presenred to tr,.AulT;:i:try or Maniroba in partial fulfillment of the

311
EVÀIUATION OF AMPHIBOTE SYNTHESIS AND PRODUCT CHARACTER]ZÀTION by Mati Raudsepp presenred to tr,.AulT;:i:try or Maniroba in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Geology l^tinnipeg, Manitoba o'Mati Raudsepp, 1984

Transcript of presenred to tr,.AulT;:i:try or Maniroba in partial fulfillment of the

EVÀIUATION OF AMPHIBOTE SYNTHESIS AND PRODUCT CHARACTER]ZÀTION

by

Mati Raudsepp

presenred to tr,.AulT;:i:try or Manirobain partial fulfillment of therequirements for the degree of

Doctor of Philosophyin

Geology

l^tinnipeg, Manitoba

o'Mati Raudsepp, 1984

EVALUATION OF AMPHIBOLE SYNTHESIS

AND PRODUCT CHARACTERIZATION

BY

MATI RAUDSEPP

A thesis subntitted to the Faculty of Craduate Studies ofthe u¡liversity of Manitoba in partiar fulfill¡ne¡lt of the requirernents

of the degree of

DOCTOR OF PHILOSOPHY

o 1984

Pernrissio¡r has bee¡r granred to the LIBRARy oF THE uNIVER-slrY oF MANIToBA to le'd or seil copies of trris thesis. tothe NATIONAL LIBRARY OF CANADA to microfitnr rhis

thesis ard to lend or sell copies of the film, and UNIVERSITYIvIICROFILMS to publish an abstract of this thesis.

The author reserves other publication rights, a.d neither the

thesis nor extensive extracts from it may be printed or other-wise reproduced without the author's writte¡r pernrission.

ÀBSTRACT

Synthesis products from a general survey of iron-free monoclinic amphi-

bole endmembers were characterized by powder X-ray diffraction, scanning

electron microscopy, infrared spectroscopy and Rietveld structure anaLy-

sis. Previous amphibole syntheses were reviewed and evaluated; certain

amphiboles synthesized in other studies were characterized in more de-

Lail.

Ear1y studies usually assumed on the basis of optical microscopy and

powder x-ray diffractometry that amphiboles from high-yield runs were of

the nominaL composiLion. Later studies with electron microprobe and

spectroscopic analysis showed many synthetic amphiboles to be off-compo-

sition. Furthermore, although natural amphiboles âre ordered, synthetic

amphiboles show wide degrees of long-range and short-range order, which

must be characterized for proper application of synthesis experiments.

Àmphibole synthesis and characterization in this study confirm these

findings. It is unlikely that any pure amphibole endmember has been

synthesized. Infrared spectroscopy and Rietveld structure ana).ysis of

products too meagre or fine grained for other techniques, have shown

that virtually all synthetic amphiboles deviate fron the ideal composi-

tions and show wide variation in the degree of cation ordering. These

methods should be routinely used in amphibole synthesis studies for ade-

quate characterization of run products.

IV -

ACKNO}ITEDGEMENTS

It gives me pleasure to acknowledge the support and encouragement of

A.C. Turnock, whose advice and patience contributed immeasurably Lo this

work. I thank F.C. Hawthorne for suggesting the research and for inva-

luable discussions of amphibole crystal chemistry during the study.

T.S. Ercit v¡as responsible for modifications to the Rietveld structure

analysis program and also provided helpful discussion of this part of

the work. I am grateful to W.G. Ernst who generously provided alkaliamphibole synthesis products for merciless scrutiny. F.c. Hawthorne,

J.B. westmore and D.R. veblen greatly improved the manuscript by thor-

ough and constructive examination.

v

SYMBOTS AND ABBREVIATIONS

abancamcenchlcpxcrscumdiedeneskf1foftsgh

o empty À-site91 glass

albi teanorthi teclinoamphiboleclinoenstatitechlor i tec I i nopyroxenecristobalitemagnes i o-c ummi ngt on i tediopsideeden i teenstat i teeskola i tef luor i tef or ster i tef err i -f erro-tschermak i tegehlen i te

ga rnetlayer silicatemagnesio-chromitemontepon i tenephel i neolivinepargasiteplag i oc lasequartzr ichter i tespi neltalctridymitea 1 umi no-t sc herma k i tewillemseiteunknown phase

grt1ymchrmptneolpaplqtzrispltlcLrdtswilx

v.f.g. unidentifiabless solid solution

in amphibole formula

very f ine-grained material

Solid oxygen buffersNNO Ni-NiOIW Fe-FeOIM Fe-Fe¡O¿WM FeO-FesOqMH Fe¡0¿-Fez0s

IQFrMQCCH¿FFsMCT

Fe-Si z-FezSi0¿Fe 2S i04 -Fe ¡0¿ -S iO z

graphi te*methaneFe 2Si04-FeSi0s-Fe ¡0+Cu z0-Cu0

(mi neral symbols after Kretz '1983, where appropriaLe)

- v]

CONTENTS

ABSTRACT

ÀCKNOWLEDGEMENTS

SYMBOTS ÀND ÀBBREVIATIONS

Chapter

I. INTRODUCTION

1V

v1

paqe

.t

.3tr

.6

.7

Crystal. ChemistryThe C2/n Amphibole StructureCaLion Distributions in Amphiboles

II. REVIEW OF PREVIOUS ÀMPHIBOIE SYNTHESES

Calcic-amphibolesTremol i te: ECa 2MgsSi aOz z (OH)

z

Ferro-actinolite: ¡CazFeS*SiaOzz(Ou)z .Tremolite. . "Ferro-actinolite SeriesÀctinolite-Cummingtonite SeriesF1uor-tremoliLe¡ lca2MgsSia0zzFz. ..Edenites: NaCa2MgsSizÀ1022(0u) z

Ferro-edenite: NaCazFeS+Si7A1O2z(OH)z .Fluor-edenite: NaCa2MgsSizAl0z zFzPargas ite. . . Ferro-pargasite :

NaCa z (tug,re ) o¡tsi oA1 zOz z (OH) z

Fluor-pargasite: NaCa2MgaAlSioÀlz0zzFz ..Alumino-magnesio-hornblende: rCazMg4ÀlSizÀ1Oz z(Ou) z

Fluor-a1 um i no-ma gnes i o-hornblende :ECa 2Mg4AISi zA10z zFz

Àlumino-Lschernakite: ECa2Mg3ÀlzSioÀlzOzz(OH) z

FIuor-alumino-tschermakite: rCa2MgsÀlzSisAlz0zzFzHastingsite: Naca2FeÍ*Fe3*SioAlzOzz(OH)z .Magnesio-hastingsite: NaCa2Mg4Fe3*SioÀlzOzz(OH) z .

Sodic-calcicAmphiboles .. ....Richterite: NaCaNaMgsSi aOzz (OH) z . .Potassium Richterite¡ KCaNaMg5Sis0zz(OH)z . . .Fluor-richterite: NaCaNaMgsSis0zzFz ..Magnesio-alumino-taramite¡ uNaCaNaMgsÀ1 zSi oA1 z (OH) zÀlkaliÀmphiboles ...... o.Glaucophane: lNazMgsÀl2Síe0zz(OH)z . . . . .Ferro-glaucophane: ENazpeS *Àl

zSi

II

1213'13

15171920

21

2'1

28

Crossite: lNazMgr.Riebeckite: ENa2Fe

ozz(oH)z .I s sSi e0z z (OH)

z

)2. . . . . .

Fe?isAlo.ozFe*Fel*sioozz(oH

Magnesi o-r iebeckite : rNa 2Mg3Fe I *Sí

rOz z (0H ) z

- vii -

o

r

28293030323333373739393943434445

t

3

Eckermannite ¡ NaNa zMg4AlSi eOz z (OH) z

Nyböite: NaNa 2Mg3AI zSizAlOz z (OH) z

À1ka1i Fluor-amphibolesIron-Magnesium-Manganese Amphiboles .

Sodian magnesio-cummingtonite, sodian hydro-magnesio-cummingtonite: NaMgNaMg5Si ¿Oz z (OH) z,NaNa2MgsSi s0z r (OH) (OH)

z

Sodian f luor-magnesio-cummingtonite :NaMgNaMg5Si s02 2F2

ÏII. EXPERIMENTAL METHODS

Charge PreparationStarting Materials . .Fluor-amphibole CapsuJ.esHydroxy-amphibole Capsules

Run Procedure . .

FIuor-anrphi bole SynthesesHydroxy-amphibole Syntheses

CharacterizaLion ..Optical Microscopy .

Scanning Electron Microscopy .X-ray Powder Dif fractionInfrared SpectroscopyRietveld Method of Crystal Structure Refinement

IV. ÀMPHIBOLE SYNTHESES: RESULTS

CaIcic Àmphiboles .

Tremolite: o(ca,Cd)z(Mg,Ni,Mn)sSisozz(0H)z .Eca2Mgssi sgz z (oH)

z

Substitution of Ni5 for Mg5 .Substitution of Mg¡ by MgsNi 2 .Substitution of Caz by Cdz.

Fluor-tremolite: ECazMgsSieOzzFz .EdeniLe: NaCaz(Mg,Ni ) 5SizÀlOzz(OH) z

NaCa2Mg¡SizÀ1022(Ott)z . . .Substitution of Nis for Mg5 .

,ScrIn)

NaCa 2MgaÀ1Si 6À1202 z (OH) z

Substitution of MgaÀl by ttgoCr . .Substitution of Mg4À1 by Mg¿GaSubstitution of MgaAl by MgoscSubstitution of Mg4À1 by Mgaln . . . .Substitulion of MgaAI by NiaÀl . . . .Substitution of MgaÀlSi5À12 by Mg4GaSi6Gaz . .SubstilutionofNabyK .. ..Substitution of Ca2 by Cd2 ¡ .

Fluor-pargasite: NaCazMg¡ (¡1,Cr,Ga,Sc )Si 6À1202 2F2NaCa2MgaAlSi6Alz}zzFz .. . . . . .Substitution of MgaAl by Mg4Cr . . . .Substitution of MgaÀ] by MgoGa . . . .Substitution of MgaAl by Mg¿Sc . .

45464647

47

52

70

70707374757577787879798084

B7

88888888898990909091

91Fluor-edenite: NaCa 2MgsSi 74102 2F2Pargasite: (Na,tt) (ca,Cd) z(Mg,Ni )r (AJ.,cr,Ga

sio(el,Ga)2ozz(og)z 91

9192929393939696969696969797

- vI11

Tschermakite: rCa2Mg¡ (Cr,Sc) 2Si sÀlzOzz (OH) z

Fluor-tschermakite: rCa2MgsÀlzSi oAlzOz zFzÀlumino-magnesio-hornblende: ECa 2Mg4À1Si zAlOz z (OH)

zSubstitution of Mg+ by Nia .SubstiLution of Mg4At by Mg¿ (Cr,Sc,Ti,V)

Fluor-alumi no-magnes i o-hornblende :BCazMg4ÀlSi7AI022F2 . .

Kaersutite: NaCazMg4TiSi oA12 (0+g¡1) r,Sodic-calc ic Àmphiboles

Richterite: (n,Na) (ca,Cd,Na) (ug,lli,Mn,Cu) 5

Si s0z z (0H) z .

NaCaNaMgsSi aOz z (0H) z

Subsitution of Mg5 by Ni5 . .Substitution of Mgs by Mg3Ni2 . rSubstitution of Mg5 by Mn5Substitution of Mg5 by MgaMn .Substitution of Mg5 by Mg3Mn2Substitution of Mgs by CusSubstitution of À-site Na by K

Substution of Ca by Cd . .Fluor-richterites: NaCat'ta(Mg,Mn) sSi sOzzF z,

NaCaNaMgsSi e0z zFzSubstitution of Mgs by Mg4Mn

Àlumino-winchite: ECaNaMga(A1,Cr,Sc)SirOzz(OH)z .Fluor-Àlumino-rvinchile: rCaNaMg4À1Si aOzzF z .Magnes i o-alumi no-katophor i te :

NaCaNaMga (41, cr, Sc ) Si 7À10z z (OH ) z

Àlumino-barroisiLe¡ ¡CaNaMgg (Cr,Sc ) zSiTAIOz z (OH) z

Fluor-alumino-barroisite : ¡CaNaMgsÀl zSizÀIOz zFzF luor-magnes i o-alumi no-katophor i te:

NaCaNaMga (Àl,Cr,Ga, Sc,Ti,V)Si 7A102 2F 2

NaCaNaMg aAlS i 7410 z 2F z

Substitution of Mg4Al by Mg¿(Cr,Ga,Sc,Ti,V)Magnes i o-alumi no-tarami te :

NaCaNaMg3(Cr,Sc)zSisÀlzOzz(OH)z . .Fluor-rnagnes i o-a Iumi no-tarami te :

NaCaNaMg3A]zsisÀlzOzzFz ..ÀlkaliAmphíbo1es ......

Magnesio-riebeckite¡ ENa2Mg3(Cr,Ga,Sc) zSisOzz(OH) z .Eckermann i te : NaNa 2Mg4 (À1, Cr rGa, Sc, I n ) Si sO z z (OH ) z

NaNa 2Mg4À1Si BOz z (OH) z

Substitution of Al by Ga , Ct, Sc and InFluor-eckermanni te : NaNa zMg¿ (e1,Ga, Cr, Sc, I n ) Si sOz zF zNaNa2Mg4ÀlSisOzzFz . . . . . .

Substitution of À1 by CrSubstitutionofAlbyGa .. .. ...Substitution of À1 by Sc . . . . .Substitution of A1 by In . . . r .

Nyböite: NaNazMgs(¡l,Cr,Sc,In) 2SizAlOzz(0H)z .NaNa2MgsÀ12sizÀ1022(0H)z , . . . c .Substitution of Mg3À12 by Mg¡ (Cr,Ga,Sc,In) z . .

Fluor-Nyböite: NaNa2MgsSczSizÀ10zzFz . .Iron-magnesium-manganeseAmphiboles ... ....

9898989999

99100100

10510s106

106106106

100100100102102102'103

103103103104104104104105

106

107107107107107107108108108108109109110110110110110

IX -

Sodian magnesi o-cummingtoni te :

NaMgNa (ug,tti ) sSi sOz z (OH ) z

NaMgNaMgsSi a0z z (oti) z

Substitution of NaMgNaMgs by NaNiNaNi5Sodian f luor-magnesio-cummingtonite :

NalrtgNaMgsSia0zzFz

v. DETATTED CHARACTERIZÀTION OF SYNTHETIC ÀMPHIBOLES

1101

'10

111

Infrared SpectroscopyPargasites: NaCazMg¡M3*Si oAlzOzz (OH) z

Richterites: (K,Na)caNauS*Si s0zz (OH) z

RiehteriLe: NaCaNaMg5Si a0z z (0H) z

Potassium-richteriLe: KNaCaMgsSi a0z z (0H) z .Manganese-richterite: NaCaNaMg4MnSi aOz z (OH)

z

Sodian magnesio-cummingtonites: NaMgNaMgsSi ¡Ozz (OH) z

Eckermannite ¡ NaNa 2MgaÀ1Si aOz z (OH) z

Rietveld Crystal Structure Refinement .Ref inement ResultsSome Comments on Rietveld Refinement .

Significance of the Residual Pattern . .Indexing of Synthetic Àmphibole Powder Patterns

VI. DISCUSSiON AND CONCTUSIONS

Previous Amphibole SynthesesCalcic Amphiboles . .

Tremol i teFerro-actinoliteÀctinoLiteFl uor-t remol i teEden i tesFluor-eden i tePargasite . .Fluor-pargasite rFerro-pargasite....Pargasite-richteriteHastingsiteMagnesio-hastingsite.. .. ..Miscellaneous calcic amphiboles . .

Sodic-calcic amphibolesRichlerite, ferro-richterite, fluor-richterite

Àlkaliamphiboles .. ..Glaucophane.....Riebeckites .. ..Magnesio-riebeckites . . . .Eckermannite......Nyböite......

Iron-magnesium-manganese amphiboles .Sodianrnagnesio-cummingtonites.. ..

Àmphibole Synthesis: This Study . . .CalcicÀmphiboles. .. .o

Tremolites........Edenites......Pargasites.......

111

128

128128132t3¿132132134136137138141142142

161

161161161164166167168168169169170172172174178179179183183186188188188189'189

192192192193193

x

Sodic-calc ic AmphibolesRichteritesMiscellaneous Sodic-calc ic Àmphiboles

Àlkali ÀmphibolesIron-magnesium-manganese ÀmphiboJ_es .

Sodían magnesio-cummingtonitesEvaluation of Characterization Methods Used in

StudyOptical Microscopy .Scanning ElecLron MicroscopyX-ray Powder Dif fractionInfrared SpectroscopyRietveld Crystal Structure Refinement .

Conclus i ons

Thi s

197197197198198198

198198200201201203204

REFERENCES

ÀDDITIONAL BIBTIOGRAPHY OF AMPHIBOTE SYNTHESES

Àppendi x

À. RIETVETD STRUCTURE ANATYSIS PROGRÀM DESCRIPTION

B. RIETVETD STRUCTURE ÀNÀLYSIS INPUT DÀTA

Observed Intensities

c. ÀMpHrBOtE END-MEMBER NAMES ÀND FoRMUTÀE, TEAKE (1979)

206

217

paqe

225

230

230

297

- xl -

F i qure

The C2/n amphiboLe

The C2/n amphibole

Infrared spectrum ofpargasite.

tTST OF FIGURES

structure projected onto ( 1 00 ) .

sLructure projected down Z. .

synthetic magnesio-hastingsite and

paqe

,4,4

26

83

95

1

2

3

6

4

5

Typical infrared spectra of naturalactinolite.

tremolite and

Scanning electron micrographsfluor-pargasites. .

of synthetic pargasites and

Powder X-ray diffraction pattern of scandium-pargasite.

Powder X-ray diffraction pattern of fluor-pargasite.

chromi um- f luor-Powder X-ray diffraction pattern ofpargasite. .

94

Scanning electron micrographs of syntheticfluor-eckermannites and fluor-nyböite.

fluor-pargasi te,

7, Scanning electron micrographs of synthetic richterites andsodian magnesio-cummingtonites. .

8. lnfrared spectra of pargasites

9. Infrared spectra of richlerites.

10. Infrared spectra of sodian magnesio-cummingtonite andeckermannite.

11,

12,

13.

14,

15.

101

129

133

13s

144

145

146

147Powder X-ray diffraction pattern of

Powder X-ray diffraction paLtern ofpargasite. . .,

gall i urn-f luor-pargasi te.

scandium-fluor-

16, Powder X-ray díffraction pattern of scandium-fluor-eckermannite.....

148

149

17, Powder X-ray diffraction pattern ofeckermannite. ..

- xr1

i ndi um-f luor-'1 s0

.18.

19.

Powder X-ray diffraction pattern scandium-fluor-nyböite.

Mössbauer spectrum of synthetic ferro-actinolite grown byErnst (1966).

20. Mössbauer spectrum ofbuffer.

synthetic hastingsite grown on the WM

21. Mössbauer spectra of synthetic magnesio-hastingsites grownon the CT and CCO buffers.

22. Infrared spectra of richterite, potassium richterite andsolid solution of richterite in tremolite.

23, Mössbauer spectrum of syntheticthe IW buffer. .

ferro-richterite grown on

24, Comparison of infrared spectra of synthetic and naturalglaucophanes. . .

25. Infrared spectra ofriebeckite.

synthetic riebeckite and magnesio-

26. Infrared spectra of sodian magnesio-cummingtonite and sodianhydro-magnes i o-cummi ngton i te

151

165

173

177

180

182

18s

187

191

19s

196

27. Cel1 volume versus radius of Lrivalent octahedralsynthetic pargasites.

catÍons in

1n28, Ce11 volume versus radius of trivalent octahedral cationssynthetic f luor-pargasites.

- xlt1

IIST OF TÀBLES

4

5

Table

'1 . NormaL Cation Site-assignments

2 Electron microprobe analyses ofhastingsites

3

10.

in Amphiboles

synthetic magnesio-

Synthetic amphiboles based on the sodian magnesio-cummingtonite and sodian hydro-magnesio-cummingtoniteendmember compos it ions

Synthetic amphiboles based on the sodian magnesio-cummingtonite formula

CeIl dimensions and optical properties of previouslysynthesized hydroxy-amphiboles: pure endmembercompositions

Cell dimensions and optical properties of previouslysynthesized fluor-amphiboLes: pure endmember compositions

non-

page

.6

33

48

50

53

63

66

71

75

6

7 Cell dimensions of previously synthesized amphiboles:endmember composi t ions

8. Sources and preparation of starting materials

9. Solid Oxygen Buffers

Possible cation-arrangements and hydroxyl-stretching bandassignments in anphiboles with tt(1,2,3) completelyoccupied by Mg and second cation, M . . .

Run Data: Isothermal ExperimenLs

Run Data: Non-isothermal Experiments . .

CeII Dimensions of Synthetic Amphiboles . . .

Synthetic amphibole structures refined in this sLudy . .

RefinementResults .. o. ..Selected Correlations from the Rietveld Refinement of

Indium-fIuor-eckermanniLe.. ..

11.

12,

13.

14,

15.

17,

. 8'1

112

122

124

137

138

-xIv-

139

16,

18.

19.

20.

21 .

¿¿.

140

1tr.)I JL

156

157

'160

Ce11 Dimensions Determined by Rietveld Structure Ànalyses

Atomic Positions

M(1 )- , M(2)-, u(3)-site Occupancies

Cation-anion and Cation-cation Distances

Typical Amphibole Tetrahedral Bond Lengthst

Comparison of synthetic and natural tremolite cel1dimens i ons

Ideal and observed area fractions for synthetic hastingsites23.

24.

162

175

178Octahedral site occupancies in synthetic magnesio-

hastingsites from Mössbauer data

-xv-

Chapter I

INTRODUCTION

Àmphiboles are the most complex mineral group and occur in a wide vari-

ety of igneous and metamorphic rocks. In sedimentary rocks, amphiboles

are found both as detrital and authigenic phases. Amphiboles have been

described from mafic and ultramafic nodules in mafic rocks, suggesting

that amphibole is a mantle phase. Rare occurrences of amphibole have

been noted in meteorites and in lunar rocks. The wide chemical varia-

tions within amphiboles result from the geometry of the amphibole struc-

ture. Several crystallographically unique sites are able to accommodate

virtualJ.y all major cations in the earth's crust. A comprehensive re-

view of amphibole crystal chemistry is given by Hawthorne (1981, 1983b).

Àlthough several synthetic amphiboles have been characterized by mod-

ern methods, the study of synthetic amphiboles has generally not kept

pace with advances in structural and crystal-chemical studies. Despite

a large number of experimental studies of amphibole stabílity (Gilbert

et al. 1982) and endnember syntheses (see Chapter 2), few synthetic am-

phiboles have been adequately characterized by modern methods. In the

studies of the late'1950's and early 1960's, run products were generally

examined by opticaL microscopy and powder x-ray diffracLion. The amphi-

boles were usually assumed Lo be of nominal composition, and additional

phases were ignored or considered metastabre. During the 1970's, more

sophisticated techniques (electron microprobe analysis, Mössbauer spec-

troscopy,

boles were

infrared spectroscopy) suggested

"off-composition".

2

that some synthetic amphi-

Natural and synthetic amphiboles can potentially display long-range

and short-range order/disorder that must be characterized for proper in-

terpretation of the results of synthesis experiments, particularly with

regard to thermodynamic modelling and the ínterpretation of natural oc-

currence in terms of synthesis and stability experiments. Of specific

importance here is cation order/disorder and chain-width order,/disorder.

This study was undertaken to critically assess the results of amphibole

synthesis and to more adequately characterize the products. The study

focussed on the characterization of synthetic, iron-free, monoclinic am-

phiboles with the CZ/n s|ructure because previous studies (..g. t'laresch

and Czank 1983, Veblen 1981) have shown that Fe-Mg-Mn amphiboles are not

only difficult to synthesize, but also are subject to short-range chain-

v¿idth disorder, high densities of stacking faults and other local struc-

tural disorder. The characterization of short-range structural disorder

requires high-resolution transmission electron microscopy; this tech-

nique was not available to this study but shoul-d be used to complement

future work, There is presently no evidence that such local struclural

disorder is a major problem with syntheses of calcic, sodic-calcic and

alkali amphiboles; but tittle work has been done. Mallinson et al.(1980) report evidence of chain-width disorder in nephrile. However,

Èhe nephrites are not typical calcic amphiboles; they occur in restrict-ed environment,s and have unusual physical properties. Synthetic Mg-rich

amphiboles in the system Na20 - Mgo - sioz - H2o have chain-widLh disor-

der at low synthesis temperatures (prits et aI. 1974, Drits et al. 1976,

Tateyama et al. 1 978 ) .

3

Run products were characterized by optical and scanning electron

microscopy (morphology; detection of foreign phases), X-ray diffraction(ce11 dimensions; detection of foreign phases), infrared spectroscopy

(ordering), and Rietveld stuct.ure analysis (ordering and site-occupan-

cies). These results, together with a review of previous monoclinic am-

phibole syntheses, rcere used to evaluate the problems of amphibore

synthesis and product characterization.

CRYSTAL CHEMISTBY

The standard amphibole formula may be written (Leake 1978) as

Ao-rB2C5T6022ll2

where, in natural amphiboles

À = Na, K

B = Na, Li, Ca, Mn, Fe2*, Mg

C = Mg, Fe2*, Mn, À1, Fe3*, Ti, Li

T = Si, A1

I{ = OH, F, Cl, 9-z

in this study, the following additional cation substitutions were at-tempted, with varying success:

B=Cd

C = Sc, Y, Cr, Ni, Cu, Ga, In

The classification adopted by the i.M.A. Subcommittee on AmphiboJ.es

(leake 1978), and the addendum to this report (leake and Hey 1g7g'), rvas

used. Endmembers pertinent to this study are listed in Àppendix c.

certain trivalent cation substitutions (cr, Ga, sc, ln) in the c-group

cations create new endmembers not explicitly accounted for by the clas-

sification. These compositions are named with an appropriate prefix.

o(ól

M(4)oM(4)

o

4

c

---t

-_+

0(71

0(sl

0(1) 0 (1)

o(21 o(31 0{2)

Figure 1: The C2/n amphibole structure projected onto (100). FrornHawthorne (1983b).

Figure 2: The C2/n amphibole structure projected down Z. FromHawthorne (1983b).

b

ï\E

b

For exampLe, in pargasite, NaCa2Mg4A1Si6A120 zz(OH) z,

formed by replacing all of the octahedral aluminum

NaCa2MgqScSi eAlz0z z (0H) z, is named scandium-pargasite.

the

wi th

5

amphi bole

scand i um,

Naming the monoclinic synthetic amphibole NaMgNaMgsSi sOz z (0H) z re-

quires clarification. Traditionally, this species is named "magnesio-

richterite" (..g. Gibbs et al. 1962), Gier et ar. 1964). Àccording to

Leake (978), it should be named sodian magnesio-cummingtonite (Àppendix

C). This amphibole is not sodic-calcic, its celI dimensions are more

similar to cummingtonite than richterite (particularly ß), and itsstructure may not have c2/n space-group symmetry (see chapters 4 and 5);

consequently the name sodian magnesio-cummingtonite is used here.

THE C2/M AMPHIB-Q!E STRUÇTURE

The amphibole structure (nigure 1) is based on a double-chain of corner-

linked teLrahedra that extends infiniteLy in the Z direction. pairs of

(ToOr r ) chains are linked by intermediate-size (0.53-0.83 Å) divalent

and trivalent C-group cations to form a module with I-beam cross-section

(nigure 2). The modules (I-beams) are joined in a three-dimensional ar-

ray by Iinking divalent and trivalent cations at the edges of I-beams

(r'igure 2)" These linkages are reinforced by B- and A-group cations at

the margins of the octahedral strip and in the cavity between the back-

to-back double chains.

6

EÀIION DISTRTBUTIONS IN ÀMPHIBOTES

The wide variety of cation coordinations in amphiboles, together with

the large structural compliance of some of the sites, leads to complex

site-occupancy and order-disorder relationships. Unless a synthetic anr-

phibole has been fulIy characterized with respect to its site-occupan-

cies and patterns of cation ordering, knowledge of iLs synthesis condi-

tions and physical properties is of limited use in formulating models

concerning the properties and parageneses of natural amphibotes. Table

1 summarizes the normal cation groupings in amphiboles. For a detailed

TABLE 1

NormaI Cation Site-assignments in Amphiboles

carion À M(4) M(1),M(2),M(3) T(t ),T(2)

SiÀ1Fe3*TiFe2*Mn

riCaNaK

f rom Ha¡¡thorne ( 1 983b )

review of cation ordering in amphiboles, see Hawthorne (i983b).

Chapter IIREVIEW OF PREVIOUS AMPHIBOTE SYNTHESES

Most previous amphibole syntheses have been restricted to three major

areas:

study of phase relations of endmembers and intermediate composi-

tions for geological applications.

Synthesis of amphibole asbestos for industrial applications.

synthesis of endmembers and intermediaLe compositions for crystal

chemical studies.

0f these, phase studies are most abundant in the literature surveyed

(about 50 percent). The products were generally characterized by X-ray

powder methods (ce11 dimensions) and optical properties were usually

measured. Industrial studies are next in abundance (about 30 percent).

unfortunately, these studies were generally crude, or were performed in

large-scale batches under poorly controlled conditions with commercial

viability as the most important consideration. Except in rare cases,

the products were inadequately characterized, resulting in very 1ittleuseful crystaJ.-chemical or st,ructural data. Syntheses of pure endmem-

bers and well-documented miscellaneous compositions for crystal chenical

studies are fewest in number (<20 percent) but are rich in fundamental

data.

2

3

7

IIn this chapter, previ.ous amphibole studies are reviewed. Those

studies with detailed product characterization are discussed in more de-

tail in Chapter 6. The review emphasizes those studies that contain ei-ther fundamenLal physical properties, or phase relations that are criti-cal to the future duplication of syntheses. Selected synthesis studies

not critically reviewed are included as an additional bibliography of

amphibole syntheses. cell dimensions, optical properÈies, and run con-

ditions are given in Tables 5, 6 and 7.

CÀtCI C_AMPHi BOLES

Tremolite: ¡Ca zMqsSi eOr r (OH)¿

Tuttle and England (1953) synthesized tremolite by heating mixtures of

MgO, cacO¡, and silica glass at 400oc and 1000 atm water vapour pres-

sure. Àt 500oC and the same pressure, the mixture crystallized to talc

and diopside. Experimental details and physical properties of the syn-

thetic amphibole are not given.-

Boyd (1954, 1959) determined the low-pressure stability of tremolite.

in spite of its chemical simplicity and widespread occurrence as a meta-

morphic mineral, tremolite is difficult to nucleate and pyroxene and

quartz persist nretastably, even in the presence of tremolite nuclei.

Boyd observed that with oxide and/or glass-bearing starting materials,

the probability of obtaining a perceptible amount of amphibole is about'1 in 3, for runs at temperatures between the breakdown curve and about

50o below the curve. Improved yields of amphibole were obtained with a

starting mixture of 50 percent submicroscopic tremolite and 50 percent

pyroxene and quartz. This sLrategy, however, stiIl yielded only 50 per-

cent amphibole, but larger yields vrere occasionally obLained.

9

X-ray powder diffractometer patterns (noyd 1954, 1959) show marked

pyroxene and quartz peaks. No evidence is given as to whether the am-

phibole synthesized is of tremolite composition. The cell dimensions of

this amphibole are gíven in colville et al. (1966). cell volume com-

pares well with other synthetic tremolites (lable 5), but the remaining

ce11 parameters vary.

Attempts to synthesize tremoLite at 800oC and 10 kbar from dry mix by

Gilbert (1969) produced tremolite and quartz. Reaction of this run

product with excess water at 30 kbar and 800oc produces talc, orthopy-

roxene, and quartz; no amphibole is reported. Yields and physical

properties of amphiboles are not reported.

Troll and Gilbert (972) also experienced difficulty in synthesizing

Lremolite. Yields of 85 to 95 percent were achieved only by long runs

with intermediate re-grinding. Two run schemes were used: (1) running

for 360 h at 650oC, 1 kbar, then re-running under the same conditions

for '1506 h, and Q) running tor 362 h at 775oC, 4 kbar, re-grinding and

running for 618 h under the same conditions. The 4 kbar runs are

slightly better crystallized than the 1 kbar runs. Grain size of the

largesl amphibole crystals is 10 to 15 nicrons. Cel1 dimensions are

given (rante s).

Jasmund and Schäfer (972) studied the join tremolite - alumino-

tschermakite at 1,2, and 3 kbar using gel starting materials. Àmphi-

bores grown in these experiments are only about 2 microns in size.

Yields of amphibole and proportions of other phases were not given for

runs in the endmember tremolite stability field. Cell dimensions were

10

determined for selected compositions between tremolite and tremol-

ite¡0.. "alumino-tschernakiteso (alumino-magnesio-hornblende) but lvere

not published because they do not show significant variation. Jasmund

and Schäfer (972) account for this lack of ceIl-parameter variation by

proposing that the decrease in cation-oxygen distance, from substituting

À1 for Mg in the octahedral strip, is largely balanced by the increase

in cation-oxygen disLance from the substituLion of Àl for Si in the tet-rahedral chains.

Westrich (1978) synthesized tremolite from gel prepared after the

method of Hamilton and Henderson (1958). The mixture was seeded rvith

about 5 percent natural tremolite, reacted for 45 h at 900oC and 4 kbar

water pressure, then reground and run again for 45 h. Cell dimensions

(rabte s) given for this synthetic amphibole are peculiar, especiarly g

and c. It is probable that the X-ray powder pattern was incorrectly in-

dexed. Impurity phases are reported to be less than 4 percent.

In his study of the tremolite-pargasite join, Oba (1980) grew fibrous

or acicular tremoliLe crystals up to 5 microns wide and 20 microns long

from dry mixes. According to his Table 1, 100 percent yields were not

realized; clinopyroxene at 1 kbar, and crinopyroxene plus quartz at F

kbar were present. He attributes the presence of lhese phases to me-

tastability' the result of sluggish reaction rates, and notes that theirproportions decrease with increased run length. Electron microprobe

analyses are given for coexisting amphiboles on the join, but analyses

of endmembers are not reported.

11

Jenkins (1981) suggests that synthetic tremolite is non-stoichiomet-

ric, having a Ca/(Ca+M9) ratio of about 0.88 for cations assigned to the

M(4) site. This implies that there is solid soluLion towards magnesio-

curnmingtonite. Experimental details are not given.

Hoschek (1973) synthesized tremolite for use as one of the reactants

investigation of the reaction:

Sphlogopi te+6calc i te+24quartz=3tremol i te+5K-f eldspar+H 2O+6CO 2

Gel starting materials were prepared after Hamilton and Henderson

(1968). Run conditions were 600o to 7s0oc, 4kbar, for 30 to 50 days.

Àmphibole crystals measured about .10 microns long and about 0.1 microns

thick. Refractive indices are: a=1.602(3) , r=1.628(3). Non-amphibole

phases comprised up to 2 percent of the run product.

I{ones and Dodge (1gll ) reported problems with tremolite synthesis;

all run products contained 1 to 2 percent quartz and diopside. CeIl di-mensions are given (rabte s). They note that a survey of over 1200 am-

phibole analyses from Deer et at. (1963) and Leake (1958) produced only

nine analyses in which the calculated strucLural formula contains be-

tween 1.90 and 2.10 ca, fewer than 2.10 À and B cations, and greater

than 7.80 Si. Furthermore, N. Chatterjee (pers. comm. 1971 to lJones and

Dodge) concludes that tremolite synthesized at 7500C contains 5 to .10

moJ.e percent rMgTSi¡0zz(0H)2. Because of these data and because previ-

ous workers (noyd 1959, Troll and Gilbert 1972) aLso describe difficul-ties in synthesizing tremolite, they suggest that stoichiometric trenol-

ite may not be stable above 700oC.

12

Gilbert (1969) attempted to synthesize tremolite from a dry mix at

800oC and 10 kbar. The result is amphibole plus quartz. Gilbert states

that the mix contained excess si0z. t¡either yields nor physical proper-

ties of the amphibole are given.

Ferro-actinolite: ¡ca rFel0si ror, ( oH)¿

Ernst (1966) determined the stability of ferro-actinolite in convention-

aI hydrothermal apparatus with excess water at oxygen fugacities defined

by lhe WM, IM, FMQ, NNO, and MH buffers. Starting materials comprised

reagent-grade CaO, Fe203 and Si02 corrêsponding to ferro-actinolite

stoichiometry. Hematite was reduced to metallic iron by exposure to Hz

at 6000C for one-half hour before using the mix.

Ferro-actinolite is stable only at relatively low oxygen fugacities

approximately defined by the FMQ and IM buffers. Yields of amphibole up

to 95 percent of the charge were achieved with difficulty and only by

regrinding previousJ.y crystallized lower-yield runs. Grain size aver-

aged about 0.3 x 0"3 x 5 microns. Long runs produced more amphibole

than short runs. The remainder of the products consisted of the high-

temperature and/or high-oxygen fugacity assernblages of anhydrous phases

designated as equivalent in bulk Ca-Fe-Si proportions to ferro-actinol-

i te.

Cell dimensions and mean refractive indices of 10 typical ferro-acti-nolites grown at 4060 to 5370c, 500 to 3000 bar, -23.9 to -33.6 log fO2

are given (tabte s). According to Ernst, þ decreases slightly with in-

creasing f02 and decreasing temperature. He attributes this variation,

if real, to the increase in Fe3*/îe2* ratio of ferro-actinotite at ele-

vated oxygen fugacities and low temperatures. The decrease

dius produced by the oxidation of iron could account for

octahedral strip contraction in the Y axis direction.

'13

in ionic ra-

a transverse

Tremolite. . .Eerro-actinolite Series

Hellner and Schürmann (1966) investigated the lower thermal stability of

compositions along the joín rCa2Mg5Sia0zz(OH) z - ¡CazFesSigOzz(OH) z at

about .1 kbar water pressure and 50 bars carbon dioxide pressure. Start-

ing materials consisted of CaCO¡, MgC 20a,2H2O, FezCz0¿ .2llz) and silica

9e1. Although oxygen fugacity was apparently not consistently control-

1ed during the experiments (Mueller 1967 , Hellner and Schürmann 1 967) ,

it was probably close to that of the FMQ buffer.

Yie1ds of amphibole in the amphibole stability field are not explic-

itly given; however, it is implied that they are close to 100 percent

(table 2, Hellner and Schürmann 1966). Cell dimensions were not deter-

mined but d-values for the (110) and (25'1 ) spacings are given for acti-nolites gro$In at 550oC. Amphiboles grov¡n at lower temperatures did not

produce X-ray powder patterns of sufficient quality.

Àctinol ite-CurrminqtoniLe Ser ies

Cameron (971, 1975) synthesized amphiboles along the join

!Ca2Mgz. sFez. sSi a0z z (0H) z - !M9s. sFes. sSi aOz z (OH) z. Starting materials

consisted of MgO, Fe-sponge, CaCOg, Fe203 and Corning 7940 silica glass.

Actinolite formed crystals less than 5 microns long and 0.5 microns

v¡ide. Cummingtonite crystals were larger, reaching a maximum size of

about 15 microns long and 3 microns wide. when both were present, they

14

could be distinguished optically with certainty. Ce11 parameters (table

5) are given for endmembers and for several coexisting acLinolites and

cummingtonites. Modes of amphiboles and other phases were estimated

from X-ray powder patterns. Àmounts of 5 percent of a phase indicate

that it is barely, but definitely detectabte; one percent indicates that

it is only detectable optically as scattered grains. Amphibole yields

increased at the expense of anhydrous phases when charges were rerun.

Some charges less calcic than than Àct6eCumas r,i€re converted to about 99

percent amphibole(s) in runs of 40 to 60 days.

Ca contents and Fe:Mg ratios of clinoamphiboles were estimated from

dtoo spacings and b cell dimensions, respectively. À linear determina-

tive curve of Ca versus droo was constructed (but not published) using

data from two runs; one with 99 percent cummingtonite, the other, 99

percent, actinolite. Fe contents of cummingtonite were estimated using a

determinative curve of Fe content versus b-cell dimension for the series

cummingtonite-grunerite (nlein and }laldbaum 1 967) , Fe contents of acti-nolites were estimated from a similar curve (also not published) usíng

the b cell dimension data for trernolite (royd 1gig, Colville et aI.1966), ferro-actinoliLe (Ernst 1966), and an actinolite from his own

study with ¡'e;Mg = 1. partial electron microprobe anaryses, using the

intensity ratio method described by Eugster et al. (1972), were also

used to estimate the Ca contents and Fe-Mg ratios of two actinolites and

three cumminglonites.

Because of the small grain size, precise refractive indices could ¡-¡ot

be determined for actinolite. The approximate average of a and 7 indi-ces of crystal clumps of bulk composition of 100 percent actinolite is'1.660. Refractive indices of cummingtonite are o=1.650(3), r=1.668(3).

'15

Fluor-tremol i te : ¡Ca rMo q in0rrFr

Ehrenberg (1932) unsuccessfully attempted to synthesize fluor-tremolite

by solid-state reaction from a mixture of caF2, cacog, Mgo, and sio2.

Experiments were performed at 620o, 750o and B00oc. x-ray examination

of the products showed that amphibole was absent in all runs. Run prod-

ucts included forsterite at 620oc, and forsterite plus diopside prus

fluorite at 750o and 800oC.

Grigoriev (1939) investigated the effect of 1, g, 5, and i0 percent

Alz0¡ on the optical properties of synthetic fluor-tremolite crystal-

lized from a melt starting at 14000c. He claims'100 percent yields of

amphibole, based on microscopic examination of the run products. The

results demonstrate that an increase in ALzO¡ causes a decrease in re-

fractive indices and extinction angle.

Eitel (952) noted that in the synthesis of fluor-tremolite by solid

state reaction at 1000oC, the phases formed are dependent on the fluo-

rine content of the starting mix. Increasing fluorine content from 2 to

6 atoms per formula unit íncreased the yield of amphibole. Diopside,

although always present, decreases in abundance with increasing fluo-

rine. Other phases, observed but not in all runs, include norbergite,

tridymite, CaFz, M9Fz, M9O, CaSiO¡, and CasSizOz. Specific yields are

not sLated, but were apparently not close to 100 percent. Higher yields

were obtained by melting batches at 1400oc and cooling to 12000c in 2 h,

but close to 100 percent amphibole was not achieved. physical. proper-

ties of the amphiboles grown are not given.

Boyd (1954) synthesized fluor-tremolite by solid-state

about 1000oC and 1 atm. No physical properties are given.

16

reaction at

The first well-characterized synthetic fluor-tremolite was grown by

comeforo and Kohn (1954), also reported in shell et ar. (i958). À

starting mix of MgFz, M90, finely-ground quartz and natural wollastonite

was melted at'14500c, maintained at this Lemperature for 4 h, and then

lowered at a rate of 5och-1 to 1100oC. Single crystals of fluor-tremol-

ite up to 4mm long were formed; the yield is not reported. Ànarysis of

a beneficiated sample gave the formula:

Nao. o sCa r . g lM9s. r sSi z . g o0z zFz

The slight excess of Mg is attribuLed to a small amount of glass. opti-caI properties and density are given. Cel1 dimensions were calculated

from (600), rc 12 0), (461), and (661) reflections.

Fluor-tremolite crystals suitable for single-crystal structure re-

f inement vrere grolrn by Cameron ( 1 970 ) and Cameron and Gibbs (973 ) f rom

a mix having the composition cacos'caFz'SMgo.8sio2. The charge rvas run

for 1 week at 1150oc, 1 atm; it was converted to greater than 95 percent

fluor-tremolite crystals up to 0.08 mm in size. Cell parameters vrere

calculated frorn single-crystal diffractometer dat,a.

Troll and Gilbert (1972) achieved 80 to 90 percent yields of fluor-tremol-íte with starting mixes prepared from caco¡, caFz, Mgo, and corn-

ing 7940 silica glass. Charges vrere reacted in sealed Pt capsules be-

tween 1090o and '1155oc at 1 atm f.or 20 h to 1 week with the same

equipment used by Caneron (1970)" Àlthough long runs produced larger

crystals than short runs, yields of amphibole were not increased. Non-

amphibole phases were clinopyroxene,

bal i te.

17

fluorite, and tridymite or cristo-

westrich (1978) attempted to synthesize fluor-tremolite from an an-

hydrous gel of tremolite composition. Dilute (5 percent by volume) HF

solution was added to the ge1 and the mix was reacted in a sealed

ÀgzoPdso tube at 9000c for 24 h, CelI dimensions of the resulting am-

phibole are peculiar and are not similar to any other fluor-tremolite

ceI1 parameters (taUte 6). These results may reflect experimental prob-

lems wiLh using HF as a source of fluorine, rather than the usual solidfluoride. Reaction of HF with other mix component,s, Ieading to anoma-

lous products, is suggested (cf. Manning 1978).

Edenites: NaCarMq¡SizÀlOr r (OH)¿

Boyd (1954) synthesized edenite hydrothermarly in the range g00o to

9000c and 400 to 1000 bar. Optical properties are in accord with those

of corresponding natural amphibores. No other details are given.

Colville et al. (1966) synthesized edenite from a dry mix reacted at

8500c, 2 kbar for 3 days. Àmphibole yields and the presence of non-am-

phibole phases, if any, are not reported. Cell dimensions and refrac-tive indices are given (ra¡te s). The c-dimension, s,236(1s) Â is obvi-

ously in error; it is likely that the cell dimensions were not refined

correctly.

Gilbert (1969) reported edenite synthesis from oxide mix at 900oC and

20 kbar. Clinopyroxene, forsterite and traces of glass $rere present in

the run product. No yields or physical properties are given.

18

Petó (1976) reacted both gels and glasses of anhydrous edenite compo-

sition with water at 0.5, 1.0 and 2.0 kbar. certain runs after 139 to

288 h grew fine-grained, acicular crystals of amphibole presumed to be

edenite, plus diopside, forsterite, and albite. Refractive indices ß

and 7 are given. Other experiments grew abundant richteritic amphibole

plus abundant diopside and forsterite. Initially, the upper stabilitylimit of pure edenite is defined by the reaction (petö 19j6)t

4ed = 8di + 6fo + ab + 3ne + vapour

However, it seems that in the presence of diopside, forsterite, albiteand vapour, edenitic amphibole reacts with albite; Na+Si from albite re-

places Ca+41 in edenite to form richteritic amphibole and aluminous

diopside:

ed(ss) + ab = ri(ss) + di(ss) + fo

suggest that edenite is not stable at its own bulkThese experiments

composition.

Hinrichsen and Schürmann (977 ) investigated the join edenite

(HacazMg¡si7A1o2z(oH) z)...potassic-edenite (ncazr¿g¡sizÀIozz(oH)z). po-

tassium-bearing starting mixes were prepared from K20.caO.65ioz glass

plus À120s and MgO. Sodium was added as NazCOs. The amount of water

added to capsules vras kept small, generaJ.ly ress than 5 percent, in or-

der to minimize dissolution of componenLs in the vapour phase. Runs

lasted from14 to 30 days at water pressures between 0.b and 4.4 kbar,

and tenperatures between 700o and 9500C.

Hinrichsen and Schürmann (977) claim that "unequivocally" edenites

were synLhesized at 750oc and 4 kbar in the range Naroo-Na¡oKso with

yields of more than 95 percent. Àt Na25K7¡ diopside and phj.ogopite dom-

19

inated and reliable identification was impossible. pure potassic-ede-

nite was grov¡n from a single run at 750oc, 0.b kbar. This amphibole was

less than 5 percent of the run product, but x-ray and electron-micro-

scope identification was "without any doubt" according to Hinrichsen and

Schürmann. CeIl dimensions are given for pure edenite and the interme-

diate member, Na¡oKso. À rough vaLue is given for potassic-edenite,

calculated from an "extremely bad" X-ray pattern.

Greenwood (1979) was unable to synthesize '100 percent edenite. At-

tempts to duplicate the results of Colville et al-. (1966) tailed to grow

amphibole without the presence of other phases, particularly diopside

and soda montmorillonite. À11 experiments with edenite bulk composition

whether crystalline, glass, or dry mix produced only minor amphiboLe.

Amphiboles groh'n from edenite bulk composition were not characterized.

Oba (1980) reported the synthesis of edenite at 800oC and 2440 bar

water pressure. Amphibole was claimed as the only phase in the run

product besides vapour. The upper stability of edenite was determined

to be 825oC at 1 kbar. No physical properties are given.

Fer ro-eden i te: NaCa 2FeA +Si 7ÀlO2 2 (oH)¿

Colville et aI. (1966) claimed to have synthesized ferro-edenite from a

dry mix reacted at 600oc, 3 kbar for 31 days. oxygen fugacity was con-

trolled on the It't buffer. Amphibole yields, and the abundance and na-

ture of non-amphibole phases are not reported. Ce1l dimensions and re-fractive indices are given.

20

Loida and Hinrichsen (1975) synthesized edenitic hornblende and par-

gasitic hornbrende with 100 percent yields at 8000c, 4 kbar; noninal

compositions vrere Nae.5Ca2MgaAlSio.sOzz(OH), and

Nao.zscazMg¿Àrsio.zsAlr.zsozz(oH)2 respectively. ce11 dimensions are

given (ta¡te z)

FIuor-edeniLe : NaCa zMqsSir¿le"rF,z

EiteI (1952) grew fluor-amphibole by solid-state reaction at 10000C for

15 h fron mixes of fluor-edenite composition. Diopside, forsterite and

fluorite rvere present in minor amounts. Increasing the fluorine concen-

tration did not improve the yield. Fluor-amphiboles were aJ-so produced

by cooling a melt of fluor-edenite composition from 14000 to 12000C in 2

h. The crystallization of fruor-amphibore was greatly improved by in-

creasing fluorine concentration, but diopside, forsterite, fluorite,NaF, and Na-phlogopite were arso produced. The amphiboles grown in

these experiments were not characterized.

Boyd (1954) claimed to have synthesized fluor-edenite in sealed pt

tubes at abouL 1000oc and '1 atm pressure. No physical properties are

given.

Kohn and Comeforo (1955), using methods and materials similar to Co-

meforo and Kohn (1954), achieved at least 80 percent yields of fluor-e-

denite. Fractions of this material were beneficiated by heavy-1iquíd

separation until the only contaminant was about 1-2 percent clinopyrox-

ene, and about 0.5 percent others. The beneficiated material was chemi-

cally analysed and the calculated formula (including impuriLies) is:

Nao. ggCal. a+Nao. r eMg¿.zsAlo. r aSiz. I zÀ10. ea0z2Fz.s5

Cell dimensions and optical data are given (fabte 6).

21

Boron-edenite was synthesized and characterized in the same way. Itschemical formula (including impurities less Lhan 4 percent of which 3

percent is forsterite):

Nao.ssCal . szNao. I sMg¡. g zSiz. I sBo .gz}zzFz. lo

Parqasite.. .Ferro-parqasite: Naca2(Mg,Fe) ¿Àlsi eAlroz z (oH)*

Boyd (1954, 1956, 1959) determined the high-temperature stability rela-

tions of pargasite from dry starting mixes. Optical properties and celldimensions are given in cotville et ar. (1966) and Table 5. An x-ray

powder diffractogram shows a prominent peak attributed by Boyd to nephe-

line plus diopside.

Gilbert (1959) synthesized pargasite at B00oc, 10 kbar, and 900oc, 20

kbar from dry mix. clinopyroxene was also present. Reaction of parga-

site plus clinopyroxene at 800oC and 20 kbar apparently decreased the

amount of clinopyroxene, which is indicated as being netastable in the

run table. No amphibole was observed after reacting pargasite plus cli-nopyroxene between 28.2 and 38,7 kbar. physical properties and yieJ.ds

are not reported.

Gitbert (1965, 1966) studied the stability relaLions of ferro-parga-

site as a function of oxygen fugacity, temperature, and fluid pressure.

Starting materials were either dry mixesr or minerals synthesized from

these mixes. The largest crystals, 20 to 30 microns long, were obtained

at temperatures of about 800oC on the IW and WM buffers. Crystals grolrn

on the FMQ buffer at about 600oc averaged only 1 to 10 microns inlength. At oxygen fugacities defined by more oxidizing buffers, and at

lower temperatures, ferro-pargasite crystals were commonly full of in-

22

clusions of reacLion products, making them difficult to characterize.

Cell dimensions are given for ferro-pargasite synthesized on the IW, ttM,

FMQ, and NNO buffers (faUte S). X-ray powder diffraction daLa are given

for those grown on the I}l, I.lM, and FMQ buffers; cell dimensions were re-

fined in this study from these data (rabte s). viith increasing relativeoxidation, the cell volume decreases, accompanied by decreases in g and

ß dimensions. The þ and g cell dimensions do not show systematic varia-

tion. These changes suggest oxidation of some of the ferrous iron inthe octahedral strip to smaller ferric iron.

Holloway (1973) synthesized pargasite from both dry mixes and gels.

The fluid phase contained either pure H2O, or CO2 plus H2O. Varying

amounts of C02 ín the system had no apparent effect on the cell parame-

ters of pargasite. CelI dimensions are given for a pargasite grown with

pure H20 (rable s). Àmphibore yield is not stated, but pargasite was

listed as the only phase present in this run product.

Holloway and Ford (1973, 197s, i976) synthesized pargasite with 0.g7

F atoms in the half-cell (43 mol percent fluorine). Fired gel plus CaF2

were run with'10 percent by weight H2o for 5 days at 10s0oc. Amphibole

yield was about 99 percent rvith minor clinopyroxene and spinel. physi-

cal properties are not given.

Charles (1974a, 1980) synthesized pargasite in a study of amphiboles

across the join NaCa2Mg4ÀlSisÀlzOzz(OH)z - NaCazFe4AlSioAlzOzz(OH)z at 1

to 5 kbar. starting mixes were of the dry type, consisting of Mgo,

7-À1203, MgO, Si0z (cristobalite) and NazSiz0s. Pargasite yields varied

from 50 to 99 percent but cerl dimensions do not vary with yield. Non-

23

amphibole phases vlere mainly pyroxene and plagioclase. Charles (1980)

suggests that either charges with low amphibole yield are non-stoichio*

metric pargasitic amphibole with ce11 dimensions fortuitously similar tothose of purer charges, or more probabry, the amphibole is on composi-

tion. Intermediate phases were grown on MH, FMQ, ccH¿, and llt buffers.

Yields varied from 50 to 95 percent. For a given bulk composition, cel1

parameters are constant with pressure, temperature, and oxygen fugacity.

Pyroxene and ptagioclase were present in all products. Intermediate

compositions did not nucleate well; amphiboles in these runs formed only

as crystalline aggregates about 5 microns in diameter. Variation of

unit celL paramet,ers is linear with changing te/ug ratio. charles

(1980) concludes that this indicates disorder of Mg and Fe in M( 1), ttt})and M(3) sites. Ferro-pargasite crystallized r.'ith yields of 90 to 95

percent. Cell dimensions do not change with run conditions.

DrolL and Seck (976) synthesized the solid solution series pargasite

- fluor-pargasite from oxide mixes at 2 kbar according to the Lext of

the paper, but at 1 kbar according lo the title. The H20/HF ratio was

determined during long runs by means of an ion-selective t'-electrode.

Substitution of (OH) by F increased the a cell dimension from 9.81 to

9"88 in fruor-pargasite. This is contrary to other pargasite...fluor-

pargasite pairs and to experience with the same substitution in other

amphiboles, in which a decreases from the 0H to the F endmember.

Hinrichsen and Schürmann (977 ) attempted the synthesis of certain

nembers in the series NaCa 2MgaÀlSi 6À1 z0z z (OH) 2 - KCa 2MgaÀ1Si oÀl zOz z (Ott) z

from dry mixes. Pargasites were successfully synthesized only in the

composition range from NarooKo to NasoKso at temperatures from 750o to

1000oC, and pressures from 1 to 4 kbar. yields of

er than 95 percent. Cell dimensions are given

Na I ooKo and NasoKso (tables 5 and 7). Substitution

a slight increase in all celt dimensions.

24

amphibole were great-

for the compositions

of K for Na produced

Braue and Seck (977 ) studied the stability of solid solutions on

the join pargasite - richterite at 1 kbar water vapour pressure. Dry

starting mixes were used. An almost complete solid solution series on

the join was synthesized at total H2O pressure of '1 and 3 kbar and temp-

eratures of 850o and 900oC respectively. Satisfactory synthesis of am-

phibole was not possible at 850o and 900oC at 1 kbar on the composition

pa5eri5s. Àmphibole yieJ.ds were close to 100 percent at 3 kbar with mi-

nor amounts of metastable diopside, clinopyroxene and forsterite. At 1

kbar, however, experiments were complicated by a smectite phase which

persisted metastably to 950oC. This sheet silicate is characterized by

a basal reflection at 11.6 Å which expands sIowly to 14.4 Å in a hydrous

atmosphere. Treatment with organic liquids do not cause further expan-

sion. Braue and Seck (977 ) conclude that this sheet silicate is a

trioctahedral vermiculite. Reheating the 1 4,4 A phase reproduced the

11.5 Â phase, and increasing the temperature to 750oC finally yielded a

broad peak at 9 to 10 Å. Quenching immediately after initial run-up to

850oc suggests that this phase forms primarily during the heating-up

period. This conclusion is reinforced by the presence of vermiculite in

pressure*quenched runs. Conditions for the growth of this phase are ap-

parently most favourable on the bulk composition pasorisoi none was ob-

served in richterite-rich compositions. Two different amphiboles were

synthesized in this study. The first, amp I(ss), coexists v¡ith vapour

25

in the subsolidus region with minor metastable diopsidic clinopyroxene

and forsterite. The second, amp Il(ss), is produced at the solidus de-

fined by the reaction:

amp l(ss) + vapour = amp II(ss) + cpx + fo + liquid + vapour

No feldspar or nepherine were detected either optically or by x-ray dif-fraction. Cell dimensions are given for endmember pargasite and richt-erite, âs well as for intermediate amp l(ss). (tables 5 and 7). cellvolume, ê,, þ, and ß vary smoothly but show positive deviations from lin-earity. Variation in c is small compared to the standard error; it de-

creases with increasing richterite component in the solid solution.

westrich (1978) and Westrich and Holloway (1981) synthesized parga-

site from anyhydrous gel prepared after Hamilton and Henderson (1968).

The gel was crystallized hydrothermally at 12050C and 4 kbar water vap-

our pressure tor 72 h, ÀmphiboLe yield was greater than 96 percent;

cel1 dimensions are given (rabte S).

Oba (1980) synthesized pargasite in sLudy of the tremolite - parga-

site join at 1 and 5 kbar in the temperat,ure range 7500 to 1150oc.

Starting materials, method and results were discussed above in the tre-molite section. Pargasite yields are not explicitly stated but amphi-

bole is listed as the sole phase in the pargasite stability fierd. Àl-

though eleclron microprobe analyses are given for amphibole solid

solutions, no single phase endmembers ¡lere analysed. Cell dimensions

are given (table 5).

semet f972, 1973) synthesized pargasite at B00oc and 2 kbar. Except

for the infrared speclrum, no physical properties are reported. The

26

3800 3?ìCO Cm-l 3600

ACuyile-Ternrile Buf fer85trC, 2 Kb

lrrrQuorlz-Foyolite Buffer

850"C,2Kb

Porgosile800"c, 2 Kb

3660

3705

B

c

H

oH(toJ 42

Figure 3:

3705 3675

3705 72rlrrlJL__trr

38OO 37OO ¡--r 3600Cm-l

Infrared spectrum of synthetic magnesio-hastingsite andpargasite. À: magnesio-hastingsite. B: magnesio-hastingsite. C: pargasite. From SemeE (972),

27

spectrum consists of two major peaks at 3705 cm-1 (MgMgMg-oH) and 3672

cm- 1 (ugt'lgel-oH) , and a minor peak at 3642 cn- i (ugetet-oH) (nigure 3 ) .

A1 occupancy of M(1) and M(3) calculated from this spectrum is 0.23t0.05

ions per site, indentical within error to lhe ideal 0.20 ions per sitefor completely random distribution of Mg and AI among the octahedral

sites (Semet 1973).

FIuor-parqasi te: NaCa rMq¿AlSi ÂÀ1 tO. tF,

Boyd (1954) reported the first synthesis of fluor-pargasite from charg-

es sealed in Pt tubes and reacted at temperatures a little over 1000oC.

Yields were not '100 percent; fluor-amphiboLes grolrn were always mixed

with other phases.

Holloway and Ford f 973, 197s, 197G) studied the phase rel_ations of

a pargasite with 43 percent of oH at the o(3) site replaced with F. F

was added as CaFz to a fired gel. Amphibole yield was 99 percent with

minor clinopyroxene and spinel. No physical properties are given.

Dro1l and Seck f976) give lhe a-ceLl dimension of a fluor-pargasite

grov¡n during a study of lhe pargasite...fluor-pargasiLe join. No other

data were reported.

llestrich (1978) and }lestrich and Navrotsky (1981) synthesized fluor-pargasite from a gel with P added as caF2. The mix was reacted at

1000oC and 1 atm tor 24 h. Grain size of the resulting amphibole was

less than 5 microns; other phases constituted 1 Eo 2 percent of Èhe run

product. Cel1 dimensions are given (fabte 6).

28

Alumi no-maone io-hornblende: ¡Ca,Mo,À si zÀ10, , (oH)*

Boyd (1954) reported that a gLass with composition midway on the tre-molite...alumino-tschermakite join (alumino-magnesio-hornbLende) was al-most completely crystallized to amphibole at 800oC and 10 kbar pressure.

No physical properties are given.

Gilbert (1969) attempted to synthesize al-umino-magnesio-hornblende

from glass (probably the same glass as used by Boyd 1gs4) at g00o and

900oC and 10 kbar. Run products were dominantly amphibole with minor

clinopyroxene, orthopyroxene, and garnet. At 700oc and 20 kbar, less

anrphibole was produced and talc is present. No physical properties or

yields are given.

Jasmund and Schäfer (1972) apparently synthesized alumino-magnesio-

hornblende on the join tremolite...alumino-tschermakite. 100 percent

yierds are implied by symbors on the 2 and 3 kbar phase diagrams, but

the 1 kbar phase diagram appears to be in errori the symbols do not ap-

pear in the key. If the symbols are what they appear to be, the arumi-

no-magnesio-hornblende yields at 1 kbar are generally not 100 percent.

No physical properties are given. x-ray diffractograms are given for

compositions along the join but none are for run products in the amphi-

bole stability regions

Fluor-alumino-naqnesio-hornblende: !ca2Mq4Àlsi7A1o? 2F 2

Shell et aL. (1958) crystallized a melt at 1 atm with composition corre-

sponding to fluor-alumino-magnesio-hornblende. They found that with low

fluoride content, the aluminum lends to combine with calcium and siliconlo form anorthite. As fluoride content increased, ca-phtogopite grew at

29

the expense of amphiboì.e. Although amphibole was apparently present, no

estimates of abundance are given.

Àlumi no-tschermak i te : ECa rMqsAl rSi sAI r0r r (oH)¿

Àlumino-tschermakite synthesis r+as first attempted by Boyd (1954). Allhydrothermal experiments at pressures less than 2 kbar failed. At 800oC

and 10 kbar, however, a gLass of alumino-tschermakite composition was

partly crystarlized to amphibole. No physical properLies are reported.

Gilbert (969) reported the synthesis of 85 to 90 percent amphibole

from a glass of alumino-tschermakite composition at 800oC and 10 kbar.

It was tentaLively identified as tschermakite, but no supporting physi-

cal properties are given.

Jasmund and Schäfer (1972) studied the join tremolite - alumino-

tschermakite (see Tremolite section). They were unable to synthesize

amphibole on the composition of alumino-tschermakite at 3 kbar or less.

À reconnaissance run at 10 kbar also failed to yield amphibole.

The most comprehensive survey of synthetic alumino-tschermakite is by

oba ('1979), who studied lhe alumino-tschermakite - ferri-tschermakite

join at tenperatures between 750o and 1000oC at water pressures of 5 to

24 kbar. Run products were characterized by x-ray diffraction, optical

examination and by microprobe analysis for two compositions in equilib-

rium with garnet. No endnembers vrere analysed. Refractive indices and

ce11 dimensions are given. Àlthough 100 percent amphibole yields are

implied for several products in his run table, yields are not explicitlyreported. The amphiboles in equilibrium with garnet are not on composi-

30

tion; they are deficient in octahedral aluminum and contain excess mag-

nes i um.

FIuor-aLumi no-tschermak i te : ECa 'Mo

rAl, i nAl r0, ,F,

Boyd (1954) reported the synthesis of fluor-alumino-tschermakite by sol--

id state reaction in sealed pt tubes at 1000oc and 1 atm pressure. No

physical properties are given.

Shell et a1. (1958) attempted to grow fluor-alumino-tschermakite from

a me]t. No amphibole was obtained; the product was Ca-bearing rnica and

anorthite.

Hastinqsite: NaCa2Feî*Fe3*Si6À1?0, 2 (Ou)¿

CoIville et aI. (1966) claimed hastingsite synthesis at 600oc and 3 kbar

on the FMQ buffer. Run length was 31 days. Run procedure and startingmaterials were the same as those of Ernst (1960). No information ispresented concerning amphibole yield or the nature of the run product.

Cel1 dinensions and refractive indiees are given"

Malinovskiy (1966) reacted a dry mix of hastingsite composition plus

excess iron hydroxide in a neutral 10 to 12 percent solution of sodium

chloride at 5000 to 600oc and about 500 atm. Clinopyroxene is the main

product along with about 10 to 15 percent amphibole. More amphibole

crystallized from a mix with non-stoichiomelric composition,

ca0:Alz0s:si0z ='10¡22,5267,5, such a mixture, reacted in Nacl solution

rvith excess iron, produced amphibole plus magnetite. The amphibore

formed intensly pleochroic, green, acicular and elongated prisms up to 1

to 1.Smm long. A powder X-ray pattern and refractive indices are given.

31

Chemical analyses of two of the amphiboles showed that they contain 0.86

and 0.78 percent Cl respectively. The relative error in these anaLyses

is 15 percent. The amphibole composition corresponds to an intermediate

member of the hastingsite...ferro-edenite series.

Gilbert (1969) determined that hastingsite is not stable at T >650oC

at 20 kbar, or aL T >700oc at 12 kbar when oxygen fugacity was control-

led by the FFsM buffer. On the FMQ buffer, hastingsite is not stabLe

above 750oc at'12 kbar. No physical properties of the synthetic amphi-

bole are given.

