Surface Science lecture - ADAM

38
1 Paul Scherrer Institut, Swiss Light Source Frithjof Nolting X-ray absorption spectroscopy Surface Science, FS 2011 F. Nolting Surface Science FS 2011 Surface Science lecture Di, 22.02.2010 Fixing Dates, Intro to Vacuum Technology, Labvisits Basel (Thomas Jung, Roland Steiner) Di, 01.03.2010 Introduction, Concepts Samples and Structure (Thomas Jung) Di, 08.03.2010 Adsorption / Desorption (Thomas Jung) Di, 15.03.2010 Fasnacht Di, 22.03.2010 Electronic Properties and Surface Electron Spectroscopies: XPS/UPS, Auger, ARPES (Nirmalya Ballav) Di, 29.03.2010 Electron Diffraction Methods, in particular RHEED, LEED (Bert Müller) Di, 05.04.2010 Diffusion and Growth (Thomas Jung) Di, 12.04.2010 X-ray Absorption Spectroscopy (Frithjof Nolting) Di, 19.04.2010 Surface Magnetism XMCD / PEEM (Frithjof Nolting) Di, 26.04.2010 Local Probes and Experiments I, STM, Inelastic tunneling and STS (Silvia Schintke and Thomas Jung) Di, 03.05.2010 Local Probes and Experiments II, AFM FIM (Thomas Jung) Di, 10.05.2010 Surface Optics, Kelvin Probe (Thilo Glatzel) Di, 17.05.2010 Applications of Surface Science in Industry (M. de Wild) Di, 24.05.2010 Schlussprüfung (Christian Wäckerlin, Thomas Jung) Di, 31.06.2010 Excursion (Thomas Jung) Di, 12.04. 2011 X-ray Absorption Spectroscopy (F. Nolting) Di, 19.04. 2011 PEEM and X-ray Microscopy (F. Nolting) Both with an emphasis of magnetism

Transcript of Surface Science lecture - ADAM

1

Paul Scherrer Institut, Swiss Light Source

Frithjof NoltingX-ray absorption spectroscopySurface Science, FS 2011

F. Nolting Surface Science FS 2011

Surface Science lecture

Di, 22.02.2010 Fixing Dates, Intro to Vacuum Technology, Labvisits Basel (Thomas Jung, Roland Steiner) Di, 01.03.2010 Introduction, Concepts Samples and Structure (Thomas Jung) Di, 08.03.2010 Adsorption / Desorption (Thomas Jung) Di, 15.03.2010 Fasnacht Di, 22.03.2010 Electronic Properties and Surface Electron Spectroscopies: XPS/UPS, Auger, ARPES (Nirmalya Ballav) Di, 29.03.2010 Electron Diffraction Methods, in particular RHEED, LEED (Bert Müller) Di, 05.04.2010 Diffusion and Growth (Thomas Jung) Di, 12.04.2010 X-ray Absorption Spectroscopy (Frithjof Nolting) Di, 19.04.2010 Surface Magnetism XMCD / PEEM (Frithjof Nolting) Di, 26.04.2010 Local Probes and Experiments I, STM, Inelastic tunneling and STS (Silvia Schintke and Thomas Jung) Di, 03.05.2010 Local Probes and Experiments II, AFM FIM (Thomas Jung) Di, 10.05.2010 Surface Optics, Kelvin Probe (Thilo Glatzel) Di, 17.05.2010 Applications of Surface Science in Industry (M. de Wild) Di, 24.05.2010 Schlussprüfung (Christian Wäckerlin, Thomas Jung) Di, 31.06.2010 Excursion (Thomas Jung)

Di, 12.04. 2011 X-ray Absorption Spectroscopy (F. Nolting) Di, 19.04. 2011 PEEM and X-ray Microscopy (F. Nolting)Both with an emphasis of magnetism

