.80E-04

NUREG/CR-5512

7.28E-06

3.85E-05

1.98E-05

1.35E-05

7.19E-05

6.88E-05

8.65E-04

9.56E-04

9.84E-04

RESRAD

7.03E-06

3.78E-05

2.00E-05

1.35E-05

6.76E-05

6.76E-05

1.03E-03

1.16E-03

1.22E-03

- 5 1 6 -

60

ICRP 68£- ICRP 60

ICRP

(Allowable Residual Contamination Levels)

4) u]4t>^ 4-8-

oj-g-

30mrem

-517-

6. TRIGA

TRIGA

, ©]

TRIGA

r ^HyJ- 80~100m£| ^

100~200m ^ - ^ ^ ] 4)*\qr ^ ^ 127° 04'

31' ' . O)

-52if

fe o^ 1.6fe ^ 3.0

3.8 km2 o

200 400m

Key Map

South Korea

Study

Fig. 3-52 Location and topographical map of study area

-518-

3moli:>.

^ 3-532}

30~100mS

Fig. 3-53 Configuration of water table and 4 layers

-519-

715]

144

^ - f^ 3-534

o ^ ^ - ^ 3-544 ^°1 ^ ] S ^ ^ ; <* 7 cm

3- ^^r ^ H ^ 4 ^ ( S i l t y Sandstone)^.^

Clay Layer

Silty SandstoneLayer

Fig. 3-54 Kind of rock and soil in study area

1) re]^S-E.(Hydraulic Conductivity)

L7\

AH

-520-

At

Volume Vin time t =Q = V/t

•*— Continuoussupply

Overflow

Cross-sectionalarea A

Heod'falls fromH o to H, in time!

Cross -sectionalarea a

Cross-sectionalarea A

(a) (b)

Fig. 3-55 (a) Constant-head test equipment

(b) Falling-head test equipment

Table 3-18. Hydraulic conductivity of each layer

1 *2 %3 %•

4 %•

m/sec2.9 x 10"8

8.0 x 10"'3.0 x 10"'2.0 x 10"'1.0 x 10"'

m/sec-

5.0 x 10"'3.0 x 10"'2.0 x 10"'1.0 x 10"'

2) 3)(Porosity and Moisture Content)

-521-

Ph ^ Bulk Density^. Oven 1 fl

- f - s l^ U¥<H ^r°l -T"W. Psfe Solid Particle Density

1 Oven SLS. QSLQ X\SL$) -f^^i- Solid Particle Volume . L-j-Y^ ^

o] ^-*>U}. Solid Particle Volume^ -i-6]

# 4

Table 3-19. Porosity and moisture content of each layer

^ £ *1 #2 *3 %4 *

29.320141210

16.712.7---

3) ^H^*]^Dispersivity)

{sediments)#^)

- Table 3-204

Silty Sandstoneif H|£

l^^[1988, 3-49]^

Silty Sandstone^] ^^r^^l^fe 30m

Table 3-20. Dispersivity of sediments

Alsace, France alluvialsedimentsRocky Mtn. Arsenalalluvial sedimentsCalifornia alluvialsedimentsArkansas River Valleycoalluvial sediments

f^^mm)12

30.5

30.5

30.5

4

30.5

9.1

30.5

#^7i5l(m)

305

305

660

4) iffusion Coefficient)

-522-

[1995, 3-50]ofl^T ^1^-^.3- Table 3-

Table 3-21 Diffusion coefficient of concrete

CsSrCo

^3 l^ (m z / s e c )1.0 x 10"IZ

1.0 x 10"n

3.0 x 10"i4

5)

3-564

Coefficient)

Stock Solution^-

. i jgs. *>i:Hl000ppm). c ^ l

Stock Solution$!

5.10. 20. 40 oom

2K

[7...

5, 10, 20,

I

r

r

Fig. 3-56 Distribution coefficient measurement procedure

40ppm# *tiS*M. olicfl, 40ppm^ Stock Solution^- 25HB

2«lf

- 5 2 3 -

5:71

)AS.