Thomas f977, 1979, 1982a, 1982b) studied the upper thermal stabilityof hastingsite as a function of temperature, fluid pressure and oxygen

fugacity. Starting materials for synthesis runs comprised dry mixtures

or gels of anhydrous hastingsite composition. Run products were charac-

terized optically and by X-ray powder diffraction. Cel1 dimensions (ra-

ble 5) and Mössbauer spectra (nigure 20) are given for selected samples.

Synthetic hastingsite formed acicular grains less than 10 microns 1ong

and about 1 to 4 microns wide. Àmphibole yields in the IQF, IT{ and }lM

buffers were general.ly greater than 95 percent, but on the FMQ buffer,

yields were ]ess. Thomas (1979) is confident that the hastingsites are

on conposition because ce11 parameters are similar for all hastingsites

synthesized, proportions of breakdown phases are qualitatively similar

in all runs, and high yields from mixes of the proper stoichiometry

should be of Èhe nominal composition.

Charles (1978) studied the stability of the hastíngsite bulk composi-

tion on the IW, ccH¿, FMQ, NNo, and MH buffers. Àmphibore yields were

32

95 percent on the CCH¿ and FMQ buffers; impurities were cLinopyroxene

and plagioclase. Cell dimensions are uniform, regardless of temperature

or buffer conditions.

Maqnesi o-hast inqsi te : NaCa 2Ms4Fe 3 *Si 6Al ?02 2 (OU )¿

Semet (1970,1972,1973) and Semet and Ernst (1981) studied the stabili-ty relations and crystal chemistry of magnesio-hastingsite synthesized

from dry mixes at 850oc and 2 kbar pressure. They measured optical

properties, ce11 dimensions (tabIe 5), collected Mössbauer (Figure 2'1 )

and infrared spectra (nigure 3), and give two electron microprobe analy-

ses of the synthetic amphibole (rabte Z). Yields of 90 to 100 percent

amphibole are claimed for initial syntheses. Àt low oxygen fugacities,

however, up to 10 percent by volume of high-temperature breakdown phases

of equivalent composition was present. Àmphibole synthesized directlyfrom the dry mix is very fine grained (10 x 5 x b microns); long runs

did not produce larger crystals. Larger crystals(100 x 20 x 20 microns) were synthesized from the high-temperature as-

semblage of equivalent bulk composition. Semet notes a significant var-

iation in both colour and refractive indices with oxygen fugacity, that

is, with changes in the val-ence of iron.

Electron microprobe analyses of an amphibole grown on the CT buffer

and one grovrn on the IQF buffer show that both amphiboles are close to

theoretical magnesio-hastingsiLe bulk composition. Only the amphibole

synthesized on the cr buffer, however, conlains no ferrous iron; the

others deviale rnarkedly from the ideal composition.

33

TÀBIE 2

Electron microprobe analyses of synthetic magnesio-hastingsiLes

¿ )J

si02AI z0sFe0MgoCaONa z0Hz0

42.0811.908.39

18,3213.093.622.10

8.18.12.3.¿.

41.812,1

41 .211 .6

8.419,1t3.¿3.52.1t

5

5

9

5

1t

rom Semet (1973)1. Ideal magnesio-hastingsite,

all Fe as FeO.2, À3-1 1 T, 850 oC, 2 kbar, CT buf fer.3. À4-'11C, 8500C,2 kbar, IQF buffer.f ldeal HzO, column 1.

CoIville et al. (1966) synthesized magnesio-hastingsite on the MH

buffer at 8500C and 2 kbar. Refractive indices and cell dimensions are

given (ra¡te S). Large standard errors in the cell dimension calcula-

tions preclude useful comparison with Semet's (1973) results for the MH

buffer, although both sets of data are reasonably consistent. Because

the Mti buffer was used, this amphibole must contain some ferrous iron

and cannot be endmember magnesio-hastingsite.

SODI C-CALCI C ÀMPHI BOTES

Richterite: NaCaNaMqsSi sOz r (OH)¿

Huebner and Papike (970) synthesized the complete series of solid solu-

tions along the join NacaNaMg5sisozz(ou)2 - KCaNaMgssisozz(oH)2 from dry

mixes. Run conditions were between 7320 and 916oc., 1 and 2 kbar.

f

34

Richterite grew euhedral crystals bounded by equant to slightJ.y elongate

stubby pinacoids up to 50 microns long. Microscopic examination showed

that amphibole yierds were 98 to 100 percent; when present, other phases

were diopside and glass. CeII dimensions are given for all amphiboles

on the join (rables 5 and 7).

Cell dimensions of intermediate compositions on the join show 1it¡-edeviation from linearity between endmenbers. only runs with yields

equal to or greater than 98 percent were used Lo calculate these data.

The g, ß and ! parameters decrease markedly from potassium-richterite torichterite; b and c decrease only sIight1y.

A mix of bulk composition corresponding to potassium-ferro-richterite

was reacted at 601oc., 1 kbar on the ccHa buffer; the amphibote yield isnot given, but green and brown clinopyroxene were present. Àt these

conditions, the oxygen fugacity is approximately intermediate to that of

the FMQ and WM solid buffers. This means that Fes* must be present and

the amphibole is not on composition. Cell dimensions are given (table

5).

Makarova et al. (1971 ) synthesized richterite from alkaline media

comprising oxides, hydroxides, carbonates, and amorphous silica. Àmphi-

bole yields were 95 to 98 percent. Refractive indices are given (table

5)" Grigor'eva et g!. (1975b) give the analyzed chemical fornrula of

this richterite as:

Na 1 . s oCa r .osHo. r ¿M9¿. goSi s0zz (OH) z

Cell dimensions are also given (fabte g).

3s

Forbes (1971 ) synthesized richterite hydrothermally from a mixture of

NazCOg' CaO, MgO, and Si02. He states that carbonate-free mixes do not

differ in result from those with carbonate. Above 6500c., runs of 24 h

duration yielded 90 to 95 percent amphibole with minor unreacted mix,

forsterite and diopside; 100 percent richterite was obtained in longer

runs. Cell dimensions and optical properties are given (fable 5); celldimensions do not vary with changing pressure and temperature.

charles (1972a,b, 1974b, 197s, 1977 ) grew richterite, ferro-richter-ite and intermediate compositions on the join between the endmembers

frorn dry mixes. Oxygen fugacity was controlled in Fe-bearing runs on

the IW, !.lM, ccHa, FMQ, NNO, and MH buffers. Experiments at B00oc and'l

kbar of 2 day's duration produced 98 to 100 percent amphibole from the

endmember richterite composition. Fe-bearing amphibole grew most readi-

Iy on the IW buffer, 20 to 30 percent clinopyroxene was present in com-

positions containing more iron than Mg3Fe2 on buffers more oxidizing

than IW. For compositions Mg4Fe through Mg2Fe3, experiments on the IW

buffer at 500o to 550oC produced >95 percent amphibole with minor pyrox-

ene, olivine and g1ass. Àmphibole with MgFea composition was difficultto grovr at less than 5 kbar. End-member ferro-richterite (Type II)grew with >95 percent yield at 500o to 550oc in long runs (22 to 30

days). Minor clinopyroxene, olivine and glass nas present. Àlthough

shorter experiments (about 10 days) at higher temperatures (600o to

700oc) produced less amphibole (Type t, about 90 percent), íLs cell vol-

ume is much larger than that of the long-term product; it is probably

]ess oxidized and closer to the nominal compostion.

36

Cell dimensions and optical properties are given for representative

runs on all buffers; the parameters on the IW buffer are probably close

to the nominal composition. End-member richterite apparently has a low

stability limit with respect to pressure. Cel1 parameters trend to-

wards trenrolite with increasing pressure (Charles 1974). However, an-

phiboles containing iron show no variation in cell parameters. Chartes

(1974) examined the cell dimensions of amphiboles grown on the II^i buffer

most closely because this buffer produces the highest amphibole yields;

thus these amphiboles are closest to the nominal compositions. Parame-

ters g, g, and asinß increase almost linearly from Mg5 to MgFea, while ß

decreases; the values for b are slightly below the line for MgaFe,

Mg3Fe2 and Mg2Fe3.

Hariya and Terada (1973) synthesized amphibole with the composition

richteriteso - tremoliteso from quartz, MgO, CaCOs, and Na2SizO¡ at high

pressures. water content in the capsules was from 5 to 10 percent by

weight. Cell dimensions are given for an amphibole grown at 900oC and

29 kbar; the run table lists amphibole as the only phase in the product.

The crystals average 0.07 mm long, show no plechroism and are almost

colourless.

Braue and Seck (977 ) sLudied the stability of solid solutions on the

join pargasite-richterite at 1 kbar (see pargasite section for details).

cerl dimensions are given for the endmember richterite (tabre s).

I,lestrich (1978) claimed hydrothermal synthesis of richterite from an-

hydrous gel at 950oc and 4 kbar. The run product contains less than 4

percent non-amphibole phases. cel1 dimensions are given (rabte s); y

and a are less than those of other synthetic richterites.

37

Phillips and Rowbotham (1968) synthesized richterite from gels at

750o to 1000oC and 1 to 5 kbar. Crystals are prismatic, occasionally

twinned, and vary in size from 20 x 50 microns to 70 x 200 microns.

Cell dimensions given by Philips and Rowbotham are incorrect; they were

recalculated from the X-ray pattern using CETREF (faUte S).

Potassium Richterite: KCaNaMqsSi eOr z (OH)¿

Heubner and Papike (1970) synthesized potassium richterite in theirstudy of the richterite...potassium-richterite join. The results are

reported in the previous section.

Fluor-r ichter i te : NaCaNaMq5Si eOttFt

Eitel (1952) reacted a dry mix of fluor-richterite composition at

1000oc, 1 atm, and formed fluorine amphibole as the major phase with mi-

nor forsterite, M9F2 and caFz. In melt crystallization, increasing

fluorine concentration reduces amphibole yields and produces Na-phlogo-

pite.

Shell et al. (1958) synthesized numerous endmembers based on the

fluor-richterite bulk composition (experimental details are given in the

tremolite section). In addition to synthesizing normal fluor-richter-ite, the following substitutions were attempted: Ba, cd, co, Mn, and sr

for ca, and co, Fe, cu, Mn, Ni, and zn for Mg. Àmphibole grew from most

of these compositions, but yields were generally 1ow and they were not

characterized. Fluor-richterite yield was about B0 percent; it was

characterized by Kohn and Comeforo (1955). Beneficiated samples with

less than '1 percent impurities have chemical compositions close to the

ideal. Optical properties and celI dimensions

ray pattern are given.

38

(rable 6), and powder X-

Huebner and Papike (1970) synthesized fluor-richterite and fluor-po-

tassium-richterite endmembers at 1 atm from dry mixes sealed in pt cap-

sules. The charges were heated above the melting point to 1200oC and

then cooled to 800oc over a period of 9 days. One charge was reacted at

8180c, 2 kbar for 39 days. Àmphibole yields are not given; run products

are mainly amphibole with minor glass and diopside. CeI1 dimensions are

given (raute e).

Cameron et al. (973a, b) and Cameron et al. (1983) refined the crys-

tal structures of both of these amphiboles at room and higher tempera-

tures. Ce11 dimensions determined from Lhe single-crystal structure re-finements are slightly lower than those of Huebner and papike (1970)

(rabte g).

Cameron (1970) and Cameron and Gibbs (1971) synthesized fluor-richt-erite from a dry mix at 1 atm by cooling at soeh-1 from 1170o to i000oc.

Cell dimensions are given (raUte g). They also synthesized fluor-richt-erite with Mg/(Ug+f'e2*) = 0,67. The Fe-bearing fJ.uor-richterite 14as

cool-ed at Soch-1from 1050o to BBOoc with a metallic iron buffer. Àm-

phibole yield was less than '100 percent; the composition was determined

by electron microprobe. crystars were up to 4 mm in length. ce]l di-mensions are given (rable Z). Single-crystal structure refinements were

done on both amphiboles (see Chapter 6).

westrich (1978) craimed fruor-richterite synthesis from

gels at 10000c and 4 kbar pressure. Fluorine was added as

anhydrous

dllute (5

39

percent by voJ.ume) hydrofluoric acid. Ce11 dimensions of the amphibole

produced, however, are very different from those of other synthetic

fluor-richterites (raUte 6). FIuor-tremolite cell dírnensions given in

this study are also peculiar. These are the only fluor-amphiboles grown

with HF rather than fluoride as a fluorine source, and it is possible

that the use of HF was responsible for the anomalies (see fluor-tremol-

ite section ) .

Maqnesio-alumino-taramite: !NaCaNaMq3Al 2Si 6À1 2 (OH)¿

Phillips and Rowbotham ( 1 968 ) attempted magnesio-alumino-taramite

synthesis from gels at temperatures between 750o to'1000oC and pressures

between 1 to 5 kbar with runs 18 to 1gz h J-ong. only anthophyllite, a

talc-like mineral, and sodium-calcium montmorillonite were formed.

ALKALI ÀMPHIBOTES

Glaucophane: ¡Na rMq ¡Al rSi ¡O r r (oH )¿

Boyd (1955) reported reconnaissance runs on glaucophane bulk composition

that yielded mixtures of amphibole and albite at 750o to 825oC and b00

to 1000 bar pressure. Boyd states that this amphibole has refractive

indices, X-ray pattern, and extinction angle close to natural glauco-

phane, but the data are not given. Forsterite and enstatite, which are

expected breakdown products along with albite, r.'ere apparently absent.

Thus, the amphibole cannot be glaucophane in conposition.

From glaucophane bulk composition, Ernst /1957 ) synthesized an amphi-

bole whose upper stability limit is 20o to B0oc 1ower than that of mag-

nesio-riebeckite. High-temperature assemblages included forsterite, aI-bite, enstatite(?), liquid and vapour.

40

Ernst (1958a) presents preJ.iminary P-T stability data for amphibole

grown from the bulk composition ¡Na2Mg3Àlzsiaozz(0H) z up to 2000 bar

vapour pressure. He concludes that glaucophane is not itself a high-

pressure mineral, but can exist over a wide p-T range depending on the

bulk composition. Physical properties are not given.

Ernst (1959) ,reports the results of reconnaissance runs on the glau-

cophane composition at 6000 to 800oc and 20 to 30 kbar pressure. He

suggests that two polymorphs of glaucophane may exist because the celldimensions of this high-pressure phase are appreciably smaller than

those of the 1ow-pressure phase (Ernst 1958b). Amphibole grolrn at 7000C

and 20 kbar apparently recrystallizes at 800oC and 1000 bar to the form

with the larger unit cell. CeLL dimensions of both phases are given

(rable s) but no other experimentar results are presented.

Ernst (1951) summarized the above work and gives prevousLy unpub-

lished physical properLies and experimental technique. Two startingcompositions were used, ('1 ) NazO'3MgO.AlzO¡.8SiOz + excess HzO (glauco-

phane + vapour), and Q, NazO.3MgO.ÀlzOs.lOSiOz + excess Hzo (quartz +

glaucophane + vapour = talc + albite + vapour). Starting materials com-

prised dry mixes, glasses of the above two compositions, mixtures of

talc and Àmelia albite in proportions corresponding to composition Q)

above, and synthetic enstatile and Amelia albite in the proportion

Naz0'3M90'À120s'95i02. Amphibole yields range from less than 1 percent

of the condensed assemblage to over ?0 percent;'10 to 20 percent is typ-

ical. Grain size is about 20 to 40 microns by 1 to 3 microns. other

phases are the equivalent high-temperature assemblages (netastable).

41

Optical properties do not vary over a wide range of temperature and

pressure and amphiboJ.e grown from the equivalent high-temperature assem-

blage is indistinguishable from that grown from dry mix or g1ass. For a

temperature range of 6250 to 862oc and pressure range of 17s to 2500

bar, o varies between 1.594 and 1.596; ? varies between 1.6j8 and 1.62j,

The same set of cell dimensions reported in Ernst (1959) is given (table

5). Ernst concludes that neíther high pressure nor differential stress

is required for the stable existence of glaucophane.

Ernst (1963) presents the variation of cell dimensions of alkali am-

phiboles as a function of temperature, pressure and composition. The

composition of these amphiboles is not well-documented. only part of

the charge was crystallized to amphibole and variable amounts of the

high-temperature anhydrous assemblages of equivalent bulk composition

are present. He concLuded that gJ.aucophane occurs as two po].ymorphs,

because amphibole grown from glaucophane bulk composition at low pres-

sure has a unit cell volume more than two percent greater than natural

glaucophane, whereas that grown at high pressure had volume comparable

to that of natural glaucophane (see Chapter 6).

carman (1974) synthesized amphibole, presumed to be glaucophane, with

90 percent yield. Run conditions were B00oc at zs kbar. No physical

properties vlere given.

Gilbert and Popp f973) reported glaucophane synthesis at 7S0oc and

25 kbar. The cell dimensions of this amphibole are among the smallest

recorded for synthetic amphiboles of presumed glaucophane composition

(tabte S). They consider lhis to represent nearly fully ordered materi-

al.

42

Maresch (1973, 1974, 1977 ) reviewed the evolution of experimental

work on glaucophane. He criticized the concept of polymorphism proposed

originally by Ernst (1963) and concluded that an amphibole of gl-auco-

phane composition had never been synthesized. Maresch fg73) synthes-

ized an amphibole with greater than 80 percent yield on the glaucophane

composition; iL had cell dimensions (rabte s) which at the time were

closest to extrapolated natural iron-free glaucophane (norg 1967:

a=9.50, þ=17.67, c=5.29 Å, ß=103.720, v=864 A3). However, because ja-

deite and quartz were always present he suggested that the amphibole

composition was displaced towards anthophyllite and was not on the glau-

cophane composition. Koons (1982) examined the behaviour of amphibole

in the system

Na 20-Mg0-41 z0 g -S i0 z-H 20

and its relationships with sodium mica at high pressures. He found that

C2/m amphibole approaching glaucophane composition exists only in water

undersaturated systems. in the pressure intervaL '19 to 24 kbar at

7000c, it coexists with quartz on the glaucophane composition. Thus, itmust be displaced from the nominal glaucophane composition by substitu-

tion of NaAÀl'v for si and MgM4 MIML for NaM4 ÀrMz Koons (19g2).

Cell dimensions are given (rabte S). An electron microprobe anaLysis isgiven but it is of poor quality. Transmission electron microscopy on

this amphibole by M. Carpenter shows the amphibole to be well-crystal-rízed cL/n amphibole r,'ith B. 9 Å repeat spac ings of the ( 020 ) planes.

Rare 14 Å repeats of (020) planes were found, which are consistent with

the presence of occasional, triple-chain multipricity faults. Thus,

this amphibole has many fewer stacking defects than have been reporled

in other synthetic amphiboles (Maresch and czank 1991,1993; G. skippen,

pers. comm. lo P. Koons. ).

43

Carman and Gilbert ( 1983) investigated glaucophane stability using

geIs, oxide-carbonate mixes, and various mineral mixtures. products

were examined optically, by x-ray diffraction, and certain amphiboles

were analysed by electron microprobe. Grain sizes vrere generally less

than 10 microns. Cel1 dimensions (lab1e 5) are given for four amphi-

boles of presumed gLaucophane composition. Unfortunateì.y, the electron

microprobe analyses are unsatisfactory with totals of only 93 to 94 per-

cent; however, high yields and chemographic reasons are given to sub-

stantiate virtually nominal compositions. The cell volumes are among

Lhe lowest obtained for any synthetic alaucophane study, and the amphi-

boles are probably close to glaucophane composition.

Ferro-qlaucophane: ENa2Fel *Àl 2Si sOz 2 (OH)2

Hoffmann (1972) synthesized amphibole of presumed ferro-glaucophane com-

position from seeded runs at 500oc, 5 kbar fruid pressure with oxygen

fugacity defined by the WM buffer. Electron microprobe anayses are giv-

en to confirm nominal composition. They show that the synthetic amphi-

bole is close to endmember ferro-glaucophane in composition. Because

syntheses were done at oxygen fugacities corresponding to the WM buffer,there must be Fe3* present. cell dimensions (table 7) are given.

Crossite: ¡NarMqr . ¡Fe?1sÀlo. ezFell¡.¡Si¡Oz r (OH)¿

Koslowski and Hinrichsen (979) attempted to synthesize amphibole, in-lermediate to graucophane and riebeckite, of the composition:

lNa 2Mg r . sFe? i s¡10. ozFel I s ¡Si eOz z (OH) z

Nearl.y 100 percent arnphibole was obtained on the MH buffer at 700oc and

4 kbar H20 pressure. Cell dimensions are given (raUte z). The amount

44

and distribution of Fe2* and Fe3* were determined by Mössbauer speclros-

copy; the spectrum and details are not given.

Riebeckite : ¡Na zFeS'rel_lsi¡,Q¿ e (OH )¿

Tuttle and England (1953) report the synthesis of amphibole on the rie-beckite composition at temperatures below 610oc and in runs with less

than 3.9 percent water. No physical properties are given.

Ernst (1959, 1962) reports on the synthesis and stability relations

of riebeckite and riebeckite-arfvedsonite solid solutions at conditions

defined by the CCO, MH, NNO, FMQ, WM, IM, IÌ{ and IQF buffers. Forty-

seven sets of cell dimensions (tables 5, 7), optical properties and mi-

crometric analyses of coexisting phases are given. He shows that as ox-

ygen fugacity is decreased, the amphibole becomes more arfvedsonitic

through progressive filling of the A-site. Cel1 volumes increase from

about 912 Â3 to about 918 Å3 as the oxygen fugacity varies from condi-

tions on the MH buffer to lhose prevailing near the lower limit of mag-

netite stability. A sharp jump in volume to about 930 A3 is noted at

lower oxygen fugacities defined by the MW, IM and IW buffers. Ernst

(1962) attributes this increase to the the replacement of tetrahedral Si

by Fe3*. This is not a plausible solution; tetrahedral Fes* has not

been observed in any amphibole crystal-structure study (Hawthorne

1983b) .

45

Maqnesio-riebeckite : BNa 2MgiFet +Si Bgjj (QE)z

Ernst (1958a, 1958b, 1960) studied the stability relations of magnesio-

riebeckite at various oxygen fugacities. Cell dimensions are given for

endmember magnesio-riebeckite, but the synthesis conditions are not giv-

en for the sample used (¡¡o. 125, Tabre 5). Refinement of the x-ray pow-

der daLa given for this sample gave virtually identicaL results (No.

126, Table 5). Refinement of material provided by Ernst as part of the

present study, however, gave markedly different results; cell volumes

are consistentLy lower by about g A3 (Ho. 127-130, Table 5). Refine-

ments using Lake Toxaway quartz from the original study as an internal

standard, and BaF2 from the present study, gave essentially identical

results. The reason for this discrepancy is unknown. Àn infrared spec-

trum of material provided by Ernst (see Chapter 6) shows that the amphi-

bole grown is not magnesio-riebeckite; it is probably towards magnesio-

arfvedsonite in composition.

Ec kermann i t-e : NaNazMq¿À1Si e0r z (og)¿

Phillips and Rowbotham (1968) grew an amphibole presumed to be eckerman-

nite coexisting with a talc-like míneral frorn gels of eckermannite com-

positon al 770 to 1000oC and 1 to 5 kbar. Maximum grain size was 20x3

nicrons; length averages about 10 microns. Because of the presence of

the talc-Iike mineral, they admit that the exact composition is uncer-

tain. CelI dimensions (tab1e 5) of this amphibole are almost identical

to those of sodian magnesio-cummingtonite. Refinement of cell dimen-

sions from the powder x-ray data in their paper, however, gives very

different results (Ho. 145, Table 5). It is not known whether the celldimensions are incorrect, ot whether the wrong paltern is given. Note

that the same problem was noted with their richterite cell dimensions.

46

NyÞöi te ; NaNa 2Mq3Àl,si zAIo? 2 (oH),

Phillips and Rowbotham (1968) tailed to grow amphibole on the nybôite

composition at 750 to 1000oC and 1 to 5 kbar. Sodic montmorillonite was

the only phase.

Carman and Gilbert (1983) synthesized amphiboles apparently near ny-

böite in composition with yields of about 90 percent. Syntheses were

performed at 900 and 980oc, and 25 and 33.6 kbar respectively. cell di-mensions are given (rabte 5); note, however, that the bulk composition

of No, 147 was that of glaucophane, while that of No, 146 was nyböite.

À1kaIi Fl-uor- hi bol-es

Syntheses of alkali fluor-amphiboles are rare. Eitel fgSZ) attempted

to synthesize fluor-eckermannite in the sotid state at '1000 to 1100oC,

but 100 percent yields were not obtained. Crystallization from a melt

also produced extraneous phases in addition to amphibore. physicat

properties are not given. Shell et aI. (1958) reacted a fluor-eckerman-

nite composition in the solid state at 1010oC and obtained fluor-amphi-

boIe, forsterite, clinoenstatite, MgFz and g1ass. physical properties

of the amphibole are not given.

Fedoseev and Chigareva f964) reacted a mix of magnesio-fluor-arfved-

sonite with excess NaF and NaCl plus sawdust and obtained close to 100

percent amphibole. Optical properties are given.

47

r RON-MAGNEST UM-MÀNGANESE AMPHr BorES

.Edtan magnes i o:cummi nqton i te, ggdi an . hydro-maqnes i o-cummi nqton i te :

!,lal'lgN¿¡MqsSi a0r r (oH)¿, t'¡aHar¡lqsSi Â02 r (OHI@E-

Gier e'! al. (1964) synthesized a variety of amphiboles based on the

sodian magnesio-cummingtionite and sodian hydro-magnesio-cummingtonite

compositions (tabte ¡). Starting materials were prepared from solutions

of 1 M MgCl2, 2 M NazSiO3, colloidal silica, and 1 M NaF (for fluor-am-

phibole). substitutions for Mg were accomplished by repracing Mgcl2

h'ith CoCl2 or NiCl2. The resulting gels were crystallized in sealed pt

capsules. Products comprised denseLy intertangled fibers with diameters

of 0.1 to 3 microns and lengths up to 10 cm. À11 products were analyzed

by X-ray powder diffractometry, but only the powder pattern and.cell di-mensions for the sodian hydro-magnesio-cummingtonite are given (rable

5). The ß-angle is the same; the other parameters are smaller and give

a volume that is 1.2 percent less than that given by Gier et aI. (1964).

structural studies of the co-amphibole (no. 3, Table 3) and the sodian

fluor-magnesio-cummingtonite (no. 5, Tabre 3) by prewitt (1963) and

Gibbs and Prewitt (1968) show that co occupies rhe M(1), M(2), M(3) and

M(4) sites in sample No. 3, and that both amphiboles deviate somewhat

from their ideal compositions. Cell dimensions are given in prewiLt

(1963) for the Co-bearing amphibole and the fluor-amphibole (raUte s).

Schreyer and Seifert (1968) synthesized amphiboles in the system Na20

- MgO - SiOz - HzO at compositions on and between the endmembers

Na2Mgosi aoz z (oH) 2 and Na4Mg4si aOzo (oH) z (OH) z. The endmembers were not

characterized except for stability. NazMgosi soz z (oH) z melts incongr-

uently at 965t20oC and 1 kbar water pressure to forsterite, an osunil-

ite-type phase, and liquid, whereas solid solutions towards the Na-rich

48

TABTE 3

Synthetic amphiboles based cn the sodian magnesio-cummingtonite andsodian hydro-magnesio-cummingtonite endmember conpoãitions

No. Chemical Formula Run ConditionsT( "c) P(atm) t (n)

I

2

3

4

Na 2. 5Hr . sMgsSi e0z z (OU) z

Na 2. 2He. oMgo. eMg sSi s0z z (OH) z

Na z. ¿ qHo. z sCoo. ¿CosSi aOz z (OH) z

Na 2. 2He. zMgs. oCoz. sSi s0z z (0H) z

Na I . z ¿Ho. s sMgo. zMgsSi aOzz-(Fr.zz)(oH)o.z¡

700700575700700

30003000200030003000

6

6

6

6

6

Gier et al. 1964

endmember melt at successively lower temperatures. Àt 770t10oC, the Na-

rich endmember melts to less Na-rich amphibores prus riquid. It is not

1ike1y, however, that the Na-rich endmernber was actually synthesized.

Four sodium atoms in the formula unit imply that a sodium atom must oc-

cupy at least one of the M(1), M(2) or M(3) sites; sodium occupancy of

the octahedral strip has not been documented by structure studies (ttaw-

thorne 1 983b) .

Nesterchuk et aI. (1968) synthesized a Co-rich analogue of sodian

magnesio-curnmingtonite with formula (by chemical analysis) :

Naz. o sHo. z ¡Cos. ¿ sFeð lo 6Siz. s aOzz (OH) z

High yields (98 percent) were obtained by the co-precipitation method,

in which a solution of CoSOq was added in small amounts to a solution of

Na2Si03'9H20 with continuous stirring. The resulting suspension of

fine, dispersed particles was placed in a platinum crucible and reacted

in an autoclave at 3000 to 500oc, and at pressures of about 900 atm.

Run lengths varied between 10 and 168 h. The

phibole formed a pink, matted, fibrous mass with

4 mm long and 4 to 5 microns thick.

49

synthetic Co-bearing am-

individual fibers up to

Fedoseev et al. (1968a) synthesized a Ni analogue of sodian magnesi-

o-cummingtonite with formula (by chemical analysis):

Na z. s sNi s. o sSi a0z z (0H) z

Best results were obtained from starting materials comprising NaOH,

NiCl2 and Si0z in proportion to the amphibole stoichiometry governed by

the reaction:

14Na0H + 6Niclz + 8sio2 = Na2Niosiaozz(oH) z + 12Nacl

Solutions of the calculated amounts of NaOH and NiCIz were mixed with

finely pulverízed, amorphous sioz, and reacted at 450o to 5000c at pres-

sures near 900 atm. The product consisted of a green, fibrous mass of

amphibole with fibers up to 4 mm 10ng and 0.015 to 0.1 microns thick.Refractive indices were measured. Àttempts to refine the cell dimen-

sions from the given x-ray powder data as part of this study faiJ.ed; the

refinement did not yield reasonable values. It seems that Lhe published

powder data are in error.

Fedoseev et al. (1968b) reported synthesis of sodian magnesio-cum-

mingtonite, and nickel and cobalt analogues using similar techniques as

in Nesterchuk et aI. (1968) and Fedoseev et aI. (1969a). The resultsfor the Ni- and Co-amphiboles are the same data that were reported inNesterchuk et aI" (1968) and Fedoseev et al. (1968a). x-ray powder data

for the sodian magnesio-cummingtonite of formula (by chemical analysis):

Na z. s zlHo. zsFeE i o zMgs. s e Si sOz z (OH) z

are given.

50

witte et aL. (1969) synthesized sodian magnesio-cummingtonite from

glass of composition NazO'6MgO,BSiOz at 750o Lo 7700C and 1 kbar water

pressure. Run lengths varied from 47 to 1.19 h. They also grew

Na3Mgssie0zr(oH)(ott)2 f rom glass of composition Na 20,2tttgo.4sioz at 500o

to 600oC at 2 kbar water pressure. Run lengths varied from 44 to'117 h.

cell dimensions are given for both endmembers (rab1e s).

Makarova et al. (1971) synthesized amphiboles based on the sodian

magnesio-cummingtonite formula h'ith all or part of the Mg replaced by

Co2* or Ni2* (raUte ¿). Syntheses were done in alkaline media, similar

to the methods used by Nesterchuk et al. (1968) and Fedoseev et al.(1968a, b). Optical properties are given. Ce]1 dimensions (raUte S)

and more precise chemical formulae (rable 4) for these amphiboles were

TÀBLE 4

Synthetic amphiboles based on the sodian magnesio-cummingtonite formula

No, Formula Synthes i sT("c)

D.P(")

I

23

Naz. s zCal .osHo. I ¿Mg¡. sosis0zz(0H) zNaz. osHo" zgCoSl¡¿FeElooSiz. s aO zz(Otl) zNaz. o sNi 3i o sSi sOzz (OH)

z

770-8 0 07 40-7 60I 00-82 0

1 '180

1 0751200

Maka rova et al. f 971)formulae from Grigor'eva et al. (197S)

compiled by Grigor'eva et al. (197s). Makarova et al. (1972) report-

ed the synthesis of Mn-bearing sodian magnesio-cummingtonite with for-muLa (by chemical analysis):

Naz. ¡ zMnl . r eMg¡. ¿+Sí s0zz(0H) z

51

The other syntheses presented in this paper, sodian

magnesio-cummingtonite, Ni analogue and co analogue, are the same ones

described earlier (Fedoseev et al. 1968a, b, NesLerchuk et al. 1968).

No physical properties are gíven.

Grebenshchíkov et aI. (974) synthesized sodian magnesio-cummingto-

nites with two different habits depending on synLhesis conditions. Àt

450o to 5500C and pressures above 750 atm under conditions of low NaoH

concentrations, Iong fibers were grov¡n. At 350o to 450oc and 250 to 750

atm with higher NaOH concentrations, "aveniform" or "bundle aggregates"

of amphibole were formed. CeIl dimensions are given in Table 5 for the

two varieties.

t{itte (1976) studied the stability of the endmembers sodian magnesÍo-

cummingtonite, NaMgNaMgssi eoz z (OH) z, and sodian hydro-magnesio-cumming-

tonite in the system Nazo - Mgo - sio2 - Hzo. The Na-poor endmember

becomes stable at 750oc, 350 bar and at 850oc, s50 bar. It breaks down

at 955oC, 800 bar to forsterite + Na2Mg5Si r zOso + melt + HzO. Àbove 800

bar water pressure, it reacts to forsterite + enstatite melt + HzO at

990oc, 1 kbar, and 1'130oc, 5 kbar. The Na-rich hydro-endmember displays

a significantly lower thermal stability. It becomes stable at 550oC and

'150 bar; between the points 61Ooc, 250 bar and 6130c, 300 bar it reacts

to amphibole solid solution + Na2MgzSioOrs + melt + HzO, and above 300

bar only to amphibole solid solution + nelt + Hzo. sodian hydro-magne-

sio-cummingtonite melts at 580oC, 5 kbar water pressure.

52

Sodian f luor-maqnesio-cumminqtonite: NaMqNaMqsSi ¡Or zFz

Gibbs e! al. U962) synthesized sodian fluor-magnesio-cummingtonite both

from a melt and by pneumatolysis from batch compositions containing ex-

cess fluoride. The product contained mostly acicular amphibole; the

identity of other phases is not stated. Reagent grade NaF and Na2co3,

technical grade MgO and MgFz and -200 mesh quartz (99.9 percent SiO2)

were reacted in sealed graphite or pt crucibles at 12500c. Àfter 2 h,

the temperature was lowered to below the solidus at 10och-1. Chemical

analysis of the producL shows good agreement with the nominal composi-

tion; cerl dimensions and opLical data are given (table 6). singre

crystal data are consistent with the space group IZ/n.

Fedoseev et al. (1970) and Grigor'eva et al. (1973a,b) give cell di-mensions and optical properties of sodian fJ.uor-magnesio-cummingtonites

(fa¡te 0). other syntheses by these workers of amphiboles based on this

endmember composit,ion were not reviewed in detail; cell dimensions are

given in Tab1e 5. Miscellaneous syntheses by others of amphiboles based

on this endmember composition are listed in the additional bibliooranhv

of amphibole syntheses.

53

TABLE 5

ce11 dimensions and optical properties of previousry synthesizedhydroxy-amphiboles: pure endnember conpositions

A. Cell Dimensions

Ref .T a (Å) b (Å) c (Å) ß (") V (43)

e.833(s)e.801 (3)e.828(3)9.822(2)9.873(10)s.814(6)

1 8.05418.07 (

1 8.0s91 8.05s18,0271 8.063

18.35(2)18.31(2)18.33 ( 2 )18,31(2)18.32(2)18.3e (2 )18.3s(2)18.36 (2 )18.3s(2)18.34(2)18.34(2)

NaCa 2Mg17.986(17)17 .946(s)17.94(3)

Calcic AmphibolesTremol i te

ECa 2MgsSi aOz z (OH

5.268(45.284(25.27 6(35.277 (2s.250(75.275(3

Ferro-actinolite

.31

.32

.28

.30

.30

.30

.30

.30

Pargas Í teaÀlSisÀIz0zz(

s.255(8)s.282 ( s )5.279(3)

104,s2(7 )

104.3s(3)104.70(3)104.63Q)104.30(1s)104.65(s)

905. 3

905.4905.890s.4905.4904,6

937.5 ( 20 )940.7937,6q?q ¿

941 ,4938. 1

939.0938.7937 ,7937.5938.2

t

)

1

2

34

5

6

55

55555

5555

(e)3)(6)(5)(6)(12)

10)3)4)4)8)7)

¡cazFeS*si6o22 0H)z1)

I

1

1

1

1

I

1

I

1

1

(

(

(

(

(

(

(

(

(

(

(

(

1

8.o

10.11.12,13.14.15.16.17,

.98

.96

.97,97

q?

.959898989B

97

99

9

99

9

99

9

99

1

1

1

1

1

1

1

I

1

1

1

.30

.32

.29

104.4(1)104,7 (1)104.6(1)104.7 (1)104.7(1)104.4(1)104.6(1)104.3(1)104.5(1)104.5(1)104.5(1)

105.25(e)1 04.40 ( 2s )

¿

105.30(i4)105.67(3)105"s0(5)

e11.4(2)8ee.8(10)

(20 )(20 )

Q0)Q0)(20 )(20 )(20 )

Q0)(20)Qo')

18,19,

9.911(11)9.8s3(15)

21 .22,23.

9.906(10)9.914(3)9.896 ( 2 )

Eden i teNaCa 2Mg5Si zAl0z z (0H)

z17.e51(22) 5.310(5)18.00s(11) s.236(15)

20, 9.999( 1 0)

Ferro-eden i teNaCa 2Fe3

*Si 7A10z z (OH)

z18.217(11) 5.314(14) 105.50(17) s32.8 ( 30 )

OH

lRef. corresponds to references aL end of table.

904.7 (19)904.9(7)903.2 ( 3 )

54

Ref . a (Å) b (Å) c (Å) ßo v (Å3)

24,25,26.a'l

28.îo30.31.3¿.33.34.35.36.

37,38.39.40.41 ,42,43.44.45.

e.e05(s)e.890 ( 2 )9"8'19 .87 4(4)e.888(s)e"8e1(4)e.8e0 ( 3 )e.891 (8)e.Bes(2)e.887 ( s )e"8e3(2)e.8ee ( 2 )e.8e2(1)

17.9560)17.930(s)

5 .27 6(1)5,27 4(3)

17.904(10)17 .943(7 )

17 .e32(6)17.93s(6)17.953/22)17.93e(s)17,940(14)17 .941 (5)17.946ß)17 .941 (2)

s.278 ( 3 )5.280(3)5.275(4)5,277 (2)s.280(10)s.280(2)5.271 (6)5 .27 6(1)5.278 ( 1 )s ,277 (1)

10s.70(2)105.54(2)

105.43(4)105.55(2)105.s0(7)10s.53(2)10s.63(12)105.s7(3)10s.52(7)105.55(1)10s.s8(1)105.ss(2)

899.4(902.5(901.5(901.9(e02.8 (

902.8 (

900.9(902,1 (

903.1 (

902.2(

928.8(4)928.8(4)928,5927 .0924.7925,4926.7 (2)925,1s23.1 (2)

930 "

934.933.932,933.930.934.935.933.932.932,

903.4901.1

(4)(4)

8)s)6)4)10)3)e)2)2)3)

Ferro-pargas ÍNaCa zFe I

-A1S i oAl zO.330

t

2

te2

(OH

.9s3

. 9583)7)

5

55

55

55

55

9

9

9

9

9

99

9

9

54

)

)

)

)

2

3

2

(

(

I

1

1

I

(

(

(

18,152(18. 14e (

18.14(218.13(218.13(218.13Q

,328/2.33(1).33 (1 ).33 (1 ).34(1).326(1.324(2.334 ( 1

si teoAlz0zz(0H)z.325,325.321.318.322,321.334.340.325.329.323

2

105,27'1 05. 30

?

5

)

)

)

)

2

2

¿

.95

.94

.90o1

.952, 938.890

1 05.105.1 05.1 05.1 0s.

3(2(1(1(3018.128(4)

18.11e(6)18.123(4)

10s.221 05. 08

stinHa I1

555

555555

55

46.Ã.1

48,49.50"þt.52.53.54.55.55,

9.979(27e"e90(4)

10.003(2)10.001(3)10.003(2)9.e57(8)9.e84(2)9.ee6(1)9"994('1 )e.95s(1 )

s.997 (2)

NaCa z'18.

1 5218,21318.i8418. 1 9118.18118.18418,16218.18118,17 418.19618.179

Magnesio-hastingsiteNaCa 2MgaFe 3 *Si

641 2O z z (0u )17 .982(30) 5.289( 1 1 )18.0i5(9) 5.282(3)18.025(g) 5,290(4)18.029(4) 5,293r)

27) 105"20(34)103.2s(3)10s.33(2)105.31 (2)10s.33(2)1 05. 1 3 ( 1 )

10s.2s(3)105.2s(3)105.33(2)10s.09(2)10s.34(2)

2

105.61(1210s.43(4)105.43(4)10s.43(1)

Fefr*Fee*5(63 )(10)(4)(3)(2)(2)(4)(3)(4)(2)(5)

3I

1

I

1

3

321

1

ßl6n)8(e)5(218(2)5Q)1(2)6(5)4(s)1(3)7 (2)e(3)

57,58"59.60.

9.92s(1s)9.928(2)9.s30(5)9.e33(2)

e09.1 (260)910.7 (8 )

912.0 ( 10 )

913.0 ( 5 )

55

Ref . a (Å) b (Â) c (Å) ôt)

o v (Å3)

61,62.63.

e.e32Q)e.933(1)e.e26(s)

18.015(4)18.028(3)18.029(9)

.297 (1

.297 (4

Tscherma k i terca2MgsÀlzsioÀ1z0zz

105.43(2)105.44Q\10s.46(5)

912,914 ,

913.

t

104.e3Q)105.51(2)105.43(3)10s.21 (4)104.96(4)

89s.4897.3896. s896,2899.9

.289(155

5

s.294(1s.28s ( 35.283(35.290(35.326(3

2(3)3(3)7(8)

(s(sQ(s(e

OH64.65.66.67,68.

"90.89"87

9 .7 49(4)9.843(3)e.83e(2)9,822(4)9 .7 42(4)

69. 9.770(4)

171717

17 .95

17 ,95

Ferri-tschermakite!Ca 2Mg rFel +Si oÀl zOz z (Og)

z18.02(1 ) s.30e(3) 10s.14(3)

Sodic-calc ic amphibolesRichter i te

NaCaNaMgsSi a0z z (OH) z

I

1

1

I

1

70.71,1)73,74.75.76,77,78.1q

80.81.

81a .

82,83.

9 .e82(7 )

10.003 (1 )

17.978(5)17.978Q)17.e80(4)17.976(4)17.982(2)17.984,7)18.003(8)18.001(9)17 .975(4)17 .979(4)17.9s8(3)17 .978(5)18.10(1)

Ferro-r ichter i teNaCaNaFeA *Si

sOz z (0H) z18.223(6) 5.298(5)1 8.238 (4 ) s.308 ( 1 )

103.73(12)103.92(2)

936.2(10)940.0(7)

e.eoe(1)e.8ee ( 2 )e.e02(1)s.e01(2)e.e03(1)9.884(7)e.8e3 ( 3 )9.896(s)9.854(4)9.e07 Q)9.892(s)9.e01(3)9 .7 4(1)

2)1)3)3)1)6)4)6)6)¿ì10)3)

s.268(15.269(15 .269 (1s ,270 (15.267 (1s.268 ( 35.268(25.270(35.266Q5.269(15.263Q5.269rs.2e(1)

104,22(3)104,22(2)104.22(2)104.20(2)104.23Q',)104.07(B)104.23(3)104.33(5)104.18(s)104 -)t( )\'104.28(3)104.20Q)104,12

e02.60 )

909. I908.6909.4909.4909,2907 .7909. 5909.6904. 3qnq Á

906. 0909.3905

921.4(s)84. 10.049(2)

Potassium-richteriteKCaNaMg5Si e0z z (OH) z17.988(3) 5.272(1) 104.80(1 )

Potass i um-f er ro-r ichter i teKCaNaFeS *Si

aOz z (Ori ) z18.201o) 5.2e0Q) 104.53(3)8s. 10.172(3) 948.2(4)

56

Ref . a (Å) b (Å) c (Å) ß (") v (Å3)

ÀIka1i amphibolesGlaucophane

rNa 2Mg 3AI 2Si a0z z (OH) z

86.87.88.89.90.91,92.93.q¿

95.96.q?

98.99.

100.101 .102.103.104.'1 05.1 06.107 .1 08.109.110.111.112.1'13.114 .115.116.117 .119.119.

a.120.121 .122.123.

9 ,719.649 .717 (2)9 .619(7 )e .7 42(1)e.703(5)9.783(5)q 7?

9 ,719.759.669.789,7 6q11

9.819,749.699,669.709.679,769.719,739.699.649.669.699.619. 599.619,73

17 ,9217 "7117 .922(317.682(117 .921 (317 .928(617.860(717 ,9117 ,9217 ,9117.7417 ,8218.0117 .9217 ,9317.8317 ,9017.8317 ,8617.8317 .9017.73

17 .7517 .7717 .7117, 9017 ,9817.694,12)17.700(5)17 ,7 0117 ,697 (13)17.700(5)17.6e0(10)17.6e4(5)

5,27s. 285 ,271 (1)5.292(5)5.269 ( 1 )

5,272(2)5.27 4(2)5.275.275.275.285,29

102.51 03.7102.64(1)103.44(8)102.71(1)102.57 ß)103.31(4)102,8102 ,6102,9103.7103.6103.5'103.0

103.1102,6103.1103.6102.7103.0102.5103.7'103.7

103.7103.7103.7103.7103.6103.4.103.8

102.8103.4103.58(7)10s.s0(2)103.71 03.531 03.50i 03.57103,42

89s. 3

875.889s. 7 (

875.4 (

897.3 (

895. 0 (

896.6 (

89689689887889789689889989sI9'1878I9'1883899883888882875877879877878873896893868.5(10)870.4 ( 3 )

)

3

)

)

)

2

9,1

4

4

Ë

L

tr

5. 2B5,275.255.275.255. 285. 285.275,28s. 285"285.27s.29s. 305. 285.275.255.293(4)5.291Q)5.2765.284(s)5.291(2)5.290(2)5.281(2)

870.9867 ,4870,4869.2867 ,7

27¿5

17.8017 "7417.7017,7017 ,72

q1

9.59.59.5

240(6)57(3)98

(g(s(q(e

9.540(8)9.ss7(3)e.5ss(3)9.s47(3)

57

Ref . a (Å) b (Å) c (Å) ß (") V (43)

125.126.127 .128.129,130.

9.799.794(3)9.7 42(1)9,745(4)9.761(5)e.693 ( 1 )

1 02.8102.93 (4)103.38(2)103.40(s)103.43(6)103.19(1)

908. 6908. 9

899. 9900. s900.7896.4

124. 9. 586 ( 3 )

Ferro-glaucophanerNa zFe 3

*¡l ,Si aO z z (0H ) z17.89(3) s.317(3)

Magnesio-riebeckiterNa 2Mg¡Fel *Si

s0z z (OH) z18.02 5 "2818.023(6) s.283(1 )

17 .e45Q) s.2e1 (1 )17 .943(7 ) s. 294 (3 )

17.e28(8) 5.291 (3)17 .953Q) 5. 2e0 ( 1 )

RiebeckiteBNazFeS -rel *si

soz z (og) z18.06 5.33

18.082(10) 5.331 (4)18.07 5.331 8.08 5. 3418.05 s.331 8. 0s s.3318.06 5.3418.07 5.3318.09 5.3318.08 5.331 8.04 5. 3418.09 s.33.18. 08 5.33

Ec kermann i teNaNa 2Mg4À1Si s0z z (OH)

z17.89211) 5.284(6)17.889(7) 5.270Q)

103.75(1) 894.9Q',)

3

2

5

61

131.132.IJJ.134,13s.136.137 ,

1 38.139.1 40.141 .142 ,143.

1 03.103.103.'1 03.103.103.'103.

103.

9,749.739(6)9.739.729.72q 7?

9 ,719.739.7 49,739.739,749,75

e.652(4)9.649Q)

103.3103.30(6)

913.i913,7 (

911 ,7913.7910.9911 .7912.1912.0913.3912.8912.3914 ,3914.0

898.6(8)88e. 6 (4 )

7

1

1

1

030303

2

2?

4

2

44

4

54

4

144 .145.

146 .147 ,

e.7 62(6)9.67s ( 3 )

103.17(49)102.73ß)

148 .149 .1 50.

9.735(7)9.70(1)e.68(1)

877.0(8)877.0(5)

wybö i reNaNa 2MgsÀl zSi 7À102 z (0H) z

17.681 (1 1 ) 5.290(3) 103.7317.699Q) s.286(6) 103.73

I ron-magnes i um-manganese amphi bolesSodian magnes i o-cummi ngton i te

NaMgNaMg5Sie0zz(0H)z17.911(11) 5.279(4) 102.59(s)18.01 (1 ) 5.28(2) i03.03(8)18.06(1) 5.30(s) 104.90(17)

898.38ee(5)8e5(10)

58

Ref . a (A) b (Å) c (Å) ß (") v (Ä3)

Mi scellaneous composit ions151 .152,1 53.1 54.

9.89e"866(5)e.832 ( s )e.6s0 ( 5 )

18.0s 5.2817 .997 (6) 5.274(3)18.088(2) 5.29e(5)17.920Q) 5.270(s)

103103.03(4)103.0(2)102.eQ)

918912,3918.2888.3

B. Optical Properties

Ref . a ,'t Z^cav. at7

1"2,1

8.o

10.11"t¿.13.14,15.tb.

19,20,21,23.36.37"38.39.40.41.42,46,51.52,53.

1 .6011 .605

1.6251 ,528

tt

?Ê,

1 .621 (3)1.700(3)1 ,6241,617

1.634(3)1 .726(3)1 .6451 "636

1.58e(3)1 .68e (3 )

1.688(3)1.6e0(3)1.6e1(3)1.688(3)1.68e(3)1.690(3)1.688(3)1.5e1(3)1.68e(3)

1.624(3)

1.715(5)1.700Q)1.6e8Q)1 .698 (2 )1 .699(2)1 ,7021.6e8(3)1.6s2(2)1.6e2(2)

1.713(3)1.71s(3)1.715(3)1.71s(3)1 "7281,722(3)1.712ß)1,712(3)

222427

59

Ref . a T av. at'l Z^c

54.55.57.58.60.62.63.64.65.66.67.68.69,70,72.?o

80.81a.82.84.91 .

120,

.697 (3)

.6e8(3)

.652

.642(4)

.6s0(5)

.654(4)

.657(3)

.640

.639

.640,642.643.642.602(2).604(s).603(2)

1"723ß)1.725ß)1 .66s1.653(4)1,662(4',)1.66e(4)1 ,672(4)'1 . 6541 .6541 .6531 ,6521 .6551 .6611.620ß)1.622(3)1.624(3)1"624(3)1.61s1,710(4)1,629(2)1,6201 .620

16Q)

1s(2)

I

1

1

1

1

1

1

1

1

1

1

1

1

1

I

I

1

I

1

1

1

1

17

502(3)5006e0(5)604(3)595602

24252525

'10

5Q)

Co1ville et aI. (1966): synthesized by Boyd (1959)TroLl and Gilbert (1972)t 650oC, 1.01 kbai, 1966 hTroll and Gilbert (1972)t 775oC, 4.06 kbar, 9BO hoba (1980): g00oc, .t kbarWestrich (1978): 900oC, 4 kbar, 45 h, rerun 45 h

1

2?

4

567

I9

Wones and Dodge (1977)z 770oC, 2 kbar, 166 hErnst (1966)¡ 528oC, 3 kbar, 733 h, -1og fO2=11.9Ernst (1966): 4700C, 3 kbar, 989 h, -fog tOi=26.AErnst (1966): 452oC, 1 kbar, 984 h, -toõ fOr=27,UErnst (1966): 437oC, 2.98 kbar, 840 h, llog fOr=29.,Ernst (1966): 406oC, 2 kbar, 1604 h, -Iog iOr=jg.gErnst (1966): 537oc, 3 kbar, 475 h, -1og tor=27,tErnst (1966): 516oC, 3 kbar,502 h, *log fO2=29.UErnst ( 1 966 ) : 503 oC, 2 kbar, 820 h, -lóg fO z=29 .1Ernst ('1966): 459oc, 1 kbar, 903 h, -Ioõ tor=31 ,nErnst (1966): 420oC, 0.5 kbar, 1125 h, llog fO2=33.,Ernst (1966): average of No. 8-16 this tabÍeHinrichsen and Schürmann (977)z 7S0oC, 4 kbar9oluiJlu * ¿. (1966): 8s0oc, 2 kbar, 3 days9oluille g! al. (1966): 6000C, 3 kbar, 31 dãys, rW bufferColyille ç! ql. (1966): synthesized by Boyd (1954, 1956, 1959)Holloway (1973)¿ 1002oC, 1.24 kbar, 1ó3 h-

10.11.12,13.14,15.16.17,18.19.20.21,22.

60

23.24.25,26.2',7.

28,29,30.31.32.33.34,35.36.37.38.39.40.41 .42.43,

44,

45.

(1e80)(1e80)(1s80)(1e80)(1s80)(1s80)(1s80)(1s80)(1s80)(1980)(1e80)(1e66)(1e66)(1s66)(1e66)(1e66)

333 h330 h330 h330 h330 h336 h331 h

i eldi eId

oba (1980): 950oc, 5 kbarT.testrich (1978), westrich and Holloway (1981): 12050c, 4kbar , 72 hBraue and Seck (1977 )

Droll and Seck (1976)Hinrichsen and Schürmann (1977],CharlesCharlesCha r lesCharlesCharlesCharlesCharlesCha r lesCharlesCharlesCharlesG i lbertG í lbertGilbertGilbertGi lbert

: 750oC, 2

: 750oC, 2

: 750oC, 2

: 750oC, 5 kbar, 527 h Iiii1

i

vvvvvvvv

=95=95=80=85=90=60=95=99

eIdeldeldeldeldeld

tabl eMQ buf fer, yield=9Oe"CH¿ buffer, yield=90eoufferuf fer

750 0c

750 0c

850 0c

8500c: average: 600[, 2

: 700[. 2

: average: average

690 0c,

680 0c,

680 0c,

690 0c,

: 850oC, 2 k: 8500C, 2 k

2

2

1

1

kbar,kbar,kbar,kbar,kbar ,kbar,kbar,

No. 28kbar,kbar,(4 run(4 run

-35368368s),s),

thi sh, Fh,crl,IbI,lMb

cell dimensions refined in this study fron X-ray powderdata (cilbert 1966, Table 2, No. ÀI1)Gilbert (1966): 683oC, 1021 bar, 517 h, WM buffer,cell dimensions refined in this study from X-ray powderdata (Gilbert 1966, Table 2, No. HI8)Gilbert (1966): 6400c, 1989 bar, 408 h, FMQ buffer,cell dimensions refined in this study from X-ray powderdata (Gilbert 1966, Table 2, No. ÀF4)Co1ville qt al. (1966): 600oC, 3 kbar, FMO, 31 daysCharles (1978)

: average (4 runs), FMQ buffer: single run, NNO buffer: 847oC, 2014 bar, 81 h, II^I buffer,

600oC, 3 kbar, I8F buffer600oC, 3 kbar, Iti buffer600oC, 3 kbar, WM buffer660oC, 3 kbar, FMQ buffer, ME3

46.47.48. Thomas49. Thomas50. Thomas5'1 . Thomas52. Thomas53. Thomas54. Thomas55. Thomas56. Thomas57. CoIvill58. Semet (

(

(

(

(

(

(

(

(

(

À

1

1

1

1

1

1

7

7

7

7

(

1979)1979')197 9)1979)1979)1979)1979)1979)1982a

3 kbar, IQF buffer, MI33 kbar, IW buffer, MH323 kbar, WM buffer, MF323 kbar, FMQ buffer, ME3

bar, MFI buffer, av. obar, CT buffer, av. o

40221

3

39

fer, 3 daysof8

: 680oC, 3 kbar, WM bufferet al. (1966)¡ 850oC, 2 kbar, MH buf

59.60.61 ,62.63.64.55.66.67.

SemetSemetSemetSemetSemetOba (

Oba (

Oba (

Oba (

973')973)973')973)973)973)8):8):8)¡8)¡

9100c850 0c

8500C850 0C

850oC,2 kbar, IQF buffer, av.850oC, 2 kbar, WM buffer, av. o850oC, 2 kbar, FMQ buffer, av.850oC, 2 kbar, NNO buffer, av.

f5of 10of3t6f. 12

r5 t(b10 kb12 kb'1 5 kbar, +cpx+grt+qtz

19191919

bt

68.69.70,71.72,'t774.75,76.77,78,79,

80.

81.

83.

81a .

82.

Oba (1978):Oba (1978):Forbes (1971) t

Braue and SeckCharles ( 1 974bCharles (1974bCharles ( 1 974bCharles (1974bCharles (1974bCharles (1974bWestrich (1978Huebner and Pa

850oc, 20 kb850oC, 20 kbar, no buffer

850-950oC, 100-750 bar(1977)z 1030oC, -1 kb: 800-850oC, 1 kbar, av. of 4: 700oC, '1 kbar , 72 h: 800oc, 2 kbar, 48 h: 700oC, 5 kbar, 119 h: 600oC, 7 kbar, 456 h: 5'10oC, 10 kbar, 600 h: 950oc, 4 kbar , 72 hike (1970): 760-916oC, 1-2 kbar, 3.5 h - 56 days

av. of. 7

)

)

)

)

)

)

)

p

84.85.86.87,88.

Phillips and Rowbotham (1966): 750-1000"C, 1-5 kbar, 1g-192 h.Note that these cell dimensions are incorrect, see No. g1

Phillips and Rowbotham (1966): same as No. 91. ceil. dimensionsrefined in this study from x-ray powder data in their Table 1.9.tig9r'ey?-+ +1._{19751. Synrhesized by Makarova er at. (197i)Charles (197ab): 500-530oc, 5-iO lbar, S3S-lZl h, ail õI 3,

I9l buf ferCharles (197ab): 600-70OoC, 5-7 kbar, 1ZO-216 h, av. of 2,

IW buf ferHuebner and Papike (1970): 732-916oC, .1-2 kbar, 3.5 h-56 daysHuebner and Papike ('1970): 601oC, 1 kbar, CCHq bufferErnst (1959, '1961): 800o, 1 kbar, "glaucophane I"Ernst (1959): 800o, 20 kbar, "g1aucóphane II"Ernst (1961, 1963): ce11 dimensions iefined in this study fromx-ray powder data in Ernst (196'1), Table 5, Ernst (1953); Table 1,same sample.as No. 86, this table, "glaucophane I"Ernst (1963): cell dimensions refineã in tÈis study from x-raypowder daLa in Ernst (1963), Table 5, same sampre ãs No. Bj, itistable; "glaucophane II "Ernst (1963)¡ Run No. GM-1 obtained f rom I,i.G. Ernst, same as No. 95this tabre,.cel1 dimensions refined in this study, ;'glaucophane I"Ernst 19ü ): Run No. G-119 obtained f rom w.G. Einsti asl"c,- l-.egkbar, i0 h, ce}1 dimensions refíned in this study, "glaucopúane II"Ernst (1961, 1963): Run No. c-'134 obtained from w.c.-nrnst; 603"c;4.6 kbar, 1092 h, same as No. 97, this table, ceIl dimensiónsrefined in this study; "glaucophane I"Ernst (1963): 815oC, 1 kbar, 1920 h, glassErnst (1963): 835oC, 1.19 kbar, 37 h,-mixErnst (1963): 760oC, 2 kbar, 221 h, glassErnst (1963): 294oC, 4.6 kbar, 1460 h, mixErnst (1953): 603oc , 4.6 kbar, '1092 h, 91assErnst (1963): 4030c, 4.?S kbar , 1414 h,

-mix

Ernst (1963): 680oC, 10 kbar, SZ h, mixErnst (1963 ) : 796o_C, 10 kbar, I h, glassErnst ( 1963 ) ¡ 63'1

oC, 10.4 kbar, 1 S h, glassErnst ( 1 963 ) : 521 oc , 11 ,1 kbar, 4 h,

-giass

Ernst (1963): 600oC, 12.4 kbar, 72 h,-mixErnst (1963): 797oC, 12.8 kbar, 6 h, glass

89.

90.

91,

92,

93.94,95.96,97,98.99.

100.101.102,103.1 04.

62

118. Maresch (1973): 700oC,2119. cilbert and popp (1973):

I kbar, 6 h, glasskbar, 47 h, mix7 kbar, 20 h, mix7 kbar, 18 h, mixkbar, '13 h, mixkbar, 3? h, mix, No. GC-1kbar, 20 h, mixkbar, 13 h, mix, No. GC-zkbar, 6 h, glass9 kbar, 1095 h, gì.aucophane I3 kbar, 5 h, glaucophane Ikbar, 241 h, glaucophane II

9 kbar, 1097 h, glaucophane III kbar, "amphibole 2"750oc, 25 kb

13.1516,16.17202025302.920,0.52.9

105.1 06.107 ,1 08.1 09.110.111.112 ,'113.

114,1'15.116,117 ,

Ern stErnstErn stErn stErnstErn stErnstErn stErn stErnstErn stErnstErn st

(1e63):(1963):(1963):(1e63):(1e63):(1e63):(1e63):(1e63):(1e63):(1e63):(1e63):(1e63):(1e63):

6970c,750 0c,

7 50 0c,

800 0c,

690 0c,

700 0c,

900 0c,

700 0c,

599 0c,

2960c,7130c,500 0c,

3 50 0c,

Koons ( 1 982 ) : 700 oC, 25 kbar, 1 52 hcarman and Gilbert (tgg¡): No.4100, g00oc, 35 kbar, 16 hCarman and Gilbert (1983): No.G31, 750oC, 2b kbar, 0.S hCarman and Gilbert (1983): No.G35, 750oC, 25 kbar, 24 hCarman and Gilbert (1983)¡ No.4i26, g'15oc, 25 kbar, 24 hHoffmann (972)z I500oC, 5 kbar, 4 weeks, WM bufferErnst (1960): no conditions givenErnst (1950): refined in thiã study from X-ray powder datain his Table 13 (data for No. 125 used by ernãt)Ernst (1960): refined in this study from data corrected onrun R-129 provided by W.G. Ernst using BaF2 as internalstandard. 802oC, 1950 bar, 5 hErnst ('1960)¡ refined in this study from data colrected onrun R-129 provided by w.G. Ernst using Toxaway qtz as internalstandard. Compare with No. 127, 126, 125Ernst (1960): refined in this study from data colrected onrun R-101 provided by tI.G. Ernst. 8760e, 730 bar, 119 hErnst (1960): refined in this study from data colrected onrun R-130 provided by W.G. Ernst. B0BoC, 500 bar, 1g hErnst f962): No, 12, his Tabte 10, 40BoC, 2 kbar , 161 hErnst (1962)z refined in this study from data colrected on runHR-54-8 provided by lr.G. Ernst. Same as No. 13143. Ernst (1962), Table 10Phillips and Rowbotham (1968): 770-1000oC, 1-5 kbar, 1g-92 h.Note that these ceIl dimensions are incorrect, see No. 14SPhillips and Rowbotham (1968): refined in this study from x-rayX*ray powder data in their Table 1; same sample as ño. 144.Carman and Gilbert (1983): 980oC, 33.6 kbar,- Z0 hCarman and Gilbert (1983): 9000C, 25,0 kbar, 30 hi,titte et al. (1969): 750-770oC, 1 kbar, 4Z-119 hGrebenschikov et a1. (97a)z 450-5500C, >7S0 atmGrebenschikov et a1. (97a)t 350-450oC, 2S0*7S0 atmGier et al. (196.4)J Na2.5Hl. sMgsSisOzrlou)r, 700õð, 3000 atm, 6 hr,¡iLte É.ê!. (1969): Na3Mg5SisOzr(OH)(OH)2, 500-600oc, 2 kbar, 44-Prewitt (1963) : Na zHzCoS*SieOzz(ott) z

131.132,

1 33-1144

"

119a120,121,122,123,124,125.126,

'l

I2

54

'154. Prewitt ( 1963 ) : Na zHzMgsSi aOz zFz

2

I

9

0

2

3

h71

1461471481491501 s'1

152153

63

TÀBIE 6

ce11 dimensions and.opticar properties of previousry synthesizedfluor-amphiboles¡ pure endmember compositións-

A. CeIl Dimensions

Ref . a (Å) b (Å) c (Å) nt)

o v (43)

Fluor-tremol i tenCa 2MgsSi s0z zFz

1

2

34

5

9.787 ( 3 )

e.781(s)9.783 ( 3 )9.777 (4)9 .87 6(7 )

104 ,44(2)104.52(8)104.s2(3)104.50(3)106.10(s)

898.1898.0898.8897.5891.9

18.004(2)18.007(4)18.016(4)18.013(6)18.007(11)

17 .957 (418.019(817.963Q17.963(217.963ß17.968(3

s.263Q)5.267 (6)s.268 ( 3 )5.265Q)5,220(6)

5

5

6

7

Fluor-pargasiteNaCa 2MgaAlSi 641 zO z zF z17.922(9) s.284(3) 105.73(8) 898.7(6)6

7

I9

e.8s8(s)9. 88

9.847 ( 5 )e.807(5)

9.8239. 6s39.8349.8269"8289.824

104.83(8)104.45(8)

90s,2898. 0

900.3An? ¿

901.1900.3900.3900.6

FI uor -eden i teNaCa2Mg5SiTÀ1022F218.004(4) 5.282rc)

17 .9s7 (4) 5.266(6)

Fluor-richteriteNaCaNaMg5Si s0z

10.11.12.'13.

14,15.

F6

I1

1

1

I

)

)

)

)

)

)

5I1

1

1

3

(

(

(

(

(

(

5.2685.2445.2625.2635.2625.263

1 04.331 03.37104,21104.23104,24104.22

(8)(1\(1)(1)(1)(1)

(5)Q)(2)Q)(4)

16"17,

g.g4gQ')9.953(1)

Potass i um-f luor-r i chter i teKCaNaMg5Sis0zzFz

17 .977 (4) 5.267 (1)17 .981(2) 5.264(1)

104.80(2)104.81(1)

e10.6(3)e10.8(2)

18.19"20"21 ,

9.677 (5)e.65(1)9. 6ge.67 (1)

Sodian f luor-magnes i o-cummington i teNaMgNaMg5Si 602 2F 217.914(e) s.274ß) 102.9s(s)

17.921) 5.26(1) 102.74(8)17.92 5,27 102.9217.e2(1) 5.27(1) 103.00(8)

891 .01887(2)8918e0(5)

64

Ref . a (Å) b (Å) (Å) ß (") v (Å3)

UE

tr

L

trJ.

tr

tr

E

tr

5.5.