2

Repetition IV

• Winkelaufgeloeste PhotoelektronenspektroskopieARPES / Fermi Surface Mapping

• Diffusion / Random Walk in 2D

• Fick‘s Laws

• Atomistic Diffusion Mechanisms / Defects / Steps

• Mass Transfer / Anisotropy

• Cluster Diffusion

F. Nolting Surface Science FS 2011

Surface Science – Interface science

3

F. Nolting Surface Science FS 2011

CoCoO

NiO

Ni

Co

NiO

Surface Science – Interface science

F. Nolting Surface Science FS 2011

X-ray absorption spectroscopy (XAS)Absorption processTotal electron yield modeExamples

X-ray Magnetic Circular Dichroism (XMCD)BasicsExample: Magnetocrystalline Anisotropy

Closer look at the absorption processMulitplet effectsExample: Interface effect in Exchange Bias system

X-ray Magnetic Linear Dichroism (XMLD)Basics

Outline

4

F. Nolting Surface Science FS 2011

Some good books

F. Nolting Surface Science FS 2011

5

F. Nolting Surface Science FS 2011

F. Nolting Surface Science FS 2011

6

F. Nolting Surface Science FS 2011

Absorption - Teflon

http://henke.lbl.gov/optical_constants/

F. Nolting Surface Science FS 2011

Extended X-ray Absorption Fine Structurereflects spatial location of neighboring atoms

Near Edge X-ray Absorption Fine Structurereflects density of unoccupied statesAlso called XANES

Absorption of Photons in the Soft X-ray Range

7

F. Nolting Surface Science FS 2011

F. Nolting Surface Science FS 2011

EF energy

d states

s,p states

~~

2p 3/22p1/2

core level valence band

photon energy

absorption

Fermi’s golden rulein dipole approximationwavelength is large compared to charge1000 eV corresponds to 1.2 nm2p core radius is about 0.01 nm

Final state Initial state

Transition matrixDensity of final statesAbsorption ~

E)(ipef2

Interaction of electromagnetic wave with charge

8

F. Nolting Surface Science FS 2011

7 0 0 7 2 0 7 4 0 7 6 0 7 8 0 8 0 0 8 2 0 8 4 0 8 6 0 8 8 0 9 0 00

1 0

2 0

3 0

4 0

5 0

6 0

7 0

N i

C oF e

Inte

nsi

ty (

a.u

.)

P h o to n e n e rg y (e V )

Element specific

F. Nolting Surface Science FS 2011

Initial excited fluorescence Auger

Soft X-ray range ~ 5% ~ 95%

Photoemission

Secondary electrons

Decay channels

9

F. Nolting Surface Science FS 2011

vacuum

sample

sample surface

secondary electronsEscape depth ~ 5 nm

h

FluorescenceEscape depth ~ 50 - 100 nm

Auger electronsEscape depth ~ 0.5 nm

X-ray penetration depth~ 50 - 100 nm

Sampling depth

F. Nolting Surface Science FS 2011

10

F. Nolting Surface Science FS 2011

xeI)x,E(I )E(0

I(nA)

h

x100

kinetic energy

Ele

ctro

n yi

ed Secondary electrons

Auger peak

Total electron yield (TEY)

F. Nolting Surface Science FS 2011

e-hn

Probability that electron escapes

edgePre edge

Sample surface

Penetration depth depends on the angle of incidence

Why is TEY proportional to absorption coefficient

11

F. Nolting Surface Science FS 2011

J. Lüning et al, PRB 67, 214433 (2003)

Saturation Effects in TEY Detection

F. Nolting Surface Science FS 2011

Courtesy J. Stöhr

“Dismantle” a Multilayer

12

F. Nolting Surface Science FS 2011

Charge sum rule

Integrated intensity is proportional to number of empty valance states

Courtesy J. Stöhr

Determine number of 3d holes

F. Nolting Surface Science FS 2011

X-ray absorption spectroscopy (XAS)Absorption processTotal electron yield modeExamples

X-ray Magnetic Circular Dichroism (XMCD)Crash class nanomagnetism probed with X-raysBasicsExample: Magnetocrystalline Anisotropy

Closer look at the absorption processMulitplet effectsExample: Interface effect in Exchange Bias system

