Structure and Plate Tectonic Evolution of the Marine Arctic as ...

16
________________________________________ __ Structure and plate tectonic ArCI Îc Magnetic anomalie s l'laIe tccto ni C$ Sea flour evolution of the manne Arctic Arçtiqul.': Anomalies magnétiques Tectonique de s plaques Ouve rTur e océanique as revealed by aeromagnetics ABSTRA CT RÉSUME l' . Vogt". C. Bernero b L. Kovacs' , p, Taylor" • Code 5110. Nava l Research Labo ratory, Washington, D.C. 20375. USA. b Sc hool of Geology and Univer sity of Oklahoma. Norman. Ok lahoma 73 019 . USA. < Code 922, Goddard Space flight Center, NASA. Greenbell . MD 1077 1. USA. Over 400,000 km of low level acro magnetic data wcre collected by US Navy res car ch organ iz. ations ov er the Arctic Bas in a nd Grccnland-Norwegian Sea dur in g the years 1972 10 1978. The se data provide ncw constrainls on the cruslal s tr ucture and tcelon ie evu lu tion uf this vast region. Magne li c an oma li es ove r co ntinental fragments (Lomonos ov Ridge and Chukc hi 13 0rderland) are irregul ar, with loca l short -wave length features indi cat ing relatively shall ow base ment. Long-wavelength anomali es indicate dee p base ment under mosl Arctic shclves excep ll oclltty near coastlines. Co nspicuou sly li neated anomalies arc round only on Ihe wide ea st Green lan d Shelf and to ;llesse r extent along the Norwegian shelf ; lOd Baren ts Sea . Initial rifting be lwee n Greenland a nd Scandi navia fo ll owed Il s tructu ral bound ar y separati ng the north-t rcnding pre-rift anomalies on the Greenland side from more northea s ter ly tr ends on the Eurasian s ide. The northcrn part of the Greenland Sea began to open when the Horn sund transform fault bcC;l me Il rifted margin. Howevc r, (r om the Bear IsI'lnd area south to the Gr ecn la nd -Se nja F.Z., an oblique rift bcglill to open already in the early Ter tia r y. Sca-fl oor spreading between SClIndinavia and Gree nl a nd co mmen ced abou t 58 m.y.b.p. during the r eve rs ed pe ri od preceding anomal y 24 . Sprellding between the Lomonosov Rid ge a nd Eurasia also began ;11 thi s time or poss ib ly s ome whal earlier. Ano m;llies in the Lofote n- Greenland Eurasiu bas in s are relati vel y linear and wcll- def incd despite the sl ow s preading rates (0.3 to 1 cm/yr half -rate). In the Gree nl a nd Se O! oblique spreading, close-spa ced transform s, and sed iment input may exp lain the co mplex. ge nerall y und ec ipher&b le or non -existent anomulies there. A slight but persistent a sy mm el ry has char ac leri zed crusl al acc retion in the Greenland -Norwegian Sea a nd Eura s ia Bus in : Ihe Eura nian flank of the plate boundary tends to exhibit fastcr sprellding, gre ater de pth . a nd r ed uced gravît y ll nu magne tic ilnornaly amplit udes, An ex ti nct spreading axis in the Ca nada Ba s in is indi C'lled by gravit y land magnetic d ata . A poss ible sc en,nio is thal during the carly Crelaceou s (' M ' _ magnetic revers ai seq uence) the Chukc hi Bord erland rifted away from the m;lrgÎn of Arc ti c Canada al o ng :, tmn sform fnu lt al ong the Alaskan North s10 pe . Li near anoma lie s of poss ible spread ing or igin ar e found ove r some olhcr parts of the Ca nada Blls in , the Makaroy Bas in , ;Ind nea r the junction be l ween the Lomonosov Rid ge and the Nort h American continental margi n. Magnctic anoma lies ove r the Alpha Ridge and parts of the adjacent basins are chaotic in tr end and hi gh in ampli lU de . Direct co rrelation between bas emcnt to pognl phy and magnetic anomal y is found over parI of the Al ph;1 Ridge c re s t. The deta il ed acromagnetic d;lIa have nol settl ed the con tr ovcrsy abo ut the origin of the Alpha Ri dge. OO!//llui. Ac Ul. Procecdings 26'h I nt ernmi oMl Geological Congre ss. Gcology of ocea ns sym posium, Pari s. Jul y 7- 17. 19 KO. 25-40. St ructur e el évolution tectonique globale de l'Ar ctique d 'a près des études aéromagnélique s. 400 000 km de levés a éromagnétiques à ha sse altitude ont été ef fec tués par le s or g:mismes de recherche de rus Navy sur le bass in Arc ti que et les mers de Norvège et du Groë nl and . au 25

Transcript of Structure and Plate Tectonic Evolution of the Marine Arctic as ...

________________________________________ ~O~C~E~A~N~O~LO~G~'C~A~A~C~T~A~,_'~9~8~1 ,~N~O_S~P __ ~~-------

Structure and plate tectonic ArCI Îc Magnetic anomalies

l'laIe tccto ni C$ Sea flour spre,*din~

evolution of the • manne Arctic Arçtiqul.': Anomalies magnétiques Tectonique des plaques

OuverTure océanique

as revealed by aeromagnetics

ABSTRACT

RÉSUME

l'. Vogt". C. Bernerob • L. Kovacs' , p, Taylor" • Code 5110. Naval Research Labora tory, Washington , D.C. 20375. USA. b School of Geology and Geophy~iç ~. University of Oklahoma. Norman. Oklahoma 73019 . USA . < Code 922, Goddard Space flight Cente r, NASA. Greenbell . MD 10771. USA.

Over 400,000 km of low level acromagnetic data wcre collected by US Navy rescarch organiz.ations over the Arctic Basin a nd Grccnland-Norwegian Sea during the years 1972 10 1978. These data provide ncw co nstra inls on the c ruslal struc ture and tce lonie evulution uf this vast region. Magnelic anomalies over continental fragments (Lomonosov Ridge and Chukchi 130rderland) a re irregu lar, with local short-wavelength feature s indicating relat ively shallow base ment. Long-wavelength a nomalies indicate deep base ment under mosl Arctic shclves excepllocll tty near coastl ines. Conspicuously li neated a nomalies arc round only on Ihe wide east Greenland Shelf and to ;llesser e xtent along the Norwegian shelf ;lOd Barents Sea. Init ial rifting belwee n Greenland a nd Scandi navia fo llowed Il structural boundary separating the north-trcnding pre-rift anomalies on the Greenland s ide from more northeasterly trends on the Eurasian s ide . The nort hcrn part of the Greenland Sea began to open when the Hornsund tra nsform fault bcC;lme Il rifted margin. Howevcr , (rom the Bear Is I' lnd area south to the Grecnland-Senja F.Z., an oblique rift bcglill to open already in the early Tertia ry. Sca-fl oor spreading between SClIndina via and Gree nla nd commenced about 58 m.y.b.p. during the reversed period preceding anomal y 24 . Sprellding between the Lomonosov Rid ge and Euras ia also began ;11 thi s time or poss ibly somewhal earlier. Anom;llies in the Lofote n­Greenland Euras iu bas ins a re relati vel y linear a nd wcll-defincd despite the s low spreading rates (0.3 to 1 cm/yr half-rate). In the Greenland Se O! oblique spreading, close-spaced transform s, and sediment input may explain the complex. ge nerall y undec ipher&ble or non-exis tent anomul ies there . A slight but persis tent asymmelry has characlerized crus lal accretion in the Greenland-Norwegian Sea a nd Euras ia Busin : Ihe Eura nian flank of the pla te boundary tends to exhibit fa s tcr sprellding, greater depth . a nd reduced gravît y ll nu magne tic ilnornaly amplit udes, An exti nc t spreading axis in the Ca nada Bas in is indiC'lled by gravit y land magnetic data . A possible scen,nio is thal during the carly Crelaceous (' M ' _ magnetic re versai sequence) the Chukchi Borderland rifted away fro m the m;lrgÎn of Arc tic Canada along :, tmnsform fnu lt along the Alaskan North s10pe . Li near anomalies of possible spread ing origin are found over some olhcr parts of the Ca nada Blls in , the Makaroy Basin , ;Ind near the junction be lween the Lomonosov Ridge and the Nort h American continental ma rgi n. Magnctic anomalies over the Alpha Ridge and parts of the adjacent bas ins are chaotic in trend and high in ampli lUde . Direct correlation between basemcnt topognlph y and magnetic anomal y is fo und over parI of the Alph;1 Ridge c res t. The deta iled acromagnetic d;lIa have nol se ttled the controvcrsy about the origin of the Alpha Ridge.

OO!//llui. AcUl. 19~1 . Procecdings 26'h Inte rnmioMl Geological Congress. Gcology of ocea ns symposium , Paris. Jul y 7-17. 19KO. 25-40.

Structure el évo lution tec tonique globale de l'Arctique d 'après des études aéromagnéliques.

400 000 km de levés aéromagné tiques à hasse a ltitude ont été effectués par les org:mismes de recherche de rus Navy sur le bassin Arc tique e t les mers de Norvège et du Groënland . au

25

P. VOGT. C. BERNERO. L. KOVACS . P. TAYLOR

INT RO DUCTI ON

cours des années 1972 à 1978. Ces données restreÎgnent les possibili tés dïnterprét:l tion de la struc ture c rusta le e t de révol ution tectonique de celle Vli~te région. Au-dessus des fragment s continentau:>; (ride de Lomono~ov et bordure de Chuckchi). les anomalies magnétiques sont irrégulières. avec des ~tructures loc ~l le s de courte longueur d'onde qui trahisse nt la rela ti ve proximité du socle. Des anomalies de grande longueur d'onde indiquent la pré~ence d'un socle profond sous la majeure partie de la plate-forme Arctique . sauf l oc~lemenl près des côtes: Des anom:lJies re marquablementlinéltires ont é té découvertes seulement sur la vas te plate-forme Est-Groën­land et :our une moindre é tendue le long de la pla te-forme norvégienne et de la mer de l3arenl Z. 1":1 séparation initiale entre le Groënland ct la Scandinavie a été guidée paf une limite structurale sé parant les anomalies pré-rift. alignées Nord-Sud. du côté du Groënland. de celles de rEurasÎe. di r igées plutôt Nord Es t-Sud Ouest. La partie septentrionale de hl mer du Groënland a commencé à s'OU\'rÎr lorsqu 'à la fa ille transfor ma nte de Homsund a succédé une véritable ouverture. Cependant. un rift oblique a commencé à fonct ionner. dès le début du Terti"ire. du sud de la zone de BC<lr Island à kt zone de fracture Groënland-Senja. L'ouverture océan ique entre la Scandinavie et le Groënland a comme ncé il y a environ 53 millions d·années . au cours de la période in verse précédant J"anomal ie 24. L'ouverture entre la ride de Lomonosov et l'Euras ie a aussi commencé à cette époque . ou peut-ètre un peu plus tôt . Les ,momalies d,ms les bassins dcs Lofoten-Groënland-Euras ie sont ~Issez liné:lires et bie n défi nies bien que le demi-taux d'ouverturc soil faible (U.3 à 1 cm/an). Dans la mer du Groënland. l'cxistencc d 'une ouverture oblique . de failles transformantes serrées e[ d 'apports séd i mentilire~ peut expliquer pourquoi les anomalies sont complexes. généralement indéchif­frables. voire inex istnntes. Une llsymétrie fa ible mais continue a caractérisé I"accrétion crusta le en mer du Groë nland el de Norvège et dans le bilssin d'Eurasie : sur le côté curfls ien de la limite de plaques. une ouverture tend à ê lre plus rapide . la profondeur plu~ grande ct Ics amplitudes des anoma lies gr<lvimétriqucs et magnétiques moindres. L'ex is tence d'un axe d 'ouverture abandonné dans le bassi n du Cil nHda cs t indiquée par Ics do nnées gravimélriques ct magnétiques. Il est probable que. durant le Crétacé inférieur (séquence magnétique in verse • M "). le bord continental de C hukchi s'est sépitré de la marge de l"Arctique e t du Ca nada le long d ·une fa ille transformante longeant la pente Nord-Alaska. De~ anomalies magnétiques pouva nt étre liées à une accré tion océanique ont é té Irou vées sur plusieurs aut res parties du bassin du Canada. du bassin de Makarov et près de la jonction entre 1;\ dorsalc de Lomonosov et la marge continentale nord-américaine. Les anomalies magnétiques sur la dorsa le Alpha et des parties des bassins :\djacents sont de directions irrégulières e[ d'amplitudes ékvée~. Une corréla[ion dkecle entre ];. topographie du socle e t tes anomaties magnétiques est mi~e en évidence sur une parlie de la crête de la dorsale Alpha. Lcs données aéromagnêt iques détaillées n'ont pas clarifié l,. controverse sur l'origine de la dorsale Alpha.