4

10 2.

5ppm

10H|)

lOppm

0 . 0 1 - 0 . 1 , 1.0ppmo]t:K

24

Ma S 3-22 -

Table 3-22. Dis t r ibut ion coefficient of radioact ive nuclides and

phenol (unit : ml/g)

CsSrCo2)1 ^

0.010.01

1000-

20-

30000-

--

1.90

-530

-3.14

6) -3]^KKDecay Constant)

fe fi 3-234

-524-

Table 3-23 A half life of radioactive nuclides

60Co

^ ^ 7 l ( y r )3029.1

5.27

A (1/yr)2.31E-2

2.38E-2

1.31E-1

l)

TRIGA

7]

MODFLOWJS.1^(A MODular three-dimensional

water FLOW model)<§• o]^-*]-^^.^, o] 3.

finite-difference ground-

ox ax ay

, Kx, Ky, Kz :

h :

Ss :

t :

_dh_\ i _J5_ r rr dh sdt

2)

3)

Base Map)

-1*11

Map)# Auto

3.7] fe 3,000 x 1,600m °W,

3-574

XY

- 5 2 5 -

Fig. 3-57 Base map of study area

*J»5. 60 x 32 = 1,920 ?m 4 - § - * f & - ^ ,

4

]^ 50m<>)

3-584

4) ^

^ S 7}

100~200m 12

7° 04' 31'

47]

5)

- 5 2 6 -

-LZ9-

' 8 'Z ^

'Z '

Is

voiaxraOST

ft to

voiai ^

'piOT 'p i9 ^

V0IH1 ^

voiai

g (z

(9

Xpn^s T.noqe au uaraaja a^xuij gg-g "Si

1\

y

\\

1

\

\E l KZ

)

fI

J

\

I

\

\

i\

\\\

j

I

j

/J

1

-—\\

1

-

\

\

-

}

\\)

/

jjI\

f

\

\s,

0.00 400.00 800.00 1200.00 1600.00 2000.00 2400.00 2800.001600.00

1200.00

800.00

400.00

0.00

[ 1600.00

1200.00

800.00

400.00

0.00 400.00 800.00 1200.00 1600.00 2000.00 2400.00 2800.000.00

Equipotential Line Groundwater Flow Direction

Fig- 3-59. Groundwater flow modeling in 1 layer of study area

1600.000.00 400.00 800.00 1200.00 1600.00 2000.00 2400.00 2800.00

1200.00 -

800.00 -

400.00 -

0.000.00

-

-f y'l

\&

- v\

//l

/

v

I

/ ?\ *\v, 1. >

• 1 1 .1 1 1

\ ' 1 H

/ :

y ~ ^

\ 1

/ /V S

1/— —

/ /^- " / I/'sl -- ^ y

\ \ ^

\

1 "

\ _

/y ^ ,

\ ^\

/

- ^ \

f f

* ,

t I/ p

-* //

I

50

' \.

/0'

\-s

lili]

^<r — — -

, * /

\ \

\ I l\

^

. J-V"

- .

/

s /N /

\

//

Til

' % ;

Z7.;

- -_/

1i \

f~ ~~

(

u•ni /

>

— 1 -

1

f\ N -- 40

-i***Y / -" <>'

1 ^ V s

I; \

,' \, \

\

i • i

f V IP' \1 \^ ^ \ ** ****

/ C ( V" \ ' $^J(1

" v 3 ^- /

°-. - '

|\\\ \ V I

1

i

i

„ "

D —_ . *io"

30

1

1 1

*^~ ' »^ _,

/* \1

1

1

\ ^\

/ \

\ -\\

\V

\/ \

i i \

1600.00

- 1200.00

- 800.00

- 400.00

400.00 800.00 1200.00 1600.00 2000.00 2400.00 2800.000.00

Equipotential Line -• Groundwater Flow Direction

Fig. 3-60. Groundwater flow modeling in 2 layer of study area

oI

1600.00

1200.00 -

800.00 -

400.00 -

0.00

)0I

A-_ V

h

/\\}

Iy

\ s

?