X-ray Magnetic Linear Dichroism (XMLD)Basics

Outline

13

F. Nolting Surface Science FS 2011

Crash class nanomagnetism probed with X-rays

F. Nolting Surface Science FS 2011

Source of magnetism (atomic)

Spin moment ~ 1.5 μB / atom isotropic

Orbital moment ~ 0.1 μB / atom isotropic/anisotropic

They interact via the spin-orbit coupling L · S

14

F. Nolting Surface Science FS 2011

Switching on the interaction

Atoms have an magnetic moment

Without interaction (and no applied magnetic field) they point in random directions and no macroscopic magnetic field is created

F. Nolting Surface Science FS 2011

Switching on the interaction

Atoms have an magnetic moment

With interaction they can align to each other and can create macroscopic magnetic field

Domain 1 Domain 2Domainwall

15

F. Nolting Surface Science FS 2011

Hysteresis loop

Responses of a material to an applied magnetic field is described by the hysteresis loop

Remnant magnetization

Coercive field

Saturation magnetization

External applied magnetic field

Magnetization of the material

F. Nolting Surface Science FS 2011

Different magnetic interactions

Direct exchangeOverlapping wavefunctions

superexchangeOverlapping wavefunctions via non-magnetic atoms

Indirect exchangeExchange via delocalised electrons

16

F. Nolting Surface Science FS 2011

F. Nolting Surface Science FS 2011

Polarized Photons

17

F. Nolting Surface Science FS 2011

Angular momentum conservation

Angular moment of orbiting mass Photon angular moment

Polarized Photons

F. Nolting Surface Science FS 2011

Photon energy

I

Photon energy

diff

Photon energy

I

Polarized Photons

18

F. Nolting Surface Science FS 2011

Spin moment

Origin of XMCD

F. Nolting Surface Science FS 2011

EF

2p1/2

2p3/2

3d

4sp

Dipole selection rules:

ΔL = -1, +1

Δ J = -1, 0, +1

Δ MJ = -1, 0, +1

Polarization q +1, 0, -1 (s+, p, s-)

L2: 2p1/2�4s, 3d3/2

L3: 2p3/2�4s, 3d3/2, 3d5/2

n transitiodipole ,)E(ipef 2

:rulegoldensFermi'

Dipole selection rules

19

F. Nolting Surface Science FS 2011

1. StepCirc. Pol. X-rays generate spin-polarized electrons from inner shell

2. StepSpin-split 3d bands act as spin analyser

Spin is conserved in transition

L3

L2

2p3/22p1/2

Two-step Model of XMCD

F. Nolting Surface Science FS 2011

Sum rules

20

F. Nolting Surface Science FS 2011

Electron occupation

magnetic dipole moment

effective spin magnetic moment

<Tz> is the expectation value of the intra-atomic magnetic dipole operator, accounting for a possible asphericity of the spin density distribution.

… more complex … of course

F. Nolting Surface Science FS 2011

Taken from PhD Thesis Armin Kleibert, 2005

Only contribution to the resonance absorption should be considered

21

F. Nolting Surface Science FS 2011

L3 and L2 must be separated

… more complex … of course

F. Nolting Surface Science FS 2011C.T. Chen et al. PRL 75(1), 152 (1995)

Normalize SpectraCorrected for

incident anglePolarization degreesaturation effects

MCDdifferenceintegrate

XASsum spectracorrect backgroundnon resonant

Calculate/neglect<TZ><Sz>

calculating

22

F. Nolting Surface Science FS 2011

L

775 780 785 790 795 800 805

L2

L3

Photon energy (eV)

TE

Y (

a.u

.)