OrewlOl. Ada. 19K1. Acte, 26< Congrè~ International de Géologie . colloque Géologie des océans. Paris. 7-17 JUIl. lYlSU. 2)-4U.

During the period 1972 Ihrough 1978 sevcral US Navy research organizations [Naval Researc h Laboralory(N RL). Nuval Oceimographic Office (Navoce'lno). and Naval Ocea­nographie Re~earch a nd De"velopment Aclivi ty (Noroa)1 collected a 10lal of aboul 400.000 km of low level aeroma­gnetic d:\tll ove r the Arctic Basin and Greenland-Norwegi:m SC~1. Typical truck :opacings ranged from 10 to 15 km : the flight speed wa~ about 440 km/hr and the altitude 150 m to 300 m above Ihe sea surface. A number of resellrch pu blica­t ions have bcen based o n these aeromagnel ic data (e.g. Vogt el al .. 1978 : 1979 (1. b : 1981 : Kovacs. 1981 : Kov:;.c~ el al .. 1981 : PhilJips el al .• 1981 : Ph illip~. Tapscou. 1981 : Ber­nero. 1981 : Taylor 1'1 lll .. 19K1 ). The pre~en[ paper is a synthesis of the plate tecton ic and other geoph yskal conclu­sions drawn from this data bri se. Al though the dma have been or are being publishcJ elsewhcrc in one fo rm or anot her. ail bUI Figure !> 1 and 4 arc ncw to this paper. For a more detai led geoph ysical review of the Euril:.Îa Ba:.in ,.nd Greenland-Norwegia n Sea the reader is referred to Vogt el CIl. (1979 b) and Vogt 1'1 al. (1 981) respectively. Sweeney (19HU) puhlished the mo~ t recenl review <lnd synthe~is of the

entire Arc tic Basin. Data compilations a re also fo und in Grjjnl ie and Tillw:mi (1978) and Swee ney el al. (1978) : the latter report is a wbjcct-by-subject review .

The prese nt pl.per begins \Vith the Eurasia Basin and Greenland-Norwegian Sea. and emph'lsizes the post-mid­Prl leoçene plate tecto nic devclopment : the Canada B:ts in is di !>c usscd nexl. ~ince it now appears 10 ha ve a sprellding origin . Followi ng cornes the Alpha Ridge . who~e n:\turc b ~ ti Jl unknown. and fi na lJ y the magnetic characteri~t ic s of known or suspected continental c rus i overflown during the 1971-1978 studie~.

THE GREE NLAND-NORWEGI AN SEA AND EU RA­SIA BAS INS

The Teniar}' opening of the GreenhlnJ-Norwegi;.n Se .. Hnd Eurasi:t Basin can now be reconstructed with considerable precis ion (e.g .. Phillips. Tap~cou . 1981 : Tltl wani. Eldhohll. 1977 : Kristoffersen. Talwani . 1977 : Le Pichon et al .. 1977). As the geology :lIld geophysics of thi s area have been re viewed in ~omc detai! (Vogt l't lt/ .• 1978: 1979 b : 1981). the present trea tment will be flbbre vÎflted.

26

Figurt 1 Hallrym,,/r)' (O.J. 1.1. J. a"d 4 km ;saha/lu) • . fUI iu Iimi/5. Ulrd "a"' (5 ,,[ mtrjor aa.an·floor /" {lnf.:Nr{lhk fc/ll ures a/lll 5l'a5. Fn"" Vogl t r nI. (l979 b).

A linealed a nomaly pattern is weJJ-de velopcd in most lIeep-waler pariS of Ihis area and can be recognized eus il y even in che less delailed Soviet data (Fig. 2.3). One exception is Ihe Yermak and Morris Jesup plateaus ("M " and " Y" in Fig , 3) which appear 10 be Iceland-like aseismic

27

AEROMAGNETIC DATA AND ARCTIC EVOLUTION

ridgcs with probably Ihickened oceanic cruslS and comple x. high.amplilude magnelic anomalies (Fig, 8 and Feden et (II,. 1979). Anolher magneticaJJ y eomplex area is the Grecnland Sea from the Grecnl;tnd -Senjtr fra ctu re zo ne northward 10

the Eunrs ia Basin. Anomalies are continuous only ovcr

Figure 2 "Zebrll -l'I ripe" (zero-COII/OIlr) l'lUI" of I/"'SlIelie ImU/mlliO'$ i" lire A/'('Iic Ha sin IUld " nrll,em Greellllmd·No",'ef.:itur SNI , HII' rk denMes IIe1f(J/i "e Wrllrlllllil',f, lll/uJ mr US NIIV)'. SOI';el. wu/ $"mO' ü lllaJimr /I"",m llll""li(' 1111/11, SO"iel ll lll! CII/illJi/llr , 'O/l/OltrS "'<'rI.' IUkell from Co ll's c t ni. (1978); US dma '''l'fl' Ilü/h -pan fi/ureJ 10 re",m't rt'Jlimw/ IGRF rO'$;dll/JI.~ U/lJ Jlum/JI ef/t(,b' (see Km'IIt's ctal. 19//1), No III/Cmp/ "'liS matll' 10 /Jdju$/ COlI /mirS al sun 'ey hlJund/Jrits . l 'rrdl u5/1rl' "Jin'II II/;­,url,y·· /1 - l, ... hidr 5ep/Jrares US-Catradlmr frol!! Sofier IIem­IlluStre/le eo,·t!rll~, W/rere Jeralled Jmll sert 1J,·erl(J{lo/Jer./rs,f dewi/t'J d/Jlu. /Irt Ill//t'r ,,·tre tlimlllflltd.

P. VOGT, C. BERNERO, L. KOVACS. P. TAYLOR

short d istances - sugge sting ~ large numbcr of transform faul ts - ,lnd in many par ts of the ~re~. includ ing segment s 01' the present spreading axis (Knipovich Ridge). arc absent al logether. Such magnetic smoolh zones may be due in pari 10 Ihermal effects caused by the rapid sedimentation or to other processes related to the slow and oblique spread ing geometry (Vogl el al" 1978). Il is also likely that Knipovich Ridge hils changed its configuration ~nd at Jeast parts of it have rnigrateJ or jumped eastward s. In spile of the close­sptlced aero.nagnetic data ~nd other information. the plule­lectonic detai ls for the Greenland Se .. have not been worked OUI.

Dy contrilst the Jinelltion pattern in the Greenl and. Lofoten. and Euras ia basins is straighlforw~.rd in Interpretat ion. Sea-floor spreading began du ring the re\'ersed period before anomaJy 24. i.e. sometime during the lime 57-58 m.y.b.p. o n the time scale of La Brecque e/ al.. 1977 (a nomilly 24 on Ihe Americ.m flank of Nansen Ridge is shown by a "u" in Fig . 8 : the same anomaly in the Greenltlnd·Norwegian Sea is depicted in Fig. 6 !rnd 7). Although some plate kinematic models predict modest pre-anomaly 25 movement of Green­land away from Euras ia (Sri vastavtl. 197X : Phillips et lIl" 1981). there is no magnetic or other direci evidence for such mOlion in the Greenhrnd-Norwegian Sea. However. if the small positive lineation near the Lomonosov Ridge is a spreading anomaly (Fig. 4. X). then the: separation of Lomo­nosov Ridge from Eurasia occurred before S6 m.y.b.p. A curtographic<1l1y c,l reful reconstruction to the lime of anomaly 24 - i.e. shortly afler spre'lding h'ld started _ is ~ hown in Figure 7. Figure 6 is 11 reconSlruc tion 10 the lime of anomal y 13 (36 m.y.b.p.). Regional and temporal varia· lions in :.pre<1ding raie are shown in Figure 4. Regional reçonMruetions and paleobalhymetry are shown in Figure 5. Many inleresting observatio ns can be made by

28

Figure: 3 Maglll'lif' liJlI'Mionj /md lir.ear oflselS or disruptiQl' s of magllerie anomal)' p"lIerlIS. Hused 011 Ctwadiau ship-btmle reSU11S ill Baffin Ba)' (JUr/il'OIl et .. 1.. 1979). Su .... "1 "~"bru-slripe " ch"" of eas/em Elm.rsia Bas;1I (K"rasik, 1974; K"f(uik. Rotlrde,u\'enskii. 1977 ; Plrillips el at .. /981) alld US N".,y arrol/wlI'te­tic dala (Vug/e l al.. 1979a. b; K()I'(lcS 1981; Fedel! et al., 1979: IIlId Taylnr el al.. 1981). In ereenlllltd· Non-,'''g;all Sel'. 8(J.ffitr Bay. (J.ud Eum.fÎa Basin. dOl/ed alld lIumbered solid litres denute (J./Iumalie.t due 10 ua-flour spreadinf,( wld II/aguelic re"usals : diagotlally slriped liues lire fruCI/"t tmtts. lJal/ed lines labl'Iled K . M. (md N refer 10 age-dis/utlt'I' {Jlms fur Kolbeinsey. Mohns. uud NU/.se" Ridgl's (Fig. 4). BOlh pOSll;"1' (sulid) umi ",rlla/I"e (dashed) Iinea/iOtIS (J.re sho"," irt Amerasi(J. Bajin; l'ume muy be due /0

l'url)' Tuliar)' (md Mesozoic sea·flour S{JrelldinK (t.g., Fig. 9). Possible "ff(I(:lufe Wlles" afe slloll'll by dill8ouull)' s/riped liues. Unea, tJ.Iwmalii'S be/ie"i'd to be assoôllIed ",illl cOnliui'lUal cruSI are dellO/ed b)' ba"ed liues. Sm(J.1I "Y" /mJ ",\1" .ilww locariolls of Yi',,,,lIk auJ ,"' a"is JrS"P lIuismit' JI/Ille/III .• ' (~èdi'u

0::1 al.. 1979).

st udying the reconst ru.:tions. Sorne major points ti re the following:

1) The Hne of ini tial rifting was segmented into incipient spreading cenlers and transform faul lS (for reference purpo­ses these faul ts and several addition;:.1 points have been marked by capital letlers in Fig. 7). The lellgth o f the segments is Iypically 200 to 400 km . comparable to the spacing between major frac lure zones in the equ.llor ial Atlantic and elsewhere.

2) There is only weak evidence 50 far for pre-rifl struCture .~ col inear with. and therefore perhllp:, helping lU 10clIlize the incipient fracture zones. One example is what we here cali Ihe Scorcshy fracture 'Ione: ("C" in Fig. 7) whîch when exte nded southeastwards rorms the norlhcrn edge of the Shetland platform. and upon further extension. continues into a series of bends in the fault pa ttern west of the Viking Graben . Farther north. the Barents and Greenland-Senja frac ture zones ("G" and "F" in Fig. 7) extrapolate "nor­thwestwards" ;nlO minor breaks in the pre-rift magnet;c anomal y p:lllern. Dikes a nd lines of volcllnic centers in the Faeroes and the British Isles (Noe-Nygaard , 1974) are examples of Paleocene structures with the righ t transform trend. developed within continental crus!. But does th is volcano-tectonic trend refleet the Paleocene ~tress field or ~l!>o dceper, older continental struclUre~ ? This que:.lion rem ... in!> unanswered .

3) The incipient spreading axes in many cases parallel pre-rift !>tructures (Fig. 7). and thus may h~l ve bt:en conlrol­led by them. One notable complication is the difference in struc turtll Irend belween the Norwegian and Greenland s ides of the rift. From C northward:. to H (Fig. 7). ,inti p;.rticularly from 0 10 F. s tructures on Greenland ,rnd ib shelf Irend "north" whereas those on the Norwegian-

AEADMAGNETIC DATA AND AACTIC EVOLUTION

~CL-r--~~~'T~~~~T'~~-'--,,-'~-r~=-o p. MIOCENE OllGOCENE EOCENE MAEST.