1)i)1)1)1)1)i)1)1)1)1)i)1)

(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)

Mi scellaneous sitionsompo26r22.

23,24,25.26.27,28.29,30.31.32,33.34.

.65

.61,67.69.70.71.51.55.68,70,72

17 .91(17 .92(17 ,96(17. 98 (

17 ,94(17 ,97 (

17.86 (

17 ,87 (

17.93 (

17 .92(17 ,94(17.89 (

17.90(

9

9

9

9

9

99

9

9

99

9

9

262626262628272627262626

6568

)

)

)

)

)

)

)

)

)

)

)

)

)

I

1

1

1

1

1

1

I

1

1

I

1

102.70(8)102.81(8)102.84(8)102.88(8)102.87(8)103.57(8)104.08(8)104.00(8)102.53(8)102.75(8)102.67 (8)102.63(8)103.00(8)

887 (2883(2891 (28e3(2892(2892(2870(2873(2890(s892(s895(s887(s888(s

B. Optical Properties

Het. a ß ''l Z^c

7

2a8.9.

10.'18

.

19.20,21,¿¿.23.24.25.26.27,28.29.30.31.32.33.34,

1.s81(1)1.581.60s(2)1.588(2)1.603(2)1.s76(1)1 .577 (2)1 ,577 (2)1 .577 (2)1.605(2)1 .597 (2)1 ,607 (2)1 ,604(2)1 .603 (2 )1.612(2)1.608(2)1.623Q)1.582Q)1 . s80 ( 2 )

1.603(2)1.585(2)1.590(2)

1 .617 e)1.s98(2)1.614(2)1 . s89( 1 )1.s89(2)

1.5e3(2) .602(2),61,624.60s.6¿¿,59s. 596.596. 596.618.618,616.612.610.620.618. 630.594. 596.615. s99. s99

1

1

1

1

1

1

1

1

I

1

1

1

1

1

1

1

1

1

1

1

1

1

(2)Q)Q)(1)(2)Q)(2)Q)Q)Q)Q)Q)(2)QTQ')(2)Q)Q)Q)Q)

211618122211 .412121216251720162320

1212121012

65

rbö hatm

, Cameron and Gibbs (1973): '1 '1 50 oc, '1 atm

REFERENCES1. Cameron (1971)2, Comeforo and K3. Troll and Gilb4. Troll and Gilb5. Westrich (19786. Westrich (19787. Droll and Seck8. Kohn and Comef9. Kohn and Comef

10. Kohn and Comef

ohn (195a): 1450oert (1972)z 1142'ert (1972) z 1132o): 9000C, 1 atm,): '10000C, 1 atm,

(1e7 6 )oro (1955)oro (1955)oro (1955)

,11

'1 00 0c,tohh

5och-1atmr 29atm,71

c 2h,c, 1

c, 1

24h24h

39 daysatm, 9 daysatm, 9 days

1170-1000oc, '1 atm, 5och- 1

atm, 9 daysatm, 9 days

1. westrich (1978): 1000oC, 4 kbar2. Huebner and Papike (1970): 818oC, 2 kbar3. Huebner and Papike (1970): 1244-791oC, j4. Huebner and Papike (1970): 1132-843oC, 1

5. cameron (1970), cameron and Gibbs (97i)6. Huebner and Papike (1970): 1244-791oCt 1

7. Huebner and Papike (1970):'1'131-843oC, 1

8. Gibbs et aI. (1962)9. Fedoseev et al. ( 1 970 )0. Grigor'eva et aI. (1973a)1 . Grigor'eva et al. ( 1 973b)2-29, Fedoseev et aI. (1970)

22. Na2Mg5NiSisO22F223. NazMgs. ¡Cuo. sSi sOzzFz24. Na2Mg5CoSieOzzFz25. Na zMgt. aZnt.¿Si aOz zFz26. Na2Mg5MnSiaOzzFz27. Na2CdMgsSis0zzFz28. Na z. sMgsCrE I sSi aOz zFz

1

I

1

1

1

1

I

1

1

2

2

¿

9. Na3MgaFe5*Si6022F24. Grigor'eva et al " ( 1 973b)0. Li r . sNao. sMgs. sSi sOz zFz

3'1 . tio. sNa 1 . 5Mg5Si eOz zF z

32. ti r. oMn t.z\4g+.zSieOz r. sFz. I33. tír.sCao. rgMgs zSir)r,.eFz.o34. ti I . sCao. sMgoSi aOzzF z

230-3

3

66

TABTE 7

cell dimensions of previously synthesized amphiboles: non-endmembercompositions

Ref . a (Å) b (Â) c (Á) ß (") v (Å3)

1

2

3

4tr

67

I9

01

9.8929.8699.8539.8549.8369.8359.8619.8369.8839,8469.836

(s(s(t0(s(o(s(s(q(s(s

ÀctinoliterCa 2Mg z . sFe z . sS i e0 z z (OH ) 2

18 .1e1 (12) 5.2es ( 3 )18.184(16) s.301(4)18.18s(13) s.294(s)18.i93(20) 5.294(2)18.193(20) 5.295(4)18.189(23) 5.294(4)18.206 (e ) 5.2e8Q)18.19s(9) 5.29sQ)18.209(10) 5.230(3)18.1e2(e) 5.28e(3)18.17s(16) s.295(10)

104.6s(s)104.39(7)104.44(8)104.44(4)104.4s(7)104.25(8)104.52(3)104.38(4)104.s6(5)104.33(5)104.38(11)

i soz z (oH) z

10s.43(4)105.35(3)105.31 (3)105.12(3)10s.05(4)104.89(4)1ñÂ" 1?. 1)\,v¡.rv\&/

104.s6(1)104.42(1)

921.e/7)921.4(10)918.6(10)e17.8(e)917.s(11)e18.0(10)920.8 ( s )917.8(s)923.0(6)91 7.8 (5 )917.0(14)

12.13.14,15.16,17,18.19.20,

21 ,

.899(3,90212.903(2

903.4 (

904.5(905. s (

906. 9 (

908.2 (

907 .9(oño ^/909. 6 (

908.e(

9

9

99

9

9

99

9

,904.90s.903.904.906.902

NaCa 2Mg a

PargasÀ1S i 6À1 2

17.9ss(s17.973(s17 .98s(417 ,991(51 8.006 ( si8.002(s18"000(417.994(217 .984(3

ite-ricozz(ou)

hterite joinz -NaCaNaMg s S

5.273Q)5.270Q)5 .271 (2)5.272(3)s,273(1)s.26e(2)a -?11 ( 1\s .271 (1)s"269(1 )

2

2

4

21

1

(

(

(

(

(

(

43

3

4

45J

21

PargasiÈic hornblendel{ao. zsCaz.oMg¿ :oÀlr .oSi6. zsÀl r,t sOzz(OH)e.87eQ) 18.012(7) 5.264(7) -lo5.lei 2

4) 904.1(13)

22.23.24,

pargasite.NaCa 2Mg aÀ1S i oÀ1 z0 z z9"904(1) 17.98e(s)

9.915(3) 18.031 (7)9.930(5) 18.i04(6)

. ferro-pargasite join0H) z-NaCa zrel -¡lsi

oÀI z05.291 (2) 1 0s.45s.301(3) 10s.40s.320(2) 10s.27

zz(ou) zQ) e08.6 (s )(1) 913.6(10)(1) e22.6ß)

Potassium-pargasiteKo. ¡oNao. soCa2MgaÀ1Si oÀ1 zOz z (OH)

z17,924(10) s.288(3) 105.54(4)2s. 9.901 (4) 904.1 (8 )

67

Ref. a (Ä) b (Å) c (Å) t)o V (43)

26. 9.933(6)

27, 9.851(4)

Potassium-edeniteKo. soNao. ¡oCazMgsSi 74102 z (0H)

z18.028(18) 5.327(3) 10s.34(8)

EdeniLic hornblendeNae" 5Ca2.oMg+.oÀlr.oSio. sAI r. sOzz(OH) z18.009(16) 5.294(6) 10s.06(6)

91e.e(1)

906.e(i5)

Tschermaki te. . . f err i-tschermak i te joini 6À120 zzØu) z

10s.61 (2)105.23(4)10s.16(4)105.02(4)

e01.0(3)e0s.5 ( 3 )e01.6(s)902.4(3)

914 ,591 9.6926.7932,7

28.29.30.31.

rca 2Mg ¡À1 zS i oÀ1 z09.874(3) 17 "91(19.887 (3 ) 17 .94(19.761 (6) 17.99(19.763(4) 18.01(1

NaCaNaMgsSi a0z z9.917(2) 18.020(s)e.935(2) 18.063(3)9.962(s) 18.122(6)e.980(7) 18.180(7)

zz(otl) z- sFel*SrCa 2Mg5.291(s.294(s.319(5.312(

Richterite. . . ferro-richterite(oH)z-¡¡acaNaFeB -si,

1

4

55

joinozz(oH)04.13(5132.

)')34.35.

5 .277 (1 )5.284Q)s.292(2)5.2s7 (5)

'i 04.08 (51 04.07 ( 3103.97(3

3

63

9

36. 9.85

Cross i teENa2Mg r . sFe I I s¡to. ozFel I ¡ sSi eOz z (OH)

z18.03 5.33 103.4 s19(12)

Ri ebeck i te-ar f vedson i teENa 2Fe 3

.ne I *Si

aO z z (OH ) z-NaNa zFe lFe 3 *Si sO2

1 8.09 5. 32 1 03.318.08 5"33 103.318.07 5.33 .103.3

18.07 5.33 103.318.06 5"33 103.31 8.06 s. 33 1 03.318.07 5.34 103.418.03 s.33 103.318.07 5.33 103.418.10 5.30 103.21 9.07 5. 33 1 03.4'18.05 5.33 103.418.07 5.33 103.418.06 5.34 103.4'19.06 5.33 103.51 8.05 5. 33 103.418.08 5.33 103.41g .22 5. 3'1 102 ,918.10 5.33 103.31g .23 5 . 31 102 ,g

z (oH) ,37.38.39.40.41 .42.43,44.45.46.47.48.49.50.51 .52,53.54.55.56.

9.769. 759.769"759,759,759,749.739,7 49.789.779,769,7 69,769.759,7 49,759,829.839.85

914.3914 .1914 ,491 3.0913.09'1 3.6913.1910.091 3.3914.591s. s914 ,1914 ,6915.09'13.3911,4914 ,2926.1922,1929.0

68

Ref . a (Å) b (Å) c (Å) ß (") v (Å3)

5't .58.59"60.61,62,63"64"65"66.67"68.69,70.71.

9. 849 .809.919. 909.889,879. 889,919"899.829.829.839.879.859.87

5 "325.325.315.32s.315.315.305.315.315. 325.32s.335.325.325.31

923.5920.9929.8931.5931.4928,9930.5933.3929.8923,5920,8922,0928.4924.6930.5

18.1318.15'18.i418.1618.2118. 1818,2318,2118. 1618. 1418.13'18.09

18"1618.1318.22

Richterite... pota ss iz(oH)z-

J

555

um-r ichKCaNaMg,272(1).270r).26e(1).268(1)

103.3103.0103.2103. 0103.1103.0'103.

1

103.1'103.

1

103,2103,2103.3103.2103.3103. 1

terite joinsSi ¿02 z (gtt) z

104 .7 4 (1)104.65Q)104.s6(3)104.42(5)

91 9.8 (3917.8 (3915,5Q912,7 (3

NaCaNaMg5Sig 0z1)2)6)3)

1)73.74,'7 Ê.

10.030(1)10.009(3)s.e83Q)9.948(2)

17 .98617 ,9841 7.98017 .981

76.

Fluor-richteriteNa(Nao. s rCao. ¿sFeo, oo) r(lutgo. sgFeo. s z ) sSi z .t sOzzp ze.846Q) 18.01e(3) s.zt+(s) ìo¿.es(l i- s06.e(6)

REFERENCES1-11. Cameron (1975)

. 559 oc, ( 1 00r'eO/Feo+MqO )( 1 00neo/neo+Msó)( 1 00neo/reO+Mso)( 100re0,/reO+MgO)( 1 00neor/reO+MgO )(100r'eOr/¡'eO+MgO)( 1 00neo/neo+MsO )( 1 0 0neor/l'eO+MgO )( '1 00neo/reo+Mgo )( 1 00neo/neO+MgO)

( 1 0Oneo/reO+MgO )

. 5050c

. 550 0c

. 5920c

. 603 0c

. 6650c

. 5560c

. 65'1 0c

. 505 0c

.5500c

.6500c

kbar,kbar,kbar,kbar,kbar,kbar,kbar,kbar,kbar,kbar,kbar,

738-1 00,1 6E-50 ,'17D-50,

1 8c-s0 ,1 58-50,43C-50,38c-80,53D-80 ,92D-90,528-90 ,61 B-1 00,(977)

8(4)(6)(¿ )(6)0)(8 )'(3)(3)

446463949485Js05449

4

1

2¿

4

5

67

I9

0

1

02

3

4

5

6

¿

2

2

2

2

2

2

2

2

22

(3)(3)3(6)

'1

1

12-21

1

1

1

1

Braue and Seckpas¡ri1spaseri2ppaTeri3ppa6eriaepa5eri5e

69

17, paaeri6s18. pasorizo'19. pa2erise20. palerise

21. toida and Hinrichsen (1975): 800oC, 4 kb22-24. Charles (1980)

22. l4gsPe , av. of 1 023. MgzEpzt av. of 624. MgFe3, av. of 4

25, Hinrichsen and Schürmann ,1977)z 7S0oc, 4 kb26. Hinrichsen and Schürmann (1977)t 7S0oC, 4 kb27, toida and Hinrichsen (1975): 800oC, 4 kb28-31.oba (1978)

28.29,30.31.

32-35.

tsgoftslo, B50oC,t5zoftsso, I50oC,tsoofLs¿0, 850oC,ts5efts5s, 8500C,Char les (97 4)

2kb2kb2kb2kb

IW buf fer, IW buf fer, IW buf ferIW buf fer

32. FeMga, av. o33. Fe2Mg3, av.34. Fe3Mg2, av.35. FeaMg, av. o

t 7,of. 7

of5f 3,

36. Koslowski and Hinrichsen (1979):37-71. Ernst (1962)72-75. Heubner and papike (1970)

72. Ko.sz5r âV, of.273. Ko. z s, av. of 374, Ko.sor âV. of 375. Ko.zs, av. of 3

76. Cameron (1970), Cameron and Gibbs

7000C, 4 kbar

(1971 ): i 050-880oC, 5och- r , .1 atm

Chapler III

EXPERIMENTÀI METHODS

CHÀRGE PRE TION

Ëtartilq Materials

Dry mixtures of appropriate anhydrous amphibole stoichiometry and solidoxygen-buffer materials were prepared from commercial reagent-grade ox-

ides and other compounds. Source chemicals and procedures for mix-corn-

ponent preparation are given in Tabte B.

After weighing out components, the mixture was blended by hand for 5

minutes and then ground in a powered alumina mortar under alcohol for at

least t hour. The thoroughly ground mix was again blended by hand forabout 5 minutes and dried overnight at 4000 to 1000oc, depending on the

stability of the components. Prior to use, the mixes were stored tight-Iy capped in a desiccator over Mg(CtOo)r.

Ànhydrous ge1s, prepared gravimetrically according to the method of

Hamilton and Henderson (1969), were used for certain pargasite, alumino_

magnesio-hornblende, edenite, and alumino-winchite compositions. Compo-

nents required in addilion to those for dry mixes are also listed in Ta-

ble 8.

71

TABTE 8

Sources and preparation of starting materials

Component Source Trea tment

Mgo

sÍ0 2

Z-41 z0s

Ca0

Na z0

Na z0

Kz0

CaF z

NaF

cd0

GeOz

Ni0

Sc z0g

Crz0s

Corning Fused SilicaCode 7940

e1 (oH) g

Fisher tot 765051

Fisher Lot 754056

CaC0 g

Fisher Lot 740807

Na zSi z0s

Na zCOsFisher Lot 751625

KHCo3Fisher tot 794339

Fisher LoE 787317

Fisher Lot 775169

CdC0sFisher Lot 734756

Matheson, Coleman &

8e11, tot 101"110

Fisher Lol 730777

À1fa Lot 081380

Fisher Lol 724579

Cleaned in aqua regia.Washed in distilled HzO.Dried to constant weightat .1

000 oC.

Heated at 900oC, 48 h.

Dried at 1000oC toconstant weight.

Decarbonated to constantweight before weighing,or added to mix as CaCOsmix decarbonated at 1000

,o c

Prepared after Schairerand Bowen (1955). oried at200oC for 3 h.

Added as carbonate.decarbonated at 700oC

Mix

Added as carbonate. Mixdecarbonated at 7000C.

Dried at 8000C, 24 h.

Dried at 400oC, 24 h.

none, used as is

dried at 4000, 24 h,

none, used as is

dried 400o, 24 h

none, used as is

72

Tab]e I (continued)

Component Source Treatment

CuO

'Jzoz

Ti z0¡

Ti02

Ga z0g

Inz0s

Mn0

Li z0

Fe203

Fe

À1

Si02

Alfa Lot 032681

À1fa Lot 081778

Fisher Lot 795530

Àldrich tot 1097

Johnson MattheyLot 582934

Cu20, Baker andÀdamson Lot T318J

MnC0¡Fisher tot 700983

Li zCO¡Fisher Lot 75427'1

Fisher LoL 766122

Fe-metal powderBaker Lot 25598

si04 (CzHs ) ¿

Fisher tot 780760

none, used as is

none, used as is

none, used as is

dried at 4000C, 24 h

dried at 400oC, 24 h

heated in air at 400oCfor 48 h

none, used as is, added asca rbonate

none, used as is, added asca rbonate

none,

none,

used as is

standardized as inEdgar f 973)

Mg

used as is

Additional components for gels

Mg-meta1 powder none, used as isFisher Lot 794121

À1-metal powderFisher Lot 763574

none, used as is

17'

Eluor-amphibole Capsules

In most fluor-amphibole synthesis experiments, 4 mm o.d., 3.7F mm i.d.Pt tubes 22 to 23 mm long were used to contain the charge. The tubing

was cleaned prior to use by boiling it in concentrated HCI and 14as an-

ealed at red heat in a gas flame for a few seconds. Àfter one end was

crimped flat and welded shut with an electric arc welder , 20 Lo 40 mg of

dried mix of appropriate fluor-amphibole stoichiometry were packed into

the capsule, filling about one-fifth to one-quarter of it. The remain-

der of the tube was then flattened to expeJ. air and sealed by welding.

During the second weld, the lower portion of the capsule containing the

charge was immersed in ice-water to prevent volatilization of 1ow-me1t-

ing point components.

Several fluor-amphibole runs vlere attempted in large-bore (5 mm) Àu

capsules. Àu tubing apparently softens at temperatures about 1000C be-

low its melting point, and capsule failure was freguent due to internal

gas pressure. In successful runs, fluorine reaction with the Au capsule

inner wall did not seem to be significant, and run products were not

measurably different from those reacted in pt capsules.

satisfactory results were not obtained using large-volume (>l g)

charges in unsealed Pt crucibles similiar in configuration to runs by

westrich (1978). A Pt crucible containing the charge rvas covered with

Pt foil, folded over the edge. This crucible was placed into a larger

crucible hatf-fiIled with car'2 and also covered rvilh foil. Because of

uncontrollable amounts of fluorine leakage, high amphibole yields were

rare and results could not be consistently reproduced. When successful,

however, this method has the advantage of producing large amounts of

product for characterization.

74

HydrplLv-amph i boI e Çapsules

In hydroxy-amphibole experiments, about 30 to 90 mg of charge corre-

sponding to the appropriate anydrous amphibole composition, plus s to 20

percent doubly distilled and de-ionized water were loaded into capsules

prepared in the same way as for fluor-amphibole syntheses. tthen ele-ments of variable oxidation state were not present, 4,5 or 5.0 mm o.d.,4.1 or 4.75 mm i.d. Àu tubes 25 to 35 mm long were used to contain the

charge. In order to fit the pressure vessel bore with less risk of jam-

ming, the ends were crimped in a tricorn configuration with a drillchuck, rather than flat-crimped, before welding.

For runs requiring oxygen fugacity control, two methods were em-

ployed. First, if an approxirnate oxygen fugacity corresponding to the

NNO buffer was suitabre, the charge rras simply loaded into 4 mm o.d.,3.75 mm i.d. Pt tubes 25 mm long and run with the pressure vessel wall(contains Ni and NiO) and H20 pressure medium reaction as the bufferingagent. second, for precise oxygen fugacity control, the standard

double-capsule solid-buffering techniques developed by Eugster (1957)

and reviewed by Huebner (1971) were used. Inner capsules were 3 mm o.d.

2.5 mm i.d. Pt or ÀgTopdso tubes 20 mm long; the outer capsules were

5 mm o.d., 4.75 mm i.d. Au tubes 3s mm rong. Buffer reactions and ab-

breviations are listed in Table 9; source chemicals and preparation of

buffer materials are given in Table B.

75

TÀBLE 9

SoIid Oxygen Buffers

2Cu z0cuprite

4Fe ¡0¿magnet i te

2Ninickel

2Fei ron

* 0z

4Cu0tenor i te

6Fe z0 ¡hemat i te

2Ni0bunsen i te

2Fe0wüst i te

CT

MH

NNO

Ill

+

+

+

0z

0z

0z

RUN PROCEDURE

Fluor-amphi bole Syntheses

Fluor-amphibole synthesis experiments at one atmosphere pressure were

conducted in verLical quenching furnaces similar to those described by

Schairer (1959). Two types of furnace designs, both wound h'ith ptooRh¿o

wire on mullite cores 30.5 cm long, were used: one with an inner tube

diameter of 23 mm, the other with a 44 mn inner tube. up to four charg-

es in Pt or Àu capsules vrere simultaneously reacted in the smaller fur-naces by suspending them on a pt wire at the hot spot. Quenching at the

end of a run v¡as accomplished by releasing the suspension wire and aI-lowing the capsules lo drop into a container of cold, distilled water

located below the open lower end of lhe furnace tube. The larger fur-nace allowed the simultaneous reaction of up to 20 capsules packed into

an alumina crucible. The crucible was positioned at the hot spot with a

ceramic pedesÈal inserted from the boLtom of the furnace tube. Runs

were guenched either with a blast of coId, compressed air after 1owering

76

the crucible-pedestal assembly, or by removing the crucible and dumping

the capsules into cold, distilled water. Distitled water was used so

that if capsules cracked during guenching, the run product was not con*

taminated and could be salvaged by drying.

Temperatures were measured with ceramic insulated, bare-wire pt-

PtezRhrg thermocouples (rype n). In singJ.e-capsule runs, the measuring

junction was placed as close as possible to the middle of that part of

the capsule containing the charge; in multiple-capsule runsf the junc-

tion was located at the centre of the capsule bundle. Thermoelectric

potentials were measured with a Tinsley Type 3184-D potentiometer reada-

ble to 5 microvolts. A reference junction in the thermocouple circuitwas maintained at 0oC by an ice-water bath. Thermocouples were not cal-ibrated for each run, but simil-ar calibrated circuits used in this labo-

ratory are consistently within 3 degrees of the melting point of copper

(1084.90c).

Temperature during runs in the smaLler furnaces t+as maintained within

5 degrees of the set value by home-nade, proportionar-type temperature

controllers. The large-bore furnace was equiped with a Theall Engineer-

ing Company Model TP-2000 Thermocouple Temperature Programmer. In addi-

tion to precise isothermal proportional control rvithin 1 degree or less

of the set value, experinents could be performed at linear cooling rates

of 0o to 1ooc hr-1.

77

Hvdroxv- hibole Svnt heses

Hydroxy-amphiboles were synthesized between 600o and 800oC, 1 and 3 kbar

water pressure with conventional hydrothermal eguipment. Co1d-seal

pressure vessels with 6.4 mm bores, similar in design to that of Tuttle( 1949 ) , v¡ere machined f rom Rene 4.1 al.loy and measured between 20 and

30.5 cm in length, and between 25 and 32 mm in diameter. stainl_ess

steel or graphite filler rods were used to nrinimize fluid volume inside

vessels and to prevent convection in the pressure medium. I,iater pres-

sure rias applied with a hand-operated pump.

Experiments up to 3 kbar at '1000oc were performed in LECO Temp-pres

TzM (Ti-Zr-Mo ÀlIoy) pressure vessels 30.5 cm long and 25 mm in diameter

with water-coored head nuts. Àrgon pressure was appJ.ied with an air-driven stainless steel diaphragm pump to 2 kbar and then boosted to 3

kbar with a hand-operated pressure inLensifier.

Pressure vessers were heated in nichrome-element, tubular, split-typefurnaces. Temperature was maintained during runs by one of several

tlrpes of temperature eontrollers: Theall Engineering company Model

Tc-1000 with zero-sH'itching, time proportioning controJ.; sirect M.K.2

Silicon-controlled Rectifier proportional type; and West Corporation

Gardsman on-off type controller.

Temperalures during runs were monitored by stainless steel-sheathed,

M90-insulated, chronel-Àlumel thermocouples (rype tt) inserted into ex-

ternal wells drilled in the bottoms of the pressure vessels. The depth

of the wells vlas appropriate to position lhe thermocouple Èip about 5 mm

away from, and approximately opposite to, the centre of a 2s mm sample

capsuLe. The actual temperature inside the vessel was previously cali-

78

brated against the external thermocouple using an internal thermocouple

and dummy capsule and fi11er rod, during simurated runs at 1 atm.

Thermoelectric potentials were measured with a Leeds and Northrup

8690-2 Millivolt Potentiometer readable to 0.01 mv. A reference junc-

tion in the thermocouple circuit was maintained at 0oC by an ice-water

bath. Thermocouples were not calibrated for each run. Random checks

using the thermal pause method and NaCl resulted in freezing-point val-ues within 2 degrees of an acceptable value of 800.4oC. Temperature un-

certainty in these experiments lras approxinrately t10oC.

Pressures vrere measured on 10 cm (1400 bar) and 18 cm (5500 bar) esh-

croft Maxisafe bourdon-tube gauges, cal-ibrated at the factory. The giv-en uncertainty was 10.5 percent of the full-scare reading.

Pressure vessel-s tvere quenched under pressure by opening the furnace,

removing the vessel to an adjacent metal support, and blasting it with a

jet of co1d, compressed air for about 1 minute. Immersion in cold water

followed immediately¡ fresh cold water vras continuously added to the

bath while warm water was removed, to make the quench as quick as possi-

ble. The pressure vessel usuaÌly reached room temperature in less than

5 minutes.

CHÀ I ZATION

Optical Microscopy

Capsules were weighed before and immediately after runs to check forweight gains or losses that would indicate capsule leaks. The capsule

was then examined under a binocular microscope for external signs of

79

leakage, especially if post-run and pre-run weights were not similar.Àfter opening, the product was checked for contamination by leaks, signs

of reaction with capsule material, texture and grain size. A smal] por-

tion of the product was gently crushed and mounted on a gJ.ass slide with

piccolyte (refractive index 1,52) under a cover glass for viewing at

higher power with a polarizing microscope.

Scanninq Electron Microscopv

À major block to the characterization of run products is their very finegrain size, which makes optical examination difficult and often useless

in identifying phases other than amphiboLe. Furthermore, phases of poor

crystallinity or very low abundance do not register, or are overlapped

by major phases in X-ray diffraction patterns. Scanning electron mi-

croscopy offers much greater useful magnification and superior resolu-

tion to optical methods, allowing phases of different or complex mor-

phologies to be readily distinguished i.n most cases. Magnifications of

2000 to 20000x are the most useful for examining typical run products in

detail, but lor+ magnifications in the optical microscopy range ('100 to

500x) are also important in documenting the overall characteristics.

X-reI Powder Diffraction

X-ray powder diffractograms were routinely taken for all run products at

fast scanning speed (30oze min-1). These allowed for quick evaluation

of the amphibole yield and of the nature and approximate concentrations

of non-amphibole phases. subsequently, all runs with high yierds of am-

phibole were scanned at slow speed (0.6o2e min-1) for cell dimension de-

termination and to obtain accurate d-spacings for identification of non-

amphibole phases.

80

Powder diffractograms were obtained on a Philips Automated powder

Diffractometer System Pl.t1710 using monochromatized Cu radiation (CuKa,

waveLength=1.5418 Å). The finely-ground amphibole run product and a

small amount of BaF2 rv€r€ blended thoroughly by grinding gentJ.y under

alcohol. The mixture lvas spread on a glass slide with alcohol to form a

thin (0.01 mm), uniform smear. The BaFz (a = 6.19860(5) Å) was cali-brated against Si (HsS Standard Reference Material 540a, a=5.43083(4)

Å). Àmphibole peaks were indexed by comparison to published patterns of

amphiboles with known structure and composition. OnIy those reflections

that could be unambiguously indexed and did not overlap significantlywith neighbouring peaks were used in celL dimension calculations. These

requirements restricted usable amphibole reflections to 10 Lo 12, be-

tween 9o and 4502ø CeIl dimensions were refined using the CETREF program

of Appleman and Evans (1973),

_I nf rared Spectroscopv

High-resolution infrared spectra of minerals containing hydroxyl groups,

such as amphiboles, exhibit fine structure that is sensitive to the ca-

tion occupancies of the M(1) and M(3) sites (Hawthorne 19g3a, b). In

binary solid-solutions, there are eight possible ways of distributingLwo different cations over the three M-sites coordinating each hydroxyl.

In amphiboles, however, the three M-sites coordinating the hydroxyl are

in a pseudotrigonal arrangement that inLroduces an accidental degeneracy

to some bands and reduces the number of resolvable bands to four. In

endmembers, 2M(1)+M(3) configurations around each hydroxyl are identi-caJ-, and a single, sharp hydroxyJ.-stretching band results (Figure 4a).

Figure 4 displays typical natural amphibole spectra collected in this

81

study under the same experimental conditions as the synthetic amphibole

spectra. Note the sharp, narrow peaks with band v¡idths between 6 cm-1

and 9 cfr-1, values typical for other naturaL amphibole spectra (Strens

1974). of particular interest is the peak shape of the single MgMgMg

stretching band in the tremolite spectrum (Figure 4A). The shape corre-

sponds to that of a markedly skewed gaussian distribution. Figure 48

shows a typical natural actinorite spectrum with Mg and Fe as the pre-

dominant octahedral cations. Table '10 shows the possible cation ar-

rangements and hydroxyl-stretching band assignments in amphiboles with

M(1,2,3) sites completely occupied by Mg and a another different cation,

TÀBLE 1 O

Possible cation-arrangements and hydroxyl-stretching band assignments inamphiboles with M(l,2,3) compreteJ.y occupied by Mg ánd second ãation, M

M(1) M(1) M(3) rq(1)+u(3)1 M(1)=M(3)z

Mg

M9

MgM

M

M

Mg

M

Mo"2M

MgM9

Mg

M

M

M

Mo--f

MgM

Mg

M

Mg

M

M

À

B'Bt t

Bttc'ct t

ct t

D

À

B

B

B

cccD

lidea1 band ascally distinc

zband assignmeaccidental detrigonal arra

signment for crystallographi-t configurationsnts for configurations withgeneracy due to pseudo-ngement

(from HawLhorne 1983b)

M Interpretation of ternary and more complex solid solutions is diffi-

82

cult because the number of fine-structure bands becomes very J-arge. For

example, there would be ten hydroxyl-stretching bands in a three-compo-

nent solid solution, and twenty in a four-component solid solution.

High-resolution (2.0 cm-1) infrared spectra of hydroxy-amphiboles in

the fundamental o-H stretching region (3600-3800 cm-1) were recorded on

a Nicolet Fourier transform interferomelric infrared spectrophotometer,

Model MX-1, equipped with a Nicolet 1280 computer for signal processing.

The sample chamber 'oas

purged '+ith dry nitrogen before and during spec-

trum collection. Frequency measurements were calibrated internallyagainst a He/ne laser and are accurate to 0.0'1 cm-1 according to the

manufacturer.

Powdered sampres were prepared by grinding '1 to 1 2 ng of. amphibore by

hand in an alumina mortar with ethanol until the grain size rvas gener-

ally less than 2 microns. This vlas achieved quickly because most of the

synthetic amphiboles were less than 2 microns in grain size initially.Àfter drying to evaporate the ethanol, lhe sampte was mixed with KBr,

either by hand grinding in an alumina mortar¡ or in a dentist's amalga-

mator (wig-r,-nug). This mixture rvas dried under vacuum at 12soc and

then was pressed in an evacuated, heated (about 90oc) die into a 13 mm

pel1et.

83

A

B

3 BO3 603 +o 3 zo3 oo3 BO3 603 r*0 3 zo3 TI Tì

I.JAVENUÌIIBEtrS

Figure 4: Typical infrared spectra of naturalÀ: Tremolite, Gouverneur, New york.Net Lake Àrea, 0ntario.

tremolite and actinolite.B: Actinolite, Setting

84

Rietveld Method of Crystal Structure Refinement

The Rietveld method (Rietveld 1967,1969) uses the whole powder diffrac-tion pattern to characterize the structure of the material examined.

The structure parameters of the mineral, atomic coordinaLes, site-occu-

pancies and thermal parameters, together with various experimental pa-

rameters affecting the pattern, are refined by least-sguares procedures

to minimize the difference between the whole calculated and observed

patterns.

X-ray intensity data were collected on a Philips Àutomated Diffrac-tion System PW'l710 equipped with graphite crystaL monochromator for CuKo

radiation. Beam divergence was controlled with an automatic divergence

slit so that a constant area (approximately 1.9 cmz) of the specimen was

irradiated throughout the scanning range. Intensities were measured at

0,02o2e steps with counting times of either I or 16 s per step; scanning

ranges were between 8o and 73o2e.

Specimens were ground with ethanol in an alumina mortar for aL least

5 minutes and loaded into either an aluminum holder with a glass insert

to support the powderr ot into a HF-etched depression in a glass slide.The slurry was worked with a probe so that it was evenly distributed and

dried with its surface precisely flush with the top of the holder.

Grain size was generally less than s microns with some grains up to

20 microns long. À11 specinens analysed exhibit prismatic to acicular

habits, but sEM photographs (Figure 5, 6) suggested that preferred ori-entation was apparently not severe in mosl samples and special precau-

tions were nof taken lo eliminare it during sample preparation. Àt-

tempts by other workers (e.g. young and t.liles 1 981 ) to minimize

preferred orientation by mixing the specimen with an

ground glass did not significantly improve refinements.

85

equal amount of

Structures vrere refined using a sIíght1y modified version of the pro-

gram DBW 2.9 (wiles and Young 1981). The features of this program are

summarized in Appendix À. Refinements were done in three stages.

First, the scale factor, cefl parameters and zero-point were refined

wi.th atomic positions, site-occupancies and isotropic temperature fac-

tors for individual atoms fixed at estimated values approximately cor-

rect for amphiboles. in this stage, a background model based on inspec-

tion was used; other profile parameters were estimated either from the

intensity data or from pubrished work, and were not refined. In the

second stage, the half-width parameters, peak asymmetry parameter and

preferred orientation parameter were included in the refinement. In ad-

dition, the background was refined as a second order polynomial function

in 20. Because most of the amphibole diffraction pattern above about

26o2ø consists entirely of severery overlapped peaks, background mod-

elling is difficult. ÀLtempts to nodel the background by extrapolation

between areas of low intensity between peaks failed above 2Go2ê. In the

third stage, the remaining structural parameters were added to the re-

finement and the background model function v¡as expanded to the third or-der. Background refinen¡ents at higher orders failed to converge. pa-

rameter shifts in the final cycle of refinement were generally less than

0. 1 to 0.2 sigma.

Best refinement results (lowest R-factors) were obtained with the l,tod

2 Lorenzian profile function (Appendix a. ) and by refining the overall

isotropic temperature factor.

86

Complete refinement of a typicat amphibole structure requires the si-nultaneous refinernent of 45 to 50 parameters. In order to decrease com-

puting time the refinements were performed at 0.O4o2A steps rather than

at the collected interval of 0.02o. The results were essentially iden-

tical; standard errors were slightly larger at the larger step.

Chapter IV

ÀMPHIBOtE SYNTHESES: RESULTS

This chapter describes and evaluates the results of all endmember amphi-

bole syntheses and isomorphic substitutions in these endmembers that

were attempted during this study. Because the chief aim of the synthes-

es vias to grow pure amphiboles for crystal-chemical characterization,

run products were initially examined only for amphibore yield. subseq-

uently, products with high amphibole yields (>80 percent) were document-

ed in detail. Experimental conditions and products for each run are or-ganized according to nominal starting composition in Tables 11 and 12.

In the run products that were examined in detaiL, only those phases that

could be identified unambiguousry from powder x-ray patterns, or rarely,optically, are listed under "products. " Thus, in complex, multi-phase

run products, some low-abundance phases may have been masked in the X-

ray powder patterns by the intense reflections of high-abundance phases.

Runs with >80 percent amphibole are marked with an asterisk in the run

number (e.g. PÀA'1*). Low-yield or amphibole-absent run products are de-

scribed only by the approximate amphibole mode under "products." In the

text, results are summarized by principal amphibole group with headings

showing all attempted substitutions collectively in the ideal endmember

formula. Products were identified and characterized according to the

method outlined in Chapter 3. CeIl dimensions for amphiboles from high-

yield runs are given in Table 13.

-87-

88

EÀILCIC AMPHIBOLES

Tremol i te : o ( Ca, Cd )¿(t'tg, [L,t',tn ) sS i aOzz ( OH )¿

ECa 2MgsSi a0z z (0H) z

Runs of up to 18 days duration on the endmember tremolite conposition at

200 to 35oc below its 1 kbar stability limit (noyd 19s4,19s9) failed to

grow perceptible amphibole. Both experiments were performed at simitar

temperatures, at 1 kbar, but gave different results. The short run ß32

h) comprised abundanL diopside and three metastably coexisting silicapolymorphs: low-quartz, low-cristobalite and tridymite. Cristobalitewas the most abundant; quartz was the least abundant. In the rong run

(44s h), the peaks in the x-ray powder pattern are better formed and

sharper than in the short run. tow-quartz is the only sirica phase;

other phases are the same. Weak reflections corresponding to enstatitewere observed. Às tremolite is a common constituent of marbles, run

TR-B'1 þ¡as attempted on the bulk tremolite composition using a startingmix comprising CaCOs, M9CO3 and Corning 7940 silica glass. Modest

amounts of amphibole (less than 20 percent) were formed. The presence

of abundant C02 apparently encourages tremolite growth.

Substitution of Ni5 for Mg5

Replacement of Mgs by Ni5 yielded about 10 to 20 percent very pale

green, weakly pleochroic, acicular amphibore averaging about 4 unr in

length. No attempt was nade to contror oxygen fugacity. The presence

of Ni in the product suggests that oxygen fugacities were close to thatof the NNO buffer; NiO reflections, however, were not detected in the

x-ray powder pattern. The most abundant phase r{as pale green, prisnat-

ic Ni-diopside with cell dimensions (a=9.7409(g), b=g.g96(1 ),

89

c=5.236(3), ß=105 .78(2) , V=436 .6Q) ) similar to those f or caNisi 206 giv-

en in Ribbe and Prunier (1977 ) (a=9 ,737 , b=8.899, g=5 .231, ß=105.9,

v=435.9), and three silica polymorphs, low-quartz, low-cristobalite and

tridymite. CrisLobalite was most abundant of the silica phases in the 1

kbar run, whereas quartz was most abundant in the 2 kbar run. Willem-

seite occurred ín abundance in the 2 kbar run with a strong, sharp basal

reflection in the x-ray powder pattern (d=9.42 Å,) but was only detected

optically in the 1 kbar run. Cell dimensions of the nickel amphibole

were calculated (raUtei:lg).

Substitution of Mg5 by Mg3Ni2

Replacement of Mg5 by Mg3Ni2 resulted in higher amphibole yield (30 to40 percent). Other phases were similar to the Ni5 Íurì composition.

CeI1 dimensions of the Mg3Ni2 amphibole (taUte 1¡) are consistent with

the simple replacement of 2Mg by 2Ni in the octahedral strip. Because

the ionic radius of Ni (0.69 Â) is smaller than that of Mg (0.72 Ð, the

cell volume of the MgsNiz amphibole should be slightly smaller than that

of endmember tremolite. Note, however, the large increase in the a-pa-

raneter.

Substitution of Ca2 by Cd2

Tremolite synthesis with Ca in the M(4) site replaced by Cd was not suc-

cessful. Àbout 30 percent clinoamphibole was obtained whose cell dimen-

sions are more like cummingtonite than tremolite. The presence of

monteponite (cdo) suggests that the amphiboJ.e has Iittle, if any, cd.

90

FIuor-tremol ite ¡Ca oMo ^ i ^0, "F,

Neither isothermal (Table 11) nor non-isothermal experiments (raUte lz)yielded close to 100 percent amphibole. Best yields were about 70 Lo g0

percent. Isothermal experiments produced prismatic crystals up to 0.05

mm in length; in non-isothermal runs, spectacular crys¡als up to 1.0 mm

were routinely obtained. In spite of this large contrast in growth hab-

it, cell dimensions of these amphiboles r+ere almost identical (raUte l¡)and are very similar to those determined by previous workers (rabte e)

who claimed yields as high as 95 percent.

High yields of amphibole resulted only from sLarting mixes v¡ith SiOz

added as Corning 7940 silica glass. Furthermore, yields were higher ifCaCOs was decarbonated after mixing with the other components, rather

than before. During decarbonation, the mix partiaJ-ly crystallized to

diopside and MgsFz(SiO4)2. ÀpparentJ.y such a mixture promotes amphibole

nucleation and growth. Prior to this discovery, fluor-tremolite mixes

were prepared with dehydrated HzSíO¡'nH2O or cristobalite instead of

silica glass. Runs with these mixes failed to produce significantamounts of amphibole; products were dominated by tridymite, quartz,

diopside and fluorite.

Edenite¡ NaCa2 (Lq,Ni ) sSizÀIOr z (OH)¿

NaCa 2Mg5Si 7À102 z (0H ) z

Edenite was not synthesized. À11 runs produced <5 percenl amphibole

with abundant clinopyroxene, forsterite, plagioclase and traces of

quartz. À layer silicale ("1y'' in Table 11) with basal spacing about

11.2 Ã vras present in all runs. AIso present vras an unidentified phase

rr'ith prominent x-ray peaks corresponding to d-spacings of

Å. Dry mixes and gel-s yielded identical results.

91

2.60 and 2,43

Substitution of Ni5 for Mg5

Replacement of Mg5 by Ni5 in the edenite formula resulted in increased

amphibole yierds (30 to 40 percent). other phases were the same, or Ni-

bearing equivalents of phases in endmember edenite runs.

Fluor-edeni te : NðlêrMqsSi zÀ1Oz rF :

FIuor-edenite syntheses v¡ere generally successful. Àt l-east 90 percent

yields were obtained from starting mixes prepared with silica glass; as

for fluor-tremolite, mixes prepared with HzSiO¡.nH20 did not grow sig-nificant amphibole. Largest crystals (up to i to 2 mm in length) were

obtained in non-isothermal runs.

Parqasite¡ (na,¡t) (ca,cd)¿(ug,ni )4(el,cr,Þ,Sc.,In) sie (¡l,ca) rOr, (OH)¿

NaCa 2MgaÀ1Si 6À1 z0z z (OH) z

Pargasite synthesized readily with yields of B0 to 95 percent. Best re-

sults were obtained at 800 to 900oc and 2 to 3 kb. pargasite formed

clear, colourless prisms up to 40 microns rong and g microns wide. Run

length had littre effect on grain size and yield; runs of.2s h and 1126

h had similar yields, grain size and infrared spectra (see Chapter 5).

Amphibole yields were similar in syntheses from dry mixes as opposed togels, but crystals grown from gels were more acicular in habit. Gehle-

nite, however, $¡as a prominent ninor phase in runs with ge1s. cell di-mensions (tabte ig) of these pargasiles are consistent with one another

and agree well with previous work (rabte S).

92

Substitution of Mg4Al by t¿goCr

Substitution of Cr for octahedral Al reduced amphibole yields to about

80 percent. chromium-pargasite formed pale green, slightly pleochroic

prisms up to 24 microns l-ong and 1 to 2 microns wide. overall grain

size is finer than pargasite, and crystals tend to be more acicular inhabit. Abundant eskolaite (CrzO¡) in aI1 runs suggests that the amphi-

bole is not on composition; the amounts of Cr in clinopyroxene and spi-nel are uncertain. Cell dimensions (taUte l¡) of three typical runs

were similar with cell volumes 4 to 6,{3 larger than pargasite. The in-crease in vorume is due almost entirely to an increase in b, suggesting

that substantial amounts of Cr have replaced Al in the octahedral strip.

Substitution of Mg4À1 by MgaGa

Poor amphibole yields (20 to 30 percent) were obtained at 1 kbar and

temperatures less than 800oC; the run product was mostly clinopyroxene

with minor plagioclase, forsterite, nepheline and three different layer

silicates with basar spacings of i4.8, i2.2 and 9.9 Å. Raising eitherthe pressure Lo 2 kbar or the temperature above 800oC, increased amphi-

bole yields to more than 90 percent. Àmphibole formed clear, colourless

crystals up to 15 microns long and 2 to 4 microns wide. Layer silicateswere not present. The amphibole grolvn at 75Boc, 1 kbar, has cell dimen-

sions lhat are edenitic in character, rather than pargasitic (lower q,

ß, higher b). Apparently little Ga, if any, y¡as incorporated into the

octahedral sites. At 817oc,2,1 kbar, the cell dimensions of the amphi-

bole are very similar lo those of Cr-pargasites (rable 13). Because the

ionic radii of Cr (0.615 Å) and Ga (0.620 Å) in octahedral coordination

are almost identical, this similarity probably reflects the sane degree

of- cr/Ga substitution for AI in these amphiboles. Ga not

probably replaces À1 in pl-agioclase or, where present, in

cates.

93

in amphibole

layer sili-

Substitution of MgaÀl by tutgosc

Sc-pargasite synthesized readily but yields v¡ere never more than about

90 percent. Amphibole formed c1ear, colourress crystals up to 1.1 mi-

crons long and 1 to 2 microns wide (rigure 5). sczo¡ rvas a minor phase

in ali- run products, indicating that the amphibole was off-composition.

Cell dimensions (ra¡te 1¡) show that the amount of Sc in octahedral

sites is high; the cell volume of sc-pargasite is about '1b Ås larger

than that of pargasite.

Substitution of Mg4ÀL by MgaIn

About 90 percent yields of amphibole were obtained in 2 kbar runs. Am-

phibole formed pale yellow, faintly pleochroic crystals up to I microns

long and 1 micron wide. Àlthough the cell volume of this amphibole (ta-

ble'13) is about 9 Å3 larger than that of pargasite, it is 6 A3 smaller

than that of Sc-pargasite, indicating only partial substitutíon of Infor À1 in the octahedral strip. Furthermore, all run products contained

unreacted In z0s.

Substitution of MgaÀl by Ni¿Àl

Two runs were attempled with Ni4 substituted for Mga, one with no oxygen

fugacity control, the other on the cr buffer. Àmphibore yields were

about '10 percent in both runs.

94

Figure 5: Scanning electron micrographs of synthetic pargasites andfluor-pargasites. A: scandium-pargasite (Scpe-¡S,6). B:fluor-pargasite (r'p¡-¡ur). C: chromium-fIuor-pargasite(rcrp¡-e3a). D: gall.ium-f1uor-pargasite (rcapÀ-¡5a).Numbers in parentheses correspond to run numbers in Table 11.Scale bar represents '1 micron.

95

Figure 6: scanning electron micrographs of synthetic fluor-pargasite,fluor-eckermannites and fluor-nyböite. À: scandiurnlfluorlpargasite (rscp¡-el). B: scanãium-f1uor-eckermannite(rscnc-¡1 ). C: indium-fluor-eckermannite (r'lnnc-¡t i. D:scandium-f1uor-nyböite (nscHy-¡3). Numbers in parenthesescorrespond to run numbers in Tab1e 1 1 . scare bár represents1 micron. Àrrow in B points to layer silicates.

96

Substitution of Mg¿ÀISi6À12 by Mg4GaSísGaz

Replacement of both octahedral and tetrahedral A1 by Ga was unsuccess-

ful; amphibole yields were less than 10 percent. Ga apparently does not

assume tetrahedral coordination in pargasite.

Substitution of Na by K

Repracement of Na in the À-site by K was not accomplished;

yielded less than 10 percent amphibole.

both runs

SubsLitution of Caz by Cdz

No significant amphibole was produced.

FLuor-parqasite: NaCarMq¿ (À1,CrrGa,Sc )Si eÀlrOr rF,

NaCa 2Mg4À1Si 641 zOzzF z

All runs on the fluor-pargasite mix prepared with Corning silica glass

as Si0z source yieloed >90 percent amphibole. Mixes prepared with

Hzsi0s'nHz0 failed to grow amphibole. Fluor-pargasite formed clear,

colourless crystals up to 16 microns long and 4 microns wide in isother-

mal runs (figure 5). Non-isothermal runs produced large crystals be-

lween 0.02 and 1 mm in length. In both types of experiments, products

were similar except for minor fluorite in non-isothermal experiments.

Cell dimensions of amphiboles with either cooling history are similar(ra¡te l:).

Substitution of MgaÀl by lutgoÇr

Às in Cr-hydroxy*pargasite, Cr substitution reduced yields to about B0

percent in isothermal runs. Little amphibole was formed in the singj.e

97

non-isothermal run. cr-fIuor-pargasite formed pale green, slightrypleochroic, blocky to prismatic crystals up to'18 microns long and 6 mi-

crons wide (nigure 5). cell votume is 3 to 4 A3 1arger than that of

fluor-pargasite. This increase is due mainly to an increase in b, sug-

gesting Cr occupancy in the octahedral. strip.

Substitution of MgaAI by MgaGa

Ga-fluor-pargasite formed about 85 to 90 percent blocky to prismatic,

clear, colourless crystaJ-s up to 14 microns long and 5 microns wide in

isothermal experiments (r'igure 5). Larger crystars to 0.S mm 1ong were

formed in non-isothermal runs. Cell dimensions were not affected by run

history and are sirnilar in both runs. The ceII dimensions of an isoth-ermal run analysed by the Rietveld method are systematically larger than

the other two; it may have more Ga substituted for Àl than Lhe other two

(see Chapter 5).

Substitution of Mg4À1 by MgrSc

Sc-fluor-pargasite formed about 85 to 95 percent blocky to prismatic,

grains up to 23 microns long and 5 to'16 microns wide. Figure 6 shows

the wide variation in morphology. The single non-isothermal run greÍr

crystals up to 0.5 mm in lengLh but yielded only about 7E percent amphi-

bole. The cell volume is about 20 Å3 rarger than that of fluor-parga-

site which, suggests that nost of the octahedral À1 was replaced by Sc.

NoLe that the volume of scandium-fluor-pargasite is larger by about i Å3

than that of scandium-pargasite. Às the vorume of hydroxy-amphibote

should be larger than that of its fluorine analogue, it is probable that

the scandium-pargasite has a lower Sc-occupancy than the fluor-scandium-

pargasite (see Chapter 5).

98

Tschermakite: ¡CazMq: (Cr,Sc) zSi eAlzOz r (OH)*

syntheses on the endmember tschermakite composition (Mgselz) were not

attempted because previous work clearly shows that this amphibole does

not grow at low pressures (see Chapter 2). Replacenent of octahedral A1

by either cr or sc also did not yield amphibole at 1 kbar; both run

products were dominated by cJ.inopyroxene and anorthiLe.

Eluor-tschermakite: ECa2Mq3Al 2Si 6Al202 2F2

Runs on the fluor-Lschernakite composition also failed to grow amphi-

bole. Products were dominated by anorthite, clinopyroxene and cristo-balite.

Àlumino-maqnesio-hornblende: ËCazMq4ÀlSizAlO2 2 (OH)¿

Àbundant amphibole on this composition was difficult to synthesize. Àt,

or near'1 kbar pressure, amphibore yierds varied between 10 and 30 per-

cent; the remainder of the products was mainly clinopyroxene and anorth-

ite. Àt 2 to 3 kbar, yields improved but did not exceed about 55 per-

cent. Forsterite was present in aIJ runs and at temperatures above

830oc coexisted metastably with quartz. Talc, and rarely chorite, ap-

peared below 720oc. Talc was also present in a run (Hg-¡g, Table 1 1 )

which was aborted after 2 h at 840oc and 2.5 kbar because of a pressure

leak. This experiment suggests that tarc formed earJ.y in the run-up

stage and reacted out at high temperature. Àmphibole in these runs

formed clear, colourless prisms ress than 10 microns long and 0.5 mi-

crons wide. No significant differences in products were observed in

runs with ge1 starting mixes as compared to dry mixes, except that the

former tended to be not as well crystallized. Grinding run products and

99

rerunning increased neither the yield nor the grain size (g¡-nl, TabJ.e

11). Cell dimensions (ra¡te 1¡) of amphiboles grown on the alumino-mag-

nesio-hornblende composition are intermediate to those of synthetic tre-molite and tschermakite (fabte S). Because there is no cation in this

composition that can occupy the A-site, and other cation substitutions

are limited by charge balance to the stoichionretric formuLa, these am-

phiboles are probably close to the nominal composition, in spite of low

yields. Àny minor deviations from the nominal composítion would be most

likeIy the result of magnesio-cummingtonite solid solution.

Substitution of Mga by Nia

Runs in Àu capsuì.es without any attempt to control oxygen fugacity

failed to produced amphibole. Run products were mainJ.y clinopyroxene,

anorthite, quartz, Ni and minor oLivine. on the MH buffer, however,

about 10 to 20 percent amphibole was present along with abundant willern-

seite, clinopyroxene, anorthite, quartz and traces of olivine.

Substitution of Mg4AI by Mga(Cr,Sc,Ti,V)

High amphibore yields were not achieved by substituting cr, Ga ,sc, Ti

or V for octahedral À1. Amphibole yields varied from less than 5 to 60

percent. Highest yields were achieved in the 3 kbar runs.

Fl uo lumi no-maones i o- rnblende: ¡CarMq¿ÀlSizÀ10r rF,-âr

Fluor-alumino-magnesio-hornblende rlas also difficult to synthesize.

Mixes prepared with Hzsios.nHzo failed to grow more than about 20 per-

cent amphibole. Low-cristobalite and anorthite were the major phases in

these runs. Runs with mixes prepared from Corning 7940 silica glass

100

yielded up to about 60 to 70 percent c1ear, colourless, prismatic amphi-

bole crystals less than 5 to 10 microns long. Highest yields were ob-

tained in cold-sea1 hydrothermal vessels pressurized to 3 kbar with ¡r.Non-isothermal runs grew large crystals (up to 0.5 mm) of both clinopy-

roxene and amphibole. Amphibole yields in these runs did not exceed 50

to 60 percent.

KaersuLite: NaCa rMq¿TiSi sÀl r (O+OH)z¿

Runs on the kaersutite composition failed to grow amphibole.

SODIC-CÀLCT C ÀMPHT BOTES

Richter i te: (n,na) (Ca,Cd,Na) (¡¿g,¡ti,t'ln,Cu)r Si ¡Or, (OH)¿

NaCaNaMgsSi e0z z (OH) z

Richterite was synthesized readily with greater than 95 percent yield.

Minor diopside was the only other phase identified in the run product.

Richterite formed clear, colourress prisms up to 35 microns long and.1l

microns wide (rigure 7). Ce11 dimensions (rabte 13) of synthetic richt-erite grolrn in this study are virtually identical to those of Heubner

and Papike (1970) and Charles (1974) (ra¡fe S).

Subsitution of Mgs by I'ii s

Replacing Mgs by Nis also yielded about 95 percent amphibole. Runs were

performed in Àu capsules rlithout attempting to control oxygen fugacity.

Reducing conditions were implied by the presence of metallic Ni in the

run products. clinopyroxene was rare, but the presence of Ni suggests

that the amphibole contains less than SNi. Nickel-richterite formed

pale green, slightly plechroicr âcicular crystals up to 35 microns long

101

Figure 7: scanning electron micrographs of synthetic richterites andsodian magnesio-cummingtonites. À: KNaCaMgsSi aOz z (0H)

z(nnc-¡l ) . B. NaCaNaMgaMnsi s0z z (oH) a (ugalanRc-À2 t. c;NaMgNaMg¡Si a0z z (0H)z (Mgnc-e1) . D: NaNiñaNi sSi aOz z (oH)z(HiugnC-eZ). Numbers in parentheses correspond to runnumbers in Table '11. Scale bar represent,s 1 micron.

and 3 microns wide.

that of richterite,

M9 by Ni.

102

The cell volume (taUte l3) is about 7 Ar less than

which is consistent with substantial replacement of

Substitution of Mg¡ by Mg3Ni2

Richterite r+ith this composition grew with yiel-ds slightly below that of

richterite and Ni-richterite: about 90 percent. It formed pale green,

slightly pleochroic, acicular crystals up to 25 microns rong and 4 mi-

crons wide but not as acicular as the Ni-endmember. In addition to am-

phibole, clinopyroxene and metallíc Ni were present; excess Ni indicates

that there must be less than 3Ni in the octahedral strip. The cell vol-ume (ta¡te lg) is about 3 Â3 less than that of richterite and about 3 Å3

larger than that of endmember Ni-richterite.

Subst i tut i on of Mg ¡ by ttn s

Attempts to grow richterite with all Mg replaced by Mn failed both in

unbuffered runs and in runs on the NNO buffer. tess than s percent am-

phibole was observed.

Substitution of Mgs by Mg4Mn

Greater than 95 percent yields of amphibole resulted from both unbuf-

fered runs and from runs on the NNO buffer. Mn-bearing richterileformed very pale yellow-pink, prismatic crystals up to 1g microns rong

and 7 microns wide. The crystals are not as we]l formed as richteriteand exhibit a much larger variation in grain size (rigure 7). The cellvolume (ra¡te l3) is I Å3 larger than that of richterite, evidence forMn occupancy. Clinopyroxene was the only other phase detected in the

run product.

Substitution of Mgs by Mg3Mn2

Runs on this compositition produced about

physical properties essentially identical totion. Cell volume increased Lo 920.G A3 in

content. This increase, however, is less

richterite to Mg4Mn composition, suggesting

in this amphibole and that it is, therefore,

103

90 percent amphibole with

those of the Mg4Mn composi-

response to the higher Mn-

than half the increase from

that there is less than 2Mn

not on composition.

Substitution of Mgs by Cus

No amphibole was grown on thís composition.

abundant cuprorivaite (CaCuSi ¿Ol o ) , tenorite

The run product comprised

(cuo) and minor chlorile.

Substitution of ¡-site Na by K

Virtually '100 percent amphibole was grovrn on this composition; no other

phases were detected. K-richteriLe formed clear, colourless, short and

stubby to prismatic crystals up to 20 microns long (rigure 7). The celldimensions (raUte 1¡) are essentially identicaL to those of Huebner and

Papike f 970) (raUte S).

Substution of Ca by Cd

Substitution of Ca by Cd yielded about 95 percent clinoamphibole but

with cell dimensions (ra¡te lg) unlike those of a1l other richterites.Note especially the low a, ß, and ! paramelers that are similar to sodi-

an magnesio-cummingtonites (rables 13, 5). Furthernore, the infrared

spectrum of this amphibole is identical to that of sodian magnesio-cum-

mingtonite (see Chapter 5). Àlthough it would seem unlikely that thisamphiboLe contains Cd, Do Cd-bearing phases were detected either opti-caJ.ly or by powder X-ray diffractometry.

104

ELuor-richterites¡ NeCaNa(U9,Mn) sSi ¡Oz zFz

NaCaNaMgsSi a0z zFz

Fluor-richterite mixes prepared with HzSiO¡.nHzO as the siLica source

did not yield significant amphibole. Mixes prepared rvith Corning 7940

silica glass grew up to 90 percent amphibole, the remainder being clino-pyroxene and forsterite. FLuor-richterite crystals were very-finegrained (<.10 microns) and blocky to prismatic in habit. The cell volume

is about 10 Å3 less than that of richterite; an amount consistent wilh

most hydroxy-/fluor-amphibole cell differences except for pargasites

(see Chapter 6). Non-isothermal runs produced similar results except

for grain sizes up to 0.5 mm.

Substitution of Mgs by Mg4Mn

Àmphibole yield was about 95 percent, the remainder being clinopyroxene.

Mn-bearing fruor-richterite formed pale-yelrow, stubby prisms up to 30

microns long and.13 microns wide. The cell volume (ra¡te l¡) is about.11 A3 less than that of the hydroxy-analogue; this is comparable lo the

10 Å3 difference between fluor-richterite and richterite.

Àlumino-winchite: ¡CaNaMq¿ (À1,Cr,Sc )Si rOr, (OH)¿

Alumino-winchiLe could not be synthesized at pressures near 1 kbar, ei-ther from dry mixes or geIs. No more than 20 Lo 30 percent clinoamphi-

bole was grown under these conditions. crinopyroxene, plagioclase and

quartz and/or cristobalite dominated run products. Substitution of Cr

for octahedral Àl was also unsuccessful; Sc substitution yielded up to40 to 50 percent amphibole, but not enough for adequate characteriza-

tion.

105

E I u o r_-A I um i n o-w i n c h i t e : ¡llaNaMq 4 À.I S i s g22F 2

t'luor-alumino-winchite synthesis attempts were no more successful than

experiments on the hydroxy-equivalent compositions. Unlike previously

discussed fluor:amphiboles, the nature of the starting mix 9¡as irrele-vant to the results. Similarly poor yieJ-ds obtained from mixes prepared

with HzsiOs'nHzo or corning 7940 sirica glass. some improvement inyield was obtained when CaCOs was decarbonated along with other mix com-

ponents rather than before mixing; amphibole yields increased from nilto about 20 to 30 percent. Best yields (about 40 to 50 percent) were

obtained in non-isothermal runs, but not sufficient for adequate charac-

terization.

Maqnes i o-alumi no-katophor i te : NacaNaMq ¿ (À1, cr, sc ) s i, Alo ", (oH )¿

Poor yields were obtained for aLl magnesio-alumino-katophorite composi-

Lions. Substitution of Cr and Sc for octahedrat À1 increased yields to

about 40 percent.

Alumino-barroisite: IÇêNêMag (e¡,Sc) rSirAIOr, (OH)¿

Àttempts to grow alumino-barroisite with octahedral ÀI replaced by Cr or

Sc failed to produce more than about 5 to 10 percent amphibole. Runs on

the endmember alumino-barroisite composition were not attempted because

the aluminous endmembers of previous sodic-calcic anrphibole syntheses

had been more difficult to grow than cr- or sc-bearing ones.

106

!' I uor -g l um i n o-ba r r o i s i t e : ¡!êNalvlq 3 Àl 2 S i 7 ÀlO 2 2 F 2

Both isothermal and non-isothermal experiments on the fluor-alumino-bar-

roisite composition failed to grow detectabl-e amphibole.

Fl- es1 -kaNaCaNaMq ¿ À1, Cr rGa, Sc , Ti ,V SizÀ10zrFr

NaCaNaMg aAlS i zAI0 z zF z

Fluor-magnesio-alumino-katophorite syntheses produced amphibole yieldsbetween 20 and 80 percent; highest yields were in non-isothermal runs.

The ubiquitous presence of abundant accessory phases, however, showed

that the amphiboles grown are considerably off-composition and not suit-able for characterization.

Substitution of MgaAl by Mg¿(Cr,Ga,Sc,Ti,V)

Although yields between 60 and 80 percent were obtained for amphiboles

grown with these substitutions for octahedral 41, the presence of phases

containing cr, Gã, sc, Ti and v indicate that the amphiboles are not of

the nominaJ. compositions.

Maqnesio-alumino-taramite: NacaNaMqs (cr,sc ) rsi ¡Àl ror r (o¡l)¿

Runs with Cr and Sc replacing octahedral Al in the magnesio-alumino-tar-

amite formula were unsuccessful; only 20 to 30 percent amphibole was

grolrn.

Fl-uor qnesio-alumino- tarami te:

Runs on the fluor-magnesio-alumin

more than about 5 percent amphibo

107

NaCaNaMq¡Al rSi nÀI r0r rFz

o-taramite composition failed to yield

1e.

AtKALi ÀMPHIBOTES

Maqnes i o- i ebec k i l-a. IN&ì,lqs (Cr,Ga, Sc ) rSi ¡Oz r (OH)¿

Àttempts to grow amphibole by replacing Fe!* with cr, Ga or sc failed.Àmphibole yields were less than 30 or 40 percent. sc-mix gave the high-

est yields.

Ec ke ann i te : NaNazMg¿ (Al,CrrGarSc,In)Si sOzz(Ou),

NaNa 2Mg4À1Si a0z z (OH) z

Runs on the endmember eckermannite composition grew virtually 100 per-

cent clear, colourless amphibole crystars up to 35 microns long and 10

microns wide. No other phases were observed in the powder x-ray pat-tern. The cell dimensions (taUte l¡) of this amphibole are very close

to those of sodian magnesio-cummingtonite, which suggests that it was

synthesized, rather than eckermannite. Furthermore, the infrared spec-

trum of this amphibote is almost identical to that of sodian magnesio-

cummingtonite (see chapter s). This means that the amphibole is AI-free, but no Àl-bearing phases v¡ere detected.

Substitution of À1 by Ga , CÊ, Sc and In

Runs on the eckermannite composition with the above substitutions forthe octahedral À1 grew beLween s0 and 85 percent amphibole. None of

these amphíboles, however, was suitable for detailed characterization

because of the presence of other phases with Ga, cr, sc and In as con-

sLituents which implied that the amphiboles are off-composition.

108

Fluor-ec k ermannite: NaNa 2Mq4 (AL,Ga, Cr,Sc, I n )Si s0z rF r

NaNa 2Mg 4À1S i a0 z zF z

Isothermal runs on the fluor-eckermannite endmember composition grew

greater than 90 percent amphibole with ninor albite, forsterite and lay-

er silicate with basal spacing of about 9.54 Å. This amphiboLe formed

c1ear, colourless, prismatic to acicular crystals up to 15 microns J.ong

and 1 to 3 microns wide. Non-isothermal runs gave lower yields (about

80 percent) with nepheline and NaF in addition to albite, forsterite and

layer silicate. The cell volume (raute 1g) is 10.5 A3 less than the hy-

droxy equivalent, an amount typical of the difference between fluor- and

hydroxy-amphiboles. However, these ce11 parameters are very similar tothose of sodian magnesio-fIuor-cummingtonite and it is unlikely that the

amphibole is actually fluor-eckermannite.