400.00

/

/* \ C

i ^»\*\ y i i A T '

800.001 < ^ ^

, \ s \

/''<^'-

) ] \ ^^

/ I " ~ 4 C

' ' \ s

J, \

f I

1 1

'\ \ / \\ V >

AS. y " " ^^ /

/

1 /V

1

•-\,

;

r

/

/

M

1200.00I

- — °V5

r^= rs^ *

/ 7 4? ^

"\ IF?'" if I!

- - - 'jL,<*• — _ » ^

t

1i

\§-~-

' / /

; / ^

\V/

V;

I

6001

ft)," ^ x-

/

_ /

so •

• ^ -

%

\\\ |

.001

1 {J\ 1

^ V Si- " " /

'''/J::'t^ ,.-

i

; i

2000.00

^ •

2400.00

— — i • '

syi 1 /

^ i1 \

\

\

i ~

2800.00

\A!\

—V

\\

\ \

o.oo

1600.00

- 1200.00

- 800.00

- 400.00

400.00 800.00 1200.00 1600.00 2000.00 2400.00 2800.000.00

Equipotential Line Groundwater Flow Direction

Fig. 3-61. Groundwater flow modeling in 3 layer of study area

TRIGA GROUNDWATER MODELING(4L)0.00 400.00 800.00 1200.00 1600.00 2000.00 2400.00 2800.00

1600.00

1200.00

800.00

400.00

0.00

T T 600.00

1200.00

800.00

400.00

0.00 400.00 800.00 1200.00 1600.00 2000.00 2400.00 2800.000.00

Equipotential Line Groundwater Flow Direction

Fig. 3-62. Groundwater flow modeling in 4 layer of study area

} A ^ j ^ ^ i . 2, 3, i^-SL

TRIGA ^^fS ^-^ofl^^l Jg-5: j*Hr -n-f4^r 0.6-1.8 m/year

TRIGA

41 *H 3 1- -Sl MT3D(A Modular Mass Transport 3-Dimension)#

Modular E } ^ ^

. o]

_3x dx n at n

S= kjC

D=av+D*

D

A

a

Pb: S^-^l ^S.(Bulk Density, M/L )

C

S

t

Flow Velocity(L/T)2ispersion Coefficient, L /T)

Decay Constant, T)

£7fl*r(Molecular Diffusion Coefficient, LVT)

Longitunal or Transverse Dispersivity)

2)

TRIGA #*}3. ^B^]A] <$7]%] *££: *}3LS. 6]*H TRIGA

- 5 3 2 -

1600

1500

1400

1300

1200

1100

1000

900

800

700

600

500

400

300

200

100

0

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

1 1 1 1 1 1

1 1

1

I

1 1

- \ ]

1 / I 1 I I I

k~KI 1 1 1

D0a

i i i i i i

i i i i i

D

J f

1 1 \ I 1 1

1 1 1

~ \

1 1 1

! I 1

I I I

1 1 1 1

I\

1 I 1 I

1

I I

I I

I 1

1 1

1

1

1

1600

1500

1400

1300

1200

1100

1000

900

800

700

600

500

400

300

200

100

00 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

TRIGA Cs TRANSP0RT(5yr,1L)900 920 940 960 960 10OO 1020 1040 1060 1O80 1100 1120 1140 1160 HBO

1200 |—i—|—|—i—i—i—i—i—i—i—i—i—'—•—'

960 980 1000 102O I04oli060 1080 1100 1120 1140 1160 1180

Fig. 3-63. 137Cs transport modeling in 1 layer of study area

after 5 years

-533-

137Cs, 9 0Sr,

, 30\!