AGE VS. DISTANCE

TERTIARV CRET. . ~ ____ ~ ____ -L ______ L-____ ~ ____ ~ ______ L-~ __ ~--"

o 10 JO JO "" sa 60 10

"'.Y.a,p. Figure 4 Age ".1'. di.çla.rce plolS for Kolbein.'ie}', Mohl1 s. llI1d NOIrse.r ridge.f (stl' Fig, J). AI'crage spreadil1g halfrales are enlered alo/lg /lraplr segmelllS. NOIe Ihm if lil1 ear mlOmafy "X" ( Vogt ct ~I., 1979a, b) ;.1' of sM·floor spreadil1g I}'Pe, Ihe EUf/uia Basin beRan /() open ne/If lire Crelactol/s· Tertiary Rou,rdar}' (Wilhill stippled band), From Vogl, ct fil. (/981) /urd based 011 VOS' ct al. (1979 a, b, /980), uud Talwmli uud Eldholm (1977J.

Figure 5 Poleobfllh)'me/ry al 42, JJ. 2(J. uml 9 m ,}' ,b,t" ",rd preSt'" bullr}''''elr)' in Cree,,'mrd·No""'J;im. Sea und Eurtuiu bllsh15. COIIIOl/ f,Ç ilr IOO',ç IIf "'l'fers lU 500 m illlen'u/. Damri/: Cfl/Sl ub"vl' st/l ll'l·el. m.d Jun Mayel! NidRe ut J3111.y.b.p. <l fI! Slip/.led. J)o/led Une ,d.II ... ,,' approximme IOCa/im, flf pluIe bmurdary.

29

P. VOGT. C. BERNERO, L. KQVACS, P. TAYLOR

Harent s shelf anu sueh struc ture!), a !), the Lofoten s tructural high and NorwegÎlLn eo,ls tnl struelUres from llbou t 61' to MON trend ··northeast"·. T he Paleocene rifl axes from C to F tend 10 fo llow the NorwegÎan. or · ·oorth-easterly" trenu. producÎnB ,1 nmrked obliquencss between the structures in northcast Greenl,md. incluuing its shelL and the V~ring Plateau csearpment and incipicnt Mohns Ridge (Fig. 7). lt t hu!), appc:,TS thal initial rifl ;ng followed a !)ol/lldar)' be tween two struct ur,tll y dissimilar province~ (wc note. howe\er. that · ·11o(\h·· o r Grecnl:md trends are ,11!),o reprcse nted tO sorne dcgree on the Eurasian side of the rift - forexnmple. the Viking Graben. the central coa~t of Norway. the central Cnledonian front. the TromsJol Ba!),i n. and the southern pari of the Troms- Finnm;lrk fault zone).

4) Thulean voJcllni sm (Noe-Nygaard. 1974). appare ntl y slightly olde r than anomal y 24. oceurred preferentially on the Grcenland sidc of the line of initial rifting (Fig. 7). The present volcanÎç <Ind plutonic expo~ure~ in most places lie 100 10 300 km we!),! of the indpient accretion axis. It is nOi cle"r whelhcr the volcanism shiftcd abruptly ea~tw,HJs (as

30

Figure 6 HUCIUS/Tllc/ioll 011 pO/ilf sureogr/lp/lk proje("lioll /0 fl/tolU/l/y 13 liml' (Jo m.y.h.p.). s!w,,·ülg major Il'elonir fealllru. maguf/h liuta/iOlls of 13/11:1.' mld aida. und II/aglle/ie llllo<!lh ~al/I.'S (M.S.Z.). Presl'''/ imb/llhs 1/1 IIII.'/(''-' fmlll l'ury <:t nI. (l9IiU). Sl.'lI-f/uor .vpread;'lg·/y/,1.' po.\·i li"e maglle/Îc allomlllil.'s are SIIOII·II

v/adi. (US Nav)' aeromagllel ic profill.'s) al/d as dashl'd liue .• (ra/wmli. t'/d/wlll!. 1'.J77). l'/HI-Ulwmaly 13/le("(('lio/l (1/ Atér Ridgt· is flSslmlt'd 1" be IIl.'gllgiblt. 0" Gr('e"/(md. Cupe IVaslrilig/oll B/lsu/Is (c. W.B .) (1rl.' .v/ippltd ; 011 S/û/libuRfli. dl.'l/ j ·"

slippli llg "rllo/el· T~niur)" aI/(l /igll l $/Ipplillg. MfSO~oi<· sedlmelllS. RI.' ... m.fI"'flioll basfd (Ill phlle ro/a/hm pammf/l'fS of Phillips CI

al. (98 1).

by li jump of the incipienl sprcading axb) or migra ted eas twards more gradually. In the laller case the continental c rust betwecn the Thulean volcanic" (KGH-K -S-H-S H) and the Paleocene Tif! (A-B-C-D-E) would have been intruded ;md partially covered by volcanic rocks .dighlly older than anomal y 24 but younger th::ln thc T hulean voleanic .... which are thern!),elves also not rnuch older th:tn anomaly 24. The graduai migra tion hypothesis is hard to provc sinee the volcanic~ in question woulu bc found under generally thiek Tertiary "nd Qualernary sediments. However. it i!. known that Faeroes volcanism did rnÎgrate in an eastward directÎon (Noe-Nygaard. 1974).

lntercstingly mosi Thulean vole:,nic lineament~ tend 10 parai lei the NE or ··Norwegian ·· ~truc tural trend. An eXlImple is the northern easi-Greenland vole;mics. from south of Bontckoe I ~. (B) to Shannon Is. (S I-I ). ThÎ~ volea­nie lineament i~ closcJy pamllel to the V0ring Pl,ltea U esc"rpment and structural trends to the ea~l. but cuts the nonh-Irending Jura~sic (and oldcrJ f;wl t-boumJed bas ins (Surlyk. 1978) as weil rIS other Greenland ~tructures of

Figure 7 f>% r-Sftrtogmpllic rI'CQrUIrUCf!cm / Q (/IrOlllfll)' 14/illllf (.56 m .y.h.p,) somr a/1er seo-/loor sprr:adill8 vtgwl. A/w ­mtlly 14 (md oldcr )'p"'adirl/;-lype wUlI/wlie,f /lfe vlflck (positi" e) wllereas pre-rift allomalies 011 ea)'t Oreellialld $lrelf are s/ippled. O/ller magne/le . Km,'i/ )'. IIl1d slrucll/ml lilleu/luns. suvuerlt.' t ul/)' Terliury is neuru und Me.w:,oir­e/.ri)' Tu/ lfl f)' OllfcropS plOlled on ,.,t·ull s/ru r/iun fmm pl/hlica/IOIIS ine/lldinK tht follow;ng worts : EldhQl1Il and f'I, ';ng (1 971), Eldholm (Jnd Sundr'o r (1980). EldllOl", alld T(lI"'(ln; (1977). Oavrielsell alld Rumvers (1979). CUirllUd et al. (1978). CrllnUr and Ta/"'uni (1978). Jllrgtnsen ulld Nm'res/ad (1979). LurHn (1978). phl/Ups Ct al. ( 1981). Rm/lre.'ik (1979). S lIrld.·o( et Il l. (1978; 1979). S ur/y!.: (1917). Suriy ~ et al. (1980). Ta/"'lIl1i (Illd Eldhalm (19 72 ; 1917) (Ill d TalJemus (1979). Larfi[e caf/ liai/mers A t1lrollgh J II/ark major olfse /s ur irreglllllri/ies in /rllet of jllilial brell!.: : P.P.Z" Filt rats PMe/lm: ZOIre .. S .F.Z . SlIl!Illl/ld F.Z ,,: O.J.M.F.Z .. Old Jmr Maye" F.Z." O.S. F.Z .. Orem/mld-Stnjo F.Z .: B.F.Z. . Bllrtlll.~ P. Z.; o/ld 1/. /".2 ., HortUllrrd E Z. A/oIIg eas/ Gru lI/mld cOMI. smol/ mllitlll let/ers KCN dena/es KIl{l Cu.~IIl Y Ho/m ; K . I( rmderdlugsslmq ; S. Sr:aresby S und ; B . Bml/e!.:"e Il/wul ; IIlId SH. ShwrruIII Islarrd.

s imilar trend. There is 31so 3 c rude correspondence belwee n segments of the incipienl sprellding 3xis a nd segments of the onshore voleanic linerunent!. : the southern pari of the Faeroe-Shetland Escarprnent lies adjacent to the main bod y of plateau basalu south of Scoresby Sund (S . Fig. 7) rllld parallel s the cOlts tal dike swarm extending southwes t from S. The northertl part of the Faeroe-Shethmd Escnrpmcn1. cast of wha! wou ld later become the separme Jan Mayen Rid);e microcontinen1. corresponds to the moslly non-voleu­nic segment 8 -S of the Greenland nmrgin . The VI!1ring Platelw Escarpment parallels and corresponds to the voka­nie lineament B-S H. S H and E mark the northern limits of cast Greenland Thulean basalts and the outer Vôring Phltcau , respec tively .

Hot spots provide one possible explanation for Ihe paltern of escrrrpments and Thulean vokanism. The Icela nd hot spot , centered in the a rea around 8 . would have caused Ihe VOICllll ism from KGH to S on the Greenland coast. in Ihe Faeroes. along the Fr.crue·She tland EscHrpme nt . Hnd in the British Terli,uy province . The sarne hot spot subsequenll y

31

AEAOMAGNETIC DATA AND AACTIG EVOLUTION

produced Ihe Greenland-Scotland aseismic ridge. induding pre~en l -day Icelam! (Vogl. 1974 : see Vogt el al . • 19K1 for review). A second . less polent Jan Mayen hOI spot is invoked 10 expla in the outer V~ri n ); Plnteau and ilS escar­pment. the EaSI Greenland volcallÎcs from 1110 S H (Fig. 7) ,md . subseq ucntly. such volcunocs as Ves tcris lInd Eggvin ban ks (Vogi el (II .. 1981). Two addiliolllli hOI spots have been idcnlified weSI and north o f Greenland : in both cases Ihe carliest known activity is Paleocene as weil. T he Disko hot spot. now extinc t. is c redited wit h subllerial ~ls'lll s of Baffin Is land (Cape Dyer) and Disko Is land-Svartenhuk (Keen. Clilrke . 1974). Subsequenlly Ihis hot spot produced the basement rise below Ihe Davis Strai ts. A variant o f the hot spot hypothes is is due 10 Talwani and Eldholm (1977) who en visl.ge one extensive Icellind ho t spot respons ible for the Iceland. Jan Mayen. and Disko Island volcanie provin­ce s. 80th hypolheses would allribute the cOncentra tion of initial FlIeroe-VJ1ring area VOI Cllllism on the Greenland plate to the hot spots' init i:.1 locll1ion under Ih:11 plaie.

Off nnrther" Greenland the Yermak hot spot produced the

P. VOGT, C. BERNERa. L. KOVACS, P. TAYLOR

Kap Wa~hington basal ts, lower Tertülry tuff ~ on Spihber­gen. the Yermak and Morris J e~up It ~e i smic ridges (pla­teaus). and a h;gh magnetic-amplirude zone o n the late Terliary crus t of Ihe Nansen Ridge (Feden elal., 1979). The Yermak hot SpOI would ha ve been located in the area between point 1 and the Kap Washington basahs (C\V in Fig. 7).

One difficul!y for the hOI spot hypolhesis in il S simples l form is that Ihe Jceland. Jan Mayen . Oisko and Yermak hot SpOIS <Ill developed within pre-exbling non-ocea nÎc sed i­mentary ba!>i ns or along Iheir margins. No ne de veloped with in the nearby cratons. If this observation is not fortui ­to us. either a ) magmas from a hot spot (pl ume) ri !>ing below a cra to n are Se neratly unabJe 10 break through the Ihic!. cralonic lithosphere to the surface; or h) plume conveclion occurs primiltil y in Ihe fls thenosphere - ralher thrlO the middle or deep mantle; the lac k of a well-developed ast henosphete under cralonie lithosphere would Ihen pre­d ude hot spots there : or cl the process of plate separ<llion itself allers the kind of convection possible in the upper ma nlle . anu plume·like convect ion is stimulaled by the onset of rifling. rather than the other way around.