Substitution of Al by Cr

Greater than 90 percent of pale green, prismatic amphibole with crystals

up to 10 microns long and 3 microns wide were obtained. However, the

presence of magnesio-chromite and eskolaite argue against complete sub-

stilution of À1 by Cr. The cell dimensions (rable 13) are unlike those

of sodian magnesio-fluor-cummingtonite; note especially larger a and ß.

Àlthought the volumes are similar, the amphibole is probably intermedi-

ate in composition belween chromium-fluor-eckermannite and sodian magne-

s i o-f luor-cummi ngton i te.

Substitution of Al by Ga

Runs on this composition yielded greater than 90 percent, c]ear, colour-

less amphibole with acicular crystals up to 30 microns rong and 4 mi-

109

crons wide. The only other phase detected was a layer siticate with ba-

sal- spacing of about 9.66 Å. The cell parameters (rable 13) are closerin magnitude to those of sodian magnesio-fluor-cummingtonite than the

cr-bearing variety, but the slightly larger a, ß and vorume suggest thatminor Ga was incorporated during growth.

Substitution of À1 by Sc

Yie1ds of more than 95 percent were obtained in isothermal runs withprobable traces of NaScSizOsi non-isothermal runs also grew clinoensta-tite and forsteriLe. The amphibole was extremely fibrous with individu-al fibres greater than 100 microns long and only about 2 microns in di-ameter. scanning electron micrographs (rigure 6) do not show the

fibrous character because the fibers are very brittle and break easilyinto shorter Lengths. The cell volume (ra¡te 1g) is 1s to.16 Ä3 1arger

than that of chromium-f1uor-eckermannite which, along with the very highyield, suggests that Sc substitution was essentialJ.y complete (see Chap-

ter 5 for occupancies). The remaining cel1 parameters, most importantlyß, are analogous to those of natural eckermannites (cf. Kempe .1969).

Substitution of A1 by In

Essentially 100 percent amphibole was obtained in these runs; no otherphases were detected. indium-fluor-eckermannite forned cl-ear, colour-less, prismatic crystals up lo 25 microns long and 4 microns wide (r,ig-

ure 6). cell dimensions are typically like those of natural eckerman-

nites (cf. Kempe 1969). Detailed occupancies are given in chapter 5.

110

NvböLLe: NeNa:]&r(Al,cr, 9c, In ) rSi zÀ1or r (oH)¿

NaNa 2Mg3À1 2Si zAl0z z (0U) z

Runs on the nyböite endmember composition failed to grow amphibole.

This probably reflects the fact that nyböite is only stable at high

pressures (Carman and Gilbert 1983).

Substitution of Mg3AIz by Mgs(CrrGa,Sc,In) z

Runs with these compositions grew between 40 and 80 percent amphibole,

but the low yields and presence of phases containing cr, Ga, sc and In

demonstrate that these amphiboles are considerably off-composition. Àt-

tempts to grow nyböite with both octahedral and tetrahedral Àl replaced

by Ga failed completely.

Fluor-Nvböite¡ NaNarMq¡Sc rSizÀ1Or zF r

These runs yielded greater than 90 percent amphibole with minor Na-

ScSi206. Scandium-fluor-nybóite generally formed clear, colourless, ex-

tremely fibrous crystals up to 100 microns long and about'1 micron wide;

more prismatic crystals measuring about 40 microns long and 10 microns

wide are also present (nigure 6).

I RON-MÀGNESI UM_MANGÀNESE ÀMPHI BOLES

sodian maqnesio-cumminqtonite: NaMqNa (Mg,Ni ) ssi ¡oz r (ott)¿'

NaMgNaMg5Si aOz z (0u) z

Sodian magnesio-cummingtonite grorvs readily with yields greater than 9E

percenL. The only other phase detected in the run product was forster-ite. These amphiboles form clear, colourless, extremely acicular crys-

taI up Lo 18 microns long, but generally 1ess than 1 or z microns wide

111

(nigure 7). ceIl dimensions (tab1e 13) compare well with those of sodi-

an magnesio-cummingtonite grown by l,iitte et aI. (1969) but are markedly

different from those by Grebenschikov et aI. (1975) "

Substitution of NaMgNaMgs by NaNiNaNi¡

This substituLion in the endmember sodian magnesio-cummingtonite formula

yielded about 50 to 60 percent amphibote in runs on the CT buffer. The

remainder of the run was willemseite. The amphibole formed pale amber,

extremely fibrous needles less than 30 microns long and 1ess than'l mi-

crons wide (rigure 7). The celI volume (ra¡te l3) is abouL 7 Å3 less

than that of endmember sodian magnesio-cummingtonite; this is the same

as the difference in cell volumes of richterite and Ni-richterite. Un-

buffered runs did not grow amphibole; the products consisted of abundant

willemseite, Ni and quartz.

sodian f luor-maqnesio-cumminqtonite: NaMgNaMq¡si ¡oz rFr

Isothermal runs on this composition produced only about 30 to 40 percent

amphibole; the run product was dominated by cristobalite and minor cli-noenslatite and tridymite. Non-isothermal runs yieLded up to about 70

percent amphibole with abundant clinoenstatite and minor cristobaliteand tridymite. The cel1 dimensions (table 13) are different from those

of Gibbs et al. (962)¡ in particular the volume is smaller. It isprobable that the amphibole grovrn is off-composition.

112

TÀBLE 1 1

Run Data: Isothermal Experiments

Run Number T(de9)

Pt(bar) (h)

Productsl

Si I icate Hydroxy-anrphibolesCalcic Amphibolesrca2MgsSi sgz z (ott)z

1 000 332 fli+qtz+crs+trd+en?1 000 445 di+gtz+en

Mq3Ni2rR-À1 783 2000

CdTR-A2 742 1 000

ECa zNi sSi sgz z (OH) z68 Nidi+crs+qtz+trd+cam+Ni+wi1

25 Nidi+crs+qtz+trd+cam+¡i+pi1

rCa 2MgsNi zSi s0z z (OH)z51 MgNidi+qtz+cam+Ni+¡1"

!Cd2MgsSi a0z z (0H) z91 gtz+cum+fo+en+mpt+tlc

TR-A1TR-À5

NiTR-A1NiTR_À2

ED-A1GED-À-1GED_À2GED-À4

NiED-À1

PA-Ä1 *PÀ-A2*PÀ_À2A*

795810

793801

1 0002000

770803811820

1 0001 00020001 000

NaCa 2Mg5Si 7À102 z (0H) z

!7 cpx+fo+p1+gtz+cam+ly+?9? cpx+fo+pl+qtz+cam+li+?y cpx+fo+pl+qtz+cam+ly+?67 cpx+fo+pI+qtz+cam+li+?

PA-A8B'K

782

890840500

92386586s923890840590

400

PÀ-A3*PA-À4*PÀ-À5*PÀ-À6xPÀ-A7*PÀ-A8*PÀ-A8À*

NaCa "Ni .S i .Àl n^ ^ lôHì ^_JE_ r--_v¿¿\v.., ¿

1 000 26 cpx+cam+Iy+ol+pl+?

NaCa 2MgaAlSi e Àl z0z z (0H) z'1000 155 cam+cpx+f s+pIine+spl?

1-2kbar 384 cam+cÞx+fo+pt+ne+sbt?1 000 891 cam+cÞx+fs*þl*ne*sþl?

(p¡-ee produãt rerun)1 000 52 cam+spx+fs+pl+ne+spl?1 000 381 cam+cÞx+fq*þl*ne*sþl?1 000 381 cam+sþ¡+¡e+þl+ne+sþI?1 000 sZ cam+cpx+f6*þI*ne*sþl?1 000 1 55 cam+cþ¡+¡e+þ]+ne+sþI?1-2k 384 cam+cþ¡+¡s*þl*ne*9î,1 000 891 cam+gþx+¡s*þl*ne*ih

(pe-¡g produãt rerún)1 000 891 cam+spx1¡e+pl+ne+gh

(pe-¡g produðt rerún)1000 1126 cam+cpi+fe+pl+ne+9h+spl?PA-À9* 801

113

Run Number T(deg)

Pt(bar) (h)

Produc t s

PÀ-À1 0*PÀ-À1 1 *PÀ_A1 2*GPA-Ai *GPÀ_A2XGPÀ-À2a*

GPA-A3*GPA-A4*

NiPA-A1

N i PA-A2

ScPA-A1 *ScPA-A'1a*

ScPÀ-À2*ScPA-À4*ScPA-45*ScPÀ-46*

CrPÀ-À'1*

CrPA-À2*

CrPA-À3*CrPA-44*

CrPA-À5*

GaPÀ-À1GaPA-À2*GaPA-À3*

I nPA-A,1I nPA-À2I nPÀ-À4

895895

1 0001 000

148148

801917842935838930

1 0001 10020001 000'1000

i 000

1126472527

52565

cam+cpx+ f 9+p1+ne+spl ?

cam+cpx+ f e+p1+ne+gh+spI ?

cam+cpx+ f o+pl +gh+spI ?

cam+gh+cpx+ f o+ne+spl ?

cam+gh+cpx+ f o+ne+spl ?

cam+gh+cpx+f o+ne+sp1 ?

(gP.o.-.o.e product:mix=1 :'1 )

cam+gh+cpx+ f o+ne+spl ?

cam+gh+cpx+ f o+ne+spI ?

868

796

Naca 2Ni 4A1si e Àl zOz z (OH) z

2000 1 0 cpx+pl+Hi+cam+qtz+wi1+ol+spl ?+1Y

1 000 47 cpx+p1+qtz+cam+v¡i 1+oI+spI?+Iy (cr butter)

NaCa 2Mg¿CrSi e Àl zOz z (0H) z

1 000 40 cam+cpx+e5[+fe+]y+pl+ne+sp1 ?

2000 24 cam+esk+cpx+pI+fo+ne+Pl+spl ?

3000 45 cam+cpx+esk+spl+fo+pl+ne1 000 70 cam+esk+cpx+p1+fo+spl+ne

+ly21 00 73 cam+esk+cpx+p1+fo+spI+ne

+ly

820840

NaCa 2Mg4ScSi oAl z0z z (OH ) z

1 000 40 cam+cpx+Sc 203+fs+¡s+pI+?2000 25 cam+cpx+Sc zO¡+fo+ns+pl+?

(ScP¡-e1 product regroundand rerun )

2000 25 cam+cpx+Sc 203+fe+¡s+pl+?3000 45 cam+cpx+Sc zO¡+fo+ns+pl+?2000 '70 cam+cpx+Sc 203+fe+¡s+pl+?2000 70 cam+cpx+Sc z0s+fo+ns+pl+?

820

845

90s846

83i

840905834830

758846817

NaCa zMg¿GaSi oÀt zOz z (OH) z'1000 49 cpx+pI+cam+f o+ne+Iy1 000 7O cam+cpx+pl+fe+¡s+Iy?21OO 73 cam+cpx+fo+pl?+ne?+1y?

NaCa zug¿InSi oA1 z0z z (OH) z

1 000 48 cpx+cam+gh+fo+Inz0¡1 900 52 cam+cpx+gh+fo+Inz0¡2000 73 cam+cpx+gh+fo+In z0s

8'1 0

755838

114

Run Number T(deg)

Pt(bar ) (ir

Produc t s

Ga3PA-À1 779NaCa zMg¿GaSi 6Ga zOz z (OH) z'1000 49 <.1Oeo cam

KCa 2Mg4AlSi sAI z0z z (OH) z

1000 68 <10eo cam2000 22 <10eo cam

NaCdzMg¿AISi 6AI zOz z (OH) z.1000 49 (Seo cam

rCa 2MgsSc zSi oÀ1 zOz z (0H) z

1000 69 Oeo côrì

ECazMgsCrzSie ÀlzO zz(OH) z

1000 9'1 Oeo cam

KPÀ-A1KPA-À2

CdPA-A'1

ScTS-À1

CrTS-À1

HB-A1HB_À2HB-A3HB-A4HB-A6HB-À7HB_À8HB-A9HB-A1 O

HB-A1 2

HB-A1 3

HB-À1 4

HB-À1 5

HB-81

GHB-A'1GHB-À2GHB-À3GHB-À4GHB-A5GHB_A6GHB-A7GHB_À8GHB-À9GHB-À.10

NiHB-A1NiHB-À2NiHB-A3

1 0001 0001 0001 000i 0001 0001 000250030003000200020003s001 000

798930803803705705600811780812

1 000'1000'1000

1 0001 000i 0001 000200 0

12003 000

835830

7s8

768

792

782748726696835766780840804715764743679775

¡Ca zMg4À1si 7À102 z (oH) z'158 cpx+an+cam+en+f o147 cpx+an+cam+en+fo238 cpx+an+cam+en+fo234 cpx+an+cam+en+fo136 cpx+an+ca¡+s¡+fe+qtz1 60 cpx+an+can+en+fo47 cpx+an+ca¡¡+s¡+fg+qtz2 cpx+an+cam+en+f9+q¡z+t1c ?

38 cpx+an+cam+en+fo71 cpx+an+cam+en+fo+t1c?

141 enx+an+cam+en+fO141 cpx+an+cam+en+fo74 cpx+an+cam+tlc+chl?

1 65 cpx+an+cam+en+fo(g¡-¡1,42 reground, rerun)

48 cpx+an+cam+en+fo65 cpx+an+cam+en+fo+qtz

1 35 cpx+an+cam+en+fo1 35 cpx+an+cam+en+fo123 cpx+an+cam+en+fo123 cpx+an+cam+en+fo724 cpx+an+cam+en+fo42 cpx+an+cam+en+fo47 cpx+an+cam+en+fo20 cpx+an+cam+en+fo

sCa zNi ¡À1Si zÀ10z z (Ott) z

1 000 68 cpx+an+qtz+Ni+ol1 000 25 cpx+an+qtz+Ni+ol1100 43 cpx+an+wil+qtz+cam+ol (t'ttt buf ter)

793801790

115

Run Number T(deg)

PI( bar ) (h)

Produc t s

ScHB-À1ScHB-À2

GaHB-À'1

CrHB-41CrHB-À2

TiHB-À'1

VHB_A1VHB_A2

KR-À1KR-A2

RC-A1 *RC-A2*

MnRC-À1MnRC-42

Mg4MnRC-À'1*Mg4MnRC-42

Mg3Mn2Rc-À1 *Mg3l,tn2RC-¡2't

768850

'1000

3000

rca 2Mg4scSi zÀ1oz z (0H) z

69 20-30eo cam24 20-30e" cam

NiRC-À1 * 800

Mg3Ni2RC-A1 * 852

rCa 2Mg4GaSi zAl0z z (OH) z

3000 60 40-50e" cam

rCa 2Mg4Crsi zÀ102 z (0H ) z

1000 91 <10eo cam3000 46 30-40eo cam

Eca 2Mg4TiSi zAI0z z (Ou) z

3000 48 20-30e. cam

Eca2Mg4vSi7Al0z z (OH) z

3kb 58 <5eo cam3kb 68 50-60% cam

NaCa zMg¿TiSi 6À1 z (o+oH ) z ¡1000 41 Oeo câm2000 49 Oeo cârr

Sodic-calc ic ÀmphibolesNaCaNaMgsSi s0z z (OH) z

1 000 50 cam+cpx1 000 50 cam+cpx

NaeaNaNi sSi a0z a (0U) z

1 000 30 cam+Ni+cpx

NaCaNaMg¡Ni zSi e0z z (OH) z'1000 29 cam+Ni+cpx

NaCaNaMnsSi sOz z (OH) z'1000 165 (Seo cam

1000 194 (Seo cam

NaCaNaMgaMnSi aOz z (0H) z

1 000 29 cam+cpx1 000 '103 cam+cpx

NaCaNaMg3Mn zSi a0z z (0H) z

1'100 24 cam+cpx1000 103 cam+cpx (t{HO butf er )

804

792854

695810

804

783792

852790

903903

479608

854790

116

Run Number Pt(ba r ) (ir

Produc tsT(deg)

CuRC-À1 742

KRC-À1 * 865

CaMgRC-À1 796

cdRc-A1 80s

NaCaNaCusSi sOz z (0H) z

1 000 26 CaCuSi ¿Or o+CuO+chl?(cr butier)

KCaNaMgsSisOzz(OH) z'1000 93 cam

Na (NaCao. sMgo. s )l,IgsSi s0z z (oH) z

1 000 64 cam+cpx?

NaCdNaMgsSi sOz z (OU) z

1000 70 carn+?

EcaNaMg4Alsi B0z z (OH) z

1000 54 20-30e" cam1000 101 20-30Po cam1000 41 <Seo cânì1075 67 20-30eo cam1000 64 <10eo cam1000 41 <Seo cânì1 000 164 <Seo cam750 26 <Seo câm

1075 67 <10eo cam

ECaNaMg4AlSi sOz z (0H) z

1000 91 40-50eo cam

¡CaNaMg+ÀtSi Boz z (Ou) a

1 000 69 <10eo cam

NaCaNaMgaÀlsizÀl0z z (0U) z

1200 48 5-10% cam1200 96 1 0-20% cam

NaCaNaMgaScSizAl0z z (0H) z

1000 69 30-40eo cam

NaCaNaMgaCrSi zAlO zz(Oll) z

1000 69 30-40% carn

NaCaNaMgsSc zSi sÀl zOz z (0H) z

1000 69 20-30eo cam

NaCaNaMg gCr zS i oÀl zO z z ( Ott ) z

1000 91 20-30eo cam

I^tc-A1lrc-À2wc-À3I.tc-À5GWC-À1GWC-À3GI^¡C-À4GtlC-45GWC-À6

ScVIC-41

CrWC-À1

KÀ_À1KÀ_À2

ScKÀ-41

CrKÀ_41

ScTÀ-À1

800707866800800866706762800

760

690

889755

782

782

798

CrTA-41 797

117

Run Number T(deg)

Pt( bar ) (h)

Products

ScBA-À1

CrBÀ-4,1

ScRB-A'1ScRB-42

CrRB-A1CrRB-À2

GaRB-41

EC-A1EC-81EC-À2

ScEC-À'lScEC-42

CrEC-À1CrEC-42

GaEC-À2GaEC-43

I nEC-À1

'1000

1 000

798

797

rCaNaMg¡Sc zSizÀ102 z (0H) z

1000 69 5-'10eo cam

¡CaNaMg ¡Cr zSi zÀlO z z (0u ) z

1000 91 5-10e" cam

Àlkali amphibolestrNa 2Mg¡Sc zSi e0z z (OH ) z

1 000 53 5-1 0% cam1 000 97 40-50% cam

690765

690777

738

775817790

nNa 2MgsCr zSi eOz z (OH) z

53 <Seo cam100 20-30eo carn

718860

718850

rNa 2MgsGa zSi eOz z (OH) z

1000 79 (Seo cêrn

NaNa2MgqAlSi aoz z (OH) z

1 000 47 cam2000 95 cam1 000 144 cam

NaNa 2Mg ¿ ScS i s01 000 43 40-501 000 51 40-50

N¡N¡ ^Mn,crqi .ô^ ^ lnu) ^9ea1\v.tt ¿

1000 43 70-80eo cam1 000 4 70-80% cam

zz(9oC9oC

zz(9oCo-^1L

OH

am

am

769790

800

NaNa 2Mg 4GaS i e01 300 49 80-901 000 144 80-90

0H)zam

am

NaNa 2MgaInSi sOz z (0H) z

1400 45 80-90% cam

118

Run Number PT(bar) (h)

Produc t sT(deg)

I nNY-41 783

Ga3NY-41 738

MgRC-À1

NaNa 2Mg ¡Àl zSi zAlOz z (0H ) z

1000 43 Oeo cam

NaNa 2Mg¡Sc zSi zAl0z z (0U ) z

1000 50 40-60eo can1380 45 50-70eo cam

NaNa 2Mg¡Cr zSi 7AJ.O2 z (Oti ) z1000 91 70-80eo cam1000 50 70-80eo cam2000 51 70-80e" cam

NaNa 2Mg gIn zSi zAl0z z (OH ) z'1000 16 60-80% carn

NaNiNaNi 5Si s0z z (0H) z

1000 24 cam+wi1 (cT buffer)1 000 48 wil+qtz+Ni

Si licate Fluor-amphibolesealeie Amphiboles- __''r---

ECa2MgsSia0zzFz1 70 cam+di+fI+trd+en+crs1 1 68 cam+di+fl+trd+en+crs1 1 30 cpx+trd+en+f1+fo

NaCa 2Mg sS i zA10 z zF z

3

NY-À1

ScNY-A 1

ScNY-À3

CrNY-41CrNY-42CrNY-43

NiMgRC-À1NiMgRc-À2

FTR-H1 ;2FTR-H3;4FTR-H5

FED-A1FED-A2FED-A3FED-À4FED-À5FED-À7FED-À9FED-B5X

718

700790

690700800

NaNa 2Mg sGa zSi zGaOz z (OH ) z'1000 79 Oeo cam

I ron-magnes i um-nanganese Àmphi bolesNaMgNaMgsSi s0z z (OH) z

806 1 000 46 can+fo

1143113711ss

806787

120211 481107't 041

9991161880938

1

1

1

1

I

1

1

1

1 g1+v. f .9.g1+v. f . g91+crs+cp¡+pI+f 1+v. f . g.cpx+c r s+pI+f l+cam?+g1

J 2

I

2 5

42 cpx+crs+pl+q¿m+fl+gI12 gl+v. f .9.

1 58 crs+cpx+p1+f1+cam120 g¿¡+fs+pl+cpx

119

Run Number PI(bar) (tr

ProductsT(deg)

FPA-A'1FPA-A2FPÀ-A3FPA-À6FPA-B-1FPA-B2FPA-85FPÀ-BUtFPA-NMR

FScPA-A1 *FScPÀ-A3a*FScPÀ-À3b*FScPÀ-À3c*

FGaPÀ-41 *FGaPA-À3a*FGaPÀ-À3b*FGaPA-À3c*

FCrPÀ-À1 *FCrPÀ-A3a*FCrPA-À3b*FCrPA-À3c*

FTS-A1FTS-À2

FHB-À1FHB-À2FHB-À3FHB-A4FHB-A5FHB-A6FHB-B'1FHB-B4

120411511256880

1 0801 080

93810001 000

NaCa 2Mg aAIS i 6À1 zO z zF z

1 1 91+p1+cpx1 4'1 gl+pI+cpx'1 3.3 g1+v. f . g.1 1 58 pl+f1+cpx+ne+fo?+spl?1 '185 cam+cpx+pl+¡s+f e+5pl J1 185 cam+cpx+pl+¡e+fe+5plJ1 120 cam+cpx+pl+spl+ne+fo1 48 cam+cpx+pl+5pl+¡s+fe1 63 cam+cpx+p1+sp1+ne+fo

NaCa 2Mg a ScS i oAl zO z zF z

1 7'1 cam+cpx+fo+ne?1 75 cam+cpx+fo+ne?1 75 cam+cpx+fo+ne?1 75 cam+cpx+fo+ne?

NaCa 2MgaGaSi e Al zOzzF z

1 7 1 cam+p1+fo+cpx1 90 cam+pl+fo+cpx1 90 s¿m+p1+fo+cpx1 90 cam+p1+fo+cpx

NaCa 2MgaCrSi e A1 zOzzF z

1 71 cam+mchr+pl+cpx+fo1 90 cam+mchr+pl+cpx+fo1 90 cam+mchr+p1+cpx+fo1 90 eam+mehr+BJ+enx+fo

rCa 2MgsAl zSi eÀl z0z zF z

1 25 Oeo cânì'1 158 Oeo cam

lca2Mg4A1SizÀ10zzFz5 50% gl+v.2 20% gl+v.I <10eo gl+v1 60e, gl+v.

1 0061073107 3

1 073

1 0061 0001 0001 000

1 0061 0001 0001 000

'1151

880

1 14811071 0411204

999880845938

I

1

1

1

I

1

30001

f .9.f.g..f.9.f.g.

2.3.

1

421s840

120

c rS+an+f 1+cpx+cam+gtzc r S+an+f 1+cpx+cam+qtzs¿¡+qtz+an+cpx+f1s¿¡+gtz+an+cpx+ f l

120

Run Number Pt(bar ) (tr

Produc t sT(des)

FMg4l"lnRC-À2* 1035

Sodic-calc ic AmphibolesNaCaNaMgsSi s0z zFz

1 46 Oeo cam1 138 <5eo cam1 92 Oeo cam1 1 88 cam+cpx+fo1 120 cam+cpx+fo

NaCaNaMgqMnSi sQzzF z

1 44 cam+cpx

rCaNaMg¿À1Si a0z zF z

1 147 40-50% cam1 1 38 1 0-20% cam1 1 08 Oeo cânì1 '163 Oeo cam1 24 5- 1 Oeo cam1 188 20-30eo cam1 120 10-20eo cam

NaCaNaMgaÀ1Si zÀ102 zF zj jq7 s¿¡+fl+g11 1 38 crs+pl+cpx+fl+cam1 1 63 s¿m+p1+f1+crsj 215 s¿rn+fl+gI

NaCaNaMg q ScS i zÀ10 z zF z

1 71 60-80eo cân

NaCaNaMg aGaS i z À10 z zF z

1 71 50-70eo cam

NaCaNaMg a CrSi zÀ10 z zF z

1 71 50-70eo cam

NaCaNaMgaTiSi zÀ102 zF z

1 7'1 50-70eo câm

NaCaNaMg aVS i z À10 z zF z

1 71 50-70% cam

NaCaNaMg gÀI zS i eÀ1 z0 z zF z

46 Oeo cänì12 Oeo cânì

136 <Seo cârn120 <Seo câm

FRC-A1FRC-À2FRC-À3FRC-81 *FRC-85

FWC-À2FWC-À3FWC-C1FWC-C2FI^IC-81FT'IC_82FWC-88

FKA-A2FKA-À3FKA-À4FKA-A5

FTÀ-À1FTÀ-À2FTÀ-A4FTÀ-À8

1'153900

11521 055

938

1102904

11511 02111071 0s5

938

1102904

1 0201072

FScK.À-À1 1006

FGaKÀ-À'1 1006

FCrKA-À'1 1006

FTiKA-A1 1 006

FVKA-A1 1 006

11s31 109

900938

121

Run Number T(deg)

Pt(bar) (h)

Pr oduc t s

FCrEC-À1t' 938

¡CaNaMg sÀl zS i zA10 z zF z

1 46 Oeo cam1 66 Oeo cânì1 1 38 <5eo câfir

Àlkal i emphiboJ.esNaNa 2Mg 4ÀlS i s0 z zF z

120 cam+ab+fo+]y ( 9.5120 cam+ab+fo+ly ( 9.5

NaNa zMg¿ScSi a0z zF z

1 120 cam1 90 cam

NaNa2Mg4GaSi s0z zF1 120 cam+ly ( 9.61 90 cam+Iy ( 9.6

NaNa 2Mg q CrS i e0 z zF z

1 120 cam+gtz+mchr+esk

NaNa2Mg¿InSia0zzFz'1 45 cam1 90 cam

NaNa 2Mg g Sc zS i zÀ10 z zF z

1 120 cam+NaScSi z0o1 90 eam+NaScSi rOn

FBÀ_A1FBÀ-A2FBÀ-À3

FEC-À',1*FEC_A2*

FScEC-À1 *F ScEC-À3*

FGaEC-41 *FGaEC-À3*

FI nEC-À1 *FI nEC-43*

FScNY-42*FSeNY-43*

11531109904

938938

9381 000

9381 000

9851 000

9381 000

4 A)4 Å)

2

6 Å)6Å)

I ron-magnes i um-manganese Àmphi boles

NaMgNaMgsSi s0z zFzMgFRC-A4 909 1 46 crs+cam+cen+trd

NoteslEntries in this column include either phases identifiedin run products, or approximate amphibole mode.

122

TABTE '12

Run Data: Non-isothermal Experiments

Run Number Pt(bar ) (h) (

ProductsT(deg) degrlh )

Rate

FTR-H6FTR-H7

FED_À8FED-81 *

FPA_A4FPÀ-À5FPA_83

FPÀ_84

FPA-87

FScPA-À2

FGaPÀ-À2

FCrPÀ-À2

FTS-À4

FRC-83

Flrc-86FWC-E7

1239- 816 1

1193- 799 1

1 1 96-1 0s8 1

1239- 816 1

1 1 64-1 1091 1 96-1 0581239- 816

,1

1

1

FIuor -amph i bolesCaIcic-amphiboles

ECazMgsSis0zzFz332 1.30 cam+di+trd+en308 1 .30 cam+di+trd+en

NaCa2MgsSizAl0zzFz1q7 0.94 crs+cpx+p1+fl+cam332 1.30 s¿¡+fe+pL+cpx+crs

NaCazMgaÀlSis0zzFz12 4.58 gl+pl+cpx

147 0.94 g1+p1+cpx+sp1?332 1.28 g¿m+pl+fI+cpx+spl

+ f o+ne308 1 .30 s¿¡+pl+f1+cpx+spl

+ f o+ne382 1,12 s¿¡+pI+f1+cpx+sp]

+ f o+ne

1193- 799 1

1273- 844 1

NaCa 2MgaScSi oAI zOzzF z1273- 844 1 382 1,12 can+cpx+ns+f6+fl+91

1273- 844

1273- 844

NaCa 2MgaGaSi sÀ1 zOzzF z

1 382 1,12 q¿m+fe+pl+sp¡+fl+91

NaCa zMg¿CrSi sAl zOzzF z

1 382 1.12 cpx+mchr+fq+pl+cam+ne

1193- 799ECa zMgsAl zSi sAl zOzzF z

1 308 1 .30 Oeo cânì

EcaNaMg4AlSi 80332 1 .30308 1 .28

Sodic-calc ic ÀmphibolesNaCaNaMgsSis0zzFz

1239- 816 1 332 1,28 cam+cpx+fo

zzF z

40-50e"40-50e"

camcam

1239- 816 1

1193- 799 1

123

Run Number T P t Rate Pr oduc t s(deg) (bar) (h) (aeg/h)

FKA-À'13FKA_A-16

FScKA-42

FGaKÀ-42

FT i KA_A2

FBA_À4FBA-À5

FEC-À3

FScEC-À2*

MgFRC-À1MgFRC-À5MgFRC-46

1239- 8161193- 799

1239- 8161193- 799

1273- 844

1273- 844

NaCaNaMg ¿ ScS i z 410 z zF z

1273- 844 1 382 1 .12 50-70eo cam

NaCaNaMg ¿GaS i zÀ10 z zF z

1273- 844 1 382 1.12 50-70so cam

NaCaNaMg 4Ti S i z Àl-0 z zF z

1273- 844 1 382 1 ,12 50-70eo cam

NaCaNaMg aAlS i z Al0 z zF z

1 332 1 ,28 60-80e" cam1 308 '1 .30 60-80e" can

¡CaNaMg sAl zS i z À10 z z1 332 1 ,28 oeo

1 308 1 .30 oeo

Al kal i -amphi bolesNaNa 2Mg 4AIS i e0 z zF z

1 3BZ 1,12 cam+fo+ab+ne+NaF+ly(9.59 Å)

NaNazMg¿ScSie0zzF¿1 382 1 ,12 cam+fo+cen+NaScSi z0o

I ron-magnes i um-manganese Àmphi boles

F 2

camcam

1240- 962 1

1239- 816 1

1193- 799 1

NaMgNaMgsSis0z:Fz47 6.40 cam+cen+crs+trd

332 1 .30 cam+cen+crs+trd308 1 .30 cam+cen+crs+trd

124

TABLE 1 3

Cell Dimensions of Synthetic Àmphiboles

Run No. a (Å) b (Å) c (Å) ß (") v (Å3)

aCa

9.820(4) 18.012(10

Calcic AmphibolesTremol i te

zNi sSi aOz z (OH) z

) s.2s3(3) 104.82(6) 8e8.3(5)NiTRÀ1

Mg3Ni 2TR-A1

CdTR-A2

FTR-H1 ,2FTR-H6

FED-81

cDÀ-À?À

PÀ-À8ÀPA-À2ÀPA_A-10

CrPÀ-À3CrPÀ-À4CrPÀ-45

GaPÀ-À1GaPÀ-42GaPÀ-À3

ScPÀ-À5ScPÀ-46ScPa-À5,6R

ECa 2MgsNi zSi sOz z (Ou) z

9.882Q) 18.032(4) 5.271(2) 104.58(3) 903.1(2)

¡CdzMgsSi sOz z (Ou)z9.666(13) 18.071(24) 5.290(8) 102.91/12) 900.7(1s)

9.7q?

77 (4)78(1)

897.898.

FIuor-tremol i te¡CazMgsSia0zzFz

18.006(7) s.268(3) 104.48(5)18.013(2) s.2665(7) 104.47(1)

FIuor -eden i teNaCazMgsSi tAIOzzFz

9.827Qt 17.943(3) 5.285(2) 10s.11(3) 899.7(3)

Parga s i teNaCa zMgqÀ1Si oAI zOz z (OH) z

e(s)2(1)

J

3

3

2

2

3

2

q qn¿l?l9.907(3)e "8e4(2)e.8e7 Q)

1? q¿1lql17.929(6)17.948(5)17 .946(4)

6 ?R1

5.2825.2805.284

e.s14(2)s. e17 (3 )9.90e(2)

9"849(2)9,923ß')9.910(4)

NaCa 2Mg¿CrSi oÀ1 zOz z (OH) z

17.993(4) s.28s(1 ) 105.44(2)17.998(6) 5,287(2) 105.41(2)17.98e(s) 5.285(2) 10s.42Q)

Naca zMg4GaSi oAl zoz z (OH) z

17.9s3(4) 5.297(1't 105.1717 .973(5) 5.292(1) 1 05.4917.976o) 5.289{.2) 10s.54

)\ 10q E¿l?)2') 105. 51 (2 )1) 105.s0(2)1 ) 105.s1 (2)

qn¿ n

904.0903.5904.4

908.7909.8908,2

903.9 (

g0g. 7 (

907.9(

2

3

3

2

2?

NaCa 2MgaScSi oÀ1 z0z z (0H ) z

9.e42ß, 18.101(5) 5.297(1|\ 10s.37(2) 919.2(3)9.944Q) 18.096(5) 5.298(1) 105.39(2) 919,2(319.9404(8) 18.094(2) 5.2983(4) 105.367(s) 918.89

t¿5

Run No. a (Å) b (Å) c (,{) ß (") v (Å3)

NaCa 2Mga I nSi eAl zOz z (OH) z

inPA-À4 9.937(3) 18.030(4) s.289Q) 105.s4(2) 912.9(3)

FPANMR

FPÀ-BULFPÀ-BUtRFPÀ-84FPÀ-85

FCrPA-À1FCrPA-À3FCrPA-A3R

FGaPÀ-À'1FGaPÀ-42FGaPA-A3R

e.830 ( 4 )e.827 ( 3 )e.8281 (8)s.818(3)e.820 ( 3 )

NaCa zMg ¿ CrS i 641 20 2 2F 2

9.834(3) 17.971(5) 5.286(1 ) 10s.07(2) 902.1 (3)9.845(8) 18.005(13) s.284(4) 105.06(6) 904.4(7)9.8397(6) 17.977(1) 5.2916(3) 10s.105(4) 903.68

FIuor-pargas i teNaCa 2Mg4A1Si oÀ1 zOzzî z

17.919(6) s.2e4Q) 10s.16(3) e00.0(31''t .927(7) 5.293(2) 10s.19(3) 899.8(417 .932Q) 5,2942(4) 1 05. 1 72(5) 900. 5217.9290) 5.295(2) 105.27(4) 899.2(417.931(s) 5.293Q) 105.20(3) 899.4(3

NaCa2Mg4GaSi oÀl zOzzF z

17.951 (4) 5.2e6r) 10s.16(2) 903.5(2)17.945(4) 5.299r) 10s.2s(2) 903.9(2)17.968(1) 5.3028(3) 10s.198(3) 906.s8

9.846(2)9.852 ( 3 )9.8597 ( 6 )

FScPÀ-À1FScPÀ-3AR

s.881(2)9.884s(4)

Na18.'145'18.

1 s6

Caz(4)5(e

MgaScSi6À12022F2s.317(1) 105.17Q) 920.1Q)

) s.g18s(2) 10s.215(3) 9?1.04

HB_A3

RC-À1

KRC-À1

CaMgRC-À1

NiRC-A1

9.770(4)

9.902(1 )

10.048(2)

9.843 ( 4 )

Eca 2Mg4ÀlSi zAloz z (og) z

18.039(4) 5.278Q) 104.62(5)

Sodic-calc ic amphibolesRichter i te

NaCaNaMg5SisOzz(0H) z

17.980(3) s.2683(8) 104.21(1)

KCaNaMg¡Si sOz z (0t¡) z

17.990(3) 5.2733(9) 104.84(1 )

Na (NaCao. sM9o. s )MgsSi sOz z (oH) z

17.959(6) 5.275Q) 103.68(4)

e00.0(4)

e0e.3(2)

s21 .sQ)

e06.0(4)

(oH)z104.00(3) 917.3(3)

NaCaNaMgsNi zSi aOz z (OH) z

M93Ni 2RcA'1 9.894 ( 3 ) 17 .962ß) 5,264(2) 1 04 .29 ( 3 )

NaCaNaNí sSi s0z z (Ott) z

9.882(1) 17.e44Q) 5.2579(7) 104.76(1) 902.8(1)

e06.4 ( 3 )

NaCaNaMg4MnSiM94MnRC-A2 9,920ß) 18.058(5) 5,278(

a0z z

i)

126

Run No. a (Å) b (Å) c (Å) ß (") v (Å3)

NaCaNaMg3Mn 25i e0z z (OH) z

Ms3Mn2RCA2 9.927(3) 18.088(s) 5.282(1, 103.91 (3) 920.5(3)

FIuor-richteriteNaCaNaMg¡Si e0z zFz

FRC-A1 9 .820Q) 17 .964(4) 5.2s8 ( 1 ) 104.11 (2) 899.6 (2 )

NaCaNaMg ¿MnS i s0 z zF z

FM94MnRCÀ2 9.835(3) 18.040(5) s.26s(1) 104.10(3) 906.0(3)

cdRc-A 1

EC_81

FEC-A1

FGaEC-À1

FCTEC-41

EcnEa-À1¡ suuv ¡¡ I

FSCEC_A2PSCEC-À3R

FI nEC-A1FI nEC-A3R

o aralr\¿ôvþJ\-t

9.826Q)9"8383(4)

NaNa 2Mg 4 S1a n¿q/q\ q ?ar v a v ¿e \ v,

18.047(4) 5.2918.0629/2) 5.29

NaCdNaMg5Si aOz z (0H) z

9.749(4) 17.946(4) 5.271(1) 102.70Q) 899.7(3)

Àlkali nmphibolesEc kermann i te

NaNa 2Mg4AIsi a0z z (OH) z

9.710Q) 17 .927 (3) 5.270(1) 102.67 (1) 897 .'r (2)

NaNa zMg¿AlSi eOz zF z

9.6s4(4) 17.902(6) 5.262(1) 102.72(2) 887.2ß)

NaNa zMg ¿GaS i e0 z zF z

9.683(2) 17.89s(4) 5.2637(8) 102.95(1 ) 888.9(2)

NaNa 2Mg 4 CrS i s0 z zF z

9.716Q) 17.817(3) 5.2740(7) 103.58(1) 887.s(2)

cSie111\1(1)26Q

ozzE z1^? Ê,Ll)\ Arl ?12\rwv.v¡\!, ¿t t.J\¿l

103.63(2) e11.8(3)) 103.652Q) 913,97

NaNazMg¿InSis0zzFze.84s(3) 18.081(8) 5.293Q) 103.4e(3) el6.2(4)9 .8526Q) 18.0967 ( 7 ) 5.2927 Q) 103.521(2) 917 . s3

NaNa 2Mg sSc zSi zÀ102 zF z

FScNY-À2 9"839(3) 18.160(7) 5.330(3) 103.9s(4) 924.2(5)FScNY-A3R 9.8467(5) 18.164(1 ) s.3403(3) 103.986(3) 926.83

M9RC-Al

I ron-magnes i um-manganese Àmphi bolesSodian magnesio-cummingtonite

NaMgNaMg5Si a0z z (Ott)z9.740Q) 17.934(3) 5.2700(8)'102.60(1) 898.4 ( 2 )

NaNiNaNi sSi s0z z (OH) z

NiMsRc-À1 9.737(3) 17.891 (6) 5.254(2) 103,21(4) 891.0(4)

127

Run No. a (Å) b (A) c (,{) ß (") v (43)

Sodian f luor-magnesio-cummingtoniteNaMgNaMgsSis0zzFz

M9FRC-ÀS 9.648(3) 17.914(5) 5.264(3) 102.68(5) 887.6(s)

Chapter V

DETÀILED CHÀRACTERIZATION OF SYNTHETIC ÀMPHIBOTES

INFRARED SPECTROSCOPV

Parqasites: NaCarMq¿M3 *Si eÀl r0z r (OH)¿

I nf rared spectra of synthetic pargasites with l',t3 *=À1, Cr, Ga and Sc are

presented in Figure 8. For the ordered case, in which the M(2) site oc-

cupancy is 0.SMg+Q.5M3* and the M('1,3) sites are occupied solely by Mg,

the spectrum should consist of a single band corresponding to the MgMgMg

configuration. The spectrum of pargasite (M3*=Àl), however, consists of

two major bands at 3709 cm-1 and 3676 cr-1 , and a poorly resolved shoul-

der at about 3645 cm-1. Because the sample is from a high-yield run and

is therefore close to of lhe nominal composition, the two major bands

were assigned to the MgMgMg (¡) and MgMgÀl (B) configurations respec-

t i vel v ¡ná l-he mi nar hend trl thc M.rÀl Àl lC) nnnf i nrrr¡l inn rTlha D-h¡nÂ:vòee¿v¡¡r ve¡¡e,

corresponding to lhe A1À1Al configuration, is absent" Band width is

about 25 to 33 cm-r, which is considerably larger lhan typical values of

about 6 cm-1 for natural amphibole spectra (Strens 1974),

Frequency shifts (relative to the MgMgMg band) of bands involving À1

are -33 and -65 cm-1 for the MgMgAl and MgÀ1AI configurations, respec-

tively. Strens (974) showed lhat the frequency shifts of individual

bands are a function of the electronegativiLies of the bonded cations

according to the approximale relationship:

Av=35n (xmg-xs ) cm- 1

L29

sMsMs

MgMgAl

MgMgCr

MgMgGe

MgMgSc

PErga6ltePA-A 1 O

Chromlum-pargaslt€GrPA-A 5

Gelllum-pargaslt€GaPA-42

Scandlum-pargaslt€ScPA-A 5.6

20 o03 3 3 o 3 0?D

'JÊVENUIlBEÊS

o3 3

Fiqure 8¡ Infrared spectra of pargasites

130

where 0<n<3 is the number of Mg ions replaced in any one Mgs(OH)2 c1us-

Ler, and Xmg and Xs are the Allred-Rochow electronegativities of Mg and

the substituent cation respectively. This gives a frequency shift of -9

cm-1 for the MgMgAI band relative to MgMgMg, which is significantly dif-

ferent from the observed shíft of -33 cm-1. Clear1y, the magnitude of

the frequency shift is not a simple function of electronegativity. Fur-

thermore, because the frequency shifts given by Strens f974) were de-

termined mainly from configurations involving Mg and divalent cations,

the shifts calculated for trivalent cations are underestimated. Semet

(973) also records the frequency shift of the MgMgÀI band in the syn-

thetic pargasite spectrum as -33 cm-1, identical to this study.

Infrared spectra of chromium-pargasite, gallium-pargasite, and scan-

dium-pargasiLe from this study, and magnesio-hastingsite (Semet 1972,

1973) all have shoulders near 3676 cn-1 corresponding to the MgMgAI con-

figuration (Figures 3, 8). These spectra suggest that synthetic parga-

sites (M3*=cr, Ga or Sc) and magnesio-hastingsite (M3*=Fe) are not of

the nominal compositions but contain minor octahedral À1. The magic an-

gIe spinning nuclear magnetic resonance (t't¡S Nt"tR) spectrum of scandium-

fluor-pargasite supports this conclusion; the octahedral to tetrahedral

AI ratio is 95:5 (Hawthorne et al 1984).

This discrepancy between the nominal composition and Èhe composition

of the synthetic amphiboles is reflected in the speclrun of chromium-

pargasite (M3*=Cr), which consists of major bands at 3710 cm-1 and 3659

cfiì-1 , a shoulder at 3674 cr- 1, and at least I minor bands or shoulders

(rigure 8), suggestíng that configurations other than those due simply

to Mg, Cr and Àl in amphibole are present. The two major bands were

131

assigned to MgMgMg and MgMgCr configurations; the shoulder at 3674 cm-1

is probably due to the MgMgAl configuration. Minor bands at lower fre-

quencies, although of low probability, coul-d result from one or more of

configurations MgAlAI, ÀlÀ141, MgÀlCr, MgCrCr, ÀIAICr, ÀlCrCr or CrCrCr.

Bands with frequencies between 3710 cm-1 and 3674 cm-1 are puzzling be-

cause they cannot be due to any configurations involving Mg, Cr or À1 in

amphibole. The presence of nrinor layer silicates in the run product,

however, ilây account for some of these bands. In addition, a shoulder

at about 3715 cm-1on the high-freguency side of the MgMgMg band points

to the splitLing of this band and cannot be explained in terms of the

C2/n anphibole structure.

Gallium-pargasite (M3*=Ga) spectra exhibit sirnilar anomalies. Bands

at 3706 cffi-1, 3676 cm-1 and 3665 cm-1 were assigned to the MgMgMg,

MgMgÀL and MgMgGa configurations, respectively. Minor bands and shoul-

ders at lower freguencies are the result of Lhe other normal Mg, Ga and

Al configurations. The MgMgMg band has a shoulder at abouL 3711 cm-1i

this is at a frequency shift of +5 cr-1, identical to a simiLar shouLder

in the chromium-pargasite spectrum. No fine structure was resolved be-

tween the MgMgMg and MgMgÀl peaks as in the chromium-pargasite spectrum.

In contrast to chromium- and gallium-pargasites, the scandium-parga-

site (M3*=Sc) spectrum is straightforward. The three major bands at

3711 cfi-1, 3679 cm-1and 3673 cm-1 were assigned to the MgMgMg, MgMgAl

and MgMgSc configurations, respectively.

132

RLchterites: (¡,Na)qaNaMß*si ¡oz r (oH)*

Richterite: NaCaNaMg5Si eOz z (0H) z

The infrared spectrum of synthetic richterite (nigure 9) is typical of

endmember amphibole having llg as the sole octahedral cation. It con-

sists of a single, sharp band at 3729 cn-lcorresponding to the MgMgMg

configuration. A barely resolved tremolite-like peak occurs at about

3673 cm-1, suggesting that this richterite is slightly off-composition.

This spectrum is almost identical to that of Rowbotham and Farmer (1973)

except that their tremolite peak is more intense. Band h'idth is 21

cnì-1 , about 3 times wider than in typical natural amphiboles (Strens

1974).

Potassium-richterite: KNaCaMgsSi sOz z (OH) z

The spectrum of potassium-richterite is almost identical to that of

richterite except that the MgMgMg peak is shifted +3 cm-1 to 3732 cm-1

and the tremolite-lile peak at about 3670 cm-1 is more intense. Band

width is about 18 cm-1. The magnilude of the MgMgMg band frequency

shift is consistent with that of typical values of +3 cm-1due to K sub-

stitution for Na in the À site (Hawthorne 1983b). Às for richterite,

the band at 3670 cm-1 suggests limited solid solution towards tremolite

and consequent deviation from the nominal composition.

Manganese-richterite: NaCaNaMgAMnSi s0z z (0H) z

The spectrum of richterite with M3*=Mg+Mn consisLs of a single band at

3729 cn-1. A slight swellíng at the base of the peak on the low-fre-

quency side may represent the contribution from another band. Il is not

like1y, however, that this represents the MgMgMn band, because the fre-

rlchterltes

MgMgMg

tremolite

MgMgMg

133

KCaNaMg

KRC-A 1

5

NaCaNaMg

RC-A 1,25

I NaCaNaMOOMn

M94MnRC-42

Mg3Mn2 RG-42

NaGaNaMgaMn,

38ürr :ir¡o :lal J7+3 3i¿t-l ,¡2r:¡ -ìÈß! 3ÈtjtJ :f-,ç t-l 3É,¿O

r.J Ê V t- l{ U lY B i. t'ì :ì

Figure 9: Infrared spectra of richterites.

quency shift is only about -22 cn-1. Most probably,

of the skewed gaussian peak shape (see Figure 44.).

be virtualJ.y all ordered into the M(2) site. Band

wider than richteriLe (23 cm-1 versus 21 cm-1).

134

it is an artefact

Àpparently, Mn must

width is slightly

The spectrum of richterite with M3*=Mg3Mnz is similar, consisting of

a single band at 3725 cm-1. Band width is 23 cm-1and there is a slight

swelling at the base of the peak at about 3707 cm-1 (see arrow, Figure

9). The spectrum suggests that most, if not all, of the Mn is ordered

into the M(2) site. Note that the MgMgMg band shifts to lower frequen-

cies by 4 cm-1 f rom endmember richteriLe to richterite with 2t"tn. The

reason for this shift is unknown. Both spectra of the manganese-richt-

erites also show minor tremolite-like peaks at about 3673 cm-1.

Sodian maqnesio-cumminqtonites: NaMqNaMqsSi eOr r (OH)¿

Idea1ly, the sodian magnesio-cummingtonite spectrum should consist of a

single, sharp, hydroxyl-stretching band corresponding to the MgMgMg con-

f inrrrat i nn - The nhsprr-rpd snp¡trum lF iortre 10 ) - however . consi sts of twO¡ ¿>v¿ t vv v¡Jev e¡ e¡.r v Y u- f

major absorbances: a single, well-resolved band at 376 cfr-1, and a

broader band that could possibly result from three closely overlapping

components. Between these two groups, there is also a weak shoulder at

about 3729 cm-1. This spectrum, with the exception of additional fine

structure, is virtually identical to that of Maresch and Langer (976)

who observed lwo bands at 3739 cm-1 and 3716 cm-1 (nigure 264). The

higher frequency band is about twice as wide as the other band, and it

is possible that the fine-structure seen in this study is not resolved

in their spectrum.

13s

sod¡an magnes¡o-cummingtoni te

MsRC-A 1

'eckermannlte"

EC-A2

:dritl .¡ )g¡ i ittr -r l'* ¡ .¡i ¿t J i ür-rr.llì V i-NtiMtJt..rì:ì

J b ¿ltì

Figure 10: Infrared spectra of sodian magnesio-cummingtonite andeckermannite.

136

Because the octahedral sites in sodian magnesio-cummingtonite must be

occupied sole1y by Mg, all bands in the spectrum must be from MgMgMg

configurations. The presence of more than one band implies the exis-

tence of more than one hydroxyl environment, not possible in space group

Cz/n. Maresch and Langer ,1976) assign a band at 3727 cn- 1 to OH-va-

lence vibrations in SiOH groups in lhe amphibole (rigure 26):

NaNa2MgsSi a0z r (oH) (0H) z

They do not account for the other bands (see Chapter 6). The origin of

the other bands is stilL unknown. Precession photographs (Hawthorne

1984, pers. comm.) show reflections with h+k=2n+1 suggesting that sodi-

an magnesio-cummingtonite is primitive rather than C-centered. Until

the crystal structure is known, the spectrum cannot be interpreted wilh

certainty.

Ec ke rmann i te : NaNa 2Mq4Àlsi ao2, (oH)¿

The spectrum of the synthetic amphibole grovrn on the eckermannite compo-

sition is of interest because it is virtually identical to that of sodi-

an nagnesio-cummingtonite (nigure 10). It consists of a sin91e, well-

resolved band at 37'16 cm-1 and a group of bands between 3739 cm-1 and

3754 cm-1. Thus, this amphibole cannot be eckermannite, a conclusion

reached earlier from cell dimensions (taUte 1¡).

137

BIETVEID E¡I$IÀ! STRUCTURE REFINEMENT

The Rietveld method (Rietveld 1967,1969) uses the whole powder diffrac-

tion pattern to characterize the structure of the material examined.

The structure parameters of the mineral, atomic coordinates, site-occu-

pancies and thermal parameters, together with various experimental pa-

rameters affecting the pattern, are refined by least-squares procedures

to minimize the difference between the whole calculated and observed

TÀBIE 1 4

Synthetic amphibole structures refined in this study

Name Nominal Composition fRun Number(s)

1 ) Scandium pargasite2) FJ.uor-pargas i te3 ) Chromium-f luor-pargasi te¿ ) cattium-f luor-pargasite5 ) Scandium-f luor-pargasi te6) Scandium-f luor-eckermannite7 ) I ndium-f luor-eckermanniteo\ ô-^-r:..- r1..^- ---L.i.:!^Q I ÞLCrr¡UI Uilr"-rJ-UU! ¡lyU\,rJ, LC

NaCa 2MgaScSi oÀl z0z z (OH) z

NaCa 2Mg4À1Si oÀ1 zOzzF z

NaCa zMgqCrSi oÀ1 zOzzF z

NaCa 2Mg ¿GaS i sÀl z0 z zF z

NaCa zMg¿ScSi e À1 zOzzF z

NaNa 2Mg4ScSi s0z zF z

NaNa2MgaInSie0zzFzlr-Ìt- lrà ô- ô: Âl^ F¡rcr¡\c1 2¡'¡9 3ùL 2 Jr 7 ^LV Z 21 2

ScPÀ-À5, 6FPÀ-BUtFCrPÀ-À3a , b, cFGaPA-À3a, b, cFScPA-À3a , b, cFScEC-À3a, b, cFI nEC-A3a, b, cFõ-rrrr rr^ L -rùU¡l¡ öJd¡U¡L

fTable 11, Chapter 4

patterns.

The strucLures of eight amphiboles synthesized in this study vrere re-

fined with the Rietveld method (tabte 1¿). Raw intensity data is listed

in Appendix B. Results of all structure refinements are summarized in

Tab1es 15, 16, 18, 19 and 20. Calculated and observed powder diffrac-

tion patterns are given in Figures 11 to 18.

138

Ref inemen_t Results

CeI1 dimensíons derived from the refinements are given in Table '16.

In general, they are up to an order of magnitude more precise than those

derived from normal least-sguares refinement of powder diffraction data

(raUte '1:). I^lith the exception of gallium-f luor-pargasite, ceI1 dirnen-

sions are identical within 2- or 3-sigma for both methods of determina-

TÀBLE 1 5

Refinement Results

No. t Sca1e B P Asym Zero Rexp Rp Rwp Rb

1

¿

3

4567

I

0.00264(4) 1

0. 00642 ( 9 ) 20.00427 (6) 2

0.00610(7) 1

0.00s33(s) 1

0.00753(8) 1

0.004s9(5) 1

0.00717(8) 1

0.15(1) 0

0.14(1) 1

0.07(1) 1

0.04(1) 1

0.15(1) 1

0.0e(1) 1

0.05(1) 2

0.28(1) 0

.8(

.2(

.0(

.t¿

)

)

)

97

7

I

.78

.4(0.0270.0760.0720,1270.0610.1150.0970.107

,7.60.23,23

I)

)

9I7

7

6

Q(zQ(z(l(l(l(l

4,462,903.392.792,952,572.782.68

'16.3

rþ.J14 .7IJ.J1a 1

11.3'1 0.812,8

14.51 3.913. 912.211 .19,9

10.211,2

0

7

5

6¿

2

5

.46

.l I

1)

.1(

.39

.20

.37

.09

5992280373 98

tNo. corresponds to numbers in Table 14, B is the overall Lemperaturefactor, P is the preferred orientation parameter, Àsym is the asymmetryparameter , Zero is the zeropoint correction, Rexp is the statisticallyexpected value for Rwp, Rp is R-pattern, Rwp is the R-weighted patternRb is R-Bragg (see Àppendix A for details).

tion when obtained for identical samples.

Àtomic positions are given in Table 18. Cation-anion and cation-ca-

tion distances (faUte ZO) were calculated using the RFINE program (rin-

ger 1969). Typical ranges of natural and synthetic amphibole !etrahe-

dral bond lengths are given in Tab1e 21. Mean tetrahedral bond lengths

139

TÀBLE 1 7

Selected Correlations from the Rielveld Refinement ofI ndi um-f luor-ec kermann i te

I z

000T

4

1

51

-0(7-oQ-0(6-î(2

-0.02-0.36-0.33-0 ,47

0

0.02-0. 16

0.14

-0.45-0.28-0.24-0.35

are a good test of the refinement results because they are well known

from single-crystal structure studies and are not as variable as other

cation-anion distances. Inspection of Table 20 shows that individual

tetrahedral bond lengths exhibit extreme ranges of variation that are

inconsistent with single-crystal structure data for both pargasites and

aIkali amphiboles. Mean tetrahedral bond Lengths are better behaved and

are reasonable, except for gallium-fluor-pargasite (4) in which <T(2)-o>

;- *,,^f. 1-,ã^F +Lâñ zrrrl{ l-n:. }Liõ .i a na} l.i L^lrr rra-.i^+.i ^^ l- i-t.i.,;¡-¡Þ ¡¡¡uv¡¡ ¡qtygr u¡¡g¡¡ -¡ \ r, v- I L¡¡rÞ ¿J ¡¡vu ¿¡^sr.I . Yqt¿qL¡vr¡ ¿¡¡ ¿¡tu¡v¡u

ua1 <M-0> with mean ionic radii of constituent octahedral cations is not

consistent with trends for single-crystal structures (Hawthorne '1983b).

Hawthorne (1984, pers. comm.) suggesls that the existence of a pseu-

do-glide paralle1 to c in arnphiboles is responsible for the incorrect

atomic distances because the T(1) and T(2) telrahedra are pseudo-symme-

trically related and atomic positions are highly correlated during re-

finement (rabte lZ). This supposition is supported by Rietveld struc-

lure refinemenLs of synthet.íc P2t/c clinopyroxenes by Raudsepp et al.(1984). Telrahedral bond lengths vlere variable beyond reasonable ex-

140

TÀBLE 1 6

Cell Dimensions Determined by Rietveld Structure Ànalyses

No"t a (Å) b (Å) c (Å) ß (") v (Å3)

1

2J45

67

I

9.9398 ( 7 )e .8284(7 )

9.8401 (s)9.8598 ( s )9.88s1 ( 4 )e.838s ( 3 )9.8528 ( 3 )

9.846s ( 4 )

18.0s3(2)17.931(1)17.978(1)17,9682(9)18.1s67(8)18.0636(6)18.0970(6)18.1643(8)

.2982(4

.2936(4

.2914(3,3026ß.3185(2.2927 (2

"292s(2.3401 (3

1 05.363 ( 5

10s.169(4105.100(3105.197 (2105.214Q1 03. 6s'1 ( 2

103.521 (2103.98s(3

918.78900.40903.76906. 57921,11914.04917 .60926.79

tNumbers correspond to numbers in Table 14

tremes, but siLe-occupancies determined for the same material by Möss-

bauer spectroscopy vrere statistically identical to those determined from

the Rietveld refinement. As with the amphiboles, the tetrahedra are

highly correlated due to the occurence of pseudo C-centring in Lhe P2t/c

structure. To test the validity of this conjecture, the structure of a

natural olivine was refined by the Rietveld method with the same experi-

mental technique that was used for the synthetic amphibole refinements

(L. Groat and F.C. Hawthorne, unpublished data). In addition, a single-

cryslal structure of the olivine was refined as a check on the Rietveld

method. R-f actors f or the Rietveld ref inement were Rp=12,41 , Rwp='13.2't

and Rexp=4,75, comparable with values from the amphibole refinemenLs.

Bond lengths and site-occupancies were statistically identical for both

methods. This suggests that site-occupancies in the amphiboles are

fairly accurate. Synthetic amphibole site-occupancies are given in Ta-

b1e 19. All negative values differ from zero by less Èhan 3-sigma, and

141

than 1 .000may be

may be

regarded as zero; corresponding occupancies greater

interpreted to be 1.000.

Spme Comments on RiqLve.ld Ref inement

In general, powder struct,ure refinements of these synthelic amphiboles

are comparable with most refinemenfs in the literature (voung 1980).

Rietveld refinement is still a technique undergoing rapid development,

and several aspects are currently not satisfactory:

1. The peak profile function currently used in all Rietveld routines

does not adequately model the observed peak shape. Difference

plots in Figures 11 to '18 show consistent sinusoidal fluctuations

that reflect poor fits at the peak base. These are best observed

for the (020) and (110) peaks between 9.5 and 10.6o20.

2. The single refinable asymmetry parameter does not adequately mod-

eI peak asymmetry over the entire 20 range. Best results (lowest

Rwp's) were obtained by refining the asynmetry parameter only be-

1^,, -L^..! t10,)ô. -^Í:-:-^ !L,: ^ ---^*-!^- G^- !L^ --L^l ^ c^!!-<ÿ9W Clr.tvUL ¿L LV¡ lgrrllrll9 LrrJ.Ð P(rrdr¡lE;Ls! r\r¿ L¡¡g vY¡¡vJtr pdLLtrlr¡

gave higher R-values.

3. All of the samples, except indium-fluor-eckermannite (8) contain

up to 10 percent extraneous phases that contribute to the overall

pattern. Peaks due to phases other than amphibole are marked by

arrows in Figures 1'1 to 18. These correspond to phases other

than amphibole ]isted in Table 11. The refinement program alIows

regions of extraneous intensity to be excluded, but extra inten-

sity under amphibole peaks cannot be excluded in this way; this

raises the R-factors significantly.

142

Significance of the Residual Pattern

The residual pattern that remains when the observed diffraction pattern

is subtracted from the calculated pattern (Figures 1'1 to 18) is valuable

because it comprises the diffraction patterns of phases other than an-

phibole in the run product. In the whole pattern, the scattering con-

tribution of these phases are partly or completely masked by the intense

amphibole pattern; this may lead to the false assumption that the arnphi-

bole yíe1d is near '100 percent.

With the current profile function, the interpretation of the residual

pattern is not straightforward because the diffraction patterns of ex-

traneous phases are mixed with residual intensity derived from inade-

quate peak-shape models. The residual pattern of indium-fluor-eckerman-

nite (figure 17) cont,ains only contributions from inadequate peak-shape

modelling, and the run product may be confidently interpreted to be es-

sentially '100 percent amphibole. À11 of the other residual patterns

contain obvious contributions from non-amphibole phases, not all of

..'L;^L --^ ^L,,i ^,,è Í'^ñ rL^ ,.,L^l ^ *-rr^¡¡¡ñ¡¡¡U¡¡ q!ç vVv¡VUP llVlll Ll¡ç Wl¡t/¿g ÀJAULglt¡Ð.

Indexing of Synthetic Àmphibole Powder Patterns

Use of the Rietveld method ensures that the amphibole pattern is cor-

rectly indexed, and that non-amphibole peaks are not indexed as amphi-

bole peaks. This is of more importance than one would initially think,

as several published patterns have incorrect indexing and wrong cell di-

mensions as a result of this.

143

CapLtþn: ErgÈreS Powder X-¡ey Dif fraction Patterns.

Figures 1.1 to 18 show the results of Rietveld structure refinements with

graphite-crystal monochromatized CuKol and CuKoz X-ray data collected in

0.04"20 steps in the range 8 Lo 72o2e, Open squares are the observed

data, the solid line is the calculated pattern, the vertical bars below

the pattern represent all possible Bragg reflections and the arrovls

point to non-amphibole reflections. The residual pattern obtained by

subtracting the observed and calculated patterns is shown at the bottom.

1 1 ro '18.

rtroçFlfl

'uo€OrrDFt

xI

Fl0,

o,FIhlhlq'c¡rÈ

oJ'EÞ,ct.cl'(Dhl5oRi

(,lc)9'Þgr

CãI\t

o,Ftro9'Ut

rffD

1.0

0"5

0.0

0.0

1ngoL

o

(toÉ,

10 15 20 25 30 35 U0 U5 50 55 60 65 70"20

I iltIilt ilIIiltf I]illfrlt Itiltl]il ililltilil]ill ]illllfl]lt ilillll llilllllllilI il ilil 1I lt lil

Scandium-pargas¡te

IIeI

a

I

I I I

-rI:---- III--Ift-tt- _-EE

IG- EE

--EITæ----æ

o.=(t,(úo(!o'Io5E

Þ

--l¡ éoo!!'+D

+D

+

't 45(DNoOl--LN(oOcolJltnOU

I

LNJC]

:fLr)cnOcoU

Iôj

Oc\-l

LN

O

c)LN

OC

].

,tilsuelul o^ltBlou

OO

O

122 Pow

der x-ray diffraction pattern of fluor-pargasite.F

i gure

- I-------- III:fI- !-GI!=IIæ=E

I----- :æææ-æI

s f

!Þo.o

3

>+

È.ôood.

3

Þ

o= g,oooCLIo=IE.3Eo-co

D+

"

D+

146(DN0O|..-

LNCO

cl(DaLNOLNLN:fOfLNCD

OcnLNC\J

OC\I

LJ-)

O

OIJ

LNclcf

Á¡¡suetu! o^ltE

laH ?cf

Figure 13:

Pow

der X-ray diffraction pattern of chrom

ium-fIuor-

pargasite.

I- :-= :-=I----- I-: I- t-I=-=-IE=æ-IæII==

=-===

o.=(t,(!oG

'oIo:IEJõa

l-rú€ètrÞÞÞ

147@({ocft--

LN@c)aUI

LNOu')

LN=clfU)

c.)

C]

arì

LNc!cfC\

Cf

cfLN

OO

. ,{usuolul e^ltE

louC

]OO

142 Pow

der X-ray diffraction pattern of galliun-fluor-pargasite.

FÍ gure

I:::-:!=---- EæE--- I-----¡--æ_-- E----=

o.=U'

(r,o(úoIo:IE.=Ec(úoCN

D+

e.s

148(DNoclÈ-

tn(oOLOtnu)clLNLN=f

O3LOcnOcr)

UI

CU

OC\I

LNO

OOcl

LNO

r{¡¡suelul a^llBleU

O

Figure 15:

Pow

der X-ray diffraction pattern

pargasiÈe.

c)

of scandium-fIuor-

0.5

=otro

åç

o:qt

ofr

F{

rocFtlD

oÌúc!o7r4(Do,Ftoãño,ÞX:'tP. Flft o,(D<

o,ttrItÈt!,c¡rl

oJÌt9,rtcflDFl

=oñat,c)ÞÞo,Çj

IHIPcoFl

I

1.0

0.0

0.0

Þ(o10 15 20 25 30 35 q0 45 50 55 60 65 1002ø

illl ll lll II Illlll llrf,ilillll]tßillt iltfiilrüililil]ilililt ililil1ililllliii[llliiHIii[¡tilt]I

Scandium-f luor-eckermannite

501

o({oOt-r

UI

CO

O(9LNaOtnLJ^)jOjU

Ic.)