3)

4)

51

5)

TRIGA 1.051

3-63(a)5j-

3-64 ~ H

TRIGA

3 - 6 6 ^ 137Cs, 90Sr,

, 30

15m

0.003014. 2

^ 0.011^1 JL, 0.018<>l^f 0.025JL

10m «i

^ ^ 0.001

3-65^

JL, 10

-534-

1 %•

/',~-J'0.203 -"C-C-O,,

0.40Ji — - - •&>

10

0.007 , 0.01 - ,- - -0.015 - — , ,

20 30

-0.015 - '

0.01 - ,

• 0.00 '

J

137,-Fig. 3-64 lo'Cs transport modeling around reactor along time

- 5 3 5 -

«• 5 £1X203 -iVv

10

-0.007

•-0.01 — - - -

,0.01 - %

*, 0.015 1 - N

20 30

I I I o' i ' h.

• S \ - - -

ftrr^3w

90,Fig. 3-65 Sr transport modeling around reactor along time

- 5 3 6 -

\i 10

• 3i-005

20 30

, 0.003 <-- --, 0.008 -^.- -s

. ''/"- -0.013 -y.

4E-006- -

60,Fig. 3-66. Co transport modeling around reactor along time

-53 7 -

^ 6> o.3O°H,

^ M <% 15m

0.025JL ^ %} ^ f t 4 t ^ 4 ^ l #

]] x]^^*) ^^^ S^^l^LHl £*\ ^ 0.01^14. *>^, 3

^ £ ^ 0.001 M

HQ 3-66^ 60CocHl 5]* l ^ ^ | ] ^ |

^ # ^ 4 ^ ^ 1 ^ ^ 5 ^ ^ ^ i$^5L±r <$ 0.19olJL, 10

fe <$ O.Q2°]JL, <

i f | ^ 13m

fe ^ 0.0030) 1

^4S.?l# ^Tfl^W^i 5^$\ %S.±= <% 0.000045 ] ., 10

fe ^ 0.00004^1 rt|, 2 0 \ 4 ^ ^ ^ 0.000015^13. 30Vd ffe 0.000004^

] ^ ^ ^ ^ ^ ^ ^J-ifc^K ^ ^ , 3 # 4 4

^ o.ooooi ]} 4 } # 4

7.

7f.

Spatial Variability!- i^*f7l^*H ^ b g ^ ^ # £.<&# 3 H f 7fl

I, Van Genuchten-£- ^l yfl H ^

[£ 3 7 H ^Efl^. tfe ^ $x4. ^-, ( l )

- 5 3 8 -

Specific Value(^Mr-,

(3) Value-dependent

, (2)Specified Flux(-fH£, *##*£ ), ZLB\JL

£ S i l t Loam<H]

1.5 cm"2/min<>l^,

fe 8.

0.3 mg/1 SJuK Solvent

"32.31xlO"3cm/min

918.46xlO"4cm/min<y

Solvents. "48.46xlO"4cm/ioin

3.711

. TRIGA

150m 9-^I^-

^ 0.6-1.8

n}. TRIGA

15m <> 150~200m

TRIGA ^

i ^ 7fl

— 539-NEXT PAGE(S)

left BLANK

1997\d

2000 ^ TRIGA

fe TRIGA

' 3 .

-U, 1999

r^ 1999^ 4

*U TRIGA A

TRIGA

^^(solvent flushing

*> bench -S

TRIGA

°H

7}

bench

3.7)1

TRIGA

- 5 4 1 -

NEXT PAGE(S)left BLANK

TRIGA , 2)

, 3)

sol - gel

, 2)

4)

^ TRIGA

j-g-

- 5 4 3 -

NEXT PAGE(S)left BLANK

6

3-1. R. E. Hicks and S. Tondorf, "Electrorestoration of Metal

Contaminated Soils", Environ. Sci. Technol., Vol. 28, No.

12, pp. 2203-2210(1994).

3-2. Y. B. Acar, A. N. Alshawabkeh and R. J. Gale, "Fundamentals

of Extracting Species from Soils by Electrokinetics", WASTE

MANAGEMENT, Vol. 13, pp. 141-151(1993).

3-3. Davis, A. P., "Washing of Zinc(II) from Contaminated Soil

Column", J. Envir. Engr., 27(2), pp. 174-185(1995).