5) Aewrding 10 Talwani and Eldholm (1977) the Svalbard­Barents continental margin (F to 1 in Fig. 7) wa~ a shear margin from anomal y 24 to anomaly 13 time (36 m.y.b .p. ; Fig. 6). At that lime Greenland becallle attached to the North America plate and the Svalbard-Barents margin became a rifted margin leading to the forma tio n of Ihe Greenland Se:!. Our new aeromagnelic data , combined with the morphology of the Gree nland and Barems continental margins (Perry et al .. 1980) indicate a somewhat more eomplÎcated geomelry o{ opening : Only the IlQrthem part of the Greenland· 8 arents margin ({rom H 10 1 in Fig. 7) was a ~ hear mitrvin which becilme a rif led maTi;;in. The plate boundary alonK this segment probabl y followed the Hor­n~und Esca rpment (Sundvor et al .. 1979) a buried. west-d ip­ping escarpment and probably a fault system _ initially a zone of major dextral ~hear . We think Ihe soulhern part of [he Greenland - B 'l rent~ margin (F-G· H) was never a simple shear marKin. but consis ted of al leas t two spreading cenlers and two transform fault s. the Greenland·Scn;a fra cture zone (Talwani. Eldholm . 1977) and a nothcr fmc lurc zone we cali the Barents F.Z. (G in Fig. 7). If. a~ we ~ug1!e~l.lhe ~pread ing-type a nomalies south of G wcre formcd dudng the initial opening (anomal y 24), then the ini tial offsel on the Greenland·Senja F.Z. was about 175 km . No sea-floor ~preading anomalies associated with the carly openi ng have yel been ide ntified belwcen Gand H. perhap~ because of thick sediments and oblique spreading. A smalt rhombus­shuped ocean bas in already existed betwee n the Greenland­Senj'I and Hornsund fra clure zones at .. nomllly 13 time ; this bllSin was probably larger thlm ~ hown in Fig. 6 beca use of substantial shelf-progmding after anomaly 13 time (Vogl. Perry. 1978).

6) New plate kinematic reconstructions have becn made for the sys tem of plaIes in the Allamic north of the Azores. and in the Arctic (Phillips el al .. 1981 ; Phillips. Tapscot!. 1981). These recons tructions have been based primarily on the detailed aeromagnetic data described in this paper. Combi­ning the reconstruc l ion~ with newly published b:1 thymelry (Johnson el (/1" 1979 : Perry el al.. 1980) ~ediment isopach charts (Vogi el al" 1979 b. Grl'Jnlie . Talwani. 1978). DSDP drill hole information (Talwani. Udinl!>ev. 1976). llnd ~ci~­mic rcrleetion profile:. (e .g .. Vogt el (II .. 1978; Gr0nlie . Taiwan;' 1978). Bernero (1981 ) con~tructed paleobath yme· tric ehart s for the Greenland-Norwegian Sea and Eurasia

32

Basin (Fig. 5). This is the firsl paleobathymetrie ehitrt for the Eurasia Basi n ; in the Gree nland-Norwegütn Se;1 we Ceel the charI!> in Figure 5 are somewhOit more acc urate Ihan the rather similar one~ published by Grjjnlie (1979). in IXITI becau~e crus tal ages cou Id be specified more aeeurateiy from the dela iled magnelÎc data . but primaril y becau<;e our model ineorpor..lIes the effects of sedimenlation. As a first approximation B~rnero assumed thm the relatively sed i­ment-Slarved basins on Ihe American side of Ihe plll\e boundary accumulated sediments at a constant rate in time . At each site the excess !>ediment in the ba~i n !' a nd margins on the Eurasian s ide was a .c;sumed to have been deposited in post-anomal y 5 t ime. primarily in Ihe Plio- Pleh lOccne ghl­cial age.c; (Vogl . Perry, 1978). ln other wonh, the pre-9m.y. sedimentation rale~ were a:.~umed independent of Ihe fJank . As a con~equence of stripping off large masses o f presuma­bly Plio- Pleis tocene glacial sediments along the Eumsia n m,lTgins and adjacent abyssal plains. the corresponding basins show up deeper in the middle Tertiary than at the present tÎme. notwithsta nding the erfect~ of crustal subsi­dence! Note also in Figure 5 the persistent shallow tO subtterial sea floor in the Ieeland area , and Ihe emergc nce, before 33 m.y.b. p .. of Ihe Vllring oUler ridge and the Yermak-Morris Jesup plaleaus. The deep-water connection between Greenland and Svalbard (the Fram Strails) h'ld bcgun 10 develop by 20 m.y. b.p. a nd was complete by 9 m.y. b.p. However. in detail the evolution of this siIJ area remains uncertain owing 10 the confused and low-amplitude ehatacter of Ihe magnetic anomalies (Vogt el al .• 1978).

7) Minor but signifieant asymmetries have chllTacterized the acerelion of oceanic crust in the Gree nland-Norwegian Sea and Eurasia Basin (Vogt ct lIl .. in prep.). Spreading half-rates havc beeo generally higher on the Eur.ls;an side of Nansen Ridge since the lime of opening (Vogt et al .. 1979 il) . while nmgnelic anmllaJic~ tenu tu bt.: uf 'U WCI"

amplitude (Vogt et lll .. 1979 CI) and the b.\sement depth. adjustcd for age ilnd sediment loading . grea ter (Karasik. Rozhdes t ven~kii . 1977). The same or s imilar a~ymmetry ean be round in the Gree nland-Norwegian Sea: Correcled basemenl depth is greate r on thc Eurasia side _ exeept for the V~ring plateau area - and Free-Air gmvity anomal ies (Gr~nJie , TalwanÎ. 1978) not surprbingly show li corre~pon· ding asymmetry (Vogt el lIl .. 1975. 1981). AI leasl in the Mohn~ Ridge ~ec lur during the period 56 10 about 36 m.y.b. p .. spreading half-rates were higher and mllgnelic a mplitudes Jower on the Norwegi:tn s ide of the itcerc ting plaIe boundary (Fig . 6). The pervasive a:.ymmetry in the cru~tal aecretion process (Vogl el (/1 •• in prep.) may relate to Ihe differe nce in absol ule plaie motion. which at least over the last few m. y. has been higher for the North America plate than for the Eurasin plate (Minster. Jordan. 1978). Wc thererore postul;tle that a l ~ Iow spreading rit te~ the more nearl y stl1t ionary plate aceretes li thosphere more rap idly, ~ thal the available basait magma. if deli\'ered in equal quantity to both pla tes. is smeared out into a thinner layer at higher sprcading nltes. resultîng in a thinner . deeper cru~ t. and 10wer gmvi ty and magneti c anomalie~ .

THE AME RA SIA BA SIN

A very ~ubstantial aeromagnetic dala base nOlwithslanding (Fig. 2, 3. 8). the crus tal character and plale-teetonic hi!>tory of the Amera~ia Ba!>in remai ns very uncertain . U,ing ~ urface geolog)' and borehole data from the ~urrounding continents. several aUlhors have recently proposed that the

AEAQMAGNETIC DATA AND AACTIC EVOLUTION

Fillure 8 Rtsidua/ magn(/;c UlIQma/iu (positi,·t. block) p/OfftJ (.'/ung /light truds /.md .mpupostd on GEHCO bllfhyfltttric t'lw,., (Juhns"" el al.. 1979). Mn f.:nttic pralilts Io·t,... hiJ.:h-pun liI/l!!rtd 10 rtmarl' diurnal "orio/ions and Q/ha /ong-"·ol·tltnglll fGRr' 'tsidunls (Kol'acs el al .. 1981). L"II"rs " a " Ihrough "..," '''la /(} It/llu'I's discunl'd ln l U I.

cruSI under the Amerasia fi :!sin formed by spre'lding sorne lime in the j uras~ i c orcarly Cretaccous (Grantz l'lui .. 1979 ; Joncs, 1980: Churkin. Trexler. 1980).

Despite an approx im'ile conse nsus on the timing, there <I rc large differences among kincmatic models. Wc shall consi­der the three mO~ 1 reeent ones IGrantz el (If .. (1979). Jone~ (1980). and Churkin . Trex ler (1980)1 .tnd then :mempllo lesl Ihese hypolheses agaÎnsl the aerornagnelie data (see also Taylor 1'1 al .. 19K1 : Vogt et (II .. 1979 a,h).

Tt\(' Amt' rasia SpMnochasm models

Grantz et al. (1979) favor an opcning geometry s imilar 10

that originally proposed by Carey (195l:1). AeeonJing to thb. model in ib origin,ll rorm. the e ntiTe Ameras ia Bas in opened as :1 roughly triangolltr-shapcd rifted basin with an ape" in northwcstcrn CarHldll . Gra ntz el (I I. (1979) infe r li pole of opcning at 69.1 "N. 130°5 W. According 10 this "Amerasia sphenochasm moder" both the S iberian-Alaskan and the C:madian continentl.1 nmrgins would lx: of the riflcd (Atlan­tic) Iypc, and any magnetic anomalÎes due to sea-floor spreading should form a fan shaped pattern genemlly pcrpcndicular to the LOlllono!>o v RiJgelEurHsi:l Basin. An ex ti net spreading a",is (fossir rift) "hould exi!> t in the miJdle of thi ~ fan-shapcJ magnctie anomaly panern. Using on ly gravit y data, Granlz el (II. (1979) werc the fi rst tO identi fy an extinCI axis in the Canada Blis in. However. the geologic ;md paleomagnetÎc evidcnce advanced by them ill ~upporl o f the Alllerasia sphe nochasm model (e.g .. Newman et (II .. 1977) has been ques tioned by Churkin and Tre"ler (1980).

The North sl(l~ Irllll.~ftlrm mudels

Scveral plate tec lo nie mo.lel5 have becn proposed in which thc Alaska·East Sibcrian conline nl al nmrgin aClcd liS a

33

major transform fault În the opening of the Amerasia Bas in. Herron el al .. (1974) sugges ted that the Kolymski area. now part of eastern SiberÎ'I. ri ft ed away from Arclic Canl.Ja and paralld 10 the Alaskan NOrlh Siope. which Ihus acted as ,. transform rault during the openÎng of the Amerasia Uasin. The opening lime was proposed to be J urassic (180-150 m.y.b.p.). Herron tl al . further ~peeulated thal the Alphll-Mendeleev Ridge system represents a fossil subd uc­tion zone of LlI ramidc agc (81·63 m .y. b.p.). A dcxtral transform a long the (anndÎltn Arctie murgÎn waS proposed to have co nneclcd this subduct ion zone 10 the Roc ky MountaÎn Laramidc Thrus t.

Another North Slope tr:msform model i5 tha t of Joncs (1980), who vicws the North Siopc margin (" Beauforl­l..;lptev (ault "') as originally a conlinu:tliun of the Tinlina fault. T he Alpha-f..l endeleev Ridge i!> proposed by Jone~ to have becn an ac tive sprelldÎng center connecled to Ihe Bea ufor t-LuplCV tr:msform J uring the J uras!> ic and E • .,ly Cret;Jeeous. Subsequcntly, in the Lllle Cretaceous, righI­laierai s lrike Slip motion along lhe Kal tag !aul t displaced the Tintina from the postulatcd Be,lufort-L:lpte v (:luit by 500 km. The KlllIllg hmlt i!self continued along the Arct ie Canadian margin . In the Jones (1980) mode!. the Canada Bas in c ruSI WllS Icf t unaffe Cled by these events and is pie lured as alrcady exbli ng in the Permo·Triassic. Jones does not adress the argume nts .. gainsl the Al pha Ridl;e having becn :t sprclldi ng center (e.g .. de Laurier , 1978).

Th" l'acllie mlcrupla le model

Churkin and Trexlcr (1980) propose Ihat Ihe Arner:lsia Basin rcpresents a pari (or parts) of the Kulll (prolo- Pneifi e) pla ie wh ich was e ut off and isolated by com plcx processes of plme conve rgence and micropla te acere tion. This hypolhc-

P. VoGT. C. BERNERa. L. KQVACS. P. TAYLOR

~ is makes no specific predictions about the geometry of oceanie crustal structures in the Cilnild~ Ba~in . However. the authors' suggestion that the Alpha-Mendeleev ridges rcpresent a fold bell caused by subnmrine collision be tween the Euras ia and Kula plates places sorne geomctric con· ,trainl~ on the types of structures (and perhaps magnelÎC anomalies) in the area of these ridges. Furthermore , if oceanic crust now in the Amerasia Ba~in was formed in the Pacifie substantially to Ihe south. the magnetic anomalies wuuld probably exhibit grealer skewness and lower ampli· tude Ihan would be expected if Ihis crust h;ld formed ~t high latiludes.