OcoLNCU

Oc!u-)

O

OOLNO

¡¡euelul a^ttBleU

?O

Figure 17:

Pow

der x-ray diffraction pattern of indium-fluor-

ec kermann i te .

-II*= III:III--- II------- I=a--

-Ü-I=:

0)

=cc(!EoxooIo:tIE.3!c

@

}Ît

roCFtfD

'rto€o,lDFf

XI

Èl0,

o,rlrñtslocrrl-

oJ

'õa,rtrrrDnÞ

oc¡oJO¡

É¿

IHI

CoFl

tto:rflD

1.0

0.5

0.0

:øÊo

so:sotr

0.0

(rt

10 15 20 25 30 35 U0 rl5 50 55 60 65 -70"29

ilil il illl lil t[ il ililill[ll|¡ilüilllilililt illlltillilil|flnifiiiltitilrüii1]fi]itFlllril

Scandium-f luor-nyböite

I

152

TABLE '18

Àtomic PosÍtÍons

À. Pargasites

(1) Q) (3) (4) (5)

0(1 )

0(2)

0(3 )

0(4)

0(s )

0(6)

r(1 )

0.107 (1 )

0

0.716(4)

0.0e5(1 )

0

0.704 ( 3 )

1)(5)2)

1)Q)1)

1)(s)2)

2)(6)3)

2)(6)3)

1)(3)1)

2)(6)3)

x0y0z0BO

x0y0z0BO

vz0BO

x0y0z0BO

x0y0z0B1x0y0z0B1

y0z0BO

.127 (1)

.0970(4)

.223ß)

.80

0.117(1)0.0901 (6)0.214(2)

0.107('1 )

0.0862(5)0.21eQ)

.101(2)

.1758(7)

.722ß)

.80

0.103(1) 0.103(1)0.0884(6) 0.0919(7)0.207 Q) 0.197 (2)

0.127(1) 0.123(1) 0.104(1) 0.119(0.1702(6) 0.170s(6) 0.1683(6) 0.16980 .7 42ß) 0 .7 42(2) 0 .731 (2) 0 .724(

x 0.101 (2 )

0

.698(4)

.80

x 0.283 ( 1 )

0.339 ( 2 )0

0.276 ( s )

0.334 ( 2 )

00.27 4(4)

0.347 ( 1 )

0

0.293 ( 3 )

0. 103 (2 )

0

0.718(3)

0.oee(1 )

0

0.710(2)

.345(1)

.2489(6)

.7 67 (4)

.80

.352(1 )

.13ee(6)

.099(3)

.10

0.351 ( 1 )

0.1389(4)0.117 Q)

.343 (

.1134

.640 (

.10

0. 339 (0. 1 0950.61 1 (

0.334(0. 1 1370.59s(

0.340 (

0.1 0970. s91 (

0.340(1 )

0.1160(4)0.607 Q)

x 0,339(2)0(7) y 0

z 0"293(s)B '1 .20

0.340 ('1 )0

0.276(3)

0.36s(1) 0.357(1) 0.3s3(1) 0.3s8(1)0 .2482(6) 0 .2467 (6) 0 .24s0 (5 ) 0 .2447 (4')0.791(4) 0.794(3) 0.782(3) 0.787(2)

0.352(2) 0.3s9(2) 0.350(1 )

0.1386(s) 0.1367(s) 0.1388(5)0 .122(3) 0 .122(31 0 . 1 0s (2 )

.0827 (4)

.302(2)

.40

0.274(0.08360.296(

0.27511) 0.286(1) 0.282(0.0834(3) 0.0859(3) 0.08410.293(1) 0.298(1) 0.298(

1s3

(1) Q) (3) (4) (s)

r(2 )

x00000M(1 ) y 0.0868(6) 0.0e13(6) 0.08e3(5) 0.0884(s) 0.0883(4)

z 1/z 1/z i/z 1/2 1/2B 0.60

M(2 )

00c000.1740(s) 0.1804(6) 0.17s1(s) 0.1767(4) 0.1762ß)

000000. 60

M(3 )

x00000M(4) y 0.2808(4) 0.2776(5) 0.2770ß) 0.2781(3) 0.2794ß)

z 1/z 1/z i/2 1/2 i/2B 0.90

.285(

.1681

.807 (

"40

0.298(10.1719(0.813(1

.296r

.1725(

.814 ( 1

.28s(1

.1 703 (

.806 ( 1

.292(,1692.809 (

1)Q)1)

)o3) 0)o

)o3) 0)o

)o3) 0)o

l)(3)z)

x0y0z0BO

0

0

00. 60

vzB

vzB

0

0

0

0

0

0

0

0

0

00

0

A

x0v 1/2z0B 2"30

0.027(3) 0.033(3)1/2 1/2

0.01i('10) 0.036(2)

0.028Q)1/2

0.041(7)

0.03s ( 2 )

1/20.048(s)

omN i1

27

4

5

a1 CompositionsScandium pargasite: NaCa2Mg4ScSi oÀlzOz z (OH) z

Fluor-pargasite: NaCa2MgaAlSi 641202 2F2Chromium-f luor-pargasite : NaCa2t'tg4CrSi oÀ1 zOz zFzGallium-f luor-pargasite: NaCazMg4GaSi 5À1 202 2F2Scandium-f luor-pargasite: NaCa2MgaScSi oÀ1 zOz zF z

154

B. À1ka1i emphiboles

(6) (7) (8)

0(1 )

0(2 )

0(3)0.0e8 ( 1 )

0

0.704(2)

0.0e8(2)0

0.713(3)

1)(5)2)

1)(4)2)

(4)Q)1)

1)(s)2)

0

)o0

1)(4)2)

1)(¿2)

(4)(211)

1)(4)2)

(4)Q)1)

x0y0z0BO

x0y0z0BO

vz0BO

x0y0z0BO

x0y0z0B1x0y0z0B1

x0y0z0BO

.112(1)

.0887 ( 4 )

.212(2')

.80

0.122(0.08580.219(

0.10s(0. 091 20.213(

,124(,1647. 73'1 (

.80

0.122(1) 0.126(1 )

0.1639(5) 0.1677(5)0.732(2) 0.724(2)

X 0.101(1)0

.705(2)

.80

0(4)

0(5 )

0(6)

r(1 )

.3se(1)

.2449ß)

.794(2)

.80

.346(1 )

,1264(4).081(2).'10

0.348 (

0 .127 1

0. 073 (

0.340(1)0.1313(s)0.083(2)

.344(1)

.1183(4)

.577 (2)

.'1 0

0.338(0,11710. 568 (

.34s(

.1162

.s9s(

0.354(1) 0.357(1)0.2438(4) 0.2461(4)0.789121 0.787 (2)

x 0.340(1)0(7) y 0

z 0.309(2)B 1.20

0.338(1)0

0.299(3)

0.340 ( 1 )

0

0.311(3)

.2804

.0837

.28s(

.40

0.28310. 08380.285 (

0.28310. 08440. 284 (

I trËIJJ

(6) (7) (8)

r(2 )

M(1 )

0000.0890(3) 0.0870(4) 0.0870(4)

1/2 1/z 1/20.60

x000M(2) y 0.1823(3) 0.1821Q) 0.1802(3)

2000B 0.60

M(3 )

M(4 )

0000.2751(4) 0.2751 (5) 0.2792(5)

i/2 i/2 1/z0. 90

(5)Q)1)

x0y0z0BO

0

0

0

.2910

.1682

.79s (

.40

0.2889(5) 0.2889(s)0.1677 Q) 0.1664(2)0.793(1) 0.805(1)

X

B

x

vzB

x

vzB

0

0

0

0

0

0

0.60

A

x 0.036(2)v 1/2z 0.066 (4 )B 2.3

0.040 ( 2 )1/2

0.061(4)

0.04s(2)1/2

0.070(4)

om(

(

(

N 1n6)7)8)

a1 CompositionsScandium-f luor-eckermannite¡ NaNa 2Mg4ScSi aOzzF z

Indiunr-f luor-eckermannite: NaNa zMgsInSi sOz zFzScandi um-f luor-nyböi te : NaNa 2Mg 3 Sc zSi zAlO z zF z

156

TÀBIE 1 9

M(1 )- , I4(2)-, tu(3)-site occupancies

(1) Scandium pargasiteM(1) Ms 1.023(25)M(2) Me 0.771(23)M(3 ) Ms 0.812(29)

Q) Fluor-pargasiteM(1 ) Mg 1-xM(2 ) Mg 1-yM(3) Mg 1-z

(3) Chromium-fIuor-pargasiteM(1) Me 1.014(12)M(2) Ms 0.890(14)M(3) Ms 1.015(20)

(4 ) Gallium-fIuoM(1) MsM(2) MsM(3) Ms

(5) Scandium-fluor-pargasiteM(1 ) Ms 0.983(14) Scr[(2) Ms 0.ss4(15) ScM(3) Ms 0.986(20) Sc

(6) Scandium-fluor-eckernanniteM(1 ) Ms 0.968(12) Scvt?) M9 0.524(12) scM(3) Ms 1.032(16) Sc

0, Indiun-fluor-eckermanniLeMg

Mg

M9

(8) Scandium-fluor-nyböiteM(1 ) MsTlQt. Mg

M(3) Ms

Ga -0.026(8)Ga 0.112(8)Ga 0. 036 ( 1 2 )

0.017(14)0.446(16)0.014(20)

0.034(12)0 .47 6(12')0.032(16)

1.004(2)0.4e8 ( 2 )1 .012(4')

In -0.004(2)In 0.502(4)In -0.008(4)

0.932(14)0.104(16)1.0s2(20)

sss

c 0.068(14)c 0.896(16)c -0.052(20)

Sc -0.023Q4)Sc 0.229Q3)Sc 0.188(29)

Cr -0,014(12)Cr 0.110(14)Cr 0.020 ( 20 )

iI1

vL

AÀÀ

r-pargas i te1.026(8)0.888(8)0.964r2)

M(1yiQM(3

157

TABLE 20

Cation-anion and Cation-cation Distances

A. Pargasites

(1) (2) (3) (4) (5)

TTTT

-0(1-0(5-o(6-0(7

TQ,_oQr(2)-0(4r(2)-0(sr(2)-0(6

1.5i41 ,7561,8171 ,602

1,6241,6641,6871,657

1 ,6491,6761.6471,662

1 .6081.6431 .5671 .648

1,6621 .6561 .6931 .660

<r ( '1 )-0> 1 .672 '1 .658 1 .659 1 ,617 1 .668

1,7731.6fi1 .5991 .534

1.6281 .553'1 .6861.654

.494,7 06.666

1 ,7241 ,5211 .6461 ,759

1.6451 .5371 .6821 .605

.6391

1

i,1

<T(2)-0>

M(1)-0(1)M(1)-0(2)M(1 )-0( 3 )

<M( .1 )-0>

2,1422.0882,004

2.078 2.087

2.0591.9952,199

2.3202.103

2.043 2.054

-1 .629 1 .630 T-626 1 .663 ß1

x2x2x2

x2x2x2

x2x2x2x2

2.0642.0862 ,111

2,1321 .9882.010

2.0492.0642,048

2.0402.047

2.1082.1052.082

m

2,0702,012

2.1322.025

2.0692,031

M(2)M(2)M(2)

-o(1-oQ-0 (4

2.0912. 0851 .963

1 .9482. 0532.086

2,0431 ,9672,129

2.0542,1112.118

<M( 2 ) -0>

M(3)-0(1) x4M(3)-0(3) x2

<M( 3 )-0>

t¡ãa 2.046 uozg 2.060 mj

2.248 2.042 2,096 2.056

2,3202 ,4102.6592.693

2,4622.3242,6192.726

2.4422.3932,6242.688

2.4042.3782,6812.684

2,4562,3692.6342,631

2.0s1

M(4)-0(2M(4)-0(4M(4)-0(5M( 4 )-0 (6

<M( 4 )-0> 2.521 2.533 2.537 2,537 2,523

1s8

(1) (2) (3) (4) (s)

M(1M(1M(1M(1t4QM(2

)-tq(1))-u(2))-u( 3 )

)-u(¿ )

)-u(3 )

)-u(¿ )

3.1413.0833"0803,5123.1483.280

3.27 43 "0923,1123.3413.2353.169

3.2113.0633.09s3.3743.1483,218

3,1773.0903"091? ¿nq

3.1753,217

3.2063.1013.10s3.4703.1993.2s3

-rQ-r(2-r(1

TTT

3"0823 . 05'12.993

3.1083. 0602.998

3. 1403.0392.999

3.0943.0153.087

3.1033.0s13.054

omN i1

2

3

4

5

al CompositionsScandium pargasite: NaCazMg+ScSi eAlzOz z (OH)

z

Fiuor-pargasite: NaCa2MgaÀ1Si 6À1 202 2F2Chromium-fluor-pargasite: NaCa zMg4CrSi 6A1 202 2F 2

Gallium-f luor-pargasite: NaCa 2MgaGaSi oÀ1 zOz zF z

Scandium-f luor-pargasite ¡ NaCa zMg¿ScSi 6À1 202 2F2

1s9

B. AIkali emphiboles

(6) 0) (8)

r(1)-0(1r(1)-0(5r(1)-0(6r(1)-0(7

r(2)-0(2r(2)-0(4r(2)-0(5r(2)-0(6

M(1)-0(1M(1 )-0(2M(1)-0(3

1 .6131 ,5821 ,6s11.6i5

1 .5491.6171 .5881 ,607

1.7121.5741 .7241 ,626

<T ( .1 )-0>

<M( 3 )-0>

1 ,615 1 .590 '1 .6s9

<T(2)-0>

<M( 1 )-0>

<M(2)-0>

x2x2x2

x4x2

1,610 1.605 1.s98

1 .5951 .539r.bbl

'1 .643

'1 .5991.5221 .6341 .666

1 ,6461.5711.5811 .595

2 "0792.0392.057

2.1172.0492 "024

2,0422.0952.047

2.1802 .1082"033

2.2722,0911.OBB

1 .099l. t552.073

2, 0s8 2,063 2,061

x2x2x2

M(2 )-0 ( 1

M,2)-oQM(2)-0(4

x2x2x2x2

2,107 2,150 2.109

3)-0(1)3)-0(3)

M

M

M

M

M

M

2 .1122,038

2.1302.023

2,1302.001

2"087 2.084 2,087

4)-oQ)4)-0(4)4)-0(5)4)-0(6)

2.5032 "3442.9652"555

2.5122.3572.9822,595

2,5182.3662.8962.565

<M(4)-0> 2,592 2,612 2,586

160

(8)

(1)-M(1)( 1 )-M(2 )( 1 )-M(3 )( 1 )-M(4 )(2)-M(3)(2)-M(4)

M

M

M

M

M

M

TTT

3.2153,1373.0963.3623.2933.133

3 .1493.1573.0793.4043.2953.136

3.1613.1623. 1033 .4913.2733.219

1

1

I

-r(2_TQ-r(1

3.0853.0283,024

3,0793.0243.033

3.1242.9983.066

Nomi n(6)(7)(8)

aI CompositionsScandium-f luor-eckermannite¡ NaNazMg¿ScSi sOzzF z

Indium-fluor-eckermannite: NaNazMg¿InSi s0z zFzScandi um-f luor-nyböi te : NaNa 2Mg 3Sc zSi zÀ10 z zF z

TÀBLE 21

Typical Àmphibole Tetrahedral Bond Lengthsf

Min Max Mean

TTTT

(

(

(

(

îQ) -oQr(2)-0(4r(2)-0(5r( 2 ) -0(6

1)-0(1)1)-0(s)1)-0(6)1)-0(7)

'1 .580'1 .6'1 31 .5501 .590

1 .6901 "7301.7101,670

1 .638'1 . 6611.6521.637

<T('1 )-0>

<T(2)-0>

1.610 1.681 1.64'l

1 .6081 .5721.s801 .600

1 ,7201 .6501.6761.704

1.633'1 . 6011,6431.659

1,620 1.670 1,634

fCalculated from data in Appendix D,Hawthorne (1983b).

(6) (7)

Chapter VI

DISCUSSION ÀND CONCTUSIONS

The discussion embraces three majcr themes:

What was learned from a critical evaluation of previous amphibole

syntheses and how detailed characterization of these amphiboles,

when accomplished, clearly demonstrates the need for such analy-

ses as a routine part of A_11 synthesis experiments.

I.lhat was learned f rom amphibole syntheses during this study, par-

ticularly the importance of sophisticated characterization of run

products.

General conclusions about synthetic amphibofes, especially cation

ordering, and how synthetic amphiboles differ significantly from

natural amphiboles. The need for caution in applying the results

of amphibole synthesis experiments to natural amphibole is empha-

s i zed.

PREVIOUS AMPHIBOTE SYNTHESES

Calc ic Àmph i boles

Tremol i te

All tremolite syntheses have been difficutt, requiring runs from several

hundred to over a thousand hours. In spite of these lengthy runs, many

with intermediate regrinding of charges, yields are generally poor, be-

tween 50 and 85-95 percent. Six synthetic tremolites have been charac*

1

2

J

161

162

terized by celI dimensions (Table 5, No. 1,2,3,4,5 and 6). 0f these,

No. 5, grown by Westrich (1978), is suspect, having a and c parameters

much higher and lower respectively, than the others. Although yields

are variable, the ceI1 dimensions are remarkably similar and bracket

those of natural tremolite characterized by Papike et al. (1969) (rabte

22). The nalural amphibole was characterized by single-crystal struc-

TABTE 22

Comparison of synthetic and natural tremolite cell dimensions

21

9.801 -9.83318 .054-'18. 075.268-5.284

1 04.35-1 04.70904.6-905.8

1. Natural tremolite, Papike et a1. (1969)2, Synthetic tremolite, range from Table 5

ture refinement and is close to ideal tremolite in composition.

Tro1l and Gilbert lglZ) argued that their tremolite was "on composi-

tion" for three reasons:

With the tremolite bulk composition, the only possible solid so-

lution component is nagnesio-anthophyllite/magnesio-cummingto-

nite, EMgTSisOzz(OH)r, nith ce]l volume 1756 A3 for the synthetic

endmember (Greenwood 1963). Solutions containing magnesio-anÈho-

phyllite should trend towards lower volumes because one*haIf the

ab

Dt)

v

e.818(s)18.047(8)5.275 ( 3 )

104.66(s)904.2 ( 6 )

1

163

cel1 volume of magnesio-anthophyl-lite is only 878 Å3 compared to

the average of 905"6 Å3 for tremolites grown in these experi-

ments. Because thís cell volume is comparable to those of other

tremolite synLheses, Troll and Gilbert conclude that their syn-

thetic tremolite is "nearly" stoichiometric.

The proportions of the breakdown phases remain nearly constant

whether an amphibole is present or not.

Published analyses of natural tremolites at the time of the study

(Table 5, Troll and Gilbert (972)), show no evidence of solution

towa rds ma gnes i o-anthophyl 1 i te/ma gne s i o-c ummi n gton i te .

Troll and Gilbert (1972) point out that the analysis of this natural

tremolite shows no evidence of solid solution towards magnesio-antho-

phyllite,/magnesio-cummingtonite. However, it has an excess of 0.08 oc-

tahedral cations and a deficiency of Ca (1.86) (napike et al. 1969). Àt

least minor solid solution towards magnesio-anthophyllite/magnesio-cum-

mingtonite is suggested. This reinforces the argument of Jenkins (1981)

that synthetic tremolite may be non-stoichiometric, having a Ca,/(Ca+t"tg)

ratio of about 0.88. Furthermore, N. Chatterjee (pers. comm, 1971 lo

Wones and Dodge) concluded that tremolite synthesized at 750oC contains

5 to 10 mole percent EMgzSiaOzz(OH)2. Goldman and Rossman (977 ) and

Goldman (979) present evidence from electronic absorption and Mössbauer

spectroscopy for Fe2* in the M(4) site of calcic amphiboLes; by analogy,

Mg could also occupy the M(4) site in tremolite.

It is likely that stoichiometric trenolite has never been synthes-

ized, and the possibility of magnesio-anthophyllite/magnesio-cummingto*

nite component in synthetic tremolite is än experimental difficulty that

2

3

164

has not been adequately resolved. Although synthetic tremolite run

products are very fine-grained and cannot be readily characterized by

electron microprobe or single-crystaf structure analysis, it is essen-

tial that this synthesis problem is overcome in future tremolite stud-

ies; these techniques are the only ones presently available to determine

M(4) site-occupancies in tremolite.

Ferro-actinolite

Ferro-actinolite provides an ideal example of

tal chemical characterization. Ernst ( 1 966)

actinolite to be on composition because:

the value of proper crys-

considers synthetic ferro-

1, Phases of anhydrous condensed assemblages for the ferro-actinol-

ite bulk composition are present in the same relative propor-

tions, regardless of amphibole yields.

2. Optical and X-ray properties do not depend on the amphibole

y i eld.

3. Mean indices of refraction and ß cell angles indicate that the

syntheLic ferro-actinolite does not represent solid solution with

gruner i te .

These arguments for nominal composition are similar to those advanced by

Troll and Gilbert (972) in their tremolite study, and indeed, by most

other synthesis studies. That these arguments are inadequate rvas shown

by Burns and Greaves f971) who examined the Mössbauer spectrum of one

of these ferro-actinolites (rigure i9). If the amphibole were of the

nominal composition, the spectrum should consist of three Fe2* doublets

wíth intensity ratios 2 2221, eorresponding to Fe2* at M('1 ), M(2) and

165

¡

YltOClfY (mm./¡rc.)

F i gure 19: Mössbauer sErnst ( 1 956

pec).

trum of synthetic ferro-actinolite grown bySpectrum fron Burns and Greaves (1971),

166

M(3) respectively. This is not the case. Burns and Greaves (1971 ) pro-

pose that the doublet with the smallest quadrupole splitting is due to

Fe2* at u(4); this assignment is supported by electron absorption spec-

tra examined by Goldman and Rossman (1977), The remaining doublets are

assigned to Fe2* at M(1) and at M(2)+¡¡(3). These results show that fer-

ro-actinolite grown by Ernst (1966) is off composition and contains some

grunerite component in solid solution.

Àctinolite

Cameron f975) apparently synthesized actinolite midway on the tremol-

ite...ferro-actinolite join. The run product contained minor magnesio-

cummingtonite, clinopyroxene and quartz, but the ceI1 volume (¡lo. 1, Ta-

ble 7) of 921.9(7) Å3 is essentially identical to that calculated from

average synthetic tremolite and ferro-actinolite ß21.8 Å3) in Table 5.

The amount of magnesio-cummingtonite solid solution, if any, could not

be determined from the relatively imprecise electron microprobe analyses

given. In view of the probability of magnesio-anthophyllite/magnesio-

cummingtonite solid solution in synthetic tremolite, demonstrated grun-

erite solid solution in ferro-actinolite and the cel1 volume exactly

half-way between the endmembers with solid solution, this actinolite

probably contains cummingtonite in solid solution as we11. Mössbauer,

infrared and electronic absorption spectra would have been invaluable

here lo investigate the occupancies of the M(i-3) sites, and especially

lhe M(4) sile.

167

FIuor-t remol i te

Fluor-tremolite apparently grows readily, compared lo tremolite, and

most studies report yields of 95 to 100 percent in isothermal runs.

Grain size is generally large enough for single-crystal structure analy-

sis, particularly in non-isothermal experiments, where crystals up to 4

mm in length have been grown (Comeforo and Kohn 1954). Cameron (971)

and Cameron and Gibbs (1973) refined the crystal structure of fluor-tre-

molite from a run with greater than 95 percent amphibole. The cell di-

mensions of this fluor-tremolite are essentially identical to those of

other studies (tab1e 6) except for Westrich (1978). It was pointed out

in Chapter 2 that fluor-amphiboles grown in his study with HF in the mix

give anomalous results and should be disregarded. The average cell vol-

ume of fluor-Lremolite (898.i Â3), calculated from the data in Table 6

is 7.2 Å3 less than that of tremolite (905.3 A3).

UnIike hydroxy-tremolite, fluor-tremolite grows readily with high

yields, either in the solid state or from melts. Furthermore, the large

crystals would be ideal for highly-precise single crystal structure re-

finement wiLh the bulk-composition restrained by electron microprobe

analysis of the crystal used to collect the X-ray dala. Unfortunately,

the existing structure refinement (Cameron 1971, Cameron and Gibbs 1973)

used assumed cation site-populations, and lhus the possibility of magne-

sio-anthophyJ.lite/magnesio-cummingtonite solid solution vras not re-

solved.

168

Eden i tes

Although edenite synLhesis was claimed by Boyd ('1954), neither his ede-

nite nor any subsequent synthetic amphibole of this composition has been

adequately documented. Edenite synthesized by Colville et aI. (1966)

has a c celI dimension that is not reasonable for any amphibole. Fur-

thermore, the cell volume is lower than that expected for edenite. Col-

ville et aI. (1966) aLso synthesized ferro-edenite and give cell dimen-

sions; the cell volume is 33 Å3 larger than the volume of their edenite.

One of these sets of data must be wrong. In the absence of other data,

it is not possible to evaluate the validity of these results. Hinri-

chsen and Schürmann (1977 ) claim "unequivocalJ-y" edenites synthesized in

the range Naroo to NasoK¡0. The ce1I dimensions of their endmember ede-

nite meet expectations based on the parameters of tremolite and parga-

site, but definitive characterization is lacking. Greenwood's (1979)

exhaustive attempts to synthesize edenite trom a variety of starting ma-

terials nret with failure, as did experiments in this study. In view of

these results, âDy amphiboles synthesized on the edenite composition in

the future must be characterized in detail.

Fluor-eden i te

Kohn and Comeforo ('1955) give the only cell dimensions of fluor-edenite,

determined on a run product that was beneficiated with respect to amphi-

bole. The chemical analysis of this amphibole (plus 1-2 percent contam-

inants) shows it to contain Na in the M(4) site and octahedrat À1; thus,

it is off composition. The cell volume is 6,2 A3 less than that of ede-

nite grown by Hinrichsen and Schürmann (1977l,. It is unlikely that pure

fluor-edenite has been synthesized.

169

Pargasite

Àlthough about a dozen, comprehensive studies of the physical. properties

and phase relations of pargasite and ferro-pargasite have been completed

in the past 30 years, surprisingly, none have characterized these amphi-

boles except by optics and cell parameter refinement. Semet (1972,

1973), however, examined the infrared spectrum of pargasite in his study

of magnesio-hastingsite and showed that Mg and Àl were completely disor-

dered among the M(1), M(2) and M(3) sites. No cell dimensions were giv-

en. All pargasite studies generally give consistent results. The fif-

teen sets of ceII dimensions (raUle S) vary only between about 0.2 and

0.6 percent. Oba (1980) gave electron-microprobe analyses of coexisting

amphibo).es on the join tremolite-pargasite but neglected the endmembers.

Hinrichsen and Schúrmann 11977 ) claim !o have synthesized pargasite with

haLf of the A-site Na repJ-aced by K. The ceII volume of lhis amphibole

(tabte Z) is about 5 Å3 greater than that of pargasite. Differences in

ce11 volume between arnphiboles with A-sites completely filled with ei-

ther Na or K are in the range I to .1 2 A3 , which supports Hinrichsen and

Schürmann's (977 ) claim. There is no direct evidence to support any

claim of pure pargasite synthesis. It seems that most pargasite

syntheses have yielded amphibole close to pargasite in composition, buL

the presence of both octahedral and tetrahedral À1 requires careful doc-

umentation of their distribution.

Fluor-pa rgas i te

In contrast to abundant pargasite syntheses, there are only three stud-

ies of endmember fluor-pargasite. of these, one (westrich 1978, West-

rich and Navrotsky 1981) reports cel1 dimensions. Note that the differ-

170

ence in cell volume between fl-uor-pargasite and pargasite is only about

4 Å3, in marked contrast to all other hydroxy-/fluor-amphibole pairs,

which differ by about 7 lo 1'1 Å3. This fact is puzzling and requires

careful documentation of the actual composition of synthetic amphiboles

claimed to be fluor-pargasite, to determine whether this is a fundamen-

tal crystal chemical property of pargasite...fluor-pargasite or simply a

reflection of deviation from nominal composition during synthesis.

Ferro-pargasite

Charles (1974a, 1980) synLhesized pargasites across the join pargasiLe -

ferro-pargasite at oxygen fugacities defined by the IW, CCHa, FMQ and MH

buffers. There are sone problems with the results of this study, which

are probably related to changes in Lhe oxidation state of iron. Charles

(1980) states that for a given bulk composition, ce1I parameters do not

change within 2-sigma wiLh changes in oxygen fugacity. Data Lo support

this claim are given for amphiboles grown on the CCH¡ and FMQ buffers.

Inspection of cell dimensions in his Table 3, however, shows ranges in

cell volume of 4.7, 5.8 and 4.1 Å3 for the MgsFe, M92Fe2 and MgFe3 com-

positions respectively. These are outside the 2-sigma range, even for

the few volumes with high standard errors. There is no definite trend

in volume with oxygen fugacity, but surprisingly, volunes are generally

higher at higher oxygen fugacities. This is contrary to the expected

trend to lower volumes as ferrous iron is oxidized to smaller ferric

iron. Charles (1980) states that the ceII dimensions do not vary with

amphibole yield down to about 60 percent; however, amphiboles from 50

percent runs differ from high-yield runs up to about 5 Å3" Cell dimen-

sions of ferro-pargasites synlhesized on FMQ and CCHa buffers are essen-

171

tially identical and are also very similar to those of Gilbert (1966)

grolrn on the IW buffer" Charles (1980) concludes that Mg and Fez* are

disordered among the M('1), M(2) and M(3) sites because cell dimensions

vary linearly with composition.

Gilbert (1966) noted that the cell volume of ferro-pargasíte de-

creased with increasing oxygen fugacity and suggested that this trend

reflected the oxidation of octahedral Fe2* to Fe3*. He proposes that

this reaction could be accounted for either by solid solution towards

hastingsite or by the formation of oxyamphiboJ.e. 0f the four sets of

celI dimensions given in his study (tab1e 5), No. 39 is probably the

best; the other samples contain Fe3*. No.'s 43,44, and 45 are refine-

ments of X-ray powder data (Gilbert 1966, Table 2) done during this

study of ferro-pargasites grov¡n on the IW, WM and FMQ buffers respec-

tively. Cell volumes from these refinements are about 2 A3 less than

those of comparable samples refined by Gilbert (1966). The reason for

this discrepancy is not known, but since the differences are consistent-

ly towards smaller cell dimensions for refinements in the present study,

differences between internal standards are the probable cause.

These two studies on the pargasite...ferro-pargasite join serve to

underline the problems created by not characterizing synthetic amphi-

boles of complex compositon, par!icularly if cations of variable oxida-

tion state are present. Àlthough the conclusions of these studies, es-

pecially with respect to the broader aspects of stability relations, are

probably va1id, the crystal chemical implications are obscure in the ab-

sence of further characterization. Spectroscopic methods, combined with

either Rietveld or single-erystal strueture refinement, would provide

direct evidence

reasoning about

and obviate

the nature of

172

the need for circuitous crystal chemical

the octahedral and M(4) site-occupancies.

Pargasite-richterite

Braue and Seck (1977) studied the pargasite-richterite join with the in-

teresting result that ce11 dirnension variation between the two endmem-

bers show positive deviations from linearity. The deviations cannot be

explained on the basis of cation sizes and site occupancies, especially

as synthetic pargasite infrared spectra (Semet 1972, 1973¡ this study)

show that Mg and Al are randomly distributed among the octahedral sites.

Rietveld structure analyses of the intermediate compositions could re-

veal any structural reasons for these trends.

Hastingsite

Hastingsites synthesed by Thomas (977, 1979, 1982a, 1982b) were charac-

terized by Mössbauer spectroscopy and are ideal examples of the value of

detailed run-product characterization. Thomas f972, 1982b) collected

57Fe Mössbauer spectra for six of the products. He assumes that because

the hastingsites are close to nominal composition, the M('1), M(2) and

M(3) sites are entirely filled with iron and the M(4) site has little or

no iron, Four doublets are assigned to the spectra, three for oclahe-

dral ferrous iron and one for octahedral ferric iron (nigure 20). Thom-

as (1982b) shows that observed fractional areas of the three ferrous

doublets are inconsistent with predicted completely ordered (all Fe3* in

M(2) ), completely disordered (Fe3* over M( 1,2,3)l , or indeed, witl¡ in-

termediate configurations (table 23). In spite of the anomalous area

fractions in these spectra, the total ferrous intensity is well account-

173

v

202 Mössbauer spectrum of synthetic hastingsite grown on the WM

buffer. Note that the AÀ', BB', CC' and DD' peakintensities depart from the ideal ratios 22121t1. FronThomas (1982).

2

¿

f¡J(J2É&othÊa

t-2f¡'¡Uf¡¡À

F i gure

174

ed for by the three ferrous doublets, and te3*/(Fe2*+Fe3*) ratios were

calculated from the ratios of the ferrous doublet areas to those of the

ferric doublets (taUte Z¡). Hastingsites crystal-lized on the I0F, IW

and WM buffers carry considerably less than the 20 percent Fe3* of lhe

ideal formula; the two samples (ME339, M8340) crystallized on the IW

buffer and then annealed on the FMQ buffer are close Lo 20 percent. Ta-

ble 23 shows that the Fe3*/Fe2* ratio is a function of oxygen fugacity.

This is also clearly reflected in Lhe cell dimensions of these samples;

cell volumes of hastingsites synlhesized on the IW and iQF buffers are 2

to 5 Å3 larger than those grown or annealed on more oxidizing buffers.

Note that this range is comparable to the range in volumes of amphiboles

grown on the pargasite...ferro-pargasite join by Charles (1974a, 1980)

who claimed that similar volume differences did not reflect changes with

oxygen fugacity. Àn alternate peak assignment of two ferrous doublets

and one ferric doublet was statistically not as good as the four doublet

fit. However, the inner ferrous doublet has a constant area fraction of

about 0.20, a value consistent þ¡ith all Fe&b38e. ordered into the M(2)

site. The results of this study show the value of detailed characteri-

zation, particularly when cations of variable oxidation state are in-

volved. It is unfortunate that infrared spectra were not collected;

these could have substantiated the assertion that Fe3* is ordered into

M(2).

Magnesi o-hast ings i te

Semet (1970, 1972, 1973) and Semet and Ernst (1981) characterized syn-

thetic magnesio-hastingsite with both Mössbauer and infrared spectrosco-

py. Four-doublet fits to Méssbauer speetra (nigure 2'1) of magnesio-has-

175

TABLE 23

Idea] and observed area fractions for synthetic hastingsites

Sample

IdeaJ area

Orderedl

fractions

Di sordered 2

Observed areafractions

0.10.10.10.10.1

2

.18

.18

.18

3

.28

.28

.28

1

0.40 0

0.40 0

0.40 0

0.40 0

0.40 0

0"40 0

2

.20 0

.20 0

.20 0

.20 0

.20 0

.20 0

4

0,120,120,120.190.220,12

1

0.3s 0

0.35 0

0.35 0

0.32 0

0.31 0

0.3s 0

3

0. 350. 350.350,320.310. 3s

4

0.12u.l¿0.120.190.220,12

1

0. 540. 500.480.490.420.47

2

0.230.260.270.220.260. 28

4

0.120.120,120.190,220.12

3

0.11M1322( rQr ) 3

MH321 ( r}l)MF323 (I^lM)

M8339 ( 4 )

M8340(lW)4F193 (liM)

.21

.18

.28

. tb

.16

.18

3

3

0

1

3

(from Thomas 1982b)

lThe four columns refer to Fe2*zThe four columns refer to Fe2*Fe3 * in all- sites.

3Buffer used during run.4Synthesized on IWi annealed on

1nin

M

M

3

3

M

M

anan

d M(2),d M(2),

and Fe3* in M(2).and the sum of

IQF.

tingsites synthesized on the most-oxidizing buffers show that the major

contribution of Fe3* to Lhe total absorption is by the M(2) site; only

minor unresolved absorption of Fe3* is attributed to Fe3* in the M(1)

and M(3) sites. Two remaíning doublets are assigned to Fe2*: an unre-

solved absorption from Fe2* in the M(1) and M(3) sites and another from

Fe2* in the M(2) site. Area ratios of these peaks differ markedly from

those calculated for random distribution of either Fe2* or Fe3* in the

octahedral sites. Fe3* strongly prefers the M(2) site, whereas Fe2*

prefers M(1) and M(3). Octahedral site occupancies of these synthetic

magnesio-hastingsites as determined from the Mössbauer data are summa-

rized in Table 24. NoLe that on the most oxidizing buffer (Cr), only

Fe3* is present, but on the CCO buffer, significant Fe2* is present.

176

The percentage of Fe3* varies from about 13 percent on the IQF buffer Lo

100 percent on the CT buffer. Thus, the rut*/Fez* ratio is a function

of oxygen fugacity, and the synthetic magnesio-hastingsites are signifi-

canLly off-composition at fower oxygen fugacities.

Infrared spectra of synthetic magnesio-hastingsite show two major

peaks and several minor ones (rigure 3). The spectrum of amphibole

grolrn on the CT buffer has two major peaks, one at 3705 cm-1 (tugUgt'lg-Ott)

and the other at 3660 cm-1 (ugugne3*-oH)i on the IQF buffer, the lower

energy peak is shif ted to 3675 cm-1 (t'tgugnez*-OH). Minor peaks in both

spectra between 362.1 and 3645 cm-1 probably represent (l¿gFe2rFez*-oH),

(ugne2*Fe3*-oH) and (tugne3*Fe3*-oH) groups. Evidence from infrared

spectra of pargasites synthesized in the present study (see Chapter 5)

with transition metals substituted for octahedral À1, suggests that some

octahedral À1 is generally present. The rough bulge at about 3670 cm-1

in the spectrum of magnesio-hastingsite synthesized on the CT buffer

(nigure 3) may also reflect the presence of minor amounLs of Àl in the

M(1) and M(3) sites. Ratios of peak areas representing occupancies of

Mg, Fez* and Fes* in the M('1) and M(3) sites compare favourably with the

ratios calculated from the Mössbauer spectra.

These results clearly show the necessity of detailed characterization

of complex synthetic amphiboles. Mössbauer spectra show that only mag-

nesio-hastingsite grown on the CT buffer contains no Fe2*, and thus, is

probabl-y close to the nominal composition. In addition, the strong

preference of Fe3* for the M(2) site is c1ear. Infrared spectra suppor!

the Mössbauer data and point to the possibility of A1 in M(1) and M(3)

sites.

17'l

¡.00

90

Þt!N

JCE

=Go1¡¿JÞCEE(.fz.

zOL)

-t 0VELOCITY

ItN t{11l5EC

¡,E

Ëltô,É.

Figure 21: Mössbauer spectra of synthetic magnesio-hastingsites grownon the CT and CCO buffers. A: CT buffer, no Fe2* present.B: CCO buffer, considerable Fe2* present. From Semet(1e73).

I

III

I¡II

IIII

A

\Êþcilv ¡n mm/sêcrelotiui lo rrt Fe57

A

B

178

0ctahedral site occupancies

TÀBLE 24

in synthetic magnesio-hastingsites fromMössbauer data

BufferM(1),M(3)

Fe2*Mg Fe3*M(2 )

Fe2* Fe3*Mg

I9F(av. )

cc0CTIQF to CTCT to iQF

0,790.870.850.780 .84

0. 070.1s0.22

0 .810.700.730.830.73

0.070.270.270.170.'17

0,210.06

0.120,03

0,16 0. 09

Miscellaneous cafcic amphiboles

Other calcic amphibole synLhesis studies are few in number and generally

lack detailed characterization (see Chapter 2). Oba (1978) attempted to

characterize amphiboles on the alumino-tschermakite - ferri-tschermakite

join by electron micropobe analysis. Unfortunately, only certain amphi-

boles in equilibrium with garnet were analysed; these are not on compo-

sition. Cell dimensions (table 5) are given for endmember tschermakite

and ferri-tschermakite, as well as for certain intermediate composi-

tions. Yields of 100 percent are claimed for many of these, but no sup-

porting evidence is given.

The paucily of other calcic amphibole studies probably reflecÈs the

experimental intractibility of these amphiboles with vacant À-sites. It

was noted above that tremolite grows only with difficulty, requiring

long run times and intermediate regrinding and rerunning of products.

Other calcic amphiboles with vacant ¡-sites either are stable at only

very high pressures or apparently groyr exlremely s1owly.

179

Sodic-calc ic amphiboles

Richterite, ferro-richterite, fluor-richterite

Both richterite and fluor-richterite synthesize very readiJ.y and all

studies report close to 100 percent yields. CeLl dimensions of al-L

richterites and fluor-richterites are closely consistent between differ-

ent studies with two exceptions. Richterite (Ho. 78, Table 5) and

fluor-richterite (Ho. , Tab1e 6) synthesized by Westrich (1978) are

markedly different. Certain other amphiboles grovrn in this study have

been shown also to have anomalous properties; apparently there are ex-

perimental problems with these syntheses and the results should be used

with caution. In addition, the cell dimensions of richterite (no. 80,

Table 5) given by Phillips and Rowbotham (1968) are apparently in error.

Refinement of their powder X-ray data during the presenl study gave re-

sults (¡¡o.81, Table 5) consisLent with others. CeI1 parameters vary in

an acceptably linear way for compositions on the join richterite and

ferro-richterite (Huebner and Papike 1970), suggesting that the amphi-

boles are very close to the nominal compositions. Potassium-ferro-

richterite grown on the CCH¡ buffer in the same study, however, probably

contains Fe3* and is, therefore, not on composition.

Although it seems that richterites synthesize readily on the nominal

composition, infrared spectra of lhese amphiboles show otherwise. Row-

botham and Farmer (1973) exanined the infrared spectrum of richterite

grown by Phillíps and Rowbotham (1968), and observed that instead of a

single band corresponding lo the MgMgMg configuration, an additional

peak was present (figure 22). This peak corresponds lo the tremoliLe

MgMgMg configuration, which is well developed in the spectrun of lhe

Figure 22:

180

Infrared spectra of richterite, potassiun richterite andsolid solution of richterite in tremolite. À: solidsolution of richterite in tremolite. B: richterite. C:potassium-richteriÈe. Note the weak tremolite peaks aE 3672óm-1 in the richterite and potassium-richterite spectra.From Rowbotham and Farmer (1973).

(oct

o¡(rl

ANaR 25TR 75

Noc1 B

NaR!1m

(\l(ocl

cKR

'1 81

richteritezs - tremolitez s solid solution (nigure 22). Rowbotham and

Farmer (i973) conclude that the richterite is deficient in A-site ca-

tions. They aLso examined the infrared spectrum of potassium-richterite

(rigure 22) provided by (and apparently synthesized by) B. velde. The

spectrum consists of a major band at 3734 cm-lwhich was assigned to the

MgMgMg configuration. In addition to this normal band, however, an ad-

ditional weak band at 3672 cff-1 , corresponding to tremolite solid solu-

tion, indicates Lhat the amphibole deviates from the nominal composi-

tion.

Mössbauer spectra (virgo 1972) demonstrate that Fe3* (nigure 23) is

present in alI of the Fe-bearing richterites grown by Charles (1972a,

b) . The ferro-richterite with the large ceIl but low yield (rype I )

that is closest to the extrapolated trends of all the cell parameters

contains about 5 percent Fe3*; the other (Type II) with smaller cell but

higher yield contains about 10 percent Fe3*. This is surprising in

light of the fact that these amphiboles were grovrn on the IW buffer.

Sing1e-crystaJ. structure analysis of Fe-bearing fluor-richterite with

Mgrl(ug+r'e)=0.58 (electron microprobe analysis) shows that Fe2* prefers

M(2) relative to M(1 ) and M(3), and that the Fe/Mg ratios in M(1) and

M(3) are similar (Cameron 1970, Cameron and Gibbs 1971'). Charge balance

considerations are given as evidence for little or no Fe3* (Cameron

1970) " Cel1 contents caLculated from the analysis indicate a deficiency

of Ca relative to the ideal formula and an excess of octahedral cationsi

excess Fe is assigned to the M(4) site. Because the amphibole yield was

less than 100 percent, it would have been instructive to know lhe nomi-

nal composition (not given) and to compare it to the actual composition

as determined by electron microprobe.

182

-.02r

ót5

a a6

t6

.0

dl

-.80 .00 .80

VELOCITY

I

2.10 320

mm/sec

a

r.ó0

.2

z9ùÉoØ!o

t-zzoØl¡JÉ

35.¡ ü

J¿Id

1

¿

ò

t

I

5

295

375

I

I

-¡ o0 -3.20 -2.rO -ló0 ¡.00

Figure 23: Mössbauer spectrum of synthetíc ferro-richterite grown on

the IW buffãr. Note the presence of Fe3*. From virgo(1972).

183

À1ka1i amphi boles

Glaucophane

The results of glaucophane synthesis by Ernst (1957, '1958, 1959, 1961,

1963) and the subsequent attempLs to explain them provide an outstanding

case study of the need for detailed characterizalion of synthetic amphi-

boles. Ernst (1961) assumes that the amphibole grorln is glaucophane be-

cause:

Long runs yield more amphibole than short runs.

Relative proportions, deduced by comparison with X-ray standards

and by micrometric analyses, of metastable phases in the amphi-

bole stabiiity field are unaffected by the amount of amphibole

present and are in the same proportion at temperatures in excess

of the amphibole stability fie1d.

Refractive indices and d-spacings of the amphibole show no meas-

urable variation with the amount obtained and are independent of

the starting material.

Ernst (1963) proposed that glaucophane occurs as two polymorphs: one

with large volume - glaucophane I, the other with small volume - glauco-

phane II. Ernst reached this conclusion because amphibole grown from

glaucophane bulk composilion at Iow pressure has a unit cell volume more

than Lwo percent greater than that of natural glaucophane, while that

grovrn at high pressure has volume comparable to natural glaucophane. He

was puzzled by the lack of difference in optical properties of the as-

sumed polymorphs: glaucophane I has o=1.595, ß= 1.620, extinction angle

10o; glaucophane II has a=1.596, ß =1,620, extinction angle 10o. Ac-

cording to the Gladstone-Dale relationship, the denser polymorph should

1

2

3

184

that of glauco-have a mean

phane I, if

index of refraction about 0.013 greater than

Lhe cornpositions are identical.

Infrared spectra of Lhree synthetic amphiboles of nominally glauco-

phane composition were collected on material generously supplied by W.G.

Ernst (nigure 24). CeII dimensions and synthesis conditions of these

samples are given in Tab1e 6). The spectrum of "glaucophane I " (Figure

24C, sample GM-1, Ernst 1963) is similar to that of sodian magnesio-cum-

mingtonite (nigure 10C), as are its cell dimensions (¡lo. 90 and 95, Ta-

b1e 5). Comparison of the spectrum of GM-1 to the natural ferro-glauco-

phane spectrum (nigure 24D), shows clearly that this amphibole cannot be

glaucophane. This confirms the proposal of Maresch (1973 , 1977 ) ttrat

"glaucophane I" is "magnesiorichterite" (sodian magnesio-cummingtonite)

and not a 1ow-pressure, high-temperature polymorph of glaucophane. Fur-

thermore, it supports the contention of Carman (1969) who argued that

"glaucophane I" is a persodic amphibole remote from the glaucophane com-

position. It also argues against the suggestion that "glaucophane I" is

an amphibole near nyböite ("miyashiroite") and eckermannite (Thompson

'1981, Carman and Gilbert 1983). Thonpson (1981 ) does point out, how-

ever, that a sodian magnesio-cummingtonite component cannot be ruled out

ent i rely .

The spectra of samples GC-2 and GC-1 (nigures 24À and B, Nos. .1'12 and

110 in Table 5) are of poor quality, but it is obvious that these amphi-

boles also cannoÈ be endmember glaucophane (cf. natural ferro-glauco-

phane, Figure 24D) " Both spectra comprise two distinct groups of bands;

one is centered at about 3664 cn-1, the other is near 3723 cm-1. The

band at 3664 cm-lcorresponds exactly to the MgMgMg configuration in the

185

A

B

Dc

.r ir.o .: iq rr 3'/ zo : )oo 368o -lÉi6o :l6ti tl-

-rÄla-- ið'rro ìÈsthf'ì VFNUI'1Btr PS

Fiqure 24: Comparison of infrared spectra of synthetic and natural;iñ;;;h;;"t. À¡ svnth;tic glaucophane I¡ (Gc-2' ErnstÌ;Ëãi."ì;--;tnli¡etiå slaucopñane Ii (Gc-1' nrnst 1963)'

C: synthetic alaucophane í (cv-j, Ernst 1963) ' p: nâturalfãrro-9tauèophane (Piednont, Italy)'

185

natural gl-aucophane and it is likely that it is the same in the synthet-

ic amphiboles. The other band group is very poorly resolved, but itrepresents a frequency shift of about +59 cflì-1, placing it in the fre-

quency range of amphiboles with full Na-occupancy in the A-site. These

specLra suggest that the samples, both designated as "glaucophane II" by

Ernst (1963), are probably amphiboles intermediate in composition be-

tween glaucophane and eckermannite, or perhaps nyböite. Indeed, their

cell dinensions are very similar to those of nyböites grown by Carman

and Gilbert (1983). The interpretation of these three infrared spectra

establishes r,rithout doubt that neither "glaucophane I" nor "glaucophane

II" can be endmember glaucophane and contributes substantially to the

case for routine characterization of all synthetic amphiboles with spec-

troscopic methods.

Riebeckites

In contrast to the glaucophane studies, riebeckite syntheses (Ernst

1962) seem to have been reasonably successful. The infrared spectrum

(r'igure 25) of riebeckite (sample HR-54-8, Ernst'1962, No. 131 in Table

5 ) consists of a single, sharp band at 3618 cm-1and a very weak band

at about 3673 cm-1. The origin of the weak band at 3673 cm-'muy be due

to mÌnor Na-occupancy in the À-site, indicating minor solid solution to-

wards eckermannite. It would have been instructive to see if this peak

increases in intensity in the riebeckite-arfvedsonitic amphiboles. Band

width of the 3618 cm-1 peak ís between 6 to 7 cm-t which is rernarkably

narrow for synthetic amphibole. It is not clear whether or not the rnain

band is solely due to an Fe2*Fe2*Fe2* component, or whether or not there

are additional components due to configurations involving Fe3*, as there

is no definitive evidence on the relative effecLs of Fe2* and Fe3*.

't87

A

B

BO3 603 tro 3 ?o3 003 803 603 qo 3 -n:¿LJ J

l^lÊVENUIlBERS

Figure 25: Infrared spectra of synthetic riebeckite and magnesio-riebeckite. À: riebãckite (Hn-s¿-e, Ernst 1962). B:magnesio-riebeckite (n-10'1 , Ernst 1960 ) .

a o0

188

Magnesio-riebeckites

Magnesio-riebeckite syntheses (Ernst 1960) apparently failed to grorv am-

phiboles on Lhis composition. The infrared spectrum (nigure 25) of nrag-

nesio-riebeckite (sample R-10'1, Ernst 1960, No. 129 ín Tab1e 5) is of

poor quality, but it is obvious that this amphibole cannot be of the

nominal composition. Bands al 3667 cffi-1, 3549 cm-1 and 3629 cn- 1 were

assigned to the MgMgMg, MgMgFe3* and MgFe3*Fe3* configurations respec-

tively, after Bancroft and Burns (1969). The band at 3655 cm-1may be

due to the configuration MgMgFe2*. The poorly resolved, complex group

of bands around 3724 cn- I is probabJ-y the result of frequency shifts

caused by Na-occupancy of the À-site, indicating substantial solid solu-

tion towards magnesio-arfvedsonite. Thus, the amphibole is off-composi-

tion.

Ec kermann i te

It is unlikely that eckermannite has been synthesized. Ce11 dimensions

(rabte S) of the amphibole grorvn by Phillips and Rowbotham (1968), Íe-

gardless of which set is correct (see Chapler 2), are more like those of

sodian magnesio-cummingtonite. Attempts in the present study to grow

eckermannite under similar conditions to Phillips and Rowbotharn (1968)

grew amphiboles with infrared spectra similar to sodian magnesio-cum-

mingtonite (r'igure 10).

Nybói te

The results of Carman and Gilbert (1983), who claim nyböite synthesis,

are difficult to evaluate. The high-pressure, vapour deficient stabili-

ty and the ce1l dimensions are consistent with amphibole of this compo-

189

sition, but further characterization is necessary. Furthermore, one of

the two amphiboles with published cell dimensions vlas grown from start-

ing maLerial of glaucophane composition.

I ron-magnes i um-manganese amph i boles

Sodian magnesio-cummingtoni tes

Amphibole syntheses based on the sodian magnesio-cummingtonite commposi-

tion and equivalent fluor-amphiboles have been popular, but relatively

little characterization of the nature of these amþhiboles has been done

(see Chapter 2). This is surprising because existing information

strongly suggests that the structure is not Cz/n. T,titte et aI. (1969)

examined the infrared spectrum of sodian hydro-magnesio-cummingtonite;

it shows a band at 842 cm-lthat is absent from the spectrum of sodian

magnesio-cummingtonite. They propose that this band corresponds to the

Si-O-H bending frequency in SiOH groups. À portion of this spectrum be-

tween 3600 and 3800 cm-1 is shown in Maresch and Langer (976) along

with the spectrum of sodian magnesio-cummingtonite (nigure 26), They

suggest that the additional 0H can only substitute for oxygen at the

o(1), o(2) or O(4) sites, thus forming SiOH groups. Because 0(4) is

highly underbonded relative to O('1) and O(2), they conclude that 0(4) is

the likely site for the additional OH. The infrared spectrum (figure

26) displays an extra O-H stretching band at 3727 cn-lwhich they attri-

bute to OH-valence vibratíons in SiOH groups.

The spectrum of sodian magnesio-cummingtonite has two well resolved

bands. The presence of two MgMgMg-OH stretching bands suggests that so-

dian magnesio-cummingtonite crystallizes in a space group other than

'1 90

C2/n. It is not likety that the splitting of the MgMgMg-OH stretching

band is due to chain-width disorder because the relative areas of the

bands are always similar in both the specimens synthesized in this study

and in those synthesized by others. If one of the bands were due to a

chain-width modification phase, variation in chain-width disorder with

different synthesis conditions should cause changes in the relative band

areas. Furthermore, precession photographs of sodian magnesio-cumming-

tonite (Hawthorne 1984, pers. comm.) show reflections with h+k=2n+'1 sug-

gesting that it is primitive, rather than C-centered.

191

A

3800 3700

wavenumbers

3600

Figure 26: Infrared spectra of sodian magnesio-cummingtonite and sodianhydro-magnesio-cummingtonite À: sodian magnesio-cummingtonite. B: sodian hydro-nragnesio-cunmingtonite.From Máresch and Langer (1976r,

192

ÀMPHIBOIE SINTHEÊ]-å: THIS STUÐI

Calcic Àmphiboles

TremoI i tes

Attempts in this study to grow tremolite confirm the difficulties ex-

perienced by previous workers. Substitution of Ni for Mg yielded more

encouraging results, but lack of appreciable amphibole yields reflect

the general reluctance of A-site empty calcic amphiboles to crystallize.

Cd substitution for Ca failed also, as it did for pargasite and richter-

ite. It seems both from previous work and this study that synthesis of

pg trernolite-based endmembers, suitable for deLailed characterization,

is not possible with current techniques.

In contrast, fluor-tremolite grows fairly readily, but the optimistic

claims of previous workers of easy growth were not seen in this study.

More than 80 percent yields rì'ere never obtained, either isothermally or

in non-isothermal experiments. The large crystals grovrn in non-isother-

ma1 experinents, however, have the advantage of being suitable for de-

tailed characterization by any method and show promise for future stud-

ies. Cell dimensions (ta¡le lg) of fluor-tremolites grovrn in this study

are identical to high-qualily cel1 dimensions (rable 6) from other stud-

ies. This is remarkable, considering that yields are at least 20 per-

cent lower than those of some of the previous studies. Thus, it seems

that because of the simple composition of fluor-lremolite lack of 100

percent yields is not critical to achieving synthetic amphibole of êp-

parently nominal composition. There sti1l may be minor solid solution

towards magnesio-cummingtoniter âs noted in the previous sectíon, that

is not detected by celI variation.

193

Eden i tes

Àttempts to synthesize edenite suffered the same difficulties as in ear-

lier studies. In view of these problems, careful consideration of syn-

thetic products grown on this composition is advised. Fluor-edenite

grew with yields of 90 percent or more, and yielded amphibole with plau-

sible fluor-edenite celt dimensions. Fluor-edenite differs from fluor-

pargasite by J.acking octahedral À1 and having only one tetrahedral A1;

the M(4) and A site contents are the same. Thus,3, ß, and V should be

about the same in both amphiboles, b should be Larger and g smaller.

These predictions are supported by the cel1 dimensions of fluor-edenite

and fluor-pargasite synthesized in this study (ra¡te lg). The cell vol-

ume based on comparison of resuLts on edentite grown by Hinrichsen and

Schürmann (1966) is too small, but with the possibility of solid solu-

tion between tremolite and edenite, further characterization is re-

quired. Fluor-edenite ceI1 dimensions given by Kohn and Comeforo (1955)

(raUle 6) seem to be those of a more sodic amphibole with composition

between fluor-edenite and fluor-richLerite; note especially the lower ß

and higher V.

Pargasites

Much effort was expended on pargasite synthesis, not only because of the

apparent success of previous work, but also because this composition is

intrinsically interesting with respect to Al ordering in the tetrahedral

sites and M3* ordering in the octahedral sites. Endmember pargasite

synthesizes readily, but yíelds are never quite 100 percent. Cell di-

mensíons (table 13) are consistent r+ith previous studies (rable 5).

Substitution of Cr, Ga, Sc and In for ocÈahedral A1 reduced yields to

194

about 80 to 90 percent. Variation in cell volume with the radius of the

octahedral cation (nigure 27) did not give an acceptably Iinear trend,

indicating that complete substitution of Cr, Ga and Sc for Al in the oc-

tahedral strip did not occur (naudsepp et aI. 1982). This deviation

from the nominal conposition is well documented in the infrared spectra

of this series (Chapter 5), r+hich all showed MgMgÀI bands in addition to

Mg-M3* configurations. Site-occupancies (rable 19) from the Rietveld

structure refinement of the scandium-pargasite showed that the composi-

tion of the octahedral cations, in terms of Mg and Sc scattering, is

Mg¿. s sSco. o s. The octahedral Àl content therefore is about 0.35 cations

p.f.u. Furthermore, Sc has the ordering pattern M(2)>M(3) and avoids

M(1). Endmember pargasite shows completely random distribution of Mg

and AI over the octahedral sites from infrared spectrum analysis. 0r-

dering in the Ga and Cr pargasites has not been confirmed by structure

analysis but the infrared spectra suggest at least partial ordering.

Results of fluor-pargasite syntheses largely paral1el lhose of hy-

droxy-pargasites except for higher yields of the scandium-fluor-parga-

site compared to scandium-pargasite. Variation of cell volume with tri-valent octahedral cation radius is also not acceplably linear but is

improved over hydroxy-pargasites (rigure 28). The complete series of

Ga, Cr and Sc substitutions for octahedral À1 was characterized by Riet-

veld structure refinement to determine cation ordering among the octahe-

dral sites. Rietveld structure analysis is particularly useful for

fJ.uor-amphiboles because of the inapplicability of infrared spectroscopy

in the hydroxl-stretching region. Site-occupancies (tabte 1g) show that

chromium-fluor-pargasite and gallium-fluor-pargasite are def icient in Cr

'19s

^

920

910

PARGASITES

Cr Ga Fe

r3+ (Å

vcoo

900AI Sc

)

Figure 27: CelI volume versus radius of trivalent octahedral cations insynthetic pargasites. Solid circles are syntheticpãrgasites gròwn in this study; solid triangle is magnesio-hastingsite fron Semet 1972, 1973.

O

A

¡

r<v

196

FLUOR-PARGASITES920

910

AI Ga Cr

r3+ (Sc

Cell volume versus radius of trivalent octahedral cations insynthet ic f luor-pargasites.

900

)A

nìgure 28:

AV(Sc-Al)=25 A/

oo

t

and Ga respectivly, compared to the nominal composition,

dium-fluor-pargasite has nearly the ideal Sc-content.

M3* cations are almost completely ordered into M(2).

197

but that scan-

Furthermore, the

Sod i c:çalc i c A¡phi lqleg

Richterites

Syntheses of amphiboles based on the richterite composition confirmed

aIl aspects of previous studies. Richterites and fluor-richterites grow

readily and with yields usually greater than 95 percent. infrared spec-

tra of endmember richterites and Mn-bearing richterites (rigure 9)

showed limited, but definite, solid solution with tremolite for both the

Na and K endmembers, confirming the conclusions of Rowbotham and Farmer

(1973). In view of the confused sLate of Mn ordering information in am-

phiboles (Hawthorne 1983b), the infrared spectra of the Mn-bearing

richterites (figure 9) revealed the important result that Mn is appar-

ently completely ordered into the M(2) site. Hawthorne (976) and Haw-

thorne and Grundy (1978) attempted to derive Mn-site preferences in sod-

ic-calcic amphiboles on the basis of mean bond lengths at the M(1), M(2)

and M(3) sites. They observed the preference M(3)>M(1)=M(2), but their

results were highly speculative. These spectra also showed tremolite-

like peaks, indicating some solid solution towards tremolite.

Miscellaneous Sodic-calcic Amphiboles

Syntheses on other sodic-calcic amphibole compositions were generally

unsuccessful for the purpose of detailed characterization. These re-

sults paralleI, ât least in part, the lendency of A-site empty calcic

amphiboles !o be extremely difficult to synthesize at low pressures.

198

À1ka1 i Àmphi boles

Previous studies show most alkali amphiboles to have high-pressure sta-

bility fields and it is not surprising that attempts to grow nyböite

failed. Eckermannite syntheses were also disappointing. Infrared spec-

tra (nigure 10) of hydroxy-eckermannite and ce11 dimensions of fluor-

eckermannite (raUte g) clearly show that amphiboles similar to sodian

magnesio-cummingtonite were grown. It is unlikely that eckermannite

ever has been synthesized.

I ron-masnes i um-manganese Amphi boles

Sodian magnesio-cummi ngton ites

Synthesis results with this interesting composition paral1e1 those of

previous studies and emphasize the need for very detailed and careful

documentation of these amphiboles. Infrared spectra (nigure 10) show

clearly that there are aL least two different hydroxyl-stretching envi-

ronments. This confirms the previous speculations of Witte et al.(1969) and Maresch and Langer (1976). Furthermore, preliminary single-

crystal structure studies in progress (Hawthorne, unpublished data) con-

firm that the space group is not C2/n, but is primitive.

EVÀIUATION OF CHÀBÀEIE¡]¿ÀT]IN METHODS USED IN THIS STUDY

Optical Micrpsc_opy

Optical examination of synthesis products has been a routine part of

previous amphibole syntheses. In this study, all synthesis products

were routinely examined with both a low-power binocular microscope, and

at high power with a polarizing microscope. Low-power examination of

unopened capsules is critical in documenting Ieaks. In hydroxy-amphi-

199

boLe experiments, the vapour phase was generally between 5 lo 20 weight

percent of charges weighing 30 to 90 mg; leaks were readily detected by

weight loss during pre-experiment heating tests or during the experi-

ment. In fluor-amphibole syntheses, however, the vapour phase is only

about 4 percent of charges weighing between 20 to 40 mg; partial losses

through hairline cracks and defective welds are not easily detected even

with precise weighing. This problen is generally compounded by Pt loss

from the capsule during high-temperature runs. Examination of the

opened capsule interior reveals any evidence of reaction with the

charge, a rare occurence with Pt and Àu capsules and runs of the compo-

sition used. Low-power examination of the charge shovrs whether differ-

entiation occurred during the run and is important in documenLing the

generaJ. physical properties of the products (colour, morphology, grain-

size).

Àfter low-power examination, a representative portion of the product

is generalty crushed and nounted on a gl-ass slide with a suitable medium

for observation at high-power with a standard polarizing petrographic

microscope. This has been a standard characLerization techníque in sta-

bility studies, particularly in liquidus experiments, where it is neces-

sary to identify small amounts of glass or minor phases. Refractive in-

dices can be measured and modal anatysis of the run products is, in

principle, a possibilty.

Unfortunately these methods are inadequate as a practical characteri-

zation technique in the synlhesis of pure minerals for crysLal-chemical

characterization. Synthesis products are generally too fine-grained to

be ídentified optically and measurement of refractive indices is diffi-

200

cult, if not impossibte in some cases. Minor phases can be unambiguous-

ly identified only if their optical properties are significantly differ-

ent from the primary product; accurate modal analyses also are difficult

for this reason. Furthermore, standard optical lechniques are not fast

enough for rapid characterization of large numbers of products, as in

this study,

The difficulty in using optical methods in this type of study is well

illustrated by the problems in glaucophane synthesis by Ernst (1961,

1963). Although Ernst measured refractive indices and the products were

modally analysed, the amphiboles synLhesized in these studies were later

shown to be off-composition (Maresch 1977¡ this study). According to

the Gladstone-Dale rule the denser polymorph should have had a mean re-

fractive index approximately 0.013 greater than glaucophane I (Ernst

1963). Thus Ernst's interpretation of two glaucophane polymorphs of the

same composition but of different densities could not have been correct.

Optical methods in the present study were found to be of limited use in

product characterization. They are most valuable for deciding whether a

particular synthesis product is of sufficiently high yield and quality

for more detailed characterization.

Scanni¡g Electron

Scanning electron

terization of run

imaged with this

may be present in

detected in X-ray

Mi c rosc opy

microscopy has much potential in the initial charac-

products. Extremely fine-grained products are readily

technique and the presence of extraneous phases that

amounts too small or of inadequate crystallinity to be

powder diffraction patterns' are observable. Note the

201

abundant layer silicates mixed with fibrous amphibole in Figure 7D.

More ímportantly, Figure 68 (arrow) shows a few flakes of layer silicate

which were observed neither optically nor in the X-ray powder diffrac-

tion pattern. Inspection of other synthesis products in Figures 5, 6

and 7 also reveals traces of layer silicates, some of which were ob-

served in X-ray diffraction patterns but not optically.

Other silicates (pyroxenes, olivines, feldspars), although obviously

present in X-ray powder patterns, could not be positively identified in

scanning electron micrographs. Semi-quantitative energy dispersive

spectroscopic capability would have been invaluable in the idenLifica-

tion of these important phases.

X-rav Powder Diffraction

Conventional X-ray powder diffractometry continues to be important for

the identification of phases greater than a few percent, and in the

rough estimation of their abundances. In addition, precise ceIl dimen-

sions are readily calculated by least-squares refinement and the lattice

spacings of extraneous phases can be determined. The usefulness of this

method is decreased if synthesis phases are poorly crystalline (degraded

peak intensity and shape), if their abundances are less than 4 or 5 per-

cent, or if severe overlap of several phases occurs.