3-4. Kari, F. G., Xue, H., and Sigg, L., "Speciation of EDTA in

Natural Waters:Exchange Kinetics of Fe-EDTA in Rever Water",

Environ. Sci. Technol, 29(1), pp. 59-68(1995).

3-5. Gall, E. J. , and Farley, K. J., "Evaluation of Nickel Removal

From Savannah River Site Soil By EDTA and Ethylendiamine",

Nuclear and Hazardous Waste Management Spectrum'94, pp.

675-680(1994).

3-6. Girvin, D. C., Gassman, P. L., and Bolton, B., "Adsorption of

Aqueous Cobalt EDTA by d -A12O3", Soil Sci. Soc. AM. J., 57,

47-57 (1993).

3-7. Nishita, H., and Essington, E.H., "Effect of chelating agents

on the movement of fission products in soils", Soil Sci.,

103(3), 168-176(1966).

3-8. Wilkins, R. G., and Yelin, R. E., "The Probable Structures of

Cobalt(II)-EDTA Type Complexes in Aqueous Solution from

Oxidation Experiments", J. Amer. Chem. Soc., 92(5),

pp.1191-1194(1970).

3-9. Motrits, W.C., Gushikem, Y., and Nasimento, 0. R., "Adsorption

and structure of MC12 (M = Co2+, Cu2+, Zn2+, Cd2+, and Hg2t)

-545-

Complex species on a chemically Modified Silica Gel Surface

with 1,4 - Diazabicyclo(2.2.2) Octane", J. Colloid Interface

Sci. 150(1), pp.115-120(1991).

3-10. Warwick, P., Shaw, P., Williams, G. M., and Hooker, P. J.,

"Preliminary Studies of Cobalt Complexation in Groundwater",

Radiochimica Acta, 44, pp.55-63(1988).

3-11. Hicks, R. E., and Tondorf, S., "Electrorestoration of

Contaminated Soils, Environ. Sci. Technol., 28(12),

pp.2203-2210(1994).

3-12. Szrvsody, J. E., Zachara, J. M., and Bruckhart, P. L.,

"Adsorption - Desorption Reactions Affecting the Distribution

and Stability of ConEDTA in Iron Oxide-Coated Sand", J.

Environ. Sci. Technol., 28(9), pp.1706-1716 (1994).

3-13. B. G. AHN, H. J. WON, W. Z. OH : Decontamination of Building

Surface Using Clay Suspension", J. of Nuc. Sci. and Tech. pp.

787 - 793, Aug. (1995).

3-14. R0ED J. : Run-Off from and Weathering of Roof Material

Following the Chernobyl Accident, Radiat. Prot. Dosim., 21

59, (1987).

3-15. ROED J. : Deposition and Removal of Radioactive Substances in

an Urban Area, Final Report of the NKA, Project AKTU-245,

Riso National Laboratory(1990).

3-16. SANDALLS, F. J. : Removal of Radiocaesium from Urban Surfaces

Contaminated as the Results of Nuclear Accident, AERE R

122355(1987).

3-17. DE WITT H. , GOLDAMMER W., BRENK H. D., HILLE R., JACOBS H.,

FRENKLER K., : Decontamination of Urban Areas after Nuclear

Accident, Proc. of Symp. on Recovery, Operations in the event

of Nuclear Accident or Radiological Emergency, IAEA,

Vienna, 6-10 November(1989).

-546-

3-18. BENGAL P. R., MASON R. C. : Results of the Gross

Decontamination Experiment and Implications for Future

Decontamination Activity, Proc. of ANS/CNA Conf. on

Decontamination of Nuclear Facilities, Niagara Falls,

September(1982).

3-19. LEWIS, W. B. : The Accident to the NRX Reactor on December

12, 1952, AECL-232, Atomic Energy of Canada Ltd.,

0ntario(1953).

3-20. VAN OLPHEN H. : "An Introduction to Clay Colloid Chemistry

for Clay Technologists, Geologists and Soil Scientists", 2nd

ed., Krieger Pub. Co.(1977).