AE ROM AGNETIC TESTS

Keeping in mind the hypo t hè~e~ outlined above. consider now the acromagnetie data as a possible leSI (Fig. 2, 3. and 8·10). A~ discussed by Taylor el al. (1981). Ihere are in the Amer.tsia Basin al least IWO areas of linear magnelic anomalies. suggeslive of sea-noor spreadingand geomagne­lic reversais: the southern Canada Bilsin and Ihe centml Makarov Basin (Siberia or Fletcher Abys~al Plain).

ln the soulhern Canada Basin anomalies with ilmplitudc~ of il few hundred rIT peak·to·trough. Iypical for Mesozoic oceanic cruSI formed in mid · or high.latitudes. s trikc north in the central parts of the basin but morc northeas tcrly in the marginal zones (Fig. 9). The northerly trend is çonvincingly exhibiled by a broad magnetic negative flanked by two narrower highs. The bro..'ld neg,lti"e was suggesled 10 represent a fossi l axis of sea·floor spreading (Taylor el al" 1981): limiled gravit y data from air-lifted ice-floc ~Iation~ reveal li .... 25 10 + 50 mgal Free·Air high (Fig. la) çoinci· ding with the main. central segment of the extlnct aXI' indieated in Figure 9. The exiMence of this gravily anomaty lends credence to the sugge5ted extinct axis. Presumabl y the ba scment topography responsible for the gravit y high lies entircly buried bclow thick ~cdimcnt~ known tu exi ~ t

bclow the Camlda Aby~s[1 1 rlain (Grant:l. el al .. 1979).

Lineations on eilher side o f the cxtinCI central rift zone become more northeasterly in trend. paralteling the North· wind Ridge and the Ca nadian margin . The northea~ terly

anomaly trend is ~omewhat deOOI~ble. p~rtkularl y on tbe

..... /. -.............. ...........

34

Canadian side where the f1ight separation is comparable 10 anomaly wavelength (Fig. 9). The locations and trend~ of fraclUre zones offselting thc~e linealion .. are s imilarly somewhal conjeclUral . Al though inlerprelations of the magnelie data of Figure 9 may vary in details (compare Fig . 9 of Ihis paper with Fig. 2 of Taylor el al.. 1981). the first-order magnetie tcc tonic fabric of the southern Canada Basin nevertheless now appears delinealcd .

The age of the magnelic IÎneations is still uncertain ahhough the probable Jurass ic or Early Cretaceous age of the ba~in makes il very Iikely thatthe lineations represent part of the Keathley (M) series of geomagncl1c reversais. The Keathley reversais (Vogt. Einwich. 1979) occurred in the period 11 0 to 155 m.y.b.p. (laIe Callovian 10 mid·Aplian). so the age of the Canada 'las in crust probably lies somewhere within this interval. This would be consiSlent witb age~ independently deduced from borcholc dala and surface geology (e.g .. Granlz el a/" 1979). Taylor el {lI. (1981) proposed tlO identificillion for the Ca nada Basin anomaly pattern. Acçording 10 them the spreading lasted approximately (rom 15] m.y.b.p. (anomaly M·25) to 127 m.y.b.p. (anomal y M-12), or late Jurassic to carly Cretaceous. Certainly other correlations wilh the Keathley Sequence are possible. For example. if the axial magnetic low (Fig. 9) represenls the reversed inlerval M·3 the Ca nada Basin could have bcKun 10 form in the early Crelaccous. il time favored on geotogical grounds by Sweeney (1980). In any case, the exis tence of spreading-type Iineations rules out lhe suggestion of Herron el (JI. (1974) who Ihought the basin was formed during a time of few or no reverSlils (180·150 m.y.b.p.). Wherctls ,j Keathley O .. i·Serie~) age for the Canada Ilasin crust i5 probable. we cannol be cerlain Ihat the obscrved l ineation~

do nOI belong 10 a more ancient reversaI sequence. ilS implied by the model of Jones (1980).

The somewhal fan·shaped anomaly pattern in the cenlrflJ Canada Basin (Figs 9. la) .md extinct axis is consistent with the Amerasia Sphenoch;lsm Model (Carcy. 1958 : Grantz el a/. , 1979: Taylor el al .. 1981). However. there i~ no magnetic or olher evidence for a cOirlillllOliorr of Ihis pattern northw'lrd towards and across the Alpha-r.,·lendeleev RidBC (Fig. 8). Admiuedly the aeromagnetic f1ight !racks nOrlh of 76Q N run parallel or sub·p;\nlllcJ to any such pallern and therefore are poorly ~uited tu tC ~ 1 the Amerasia ~pheno·

chasm model in ilS original form. Of course. if the Atphn

Fij;ure 9 Residrurl ",agut/Ir Iinta(;'mS.l·ul;I;f$ud "(lrrtlU/if/1l linu and /ranl,·tr~r fraefllfu (dlJlud) and nl/nel spt(ldi"l1 axis (Ihid: lint) in Canada Ba~i" . Ba/Ir}"' III f lrie ro n/Ours in IIItIUS. Su alsa Ta )lur el al (1981).

AEAOMAGNETIC DATA AND ARCTIC EVOLUTION

Figure 10 GrUl' il )' mefJ)·" rf'me'!l.~ (doh") {m d 25 mgal F ree-A i r fU lOm"/}' cmll ()lIrs. Su/id ,,/Id da .dlfd filles (Ire mugI/fa ,· wlfJmu/)' cor rflm ;u l/ s uml /l rtI/iond jm" /lires jfl!m Figure 9. OUlltymel ric Cflli /O/IU ill me/ers. Set a lso TUY/fl r e l ,,1. (/981).

Ridge is continental in nature, the fa n-shaped pattern would be expected to continue only to the boundary betwee n this ridge and the Canada Basin c rust (e .g. Sweeney, 1980 ; Johnson et al . . 1978). It is also possible that such a continuat io n once ex isted but WOlS subsequently overprinted or erased by the tec tonie or vo[canie proeesses tha t formed the Alpha-Mendeleev Ridge .

We have not yet criticalJ y examined the skewness and amplitudes of the Canada Basin magnetie lineat ions (Fig. 9) as a tes t for the Pacifie microplate hypothes is. However . whe n a lJowance is made for 4 to 5 km sed imen ts in the central Canada Bas in (Grantz et ai. , 1979). the low anomal y amplitudes observed Ihcrc (150 10 250 nT peak-Io-Irough) resemble those of Kea thle y anomalies in the wes tern Nort h At lant ic, present latitude 30"_35G (Vogt . Einwich , 1979) and paleo -Iat itude 20"_25GN ( Irving. 1979). White this observli­tio n is in qualitati ve agreement with a large-seale northward displaeeme nt of Canada Bas in crus t (Churki n, Trexle r_ 1980) there are man y other fa ctors that influence magnetie anom.,ly ampli tudes (e.g" Vogt el (II .. 1979 li . h ). Further­more , the exis tence o f ~l fossil spread ing r.:entc r be tween the Chukehi borderhlOd <l nd the ma rgin of Are tic C;'Ol,da (Fig. 9 a nd 10) is not predic ted by the Pacifie micropla te modcl . a nd would hlive to be forl uitous.

Although the extine t C:lOad., Basin axis is Oblique 10 the Alaska North slope: . the fla nk anomal ies appear more nearly para llel to the Northwind csearpme nt and to the Can,ldian m"rgin. At the sa me time these marginal line.,t io IiS are roughly perpend ieula r to the Alaska margin. T hese rela­tionships arc bes t ex plained by the North Siopc tr"nsform model : T he Chukehi Borderland was originll ll y allached to Are tie Canadll in the shelf -edge reentrant nOrlh of the McKenzie del t., (Fig_ 3)_ Sorne t ime .,fter the C hukehi

35

Borderland block had begun to move away, a long a Nort h Siope transform fault (e-S., Herron et al., 1974), the pla te kinematic pallern changc:d and the axis of spreading became reoriented to its present oblique co nfigura tion (Fig. 9 , la). Although we prefer this interpretation - implied by the lineat ions and frac ture zones proposc:d in Figure 9 a nd 10 -more detai led aerom.,gnet ie dat., are needed to establish bc yo nd doubt the pattern of 'Inomalies along the margins of the Ca nada Bas in.

Anoma[y amplitudes are not low throughout the Canada Bas in but increase irregula rl y as the Alpha-Me ndelee v Ridge tS approac hed from the sout h. It is uneertain how the ext inct spreading axis cont inues northward beyond the area of Figures 9 a nd la. It was suggested thm the linea t ions extending towards the lower r ight from point "' i" (Fig . 8) mil)' belong to the M-Series (Vogt el (li" 1979 a ) and thcrefore fOTm a contin uat io n wit h the southe rn Ca nada Basin anomalies . Addit ional data a rc ncedcd to establish the re lat ion between these anom;ll y patte rns.

T HE MAKAROV BASIN

Aeromagnetic da ta re vcai llnother region of lineated anoma­lies in t he Makaro v Basin (Siberia o r Fle tcher Abyssal Pla in) between the Alpha-Mendelec: v :lOd Lomo nosov r idges (fig. 3 and M ; Taylor el al., 1981). The lineat ions ll re loell ted within the area bounded by Il , e, f. 8, and the North Pole in Figure 8. The Makarov Basin anomalies arc of mueh higher amplitude and sorne wh::l t more irrcgu lar than those in the Eurasi., Basin or in the a rea of the extine t Canada Basin spread ing axis (Fig. 9). Ta)' lor el al. (1981) sugges t thatt he Makaro v Basin anomalies were formed by sprcading from a

P. VOGT,C. BERNERa, L. KOVACS, p , TAYLOR

now_exlinct axis roughly bisecting this basin during the time period 80 to 47 m.y,b. p . (a nomal y 19 10 34) at a half-rale of O.!'!5 clll/Yr. The observed fan -shaped anomaly panern (Fig . 8) would then mcan that the amount of opening decreased from the Siberian side toward the North Ameri­can side. If tht: Alpha-Mendeleev Ridge was !>ome type of subduction zone (Herron et al .. 1974 ; Churkin. Trexler . 1980). the Makarov Basin may have becn its corresponding back-arc basin. The proposcd accreting plaIe boundary W,tS connected to the Labrador- Baffin rift and the Greenland­Norwegian Sea rift in sorne way not yet unders lOod.

One difficuhy with the Taylo r el al. (1981) hypothesis is thllt one of the most prominent posi ti ve Iineations (jUSI 10 the [dt of point "8" in Fig. 8) follows ,1 line of seamounts (the Marvin Seamounts. previously referred to as the Marvin SPUT; see Sobczak. 1977). The magnetic lineation may therefore be a topographie or structural effect rather than a sea-floor spreading lineation. il could be that the Marvin Seamounts represent the summit s of rift mounta ins associated with the exti nc t Makarov Bas in axis. now largely buried under thick sediments (Ostenso , Wold. 1977 ; Blasco el ul .. 1979). However, this is unallractive because the scamounts and assoeialed anomal y do not correspond to an axis of symmetr y either for the entire lineation pallern or for the Makarov Basin. Another difficulty with Ihe interpre­tation of the Makarov Basin as a simple rifted basin is the grcat difference betwecn the topography, magnetic anoma­lies, and crustal s truct ure of the Alpha-Mendelee v and Lomonosov ridges. If these two (ea tures are fragment s of a once continuous continental massif (Johnson el al .. 1978; Sweene y. 1980) o ne should expecl sorne geophysical s imila­rities between them.

THE ALPHA -MENDELEEV RIDGE

The Alpha-Mendeleev Ridge complex has becn the object of much speculation over the last decude (e.g .. Vogt, Ostenso. 1970; Vogt. Avery, 1974 ; Herron el (l /" 1974 ; Swt!ency. 1980). Sinee the US Nnvy aeromagnetic datn extend ol1ly to the junction betwecn the Al pha and Mendelee\' ridges. we shall only discuss the Alpha Ridge here . However. it may weil be that the two fealUre!> "re olll~ one. in which ca .. .: the following discuss ion also applÎes 10 the Mendeleev Ridge. The origin of even the Alpha Ridge still remains conjectural despite the large volume of ncw detailcd acromagnetic data (Fig. 8). which rcveal irregular anomal ie !> of hÎgh amplitude (500 to over 1.000 nT peak to trough and var iou~ irregular 10 sublinear patterns (Fig. 3). We summarize our Inferences about the Al pha Ridge under the fOllow ing ten points:

1) The thick cover of sedi ment (400·1 .200 m). the recovery of Eocene and Maaslrichtü.n sediment from the ridge c res t. and the absence of sei~m icit y ail ru le out the hypothe~is th,.t the Alpha Ridge is an active pla te boundary of any type. or a Tertiary axis of sea-floor spreadîng (de Laurier, 1':17~ ).