XMCD ~ <M> cos(M,L)

L

Photonsno massno spinangular momentum

Magnetism 3d metalssmall orbital momentlarge spin moment

X-ray Magnetic Circular Dichroism (XMCD)

F. Nolting Surface Science FS 2011

J. Stöhr, JMMM 200 (1999) 470 – 497Reiko Nakajima PhD Thesis 1998

easy hard

Magnetic Anisotropypreferential magnetization along axeseasy / hard axis

(magneto-crystalline anisotropy)

The magneto-crystalline anisotropy is the energy that it takes to rotate themagnetization from the “easy” direction into the “hard” direction

Study Magneto-crystalline anisotropy

XMCD in action

23

F. Nolting Surface Science FS 2011

Hysteresis loop – anisotropy

hard axis

easy axis

F. Nolting Surface Science FS 2011

Spin moment ~ 1.5 μB / atom isotropic

Orbital moment ~ 0.1 μB / atom isotropic/anisotropic

They interact via the spin-orbit coupling L · S

Magneto-crystalline anisotropy

24

F. Nolting Surface Science FS 2011

Anisotropy

F. Nolting Surface Science FS 2011

The Bruno model states that the orbital moment is larger along the easy magnetization direction, and that the difference between the orbital moments along the easy and hard directions is proportional to the magneto-crystalline anisotropy

P. Bruno, PRB 39, 865 (1989)

Bruno model

25

F. Nolting Surface Science FS 2011

705 710 715 720 725

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

Inte

nsi

ty (

a.u

.)

Photon energy (eV)

reference signal sample signal

705 710 715 720 7250.78

0.80

0.82

0.84

0.86

0.88

Inte

nsi

ty (

a.u

.)

Photon energy (eV)

normalized signal

TEY

Reference signal Sample signal

Magnet

Sample= Norm

Reference

How do we measure

F. Nolting Surface Science FS 2011

How do we measure

26

F. Nolting Surface Science FS 2011

Test system

F. Nolting Surface Science FS 2011

Thin filmOrbital moment is anisotropic and larger out-of-plane

Thick filmOrbital moment is isotropicshape anisotropy is dominating

Results

27

F. Nolting Surface Science FS 2011

Mulitlayer with stronger out-of-plane bonding out-of-plane moment

in-plane orbits are quenched out-of-plane orbits are less perturbed

Free monolayer in-plane moment

Simple picture – Ligand fields

F. Nolting Surface Science FS 2011

P. Gambardella et al. Nature 416, 301 (2002)

Ferromagnetism in one-dimensional monatomic metal chains

28

F. Nolting Surface Science FS 2011

P. Gambardella et al. Nature 416, 301 (2002)

ml ~ 0.68 μB / atom ml ~ 0.31 μB / atom ml ~ 0.14 μB / atom

Increased orbital moment in Co chains

F. Nolting Surface Science FS 2011

A. Scheybal, T. Ramsvik, R. Bertschinger, M. Putero, F. Nolting, and T.A. Jung, Chemical Physics Letters 411, 214 (2005)

Induced magnetic ordering in a molecular monolayer

29

F. Nolting Surface Science FS 2011

X-ray absorption spectroscopy (XAS)Absorption processTotal electron yield modeExamples

X-ray Magnetic Circular Dichroism (XMCD)BasicsExample: Magnetocrystalline Anisotropy

Closer look at the absorption processMulitplet effectsExample: Interface effect in Exchange Bias system

X-ray Magnetic Linear Dichroism (XMLD)Basics

Outline

F. Nolting Surface Science FS 2011

Initial excited

Single electron

Coulomb, ExchangeElectron – electron interaction

Electron – hole interaction

Valence – Valence interaction : many body effects

Valence – Core interaction : multiplet effects

Hybridization between ground state and final state leads to a multiplet structure of the spectrum

Interactions

30

F. Nolting Surface Science FS 2011

+ 2p spin orbit coupling

+ interaction 2p and 3d(Slater-Condon parameter)

+ 3d spin orbit coupling

F. de Groot

2p

3d

2p

3d

2p

3d

Interactions – NiO (Ni 2+ )