3-21. DE BOER J. H. : "The Structure and Properties of Porous

Materials", Butterworth, New York(1958).

3-22. VAN OLPHEN H. : The Rheological Behavior of Clay-Water

System, American Perfumer, 77, 45(1962).

3-23. BIRD R. B., ARMSTRONG R. C. and HASSAGER 0. : "Dynamics of

Polymeric Liquids", Vol. 1, 2nd ed. , John Wiley & Sons Inc.,

New York(1987).

3-24. TEMPLE, C. P.: "Paint Flow and Pigment Dispersion", 2nd ed. ,

John Wiley & Sons Inc., New York(1987).

3-25. POURBAIX M. : "Atlas of Electrochemical Equilibria in Aqueous

Solution", National Association of Corrosion Engineers,

Houston, Texas, U.S.A(1974).

3-26. RYAN W. : "Properties of Ceramic Raw Materials", (1968),

Pergamon Press, Oxford.

3-27. WEAVER C. E. : Geothermal Alternation of Clay Minerals and

Shales, ONWI-21 (1979).

3-28. BRADY N. C. : "The Nature and Properties of Soils", (1974),

Macmillan Pub. Co., New York.

3-29. CARTER D. L., HEILMAN M. D. and GONZALEZ C. L. : Ethylene

-547-

Glycol Monoethyl Ether for Determing Surface Area of Silicate

Minerals, Soil Sci.,, 100, 356 - 360 (1965).

3-30. JCPDS, Powder Diffraction Data File, Index No. 12-219, 13-135,

13-256, 29-1498, U.S. Joint Committee on Powder Diffraction

Standards, Pennsylvania (1972).

3-31. Fetter, C. W. , Applied Hydrogeology. 2d ed., Macmillan

Publishing Conpany, pp. 588(1988), XMoreno, L. and Neretnieks,

I., Flow and nuclide transport in fractured meadia. J. of

Contaminant Hydrology, 13, 49(1993).

3-32. Cushey, M.A., Bellin, A., and Rubin, Y. Generation of three

dimensional flow fields for statistically anisotropic

heterogeneous porous media, Stoch. Hyd. Hydraul., 9,

89.(1995).

3-33. Gelhar, L. W., and Azness, C. L. Three-dimensional stochastic

analysis of macrodispersion in aquifers. Water Resour Res.

19(1), 161-180(1993).

3-34. Jang, Y. S., Sitar, N., and Der Kiureghian, A., Reliability

analysis of contaminant transport in saturated porous meadia.

Water Resources Res., Amer AGU, 30, 2435(1994).

3-35. Wierenga, P. J., and van Genutchen, M. TH. Solute transport

through small and large unsaturated plainfield sand. Water

Resour. Res., 14, 528-588(1989).

3-36. McDonald, M. G., and Harbaugh, A. W. A modular

three-dimensional finite-difference ground-water flow model.

U.S. Geological Survey(1988).

3-37. Zheng, C., A modular three-dimensional transport model for

simulation of advection, dispersion and chemical reactions of

contaminants in ground water system, S. S. Papadopulos &

Associates, Inc(1990).

3-38. Huyakorn, P. S., A two-dimensional finite element code for

-548-

simulating fluid flow and transport of radionuclides in

fractured porous media with water table boundary conditions,

Hydrogeologic, Inc.(1987).

3-39.

3-40.

3-41. Yeh, G. T. FEMWATER : A finite element model of water flow

through saturated-unsaturated porous media-first revision. Oak

Ridge National Lab., ORNL-5567/RL(1987).

3-42. van Genuchten, M. T., A Closed-form Equation for Predicting

the Hydraulic Conductivity of Unsaturated Soils, Soil Sci. Soc.

J. 44:892-898(1980).

3-43. EPA, In Siut Soil Flushing, Engineering Bulletin,

EPA/540/2-91/021 (1991).

3-44.Brusseau, M L., and Rao, P. S. C. "The Influence of

Sorbate-Organic Matter Interaction on Sorption Nonequilibrium",

Chemosphere, 18(9/10), 1691-1706 (1989).