2) The shallow present bnsement deplh (2.900 .:.. 500 m after Îso~tatic correct ion for sediment loading; de Laurier. 1978) rules OUI the hypothe~i~ that the Alpha Ridge i ~ a typÎcr,1 aecret ion axis extinct since Mesozoic or earlier times. because subsequent thermal subsidence would have essentially reduecd the initial "ddge" form to zero. This point has been made repeatedly in the literalUre (Vogt. Avery. 1974; Herron el al .. 1974 ; de Laurier. 1978).

3) The age and shaJJow basement deptn do not rule out the hypothe sis that the Alpha Ridge is an ancien! hot ~pOt

36

generated oceanic pla tea u. like Ihe Shalsky Rise and Ontong Java Plmeau in the Pacif Î\.:. or the Greenland-lceland-Faeroe Ridge. Azore~ Plateau . or Rio Gnmde Rise in the Atlantic. Ali these feature s have d imensions of the same magni tude as thal of the Alpha Ridge (4()O km x 800 km , with il

topographi e lmomaly of about 3.5 km with respect to average Cretaceou~ oceanic c rusl).

4) The Alpha Ridge could a lso have origi naled by plaie convergence (Herron el {II" 1974). perhaps like Japan or the Lord Howe Rise (Taylor. 19711). The limited M~ i~mic refrac­tion data (Hunkins. 1% 1 ; 1962) do not support Ihis hypo­thesis. and no arc-like ros~ il trench or volcanic chalns arc apparent from existing da ta . The existence of a median rift -like va lley (Vogt el al .. 1979 a ) is a lso unexplained by this hypothesis. unless the valley is rein terpreted as a fossi! trench or ,Iburtive intchlrC spreading eenle r. The onl:lppinfl relationship be lween Makarov Basin sediments and the Alpha Ridge seems more in line with the "spreadi ng ce nter" than with the "subd uction I.one " hypolhes is (O~ten~o.

Wold. 1977).

5) The Alpha Ridge could repre!>ent a region of plate compression and deformation nOI like e il her an Andean or an island-arc type convergence zonc. This is a purel y ad hoc hypothesis s ince no such convergence I.one has elsewhere been idenlified in an oceanic aren.

6) T hc Alpha Ridge could represent ., ~ubsidcd, perhaps thinned shield (Ki ng el (I/.. 1966). The long-wavelength magnetic anomaly over the Alpha Ridge is similar to what is observed ove r continental shield s (Cole!> el ,,1 .. 1978). Again. the subsided shield hypothesis is incons is tent with sparse seismic refracl ion ,md surface wave s tudies ( l'Iun­kins. 1961 ; 1962) and it doe!> not explain Ihe ex istence of a c res tl,1 vll lley.

7) T he aerornagnctic dulu do nOI rc veal simple line,lI ions of the sea-floor spreading type. In the best-known part of the Alpha Ridge crest the "centr<11 vil lley " and flanking ridges correlate with a magnctic lo\'.' (""" in Fig.!'!) flanked by highs (Vogt el (/1" 1979 (l). Thc!>e observ:Hions suggest that a highly magne tized (norm.rl pola rit y) ba~ementlOpogr;tph y - r;tther than bands of ahernating polarity - is responsible fur the ohscrved llnornalics (the IWO sharp. ell ee"elOtI magnetic low~ below point" e" in Figure 8 may represent exceptiona! s trips of reversed polari ty,. The rnagnetic anomaly pllttern is not inconsistent with the hypothesîs that the Alpha Ridge i ~ an occanic plateau - an ancient Iceland - formed during li long periml of norma l pol,lrity such as the mid-Cretaceou<;. Magnetic anomalic!> on !celand (lnd the Ice land-Faeroe Ridfle also exhibit gre,ll irregularit y a nli high amplitude!>.

8) However. neither b the magnetic pattern tlver the Alph,l Ridge necesSlJril y inconsis tent wilh the "compres­s ion/subduction I.o ne" (Herron el al" 1974 ; Churkin. Trexlcr. 19HO) and "~ubsided shield " (King el ( I I .. 1966) hypothcses. One should expcct anomalies evell over a complex îmbricate subduct iOn zone toexhibit sorne regiona! lineat ion) çorresponding tO volcanic arcs. trcnches, back arc basins. and remnant arcs. No such regionlll banding b observed. If. on the other hand. the Alpha Ridge b Il ~ub!>ided shield. one should e xpect !>ome m:lgnetic s imilarilY to adjacent. presumably o nce contiguous continental fr agme11ls such a~ the Chukchi Plateau, the Lomono~ov Ridge. and Ellesmere b land . However. Figure ~ a~ weil il!> Soviet (Kanlsik, 1974) :lnd Canlldian d,lta (Coles el ( I I •• 1978) ~how lillie or no similarilY belween rnflgnet ic anomalies of the Alpha Ridge and those over adjacent cOOlinental

fnlgments. Only at "c(' (Fig. 8) i ~ a magnetic anomal y round IhM carr ies the Alpha Ridge trend across the conti­nental shelf loward the coast of Ellesmere bland .

9) Cardul examination of the anomllly pattern (Fig. 8) suggeSls a set of parullel "fracture zones" dis rupting the anomalies along a !rend parallello 170"W . roughl y the same trend as the Mendeleev Ridge and Chukchi BorderlamJ (Fig. 3). The fractures . if real, extend from the Makarov Basi n across the Alpha Ridge and into the northern Canada Basin . The Ire nd of the " fractures" is s ignifica ntl y obl ique to the topographic fracture trend (parullel to 142°W) inferred by Hall (1973) from scauered ice-island and submarine sound ings. Il is uncertain whether the sublle trends in the magnetic data reprcsenltrue transforrn fau lls. Several line;\f anomalies extending towards the lower right Crom poi", ,. (' (Fig. 8) parullel the "fracture" trend .

Apart from the sugges ted " frac tures" . the magnetic anoma­lies over the Alph:\ Ridge and adjacent parts of the Clmada Bas in are generall y at leas t subparallelto the regional s trike of thal ridge . Overall the patlern is quite chaotic and lineat ions of di verse trends can be found (Fig. 3.8). How­ever. track spacing is in some areas too wide to permit reliable correlation of shorler-wavelength anomal ies from one track to Ihe next : furlherm ore , lineations paraUe!to the Irac ks wcre fihered from the datu set <lS displayed in Figure 8. This should be kept in mind when the linealion chan (Fig. 3) is evaluated.

10) Ahhough the highes t magnetic anomaly amplitudes occur near the çres i of the Alpha Ridge . it is cle:lr from Figure 8 Ihat thi s ridge is mercly pari of a much more extensive province of chaotic to sublinear. high-ampli tude :momalies (Vogi el al.. 1979 a; Taylor el a/.. 1981). Th i ~

province extends over much of the northern Ca nada Bas in - about to a li ne connecting the Chukchi Plateau with Prince Plltfick Is land. The anomalies in the Makarov B,lsin ,Ire more lincated than those over the Alpha Ridge (Taylor et ai .. 1981 ). However. in te rms of wavelength and amplitude the Makarov Blisin may al so belong to the Alph" Ridge province. The large extent of the Alpha Ridge rnagnetic anoma!y province suggests that the c rus t under the ridge differs from that under adjacent paris of the basins o nly in ilS greater elevillion.

ln conclusion. despite a large incre:.se in mugnetic data. we still cannot decide amonl; severa! nmlUally inco nsistent hypolheses about the Alpha Ridge . Il is hoped Ihal Ihe bottom sampling and deep seismic programs 10 be cnrried out by Canada in 1982 will brel.k this impasse .

MAG NETIC AN OMALIES OVER CONTINENTAL FRAGMENTS AND MARGI NS

us Navy aeromagne tic dala extend across porI ions of the easlern (Fig. 7) and northern (Fig. 8) continenta l shelf of Greenland lInd the shelf nor th of Axel Heiberg :lnd Elles­mere Is land s (Fig. 8). A few profiles c ross the cont inental margin of Alaska und lId;:.cent Arçt ic Canada (Fig. 9). Parts of the Lomonosov Ridge and the northern lip of the C hukchi Plaleau - Nort hwind Ridge complex were also overflown . S inee these (calures ,u e generally considered fragments of cominental c rUSI they arc inc1 uded in this secl ion. The Alpha Ridge was disc ussed separately a lthough somc aUlhors have sugges ted a cont inenlal nalUre {King et (II.. 1966).

37

AEAOMAGNETIC DATA AND AACTlC EVOLUTION

ln view of the wide varia tion in crustal :.ge. composit ion ;md s truc ture of continental çrust. the variety in magnet ic expression of shelves and continental fragment s is not surprising (Fig. 6-9).

On the wide shelf cast of northern Greenland. remarkably linear anomalies str ike nOfth la north-northeast . parallel ta adjacenl coastal topography and inland s tructures including the Caledonian Front (Fig. 7). T he anomaly sources lie buried up to la km below sea level accord ing 10 our magncl ic source depth calc ulations. The eaSI Greenland shelf is there{ore underlain bya Ihick sediment-filled OOs in. The anom:\lies presumably refiec l magnetization contrasts within rocks of Caledonian and/or Pre-Cambrian age. II is not known whether there a re corre lati ve se ismic s tructures and gravit y anomalies. The cast Greenland shelf anomalies arc nOlably oblique to the trend of Paleocene rifting except in li small area betwecn the Barents fracture zone (BFZ : poi nt G in Fig. 7) and the Greeniand-Senj'I F.Z.

Less regular palterns of magnelic lineations lie along the Norwegian margin and in the wes tern Barents Sc:! (Fig. 7). Correlations with gra vi t y anomalies and se ismically deter­mined s tructures :.re the exception rather than the rule. However , the magnetic anomalies do generall y parallel the other geophysical trends lInd coastal s truc tures. lInd proba­bly renect deeply buried. pre-Mesozoic structures.

There is no consistent anomaly associated either with the presumed conlinent-ocean crus lal boundary or thc present shelf edge (Fig. 6 and 7). An ex ception is the VJ,l'ring Plateau escarpment (Fig. 7) which is characterized by a dis tincl ive short-wllvelength negative anomaly (Taiwan;, Eldholm, 1977). T he aeromagnelic data re veal a s imilar anOffillly off the eas t Greenland marsin, belween E and F in Figure 7. This :lIlomaly probably corresponds tO the "G reenland Escarprnent " of Talwani and Eldholm (1977) and mllrks an abrupt wes tward increase in the deplh to magnetic basement (Kovacs . unpubl. data).

The continental shelves off northern Greenl and and adja­cent Arctic Canada are generally subdued in their magnetic expression (Fig. 8), an indicalion of thick sediment accumu­lations and al Ihe same time lack of s trong magnetbwtion contras!. Exceptions are areus Hoff Axel Heiberg Is land). k. (off nor theast Ellesmere Islllnd) and 1 (off central northcrn Greenland). Relatively highly magnetized cryst:.lIine bilse­ment ilnd/or shallow depth volcaniclintrusive bodies within sediment sequences must oceUT at these s ites. The anomal y trends (j fl nd k. only) a re paraUci to the fjord s of northern Ellesmere Is land and to the adjacent Alpha Ridge - li him that these fcatuees are s truc turally related . The spike-like linear pos itive anomllly fit k. resembles that expecled from'I large dike. The zone of short-wavelenglh anomal ies crossed by o nl y one track (1 in Fig. 8) may mark the seaward extent of the Kap Washington basalts of carly Terli .. ry age.

A few longer-wavelength anomalies extend across the Ellesmere Is land shelf eaSI of q (Fig. M) on the sa me str ike as the ad jacent Alpha Ridge. These ;ue Ihe on ly evidence thal Alpha Ridge bllscment SlrUClUres mOl y ex tend into the continental c rus\. High-amplitude magnetic anomalies (belween III and Il ) are associated with the Morris Jesup Rise. a presumed oceanic plateau (Feden el ai .. 1979). T hese become subdued and essent ially disappear as the Greenl:md shelf is approached . No magnctie anoma ly is systcmaticall y associllled wi th the cont inental margin . However , the cas t-wes t pos iti ve anomalies poo and 111 -11 may represent local exam ples of such edge anomal ies (Kovaçs. 1981 ). Kovacs further sugges ted that the anomalies 1'-0 ,Ind /Il -II

P. VOGT, C. BERNERO. L. KOVACS, P. TAYLOR

were once colinear , their present displacement (250 km) a llesting tO the cumulati ve sinistral displacement of Elles­mere Ishmd with respect to Greenland. Three difficulties with this Interpretation are ; 1) a 150 km gap remains between 0 and n even after the lineations are brought into alignment; 2) the tineation III-II may be an ;tTt ifact of fort uitous arrangement of the irregular, high arnpl ilUde anomalies associated with Ihe Morris Jesup Rise; and 3) independent evidence for a displacement of this magni­tude is inconcl us ive (Brook. 1980).