F. Nolting Surface Science FS 2011

F. de Groot et al. PRB 42, 5459 (1990)

Further parameter is charge transfer

Crystal field

31

F. Nolting Surface Science FS 2011

Ni metal vs NiO

F. Nolting Surface Science FS 2011

Chemical sensitivity

Complex but good for us

32

F. Nolting Surface Science FS 2011

Footprint of complex bindings

Courtesy Harald Ade

F. Nolting Surface Science FS 2011

Absorption spectroscopy library

Photon Energy / eV285 290

C O

O

73O

C

O

27

vectra

CH3

CH3

O C

O

O n

PC

PAR

CH3

CH3

O C

O C O

O

n

CC

O O

N

H

N

Hn

Kevlar™

CC

O

OO

O (CH2)4 n

PBT

PNIC

O

O

CH2 CH3

CH3

CH3

CH2 *CO

O*

n

CCO

OO

O (CH2)2 n

PET

Photon Energy / eV285 290

PS

PBrS

SAN

n

78

Br

22

n

*

C N

m

CH2 NH C

O

NHNH ** n

MDI polyurea

CH2 NH C

O

ONHC

O

OCH2 4* *n

MDI polyurethane

CH3

N

H

N

H

C

O

n

TDI polyurea

CH3

N

H

N

H

C

O

OC

O*

O

(CH2)4 *n

TDI polyurethane

Photon Energy / eV285 290

CH2 C

C

CH3

O

OCH3(CH2)3

n PBMA

CH2 C

C

CH3

O

OCH3

n PMMA

*N

H

C*

O

n

On PEO

Nylon-6

EPRCH3

* n

PP *

CH3

n

PE * n

Dhez, Ade, and Urquhart J. Electron Spectrosc. 128, 85 (2003)

33

F. Nolting Surface Science FS 2011

Effect of exchange bias is still poorly understood

Ideal Interface Model

FM

AF

Spin Flop ModelFM

AF

FM

AF

Domain Size Model

Uncompen-sated spins at AF domain boundaries

Unidirectional anisotropy in FM adjacent to AFMdiscovered 1956 by Meiklejohn and Bean

Exchange-bias field(size depends on many parameters)

H

M

Reviews: A.E. Berkowitz and K. Takano, J. Magn. Magn. Mater. 200(1-3), 552 (1999).J. Nogues and I.K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999)

Exchange Bias

F. Nolting Surface Science FS 2011

CoCoO

NiO

Ni

Tom Regan et al, Phys. Rev. B 64, 214422 (2001)

Oxidation/reduction at the interface is responsible for increased coercivity

Co

NiO

Exchange biased Co/NiO multilayer

34

F. Nolting Surface Science FS 2011

840 850 860 870 880 890

0.6

0.9

1.2

1.5

left polarized right polarized

Tot

al Y

ield

(a.

u.)

Photon Energy(eV)

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Asymmetry smoothed

Asy

mm

etry

(%)

EPU beamline 4 at ALS, Elke Arenholz, Tony Young3 nm Co

50 nm NiO

1.5 nm Ru

.

.

3 nm Co 30°

Magnetic field

Left and right circularlypolarized light

XMCD

Hysteresis of Co and NiO

XMCD spectra – switching polarization

-3000 -2000 -1000 0 1000 2000 3000-20

-15

-10

-5

0

5

10

15

20

XM

CD

(%

)

Applied Field (Oe)

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Co Ni

Pinned Moments ?

Exchange biased Co/NiO multilayer

F. Nolting Surface Science FS 2011

-3000 -1500 0 1500

-0.4

-0.2

0.0

0.2

0.4

Applied field (Oe)

HBias

positiveHBias

negative

Asy

mm

etry

(%

)

-1500 0 1500 3000

-0.4

-0.2

0.0

0.2

0.4

biasedunbiased

Co/IrMn multilayerField grown, Hc = 600 Oe

Matt Carey at IBM, Almaden, USA

Pinned Moments

H. Ohldag et al, PRL 91, 017203 (2003)

Pinned Moments

35

F. Nolting Surface Science FS 2011

X-ray absorption spectroscopy (XAS)Absorption processTotal electron yield modeExamples

X-ray Magnetic Circular Dichroism (XMCD)BasicsExample: Magnetocrystalline Anisotropy

Closer look at the absorption processMulitplet effectsExample: Interface effect in Exchange Bias system