3-45. Augustijn, D. C. M., Jessup, R. E., Rao, P. S. C., and Wood A.

L. "Remediation of Contaminated Soils by Solvent Flushing",

Journal of Environmental Engineering, Vol.120, No.1, pp 42-56

(1994)

3-46. Brusseau, M. L., Jessup, R. E., and Rao, P. S. C.

"Nonequilibrium Sorption of Organic Chemicals: Elucidation of

Rate-Limiting Processes'", Environ. Sci. Technol., 25(1), pp

134-142 (1991).

3-47. *pg^, "^-M^tr.-il-fSSW, PP.29.

3-48. Nkedi-Kizza P., Brusseau M.L., Rao S. P. C., and Hornsby A.

G.,"Nonequilibrium Sorption during Displacement of Hydrophobic

Organic Chemicals and Ca through Soil Column with Aqueous and

-549-

Mixed Solvents",Environ. Sci. Technol. 23(7), pp.814-820(1989)

3-49. ?H}# , ^ ^ e ] * ) ^ , -ii-^&SW, PP. 38-39(1988).

3-50.

- 5 5 0 -

KAERI/RR-1907/96

• »

nil o|

*lc

(10EK

is*

, i

XI

1 ^

15-2C

1 ®l2 ")3. &

!?l°-i-

r|] g

550

a

*ll §J S

^ • 7 | A N^•7|A|4

)

1

IS

P-

)•

A-j X|

^|Ej-7j^!-SJLA

x-ll'gsil^l §J

oiasi, ^ ^

o4 ^-Xl-: 2j5|£

O|7M

M7I8

dsi -K ) . _

S.^17|# 7H# c

L2.|E., -g-S, s||Ji

s .

Pig

5H*II i

r. at?

O| 0AA C3

a .

J

%<

a-

1 C

J

=

, a asr. "fe!^5

i, O|*T

X|-BNoj^

) ), HA'S'

SJLA-

, 1 ^

3 Ah & i

A'

inA-ias INIS

71.^. jii ui-

[ ) 3. 7 I

1 0,

S,

1999.

29.7

AH

H

3.

Cm.

BIBLIOGRAPHIC INFORMATION SHEET

Performing Org.

Report No.

Sponsoring Org.

Report No.Stamdard Report No.

IMS Subject

Code

KAERI/RR-1907/98

Title / Subtitle Technology Development for Nuclear Fuel Cycle Waste Treatment/

Development of Decontamination, Decommissioning andEnvironmental Restoration Technology

Project Manager

and Department

Byung-Jik Lee; Development of Decontamination,

Decommissioning and Environmental Restoration Technology

Researcher and

Department

Researcher: H.S. Kwon, G.N. Kim, B.H. Kim, J.K. Moon,G.I. Park, K.Y. Park. S.Y. Park, Y.S. Park, J.B. Shim,K.J. Ahn, B.G. Ahn, W.Z. Oh, K.W. Lee, C.Y. Lee, H.K. Lee,

KJ. Jung, C.H. Jung, W.K. Choi, D.H. Hong

Dept. : Development of Decontamination, Decommissioning and Environmental

Restoration Technology

Publication

PlaceTaejon Publisher KAERI

Publication

Date1999. 3.

Page 550 P- III. & Tab. Yes( o ), No Size 29.7Cm.

Note

Classified Open( o ), Restricted!

Class DocumentReport Type Research Report

Sponsoring Org. Contract No.

Abstract (15-20 Lines)

Through the project of "Development of Decontamination, Decommissioning andEnvironmental Restoration Technology" , the followings were studied.

1. Development of Decontamination and Repair Technology for NuclearFuel cycle Facilities

2. Development of Dismantling Technology3. Development of Environmental Restoration Technology

Subject Keywords(About 10 words)

Decontamination, Chemical, Concrete, Dust, Decommissioning, Dismantling,

Contamination Assessment, Environmental Remediation, Soil