A magnetic smooth zone is found over mue h of the Lincoln Sea (w in Fig. 8) and appears to be associated wilh a seaward extension of the N~;res Strai t (Wegener) transform fault. Magnetic source depths are about 5 10 10 km (Kovacs. 1981 ). but the type of crust below this marginal smooth zone is unknown. If this smooth zone (w) describes the ex te nt of transform mot ion at sea. then the zone of shear must be much wider (100-200 km) than the Narcs Slrait portion of the fault.

The Lomonosov Ridge was overflown along a short section near the North Pole and also over its wides t part, where it approac hes the Greenland-Ellesmere continental marsin. Aeromagnetic data oveT other parts of the Lomonosov Ridge have been reported hy Oste nso (1962), King el (II. (1966). Vogt and Ostenso (1970). Ostenso and Wold (1971). Karasik el al. (1971). Karllsik (1974). and Coles el al. (1978 ).

Taken toget her , these data ind icate several irregular to subline'lT anomalies of low 10 moderate amplitude. Source­depth caJculat ions imply crystalline rock~ at shallow subbot­tom depths. fi t leas t locally (Ostenso. Wold. 1971). A prominent pos it ive anomaly is found over the Ameras ia flank of the ridge near the north pole (Fig. 8). T his and the 'lIlomaly ,. s" over a part of the Euras ian margin of the Lomonosov Rid ge may mark the continenlal-oceanÎC crustal boundary.

Between the wide North American end of the Lomonosov Ridge and the Greenland-E1Jesmere continental shelf there appears 10 be a s ill of l ,500-2.000 m depth although this area is very sparse ly sounded. The rnagnet ic anomalies o\'er this sill (" r" in Fig. 8) are remarkable for their short wa ve­length . Sorne arc lineated. with a s trike subparallelto" poo"~ and perpendicular to the north Greenland coast. Magnetic source depths sugges t outcropping cryst,\lline rocks on the sea-floor, perhaps ancient continental crust but more proba­bly oceanic c rust of carly Tertiary age (Kovacs, 1981). This resion of dis turbed magnetic field may reflect the zone of dcformation associated with the relative movement between the Lomonosov Ridge and Greenland-Eltesmere. Kovacs (1981) suggests ,1 sea-floor spreading origin for the anoma­lies. If thb is so, the y may correspond to part of the imerval between anomalies 20 and 12, a time when. according to Phillips and Tapscott (1981), the Lomonosov Ridge moved lIW( I }' from Greenland-Ellesmere. During the preceding interval (anomal y 24 10 20) these two terrains had moved towards each Olher. c reating the Eure ka orogeny as one manifestation (Phillips, Tupscott, 1981).

Over the northern end of the Chukc hi Plateau-Northwind Ridge complex (the "Chukchi Border land" o f Grant..:: el al. (1979» the magnetic profiles show relatively irregular , short to moderate wavelength anomalies (" c " in Fig. 8) similar to those mapped oveT otheT continental borderlands and fra gment s, such as the Lomonosov Ridge. Higher ampli tude anomalies of posit ive sign s are found a t several siles along the m<lrgins of the Chukchi Borde rland (b and d l. These

38

,;nomalies may be associated with the boundary between continental and oceanic c rus t.

The Alaska continental margin .md shelf was overflown on onl y a few flight s. and the orientation of the tracks is unf,lVOnlble for detec ting anomalies paraJle!ing the marsin (Fig. 9). The anomalies are low in amplitude and long in wave lenglh , cons istent wi th seismic studies tha t indieatc at leas t 4 to 8 km of sediments (Grantz el al .. 1979) .

CONCLU SION

The large volume of new aeromagnetic data from high-Iati­tude ocean basins has now been mil ked for the more straightforward concl usions. Even without additionaJ geo­physÎCal data. the plate tcclOnic evolUlion of the Greenland­Norwegian Sea and Eurasia Basin is now re.tsonably weil es tablished. Frustrating complexities rema in . for eX<lmple the Greenland-Scotla nd transverse ridge, the Aegir Ridge (Norway Basin), and the Greenland Sea (Vogt el al .• 1978). lt is not likely Ihat the evolutionary dClails and crust/mantle chamcteT of these anomalous ;ue,IS ca n be deduced if yel more detailed magnetic data are coltected. Rather, deta iled seismiç reflection surveys, including rnultic hanneJ profile s. are needed , in conjunction with deep drill ing al c ritical sites. This is nOI to say that more cannot be extracted by careful processing of the large aeromagnetic data base. fo r example the calçulation of the depth to magnetic base ment (Kovacs. 1981 ).

OveT the Amerasia n Basin the only s ignifi eant new plate­tec tonÎC findings are an extinc t Early Cretaceous (111-13U rn .y. b.p."!) spreading axis in the Ca nada Basin (Fig. 9. 10: Taylor el al .. 1981) and the existence of magnetic lineations, also poss ibly of spread ing origin. in the Lincoln Sea ("r

o

, in Fig. 8: Kovacs. 1981) and in the Makarov Bas in ("g " in Fig. 8; Taylor el ai .. 1981). Additional magnetic data lire needed 10 filt the g'lps. but there is seant assurance tha t detaiJed coverage of the cntire Arctic Basin would result in a unique plate kinematic scenario. The role of the Alpha Ridge remains conjectural. and is unlikely to be resolved without systematic sub-base­ment reflect ion-refraction profiling <lnd s'Impling.

Acknowledgemen ts

We thank J. D. Phillips and C. Tapscoll for permission to use their reconstructions as hase mapS for Ihe paleobathy­rnetrÎC charts (Fig. 5). The reconstructions of Figure s 6 and 7, based o n the same plate kinematic parameters. were produced while the senior aUlhor was on sabbatica l a t the Universit y of Oslo, Norway. We thank O. Eldholm. G . Gr.0nlie and K. Lien for assistance . J. Pickle (NRL) plOlled bathymelric and geological da ta on the reconstruc­tions. Wc especially wish 10 thank the offi eers and enlis ted men of squ,tdron VXN-8 (Patuxent Ri ver Na val Air Station ) for fly ing and maintaining the aireraft used to collect the magnetic data summ,.rÎzed here . This research was part iaJJy fund ed by the Office of Nav .. 1 Researçh. Code 461. and wc thank G. L. Johnson for conti nuous collabonllion . discus­sions, and support.

REFERENCES

Bf:rMf'l) C.. 1981. Terliary paleobathymetry of thl' NorwegianiGtel'nland Sl'a and Eur:.sia Basin of the Arctic OCelln. M. Sri. Tlrtsir. Uni.'. OMo/w mo. Bla_ S. M., Hornhllid B. 1)., 1.ltwl5 C. F. M., 1979. Preliminary resulls of surficial geology and geomorphology slUdies of the Lomonosov Ridge , Central Arctic B:.s in. in : CUITent resea rch. Part C, Gw/. SUT\! . Can .. 79·1C. n·83. Rrook J . N., 1980. Nares Suait debate ends with no bUL Oeotillles. 25 , 21·2). Carey S. W., 1958 The orocline concept in gcotcctonics, R. Soc. Tasmania Pop. Pmc .. 119, 255·288. Churkln M .• Trellier J . Il .. 1980. Circum·Arctic plate aec retion. isolating pMt of a Pacifie plate to faTm the nucl l'us of the Arctie Bas in , E(lrrii Platrel. Sei. Ltl/ .. 411 , 3.'i6-362.

Cole$ R. L. , Hann. tord W., l''oin~ G. V .• 1978. M"Gnetic anomalies and the evolution of the Arctie. in : An·tk Gtoplrys. R ev .. edited by J. F. Sweeney . Pub. E"rth Physics Br.tneh. Dept . Energy. Mines IInll Resources . Ollilwa. Canada , 4S, 51-66.

de l..aur~r J .. 1978. The Alphll Rillge i ~ not a sprl'ading centre. in : Artlie Gtoplrys. Rtv . . ellited by J . F. SWl'l'ncy. Earth Physics Branch. EnerilY Mines and Resources Canlida. Ottawa . Canada. 454, 87·90. Eldholm O., E"'lnS J ., 1971. Marine geophysical survey in the soulhwl'Slern Barents Sea, J . Geophys. Rts. 76. 3832·3841. Eldholm O., Sund"or E., 1980. The continental margins of the No",,·egian·Greenland Sea: Recent results and Olltstanding pro­hlems. Philos. Tran,. R. Soc. London. 294. 77·86.

Eldhllim O .• Talwanl M., 1977. Sediment dislribotionand s truclural framework of the Harent! Sea, GeaI. Soc. A.m . Bul/ .• 88. 1015·1029. Feden R. Il .. Vogt P. R., .·~m lnll H . S .• 1979. Magnetic and bathymetrie evidenc!: for Ihe " Yermak" hot spot northwest of Svalbard in the Arctic 8 asin, Eanh Planer. Sei. Lm .. 4 , 18-38. Gabr~lstn R. H., Kamlleril l. B. , 1979. Fracturl' pal1erns in Norway from Landsat hnagcry : results anll potential use:, Norwcgian $ca Symposium . Oslo. Norw. "t'. Soc .. N55n3, 1-28. Galraod H. , Jacquarl (i., Auberlln F., fl.euzart P., 1978. The Jan Mayen Rid~ : synlhesis of Geological knowlcdge and new dala. Oc~ano/. A.rta. l , 3. 33'·358.

Grantz A., EIUrdm S., OInler 1) . A., 1979. Geology and ttetonic development of the continental margin north of Alaska. Tee/ono­p/ly$Îcs. 59, 263-291. Gr.,nlie C; ., 1979. TertiHry palcogl'ography of the Norwegian· Greenland Sea , Norsk ra/orins/ . Skr. , 170, .9-61. Gr/ilnl le G., TlIlwllnl M .. 1978. Geophysieal atlas: Norwl'gian· Greenland Seu. Vema Res. Ser., vol . • . Lamonl-Doherty Geol. Obs .• New York. 26 p.

HIIII J . K., 1973. Geophysical evidence ror ancient sea·floor sprea· ding from Alphll Corllille ra and Mendeleyev Ridge . in : Are/ie geolug)'.edited hy M. G. Pi tcher . Am. Anoc. Pt ,. Geol. Meon., 19, .'i42·561. Hcrron E. M .. l>e ... ey J .• ' ., Pilmlln W. C. III , 197<1. Plate teclanics model for lhe cvolulion of the Arctic. Ge% gy. 2. 377·380. lIunkins K., 1961. Seismic studiu of Ihe Arctic Ocean flooc, in : Gto/USY "l,he Are,Ie, ediled by G. O. Raase:h. Univ. Toronlo l>ress, Toronto, Onlario, 645-665.

lIunklns K., 1962. Submarine structure of the Arctic Ocean from eanhquake surface waves, in : Procudings 01 the Arelie Basin Symposium. Arctic Inst. of North America. Washington. D. C .. 3·8. In 'Ing E., 1979. Pall'opoJes and paleolali ludu of North America and speculations about displaeed terrains. Cano J . Earth Sei .. 16. 669·694.

Jackson H. R., Keen C. E., . ·alconrr R. K. H. , Appleton K. P., 1979. New geophysical evidence for sea·flnor sprl'ading in Central Baffin Bay. Cano J. Eanh Sel., 16, 2122·2135 .

Johnson G. L .. Tllylor P. T., V01II P. R., S .. ·ftMy J . 1'.,1978. Arct ic Basin nlorpholoKY , PalarllJrscilung. 48, 112. 2().30. John.'IO n G. L., MOllahlln 1)., Gr .. nl le (;. , Sobcuk 1 .. , 1979. Blllh ymt/rle chan 01 the AI'l.·lic. Gehw Slretl 5. 17. Canadian Hydrographic Service. OUawa, Cllnada.