Infrared Spectroscopy

Infrared spectroscopy is a rapid and versatile technique in the charac*

terization of order-disorder in sythetic rninerals. Synthetic systems do

not contain large numbers of minor components and spectra are generally

202

simpler to interpret than natural ones. In amphibole studies, infrared

spectra in the hydroxyl-stretching region are the most important; order-

ing of M(1) and M(3) cations may be characterized with high sensitivity.

Furthermore, the 0-H stretching spectrum can reveal the presence of ex-

traneous phases conLaining the hydroxyl group such as layer silicates,

which are common in many run products. Deviations from nominal composi-

tion can also be revealed with sensitivity. For example, the common

presence of small peaks near 3673 cm-1 in the infrared spectra of syn-

thetic richterites (rigure 9) indicates a frequency shift in the MgMgMg-

0H stretching band to lower frequencies due to the presence of vacant

À-sites. Although infrared spectra in the 0-H stretching region should

be sensitive to chain-width and other local structural disorder, this

possibility was not pursued in this study.

Synthetic pargasite spectra illustrate the application of this method

to both problems of cation ordering and stoichiometry. It was shown in

Chapter 5 that endmember pargasite has an essentially random distribu-

tion of Mg and À1 over the M(1,2,3) sites. The spectra of pargasites

with M3+=Gâ¡ Cr and Sc all have shoulders corresponding to the MgMgÀl-OH

configuration showing that they are off-composition, containing minor

amounts of octahedral À1. Layer silicates in the chromium-pargasite run

product that were reflected in the X-ray diffraction pattern (raUte 1l)

are also evident in the infrared spectrum as fine-structure between 3674

cm-1 and 3710 cm-1. The presence of substantial MgMgM3*-0H configura-

tions in the spectra of Cr-, Ga- and Sc-substituted compositions sug-

gests that these pargasites are at least partially disordered.

203

EspecialJ.y important is t.he very small amount (Iess than 5 mg) of ma-

terial reguired. The sensitivity of infrared spectra to small varia-

tions in nominal compositions and the ability to detect order-disorder

phenomena in these amphiboles is clear evidence that this method should

be used routinely to characterize synthetic amphiboles.

Rietveld Crystal Structure Re f i nement

The Rietveld structure analysis method represents a significant advance

in the detailed characterization of amphibole synthesis products. A1-

though it has potential to refine the entire structure, problems in this

study during refinement h'ith certain highly-correlated positional param-

eters in the tetrahedral chaíns (see Chapter 5) tinited the method to

deriving accurate site-occupancies. The infrared spectrum of scandium-

pargasiLe showed that Sc was present in either the M(1) or M(3) sites,

or both; Rietveld analysis results showed that Sc-occupancy in the M(1)

site was negligible, it having the ordering pattern M(2)>M(3)>>M(1)-0.

Furthermore, the Rietveld results allowed the calculation of the defi-

ciency in Sc-occupancy (0.354) and therefore the amount of Àl-occupancy

in octahedral coodination (0.21) as suggested by the infrared spectrum.

The Rietveld method is particularly useful in characterizing fluor-am-

phiboles for which the infrared method in the o-H stretching region is

not applicable. Six of the seven fluor-amphibole structures refined

(No.'s 3-8, Table 14) in this study showed that these amphiboles have

partial to complete ordering of Mg and the M3*-cation in the octahedral

strip. No ordering information was derived for fluor-pargasite (Ho. 2,

Table 14) because there is insufficient con!rast in the scattering povr-

ers of Mg and 41.

204

In addition to the above, the Rietveld method has other advantages

over conventional X-ray powder diffractometry. Cell dimensions calcu-

lated during the refinement are up to an order of magnitude more precise

than those by least-squares methods based on measurement of peak cen-

troids in normal diffractometer scans. This improvement stems from the

fact that in the Rietveld refinement, the peak positions are calculated

from the whole peak profile, which takes into account any machine aber-

rations affecting its shape. In addition, the residuaL pattern from the

subtraction of the observed diffraction pattern from the calculated pat-

tern, contains the diffraction patterns of phases other than amphiboles.

In the whole pattern, scattering from these phases is often partly to

completely masked by the dominant amphibole pattern. Preliminary re-

sults with this method during the present study show that this technique

has considerable potential for detailed characterization of synthesis

products.

CONCTUSIONS

The present study has underlined the importance of detailed characteri-

zation of amphibole syntheses. Not only is it important to the crystal-

chemical study of pure endmembers, but is also critical for modelling of

petrologic systems, especially if thermodynamic properties are measured.

Furthermore, with the increasing availability of high-resolution trans-

mission electron microscopy, it is obvious already from preliminary work

that this lechnique must also be added in order to study chain disorder

and other defects.

are

205

In summary, the most salient conclusions resulting from this study

it is unLikely that a pu¡e amphibole endmember has ever been syn-

thesized either previousLy, or in this study.

Because virtually all synthetic amphiboles are off-composition,

they must be completely characterized before crystal-chemical or

petrologic ínterpretations are made.

The usefulness of infrared spectroscopy and the relatively recent

Rietveld powder structure method for detailed characterization

have been demonstrated in Lhis study. Although problems in the

refinement of chain silicates were not entirely overcome, the

site-occupancies h'ere invaluable in documenting ordering in

fLuor-amphiboles" The development of a better profile function

should lead to better results.

Because of the significant differences in cation ordering between

natural and synthetic amphiboles, and the possibility of chain-

width dísorder, high densities of stacking faults or other struc-

tural disorder, this study has emphasized the importance of de-

tailed characterization in documenting these differences. This

is critical in appLying the results of synthesis and stability

studies to natural amphiboles; the interpretation is usually not

simply one of analogy, but of contrast.

2

J

4

REFERENCES

Àpp1eman, D.E. and Evans, H"T. (1973): Job 9214: Indexing and least-sguares refinement of powder diffraction data. Natl. Tech. Inf.Serv., U.S. Dept. Commer., Springfield, Virginia, Document PB 2161 88.

Bancroft, G.M. and Burns, R.G. (1969): Mössbauer and absorptionspectral study of alkali amphiboles. Mineral. Soc. Amer. Spec. Pap.2, 137-148.

Borg, I.Y. (1967)z Optical properties and cell parameters in theglaucophane - riebeckite series. Cont,r. Mineral. Petrol. 15, 67-92,

Boyd, F"R. (195a): Àmphiboles. Carnegie Inst. Wash. Year Book 53,108-111.

Boyd, F.R. (1955): Àmphiboles. Carnegie Inst. Wash. Year Book 54,'11s-119.

Boyd, F.R. (1956): Àmphiboles. Carnegie Inst. llash. Year Book 55,1 98-200.

Boyd, F.R. (1959): Hydrothermal investigationResearches in Geochemistry (p.H. AbeIson, e

New York.

sod. )

f amphiboles. In. John Wiley and Sons,

Braue, W. and Seck,solid solutions a130,19-32.

H.A.t'1

(1977) z Stability of pargasite-richteritekb water vapor pressure. N. Jb. Miner. Abh.

Burns, R.G. and Greaves, C.J. (i971): Correlations of infrared and andMössbauer site population measuremenLs of actinoliLes. Amer.Mineral. 56, 2010-2033.

Cameron, K.L. ,11971\¿ Amphibole phase relations along the joinMgs.sFeg.sSiaOzz(Ou) r - Ca zl4gz.sFez.sSisOzz(0H) z. Carnegie Inst.Wash. Year Book 70, 145-'150.

Cameron, K.L. ('1975): Àn experimental study of actinolite-cummingtonitephase relations with notes on the synthesis of Fe-rich anthophyllite.Àmer. Mineral. 60, 375-390.

Cameron, M. (1970): The crystal chemistry of tremolite and richterite.À study of selected anion and cation substitutions' Ph.D.Dissertation, Virginia Polytechnic Institute and State University,BIacksburg, VÀ.

-206-

Cameron, M. and Gibbs, G.V. (197'1 ): Ref inementof two synthetic fluor-richterites. Carnegie70, 150-153.

20i

of the crystal structureInst. Wash. Year Book

Cameron, M. and Gibbs, G.V. (1973): The crystal structure and bondingof fluor-tremol-ite: a comparison with hydroxyl tremolite. Àmer.Mineral. 58, 879-888.

Cameron, M., Sueno, S., Prewitt, C.T. and Papike, J.J. (1973a): High-temperature crystal chemistry of K-fluor-richterite. Am. Geophys.Union Trans. 54, 497-498 (abstr. ).

Cameron, M., Sueno, S., Prewitt, C.T. and Papike, J.J. (1973b): High-temperature crystal chemistry of Na-fluor-richterite. Àm. Geophys.Union Trans. 54, 1230 (abstr. ).

Cameron, M., Sueno, S., Papike, J.J. and Prewitt, C.T. (1983): Hightemperature crystal chemistry of K and Na fluor-richterites. Amer.Mi neral . 68 , 924-943 ,

Carman, J.H. (1969): The study of the system NaÀlSi0q-M92Si04-Si0z-Hz0from 200 to 5000 bars and 800oc to 1100oC and its petrologicapplications. Ph.D. thesis, The Pennsylvania State University.

Carman, J.H, (97a)z Preliminary data on the P-T stability of syntheticglaucophane. Àm. Geophys. Union Trans. 55, 48'1.

Carman, J.H. and Gilbert, M.C. (1983): Experimental studies onglaucophane stability. Amer. J. Sci. 283-A , 414-431 .

Charles, R.W. 1972a)z Phase equilibria of the richterite end membersNa2CaMgsSieOzz(Oti) z and NazCaFesSieOzz(Ou) z. Carnegie Inst. Wash.Year Book 71, 506-510.

CharIes, R.W. (972b)z Physical properties of synthetic richterites.Carnegie Inst. Wash, Year Book 71, 510-513.

Charles, R.W. (1974a): Amphiboles on the join pargasite-ferropargasite.Trans. Àmer. Geophys. Union 55, 480.

Charles, R.W. (197ab): The physical properties of the Mg-Ferichterites. Àmer. Mineral. 59, 518-528.

Charles, R.W. (1975): The phase equilibria of richterite andferrorichterite. Amer. Mineral. 60, 367-374.

Charles, R.I't. (977)t The phase equilibria of intermediate compositionson the pseudobinary NazCaMgsSieOzz(oH), - NazCaFesSia0zz(0H) z. Àmer.J. Sci. 277, 594-625,

Charles, R.I.l. (1978): Synthesis and stability of hastingsite:CazNaFel*FesoSioÀ1z0zz(0H) z. Àm. Geophys. Union Trans. 59, 1217,

CharIes, R.}l. (1980): Amphiboles on lhe join pargasite-ferropargasite.Amer. Mineral. 55, 996-1001.

208

CoIvi11e, P.À., Ernst, W.G. and Gilbert, M.C. (1966): Relationshipsbetween ce11 parameters and chemical compositions of monoclinicamphiboJ.es. Àmer. Mineral. 51, 1727-1754,

Comeforo, J.E. and Kohn, J.A. (1954): Synthetic amphiboleinvestigations, I: Study of synthetic fluor-trenrolite. Àmer.Mineral. 39, 537-548.

Deer, W.4., Howie, R.A. and zussman, J. ('1963): Rock Forming Mineralsv,2, Chain Silicates. Longman, Green and Co., London, 379 p.

Drits, V.4., Goncharov, Yu.I., Àleksandrova, V.4., Khadzi, V.E. andDmitrik, A.L. (197a)z New type of strip silicate. Sov. Phys.Crystallogr. 19, 737-741.

Drits, V.À., Goncharov, Yu.I. and Khadzi, v.E. (1976): Usloviyaobrazovaniya i f iziko-kimichyeskiye svoystva tryekhryadnogolyentochnogo silikata s radikalom ISis0ru Àkad. Nauk SSSR' 1sv.,Ser. Geol. 7, 32-41 .

Droll, K. and Seck, H"À. (1976): Das system pargasit - fluorpargasitbei Ptotal = '1 kb. Fortschr . Miner . 54, 16.

Edgar, A.D. (1973): Experimental Petrology. Clarendon Press, 0xford,217p.

Ehrenberg, H. 1932)t Uber die synthese von diopsid und forsterit durchreaktion zwischen festen ausgangsstoffen und einen vergeblichenversuch der tremolite-darstel1ung. Centr. Mineral. Geol. À, 129-139,

Eitel, I,r. (1952): Synthesis of fluor-silicates of the mica andamphibole group. Proc. Internat. Symp. on the Reactivity of SoIids,Gothenburg, Sweden, 333-345.

Ernst, W.G. (1957): Àlkali amphiboles. Carnegie Inst. Wash. Year Book56,228-230.

Ernst, W.G. (1958a): Àlkali amphiboles. Carnegie Inst. Wash. Year Book57, 199-204,

Ernst, W.G. (i958b): Study of synthetic and naluraI magnesioriebeckite.Geol. Soc. Amer " , Bull. 69 , 1 56i .

Ernst, Ì'1.G. (1959); Alkali amphiboles. Carnegie Inst. Wash. Year Book58, 121-127.

Ernst, W.G. (1960): The stability relations of magnesioriebeckite.Geochin¡. Cosmochim. Acta. 19, 10-40.

Ernst, W.G. (1961): Stability relations of glaucophane. Amer" J. Sci.259, 735-765,

Ernst, W.G. (962)t Synthesis, stability relations, and occurrence ofriebeckite and riebeckite-arfvedsonite solid solutions. J. Geol. 70,689-736,

Ernst, W.G. ( 1963): Polymorphism in48, 241-260.

209

aIkaIi amphiboles. Àmer. Mineral.

Ernst, W.G. ( 1 966) : Synthesis and stability relations offerrotremolite. Amer. J. Sci. 254,37-65.

Eugster, H.P. ('1957): Heterogeneous reactions involving oxidation andreduction at high temperatures and pressures. J. Chem. Phys. 26,1760-1761,

Eugster, H.P., À1bee, À.L., Bence, 4.E., Thompson, J.B. and Waldbaum,D.R. (972'); The two-phase region and excess mixing properties ofparagonite-muscovite crystalline solutions. J. Petrol, 13, 147-179.

Fedoseev, À.0. and Chigareva, O.G. (1964): Synthetic fibrous fluorine-magnesium arfvedsonite. Àkad. Nauk SSSR Dokl. '156, 1130-1132.

Fedoseev, 4,D., Makarova, T.A. and Pivovarova, L.N. (1968a):Hydrothermal synthesis of fibrous nickel-containing amphibole andsome of its properties. Àkad. Nauk SSSR, Lzv,, Neorg. Mater. 4,796-797 .

Fedoseev, À.D., Makarova, T.4., Nesterchuk, N.I. and Sipovs(1968b): Die hydrothermalsynthese faserige amphibole ununtersuchung einiger ihrer eigenshaften. Kristal und Te95-'102.

ik

kii,ddichkn

D. P.

3,

Fedoseev, 4.D., Grigor'eva, L.F., Chigareva,(1970): Synthetic fibrous iluor-amphiboleÀmer. Mineral. 55, 854-863.

0.Gsa

. and Romanov, D.P.nd their properties.

Finger, L.W. (1969)factor calculatistrucLures. Geomanuscr ipL ) .

: RFINE. A Fortran IV computon and least-squares refinernephys. Lab. Carnegie InsL. Was

program for structureof crystal( unpubl i shed

ernth.

Forbes, W"C. ( 1 971 ) : Synthesis and stability relations of richterite,NazCaMgsSig0zz(0u) z. Àmer. Mineral. 56, 997-1004.

Gibbs, G.v. and Prewitt, C.T. ('1969): Àmphibole cation site disorder.In Int. Mineral. Àssoc. , Pap. Proc. , Fif th Gen, Ì'teet. (Cambridge,1966) " Mineralogical Society, London (abstr. ).

Gibbs, G.V", Mi11er, J.L. and She11, H.R. (962)z Synthelic fluor-magnesio-richterite. Àner. Mineral, 47, 75-82.

Gier, T.8", Cox, N.L. and young, H.S. (1964): The hydrothermalsynthesis of sodium amphiboles. Inorg. Chem. 3, 100'1-1004.

Gilbert., M.C. (1965): Synthesis and sLability relations of thehornblende, ferropargasite. Geo1. Soc. Àmer. Ànn. Mtg. Àbstr., MiamiBeach,72-73,

Gilbert, M.C. ('1966): Synthesis and stability relations of lhehornblende ferropargasite. Àmer. J. Sci. 264, 698-742,

210

Gilbert, M.C. (1969): Reconnaissance study of the stability ofamphiboles at high pressure. Carnegie Inst. Wash. Year Book 67,167-170,

Gilbert, M.C. and Popp, R.K. (1973): Properties and stability ofglaucophane at high pressure. Trans. Àmer. Geophys. Union 54, 1223,

Gilbert, M"C., Helz, R.T., Popp, R.K. and Spear, F.S. (1982):ExperimenLal studies of anrphibole stability. Mineral. Soc. Àmer.,Rev. Mineral. 98, 229-353.

Goldman, D.À. (1979): À re-evaluation of the Mössbauer spectroscopy ofcalcic amphiboles. Àmer. Mineral, 64, 109-118.

Goldman, D.À. and Rossman, G.R, (1911)z The identification of Fe2* inthe M(4) site of calcic anrphiboles. Àmer. Mineral, 62, 205-216.

Grebenshchikov, R.G., Grigor'eva, L.F., Makarova, T.A. and Romanov, D.P.(1975): Relationships between chemical compositions and structuresof synthetic amphiboles. Resumés des Communications - ConférenceInternationale sur la Physique et la Chimie des Minéraux d'AmianteUniv. Laval; Québec; 3.10, 1-11.

Grebenshchikov, R.G., Romanov, D.P., Sipovskii, D.P. and Kosulina, G.I.(197a)z Structure of a germanate hydroxyamphibole. ZhurnalPrikladnoi Khimi í 47 , 1905-19'10.

Greenwood, H.J. (1953): The synthesis and stability of anthophyllite.J. Petrol. 4, 31 7-35'1 .

Greenwood, H.J. (979)z Thermodynamic properties of edenite. InCurrent Research, Part B, Geological Survey of Canada, Paper 79-18,36s-370.

Gr igor'eva, tSynthesi sf luoramphi213, 1 087-

Er

andbo1109

, Krupenikova, Z.Y, and Romanov, D.P. (1973a):some properties of silicate and germanate

es of the richterite series. Àkad. Nauk SSSR, Dokl.0.

Grigor'eva, L.F., Romanov, D.P. and Gileva, K.G. (1973b)¡ Untersuchungdes zusammenhangs zwischen chemischer zusammensetzung und strukturrhombischer und monokliner fluoramphibole. Kristall und Technik 8,415-424.

Grigor'eva, L.F., Mikirticheva, G.À. and Gileva, K.G. (1975b): Kineticsand mechanism of formation of fibrous fluoramphiboles by solid statereactions in the SiOz - MgO - MgFz - Na2O system. Resumés desCommunications - Conférence Internationale sur Ia Physique et laChimie des Minéraux drAmiante Univ. Laval; Québec; 4,15, 1-9.

Grigoriev, D.P. (1939): Experimental investigation of the effect ofalumina on the optical properties of tremolite. Comptes Rendus(oollady) 0e t'Academie des sciences d 1'uRss 23, 71-73.

211

Hamilton, D.L. and Henderson, C.M.B. (1968): The preparation ofsilicate compositions by a gelling method. Mineral. Mag. 36,832-838.

Hariya, Y. and Terada, S. (1973): Stability of richterites.-tremolites.solid solutions at high pressures and possible presence of sodiumcalcic amphibole under upper mantle conditions. Earth and Planet.sc i . Lett. 1 8, 72-7 6.

Hawthorne, F.C. (1975)¡ The crystal chenristry of the amphiboles. V. Thestructure and chemistry of arfvedsonite. Can. Mineral. 14, 346-356.

Hawthorne, F.C. (1981): Crystal chemistry of the amphiboles. Mineral.Soc. Àmer., Rev.Mineral. 9À, 103-139.

Hawthorne, F.C. (1983a): Quantitative characterizalion of site-occupancies in ninerals. Amer. Mineral. 68, 287-306,

Hawthorne, F.C. ( 1 983b) :Mineral , 21 , 173-180.

The crystal chemistry of the amphiboles: Can.

Hawthorne, F.C. and Grundy, H.D. (1978): The crystal chemistry of theamphiboles. VII. The crystal chemistry and site chemistry ofpotassian ferri-taramite. Can. Mineral. 16, 53-62.

Hawthorne, F.C., Raudsepp, M., Williams, B.t. and Hartman, J.S. (198a):Characterization of cation ordering in synthetic amphiboles byRietveld structure refinement and 27À1 and 2ssi I'lAs NMR spectroscopy.GÀC/MAC Program with Abstracts 9, p,72.

Hel1ner, E. and Schürmann, K. (1966); Stability of metamorphicarnphiboles: the tremolite-ferroactinolite series. J. GeoI . 74,322-331.

Hellner, E. and Schürmann, K. (967)¿ Stability of metamorphicamphiboles: the tremolite - ferroactinolite series: a reply. J.Geol. 76, 351 .

Hinrichsen, Th. and Schürmann, K. (977)z Experimental investigationson the Ha/x substitution in edenites and pargasites. N. Jb. Miner.Abh.130,12-18,

Hoffmann, C. (1972)z Natural and synthetic ferroglaucophane. Contr.Mineral. and Petrol. 34, 135-149.

Holloway, J.R. (1973): The system pargasite-HzO-COz: a model formelting of a hydrous nineral with a mixed-volatile fluid - I.Experinental results to I kbar. Geochim. Cosmochim. Àcta 37,651 -666.

Holloway, J.R. and Ford, C.E. (1973): The effect of fluorine onhornblende: fluid-absent melting of R-OH pargasite to 35 kbars.Trans. Amer. Geophys. Union 54, 479.

212

HoIloway, J.R. and Ford, C.E. (1975): FIuid-absent melting of thefluoro-hydroxy amphibole pargasite to 35 kilobars. Earth. Planet.sci. Lettr . 25, 44-48.

Holloway, J.R. and Ford, C.E. (1976): FIuid absent melting of fluoro-hydroxy pargasite at pressures up to 3skb. Prog. in Exp. Petrol. 3,284-285, N.E"R.C., London.

Hoschek, G. (1973): Die reaktion pJ-ogopit + calcit + guarz = tremolit +

kalifeldspat H20 + C02. Contr. Mineral. Petrol. 39, 231-237,

Huebner, J.S. (1971 ): Buffering techniques for hydrostatic systems atelevated pressures. In Research techniques for high pressure and andhigh lemperature (C.C. Ulmer, ed.). Springer-VerIag, New York.

Huebner, J.S. and Papike, J.J. (1970): Synthesis and crystal. chemistryof sodium-potassium richterite, (Na,K)llacaugsSisOzz(oH,F) z: À rnodelfor amphiboles. Àmer. Mineral. 55, 1973-1992,

Jasmund, K. and Schäfer, R. (1972)z Experimentelle bestimmung der P-T-stabilitatsbereiche in der mischkristallereihe tremolite -tschermakit. Contr. Mineral. Petrol, 34, 101-115.

Jenkins, D.M. (1981): Dehydration boundary of synthetic tremolite inthe presence of forsterite. Geol. Soc. Amer. Ànn. Mtg., Àbstr. withPrograms 1 3, 480.

Kempe, D.R.C. (1969): The ce11 parameters of the arfvedsonite-eckermannite series, with observations on the MgO and total ironcontent of amphiboles. Mineral. Mag. 37, 317-332,

Klein, C. and Watdbaum, D.R. (1967)¡ X-ray crystal]ographic propertiesof the cummingtonite - grunerite series. J. Geol, 75, 379-392,

Kohn, J.À. and Comeforo, J.E. (1955): Synthetic asbestosinvestigations, II: X-ray and other data on synthetic fluor-richterite, -edenite, and -boron edenite. Àmer. Minera1.40,410-421 ,

Koons, P.O. (1982): À experimental investigation of the behaviour ofamphibole in the system NazO - MgO - À120s - SiOz - HzO at highpressures. Contr. Mineral. Petrol . 79, 258-267 .

Koslowski, T. and Hinrichsen, Th. (1979): Synthesis, properties andupper thermal stability of a glaucophane - riebeckite mixed crystal.N. Jb. Miner. Mh., 1979, 357-362.

Kretz, R" (1983): Symbols for rock-forming minerals. Àmer. Mineral.68,277-279.

Leake, B.E. (1968); A catalog of analyzed calciferous andsubcalciferous amphiboles together with their nomenclalure andassociated minerals. Geol. Soc. Amer. Spec. Pap. 98.

213

Leake, B.E. (1978)¡ Nomenclature of amphiboles. Can. Mineral. 16,501 -520.

Leake, B.E. and Hey, M.H. (1979): Addendum to the nomenclature ofamphiboles. Mineral. Mag. 42, 561-563.

Loida, A. and Hinrichsen, Th. (1975): Synthese und stabilitatgranulitischer amphibole. N. Jb. Miner. Mh., 1975, 45-47.

Makarova, T.À., Korytkova, E.N. and Fedoseev, À.D. (1971): Herstellungfaseriger amphibole bei hohen temperaturen un drucken. 824-826,

Makarova, T.4., Fedoseev, 4.D., Sipovskii, D.P. and Nesterchuk, N.I.(1972) z Fibrous amphibole formation conditions during hydrothermalsynthesis. Eksperimental'nye Issledovaniya Mineraloobrazovaniya vSukhikh Okisnykh i Silikatnykh Sistemakh, Moscow, USSR, "Nauka";1972; 153-'157.

Malinovskiy, I.Yu. (1966): Hydrothermal synthesis of amphibole of theferroedenite - ferrohastingsite series. Akad. Nauk SSSR, Dokl.170,1 64-1 66 .

Mallinson, L.G., Jefferson, D.4., Thomas, J.M. and Hutchison, J.t.(1980): The internal structure of nephrite: experimental andcomputational evidence for the coexistence of multiple-chainsilicates with an amphibole host. Phil. Trans. Royal Soc. London295, 537-552.

Manning, D.A.C. (1978): Experimental problems encountered in theaddition of fluorine to sLarting materials in the system Qz-Àb-Or.Prog. in Exp. Petrol. 4, 46-48, N.E.R.C., London.

Maresch, W.V. (1973): New data on the synthesis and stability relationsof gtaucophane. Earth PIanet. Sci. Lett, 20, 385-390.

Marebch, W.V. (1974): Neuen Daten zur Stabilitat und "Polymorphie" dessynthetischen Glaukophans. Fortschr. Mineral. 51, 30-31.

Maresch, W.V. (977)z Experimental studies on glaucophane: an analysisof present knowledge. Tectonophys. 43, 109-125.

Maresch, W.V. and Czank, M. (1981)¡ Crystal chemistry of synthetic Mn-anthophyllite: are synthetic amphiboles suitable for stabilitystudies. Terra cognita, Spring, i98'1 , 89.

Maresch, W.V. and Czank, M. (1983): Phase characterization ofamphiboles on the join Mn'*Mgr-xSiaOzz(09) z. Àmer. Mineral.7 44-753 ,

synthet ic68,

Maresch, !{.v. and Langer, K. (1976): Synthesis, lattice constants andOH-valence vibrations of an orthorhombic amphibole with excess 0H inthe systen Li2O-M9O-SiOz-H20. Contr. Mineral. Petrol. 56, 27-34,

214

MuelIer, R"F. (1967): Stability of metamorphic arnphiboles: thetremolite - ferroactinolite series: a discussion. J. Geol-.76,234-236.

Nesterchuk, N.I., Makarova, T.À. and Fedoseev,4.D. (1968):Hydrothermal synthesis of a fibrous Na-Co amphibole. Àkad. NaukSSSR, Dokl. 179 , 106-'107.

Oba, T. (1978): Phase relations of ca2MgsÀlzSioAlz0zz(oti) z -Ca2MgsFez3*SioÄlzOzz(OH)z join at high pressure - the stability oftschermakite -. J. Fac. Sci. Hokkaido Univ., Ser. IV, 18, 339-350.

Oba, T. (1980): Phase relations on the tremolite - pargasite join.Contr. Mineral. PetroL 7l, 24'l-256,

Papike, J.J., Ross, M. and Clarke, J.R. (1969): Crystal-chemicalcharacterízaLíon of clinoamphiboles based on five new structurerefinements. Mineral. Soc. Àmer. Spec. Pap. 2, 117-136.

Petö, P. (1976)¡ Synthesis and stability of edenitic hornblende. Prog.in Exp. Petrol. 3, 27-28, N.E.R.C., London.

Phillips, R. and Rowbotham, g. ('1966): Studies on synthetic alka1iamphiboles. Papers and Proceedings of the Fifth GeneralMeeting,I .M.À., Cambridge, 249-254.

Prewitt, C.T. (1963): Crystal structure of two synthetic amphiboles.Geol. Soc . Àmer . Ànn. Mtg. New York, 'l 324-1 33À.

Raudsepp, M., Hawthorne, F.C. and Turnock, A.C. (198a): Derivation ofsite-occupancies in synthetic pyroxenes and amphiboles by Rietveldstructure refinement. Geol. Soc. Àmer. Abstracts with Programs 16,No. 6.

Raudsepp, M., Turnock, À.C. and Hawthorne,characterization of viRs* analogues ofcAC/MÀc Program with ebstracts 7, p.75.

F.C. (1982): Synthesis andpargasite and eckermannite.

Ribbe, P.H. and Prunier, Jr., À.R. (1977)z Stereochemical systematicsof ordered Cz/c silicate pyroxenes. Àmer. Mineral. 62, 710-720.

Rietveld, H.M. (1967): Line profiles of neutron powder-diffractionpeaks for structure refinement. Àcta Cryst, 22, 151-152.

Rietveld, H.M. (1969): A profile refinement method for nuclear andmagnetic structures. J. ÀppI. Cryst. 2, 65-71.

Rowbotham, G. and Farmer, V.C. (973)z The effect of "4" site occupancyon the hydroxyl slretching frequency in clinoamphiboles. Contr.Mineral. Petrol. 38, 147-149,

Schairer, J.F. (1959): Phase equilibria with particular reference tosilicate syslems. In Physicochemical Measurements at HighTemperatures (,¡.0. Bockris, ed. ). Butterworths, London.

215

Schairer, J,F. and Bowen, N.L. (1955): The system KzO - AlzOs - SiOz.Amer. J. Sci. 245, 193-204.

Schreyer, W. and Seifert, F. (1968): Synthetic amphibol-es in the systemNa20-Mg0-Si02-Hz0 and their significance for the chemistry of naturalamphiboles. Papers and Proceedings of Lhe Fifth General Meeting1966, I.M.À., Cambridge, 23-24,

Semet, M. (1970): Stability relations of the amphibolemagnesiohastingsite. Àmer. Mineral. 55, 311-312 (¡bstr. ) .

SemeL, M. (1972): Stability relations and crystal chemistry nof theamphibole magnesiohast ings i te, NaCa zMg¿Fe

3 *Si oAl zO z z (OH ), ph.¡.

Dissertation, Univ. of California, Los Angeles, 216 p,

Semet, M. (1973): A crystaÌ-chemical study of syntheticmagnesiohastingsite. Àmer. Mineral. 58, 480-494.

Semet, M. and Ernst, W.G. (1981): Experimental stabiJ.ity relations ofthe hornblende magnesiohastingsite. Geol. Soc. Àmer. 8u11. Pt. II,27 4-358 ,

She11, H.R., Comeforo, J.R. and Eitel, ll. (1958):investigations: synthesi.s of fluor-anphibolesBureau of Mines, 4517, 35 pp.

Synthetic amphibolefrom meIts. U.S.

Strens, R.G.J. (97a) z The common chainIn The Infrared Spectra of Minerals (

Mineralogical Society, London.

ibbon, and ring silicates.. Farmer, ed. ) .

,tv.c

Tateyama, H,, Susumu, S. and Sudo, T. (1978): Synthesis and crystalstructure of a triple chain silicate, Na2Mg¿Sis0t e(0H) z. Contr.Miner. Petrol. 66, 149-156.

Thomas, W.M. (977)z Preliminary stability relations of the hornblendehastingsite, and the effect of Fe3* for aluminum replacement inamphiboles. Àmer. Geophys. Union Trans. 58, 1244 (¡bstr.).

Thomas, W.M. (979)z Stability relations of the amphibole hasLingsite,NaCa2MgaFe3*SioAlzOzz(oH)2. Ph.D Dissertation, Univ. of California,Los Àngeles, 183p.

Thomas, W.M. (1982a): Stability relations of the amphibole hastingsite.Àmer. J. Sci. 282, 136-164.

Thomas, I.t"M. (1982b) ¡

hastingsites, andamphiboles. Àmer.

Thompson, J.B. (1981):of the biopyriboles.

sTFe Mössbauer spectra of natural and syntheticimplications for peak assignments in calcicMineral, 67, 558-567.

Àn introduction to the mineralogy and petrologyMineral. Soc. Amer., Rev. Mineral. 9À, 141-188.

Tro11, G. and Gilbert, M.C, (1912)¿ Fluorine-hydroxyl substitution intremolile. Àmer. Mineral, 57, 1386-1403.

216

Troll, G. and Gilbert, M.C, (197Al' t Fluorine-hydroxyl substitution intremolite. Trans. Àmer. Geophys. Union 55, 481.

Tuttle, 0.F. (19a9): Turo pressure vessels for silicate-water studies.Geol. Soc. Àmer. BuI1. 60, 1727,

Tuttle, 0.F. and Engl-and, J.L. (1953): Stability relatíons of theamphiboles. Carnegie Inst. Wash. Year Book 52, 62'64.

Veblen, D.R. (198'1): Non-classicat pyriboles and polysomatic reactionsin biopyriboles. Mineral. Soc. Àmer., Rev. Mineral. 94, 189-236.

virgo, D. (1972a)'. Preliminary fiLting of sTFe Móssbauer spectra ofsynthetic Mg-Fe richterites. Carnegie Inst. Wash. Year Book 71,51 3-51 6.

Westrich, H.R. ('1978): Fluoride-hydroxyl exchange in several hydrousminerals. Ph.D. Thesis, Arizona State University, Àrizona.

Westrich, H.R. and Ho1loway, J.R. ('1981 ) : ExperimentaJ. dehydration ofpargasite and calculation of its entropy and Gibbs energy. Àmer. J.Sci. 281,922-934.

Westrich, H.R. and Navrotsky, A. (1981): Some thermodynamic propertiesof fluorapatite, fluorpargasite, and fluorphlogopite. Amer. J. Sci.281, 1091-1103.

Wiles, D.B. and Young, R.A. (1981): À new compuler programanalysis of X-ray powder diffraction patterns. J. Àppl.1 49-1 51 .

for RietveldCryst , 14,

Witte, P. ('1976): Obere thermische stabiJ.itatsgrenzen von synthetischernagnesiorichteritenphasen. Fortschr. Miner . 54, 105-106.

I.titte, P., Langer, K., Seifert, F. and Schreyer, I.l. (1969):Synthetische amphibole mit OH-uberschuss im system Na20-Mg0-Si0z-H20"Naturwiss. 56, 414-415,

llones, D.R. and Dodge, F.C.},I. (977) z The stability of phlogopite inthe presence of quartz and diopside. In Thermodynanrics in Geology(p.C. Fraser, ed.). D. Reidel Publ. Co., Dordrecht-HolIand,229-247 .

Young, R.A. (1980): Structural analysis from X-ray powder diffractionpatterns with the Rietveld method. Symposium on Accuracy ín PowderDiffraction, National Bureau of Standards, Gaithersburg, MD, 143-163,

Young, R.A. and tliles, D.B. (1981)¡ Àpplication of the Rietveld methodfor structure refinement with powder diffraction data. Àdvances inX-ray Analysis 24, 1-23,

ÀDDITIONAL BIBLIOGRÀPHY OF ÀMPHIBOIE SYNTHESES

À11en, J.C., Boettcher, À.L. & Marland, G.andesite and basalt: I. Stability as aMineral. 60, 1069-1085.

( 1 975) : Amphiboles infunction of P-T-f02. Àmer.

Ànderson, À.T. (1980): Significance of hornblende in calc-alkalineandesites and basalts. Àmer. Mineral. 65,837-85'1.

Bowen, N.L. and Schairer, J.F. (1935): Grunerite from Rockport,Massachusetts, and a series of synthetic fluor-amphiboles. Àmer.Mineral , 20, 543-551 .

Cawthorn, R.G. ('1976a): Melting relations in part of the system CaO-Mg0-4120¡-Si0z-NazO-Hz0 under Skb pressure. J. Petrol, 17, 44-72.

Cawthorn, R.G. ('1976b): Some chemical controls on igneous amphibolecompositions. Geochim. Cosmochim. Àcta. 40,'13'19-1328.

Cawthorn R.G., Curran, E.B. and Arculus R.J. (1973): A petrogeneticmodel for the origin of the calc-alkaline suite of Grenada, LesserAntilles. J. Petrol, 14, 327-337,

Chao, P. (1973): Fibrous a1kali amphiboles at high temperatures andhigh pressures. Geochimia 2, 1 1 3-'1 30 .

Chernosky, J.V. (1976): The stability of anthophyllite - a reevaluationbased on nelv experimental data. Amer. Mineral, 61, 1145-1'155.

Chernosky, J.V. and Àutio, t.K. (1979): The stabilily of anthophyllitein the presence of quartz. Àmer. Mineral. 64, 294-303.

Chernosky, J.V., Day, H.W. and Caruso, t.J. (1982): R phase diagram forMg-anthophyllite. Trans. Àmer. Geophys. Union 63, '1'151.

Chigareva, O.G. and Grigor'yeva, L.F. (1970): Synthesis of fluor-asbestos from natural talc. Àkad. Nauk SSSR, Dokl. 195, 1194-1196,

Chigareva, 0.G., Grum-grzhimailo, S.V. and Fedoseev, À.0. (1959):Spectrophotometric study of synthetic fibrous fluor-amphiboles. Zap.vses. Mineral. Obshchest. 98, 96-101 (in Russ.).

Christophe-Michel-Lévy, M. (1957): Premiers stades du metamorphismearLificiel d'une dolomie siliceuse: formalion de tremoliLe et dediopside. 8u11. Soc. franç. Minéra1. Crist. 80, 297-302.

Ðay, H.W. and Ha1bach, H. (1979): The stability field of anthophyllite:the effect of experimental uncertainty on permissible phase diagramtopologies. Àmer. Mineral, 64, 809-823.

-217-

218

Eitel, }l. ( 1 925) : Die experimentellen hiLfsmittel zur mineraJ.syntheseunter hohen drucken und hohen temperaturen. Fortschr. Min. Krist.Petr. 10, 157-186.

Espig, H. (1962)z Beilrag zur synthese asbestartiger und einigeranderer silikate. Silikattechn. 13, 131-137.

Fedoseev, 4.D., Grigor'eva, L.F. and Chigareva, 0.G. (1966): Diesynthese faserige silikate unter thermische bedingungen. KristalTechnik 1, 231-236.

Fonarev, V.I. (1976): Equilibrium in the association of orthopyroxene,cummingtoni.te, magnetite and quartz over t.he pressure range of 1000to 5000 kg/cnz in the presence of NNO buffer. Akad. Nauk. SSSn.Dokl. 228 , 1441-1444,

Forbes, W.C. (1971b): Synthesis of grunerite, FeTSisOzz(Ou) z. NaturePhys. Sci.232,109.

Forbes, W.C , (1977) z Stability relations of grunerite, FezSi aOz z (0H) z.Àmer. J. Sci. 277, 735-749.

Gilbert, M.C. and Briggs, D.F. (197a): Comparison of the stabilities of0H- and F-potassic richterites - preliminary report. Trans. Amer.Geophys. Union 55, 480-481.

Gilbert, M.C. and 1ro11, G. 1197a)z A comparison of the stabilities of0H- and F-tremolite. Int. Mineral. Assoc. 9th General Meeting,Berlin and Regensberg, Germany, Collected Abstracts, 84.

Goncharov, Yu.I. (1977)z Phase formation in the system NaF - MgFz - MgO- SiOz at 400 - 1200oC.. Isvestiya Akademii Nauk SSSR,Neorgan i schesk i e Mater ialy .1

3 , 452 -459 .

Goncharov, Yu.I. and Kovalenko, V.S. (1973): On the mechanism offormation of amphibole asbestos. Geokhimiya t 782-786.

Goncharov, Yu., Balitskii, V.S., Khadzhi, I.P. and Popova, N.P. (97a) ¿

Replacement of phlogopite by amphibole asbestos of the ecermannite -arfvedsonite series in alkaline hydrothermal solutions. VsesoyuznogomineralogicheskcAo obshchesta zapski 103, 716-718.

Grebenshchikov, R"G., Sipovskii, D.P. and Makarova, T.A. (1976):Comparative assessment of conditions for formation of silicate andgermanate amphiboles under hydrothermal conditions. Akad. Nauk.SSSR, !2v., Neorg. Mater, 12, 963-965.

Grigoriev, D.P. (1935)¡ Uber die kristallisation von hornblende undglimmer aus kunstlichen silikatschmelzen. Centr. Mineral. Geol. 4,117 -123 ,

Grigoriev, D.P. and Iskul1, E.W. (1937)¡ The regeneration of amphibolesfrom their melts at normal pressure. Amer. Mineral. 22, 169-177.

Greenwood, H.J. (1963): TheJ. Petrol. 4, 317-351.

219

synthesis and stability of anthophyllite.

Greenwood, H.J. (1971): Ànthophyllite. Corrections and comments on itsstability. Amer. J. Sci.270t 151-154.

Grigor'eva, L,F., Makarova, T.À. and Korytkova, E.N. ('1975):Sinteticheskie amfibilovye asbesty, Izd. Nauka., Leningrad, 253 p.

Hamich, M. and Seck, H.À. (1974)t Synthese und phasenbeziehungen Ti-haltiger pargasiLe. Fortschr. Miner. 51, 18-19.

HeIz, R.T. (1973): Phase relations of basalts in their melting range atP HzO = 5 kb as function of oxygen fugacity. Part I. Mafic phases.J. Petrol, 14, 249-302,

Hel-2, R.T. (1975): PhaseatPH20=5kb. Part1 39-1 93.

relations of basalts inII. MeIt compositions.

their melting rangesJ. Petro.L. ll,

Helz, R.T. (1979): Àlka1i exchange between hornblende and melt¡ a

temperature-sensitive reaction. Amer. Mineral, 64, 953-965.

Hinrichsen, Th. (1967): Uber den stabilitatsbereich der Mg-Fez*-Àl-Mischkristallreihe rhombisher hornblenden. Teil I: Hydrothermaleuntersuchungen der anthophyll i t-f erroanthophyll i t-mi schkr i stallre ihe.N. Jb. Miner. Mh, 1967, 257-270.

Hinrichsen, Th. (1968)¡ Hydrothermal investigations and stabilityrelations of synthetic Aedrites. In IMA Papers and Proceedings,Fifth General Meeting, 1965, Cambridge, 243-248.

Hinrichsen, Th. (1968): Uber den stabilitatsbereich der Mg-Fez*-41-Mischkristalle rhombischer hornblenden. Teil I: Hydrothermaleuntersuchungen der magnesium-eisen-mischkristallreihen von gedriten.N. Jb. Miner. Mh. 1968, 41-57,

Hinrichsen, Th. (1974): Upper stability of orthorhombic amphiboles inthe system MgO-Fe0-4120¡-Si0z-H20. IMA Meeting, West Berlin,Collected Abs., 86.

Hinrichsen, Th. (977)z 0rthorhombic amphiboles: Breakdown product ofthe reaction pycnochloríte + quartz. N. Jb. Miner. Àbh. 130, 33-38.

Hotloway, J.R. (1975): Fluid-absent melting of the fluoro-hydroxyamphibole pargasite to 35 kilobars. Earth Planet. Sci. Lett, 25,44-48.

Iiyama, J.T. (1953): Synthese hydrolhermale a 750 C, 1000 bars dans lasysteme Na20-Mg0-À1203-Sí0 z-HzO d'amphiboles orthorhombiques etmonocliniques. Compt. Rend. Àcad. Sci. Paris 256,966-967,

Kadzhi, I.P., Drits, v.À., Yarotskii, v.G. and Dimitrik, A.L. (1979):Novaya polimorfiaya raznovidost voloknistykh ftoramfibolovMgzSiaOzzFz. Nov. Dannye Miner. SSSR 28, 153-162,

KaIinin, D"V. and Deniskina, N.D. (1975):hydrothermale Methoden ihrer Gewinnung,Synthesereaktionen und Eigenschaf ten.Part C, C296, 111-1 19.

220

Synthetische Amphibolasbeste :

die Kinetik derFreiburger Forschungshef te,

KaLinin, D.V. and Ripinen, O.I. (197a)z Synthesis of fibrousfluoramphibole in salt melts. Eksperimental'nye Issledovaniya poMineralogii ¡¡ovosibirsk, USSR, Akad. Nauk SSSR, Sib. 0td., Inst.Geol. Geof iz. ; 197 4 , 55-57.

Kichang, NA (1982): Amphibole stability relations in the system edeniteand edenite + 4Quartz. Trans. Amer. Geophys. Union 63, .115'1

.

Kiseleva, I.À. (1966): Hydrothermal synthesis of ferruginous hornblendeand actinolite from acid chloride solutions. Àkad. Nauk SSSR, Dokl.171 , 177-180.

Koenigsberger, J. (927) z Experimentelle hilfsmittel der hydrothermalensyihese bei hohen temperaturen und drucken. Fortschr. Min. Krist.11, 41-48.

Kiseleva, I.À. (1968): Dependence of ferroactinolite-hedenbergiteequilibrium on temperaLure and the activity of calcium. Geokhim. No.1, 37-45.

Koltermann, M. (1965): Der thermische zerfall des anthophyllits und diebildung von fluor-anthophyllit und norbergit bei der reakLion vonmagnesiumsilikaten mit NaF, LiF und HF. N. Jb. Miner. Mh, 1975,17 6-184,

Kopp, o.c. (1967): Synthesis of grunerite and other phases in thesystem SiO2-NaOH-Fe-HzO. Amer. Mineral, 52, 1681-1688.

Korytkova, E.N. and Makarova, T.À, (1972)t Experimental investigationof the hydrothermal alteration of olivine in connection with theformation of asbestos. Geokh. No. 11, 1416-1420.

Korytkova, 8.N., Fedoseyev, À.D. and Makarova, T.A. (1968): Synthesisót fibrous arnphibole by hydrothermal recrystallization of olivine.Akad. Nauk SSSR, Dokl, 182, 1396-1398.

Korytkova, 8.N., Makarova, T.NÀ. and Grebenshchikov, R

Hydrothermal crystallization of fibrous amphibolesIzvestiya Àkademia Nauk SSSR, Neorganicheskie Mater1 898-1 900.

.Gfria

. (1978):om talcs.ly 14,

Korytkova, 8.N., Makarova, T.À. and Nesterchuk, N.I. (1975): Study ofhydrothermal reaclions of the amphibole synthesis in connection withtlre genesis of asbestos. Resumås des Communications - ConférenceInteinationale sur la Physique et la Chimie des Minéraux d'ÀmianteUniv. Laval; Québec i 4.14, 1-10.

Kushiro, I. (1970): Stability of amphibole and phlogopite in lhe uppermantle. Carnegie Inst. I'lash. Year Book 68 , 245-247.

221

richterite.Kushiro,Carneg

and ErlankInst. Wash

Lambert, I.B. and Wyllie, P.J. (1968): Stability of hornblende and amodel for the low velocity zone. Nature 219, 1240-1241,

Ludke, W. (1933): Methodisches zur synthese von silikaten mitleichtfluchtigen substanzen unter stationaren bedingungen. Fortschr.Min. Krist. Petr. 18, 29-31,

Makarova, T.A. and Pivovarova, L.N. (97'l) t Hydrothermal synthesis ofmanganese fibrous amphiboles. Zhurnal Prikladnoi Khimii (f,eningrad)50, 2562-2564.

Makarova, T.À., Nesterchuk, N.I., and Korytkova, E.N. (977)z Study ofthe mechanism of amphibole formation under hydrothermal conditions.Vsesoyuznogo mineral.ogicheskogo obshchestva zapiski 106, 241-242,

Malinovskiy, I.Yu. (1967): Hydrothermal synthesis of iron cordierite inexperiments on the synthesis of ferrohastingsite. Doklady ÀkademiaNauk SSSR '173, 893-894.

Metz, P. and Winkler, H.G.F. (196a): Experimentelle untersuchung derdiopsidbildung aus tremolit, calcit und quarz. Naturwiss. 151, 460.

Muller-Fabian, B. (977)t Statistische untersuchungen zum waschstum undhabitus von fluor-amphibol-kristallen in oxid-fluorid-gemengen.Kristall und Technik 12, 1149-1155.

Mysen, B.O. and Boettcher, À.L, (1976)z Melting of a hydrous mantle:III. Phase relations of garnet websterite + HzO at high pressuresand temperatures. J. Petrol. 17, 1-14,

Obata, M. and Thompson, À.8. (1981)¡ Àmphibole and chlorite in maficand ultramafic rocks in the lower crust and upper mantle. À

theoretical approach. Contr. Miner. Petrol, 7'1, 74-81,

Popp, R"K., Gilbert, M.C. and Craig, J.R. (197*): Effect of oxygenfugacity on the stability of Fe-Mg amphiboles. Trans. Àm. Geophys.Union **, 1200,

Popp, R.K., Gilbert, M.C. and Craig, J.R. ('1976): Synthesis and x-rayproperties of Fe-Mg orthoamphiboles. Àmer. Mineral, 61, 1267-1279.

Popp, R.K., Gilbert, M.C. and Craig, J.R. (977a)z Stability of Fe-Mgamphiboles with respect to oxygen fugacity. Àmer. Mineral. 62, 1-12,

Popp, R.K., Gilbert, M.C. and Craig¡ J.R. (977b1 ¡ Stability of Fe-Mgamphiboles with respect to sulfur fugacity. Àmer. Mineral. 52,1 3-30.

Ravior, E. and Hinrichsen, Th. (1975): Upper stability of syntheticanthophyllite mixed crystals. N. Jb. Miner. Mh. , 1975, 162-166,

t.tô

A.J. ( 1 970) ¡ Stability of porassicYear Book 68, 231-233.

222

Romanov, D.P., Koval-ev, G.I. and Grigor'eva, L.F. (1973): X-rayinvestigation and identification of sythetic fibrous amphibole.Rentgenograf iya Mineral'nogo Syr'ya, No. 9 , 32-37 ,

Saito, H. ('1952): Hydrothermal treatment of synthetic asbestos. i.Treatment of Lhe ystem 2NaF.CaO.3Mg0,Fez0¡'8Si0z. J. Chem. Soc.Japan, Ind. Chem. Sect. 55, 415-417,

Saito, H. (1952): Suitable proportion of raw material for syntheticasbestos. I. Suitable range of alkali oxide. J. Chem. Soc. Japan,Ind. Chem. Sect. 55, 703-705.

Saito, H" (1953): Hydrothermal treatments of synthetic asbestos. II.Treatments of crystals without calcium oxide. J. Chem. Soc. Japan,Ind. Chem. Sect. 56, 235-236,

Saito, H. (1953): Suitable proportion of raw material- for syntheticasbestos. II. SuiLable amount range of fluoride. J. Chem. Soc.Japan, Ind. Chem. Sect. 56, 585-587.

Saito, H. (195a): Hydrothermal treatment of synthetic asbestos. vII.Investigation of Lhe composition range of fusing mixture byvolatilization of fluorine. J. Chem. Soc. Japan, Ind. Chem. Sect.57 , 488-490.

Saito, H. (1954): Synthesis of asbestos of the amphibole group. J.Japan. Chem. 8, 626-635.

Saito, H. (1956): Influence of reduction of ferric oxide in syntheticfluor-amphibole on crystallinity. Kogyo Kagaku Zasshi 59,1309-1312.

Saito, H. (1963): Isomorphic substitution of fluor-richterite. KogyoKagaku Zasshi 66, 18-21 .

Saito, H. and Àmemiya, Y. (1961)¡ Separation of crystals from syntheticfluor-arfvedsonite mass by hydrothermal treatment. Kogyo KagakuZasshi 64 , 1 54'1-1 543.

Saito, H. and Ogasawara, K. (1959): Synthesis of various types offluoramphibole by isomorphic substitution. Kogyo Kagaku Zasshi 62,97 6-978 .

Saito, H. and Ogasawara, K. (1959): Synthesis of various types offluoramphibole by isomorphic substitution. Kogyo Kagaku Zasshi 62,97 6-978 .

Saito, H. and Takusagawa, N. (1965): Synthetic asbestos. XXI. Synthesisof fluornanganese - richterite asbestos by sintering nethod. KogyoKagaku Zasshi 68, 2347-2351.

Saito, H. and Yamai, I. (1968)¡ Synthetic asbestos. xxlI. Synthesis ofasbestiform crystals by gas-phase reaction using double crucibles.Kogyo Kagaku Zasshi 71, 354-357.

223

Saito, H. and Yamai, I. (1968): Synthetic fluorine-containing asbestos.XXIII. Synthesis of fluorine-containing asbestos in the vapour phase.Kogyo Kagaku Zasshi 71, 824-827,

Scheumann, K.H. and Ludke, W. ( 1 933 ) :niederen drucken. Ber. Verhandl.273-278,

Uber hornblendesynthesen beisachs Àkad. wiss. teipzig 85,

Schürmann, K. (1968): Synthesis and stability field of cummingtonite.Papers and Proceedings of the Fifth General Meeting 1966, I.M.À.,Cambridge, 255-260.

Schürmann, K. (1967)z Hydrothermale experimentelle untersuchungen anmetamorphen monoklinen hornblenden. Teil i: Zur stabilitat dercummingtonite. N. Jb. Miner. Mh. , 1967 t 270-283,

Sipovskii, D.P", Grebenshchikov, R.G. and Makarova, T.Achemical compound: f ibrous amphibole-like gernanate.Nauk SSSR 205, 404-406.

Takusagawâ, N. and Sailo, H.composition glass-ceramicKyokai Shi 80, 201-211,

(1972) z NewDokl. Akad.

(19721t MicrostrucLure of fluor-richteritehaving high mechanical strength. Yogyo

Shiebold, E. ( 1 958 ) : Röntgenograf ische feinstrukturuntersuchungen annatürlichen und synthetischen asbestarten. Wiss. Z. HochschuleSchwermaschinenbau 2,

Shishelova, T.I., Tchilikanova, L.V. and Tchaikina, E.A. (1981 ): X-rayinvestigation of cobalt amphibole asbestos. Twelfth InternationalCongress of Crystallography, Collected Àbstracts, C-154.

Spear, F.S. (1981): An experimental study of hornblende stability andcompositional variability in amphibolite. Amer. J. Sci. 281,697-731,

Takusagawâ, N. and SaiLo, H. (1970): Cryslallization in fluorrichteritecomposition glass. IV. Effect of glassy phase separation onnucleation in fluorrichterite composition glass. Yogyo Kyokai Shi78, 411-420.

Takusagawâ, N. and Saito, H. (971)t Studies on the heat treatment offluor-richterite composition glass for obtaining the polycrystallinemateriaL having high mechanical strength. Yogyo Kyokai Shi 79,377 -386,

Takusagawâ, N. and Saito, H. (972)z Relation between microstructureand mechanical strength of crystallized glasses having the chemicalconposition of fluor-richterite containing aluminum. Yogyo Kyokaishi 80, 365-374,

Widmark, E.T, (1974): An edenite forming reaction: hydrothermalexperiments. N. Jb. Miner. Mh., 1974, 323-329.

224

Yagi, K. , Hariya, Y" , Onuma,relation of kaersutite. J33'1-342,

K. and Fukushima, N. (1975): Stability. Fac. Sci. Hokkaido Univ., Ser. IV, 16,

Sci.ïen, E. (971)z Comments on the thermodynamic constants and

hydrothermal stability relations of anthophyllite. Àmer. J.270, '136-150.

Àppendix À

RIETVELD STRUCTURE ÀNÀLYSIS PROGRÀM DESCRIPTION

The basic DBt.t 2.9 progran of tliles and Young (1981) was slight).y modi-

fied to convert intensities collected with an automatic divergence slit

to corresponding fixed-slit intensities using lhe reLationship (etritips

Operating Manual: Automatic Divergence Slit pwl 386/50),

r f=[d rc.20268)ta /tsin ( 1 1 .1 60+0.8778eo ) -0.1 9355]

where If=intensity for fixed slit,

slit and d=divergence of fixed slitIa=intensity measured with automatic

( in degrees).

This program performs Rietveld (1961, 1969) analysis on x-ray powder

diffraction data collected on a B-20 diffractometer operated in step

scanning mode. It features single-pass operation and built-in direct

applicability with all space groups and with all atoms for which the re-

quired scattering factors are Listed in the I nter tional Tab1es for

x-ray Crvstalloqraphv (1974) as coefficients of an exponential. series

generating the X-ray scattering factors, plus anomalous scattering cor-

rections as appropriate.

The Newton-Raphson method is used to minimize the quantity

U = T*, lr, (o)-yr (c) I 2

where y¿ (o) is the

fraction pattern,

by

intensity observed at the

y¿ (c) is that calculated,

ith step in the powder dif-

and the weight w¿ is given

-225-

226

wi = 1/(y¿ +y¿¡ )

where y¿6 is the background intensity at the ith step.

The cal.culated counts y, (c) are determined by summing the contribu-

tions from neighbouring Bragg reflections plus the background as

y¿ (c ) = Slpn LK I F,( | 2c {ae, n ) nn *y,6 (c )

where S is a scale factor, L*=Lorenz and poLarization factors for the

Kth Bragg reflection, FK=SIructure factorr P*=multipJ.icity factor,

P*=preferred orientation function (currently only for platy habit as

exp(ea2) where P*is the ref inable parameter and o is the acute angJ.e

between the scattering vector and the normal to the crystailite), 0¿x is

the the Bragg angle for the Kth reflection, K=h,k,J,, the indices identi-

fying the Bragg reflection for which each of the above is evaLuated, and

G(40¿K )=G(20¿ -2eK) is the reflection profile function g(40¿¡1 ) multiplied

by an asymmetry function a(Ae¿6) given by

a (40¿n ) =1 -[À( signA0¡x ) ( 2ae ix) 2/tan06

The background model may be obtained from the function

y¿6 (c)=Bo+3r (20) +Bz(28) 2+B¡ (2e) 3+B¡ (20)a+Bs (2e) 5

or from an operater-supplied table of background intensities, or from

linear interpolation between operator--selected points in the pattern.

Current.ly availabl.e prof ile functions

d¡ .- atn 2(2€- 2o*)' Gau.slan d-ÆH* -li- ;^n-

*1 ì/[t+c, 1ze'-zo*)')' l{od I Lorentzlôn qI_'K -Hil- 2 Hr

include

l7t+c, (20.,-20*)'?-Hi.-

I 7.[ t+C, (2er- 20*)'? ì''s

T---

lôrentzlàn

Hod ? Lorentzlan

where H is the fuli-width at

and C14(223-1).

221

hal.f-maximum, C.=41n2, Ct=4, C:=4(212-1)

H is approximated by

H2=Utan20 +VtanQ +W

where U,V and W are constants for a particular X-ray pattern

Three quantitative criteria of calculated to observed pattern fit are

given ("R-factors"):

Rg

¡ I I("obsl) - l(calc) |

¡ t('obs')

Rp

r I Y.i(obs) - (l/c).Y1(càlc) I

r vr(obs)

I r,. f Y',(obs) - (l/c) v',(catc) I 2

l@t/2

RHp

(n-p) t/2R

exP r w., I Yr(obs) I

Of these, the R"rp is the most important for following the progress of a

refinement because its numerator is the quantity being minimized. In

the R-Bragg expression, the symbol "I(obs)" is placed in quotation marks

because it is not actua).ly observed" It is calculated by allocating the

actually observed intensities l¿ (o) to Bragg intensities, "I(obs)", ol-l

the basis of the calculated intensities I (c) after Rietveld (1969). In

the expression for Rexp, n is the number of observations and p

number of variable paraneLers during refinement.

228

is the

The following parameLers can be refined simultaneously in the least-

squares ref inement:

1. lattice

2. atom posLions (x,y,z)

3. isotropic or anisotropic Lemperature

4, atomic site occupancy

5. profile U,V,W and asymmetry

6. preferred orientation

7, background function

8. 2ê-zero correction

9. overal scale (one for each phase)

i0. overall istropic t.emperature factor

factors

Required input information includes

initial values of all variable parameters

step-scan data in equal increments in 20

20 Iimits and excluded regions in the data

wavelengths

background spec i f ication

space group symbol

chemical symbol and valence of each atom

number of phases

profile function choice

1

¿

3

4

5

6

7

I9

229

profile cut-off (in units of H )

preferred orientaLion vector for each phase

termination control: either number of cycles or 'Eps' value in

which case the run terminates when the shifts <Eps. for all pa-

rameters.

relaxation factors for the shifts (separately specified for four

different groups of parameters)

output controls

10.

11.

I .'tt¿.

13.

The output includes identifiers of the refinement conditions and

subject so that a given run can be reconstructed unambiguously

adjustable-parameter final values, last shift, and standard devi-

ations

R-weighted pattern, R-pattern, R-Bragg and 'expected' R-weighLed

pattern

The following user selected printouts are available

reflection list for each phase

corrected dat,a 1ist, with w values

observed and calculated intensities

correlation matrix

I i ne-pr i nter pJ-ot

off-line plot (".g. CalComp or Versatec)

I

¿

3

¿

3

4

5

6

Appendix B

RiETVEID STRUCTURE ANATYSIS INPUT DATA

OBSERVED INTENSITIES

This appendix contains t,he observed intensities used as input for Riet-

veld structure analysis. The figures in brackets after the amphibole

name are the starting 20 value, step size in o2 0, and final 20 value.

Entries in the table read across, in the input format 8(F7.0,1X).

226225232215210257239258232249259229235246285261318286355455536764

'1 0961260

750520473523665799

12982101'10s4

22224623920326021719721322423224624224426027927332735035s467546735

1 '1s8

1207669488470527646874

1 4431 984889

Scandium-pargasite (8.00, 0.01, 72.00)217 192 213 239 253234 234 236 207 236222 228 22'1 234 217204 253 242 224 238222 230 220 212 241226 235 234 229 231222 223 198 207 240238 222 249 235 200255 23"1 260 233 255231 243 225 221 244229 240 253 238 257235 231 240 265 270224 231 258 259 259248 258 244 267 258283 262 303 254 279317 286 300 288 276318 317 301 316 333370 351 339 334 368347 427 416 398 396468 480 488 511 546607 605 588 64s 6777'16 833 904 901 957

1178 1243 1242 1220 129511'13 1093 '1034 933 862623 594 576 578 51 I471 507 500 459 484474 472 478 482 51 6

580 540 547 565 583650 691 703 710 773922 953 1018 1109 1178

1 535 1 584 1 685 1 858 18921 945 1 857 1664 1484 1424741 668 589 51 3 496

236199221225220198220244¿¿ba1)LJ¿

2572562852602602823'1 0

363444507701939

1292809537453503561835

116120671 184

441

-230-

231

382298261276243219238235230259224257214233227215221216239220207249224245250225225222247210235221224231201208¿¿>2292363022322s8215230244242232236253263239213233245278

373252¿53236277232228250226252226223226206214207236205227245205228218230209221242219259234251226244271215238¿l>262206245239216233227247248221231236235213264213250253

388277306265253243211267234250236258242250241228219219256222224'185

215221227¿3ba1É.