X-ray Magnetic Linear Dichroism (XMLD)Basics

Outline

F. Nolting Surface Science FS 2011

Cu

O

X-ray Natural linear dichroism“search light effect”

C.T. Chen et al PRL 68, 2543 (1998)

No absorption absorption

Excitation into 3d band

Interaction with linear light - charge

36

F. Nolting Surface Science FS 2011

F. Nolting Surface Science FS 2011

Electron charge density is isotropicno linear dichroism

Preferred spin axisspin orbit coupling changes charge density

linear dichroism

XMLD X-ray Magnetic Linear Dichroism

Interaction with linear light - magnetic

37

F. Nolting Surface Science FS 2011

700 705 710 715 720 725 730

-0.5

0.0

0.5

Diff

eren

ce

Photon Energy (eV)

0.81.01.21.41.61.82.02.22.42.62.83.03.2

T

EY

(a.

u.)

linear vertical linear horizontal

700 705 710 715 720 725 730

-0.5

0.0

0.50.00.51.01.52.02.53.03.54.0

D

iffer

ence

Photon Energy [eV]

linear horizontal linear vertical

In

tens

ity [a

.u.]

Fe Metal Fe oxide

XMLD enhanced by mulitplet

Enables to measure antiferromagnetic systems!

Ferromagnet (FM)Net magnetic moment

Antiferromagnet (AFM)No net magnetic moment

XMCD ~ M cos(M,S) XMLD ~ <M2> cos2(M,E)

XMLD

F. Nolting Surface Science FS 2011

Strong magnetic dichroism predicted in the M4,5 X-ray absorption spectra of magnetic rare-earth materials, B.T. Thole, G. van der Laan, and G.A. Sawatzky, Phys. Rev. Lett. 55, 2086 (1985).

Experimental proof of magnetic x-ray dichroism, G. van der Laan, B.T. Thole, G.A. Sawatzky, J.B. Goekoop, J.C. Fuggle, J.-M. Esteva, R. Karnatak, J.P. Remeika, and H.A. Dabkowska, Phys. Rev. B 34, 6529 (1986).

Absorption of Circularly Polarized X-rays in Ion, G. Schütz, W. Wagner, W. Wilhelm, P. Kienle, R. Zeller, R. Frahm, G. Materlik, Phys. Rev. Lett. 58, 737 (1987).

Soft X-ray magnetic circular dichroism at the L2,3 edges of nickel, C.T. Chen, F. Sette, Y. Ma, and S. Modesti, Phys. Rev. B 42, 7262 (1990).

X-ray circular dichroism as a probe of orbital magnetization, B.T. Thole, P. Carra, F. Sette, and G. van der Laan, Phys. Rev. Lett, 1943 (1992).

Magnetic X-ray dichroism – general features of dipolar and quadrupolar spectra, P. Carra, H. König, B.T. Thole, and M. Altarelli, Physica B 192, 182 (1993).

Determination of Spin- and Orbital-Moment Anisotropies in Transition Metals by Angle-Dependent X-Ray Magnetic Circular Dichroism,J. Stöhr, H. König, Phys. Rev. Lett. 75, 3748 (1995)

Some pioneering papers on XMCD and XMLD

38

F. Nolting Surface Science FS 2011

F. Nolting Surface Science FS 2011

is sensitive toelemental compositionchemical bondsstructural parameterselectronic structuremagnetic properties

-3 0 0 0 -2 0 0 0 -1 0 0 0 0 1 0 0 0 2 0 0 0 3 0 0 0-2 0

-1 5

-1 0

-5

0

5

1 0

1 5

2 0

XM

CD

(%

)

A p p lie d F ie ld (O e )

-0 .8

-0 .6

-0 .4

-0 .2

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

C o N i

Polarization depend soft X-ray absorption spectroscopy is a powerful tool tostudy elemental resolved ferromagnetic and anitferromagnetic thin films and interfaces

Non-spatially resolved spatially resolved …next time

has a very broad range of applicationMagnetic multilayersDiluted systemsNanoparticlesMolecular magnets…

The technique

Conclusions