39

AEROMAGNETIC DATA AND AReTle EVOLUTION

Joneo; P. 8 ., 1980. Evidence from Can.'1da and Alaska On plate tectonic evolulion of the Arctic Ocean Basin. Na/urt. 285, 215.217. J .., r&ellHo F., Nllvrt!itad T. , 1979. Mai n s tructural clements and sedimenU!.ry ~ uecession on the shelf ouuide Nordland ( Norway). Norwegi .. n Sc:a Symposium. No' ... '. Pf'I . Soc .• Oslo. NSSllI , 1. 20.

KIIT1lSlk A. l'II .• 1974. Yevrazisikii bassein ee\"erno~o ledovitogo okeana ~ po:dtsii tektoniki plit, in : PrQblmri Ge%gii Polynornikll Oblasltl Ztmli. Leningrad. Nidra. 24.31.

KlltIIslk A. M., Ro~hdes t ~ensk l S. 5.,1977 . Struktura osi razraSHl . Iliya okeanicheskovo dna i l.akonomernosti yeyo formirovaniya (na primery riftovio 7.0ny severo·a tlantÎCheskovo melabasseina). in : Osno~nie rll'ogtnfZo. edÎted by N. A. Logachev. Novosibirsk. Nauka.167· 175.

Kllrulk A. M., G utrc:vlch N. 1., l\.lIIsolov V. N .. Shcht loHIAOV V. G., 1971. Sorne fl'alUre S of the deep s tructure and genesis of the Lomonosov Ridge based on dau< o f ai rbornc magne tic survey~, Geolh. Me'ody rUl l'edkl l ' a,ktike (in Russian). 6, 9.19.

Ku n M. J ., Clarke D. H .• 1974. Tertiary basahs of Barrin Bay : eochemicaJ evidence for a fo~s il hm·spot. in : GeodYllamics QI lee/and and the Nonh Allan/le Arca. editcd by L. Kristjansson. Oordrecht , Holland. O. Reidel Publ. Co .. 127· 137.

Klnk E. R., Zllttz J., Alldredkt L. R., 1966. Magnetic data on the s tructure of the central ArctÎc region. Geo/. Soc. Am. Bull., 77, 619-646.

Kovaa L. C., 1981. MOlion along Narcs Suait recorded in the Lincoln Sea : aeromasnclic evidenee. submincd for publication.

KO"lIa L. C., Pilgu R., VOllt P. N., Taylor p. T., Johnson G. L. , 1981. Aeromagnetic and teetonic c hart of the ArClic Ocean rcgion. Geol. Suc. Am. Map Su., in press.

Krilitoffersen V ., T.I ... a",] M .• 1977. Extinct triple junction south of Greenland and the Tertiary motion of Greenland rdative to North America. Gco/. Soc. Am. Hull .. 88, 1037·1049.

LarBrecque J . L. . Kent O. V .. Cande S. C., 1977. Revised magnetic polarity lime SCille for late Cretaceolls and CcnOl!oic time , Gtology. 5, Ho-33' .

Larsen H. C., 197H. Offshore cont inuation of East Greenland dyke swarm and North At lantic Ocean formation. Nature. 174, 220-223. Le Plchun X. , Sibuet J . C. , . ·rancheleau J ., 1977. The fit of the continents around Ihe North Atlantic OCl'an. Teetrlnopilysie.f. 3H, 169·209.

Mioster J . B., Jordlln T. H., Un8. l're~e nt·day plate motions. J . GeQplrys. Res., 83, S33 1·53S • .

Ne"'lIIl1n G. W., Mull C. G. , Wlltklns N. U. , 1977. NOTlhern Ala~ka paleomilGnetism. pl:.te rotat ion, and teclonics (abst r.). A/u~' ko Geol. Soc. Symp .• AnehorrlKC. A/o.fka, 16-19.

Not·Nygurd A., 1974. Ceno1.oic to Recent volcanis lTl in and around the North Atlantic Ba~ in . in : Tht <X:f'un bas/noS and margins. vol . 2, The North Atlantic. edited by A. E . M. Nairn and F . G. Sll'hl i. Plenum Press, New York , 391 ·443 .

Oslrnsu N. A., 1962. Geophysical inveMil:iltions of thl' Arctic Ocean basin. Geophys. Polar Re~ . Center. Res. Rcp. 4. Univ. Wisconsin. Madison. 12. p.

Ostenso N. A., Wold N. J ., 1911. Aetomagnetie surveyof the Arct;c <kean : techniques and interprl'tat ion. Mar. Geophys. Res .. 1. 178·219.

Û!itenso N. A., Woid R. J ., 1977. A sc:îsmic and gravit y profile across the Arclic Ocean lJa~in. Tcct"nophysles. 38, 1·2<1.

Perry R. K., Flemin, U. S .. Cherkis N. Z., .' edro N. Il .. Vogl " . R .. 1980. flathymetry of the Norwegiiln·Greenland and weSlern Barents seas. Wa~h i ngton . D.C .. US Naval Research Laboratory (chart ).

PhilJips J . D., TypscoU c., 19111. l'hl' evolution of Ihc Nonh· Atlantic Ocean north of thl' Azores. or Seven easy pil'ces. J . Ge"ph)'s. Res •• in press.

Phllllpll J . D., Feden N., J.lemlnl( H. S .• TapscoU C. , 19111 . Aerornailnetic siudies of the GreenlanllfNorweGi"n Sea and Arctic Ocean, Bull. Geol. Sile. Am .• In press.

R.linnevlk Il . C .. 1979. GeoloGY of the Barents Sell. Norwegian Sea Symposium . Nur..,. Pel. Sm:., Oslfl. NSSfl5, 1·34.

P VOGT.C. BERNERO. L. KOVACS. P. TAYLOR

Kupptl H. O., Mdl~ndt~ A. G .. 1976. Free-air gravi t y anomal~ map of the ea~te r n Chukchi and southern Beaufon Sca~. USGS Map MF-1I1S. Sobuak 1 .. W., 1977. Bathymelry of the Arctic Ocean north of 8S !'>o latitude. TutnnophYlin . . 42. n7·T13. Sriusta'·. S. P .. 1918. E\'olu tion of the Labr .. dor Se<l and lb bearing on the carl y e,olution of the North Atlanlic. lJ4'uphys. J . R. A s,run. Soc. 52, 31l·3H. Sund' or E., MyhN' A., Eldholm O., 1979. The Svalbard cont inental margin. Norwegian Sea Symposium. O~lo. No ....... Ptt. So('., 1'OSS 6. 1-2S. SUnlhor E. , ~lI~,'oU "1 .. GldskehllugA., Eldholm 0_. 19711. Scismic inves tigtllion on the "'e~tern and northern margin off Svalhard. Pol'lr/o rsC'lrrmg. 48. 112. 41·43 .

Surlyk F. , 1977. Me~Oloic fault ing in Eas t Greenland. Geol. Mijllbo,. ... . 56, 4. 273-372. Surlyk F. , 1978. Juriossic Basin evol ution Ea~ t Greenhmd. Nalllr('. 274. 130-133. Surtyk J. ••• Ckmn..,nSl'n L . • LarSl'n H. C .• 1980. PO~I-Pllieoloic e .. o lution of the Ell ~t Grecnland continental margin . üm. A HfJC.

Pel. Geol., 7. in press. S ... «n~)' J . F. , 1980. Arclic seaflovr slructure and /ecl<Jni~' l' I'olulio,, , Rep. Working Gruup 10. Global Synthesis and Paleore­construe tion~. in preh. S ... tt~y J . f .. IninI E., (rl,uer J . \\' ., 1978. Evolut ion of Ihe Arclic Ba~in. in : Arelic Groph)"$. Re"., C'dited by J. F. S"'C'eney . E. ... rth Physics Hmnch, Energy Mines and Resourees Canada. O U<lW<I, Canllda. 45, 4. 91· 100. TaJkTll/ü E .. 1919. The Hammerfest Basin - an aulacogen. Norwe,ian Sea Sympo~ium . No,.. ·. pn Soc .. Oslo. lIOSS 18. 1-B . Talwanl M .. Eldholm O., 1972. The continenTal mllrgin off Norway : a geophy~ical study. Grol. Soc. Am. Hull .. 8J, 1576-3608. Talwanl M., Eldbulm 0 .. 1977. Evolution of the Norwei1ian­Greenland Sea. G~IJI. SlK. Am. Bull .. 8tI. %9-m.

Talw~ni M .. UdjntSot~ G., 1976. TeclOnic ~ynthesjs in: I"irial Rt pt)fls 0/ lite Ih~p S~II I ) rill/tt:! PmWf.'I. Vol. 311, edited by M. Tl1lwAn; ,,11,1 . • WIIshini;lOn. D.C .. US Gov. Pr;nl . Off., 1101_1168

Ta)"lor l' . T. , 1978. L()w-Ie~el aeromagnc:tk data acros~ the ",C'~tern Arcttc H;l~ i n . EOS. T'UliS. Am . Geoph }.t. U"ion. S'J, 268-269.

40

T.) lor t' . T ., Koucs L. C .. Vogt P. R .• Johnwn G. I ... 19111. l)elailed aerornagnetie in,e~ lii;a t ion of the Arctic Basin. 2. J. G~ophys. Ru .. in prc:s~.

VOIII P. H., 1974. The Icelllnd phenomenon : imprints of a hot 'pol on the ocean cru~t and implication) for flow below the plates. in . Geodyltumics of iceland alld Ih" NOf/h Atlantic ur~u. C'dited by L. KriSljan5wn. Dord,C'cht. Holland. D. ReKkl Publ. Co .. l0S-H6.

VOit t' . 1( • • A,-n , · O. E .• 1974. TC'Clon;e history of the Arctle Basins : partial ~ol ution) and unsoh'ed mys teries. in: Manltl' IIw1aRY (lnd (x:~unlJsraph,. 0/ Iht Arerk seas. edited by Y. Herman. Springer New Yorr.:. 83-117.

\'Olt r. M., Elll.rleh ,\ . M. , 1979. Mai;net ic anomalies and sea-floor spreading in thC' We~tern North Atlantic. and a revised çalibrm ion of the Keathley (M ) geomagnetic reversai c hrunolollY. Ini tial Report~ o f the Deep Sea Drilling Projecl. Vol. 4J . edi ted by B. TucholkC' . 1'. 11. . Vogt t l al .. US Guv. Prim. Ofr.. Washing ton. D.C .. 8S7·876.

\'01;1 l'. R., Ostenw N. A., 1970. Magnetie ami Ilr;JvilY profiles llcross the Alphll Cordillera and tbe;r relation to Arctic ,ca-fluor spreading. J. Geophys. Nes .. 75, 492S-4937.

\ 'l!i:1 l' . R., Perry R .• 1978. Post-rifting accreeion uf continental m;Jrl:ins in the Norwegian-Grecnland !Ind Lahrador ~('''". EOS. Tmn s. Am. G~ophys. Un;oll (abs tr .). 59. 1104.

VU!!t l '. R .. ftden w., J::tdbolm 0 .. Sund"or F. . • 19711. The a<:elln crus t "CSt llOO north of the S .. albilrd Archipclago. Polar/orseh",,/:. 48. 12 . '-19 Vogt l'. M., Ta)'lor t' . T. , Ko.-aL~ L. C .. J uhnson G. L .• 1979 /1. OetailC'd acromagnetk in"es ligation of the Arctie Ba~in . J. Geoph)'$ Rn .. 84 , 1071 · 1089.

\'ogt t' . K .• Ko~a.c!i L. C .. Johown G. L .. Feden R. Il ., 1979 b , The Eurasia 8a~in . Nor",egÏ<ln Sea Symposium. No""". Pel. [)jr .. Oslo. 83-96.

Vogl P. R .. Ko,-.(5 L. S .. Hcrncro C .. SrÎ\ /ütll"1I S .. 1981. Asymmelrieal crustal gcnerat ion in the Greenl<lnd-NOI"wegian and Labr.!.dor ~eas and EUni.s i<l Basin. in prep.

V081 r . R., Perry R. K., feden W. U., "l'mini H. 5., CMtkisN. Z., 1981. The Greenlllnd-Norwei(ia n Sca and iceland C'nvironmc nt : gcotogy lln<.ll!"uph)~ic" . in . TI,e OU'"" h,,~ j,,~ u"d '''''l'g;',s. Vol. 5, The Arctic. edited by A. E. M. Nairn and F. G. Siehli , Plenum Press. N.Y .. in press.