240214¿3¿239219243209235235209245213239251'198

222210228233245273222217204216231214232

334284247244233)2724027024122524023923221419',7

227252245240254220216229252218228216250221205247245209236240260217231233248254227216239246248230243248249220233235238244

318272270237247236214217217262234251246242244254237230239229245238230241234199240229232253232221227220228224¿¿ö231252230236247242228239222239224253240229246221234235

321300264222245244246255258242222255245250232209237234208245221215243251230243238231239246275240211237246233¿+t¿s6239217226216222244237224220253247250¿¿¿232223221240

290260259261244239235230246245254229221215255212224236228234220234222256231263261263241260242241265233207239¿¿*2332562402402082082022442s3222238236217227235247246226

318273268258240212277203247255255237220225224217¿5¿241238222219209237224211251228231227244233217241238213219ô1Ê¿JJ

212217241204210213234245250247204209231253242227245235

232

23724121122523824623424924222023724023426022726423324423726823623426224228528s299307369515574402349333329392557

'1002

1 8591328

558382369362384336292242293272275255285333370

254242250224224242232221230207238231244237232243221230254228223213260236238273274313414541585370321298338406555

11111 843'1 1'1 5

50s3813353863693'1 3

28630128928729126s3'1 5

329387

248250242244240242227227227260280253240245243225226251220244243279249220255254265311401573550441329315376448665

117I18181019

472367355390352317254289276273260296302316369

257230245250232243¿¿5222242235224208¿3t2s8227238256235237¿b¿240264255240240257298326378589s3338230s322370455661

1 345'1780

8804723533743653623012732802722792632s6280307407

221228230237266270233247247218230237264218246224230273267203251278234258230290291310426579492373315322372471747

146417 48806459326321389358289256248244261265249272335429

22224124622523622421122522724423224522923522223124623525426523922626026826224530s328444596475364304319357482768

'1 5941 647

7384403733573413403'1 3

257299284279291288309341464

256270228241243216?)g2292282432692342662492502342642612242642382002662322562512723344775 5'1

448370294341395503910

1 6361527

664397329359378314281¿5¿264279251267279314360452

2332432432252172762312602402522342332452182312592712552322302342482402542612552463824975904443 5'1

31934139753s

102116641 346

621392360375387329288257273282282260277325332486

233

s061 0011 98620641159

6443603593¿t28227128324934937732329333139355255936432231727631130s290304365372379450607763735892900632512609883

1 455'1535

976518362312302325275291312321313

537117 821061987

97750s4053653182752452772933283773493423323875245744122983'1 0

285290290286293336410369470597795718972925609508633964

1 s381525885478365318277313309286284320303

584124022011 83394350836936729328725427629233640333331532442657952739133032930630529131633s3393s8412433617730778878890601504659

i 00115291520857456391321328319283303326317298

3261263224617 18

827472349340298301298¿t3291366375288309314418s36575353269291303306283288294352374346465673741800

1014818s6ss10653

1 0551 5951 404738436354293347324297304298334332

6941 37522941 5407864543933572902892992733013483353172783634855845013572972743073012922903073643463995317026908149998'145'11473680

117 9

17 131286

6704 5'1

34430830030332s287302333342

7071 s3623651 417

67047838334229927428726528538034129531336445762547036'1

303287284267295289309357371420559684771865995765s39553719

120716'181239

628399330310306289281263299308349

8251 68923061293

6804353993172932852452683173543112823073605215694393273052972633023123123453453944435417707108729'13709489s09783

132416121143bt5360317284318267283269308300332

89'71 805217 01 188

6453803483'1 5

3072872863'l I3183503222873343705'14570462349275¿63282313281337298344387446573755717876907627543s63860

1 3s31 6301 081

5593363173032793032883352903'1 1

348

234

368371398348308299298321308317304288J tð33330332929631437939s4134665r5s09487s305947139s6

1 60031'156467830649112235116787s742856

1 633399768753¿t¿26411224

649604575559498545674827

11271 638

341426402320283270302327312302288305307288282303323302347366459525522526465525629694943

17 31

33877 001830s47 9721571138

723772913

1 89444 50688 s50242268'1080

649579571570508584686871

117 6177 0

3204053833113393013192903012963133242763333073s1313325335390439504469498484554621795

1 053171138 317 49977 15421'7191s1 034786754942

1947498769574631207 6

9226525725435394995777159'13

12441 869

364390353301318302300333268303301310311320309306325342388420486527499496502542643749

1 0801 98842367 917736337861 68s1 039775I0'1

1012222453 57578342481 8568455535595s0543s3s577692941

12232101

3624173532882983212923373023043223123362873113283163783374264714905'145045215s3608841

1 1772054477 080'12695634 681618994763804

1116248757 43666537841 695

833579612610530522598735

101413'192206

3854'1 3

348308289292282306322299304293323302302314339351379420478466s30475485556672892

120823394 9888302643630981 437946713846

1260284361 04637735721 537

848593613553533s19592731995

137 62404

391384364316281258272285267292314304297320330345332355348422455488475507556576657882

1 353249856778207583328811375857779809

135231 5863 93597231791 41175356'1

630584490514624839

1 1091 5062611

36338531s30'7275308318345303268297312300332345327341358367414497494483535498s6166690'1

1 38828796098I 364549625091297

867776872

142235s06541567 627841 306

70557''Ì554554524528561752

107 7

1 5842915

235

3 0487 0240336594424091 088

780611559597789

1 398265022241145

689594631624911

11411 186

90s817

1230231 44692807 27 13740331795

92072',1

804748674560679807

1432297934673051343328 51

19271 188

9409129s9

1328253250 9458933920

344 381 34

1 00s6534'121381 028

787686614593785

'1609

259421291 069

6926536036768s3

12061175

891817

12722453507 68037687 036081 56'1

821767768687667577659917

157 43052337 0309 1

331 5278417961247972929994

147 32695560958 39380 1

38 6684 53941 648 57'1853

1 033723617621638834

1 699272519979356306126486419s6

1182117 6886852

'1408

283256 34I 56764383257'1453

772715703706651s90677920

1 666325432'7 6

31 0s329327 01

1 69811 469148s8981

1 556310257 1753643645

41 539121917 3440 3

17 43927727548601578

10261 84827 181782877671623640721910

11391094896921

1 43028426017844 0602228961 396

767770718704588599704

10281879331 I333231 99331 425071624'1 069

916897

1 0881687332358 5051 863602

47879694I 5633822154791s6966s3562531986

199226991 640

864636588592737992

11501 003896936

1 631322865408250s60 5

2570I ¿5¿733702786717s92606719

114221903305323531 173327242715241032

911899

118517 663667604251 053 280

5299'10044

790 0340 1

147 6

838662572558673

1i 0922302738'1498

762650646636804

101312181012863933

17 22358370387963527 1

2338110679474176866960860s780

1 0982300337 1

323633 07320424131 4271 034889899

121418973927620348363123

58 5810292716929901294

839676622563648

1 183235024731 420746683667631744

1 0491273

944876994

1929392672857732473021911 00377978072569763'1

621783

1 331243735273077326131 0821601 30s

91984993s

12382060438 56046459531 30

640710269670527781170

824642611542715

1324250124151227

711658619500812

'1087

1212982862

1 0962052428577307 4304250201 01005

6907947056446076s6832

1 341277534433067333s303620s2127 6

970915985

1222223547 40598742243240

236

331 4439842923552497 59247096i8374503228361 6461128924818715676666652690749

10231 551335466427B 08578833602019153518s842210 281284777 642860'1 3481 050857966

1 0451236172020121 460

827s39516659

1 0331 4131107765s80647938

337 4463542183 s6'1

527397 62

'10902

803047 032 5901 5981013874766696687660710702788

1 0081 64538057 08277 06545932041 850'1488

197 6481 3

1 08981247 1

681 1

268912411 030

943972

1 00112211 8861 96512947515'1 6

562692

11 41'1380

1 086713586665

1 090

3638449940423s335700

102521 0867

7 452445824981 4881026868810682668667865't 13754

1 075178441 497 4167s38499928781 8081 40922785482

1 181812002

625722701 187

948941999

10791292191718901237713552s38723

1 1531312972682565582

1115

3542461 638 61

357 46 348

1 06071 0459

7 0964093238 3

1 4231 002

812738738653655671714850

1 0841 9564 5617821727 4481 4275817251 48523506202

1233911 4995585'1884

1155998939

100211061 30820211 8551201

678523567770

1181127 6

914538601761

1196

38 044666387 438366913

1 08701 0463

64 95388 921981367

98883s770708652643681755848

1 186217 4501 4791271414441245116221 50827566826

129131 0573

499918'161'131878990

10321 0551465203517281 064

644526597813

1254127 6

901573632742

1337

401 44539371638707 601

109279828608 1

368s1 9681341

911863791707713634713722898

12062393567 9775967 63420524571 573'1 55229417878

129931 00s0

433216221 080

925887

1 03s11071524207 3

17 49944s89547564887

12991245873574594805

1 3s6

421 44447361 642308234

110149134562133991 8551235

945824702'104

661644705777865

'1305

27 0058737861649138 6722591 5951 6303 33187 62

i3154937038171525'1089

87190s

1 0s4109'11 s6021331 605925576524s99949

12791171799579588821

1 445

4325441 4348644128703

1 1 07'1

902254'1 1

306017221219

9268447416787066s9689776932

1 450290064687985b¿b I

3545209615121 65938219475

1 30s0I 58432351 3881 009

891949985

'1101

1 6722136157 6857542482648981

131 41133

78557461093s

1577

237

1 6911 879I blb1 191122717 34242021131 5861 060883991

126226505282754377 5757 43327''t1711119010971 1981 413¿3t3319240554466333 1

1 8849s8607591687735840

'1001

971863680680876

11911492200718011299

81765460160s582630798788

17 591 906I 53711A41 1871 8252469212814291013

917962

1 37027 6457 42757778 30549 1

30571683117 41 03511 451 53624463 38841 4344 08313217 34q))

649596661741920

1 0001025816687723861

1 '188

1 5251 98018101240773597587s89s58636728905

17 6817981 4771 12212471 948234419921323

998854943

1 5053020595475437 4285.1 5427841 s091 096102212021 580249933974185421229'Ì61 586

810644560614759878

10299s8857639719971

117 61 6211917177 6'1 153793566611619552644794878

'1843

1917138211 4312922091241219101288975875

10161 64234416294777 6733048 0025691 4851 095107212451 6262645353 1

4302404627381 4338155905'71669742894

1015935784680709

'1018

120417 07192617 42111772060759558559269s785917

1 89317't11 3691 09s1 3542106237 41 8561298

968882

11021625380765467892''t273

457724861 4171 0841062127717 8727 09366 9444041342569132880s664611701748948

1 0s0930797687'7 44982

12991784202416161 003

683612602551542690770875

183117821 30911451 45321 12235917 441167896894

1132184741 6666828024694141'1322191312106211181292187 1

290037 36438538 5423471225770598633712744

1002994830754616743

1 0491 3331 8391917147 4944675638558621s86668836949

19621754123011061s1822292239167 01213

8BB909

117020254 595694 578396494381 5206312401012107 913621 98930 3438 66442336062263112369s565329733840967

1042905730689818

1 0611 381191519181 458

9176535775s35s3605706831932

1 904163311981 0751 59s2322221616421 05s

889925

1199224448077 197801 463693 56619071 160

9731146137 1

211431103926442635852113

98670561062573984299s948875768697856

10971 4521 884191 1

1424846625596615590629710891919

238

101915443239598 56656548 6348 920921372107 2

1 0451 121

963755700465499473491567780836724550458461421418451463471455522673972

181037826265651 1

454025401969241 4285927242s69210117271 345

968939971

131717591582

1 049156735296187658752393281191812301082117 41'109942659592511497477540s98779826722s3844941041243742245045449856768s

'1008

1989407 4654262394235241 61992246628942708249221141 6691323971896956

1 28316661 s66

11001 84838796423652250233'1'1 91842124810321124111 4

961705581s36489486563609812773595489430384424424464409453480547681

1 '106

224543726687586541 012282194126122818279223392054169412661022

92710251 3611 6631 504

1118191541266 5466357492229821 809117 3

1 0861 1751 0s7

822725532536487484517646803801655480424422407405450450449450594753

1 1982466464667 6558823790223420342612279327 07237 1

1 998157 61179964845993

'1 48117 371 501

117 3203847 01

6627632044872772161111441 090112s1 081898690554518498s05544700829810s99490416416413430441457485545620733

12582697s1236780552 5360'12125212027272852259223302009152011 4788s919

10421 4591 6931482

1 16823784921668 1

592641232s1115291'15s'1069'1'130

1028837562504s004804675647008s67475'184884624054'1 3

439432435449503629861

1 40929655534691152923290202s2249273428 55256422831 9691 4521 080

910900

11 421 54317 491377

131626365239688657 08408424981471112210731 0731 008864638s30443508486s80751812742614473438388439381435490465538621915

157 1

32795665668 94983307019132298279927 67263423411 8811 4591106

877887

'1158

1 6061 6891353

1389281 1

560 0

6806s63 1

383s22021 4051 0001 086117 6

999772s98517506492525s89756837731586488370425427416442446461487648886

17 13352560i 96478485228071967230128 052847246823081 9191 3331 004

911932

12461 60s1 5991290

239

126110621029'1'181

1'1501015

896887967

104388970363963s944

1 18'1

1 026799607554627889

13922233213s161512561 082

975862't40671715917

1 3431 541'1 5901 46716101 7981 85917791 s811 3931127

9017656805276s8837989923830728

12371 0311 059121 411671 006

857894

1047982814678631705944

11071 063

761626512692888

1 601227 420921 60711851047

981877736625761

102013711 6421 s331 4481 s8117941927179215721 3381 096

844680621630683961

1 082960813705

121599s

10't I1'18011561 000859909

1 1081072840661618737

1 060107 6

95575859253i642

101917 11

22562048'1515

11891016

9s0844688659795

1 0681 3901 5451 525151116271 86818491714151412991042815729666653668905

1027928771675

117 3961

110811711 135

980852937

1 08410237716186s5885

1 0531141933703567564622

1 00818'1 I227 1

20181 53411s81 046

941765635643780

'1100

1 4891 568'1 5901 4441 57518161 88117 13152612311 093

826724634b¿t765939

1 0719217316s2

1 126969

1 126121 1

1 1401 004

8371 0391033

979793618625781

1 1571 126

883643s93s66706

1 095194223341 8941 4721 0881 081887827628639857

11501 43716201520i 48916221 8451 8401 6781 48912221024715715612654776968

1 008878722643

'1076

94211001 16311 45

96s822919

1044955730624677888

11541 093

861661566609683

11512107227018121 38411071 006

917763624682886

11691 s30161s1 4771 444161 4187 4178416451 4111191

917792667611628817983986899742641

1 0881 03111961 188'1 105935800957

102789s699621671880

1 1191062838587578602752

124221 47I t5b17901 330'1 140102389382763s693899

1212157 415921 4001 45817 63'1935

177 9161213921225

879749620645656791987914901717642

113210101 14812261 059874885969967906735612677930

1 0661018

871573542606778

1 3912137221 617 161291'1 081107 6890707660749940

1 307'1561

15171 4811 5751 654187 1

17 091 5851 3931151

91072561260966s843

1 057918816727641

240

627689694731570572628611587461409389409440421548700

1 051'1408

1 400117 4

B58686573573t3¿853973

14591 99817 661 487

9217166355765bt579523493511s98862

1 00311 6713271 48921 49266128773'1 30305224321 8511266

662697725729654638613621504468390410390442454515744

107 31 50414181169867692576636734832971

1 538210217 031344

910666623637558546519532530s91859

1042118113131 603220428013'1 0831792936228517141259

680718726734587599s91617515488431415377384446521764

1 1521 441'1375

117 4857630602633770831

10s01552208617 1812728336826075585625495'1 9484521619839

1 07112001299161s22672898309'13093279622351 6581225

63s717736724673611643574554409413391379442463581775

1201147 613661 075

817609571585780822

'1 098172221031 6371254

8'1 0

651634577598550494476504672896

'1020

1232132417 442384283430703'1 '1 9

283222081 s831202

6847627107 4'lbI6246635795604433983894234324386218'1 9

12341 47713701 034

802589579627796857

109717 0619661 5701117

732614562613570535517480556718870986

12321 33317 6124302824297 1

31 0427202082'1 5311 140

639720652696660647616537503445397440389450469519904

13451 4771 3011 051769575s83673843910

120719021987'1 558114375460s560578601s01455470508713969

1 099129213ss1 864250229253 040310727082041'1514

1112

6837967336916056s8588545494447367410424403527649919

13611 44112391021702585612676796867

12531 9551 89s1 489

99673560966159s546542536512544738952

1'1s512131 35819462548290631 872977257 1

191014371126

647774722659651646578601503422423379408435522729941

1 3841 4591231886698623620761828888

136420681 833147 6

989700586613s66540502462523627775949

111612901 360203527 00302531 6230402452197013961136

241

1 09s121 61 4031 5s815141219'1008

881898

1 3912s933812407 3

36s5327 1

2869239720821 803228427862 58820961 605141616'181 80217501 6941 4301130

995842765688t¿3827

128116321 55613921 058

9841 06316242526297 1

293323851 857151912181'1381 006

957

1 05212541 440161s'1459

11891 045870

10121529279738 94407 1

368131 58¿6 I t

23842061'1899

242529552659209415141 402173317 49177 61 6361 3081042924711715694741895

1 4031 656151213241 15s

9691 08917 12251 43012290424091 8451 4671255'1093

946896

1071127 41 4461552'1385

11'779769i5997

1 6333 04041 354030360531 4827 092356197 0

1 87524032927259920681 5961 50317 031 801177 9

147 0

1 3851075

860786739710743999

1 41917221 533'1385

1 126972

112318162586298528 06228417'11132112381 041

977917

11041 33015121 6051 393'1 '1 38

888884

10451 78831 844092395034 68303627 15228919661 8902541288724021942'1490

147 01 6901 8641679153s12491042902752678715719962

1527167815241 3001 037

9301 1931 953268529572758227017 34'13s1

12151107

975899

11491 3871 4821 60214161072

953883

10211 86s327841863 96834093 093262222461 98420132600282924311 8701 4571607172717 9817 181520117 411088s2787680745776

1 0411 5481 65s1 41112351 088

955131620392885301 527262149157712961202999962916

111713461 5461 5631325'1059

963882

116s2084345341 3038 6733802957257 1

21521972201828262665225517561 4651 5561 70517221 6971 5081226

965839742733667772

1 0891 6371 6381 48712151 0531 009139721332834301 6256720951 59913261164

997941845

11631 4011 587152412801 040

911921

1 1882280363 041 42382s33522935249221321 8312'18s279427 4022831 802133216281772178617261 4421 1941002870687660710789

11541 5011 5701 438118210421 0511 442236028472980252620461 58212681141'108s

1012848

11631 4231 6081 47512781 085

960936

12732465379641 3838 0932832842255021021 93'1217228222646221 41 6471 4421s11tt¿317531615133'11133

92981971'7568704851

12211 6411 6601 3781 1571 0351 0461 s65241529442926250419781458126511011 009

960922

242

874B3'l918

1 090184727 303 6043264265519521285

970906803715734786899

1 0881 04611691 380220037 26461747 10443635822936272127 422691234621271 63312731023

908804664584594708924

121510461 0631 003

882848913

1 00911941 5781729

879821889

117 418942844361 I31 3825971 8391123

950846735713720778865

1 0431 06111 661 417¿+¿637774661481 04387352728242786262126102396201 61 608117999490476964859s640709

10'16121210181 038

937848907924

104412451 607'1819

830846969

1293198s2923360 5308 025521 7051169

949787773735709825952

1 070116711531 55426173989456147 4441973396280427 672824268723351 9001 s0011961 039

900769676617609751

1 04011411 068'100'1

992823861880

1 1081 3041 s781784

808813963

1324'1988

J t553637301 02494151 41 097

853803769660750799984

10671'15012781619278442444697452141 56J¿3 I283626282729265723251864'141 I11349188527426416s0644818

1132120910111 007

891860870913

1152i 386i 6401826

8s68s0918

1 35s219731 663570304723521 4801079

906788742711752782930

111512011261'1640

29224228500 046303923324227 41

278526722648216417 471 4931'131

930848712640s90667797

111611351 0411 001

877834889944

1 090'1389

1 6771872

853846940

147 32320341 03543291223941 4571 047858767801753728804994

1 04511131 3071 84832 08441 1

484 3

453938753066281227 11)1)tr,aÊaa.JLL

22091 6591 370'1083

916838663633624611854

111712111 0311 0489s6799862925

119915261781'1808

84280s

10371 551241 4

3521350928722119137 3

97885277079475873383s989

1 108112213131 9813432427 1

4842451 1

384 0297 427 49273227 12250021 4617 0212731 086

905766709646s81640939

1 1681126999

'1009

952822897979

1172152918191 803

908864

1 0921 58425263 5913409273019941258936790786744770762917977

10371 126141121 453 s9144894752452636212954265527 63277 4242420121 65812581 043

9327486616'1 I617675862

124710271052932873870867991

1226152317 621847

243

17 921 9401 83615891 5551 5001 80426774592625657 4450 58368425411929'1638

1322'1'100

9627906546¿¿541505491s33s9062663366962567966763066s677660618676709687648554531536505499507459496482403474475s45

1 87818151 6461 5381 5541 540193428914852620557244902353823581 8631 5611 3811172

9508076705945195045145476067216636676236466296696s36876716997387016866985755225'1052952748050945242644951553s525

18731 9601 6951502'1445

157 1

19262975500761 8854 554693326423731 8631 4821 306111s

913764606536582492tr1tr

540571633659662638631652633660679664675751739717627575511523485559482501459451472483527512

'1898

1 8691 6s81 5341 45916251975317953 906179552 3454331342227167 B

1 54013121022

8917016396095235055305576206977096296605926656666796756496907217586ss615555529480499494489s16488451451455496522

1 8811 8681 s8814981 563'1689

20993 s56s608596753024337310221 6817 2415411 177'1 086

90s7206415484975294965815856486206476786006ss738658706659717690753636604542543510469520515504440465458537527520

197717 191 69415431 4631 6262262382457 656030527 64234286722171 670139912031 04982568462956754048154554562067966s68s685663643713644695679698733692694617545524503s08534s01481509460454460510497

'1 94017901 5961 5631 465177 4¿¿5 I40425 961s81 3

s0 663939280519771 6891 4791 1681025830680602523s3350654157161464966861969565061165'1

675680639763708685607585588s09493497465469459531479469504546504

1810'1709

15941 4071 4871 8032463416258 785806497 438 3427 101 88416021 4021139

965742646s66536476s3052856360866461't6''14

626595660659637672732732705682627s93495474482524497534481507442488486514515

244

551513s19s89686994

1244137 1

1 5861924229024792354206617 1513291 094

805765693628633614566675832

1257152817 811 80719281829212024572437244922961 98416281 4351243117 91 393172316971 563136212341042896826849

1012

525533s165947s8

1 082120213161632195723492 5s023751 90816251 343

960904741720645623618597743873

127 41 570'1819

1 88s1 895'1903

2178249625432499227 1

197516711 33912221

'184

1416172716491567141411871042884841916

53955253'1

s69733

1 00'112s6'13ss

1627200 6235124942269201 I1 5581239978800718bt I608642623634719936

12811 6621 8361917187 2

191021492563255325402415197 0

1 6091 39311891 1991 5331 59016391 58113871210976886875866

522533542586744

1 10312831 41917 1721292362249121671 8871 5481164

9748097036s659662961963s744937

13111 6311 8361 8981 8501 901220925092575249622981 898163713291 17812241 56117921 6331 s611 3601125

989863866909

s06522548s83868

1157127 01 4491 780209224862499217 1

1 8911 5021 187

933828715698608b5r666633803

1 0301 4051 68118't 1

1 9381918203522732 s602522247221 66196715181420115112361 60417 471 65'11 467'1338

11231 009840838

1 004

485541541641879

12421281148217 512165244923752187189315241143

917777717640570689618683830

1083'1405

17 35189918971917207 4233625122483249022041 83515241283119213151682166215321 55012611 086

9768778649s2

5455s0541668961

'1 '148

12921 504179822192434245321 171827i4451 140

939784626550647641568677782

1 051136'l1 7501 84519161 886209024322 608250425042054'1839'1483

1 1821261137 617 181 6801 5461 43312621'115

971850900929

5s9529560676910

1230127 91 50519022337258625131992'1700

142811328827446676736436'1 3

647646813

11431 40817901 83419641926215624462 55125522377211517 011392126812421 353173616471 54s1 40912601 045

940I5'188'1

1013

FIuor-pargasite (8.00, 0,02, 72.54)

245

381429467410434445460464s53567726

116124811112

928121327 082092

55443345843648147646846344350046643452651't463507528626s80527496499461466s15s154804315114654764775'13498499547543

433406418387454446473475603569673

125328 531 009

9491286317 1

1 433526496461466508443468506481483499420472452501503499604s35479494500476526488493452480518474500513s09497522s29545

456424424455450463462494544564812

12693020

871980

1 3353s361034

49848146844047245746946348351150245946s476484519558643541535462476510447468474478466512485496535491473568508510

469440433453418431491505551621783

1 46131 89

8791 0091 4603922

856s15457461481469474485484453462460470507489494492545621582510s10543535459480508465482492502475507480470473s18501

455444420393488448442513s61634923

147 42868

7941 0661 6423963

665475478499463442441441468458502466442464472431520s66674s58511487478500472526507474466473519481441525s10512576523

417458440389459456468567563643920

17 1815 tb

8291'15118s8388 s

620545457474464453465454487478456453473477515465s13551654s6055349754'1474515460465519507481467509484506519537536512

428438419439437494452506552698980

19612039

84412232 0583364

584473499492455458472491489476473461481476478472535568s9856348951749747748448548646151445349248047846951847948450s

459416448464429467508535546695

102922791 558

8141229239028 08

56050'1485411444453483493486456460482480445489472s12558636s86s09508470504467490536478s184675414904674665s0s38505s22

246

510514558594

10141 5491 064117 41 5954264

910617653668

1115720576708

1 '18s

37 472056

688554713

1312802629728

19961 008

550587876

21821 03820321 4121 1211782491931231 4061 0731 563

9379058'1 4

814908

1525977635670686795

536522527624

1 0611 65110271 037187 437638085'Ì 6691689

1144651575583

137',l42951526

624592729

1256753603847

225480s57860'7989

21551013230212121 16820434823327 1

118211121 534943765891777987

1 648897654644653758

525505569637

11821 646'1 037

973227 0317 4

744620682757

1159560s33751

1 60745971 205

626621819

1100734632903

2486699573613

10792130

9992592

9961247235944943383

9531222i 368883817957708

1 0991 492849635662640835

537548532681

113016831052

96727 492404

6s9639616784

1 063632575766

1 89547 35

97760s590901

1 000691612

1 0352479

62360s639

1272'191s

1 09927 17

957129827 65407 63430

91613261 345

858803

'1003

77711471 369

767642693732866

469553520719

12401 47811101 05432691920

643660627835

1143590620795

21 434624

87960s562942954719710

11142385

64558165s

1 485172912412668

9681 331331 334723235837

1 484121 4888777932731

12051 305757657668680822

489488s33771

1 3531 37012421 10737781 s02

6646176119119s3577667800

2s1 I4054

85958s642

1146830708677

127 62004

589563700

166713461 3612417

9601 41739983 082280s

8831 4801260883775982730

1 4581226

72760366s649853

501527552874

1 40011871244124542461199

621630667

1 003956592634931

2952341 5

755605650

1'18s791637676

147 0

161062666s752

1 8981233154720899s4

15174288291 42410

94316101 088884707864817

1 4891157

648671629746876

500547s8988s

1513'1 0951 1751 38944551 006

5866s9555

1 045835600709

'1 06833892677

746585690

1206782635737

17 4212s1

571613806

2068115'71 80817 661 05715824734291s18271 0291 5781 124

920718812861

1 5701 060

6286676s3838888

247

87810411 0481119178669631 606369 1

13411222258427 01

30 63208 3348 9498338 57l5J I

3284286181 0326171 182'1389

23193025434431 0315471 6674939841 0

307 1

223423951 9541 6941195161815823609s0 9318'131 63927 0617 197 66948750 s50181032901 9881 5061 0941 180

853107 41 06111122037871 5

205s32802122612963035

1 43871 0505

2079381 I51 31

34251 4343778

1 43091 s890

226411061 424254129984727288 3

1 452197 9

58692009410235

209124151792172512261628'1653

4012468416891 6683305

1 300763 0457 47

234881 7553

272520231 53311201168

8701 140

9691 1852289

1 08'1 3

1812623971147126137 62

1 s9s38254206340335207299615254636

1647 41 3253

19211'13015't 426782982488 925891 37021 176991

2223077352047263817251 6391 3061 s911 8094461406917901 64138 58

137 0653 7868 s3

2654413666

2 501182813921 1861116

96811'1s1 00412902651

1 346015423

1999117I1 409461 6

17 698633'1220443354939¿5b I

1 6585 507

18220107 44

17 1710711 65327822 9084 965¿35¿1 3602363847 0

2270658 3120592 5501 6121 563'1395

1 573201550273 563178217244 900

1 38484 5058266

28679i 0869

231219171 3681 0701 157

9181136976

1 3453092

'16078

121 641 75811841 450591 I

1 8579460423784405501 422081 803658 0

'1 981 380681 424117 8I /b52869283647 40207 013322799

1 005822364

464620992s391 6681 4021 4431529219554822984179418276111

132043 953

1 020029985

811722421 88412551 0801'118

9821115

98'1147 43724

1846294331 66811621 6297251

1 83833s932594460547 07197 31 8798018

2030762161392117'71 8413037321 444131 96813673208

1'190321317

357321 4125021624132615271 501254257 4626151 8871 8937513

121313809

125693C26s

613221021773120611441161

99110921 00215274499

20394681 61545112818248859

172842788283747784 5931 664215594 95

20425445912721249208230623s1 4

397 617 62136437 62

13782186472879217222931 647'1 3181611147 4282158 s32114'1836

204090'14

1 08653897

14732287 66

479320031 6841'1531 0981'139

9381 0381 0301 65054 59

21 49450211 3631 1s02185

106181521 62429323148 5741971 5602677

1 083s19679

335311601 345216630 553925351 717 0315294273

157591 62122409232321851687127816181 40132495662192017842 308

1 060291 804250

1722825754

380 31 9351675111911441203

248

12541 954I 99s0'1 s056622445578 37 433361 1

31 532303i 3s91 00613412358245533141 641152144323421197 7

3266409720903 55104 04s81 3120138123821I 000221337 3922591 388'1843'1 981133817 1250 503270'1405'1043

123117 0230126243522592443411336117 681 191'1139

12342177

1099'11 8878

52 531 456223347

6s603 52830 0921111192'1033

1 45723522611329915121626488 729371 985352437 4720924127

117641 5430

99023 50439219392

1 0853338322001 4281 83219251 300199951 70292312351 058127 4179931 656977

1592079933470301 91 6981'1591237

tJ5 I

26631 295817 043

52541 706520882

581 I322128402 08812651 04617522354278530 781 4051 78650672666211537933425204047 57

1342915145

B9'1533404042

1 099096 s930281 9881 4941 8431796125023345257255212641 01712951934351 37846

'16001

68443636289s154210791288

1 3813043

1 47821 4357

570319795'18063

5326327327 481 9331 157

9791 8412413282528161337215549542304220241243 090217 1

55361 4537'14838

788 632854356

125068545300717721 47119231 s95125426545269220612261 0811 42621 4037 4888 90

15402559s379127 691 47811121268

147 03822

1 683312019

64282248515104

47 023211265917921 125

98320642361311426161 403246547 41

2129¿3 3¿4 39027772400

'61621 s73814753

686233s347 32

13454723827 4417241 4911847162812993'1 8448 65194211531'1111 46822244265

101261 4487

47 45377 02567'1 38011161290

154248 48

1 870910125

7 608249471 2s904s33317 22520163'l1043113122822343326122891 30028464438196423954464261525787 133

1 5905'13807

581 535755259

1 3940612827 36'1586

1582197 1

15281 3753 541454617 8111131113i 52823164647

116551 3368

413638 902335124511321 384

157760 57

1981184 068794

26s221 0349

4245319226731 5691 050113124412343351 I20121352338939732012272645362377279780i 3

162951317 4

4992351 3

59s6'13780

498625371 466'1633

20541 4941 424417 1

41 59157 1

116711491 590257 6s0 90

i 305012123

3787386s21 47126011251465

17 347161

203676846

'10339

2648885573826303323501 5181 0411 200249024123502177 3

1 4433B8B36771 873293443102202320990 52

1 s96012346

4266368 1

684 9'1 31 48430323191 442172220001 3831 628449437 121 486115111631 55027 1257 46

1 4'1 55106613442355 1

19731277i'1 '1

3

1 492

249

1 541171615791278962

1072125'72418718070557 422818546406617407 4340s31 50'1609

1 441157 41 68420992451293325951 984151913421066'1

0'1 41 396259947 57312820081 5842189s'1 90s0i64685561227 4313471121129817 9123722057212723621 578110112221 7052203

17 0717 091 62812241018'1078'1353

26957893643982137819475966 5'1

380 1

361 329071 5631 4431 58416832268239130202512'18s6

147 6

1263944

1023151127 68169628941 90615942325541 64697487 552 592399132111301316'1853

232421112065224214711'160120717 53218s

1 6591 5981 6841 191

9971 0391 460305484 0061 1988267 187486866 31

3512363427 451 4541 492157 41672233223692997249217161 46112251 017'1094

167 43125468725371 9091 634279857 12446251 874869223312551109137 4'196s

236920 3821362221i 3611 099128217892095

1 6941612'1665

1191983

1 126'1495

3 564867 35875908 7653449966250320436942 6081 4861 49015971842230324452962244417 0714161 091986

1 04317 02337 1

438024191818'1609

31 5961 454309550 64525'1893

124211341362201 I2262197 0229621 55127 6'1113

1 4171 86621 48

18151 4831 s951 0sB

9651 09715474268871457 6994 5660 78s33958543228370823 501371.1551

1 5001 808247 1

2467299122931 658137 21 1271025110s19253 67841 4722831 807'160s

341 561 06417556664039177 6117512001 3992178225420372205209112271 046139419522173

183715791 5081 00510101113172550 06825459279410553457 41

541 '1

30723 68422231 4041 501'1600'1857

2481257 02964223215641 3871 0731 0351198204541 51

3875225118191777381 9604 541 5457 1937 681716117I11811 50122812156198722711949122211021 465201 I1 985

181 415241 4771 009

9941 1401978569 1

78446227I 9525202617 44 96031 30348820 381401145816491 9512517261 1

292621831 5511353'1089

1 0031 3082201437 53545211516251 90'14292571 541 18578633891612107712281517231321 671 99024131 856114911291 604201 42022

1 8351 5481 426

9721037117 321 4167007 47369348669484 5

6349460 1

32293422184413671 505171020 552 508272327 1221351 607'1395

1027'1025

1 35622724637343421331 6122045481 0

5417427655683 066'1468'1 13812211 685239321141934241 6172211151 1901 6392031'1890

250

1 8821873329621 6813791324127711981 44515271 5591 4911 6341 9852987503 1

568 7

447953 94448120 551 306131021313258591 39 36957893373329621551907227728654340309417 811 4351 5862405697 4897748 092106164023443121338933903944286537 50s6s935652255

1 8732078331 I206213671219117 3

1185'1365

1 6341 5031 4411 805195729994967563 9446454 56404918221261'1378

23093409660 990 66s1 81

34253202201 I2000228s301 3

440 5

28591 6511 4591 635257 4797284'1 5407 1

19101 658244131 5733023 32037 1629614288528 532792122

1 860228131 491 7801 34012001241127 0137 415271525149617 0720813427534 057 08441 4552 5

'3783175612241426252035827 0918644463134 902989199720202368317742012644167 41 4641 78827 14857 1

7955368217 671787257 433333382351 537 0728 5547515225304821 41

'1807

2485290617 15123712481 30112421 42815721s391 54117 81209935295211560 34528553 535031 63312451 4152546388 1

7 6397904422636372888196621322400331 1

411324011 5561s'191 80031 3392947360330718111 87627 133251334036243 573279651 87504028122128

1772¿t532775157 1

12451 2s01238124513891 5641 497151218232327384 0532451164605554932041 43412611 6012569397 48307748 038 62367227 441926221 4232035733892241 41 5831 4921 85735679772726827961786195727363346332437 403 39s28285592482225612183

17 3829822686154711891267117 512551 5061 5671 4691552'1806

2303417 1

553 1

48774772532328 501 453127 61 6572846448 98967715337 3336782 508197 6219425343931357322321 5351 s3019974110993 6653 026101 658'1 938286433503372388 5347 6291 1

s803451 I24862220

1 800311024831410'1200

1 301121s12811502'155'1

1 469'1 5861910245343975 58447 61

505451 312617131612901 807288 6501 I9293667234 9836002393191 621892 65841 47357721 481 5071 540206950939759615223521 6852099289433603350394431 553179591 64 30322772288

1 899324922771 457122213121190127 615221 5981 48115771 959272647275467462952234754229912651281197 3

3 06052739409615234 01347 022222022223327 90431 632801 8781 4571 5982235588 s931 6s39821561 68722343 073344 03 3093937298134345709391 622122297

251

2342268249321 53082433870378642125116608 1

37 1618101s1817 651 65017 342247J5 t/33392517253532 5838 98331 I287 1

481 1

02621 4798425406223231 5561297140813161 3991289123812601 4991 8631842'1804

1 8071 5551221'1195

12901 49417 4427 47361 1

412148483426

24032628s68 1

111907 693381 638794 304521 4s8 68323917 12152616781 6001669236134 90329123882726331 1

3 961327329885375

'1 109511192

7937378921771513'1310

1 3911 404137 91275117 612981 530'1836

1 91717 4017 481 504125911071 3431s37'1909

2870351243s9465 3

3200

2469261 66830

1071169613716401 6446554 63561232031 6441 6981 6901 62117 35247 0357231 382436282633s1396230512999584 0

118241 0756

7 061353020681 4121 317136212991 38912421 19012481 55319611 80317 4418281 478'1190

11 461 4201 505191531 853641440 545073122

245928 6080 67

10'i4362073 55240834386547151 4028 061 s5317 1317 90161618292690375330312426292634454029297931 446524

12384'10s80

622533201957147 41 398132513821346118211671 30s1 68318261 8591 700177 0

13941'195120613821 441198733583692450 544 003083

245930469'11398 57570 1

3468416245275796480625721 64417 631 6211s391 840288 637 4430042455288435753737302233927'1 30

127 1010124

57 4730711827144012901 307137913411207116312721 6s019071 820179817831413110s1 1971416'1 5781 884352136834 63840832924

24823389

10247961 9496034 904323482557 5944242246l5 ¿b'1785

1 75815421 9403023349627942468312737 433636293237 197800

127 8098635J¿ I

28661 689139613291349'1387

1 3801244117 414161 68118'141 8981 69617 1712951 200117 91 4371547219634583812464238252724

1ÊtrtL¿JL

368311011

941 0471134 594258496460 57420321371 4801 80617 041 56120513122357526482483301 5391 4371628953 938I 568

1 25309309496227 4816721345136714111 3691252'1 18012231 30418321 8931840182617 1313171 18513171 4011621231 43607401 I48253 5562716

24934217

11423I 9074 208366541 854952604 5397 1

1 8051 599179117 03158222263 34833582609246231 443948342928 9043699s0 5

121838921437 624291 6431 424137 41 339139712771 18712581375187 41 9301822'1

8'1 61615131411191 36s1 4891692255836'10411248 5334 602530

¿5¿

2507192617581 6441 65419403024s0 9359524907J tb/244126752609227521923709508038 99

470475460536720

12552398

632708

132837 55

6615004494384724684714'73417420473476445436444494138474504565492451452

2326194417 21

1 6121 6081 94s3317519758 68463030222394277 9248821042301403449523 681

450460505534754

1 4382194

586702

1 451381 3

58s4924504674 5'1

4734564424444084374s9459460437481460443486593555465461

221019271 6081 6591 598223338 34543'1577 44290277 D

2445281 0246122092634448647273225

21 40i 8301 5661 6551 601226740295 562563 1

403325772426285423102159291046724636

0

23001 955173616291567203035875293582 545632788239827 61247520942472434648223393

Chromi um- f luor-par ga s i te439 441 461462 487 468503 497 502592 587 630798 846 871

1 587 1852 20851721 1268 970642 655 639B2s 885 909

1652 1 859 22123458 2947 237s568 51 3 533455 469 449447 426 494435 418 445424 413 433434 467 429437 432 430438 426 482427 425 437441 416 502414 440 457437 427 450416 460 440460 443 438434 417 443464 459 4s8453 491 403452 422 455556 510 s14559 552 550484 476 454439 471 461484 438 447

20691883167 0

1 5571 67724874440562555'1238442 5082 s3827232318218930s947814 381

199617731 6421 66117 022s30467 958 6452793543244326442753219821653 367489741 46

19151 8521618159218272821487 957 49504 93441240'.'Ì26582638230321223 58451114003

(9.00, 0.02, 72.82)446 450 446497 51 5 463520 530 554641 679 706986 '1082 '1154

2324 2671 2536761 678 632674 708 681989 1017 1151

2554 2943 34611511 1058 757505 52s 491465 468 468376 463 427455 449 450424 466 436471 409 428457 435 442395 438 483441 486 433453 458 413444 454 447440 469 426440 406 459438 482 424450 433 440498 469 475435 473 458463 476 512597 553 559529 501 476458 485 429528 435 458437 426 430

253

43343844240748947444949346849442645847445845248051854055'1'77 980s627823

2183284418134 5361 508

772674608593774

187 63589

901565504505497548571754790544560603874

1802851

i 79s644816

186'12217

405460448449459472469464479467466465478488474440454s10590848765s89880

2570220821 4743061 337

767637526545776

23932836

881562s06s63496538592834702516542s53946

1670911

1645683871

21 451736

456471441418510474476474496454s03454477476504465482440571

1 003689s88883

3'1 95177 4244641911221

'7 67647544625794

28432177

86254654149354850'1

55s907635s46505599

1 1091521

9711 530

654962

25151364

46947649446052042'l454475489463443481468482514512456500622

1 098656s86

1015388 315232860357"11 040

7276'1s538608942

331 51 638854584525527501531571962592534515624

1289127 31'133137 4

661987

27 691120

4144224354924544644985014954764665.11

467503482448470507606

1 059607639

1 148403413623258308s

93s7326'15s53632

101'13 94011527715445044545655245889s1s95554555801

'1 5181 04612441 096

6911 06031 61

907

4¿¿49247248944348345546646750448.1

483493462499482473484639

1117592648

12834078141037 162625

881787604610670

120542231 023725504508545537514619961567s2354359s

'1708

9461 384

897676

12473120

762

415478483448449495458491461477463477468440470483514513753

1100546693

1s2039831 4464113207 4

867708587546671

13624290902663522504509510527645887525546573729

1781841

1 583760726

141629s8

709

4504344544914674704394594705'1s484471494498450493498529780962549736

17 6335321 s6143571 80s

81468856'1540699

1 6174196863648524541526526s76702828499498575803

1 808858

1799697783

1 5882 555

626

254

601575719

'1 5011 6031 450

689721

1298841573547570570634688757705964

1 857211592451592932970

2983344 521912915425131 31243121 674299873648641 123813813

1 6681783192758272245191283507905270222381991894922

1161111617 37

602610747

1 69415231215745844

1211801608541589551617740753722

'1015

22251532963701 389

9081 0803932

12577213231 08415431972245224950 97

1912435891013786837

180216322078582719252125

100141 5828227623941 785

891941

118911492064

627592851

17 061 621

994729938

1143727560550529582624757788780

1 05727 31

1759745871342

9011 12650 37

'1 068 5203434454029317 1

208221886477

1802625111016775869

20231 59924375722'1s64

25451210713432

210125991 478854957

113211322543

s89587937

1 581177 4

883700941

1'118687536s39577588670841780858

10023366

1 936333s01 348

8971231657 6842321263663375231 072105227 6827 6

15153201 s

873785990

21331 502281254701 5833004

142951 0840

19022700'1 418870

100211 4112292904

573639

107 4

17291 835

776679

1 0s3'1110

691543544563611621807710845

1 1974291

1891724521206858

1 419831 7

63 5522793690365731 751 99s2487

101101 3537

1 686921851961

22701527324249291 5053625

1 6348852s1 89327831149880

1023i16012823 587

579600

11711 6421823769741

11681079

628s89571603589646840711931

12405425

1 739520781 078

922tb5 I

1028747972462391 534 56306220052665

127 18'10806

1 473843828

116421921 58'1396241931 48s4240

1 7950651 51 86s26191 091

930'1084

i 0991 3044264

s91657

129816'131722770796

1 1349626616006045986166668'1 1

747887

1 4507140

1471918811 031

9071 960

120233436265641 063201278721063092

15223884813'10870766

124920351 62146393 3631 5355127

1 884848291 98624241 045

9021124115613574906

6076s3

1 4331 5601 596749771

1277889608571564613596671804736980

i 5999440

119351 69s

99s934

240113131

2653279641563221279721 173590

1729567 11

i 18683583s

1 468181117955073278717 156526

1 9001362821 582218

924911

1 1811144'1 605538 9

255

56091 632

990121742481 3452758848 1

61 68328512881200

9571164

936106232156696520434340 55101 6751 7347 1399559 55829861 41911901 5931622

9s9987

194929501 903221533771 33111643399243090264296'1 5694104894060021 5651 004

98417 461110

9632172

560 61342

9281227540 9

1 03432589

'10854

23194241813221133

9691131

92311514040

16736388 74005

1221 41 807648035225

1 0s68854127251 35112071 6791 469

987933

22992655181723953 3s01 1s312524296

11828864435171 68050088'79452361 460

954994

1722946

10262461

52071

'189

9551 39870138939266'1

1 40581973122191239117 1

9651155

90612405241

1 s65830754 665

'1451 0

1 5503437 05902

1127 6

7 67',7

23061284134616111 412

9531013259726341727269729171 135129552 55

11315830528261 848593 5902445411280

9301 0781 598

93911022878

4 5681 0801 006156794917726304 3

'17859

1661819121217117 710251 091

983131 46836

1 44062s815412

1 69861 3339

40216461

116826724208412151 3581 6641342

973'1135

2913242017 47298425291029'1359

68211 0351

77 19237 4190768 98906 1

38691223

9461 1401483

92012263306

3983'1045

9701 858

1 00s262653423

21 40012938

17 66122911831 05810731 0061 48691 00

1269025646226

198261107 4

3 9587219

11922555019201 148137 0

1 6771268I5'1

1 18033322189'1705

327 422991 054'1 550839699597 181187 6218177 00881 731 801157

93812781464879

12843555

3232102610252184

112794 98440 59

251 6794171 s061225'1 099'1058

1 03s990

1 69711434'10633

26297058

2166090224 0407849

1164448 51

1 68411961 4261 6951 109

905'1335

34 5621371 802361419921 1081822975197 1562661 68s2527861784272637110'1945

1 4501370905

15273976

26221032107 627 02

1182039474994

27 051627 61 4791 1891 0591 136

97210202051

14076903327817959

219917 30440358533

1124441 381 62011431 s8617 41'1 060

8861 470325720401 87s36s817 071024207 6

111 45941 6s6961 669286090397 66522551112

94714821247883

17284203

2100'1018

11213300

1172232516478

2784844151 3451212'1095

1 166924950

2503i 6075

6991300 79033

221 1262194360927 4

1048235351 46612121 5551 580i 0s3

890172631291 898'1 99536441 4721109¿5 ¿¿

12298I 98048461 s8833s093 9066911961'1040

9581 5981217939

19134234

256

41 98192s1242888

116619412493182601 982s9532772819128611551 60412401 4373685677537 011 646127 4273372063 663587354 606667391 6295624601 2581 03115521 380223421901 94s27122s831 6781 405

918995

1178145237 482565i 8051 43112953 957409521214290

400'117 651193

90013211 8552992

1 345386642337340324581 18s12321 58911611 4394243654233401 57012793 28658553249644253326738344231 49220111021 0651 548133224282099196727 4125861 5581325

9671 0361 2081 63037552271182613161 4574 50838'1 1

2195437 0

37031 6601042896

1 4491 80734 56

1 420273022299352322231 0911238i 55012231 6614830634729211 5451302417 1

637 631 53665251326s9631 00308921561067109?1 6361 4202553208721372750235515241246909

10971'1991 83s391 3'1 99s1 85012481 6s34683342622804066

33391 566'1004

91815161 8034244

1 46995982228934211 980115313121 49412011868541 95860253514301 44852136072328 36 563502662 082680301 71 8501 047117 31544'1408

26081907231127522196'1 50911 42

8571 0351253207937 121 84017961 2081 808477 4307 4252238 s8

29891 493

958943

1 6631 8565452

1 4254497 42308339518151 121'1305

1 4531 188209459 5954 50229814111 490s9395542354166023tt¿57 66247 1

302216181 03812401 5551 45526791 8302457278021681 4611171880

11331268234233811796157 412062112483826633 0283585

269914s0

917973

1750'1866

65 93132254058249132951 7091 0941 4431 40811 4524526420507 020961 30s1 688684 0501 641 63617853595354247 628351532975

1 348'1519

161125321 8062557291119491 4771 038

935'1 '186

129627 1030 9316961642'1 183256447 422492331 53288

24181 368

92710381899207 98327

1209s339s257830731 4521113'1 5841 35312902661677 1

4 581189312981 906730247 0446685805571 047 65257926731 4121 0031 4721 4631 82323s817 4026632829183614151021

94312031 3413073299017 091 5501223298245452270391 0314s

22081319

9071 08317 652309

1 009711106287329003 0481327115615291313135231 90673241 591 807132822917 3264184530557356288428127 10251 1

1284102015'i91452205222641 7582733270217 6115261 006

94812361 3853580270817771 5031 25534 904296213741522953

257

26531 594l5b¿112111991 9481 4081616181 7'1185

909886

12901 41912971024i 8932283tStJ1012793791963

11971 388120211311 44721 6726155125427827274239281714501183123619625929827 1

38353333326621 4919621 887369338 01232329984347328922703263

251 1

1 6671352'1045

12261 9001 38917 6517391 159879959

1 3031 40111381073215723411 407

958837780915

1212137 91 099117 2

1 45421992673542139792936421224641418122612642212673972753 355348 53'13s20511 95s19444114367221133162421 4320421273658

21771 67212511 0081 34817 941 301'1850

17521 126

871947

I J¿3141611581032230921571 341

932813808997

1247127 1

1 0s112391 553217 1

287 4541 3377231 433B 5723791344117 41 36124947 5846789281 I364730272061182619614344340 1

2099336241872985221638 99

1929161912511 0631 50417 6712651 8981 683'1039

8501 0381 3171 43311691 070245021981327892832802947

131712461042127 1

17 13218131 81

53923425335638292093132911831 4182983837863072652363 62837201017902195467 43305219336263 99027 4122s84456

17 681 595122710621 66716201284'1986

16151 000837

1 0301312137 61 1071243258120511219

881744800

'1038

12911 28010521 34617 3921573 578s3393234370 1

36231 8961321114215173464I 963578 024943 55727921897181 I239346943i 102124409839232s9824424944

1 s981 s68117 3

1 03017 91

1 587'1307

20131 461

944816

1 046128314'1 0

1 08213132 5501 9911

'185

866812853

'1039

129911421 0571 3381 8942317401 652813085391 533251 649121511451 594401 493s3546625273 50425361 93017242663460928462310420338'1 524942446s60 3

'1610

1 494111310721 8281 5511 3801 9091 456

969857

11171354135'110521 449247718471092792782921

1 091128611 44107513'11205723524 538s0 09291 4413231 41

1 58812871 19616314 59391 434 9592755339823s81 950184230364 386266224364288361 322372778630s

16131 5331 094113619241 4861 53019281329

906862

121 41 3631357

9951 656242116521 090

793844906

11191325117 61 0981 39621162464484246902820417530731552123812511 800527 1

888 743413047331 1

22571 904181i327840822480268942663600226729606965

258

7738568 1

205511911 0881 3911 9512089311223951 8354296382 s2119'r 9901 94020446 388801 447813065357 4s8 6644092121126912281 4941 4631 s53268570357 653450724633000384725991 88s2628843088 38552722511 s41124114711 6971 433129316161 9061 8301 s631 48s

B2 68534217851128102315022029218031 3122691 9544 57836272041197 61919215977887 63841 4431 53382058 2540641912121712011 48513721 6302922731 0730841 422372309538 0023901926292795388075482622241 43612921 5841 6891 4551 30116441928i 8311 5591395

I 57851 141 5801 12711001 50120402317303922572075483 1

34 61200619121907241789217206351 53'1 ss3792577 1

38 s917 33123512011 5051 406'1680

32377848675838 57238332163640231 41994347 5

1 0538790941 692089141612301 61217161 384'1 3661 697i 869172816231 449

831 5

45581 4291 08111371 626200425893 00620 502289492731 801 993'1 96s1913262297547 1753262327 6427 6

54393 5951 555121012871 4911 4391 68838217917658 53477239134313 56721652017391 3

1103177 6437961 853127 41 3081 6931 679i 3651 3911725203618131 56s1502

7 9174086134311251 1801 609201 527392694201 42542457 630'1 5'1986

18321943307 4

1 008268 5330783285457 3

54 3633'161 42712241307.1459

1 4671 8684 50180626110329124863 5993354209120904619

111917 501328517 43127513221795175712971 44717991 8911 69915441 464

7 1283380125110201 17717 411 9602922257319433 074437 026722021i 9061 9013 578

'10460

651 5294434204966502 53 0821 441126313441 4581 s031 8945079Bi 7B

s863294826473699300'1202121 40534 3

1 07517142305917 04122113s71 7351s7912961 49918242008157 41 s301522

6 381294812821100124917862002303224061829348 1

3 960245619621 83620024429986 559663043344 55432487 1

25991 361127513491 43715'14216057 47802 1

537327522757388 328391 980236263 63

1021568492793162312631 4s317 811 62012811 5841 8731 8501 5681 4921 429

60 57241'l12061 05713131964204131 44237 31794285238 5723042060187 42006526991 67543729473s3958 01

47512330124412261 4611 4531 5312324638 6777 550'1 62 59s295437312754191724537366957362082514147111861 440177 6156212651 5961921187 4155214561379

259

138912031072

984873927

1 0531 0681 1371 495257 03482442328401 887'1599

1 42212941 12313182736363742263 97827212026225422271 650129320834233352120621143

s00465470498473530536574623659814

127526241 861

938131629833345

1 45711s91 056944913978

107 7

1 08412031 506281638 08421026161 7081 666tJ5 t

119411321431313235 58434937 4326401928233120191 5581 363233644023319177 6

11 42

466448475491469475496511s83684857

1385297 61 s03

9671 46734562379

13121 06610'18946861922999

1135134719723204465'7300819961 5831 504122112131157203637 194384452928642'1 802132252718641 3601 62737 12366927981 36s1042

(8.00,467455489478483508554526579799

1 04917 623788

956112720065558862

1 30s1071

997984903986

1 05711601 4452222326447513132201'l1 59114711323117 61 208231037264441441 6287 4209621012365179312661 7053B 58357924151233

943

461476522510551s86772

1 12420413317

96711'182278530 7

730

2.38)

1291107 4965976I6'1

10211 05311721 38s25243257458429191 900147 91 47712941'1501250246638 344426425027032027223021991 75513491 843415'73 60022391219

991

4744654555214895425255566448'1 6

'108i

22C62512

905125525594465700

'1330

1 061982

1014913941

1 0731 06612371 658303638 9438 64256917 1715941 2s5113411461 499331 1

38534265354524531982252120201 419137 1

25944358327 61 678107 3

1 34111511032976850933

1 0341 099125117 4330284416348 523491 6631 5561 3s6115.1'1113

1716347 54056434534042509194525351 99915371 4402952398330961582

980

132411321 061984903966

1 0781 03012601 85531244536339722651 6331 5861 3331256109717 433532422044833i 66231220072502191314161 4573244381228791 408

997

Ga11 i um-f luor-pargas i te48 5 48'1 445467 449 527465 477 426473 472 468461 458 546s06 475 488497 525 498540 54'1 564s60 602 611654 740 722913 964 1010

1352 1537 1 6353376 3673 38211241 1064 972965 1 048 1071

1564 1602 18264001 4724 52101677 1188 98s

0,02, 7

478494485

260

659595576530570553602535583564583544572545s8B587545577638630s86s6355060062462461260263360s60461660s628674659631573654669698775

1 230809

1023218271 5812577948068719347527318s3

597539s56549530552535517545538569548555554548553582610727562s93546s6857065057161260262261956959763564163067463s6s0672689720853

1265883

1024262865041'15383s842852886757742872

619584530574556534553508s5853859ss60549578554550620629701583578624571591620630btu605bt¿55963663261164463163663063966s6357088s6

1 304912

11 49312154691032804881877927766770943

613s335675385435335265685285465305365605 5'1

541593584599616588565647635625608622599505642662626663590603638647621657616692731932

12328s6

116s379342861 003

797788896834732748966

623567516534559s26552492573559567507574587547573s93696s9060355860861163s5876175846006166266306256136295036256666396616937859s6

1135841

134747893'1 83

913762829877833755747992

600522537550544566540580564542s8255256857060'75715196846186'1 0

6185926465746555 9'1

6¿t6055716266386576436546076456196636257217879929s3904

151857252184

902798844886913751767

1023

s8957952s535s03555s39555526545542568554560570bt¿61s635610535s88582569563603623659626614657603624646613625639647s90560652744

1124974875

1 57567791649852709829926787759809

1 094

59153949450553958'1

550540550s28582524s6955456954161669156759561s588542s96536563s86603595588614s89603604684627622676668693770

11628s0943

1 88371141 42680784285'1

98273277583i

1247

261

1 442s136266112357657577717488209s3

162085980283s

1 08923551201220017 48125417 9738451285

967116219101 188

9229s0

102914221 sB6

990887945895960

1 0s41 38012571s17223779297212368217 431 504230333 6'1

0957227741 6447 4033682301

1 5606¿t I

21161 121815779782760822

10111 s66872756824

11302401116126081 49313441 849383s1 122

9641 15720021 099

910980966

'1488

1 5521002

938951978970

1'1081367127 4158s2514

1013424570

301 91 6241 s5127 10

1 668083802253437 047 0030032351

18147 1981 6461027798789804789804

1 0551 484

865750842

131223501212295313621 38221 4934 38

997914

132420061129

9001 00310121 623139'1

9919'18923958

1 0461171135712651 6512704

1?94720705

25321 56116283'1 48

1960260292427465747 6526942456

206175031392894721762775801845

11611 375860846936

1 4612086115531 63117 41 4842325287 61 048

9301 4421 825946895

1 004989

167 2

13291 002939963

1 0071 04312081 3601 34116943'113

16925167 8423661 s341 6063992

218124442269647 01471325732651

253771481395

808840706721825874

13211158862775841

1 63217 21

136731481 2051 464260424941 047895

157 61 6821025

9191014109717 681208905901933943

103212171 2851 304'1803

3541204631264121241 4781 648506 s

21657349628524751446924442684

286462251 477

79478378978979787'1

1 4591 09077576589s

17 871 5571 48528 501 15s'1515

30222015

962'1 00617381 4841002

914984

117 617 641 148

954926942

101210251293'1356

1352187 44197

2411694591 960152117386233

20234290732474875434524463037

348 54892'1435

806796766808792947

'1s63

9s381s803974

203413261 68926181159165234921628986

10271 8981 358

931949939

122017151 081

934954977967

'1007

12991285146620045233

2701158 591917147 0'1864

80421728825773 s05481 6418323303424

41 1837851294

82075980374081 '1

95917 02

906789877

1 05823391215191 1

222412071 6813672131 4898

1 0171 9611239

9389s9929

1 33317 011 090

874932929

1 0171 075138713171 53021686279

2847249001 8371s322196

104671 39692390398 9489836682284395s

262

45331290527021961 4131 357244328171 6781 59615521962437729320 55534 5634821 8531 55917 691 755206165225648182121 505i 097 45158 5250 9085211 479383025871 968155215971 5382505282829164465s95104775226306924621 685'1 8013 39171 50412425611 5571 540

Ê.4)')JLJ¿

2547811766

20261 4291 4052801257 01622'1610

1572217 65306

259377 8963725326817 321 485181 616752294750146731 90022366312

17 34849466221

33229'1 691 s

3s1 I25471823151 4'1s06

1 6412620

16761194914551

1926427 443

43543 06123461 636182338 5368 583831246415261523

619728198

878 9185813441 48431 41

227 1

16191 7081 6232304668 0

264455924381 1

3 081167115851 93917 64254086363838187723607 989

161s841 807296

3739s12905

31 462322173415'181 54017 183125

20435164705115

2289323059

392631 962251157 41 900436966623 53822241 5361 s38

7 63629224

628617 671 37315293373'1 98616101 67515642539844 5

262084697382426981 5601 581200817292929I 96531 091 8732 5589795

14773386291 47

3 9047967 42955229916991 5961 47717883687

237 46131 64

6128269661 8843

343431 652158157 1

1970499661 63328521041 4671524

94682875'Ì4336'1s90

12481 5783 56017 971 691157 416202789

1073624069

41 03388 624171 s3316281 95317 6433'15882 026 581 8632699

11840129923789

11569387 5'1

7 495286523021646'1488

1 503179547 40

263041 0361

721 6306431 4680

3277300 91 98816372195s820s8203242'1958

14851 s30

1 121226257

34991s1613491678353717 0216141 6001 6673007

1348720844

364039632227157 61 6331 86s'1807

38 s683492316187 43113

141661 07't 43978

1 464436637

601 427832242167 41 525'1 s0118265909

273467670881 4

330491112032002894177 1

167 42423638053 65313617871 4291 605

1427222429

2809'1465

1336194732841 6631 5781 62917 21

32031679117 017

34973 88820771 5611 6351 900'1807

462575312175197 43547

1 590687944086

1842332030

4B 93269020991 58615281523'1 9597517

2716261 49

107 6333872I s9331 18280'11 82017 122 581698 1

4 906297117 91

1 5631677

177591 8705

241813831 35522223'1 931 6671 608157 41 8343721

2012313816345437 061 901153 ¿

17 411795201 454676541200919454329

172347206452''t

2318927074

42872624197815241 497'1543

2057'1 004125643

50021 3404327 6s

6686309826681 7501 69330267012452126951666145817 45

263

1969470524632118487 0

31 90191833087359777 07 6992724336024791 4112720i81s1 599214322071 5402326504 1

25101 38412821 495231'72942773491965672318327241 5481 3s01 4661 42712901 177127 41165'1 3992016380 7047566s3I 528509553 9168 97321341 452413'16s6

199447282168232351 442782197 I3912

'19070

17 064650 7

25703732

1 4491984 3

238617101 586225020401 541251248 0421601334'1308

1 s0625443 0949807

1791047 69341 I25291 39013251 4651 36012541 193121312881 48220564229

10720631 682314627594 5660 s31 9941 0524301757

2287435819772545517 42519201 4490 1

204161 s666

554424994328

16013809722771 69s16292434i 9301 536295746951 8881 3031 385'1 598255831 60

'12080

1601938 51

34632386137 41 4371 4621 3651'1811'186117 1

12421 4922201483 0

1 03906216820742106716s80334 3838 5521021'7 37

27 1541 171 9s1279151 17225520445236

2044113982

4636247 I497 1

1 6628655921891 5781 64224501845161632364432167113461 3361603277834 98

'14383

1 42673404337721 49136214161 485136411921229119512481 518238457919725652978064 0597 473s3 3334 593 68319101812

3i 11

375018963049481 4205421 62777 0

1987 1

127 66384725555922

16528527 1

208 3

15251754259317 421 6313728402715441320135217 92281938 04

1692512322

3092342519431337'1369

1 436132211921218121 412881 68125786572884070217 42538327942491638 51

34 301 9381 803

3539347 619573454443319992292987 1

19s1011126331526807113

15713430419391 57117922393157 618114238375'11 42413111 444184428414286

18647106213003326917961 38114221 433134112041 127117 812961 6s32891809081 757 417707 4404 08i104 38642213256'1818

1 836

423430411937386 7386320062519

12222191781 000729562922I 568

14282351218271 5881 88022951 59019424684327 1

1 4651 3651 412197528445231

2002388 60301 631 0817 101 4111 4921 464132412391 159'1 1861 300175331 67901 1

75257848648242267898372241 33296717 481 861

456926732006431735301920277 0

151311 8463894527 693042

1 0504129102978177 0157'l1 99622551 4902036502629021 4271285145521 47296761 99

1985'1717 029462813161913101 4661 42313321197122712321322'1882

3 388994 57 4478239587045737 49634 09423128251 8461 893

264

19191825188333863172341 I2603194920201525128912811 8045 54443962348206716753006687 4477 4577 3459520651 4821 3541 598256122631882253923851s831 33417 61200723622036317 426661 4801286121512191295142417 69i 613157 1

1 80623203926668 067 134661

1 93117372067351 93300327724291827199615281233125620475844384 02294194717 1734 5569074 5915722421 1

1 9331 42613941 5982624204019442701231 41 s391 4071784205222892027317224831 435126413'101 3531 34'1157717511 6401 5851 9382499425458 3863s948 55

'1 9041 691220034643326326622951 90420431 4351312137 4232660 3834 s62378192417103994653 s45865966388817851 41514111679¿66 I

2034196427 06221 41 4351 35718432152222721 4331 91

239913721328135'1132913321 629'1803

1 5s61 581191327 0346367 0275871501 9

197 41734243335273 34'1

3118217218971 968132212371 3842662593 630 5623951 8061 8454465620545866066360617291 36s13911 87025451 9092085268 021 431 4371 4691 8082192218222313'1 6620751 3611284129213181 356'1570

17561 5311 6091 85428 38494771 8553 60517 9

193417 0325683368331 4301 9211118221 86813151279'148s

31 0057 51

27572309177 3'1 95651 88581 5478458 2931 841 6451349147 3195224531 8572094280220 091 3931 4891 873218920152465304 s1 995'1315

126513731302137 61 59617 461 509167 41927298552 50739251225s80

1 88117 4328223254347727872031192417 621 35s12301 48236725388256422581 6902080569455'1 5

50 5457 1629491 59813941 558204323801 884226526661 90314481 5431 8082283'1 99625773'1 341 8631297128412751318141 I1 683175814471667197 03303577 47 4784998601 '1

19121'.l403 0073278331 02803'1 996'1 9951 680127712301 55442254980234621901 6s8230463725066524354 0527091 s0812861 489228722851837232025221 75812841 6481 89323511999275228s01 68612721252128612431 49317 18159715271 695202234976270738449976337

'1852

17393209324233902 65s1 9601 9701 6911i9812731 69948924592222720921 708265469095095548 3

4 951231015421 3491 4502496215018212398253217 4313291 708197 3

23202001292128181 565127 01 30613171 388152118281 667'14s0

1 6902133365763 637234488 5

67 67

265

68074 788206915161 617216754043530834236994575258515391 60s229649374273220617 87175220534 5081 335979648 912375184719622529305748 9337 27404168364 59322332536244628650 0822267638434253809520 1

8548533 5207 616311 6511 5901 59817 4530404 388

6969446819491 5301 64023486297

135137517381 7429623471 633167 1

2461525141162110161 61 70522325'119

115s894174 3482362177 6207 0258531 48500737 544522658441162100251123823 084

118291159756843s48350 7537 6834449221 9331 599'1539

1 5851546177 432214403

5642402618341521164625157345

12869661 54i 53395220901 4941 6892 5555246373220351 7061 73324565726

1198188623 969¿¿¿5177 1

21542682332150 64360 ss1 69619935882094250324463432

1299711456506836643622588 1

7784453417 6816491 63s1629162519153 5704312

66423572173015281 66726608265

12246561 64517384 1

19671 49417 152861533635351922157717 81269761 85

11783850737 19209317 9421862726349348 043 504565960973297213325842461397 6

137341 0581

45453751379264417 3633 9581 6481 6121 s78157516132028379241 65

5990317217 49154718'1 I29569629

1 090048 5948 063649.1738.1

s31177 1

326652943'1 841 858167 0

1 80729577245

1178076243329201 1

17862281275637 124 6383 557632161 6729672240256624594781

1 4126980s419938 5939247 1866885341 4164615241 6s11610157 6210738703872

5876281 41 677'1549

188s3359

1106910257

434448 61

33s617 151 5611 8843 50848 9931021 8091 6291 83331 89797 4

112s0688 730371 8901879229328 51400043343430677 658052698224925062 5815809

1 405093823757389842857 6126410290716671 4951 57315161649222840943 655

544 0248316221 5911 9903967

12429955740474868308 1

1 s951 5521 98540214692271617841 6041 9043s'169259

1 0600617 1

27 481 8591920236028204233412335526941556724642395244925656850

1 345581173s9s3894448782095969257 61 58s1 5361 55415421 6932s6143'183447

51 6923311 587'l 63120594489

13298889638'1 7

481 42917'1510

I 53¿2 068434444162430164717511 9303977

1 008510210

52992532'r86'1

1 985247928864 604395237556777s0 53240424342502262083'14

12673724634063794481 68583581 1

227 1

162416121642'1 5651 639281843213500

266

331728 383283500966915236481735262826777 63327213015641 39415231 50'11 4581 468137012381 44617 95188515421 3001 2801223116813321 417162424483 96548 93627 443162802212317 04167 41 s63157 4262653697 014696844283084300 927 07211218733 99161 334960

3293301 3348 353216848501 350 52

1 49641217 3

710130s621381 5s3138215521 487141 41 3861 3071 3041 431'1811

1824'1459

1 3471344121 4117 413521 4351 67526683 9345029608 341182673209217231 60815921 6462906567370646524411s289530332604'1 9s91966442160 604649

317 1

31 303s3658186814479058 s6

1 56s4122656i 8128511 9891 557137 3

1 4601 411147 61 40413571243'158s

1 80417841 424.1355

13791268124013951 42617 972969397 654 9857 584111255920331725'1 6181 6061 70931245872721462364 04828693 0572465194120825027s9384366

31 5432123733602168554897651 6

1564411862539427 431 8701532'138s

1 ss31 49015141 430141213441 s69189417541 369133713131 15412021 33'11 45417 4332973 95556 585306383s237 4201 6180116471 s61'1788

341 1

6020726357263 7902939302023731 866231353485821401 5

2955320037 476236657 1

47297517

1 5s7311'198

47522543181 s1 48615241 5051 4661 6201 41513201 4611 s6820261 70813671 333125011941246129814961 860348 1

404358 0s504 1

369323321 93317 021 5981 4881 845384 962067212533237202781301 623961 883242458 965780

292732404069641 462844 531891 I

1 47831 0560439825781 6641517141415821 4571 4931 4431 3301 400161s19261 664'136'1

1298123211981 300135'115721 956367 4437562224817352522331 84817 4816151 5072050416463477149498733792989298122571789277 1

61 41

551 7

288133274405657 1

590047 33

1 04'1 1

1 40439942400 1

23151 6381 4441 4971 5001 4021 53513561289152917 461 8691540'1365

12901240123713021 3871 s892099382'7445463974 50832582158187317 341 5901 487211046476607730247 5433462860289521101 73031 4462525449

299232314679650455824592

12021'13361

88 96364 02240161s147 01 4281 464'1543

1 4451 4411 3301 4221 7051 75815211 3501 35912391156135513181 55822273842469464 08444630292197'1807

1 66s15771 59922724978684 1

6912462031 95283 32793207 018'183 556631251 54

267

437421381422439464464419517595

1 02730421322

641858

196660416194394114474534454564314384124'1 I450449459445478473485472487476457479468496460458460459473510483513508454s4555'1

417412435440467415450470518612

10923364

938631939

22455295

53548'1

469409480460495476461445463424497447458471513440500478475430510458468s08457498492s06476475518479522497541

(8 . 00,388427430465439461454471520834

192331 30

6'1 3

6871 40047 69117 0

487444431471464460452449454426446432444466448440460468479479482507523478463506494499491447498466467492542512500

Scandi um-f Iuor-pa r gas i te403 461 422401 431 430405 402 398423 430 464445 428 417425 483 450462 439 422424 474 451519 513 540694 688 763

1257 1439 1 5853782 3669 3580

7 93 6s1 611608 726 709

1 00s 1119 12122756 3277 40364171 2849 1753492 494 504495 503 443420 427 444420 474 421457 430 421437 477 427454 453 466494 446 465434 438 469440 439 457431 419 448460 445 461429 443 461454 449 430461 443 45',7

413 442 488485 445 47651 9 475 499423 481 497474 450 464449 488 429427 500 471464 455 460439 494 464502 460 482484 471 477496 462 446512 483 487484 482 51'1493 503 481492 5'14 s08496 51 0 471495 521 525498 517 477472 524 51 6486 s45 512484 534 s12

0.02, 72.30)404 404450 429430 412395 437457 427414 416402 476484 476585 598847 896

2133 25872466 1763612 s83809 835

1 534 177 45549 61 48742 662479 455461 427436 430416 417471 41 9483 41'7470 449464 446452 417462 478420 493485 430445 468437 455393 423433 471456 471472 491461 462470 442474 509447 457455 478501 464475 492452 495472 508472 453525 518489 486468 479520 524524 462526 483508 491492 s1 1

509 s12

268

537558505547621

1226578684

12424933

843572597639620576592786

29923934

98s774603567s69543s58724

'1388

bl/s96552572661664

1 354157 6779

167 431 62

7886186376478907296s3654628682638674683680656

490541541602701

1 120576682

1 3894931751584s89611619587601819

378730361027

I tJ607540

607624790

1297625609575s85661721

1 4531215798

22002664

769609617s916526556696356s8661641634644634666

532568s58523768960577678

i 584448 9

684560LL!

586568568617880

47 632217

98s680567518576623607781

1 16060660'7609597674730

17 451012782

27 062245

772645600652665600652596606623571689658676691

508518535544869811548743

201 3380s

642574614598569571596

1 08454271 6051027

641572586s66613508913

1 080btJ578610598660799

1 939830866

301 717 15

698625620630687616597637685680660549636639633

s09s33555587957812628806

24603000

610trtrtrTJJJ

612596555579687

122960'1 5

1284969668543555588553606

1 037834573s98632646634798

2079838971

34771 433

825631630617672665603623624658627s96654659681

5J I

500515s83

1 080661603815

31 342084

597567683631588587675

1 427604 01 090

965562586s33565589587

1 057788570567609636660BB4

2072759

105234751207

721545608533697637632614653645624670673661666

549s38496s89

1171610595900

38321 4716s8612s95s90564558700

18185714

998890590598526604612690

1286662572s96598527672

10491 993759

118037 67

9666425726616647006877096696'10632635634652719708

545s08s30667

1252631621

102644691 084

584571610597544602724

23034964

991875592567555573584686

1318642603588599573649

1 14017 07

7381 433348 3

937612653617638702631648640669677686644640688698

269

680723784968

1 65308 91'1554

1 885110711104110953 I26121382856818854

11542113888 3

697 41 8611 048

9591 404217838 6920151 041191254027 45160 911 687

94490s759821938

19189312261 6'1060

149977 433875430937 621 085257212561 036

877904

'l 060

686740831

1 033197 6

1s10016643

1 617107212035422

'17595

21541239843847951

121 62486

2420612439

17 361 025932

1583220738 9117 171108227057 64

1881 I4 3841489875864784842992

249190282033107 1

1 53510161120s94545

293261 6854

224911 12924843932

1126

687736814

1 0202409

197 41

118831 4771 0861 3047596

1471217941167791786908

1255301 4

28594I6511 560

981913

17982198411314381114275960 95

1902734 61132789890382387s

10263089I 9551 6871 0351671

1244910184

509433s0112681

1942106'11 006

918978

i 083

737777850

10802861

242337999132211091458

1A17 611851

1 7351 081794803981

1 3863759

31 340607 91 442

951979

205423103 95913071194317 46844

17720288 0127 6

901861797843

109'.7

4 069781613691 0772012

1476580356123

36208947217271029

933870979

117 0

708763857

12153 650

27803549312271 08017 15

1331690921 668

99481484192s

1 47250 08

31 64141231 317912990

2207264537281211121 1

37147980

1546724521 1208748407998s8

120954 30681 1

12831 '148

23951661965488012

3617 1

67581 501

997922901990

1228

696810856

12674604

296053798122710712049

1 650265 54167 0

952757801

1 0521 53067 46

2992530721223

91810242296282'l31 881128'1304

43539787

1307 422461 06690s875775902

127 0

6645562411821'1983'1 60

17348s1 86

1041333673

51261 3611 000

917918978

1 345

761844944

1 44161 43

29012279711931 0482556

1903746671 565

888808813

1 043177 49483

2599025071139890

11162283303s27281 12514104661

120021 0560

2057982906835829844

1 42979314s981 1s212584191

1676447 06

1 409530805

39291280

931902958942

152s

67179590s

154683'15

2631221641 128117 03135

2020533421514865844827

1'1001851

1378121545

212110479s8

121622513s3024891 06017 095035

1 45408070'1 901

973937828852948

164385833484113012515716

156624263

1 890825681

31371

'184

1010925893

10221 581

270

18775642055527 302984348 1

31 5641311 99s1046848802736937

18271479919

14383121157 3

13893954301 I116s17 4722070417962441 085503I 5646287504 1

1212949

113826271 558136236'1 52725104490s

1282221618290737604245672678237 411221 1501042932

22561 8283837126013486

1 66241 990436461736

9'1 5799785763

111719491364

9281 870287 41 53613s9438725661190208 1

14175904 59323357 1

660 s802067114228117 3924

125326131 4841 35440382367

973917

1 4042154201 6

1363214732

38 0228 5620921 0821 180

944921

29292009s

652624604049

2000017 13232651 535

903807714719

11901 9081290

924220227 691 5551 5544613222011822586

1 54588099887 431 9477 627 2497 34834671 165

893137 42389139s1 44842662046

98s972

1 63821162351

160771327 1

325429531932'1073

1266978926

384720415

502024235033

237921 3698

31821343

923805725777

128320 301235920

263824621 62117 124697'1870

12023351

1 5469759480223 08489296547733027781042

973157523701 386156241 481 655

962952

177320262873

1797911340283431 001 6501 053120190s894

52891 935840002436607 6

261201 080629461249884794787867

1 35720221 095962

289522241 496192844't 1

166212234396

153107 9547 44031149800592472132233

98'110201 9562142t 5¿5

1 80739211 461

917934

20 9519183 70'1

1 8660997825982997'1540

1'1811

'165

898870

697517290

3 s9024647 637

27 602824827251167950752794790

152818261 0361 041312021571 425228142101 4751319s836

1 4391836866193428

10168554765081 864979992

207 420541299222237001284887968

22231 87847 00

1 89488339241527 641 4231 0911112

930849

941 1

15329309724569223

2730960 342479

970921835725871

1 63417291 006110732541 8541 475281537 641 33014617716

1 3034917 657 0B

3870983655266113157 1

9391 02023891 8611325268134441186

9071 07822551 8006394

1 809667302436261512681 1551132878863

1223312724

28782s21

1105425862

500 3

2183943877752753888

17 181 627

9921 30732201 6311 3953471337713021 479

.10054

'12059

957 6482244 58931 ss8 69560 71 426

9301 1062493177 4129631 1731 09'1104

91611s923151 7838441

17337553 02 59024171206'1

1 8'1

1 044902838

271

901781814845902908

131 434799052s31 3

79936 9597656466126531 5601459'1 553236031 9315'13131024721 4951059107 41517904789916

1 63053 99348 317 783 55137263 5202906497330 5613778989319s3

1 453298621531161871742803801831

12841414

81281381283s891892

14144305872255727 4407 4997 120443723561 46814791 5462652298 01 366157724571 396

9621 1931 445

942796899

196453 0432121 800386 1

358 034963 052472126661246

871968915

1646285219121 160

8577578247988i0

1 4281 317

82s7778338s8882893

'i546

5077782751267237830s6611428421 081 49715441 534300128 5012921 80922641242960

12361251869758923

24024997279117 0341 81348434 9031 80457 423791103915910959

2062297 1

18171015

943787768759861

1 4451287

809799767885899960

177 96037727 1

7183697888236092404718431 4611 5041 6353324253612511 96922381240

920137 61269846857998

31134668248017 48411434283419373742542129107 1

902989

1024231528461661104282876975883s926

1527i 383

783756809888892

'1046

189'1699 3

67 3777816s8 3

91 12567739061 7501 403157 1

1 s0'1

3 55424431 336223020091 168

98514251264790842

1 0573803469522272017411833473340396s40081 868

95390'1

961'1000

247726551597976833792772777876

15421 360

793818800910924

1 0632172824261 90820563799246s39535521 6021 4681 6301 648364321361 19724061 8801 10210201 464117 3815842

1 08744024352211523793 988331 331 41

43983 9341 641

984896926

1 063259524641 487

897826733796775988

1 4461 427

803815838910955

1094258090 9655 55841 1

6094857249323256'1488

147 6157717543529178311 4124851 8331 05310191 5551078832903

1228504 04057194527 19386934022909475037 091 538966907933

1125269722871 338

919788779801802

1'1091 4151 s36

8467588'1 0

907898

12002881917 1

54 55835863448212490029821 5541 463'1565

1 96333221 6331248255617 021033

9971 531107977883s

1 466541 43937191132033664341 629354904331 61 3s8

918944999

'1303

29492167129490s794777802821

1250137217 03

272

1 88227951 554

894783840929

1 3981 4251019132521 451 968281177 425694301 9351 027831 44310261 03115716986118567 424 9603002'180s

27 6851 9031 591 5481 054

961'1 1481 1841 3603123100i73081 9981114117 0

17362296'1 86'1269437272650565051 43292520611902

21 612693145088281186s978

1 475137 1

995'1s11

2097207232957 6755335291 4363925051287959

1 10717 61

86851 0391

629646642'.7 4617 31

3383495728 001 4511 053

9451 06012051 412384 1

111076s55179712061 1991 8582196181 6317 3

3399¿5t3581 04902281020411 909

245327301261905806796

1 043'1546

1 305975

1 644213721063 9087 43051 17294637'10242412031 0061'1061971

1 0399998 361 06437 625931 689400347 1924921 3701 054

9711 069121 41 4944923

1069757 951 640111411982025216517 12344031 5927 0358 0147 17265020632029

263625161 182842ó¿¿833

1 0381 6001233970

1934217 020314751716746542929368021591 104

9s311372364

i1898987961 0343722357'1806

445344272285126710421022109212471 6196028981 648641526112512s62211213117 3537903214291257 074309243620562185

298124461 132

823845828

11581 4771132934

1 98020602091553368 9043512952342320631 054

924122827 62

1287 49312617 1

4055217 417904946441 4212812281 03810731 09s12061709754 093 383 99913971192124123512122'1852

41 3830 69337 6559 1

400 5239721032341

298221 461 036

853782880

1 1821 541116911172157i 99s2203620565213 941301 4329017 6210'13

99912333487

132498668604 0387721551 99552374154187 41171

98711071 1211222191187 12868033371 353116613422384'19s1

1 8664205288041 405386368 5233120572562

303019451 049

801808942

120914141102112621'tB2063230'7691 1

6275361 s324531521 6081044976

1 3514290

12755790658 583 6481992214'15479377 617 93113510201 10411921247218398 578225265112791173'1s10

244720402103407 4280748 005323336221 4720472 9s3

28101778988787847941

'1368

1 4281 066116721 61205824097 46060 513 304341 0294915201011'1009

1 4595478

1 19197 169549431 701818240854 08349116281158

9741 066115812962618

1 0849768022871 20011931 66824961 9052 30837 402734541 552903053207 1

1 9s83525

273

44252109868 9

44427347491 I2923293719791 1321 0851 145107 7

1 6s51 6481 68'1

312531 983 991401 4291 421 46238751 05531 7137 1

452522491 6971 300119112491 443153212371021122911101 13712641 058

9308738218'1 0

889828

11022532248027666027417828601962

5427114598025469468704407309327 1617 641 12911211 08311451 6271 5751 8653367338s387340692872217 6234164 58

1 425710s8141-t320971 59812221 19212731 43915661 154

9711 1881206117112231 033

930880809867820914

1226258724783000591 3410427251893

688 71 0965

7 0175177637 5

395833s127301 6s611 12107 91

'160

117 41756'1 6632022340634 60381 1

393627 0521512433828 5

1370793443 59719941521117 4121 412331 4651517'1158

9301 20s114612321'160

988906862815813844882

1246279225813266546041 0525s51861

841 01 0406

63 0558125979346034682 5981 5371 1021 0801 053119716661 60620803 3413 60438733825268220632469

10323131878398323119451 5351217117I12961 5311 4461 104

99712171 09012391 09310379358987868s8851923

1 4112816258137205118403524751 806

977 69842547 1

6350578 431 88353925611 4601124117 6

107212201 646t5/3231 6328337 34387',l37 07262621872 s53

123681277 1

7 453303219'1s1 436121012531 3301 s931385i 0731 08s1217107 1

1 3581104

961876866766838796931

1 433279426114184448937 4721921772

113739654497 4687 6561'129313 5062470'1330

1 0871157111813781 59s1 59125023128394038 3634 98257922412788

1 421012467

6640273218271411109212091 3631 55513411 0361 14011521'11512861123

97893s853799808866

1 04115262613256147304197361 6217 31 730

1209395444 6087 13054 9628423 388231212511 043115410s114161582157526163205392539533282251222183245

1s18812268

58 6725631 67713201110127 3

137 4161213281 06s11311151113212511133

963823840834830857

101817982523260754 574029331 620611 647

1248491 31

4396'7340

521 429353220208112031 089I tJb11191533157 41 69529653 08240283929301 4236223203887

1 s639'1 1995518324501652133411311205lJb I

1 5811307934

12241136107 412361 055868871855828868860

1 05620982434259657733986305820081572

274

1 4541 424321 1

42013725270837 07391 32973311125401 6301 4431 63444334809353 61Bs1

4154144'1 I43141043644839842942552455 I

914640977

213390021 099

461470471469460461458450442443484435442461471466437

1 4681 4973500421734412624384 0381 331 s3J rbb24021 602129317 4647 6347 1332931796

1394152237 464323332727503759360231 6929032287'1s87

1 424197247 63448130211728

1 355247 9420240912922332137 403112325425171912154715203702492438 9921821 505

0. 02,3714204254034114174054164484685'1 976065784'1

173061123419

5004664524624724394684s8458441s06435470457464479449459

17 3628644055394428 68359236 9529773090261217 311 4341 s314112481 63730197 41 565

72.10)433414422425456421425452395490539811639968

194773871829

491470430482448447475420455447444454451450426478454460

1 36317523930433532522785375734923117294021611537137 9227247 41434226441 667

128'71847403043633'1 36290137343300327 627 6020801 4801 424268347 98417 I25431 587

1338208 6405142612899317 6372432363262277 1

1 9811 5641 36931 4948274 05121961517

Scandium-f luor-eckermannite ( 8. 00,405 425 382 374 427404 382 385 398 420384 398 434 422 421366 453 433 418 422414 405 406 457 423440 393 391 447 399442 414 430 422 410404 454 453 469 399440 470 433 445 391478 435 454 464 466548 51 6 534 487 535629 ss8 636 659 700903 896 820 748 671705 665 761 734 827

1 093 1232 1245 1477 15722444 2876 3338 395s 480'1

1 0 1 50 107 46 9958 8050 5368823 732 641 587 559504 499 472 437 486457 477 446 471 458461 456 460 427 439434 444 426 425 404445 444 465 428 388486 434 4'1s 453 432488 455 445 428 440409 445 444 470 430430 451 427 464 41 5490 477 471 460 443474 456 445 448 4684 s'1 47 3 416 469 47 9456 450 446 448 417431 426 434 484 444479 439 457 430 426443 460 407 478 430460 448 462 455 458

275

46"1

476434488455456485458440490470444438461468483465492499s194485205677s783650853s607763

2353480412612068

619532580667

13496642998 1

3s39760616605526572574542589553591659805

28022049

481473521471456471518419451483486449468479485514433s03s03s03539534549879702526532573801

29253 s6813251726

619540565704

1 50784247 4153262

679542s93549s915886s1571604605672883

34 911712

442465507467446459506479476439447491505499434476480480501468470496590975572508505589910

364624411 6001390

59756558s722

1 8041076853662795

6685955625515725516486075566s6662976

39521346

449472472s08482473496446446476441478s30485446508491525498502532577571

1 160576478s53632

1 0844 5681 66818821 094

558627624754

209012758387021 00

631608529549607622544s83602s83654

111943081 1s2

443477470485460454492484s08s08484488498s03529483466473548493498479614

1186558522571bbt

11475578125621508s3553570s93869

269913947

33201 635

627551625582532625652614617574682

1325433411'10

442453481467472456455471489444468464478470489479510476480494513523606

1147537515555696

13195'181107 42328

724636595654915

31 991475232591226

653596s37611622622s85603s93602709

'1 584391 61044

442470467443s15479461499432457464469456497508s11497s63489489505534676

1071525542585741

1 624652710232560

6875715376s1

1044391 9

1 40673s00

967648562601555571587592s89576595704

18823298

949

4854714624714474874594404614764634625'1849148'1

498462451539457489520742980527524572716

1 833571111292357

63854756'1

667115050 00

124623 653

840663579547614557662570584600677769

2258267 1

899

276

800680761

12627 4433373

850711721680694849

14502698

755688674705694818771

1 0091 4627 0242251492617 621 0ss1 0951 887302340431 386

981857

1 05712182733757 1

98 982A021 048893888908

12133 69831'1106290535288 1

53 951231

970I3'1

763653772

1 53189112384845740742678706906

17 482094

731707690698711767844

112117229265

3 994837011 486'1014

1 09121 48

1675910290

1 334966882997

I JJJ348 0

34275i 4301

1859107 4943857956

128140703097

1 3638801 s3s89551 51129859902

726695821

171199291 627

771736'71'7

65575799s

20691 657765675672684716728877

11341945

1 258834817

3354'1351

1 0941 1252566

207556 9931223

967931923

13204380

395559596'1600

997955846936

1414435731 68

1 598758 54439545751064

921895

675679845

21221 0450

1235798750750740746953

25041 308749703689738707688864

11422231

1713428267

30791252101312173299

2378745021132

937988

1 054142557 47

4261061 62'1 5071041

963892998

1 6034359347 6

1819441 56s5583638

98393s889

727691887

27 0796821 098758722750646786

1 06030 081 06474968373968s693726916

117 22759

2256421068

27831169969

12634264

2501929171112932949

1 1121 540781 0

4246542651392999977873

1024191744134 063

1 8366323962902836

939842942

661689948

3420841 51022

695773701702792

1 0603152

9626s9632719696682771944

12063269

29359'15558

267 01062107 61 3485602

2418222391019

903953

1 0531 864

'1 0s8139013

31 8013'181 003

911899949

217541844984

1752827 0771 50207 1

974895883

695704

1 0s6448 5

663 0939730739647702807

117I327 1

861678717685727708777

'1015

1286401 9

3 575810045

2341998

1 045'1451

7 42121779

1662999895967

11322054

1 s30832949

249911219178s6923

1 039260137985346

'1 5966251072951 683

948871890

717714

1 138592748 3'1

824711717679701820

1 307304 1

795718676723684776779999

1 4095272

40669698 620331 04110921 6559821

1797815181 018

922945

114523s5

209112619521951 165

961915945

1 068309233968423

1 318s24527 1361450

980872947

277

97010111 0172029i 631568213201 12212461 903543031 9968 582996'1493

11621 041

975966

109717 473709044 932196118202627394260021 438 551 40115201108'1 080839999

1 699154412212263223341731 446

962970

11303248593 587520207881 43468222522276682

949974

1 0682582

12959431 3

12351 064122919476903

6s0912729026751347116410131 036103111392182

1 66s880923859543519432887

'19548

263512925129614381 055102'.7

857849

18'191 36611982492233037 371266

953999

12924003

'163s7

787 1

97 6410138116942120217 48231

98810921 08s31 61

1407931071 1821126128120058920

734231 90392329131910831002

9971 002.1151

26241 8570

6092467 1

4 9531 9413177

2557 1

2194323511326145011221 049

8811 03118921 348'130s

2470268334601111

94310321 40751 7s

1 s4897 479I 970

121991022520042465

1 00s8

9581 0171139390 1

137 4623841142113614182392

117037 622012679

21 6812291105

9B'.l10221 060117 93392

1 96304 6585377421720303711

3116217240

1999126814381 047

983914

'r 0841 875127 61 4432454297331221 02s889998

1 469684 3

1 440178 01

83091 385481291 9952589

11683

972'1040

123351 93

127 451 873117811341 4402649

1 60s573082

81 691 8381291'1060

1 03s942

1 0s01?204493

1881237206336354521 694494

3594012739

18291 3s1127 41124938858

11991 88915121481227 1

34272819

989978

1 0831 6738626

12972I ss68035

1 5829526820633083

127 15

984'1004

1 4256 528

'11091

17101 0691 0841 5533035

223836648 3

561217 9512091 1231018

9861 0401 3805923

17 3343060669s30612292s658

3765893051 6651 46712791 100

934926

1 368179511241736231 1

3 9542455

991974

1 07018'11

1 08981219590s87 530

1 6s954778217 63567

128s7

1015'1060

1518807791371 485'106s'1189

1 6063703

3043556522

44361 580122810311013

95510271 4338005

147 4529646698250225507 654

3720067 12'1520

1394117 2

115195'1

870151517 42122118622212404 3

2127987930

108'12137

129731 088499897 496

1 6336347 621724470

121 43

10321 09s1 7359803730013921 12111671 6314283

41 1214677 53567159211371023

939954

1 0591 555

1 054712641298267 2721382657

1 029833815

501 51 4541 428111611'1391298s

1 5981564120320942094415417 44

936954

11072691

1 50059869

1 03367915

'1s090

268221995276

11378

278

0216216211031 035101912423625412461 91

837 1

397 457391 3911 088125550324630127 61 043

958931894

1 09s3097988136871 160107 62249778530611 3061323377 6s91 I1 8061 035107 41832484937341 66s3423208414s93 38'12297138214074079620920451 700388 331 09

91 8s181211161 0861019126041993 968701 098 s2

2219441 49132511461 35761913952.l

1841032

907914961

12104102956230471149113026997 38626011 3081 363431 1

5242157 41027107 62248527 433821 8s5333318'111 57333s61947'1388

1 486480 755291 8071964363 9308 7

80121 5941 0891 020'1003

1327488 9368 07 491

1159219643304212651085148469123 s68117 51014

93'1

923896

12615129868924541118114933446724208013251492538147 181 3841 0331 033262257 082922'1 98430971 63917 0232061 84912171629552949661 484231 4361931 42

65751 4371 047

99510101 53351 5435827659

1 436217 296

2 5531228106217 48705827 4910291 006

89591398s

1 3666420811820641 0601 1834'i 9050 0417 6713521 606596443601278

9701166317 1

572525992267288 1

1 391202430921 68813121716642s47221 44327 0334 553020

51 7513121 0481 0281 0561 75552263 5907 485

17 647'151'13

209711871142208 1

67 5023211 096

893993824971

157 47 697732717 631 0471257498952941 5781331193266403 9011 16s1 017125134 985597230s253926791328226029231532122621107 19542621 459321335'102884

41 461257'101s

1 0551 0281 998488 540267233

2097 4

129s91 833'1185

1'130¿53 t

63611 9001017962884909998

1 6898926642815421 0461 4976189482313721237217 36975327211341 03612344041534 6200s29562528'1391

253326401431124124097 47737791 415364133832941

3179'1163

979'1007

11382366477244547117

234281 0346

1 6351131117 1

31 41

5788161s1 070

909923931998

207898 0056971 3581 08316757 0784484129613342466687227 151 099955

1 370431 64842181s32412442129429042s8 01 39312702 908722231 391 398391 1

3 3483069

25',t31 099101'1

9'1611482986452851297 493

2449980971 6011 0911 208412652691 4451072

991905960

1 0932538

1 000247241 3051 0211924't 64738 31121012962939651 521 47'1086

1 0081 560465 1

4365169633'14224013773225243513791295349168 6624671 531391 0328 33256

279

34524930232117 3713021 0981 49541 4635022104131843363 9341 5591101

963960909906857796

10 4712331171r b5þ558 335491 3011 078127 2137813661 481192434416578901258 55380 1

27 467 190'1669

75341813'1600

3 56971 s03 503'1 5521279220065784 58421291 s90

380743942002167 612841106'1833

401 433411 9541 4634947349413371 058

931896963858871809

1 02412421 0912017551 B31 651 19210451 3841 457137913971 95942966821I 6555932360327 67881 6

1 s63658861736179741 4563 7031 301 4301 309256467 454 36019341577

427 6

399219201 549124811942130381233071 8641 s98517 73342130710is885981987890888898

114612221 081237353092906116210221 4191 40413721 48721 48504 37 133I 255578235272863

108471 3783

4 s38175617684985581 925571378137 63116690 3

41111 9501 5s1

459738 3818131 494120311s92437381 73040179217945462305112251023

918979924929891890

11461 155f i5l27 3350 582509108211451 4091 41013851 4562261s8 6075227 643550033592879

'13601'1 2600

357717521 890s61 653 5621621 40713453537649636891897'1 4'1 s

49923 56118181 497118711992845359227541649208353'1 1

2531117 697093s871937841859898

118111671162348 0463421 431 10311411 4311 4801 4601 50123216333802 3

71 8051 453'1 9s328 0

1597 612115

288 916712110638 1

49921 954'1 3841 4844132597 63'11818771 428

530533351804t53¿1 1451198327 4357927 04i 536253550 622121'1155

1012940922848859850926

1 18911121277399244 5517581 066111213661 3811 47315122524679786 9566884738299538 07

17 91711 42824721 64123577 06448281759131116154705558828061 8731397

5483294817 68147 4117 21250361 6368 925051 4423 08744901 8601108

933978966925827866947

122611421 33546874092'1498

1 054117213751 4171 4951 6082660698 591546447454030 904499

192421 0403

22141 6872489728244751 621'1 38017 4152 385'16'1243017921 363

524526551810'1340

117 1

1397387 435752282137 1

3783420916061 081

9309279158898s58879s0

12961 0901 53852 08390713s01038124013121 3871 4891726308868359206609441 662894582 5

1 94069182199916322913724841201s1012791 87s5927486 1

223916271230

280

12791 433327 D

303951171 530698738 5434463280236117 39191116611192

9831 0071 09113943206915261 46337 6167 602547 6477220427 42419206s31 664309339622591 6541235182815121772360 0

3 963350422962927445772787345'1738

46401 65912371235'1910'1688

1 s80

12371671352030346'180

1 058763213569339031 8621671 646200s1528'1 1091029983

1 1131 4133729907 1

594 53552

1322710131

81 00663439542357207 0324842863183224816121337179116161907367341 83313222483257468 3

78971847911 462

381 91 55412151 165196117 471 656

127317 68384 930 307829

1 005s57 17346733363032201217 2119231 4831 1031023'1i 31

117 61 4844540I 578561 641 19

1 392097 6384 50607 435'i5226520813368431231282184'1516

1 36017 31

152321293s85453229812191371 04979866'1

187181 099430901 5301206134620271 7031 683

12631926387931579s48997353473373331828171 939187 3

177 0

1 4461 091

983107 41 196163753 957 91450454822

139469312I 60458 643 348212A215937934289288721111 4871 4121 6391 468241834494567303021 60383 1

5337981 9

1 80661024326781 4821182136720011 6991 637

1 3092116370631 5s

112009479498533363352254417 191 8s118441 3s61 04510131 0751240175666 s67 0954392581 9

12947859887 1254 043029208923003 96041 0327 21

20831 485152915671s102724327945972941222742485526

11418'1 6981

964222641 33812031 508192317231 560

1 338237334 90336s

12362935249573370340424351 6971 88317 371295990982

111112281 85s7323697938737036

1171 479708780s3 6128412120242741 01

3969259717961 42415921 4881 43230093367433728 592182430958 74

1297215246

848 52077137511 4516101 8531 6611616

1425273132603 699

1279487 66449333463s12247 1

1 55019341 6811 1911 0451 005112412592301836s67 4634418427

1114078618219s068265321312641427 43 907249618421 3681 6831 s59151932123397401 '1

2725237042906349

i 44001337 3

7 0881 88313231 1861 75517 571 586147 0

1 43830063'1 394189

12267788 342893355344623411 5641 9391 672'119s

10271 0081 0631295261 4895263523328

104121 0s06

77237 684493524932048278143653436247917 20'1435

18241 534161034983 6753 6482517265045076470

'15973

1241657721789130212351 859167 4'1 6581 509

¿ót

1 43312121 182152215721 39111261205182465'7759463'1211 495124112061 3332285277 1

21 44233043274 55667974789384 021 4317 38267324191 9091727¿b t3262126423 090504'1

1392122211831 59415201 30011551 14021537332543031 0s145012531'18913452412259320562640419644777 09146873594216617232832223617821 864¿6t52673282432675'1 90

1 41111181 1991 6351 53913321 0781 17524367826537527061 418122112041 389260823341 875285445174 s01716947 19324120661 828284522291 688204425862560306136s I5137

13s1112113641 6001572123511041 30s277581 70s30622581358131512271445292924021 8253201467347 09688447 68287 018s8187 4287220271 s6621 6826292439301 038374827

1364113012921 492'1570

12231131137 1

3417797 0520 51 990125912121235i 590295523231814356246154936657 4462926221 9091966297221311 46224192 55525323 08843174863

131111361 3481 503152111611 0541 434403076754 90817 6812671220128017 4731 3122511823389248 08537 6601 3459624041 780199228242064152826242504251830794 6654833

127 01 1231524157 41 46511 411

'154

1 5844875691 547331 65812791 3001287177 330'1 92216200 03 95048066032s668463722571 8332236266120391 525264525842639308 1

49780

117 3

1 12815771 5641 44111471 145'1680

5726634743591 575127 1

1236125120302939228421 4941024666650 0521542132234'1685

247 6256818771 60527 802658267131245'184

492473575550555573608s88626712934

16143258

997164540 3'1

4727

529554504540555534608553629716

101118432573'103s

17 684682

127 03

Indíum-fluor-eckermannite (8.00, 0.02, 72.38)51 9 s09 533 s34 s55 564520 483 503 522 544 54151 9 536 556 566 549 559545 537 506 564 s41 s61566 529 562 555 54s 571588 554 548 592 549 s64574 560 609 571 603 622564 581 600 627 574 629655 717 688 657 559 712804 784 777 871 889 8s9

1 036 1127 1152 1347 1 366 15262013 2387 2822 3333 3680 38351820 1289 1072 914 966 964106'1 1166 1221 1322 1413 15291928 2148 2312 2734 3001 34845694 6s12 8296 1 0308 12448 142849622 5948 3183 1815 1230 1010

282

903777672716731740737704711697769740702700717734672767809735758784755724706767740755822713758779723806777782801792841895

12494253563 9113290s924

11913794491 I1 078

9048758808s8968

82070172070472168s730768691687688761777749759765709766760760763779738777762774746732742777778809758806780796816809793963

'1 366495461 3s1029

89190s

1361468133291 056

938856874940993

764714726716688723732794731686683702774744785758779765800793802718795708725757727765718745t5 t

752803813808809758850793928

151458425957

952857981

147 3591 321271 0898959368s2907

1062

76871469167968s693673722751657743703730683780715730791781771727745793795719774753764779788731763778720759761816820800964

1 66661 3951 01

890922893

1 5947 1991 4811062890919844885

113'1

778710709652696726718710741722679764774769707722741833782738775B'1 5724792767745729719711741765794764825782769848748815

1029197261944154967874

1 05017 68836811 499s5934841821908

'1 185

74069769365466275074270769371677470571974571176471183173577679674480077476976574776178881681s741760588787812903775810977

227559262977

920893981

210986s01 0811 004856859912923

1 3'1'1

76272069'1

6736876s370870275272371275577575972974073279175775677376878970580'1782783722774776775760766730761754765827856

11042698554 5

2097835884

107 4252679341 064

9968909008269s3

1 432

737705661bt3666726686687708686716743731702759763728835739734754769755767762801753763796768800724793769807799811847867

1 1003229551 51 570

90'1

8771 13628236632104492892882686696s

'1 684

283

1827957 5436757221 063923904847983

1366281 6

984852945916

1 02817 4029521919984

1011978

17961 0991 0231 0581 0401 0701 0381296366141361'1581149113911471 1401161127 3

152926979272864771641929'1s30

1 4652962504 3279713691328127 61 4611 909

21251 0864

424844101018896862907990

1 6062377

947920915961

1 0361 80834 081 5011 0651002'1083

1 878i 0801 0031 06910271 09511201418461829731212'1'1 011 0951 1631079117 3

1282'1640

3179257 4821403731517 68141315273452

1533'121661 360128812841 4342057

254211376

485'l31 041 004

946908895

10151 8012036

910890932908

1 090'1849

38691238

983'1045

112118421 0331 00110471 0771 0521 098147 5

5 55'1

229511911 0981097123011341211136116493804

339751 4824

66071 5691 4071 53s4406

142061879134912461 30014652393

309811027

57 402136

975882871947

1 05621251 501

992966962938

'1 1841826422011611043

99412101 67210021 0561 04810231 0291 127'1 5616s3 318241 084.1

1531'155111412101 189137 61 69748 s8

418241 0320

57 121 5311 4261725554 9

119931 673128212681 33915772514

388 995s36705'1 582

959865862919

112125491317963960894911

13111821419311071002963

12041 60810641 0391142107 611031 0961813727 I1 55511131120117 41 126117111961 4161 857s928

46628762546981 49714291793723796611 59112981263137 615823005

478378267 6531 354

907866873982

113228331 124

9131 006927

10111 4291 993368'11018950

10421 36s1 4471022

9671 098

9931 069117 921 4473371 429117 51 0461125113211921 168'1405

1944781 0

47 455661 638 0815471 4461 933909973021 4851 305137913131 5813636

601 1

64827 588107993s886922902

115131 121 040986842960

1 0081524212731 84

9751013104'11 42012911 007

99811031 0691 04312062433652512721139112111301120113212181 4962190

1 056843473

649729831 454147 62132

11567534 5'1489

122113521 33817 334720

7909513269491 0s8

909861917949

128031 09

973942866973997

1 687237925171013

9631 00616851159'1014

94711191 0011 06612392900s30912211 0751 1501162112911s2127 1

14982443

1 38'1 536754

687 424031 5501 4422457

1 360939'151 492126413101 4011 808607 1

284

7473429840261 5841 40013621 4441 365'18s8

2969240172221 89s1 6831 5981 402123713191 33s145818107 047633224521 621147117 37262238 6089071 093220115421 4631 3631321'1390

179641 9819423853241925563928334531 50551 5357 019621 649212119071 30021822834

95 5731090

30 5'1

1 5991 3631 4301 s011 3s421 0828 9927 31

66201 65717931 57513201293129913721 4311966888 9

'13850

21 451 619'1483

t/t52910

184256451 5

789722s3'1 5511 49813671307146618825287

20330297326322434437 1

337 61778721824

28811 8931652224417021 4022409307 1

121882651 1

27 201 5951 35813231 4071 408240226903289590 71 50619491 4461 3811302'1 3481342141 I21 64

1143211661

19851 4901 50418793403

24290s81 62

s63 9

20561 4951 4641 38s'139i

139420157 386

1 803424952861230848233322

2364s'18052

24252013'1604

24901 6401342249731 90

1 549621 469

23181 5311 3661 4081382'1 38127872488377 1

4 9381 4361 96s1 4411 3481382132013411 4792400

1417192481 8781 4401 45020333 960

329984912943001 90515281 4281 39513291 4602119

1 00571524122462836229949213443

287 431 4'1 08

21792045'1 s812521147 3137825563260

1 98041 65172092137214581 4081 3411 41730 542453460041 6215451975137 7133712851 348141 51 4992838

'1 660 3

7 12217511 4971 508207 647 43

4393638842

3 s991 8571 447'141 013721 4201 4782297

13524127 13

21 60287 6239346 584079

326171 0405

1 9631962'1 55624491 419154624873299

2s21811989

2018151'11378'1456

1328152031 862252556 1

34221 44818981 3811347.1330

1319137315193 534

1 837551 s317361 4961 6392085634 5

5s0 6830605

32261725'1 5081 389'1 3311 3451 60026 58

17 4139806213028442631441 1

51 5333296

7 4711 9041 9301 53023951347169423973200

3070881 021 869147 91 3301 546i 3561525321722815 55026931 5411796'1385

129112821 35913341 5s84280

1 8s9337 471 6721 5651622234081 44

6419022532

27391 6631 478133713641 46215243022

203377 538207328052980401 96693

3172154491 89619291 7582143135718522641317 3

3400255341'1441 3541 4241 4221278175630942280694421201 57517 03i 39s131213211 330'1400

17245554

177 6528 381 630154417 062417

1 06176888 3

16034252517201 4311 383137 0

1 36817 033369

22308553 522682675342437 499287

288 95457 0'1841

17951 899210112941 987270831 55

285

320926671 40923041 53611641164127 31 639684 9

490-l4461457 6205360904200258962008102.1845

127712421203141129483321537 1

05301 86s18161 3831 2881 6457 430531 41522127 012231 208132619330177828 3

1 9581 4892187859252381 865219118263962643121 441382

332724181 42624511 48'1

1192120812451 69890 57

13180428 0

464212870

498743262366777 47262167 01 338124212491 39s330636175726

2293193211716'1359

138217548492451 41 50512771149117 41341217 0

111197 186'1906

147 42439932045481 88720 50187 6483 959321921147 4

358722501 480247713s31191119712921 841

114881

'180s

46824954

127 4238 984219227 6924461 17147 41 336123112261 408352239416057

23246697 1

17 04132613791948864 936771 463'1 1601232'1 16513732647

1153560771 6651 566280293s836472 00s209219975836s 58217751 416

349419021 565232913251222119513172282

1417110323

48785288

12049343 1

3 9662525

1 055051 421 4851262128712661 59434 5144136908

220734 9601 6311 3501 365225584392 9881 3051147120312291 3963259

11617sQ261 53915323324888829732062208 5

22056862494415421 444

358617 87163221 881240117912361 366261 6

1 6363I 66651 945928

1 0881327 03 5552723

'1095s

386213121223'1 '1 9012781 6863362481781 42

20095368215351324137 62839801 3225412721268121812151 41841 58

107 4141 081 s491 538400 77 9082309226519162302777343041 5451 404

33731582182720601220119612511 4223i81

177 37727 451147244975 5341 533063298

1047931101 3841297124912852039317 4s1 69

102841772528081 53113821 4373 5847297209612751166121312411 5055379

1 05883387147 617 1ss00 9703 1

2004230219522502781 536241 4421 413

29871 50719421 809127s117 2

1 1801 4684040

17716601 951 0484418596367830784021996425261322125812221285234132645442

1277 6

1 5706¿3¿51 465134915224805663 5181 41298117I122512581 68168269648281 41 4s017 91

6339646119'132308182628537 65231

.10

1 4231 534

29351 4132081185012051'1901 1861 48551 78

1 6688517 4491 I

1 039875584116289450 53884 021771292117 2

1218129626113216554 5

1657913917

20171 43512611618580961 681 65112531231121112801734858590 0424231 46319737 47159841 840227 1

1824323658 9824771 4751 533

286

1 691591 5

7961329954343114'1 8'1 9

22351 6751 3401251202537 4821261 43231623 38441 61

32362189291 623411 4881 783205729351 9051371277 0

46221977127 1

122711431 16011901 09811011147120516251s17267750 53320514991 5752758205715231 4901857630083027 617

1 758677 471 5531 4254592632197 421231577129s1266217736241 8781 492323434 9339363213207 630922 30813641 836223628511 6471 388348 3428417 6312811239118711641 195111811361 16011671 6171 48430264 s9927581 449170925351973157 6151220017 46787 196990

19797382624332345273236021 0420001 s3812051 3892540349217 151 5043 3843s893687288 52160313221201 435181 s243528 0B1 5961 4034069402614501 31712231215117 21'1011144111111351210'1610

1 5783329427 1

24801 4661 80023901 8881 s501519219881 5494236584

231 1

80725827361 3

47 302044224020561 42412411 3782907311s1 5541 6863203390336782735205731 6320121 3891972262725651 5841 48048123787'1s00

1269123011971187112611241135117 412291 505i 511379241 35211913922063232417511 5781 617251084 5098 996622

2803I591504437 61439717 68227 618971 4491 1911 4523 34130471 507182031324243377 6256421042961t/55

1 45318772 95026261 4571 584537736251 398127 6120211s31'1s01 1361 0841 0661166134915771 6924239388 9194113462299227017821 4991 6042967I 368

1 0117660 s

33288875449741 90398917 61

23621 93s1 4261 3011 s633 79827 631 499219130434391367 3245121 4827381 6291 480177730442409'1405

1 75055683225131 611541194'1139

1 1371 0s6117 91139'1168

1 369151'11825462238 731 8361 4772397220416871 4701 5933 58279409576653 3

417 6887041 044696364217 062228i 8401 39012241 700392625771 4042460301 I4281341 423412368261 415621 58717 9931022244141 5194953 53278812751 18011611134'1091

1 18711051120118215261 54020304984368217831 50426082207167 41 499164542797 695927 66455

504 9I 6563 5845079341 61756227 01 6861317126417 413 96123751 430279531894365334422652564245214111 6651 90531 6s2051137 623635'1992332i 3s6121911461167116411601145'1039

1 157'1515

1 s02229051 55337216701 458257321561 680147 61 70353 52752383716032

287

592444545 953527772861 8691729328981 5847 21

1 865150219026428561 1

283327851 90s1 6783 38130662191782397 645 9883807424631 622080225824061 6501

'189

1149120812962040662379025177544121 40957 4708 337 6619571 918268535823718298921261 6631 67817 17

57 07430069'Ì8

1381956 5617951810384 3777241831 648155220977 151551 0269126921793169637 43303623199567

1 02085321397240 9830372042239723581 5581 1651 18411911 42523827 0717 31748465800

120489756622832771 99017 473029373034 58298021 001 5891 785'1807

53754322I601

1241045831 6801 845436169733621'1689

1 46623827519527927 40253517 31'1807

40'1 I30702331

1 093910216

479341194 005301 01969267721801 4391145120912471 38026727528653 7467 1

607511197974854522784204319163364388 631 91

298020421532181 61731

50 54417 3

1 033811s91

3 584I bJb18675207627 6

3036I 6¿5

'1 s00272073335023282322131 644197941 3329992569

1 20359942447 641 173667287 61975272720861 3551187119612231 4463099788 0

608246366527987 1

982553 08251019721 881364342313079282319251 43s1 9581757

4826431 5

12619107292898162s2035593057 6325931 545155232557 1A44615293922221 5502117388 328212979

1 18429624433244073 66027222042268520671 3s6122411911191'1s39

36868036594 54 5997379921797 01

51 0322831 9851 98838 28430629912622192213821972183'1

461 64264

1453310231248517542232694255 5222861 5531 69538 9465354080300421371 570252934 9327313691

1 095787974007448035432547209126501911125412821 14012191 60044688543564450298723881 79075494320871 9402062370943673 06625241 8491 42418971 804

47214509

1 6022988 32244177 2247 677755300217 61 55516274 59561 47349329542193'1593

27 04334925514680

1 05737 6893924443734092303206124361 8s612421159120912871 60653228668551 35266

1 0049888'1861 I472519871 86121753722437 03112241 617 911 5541 8381822

4 5585070

1 606487 8720281 6892827826051 42197 31 545177 3551 75863308929892100154229393'1832426617 6

101196934390044273250226421532430171612411 19112221283182959428342558 75473

1138691 4080'194287192017 81235335s041373113231717541 5831 8331750

288

1 891401 6290431 6923331 89336 5356s01 8910184588 72013128112351285241 61977175614151310137921992266167 412831 9536478437522521 36012991513191 42689262220821 65'144574 503734247 69344 01 9041 6942863283622101 478225221 44248827323 2534685491 0

20823907304630s82296193740805655

13483944449071 8051 30012131 35s2466203918461413121 61 4292231230'71 581132622676728426721061 35312511 6301 891283425301 9901827s059448673494608321017831 68833282658211315122243218624672698351 047724428

2237381 6299028012327202245255993

14592935340251 7851 30811671 3982407198717 651 45112451 432217 82253'1 s901 3362619637 0437 41 8331294131717131922297524891894193454204640752645612930166117 62359426731 836157 1

216822042517279537 6749794027

24533s'11297226122224219847 01

645414872925535221 617123111991 586241320s31 7581 47912721537220920751 4291 4573042604 040931 59813331332188220943072241 41 788207 1

57 53486 3

7378468627201614175338 31271117 13177 4207521252s462s17412152393836

28213182297523312134243147 997033

1452490s1299815211235115417 4021 661 843161 41 384131317 36225319671 4481 444366853173812147 0133113281 909217 33079244516542347s6955323689947 052413157 1

1 899383926451 681182420792168258 02568444453 s03 s69

31 6030'113013239420062687488 0

7 9381356784292500151112511155192420341796I 55J

1 40812551 86623051 9061 3811 551446948213 s08'1480

1372'1 3811 895217 3295824221 59s2693531 6s8 016257468722651 675196337 66266915262008203 02220266525784475554 53448

3 54'1298230332356189331 36502790 55

12182807 422891 42012101204217020241 6951 485130713491 988236917321 3611 601501 7452930s01382127 1

1413191 4

¿35 I281523291 61232334 99563 0855 52433221 011 6482282358 526381 45521 642106220827342714457 1

s6883441

39332954305222811 80433535267

1 053311034

6932217 41 359116012732448197917821 4091278'1305

2161232917 371 3531'.l16577 6449726521 40312571 3891 85524902727224817 01

391 64673684550 s240341 9981 62925573i642534146822602136240527 642943457 05208331 3

289

30s6 2773 2349 2199

419394427435401403428423439468597915

1016763

1244297 62045

9235264404344154494374163984123864'l I430455416428485463s36518486501491484420433484418456452446477461436437

389414397403422403403425456519601969853733

1 3603 581

11946776505398415423436433407421497437445395429451449424517526490470s11491441496444470451505441441442468466484

Scandi um-f luor-nybói te392 395 402396 380 397374 395 3874'1 5 403 430423 387 391408 400 4'1 5386 413 429431 416 466440 480 454512 533 517s90 639 681

1116 1166 13227 67 688 667793 8ss 889

1546 1710 1 8403892 4753 5774

1 1 1 05 9070 6215712 654 651458 475 435443 429 428416 458 456402 416 420406 428 435425 428 407399 39s 393425 437 396420 424 424423 407 396390 453 408436 439 453473 447 399421 455 419442 419 441458 475 442458 484 504566 585 553s00 464 s'10509 478 480512 484 530529 472 455471 437 464427 453 447479 472 443442 446 431474 469 462446 481 444447 464 444451 450 424466 461 446458 443 446500 480 451485 461 491

(B.oo, o

42537938339s403397408400443498745

1 422646

10222 068'7130

38 285524354044434284004084324264244024494224563924434455096255114465tt475471467443432458486482466444472451508

Q2, 7

380416411405406415455467524560754

1290646

1 068225488862191

5584684294293994264114504294404104244284104454264695575684904744804734544494394354174644514'1 I454464423464

2.10)367395394392390400376463507575879

1231682

107 1

27 121 0580

1289550423436421437428437452435449404422452499442402460573590498450508446444440426437398457481441448479474460

290

5034604994825178s0

1255893693551722

2'1 883426

697719974496512577881

3 59927264i95

942620550538503487516762567583s65556882

2387999539606

10624 0961639635573621558s80650

1 5572733

869720599625

473511453472546737

1141922614571817

25872689

66971389449954059'1

i 0084679

1 1263387 1

853528532519s085055637655s1558s22559977

2353900633606

128643491 433

638534s80s49558649

18522346

8636s8s83602

489470468520567

1145997962603545879

31 8021 69

605840716505512533

1205590792573633

776572577496550528576679552526514630

11852289

817563606

147 643311155

593562613582636720

23311 90983970060s627

440494499s13555

128886999ss33584975

37941615

550890666526492522

12457 4867 5052967

6615775214985325296376445'1354949760'1

137 1

2182723574683

182441629s0617563595s91619790

27 411 436803667625643

468474s11500602

137 6759

1 0065'1'1

5931 04142531261

57495461s485572655

1 662925761 862437

664477536540522525627681551s03564634

1 6481961702546754

20473726

882550564576ss9599862

31731209826678575573

50s453486498581

1 468804930537633

13434 568

989622962600509504719

1 960'1

1 19052321 835

61455'14715Jt550532636620574534s'1 3

656'1856

1 588591605823

24293055

812s83s83s96579s91946

333s1 0s1808628601602

489445483546692

'1456

7719s1549671

1 456451 0

867669

1 028552562579818

246012824480 1

1 454613501490526498534697532575495554730

21241 455

6326338s9

30312568

774617576556562633

'1 065333s

9327126225936s2

s10477457525749

1410768775s39673

17524128768626973521s'1 0

500879

301 313229

447 01112618s31544Ê.4.)JL¿

507558729497609504s98814

23911296

619606975

36062066

723ss8635557540648

12903172

921758s9'1

599653

291

594672675828

132037 65637219132529990881

1110351 I01 41

28731 066815868912

1273321376285388441 41233890

12802628267 3199621 692111609729861 5381 504836758791922

1 36930 635226405612501143179259377891243037331 5031A7995990s

614625670876

1 4294580

2980585322234

941948

11 404573

197792082

948828829891

1 3843835

354791884239291 137

9371 380247327 501 8602635

12829s63825431821127 7

841801830933

1 4873903

1 589627 421220122220507 689

5369824981

31 4113941A72

931936

631663705762

1 5085964

31 883629517 69

960922

12695878

177 151 689

927750818918

1 4544793

4257813217

33771 052

9591 6242299299817 403241

129965245220620531 128

813819844

102915434931

1 50702111120s12682 081

101s1587001 875327021324102291889s

595633758911

159711)7

3189549861 509

909926

1 3817 671

149111 487862824860965

16326088

4717091 382798

997988

18292194303 1

16254 068

12299512919072285

927822837833

107 1

1 61263 93

1 3s381703120113722413

1 37056013413722234s1266101 4973952

617687721

10111 832

1012129269

40231 381

897941

15521010312017

1 349855836857981

17258253

491 0s6 s6123411 061

9902006210830'151 50760 63

1 0995481 I1 7552292

93376s805825

11101 6898224

1 1278152111541 3542803

18115579721011'1

206812241034

907903

671654769

1 0542025

1 3s302517 0

3 s081199

977973

18941297 4

887 41289849792817

11221 968

1 09494 6668

52962034

938965

2347217928 50157 4679594264469'1 63021 80

871821785865

117 01999

10260941 6'1408

117 61 4653'1 69

2435353045

75271 8391228

967903970

613678753

11402484

1726420525

3116107 4

867988

22451614062241 163

823814854

1 1852226

1 s37040s66

46881562972

1 07525s"t228726171534I 6088201388 015251915

834759777846

11492207

1231 674491 318117 6'1530

38 783232347 102

58 5017 121 186

9859459s6

631668804

12692966

2157 31 s8362755102s

903'1 0382783

'18600

4188'1 1s6784799884

12292654

2075733s60

46611 308

9261 1362 5s0244424381 844

1 0s037 0213 5671 5451759751773815897

12872561

1 3888551 I124112061 654471 4

401694001 3

44911 55611341016

910947

292

9671188317 0652657 174 9632586251158 58963 1

452919821 09612311153882816

127012911624123716'19i 038247 41977986927

12484777339845'13921031 54467 421367598643120951092

871879

137329862011216s5'11152209364643421511 638506532061 366

967

949117 040 50

161s6486548 6823372921

1 928817236

381 917901 08112361122818849

1 30012751 58012241 4941 0s127141 659935970

13376239

125834220

1 007812120388420888464s58 919221020

931891

1579297 1

1826247 1

4932608 5

1 86'1 1

s0 38204417 185'10829011267904

i08313945529

1 50044412446021773517

2191 1

'14183

34341611'1 15612401 051837878

1 35013281 54013181 434117 929511 478962944

15158103

111594266

1068311 4253448231 4909447571 6381 049

826872

173928151813294945877847

1 68123932197 41999494625311296

921

1 0481 3907 177

131524361425020824380

2392211618

30911395117111721 028774869

13791 4021 46113901 3511 304301 31 317

950991

17 0210134

98044750

1'1536102122982268191 3840421532995I9'1937

187 1

27 6817293340451 I9724

1520333541 8512300478922481128924

1 0531 55391 89

11775442837 462042564 0

249319213287 4'1356

120312461042780962

12641471'1 30'1157 612511362277 41103

9301 0281999

1233087305446

1231 0

87 3726323387904 934431 356

941899930

226126281 65139264473

1206913447

31 3417 41272545171 8891072894

107 917 24

'11683

10'1134409357319467328

244437 6902613125213121 '183

953795982

131815771 3061 66012231 64325571110864

10722422

1361073276291

13125801 72357421887'1 5300 1

1332943905

1 066265424611 59845074377

1 493911781

287 41 69933s6427817361 084860

11 492068

1 419981 99475633'79202297 18

234306275241 6110312781 152

914786

117 6

13271 7031231'1659

1 08418292334

967947

1 0652929

1 440760 9868 91

'1 386068 01221851 61

804 5

251 I1230

917848

107127 63233617 01

48274319

1 7568990227731669387940301672101485i

11112560

1 5829681 048 0029492221

127 19217 37

540522151 1281 3091 188

883810

121513921 6401 18016661029216'.7211 4

960927

1 1773524

1 449949948242

139325729207265 s875972292118s

952840

128728962136197 3501 I4629

19163804 3242015824535367 01 520

968865

293

83978485s923

1 08731 96751 5367 413381 1581 445662165732007341 4616225371134958

1 44634 514197'1886

1'1561 4034269307 41238'1055

93686s

11153'11663643'1 9033 0838 s6386821871 53021011 4061854269614251'1801 889347734171 s401 001949902925964

86s839892887

11463941732531 561

'193

10971 609788 958761 9s541 6461 1223871110102116103757387316661 0731696421527 61117 21 053889835

117 53548s6632921317 93921373720 s01 5892207127 3

21 4725571 3031295212737 4033221 378

979938830886922

797762845904

1 1634615688'1273511921 099186886s0528 3'1895

47 4557 911 9901 0731 03118514 0483555'1509

1 0811940427 0

2383llbb

1 084933920

'1360

41 90504 63 06s31 3941393622182017 1220631 1882362244713201311231242893C041319

961973840930

1 038

809810904965

13295533647 62321115811582186923644 5819525s32522918201052106220474323341 61 3631 0752385408220321 058

972914924

13s2491 1

4580318231 94437 433891 642'181s

1 8481 1632 53822651227'1319

253 0430127271 186935985847908964

811783837986

1 s8664 01

597 621 401118120528 5092313720207 1

608 s47 5715141 02510132437448930201288117 02645385918251101975879972

1 s9657734309325333444467317 31622192017 421169287521s91 2081 46327 144362243410529609098388s8

1 000

736772891941

1 90669275 50418671130'1 183361 I8940300322396291425313111 01811782593472627 671 277121031 4836791 5061 048

984888954

193763 99421 63308336s437 628221 59520481 632124528 901 85412101 5702901422522121 093

96s904884885

1 063

784839859947

217 1

75214 9001 604'113s

1203457881 7025042391633 1

356s126010211194284647 3323671 16812463582347 4147 61 0368878s9

100222216825399732613 38843372583i 57021381 5871 44528691818119317112921383s19121014

940810821896983

819803939

1 03127937 4784317139211381 28854 967 3692193292463 533039113810441352321645092049113s1 4014030326113751 020899865

1 0312610661 0354032373573406123831 5412219'1480

1610277 61 607121 41824321036291 6721 0391 003

977925915

1029

294

999945909848903

1345488 731 381328962977

1 s091 8031 64533213 963690 561 673925334020391 666287551 5407 612s551 834417 4647934331 5512685584236s91639135217 451 48020937 44793 386286297319433497386829401 9811 4321 3381 3041070

9611 0631 423

934894882893975

'1598

455029721222

991994

1 68117 401 893348 342867171578 338392993182916923399

167 401 0079234519424892580 6288 9141332665339322416281403177 61 48124937825937 057022698202637 07382 3284419281392122812911 090

9711 1271523

947921907924880

200645262 5551157

914'1040

17 611 869-l ôâ^I )¿U35834 5347268547 0392427771 8071 69741 05

'17530

912821591 93655775 57823881 4553 684504 328721 4581 4781 6471371288881199492537 1

2395205238 96378027 4517031 383128412801 066

9691 0961597

948917878868997

237941 6721961110884

1062177 91837ôl ô,¿ I J¿t.

3789467 1

726951 70394828771 7051 698537 2

1 69757 63720382124631 3526521671 5964525499624651 4191602157 31 437352782159163500521 8521684044356726301 6921 33'1137513181092

97711261723

893912834833937

28693 9981 8681 060

930117 9

187 61810¿Jt>38 55496371 5047 61394626911 647188568 99

154"1461341 8702302690752591 900i 589504 947 6422751289158215671 433432586048941467919352456401 4341 0257 41 6s913941416128710521 001127 41929

947966831832

10643435375317201 017875

1203177 I1799¿o¿¿38475327697 0443238 752375167 919468663

1 36004789181426817 4044888181s1753546147 4620251341177 91 5651 497s0888652879s4265'1886

2654406232552461156714'13137 312151 050989

12042063

902955827877

1129384236771 s88

981978

1 36917281732288 6401958 7866s 1

422038 0423121 6782195

1 0807121 48

37 481 75529877 42746331 6251999586245191 9801 338177 4152615375755877377 65383518972943399231 6623761 5551 3081382116310279s9

13072346

91491186383s

12464495347 61 433

939948

1 39s1784171 45¿¿ó407264 0365773 9383524208417112336

'1 318811306

31291 80035066944412516922208591 941881 788137 6182515121754656594887076338718523'1 953 9683057220614t't21298127 61 168

9591 03813442730

295

3 0947 688890 1

7 6155278478198 36648729222044181 41 68s24213786267918221 6591 402125121994416339617 311 4882731339037386632840'.l1107341 1

197717 151 619134112121 03813271 36612361254'1189

1 03998s973

1158227 470794 708221911111223172222123340

371878379232738549275273949760692866200517201 63425313 698268218451 6081324117I2 s59418431 35164915372844347 4379978 38

17 8121 07242906204617 4115791 30812371 0701385'1368

1290125012291 0s910i81 03s124127287 2104597191 1

1 06812921 65022543 288

412880239579727 0460 5s8 53848 1

546226031 98317 48177228133 653251217 84'1610

1 35612282831413430371 5311645300634393 9519210

152881 0058252720241 8481 5251 356122912111 s091 3301261131312221 0091 0061023132731 43684845s11 6591152138217 6024563294

47 4877 689478705845546752780448872478194417 1517 97296135072378182115221 3081 318334539232636153217 27320s3 55741 12

11059'14508

927 42244205917 631 44412361122'1 .ts3

1 48613131232131511641 0s3104711351377377962894350149211131299185527 413477

533577519334679142227 6037 4074394239718941725191 1

31 67336722651 85s1511119213723726383723221 4841789328734 554237

1297812860779021071 93917 61147 3

1244119212501 4551 3091227128212031 0301 0461 0841 4954 583s83040721 38811061 4581 886301 63542

s90 5

7 67788s1631 04221855371713942230819201 68320173340310221351826152112621 49041 363828¿ t561 40620753340353 1

45371 481811634

62592023194917 611 4891

'148

1 180120813941 30912831 1561 1511 002

9771 05s15735'1865347363912831 0981 413194132073 559

653s7902839260 93439695s8720136262283182917 4022463s382982202'l17 811 43411581 631434537 0419471 420222332963 58450 54

1672311300

50752034181117 6713921138107 4'1358

137 4127 41 305ttbt11 121 04410151 09017596i 1850 5330271 19812271 5581 9533256361 I

7 138863 1

7 94055 524512968468 583 30421 46183217 132368362728091 8931 69s1 4281 194192644643 5501 7901 4352399323237 4158 56

1787311046

407 620151 8001 7051 4211218107213111 41712821 3051 1921124101310201 20819266602480826511

'153

121 1

'1 636208 034 383572

296

353025294421621545332721205920601 8041 8852198257 424883368336126611 9841 9363 384

329s2s83481 9617 1

4320250021971 9031728193s22922421247 6358133462519209520543683

3 04826995112526740392357227 418641 6601 9902442233426273 50831972297194221 434065

277 026775465604238662293228119671 604206727 172293273737 2431 122282196222524237

2504290757 38582535s82151234718851 58621062694234827323675300621 41182224244402

249831 63561 45527343120962345'1815

1729208426982220277 637 17301 521341 93126354 505

24693582597 4s'1 31

3 048203322421 78317572096281 62354300737 192904208118922830

1È.1 )LJ I J

401 3

6068472728982061212s1 8081 81721572678235131243439282620811 9003181

Àppend i x

ÀMPHIBOLE END-MEMBER NAMES ÀND

c

FoRÌ.fuLÀE, LEÀKE ( 1 978 )

Trlt SODIC-CAtClC At',lPHI80LtSi tilO HttlEER NAHESAND €ilo I{EI{8ER FORHULAE

THE ALKALf AHPHIBoLtS: tHo HtHgER NA.rltS AN0EIID i{THBER FORTIULAT

[nd member Formu ì a

Ri chte ri te

Ferro- ri chte ri te

AìuÍìì no-Hinchi te

Aìumrno-b¿rroisi te

Hagnes t o- a ì umì no- kd tophori te

Hagnes i o-a ì umino- ta rami te

tlaC aNaHgUS i r0r, ( 0H),

N¿caNðFelsiBOzz(OH)2

CaNaHSoAìSir0rr(0H),

CiN¿H934ì ZS

i TAlo ?ZrcH) z

N¿CðNaHg4Al S i 7Al0 Z2(0H) z

NòCòNaHg3Aì ZSi 6Aì Z0ZZ

(08 ) z

End member

Gl aucophane

Ferro-g I aucophane

Hagnesio-riebeckì te

Riebecki te

Ickennanni te

Ferro-eckermanni te

lla gnes i o- a rf vedsoni te

Arfvedsoni te

l{yböi te

&-trcþNarHgrAlrSir0rr(0H),

uarre!nrrsirorr(on),

Ha rus, rels I ,or, { ori ) ,NazFeiFe:sì8022(oH)z

Na Na,HgOA ì S i ,0 ZZ(0Å) ?

HaNarrefntsiro zzrcû?tr.HurNgo ru 3s i, o zzrcÐ ?Haruarrefre 3s t, ozzrcH)

z

ilòNòZr.'rg3A l Z

S i 7Al0 Z2(0Hl z

THt CÂLCIC AflPHIEoLES: tND HEtttR NAHTS ANDENO HTI'18€R IOR'IULAE

THt lR0N-MGNISlUt'l-r.lANGANtSt AHPHIß LtS: GtNtRÂL FoRllULAtTND I{TI'I8TR NAÈITS AND TNO ¡lTMBTR FORHULAi

HonocìiniFomu ì ¿ry--TesÞcr

Tremolite

Ferro-¡ctinolite

Edeni te

Ferro-edeni te

Pôrgòs i te

Ferro-pðrgôsi te

Hòstrngsite

llà9nes i o-hòs t ings i te

Aìumino-tschernôkl te

Ferro-¿ ì umi no- tschemòk i te

Aì Lrmi no-magnes i o-hornb ì ende

Kòersuti te

Cà?H955 i B02z( 0H ) 2

cr, rels i Bo zz0ll z

t{ôCòZ¡lg55 i 7A

ì 022( 0H ) z

Hacarrefsi 7Aì

ozz(oH ) z

Nò CðZHg4A ì S i 6A

I Z0 ?Z(}Hl z

Hacarrefnr si uAt zozz(oH ) z

NòcazFeÍFe3si6 A1 zo?z(oH) ?

r,raca rlrgoFe3s

i uA

t 2022( oH ) 2

Cð2¡1934ì ?Si 6Al Z0Z?()Hlr ?

ca rrelnr rs r unt ?o zzrcH) z

Cô21',1944ì S i 7Aì022(0H )z

NôCòZH94Ti S i 6Al 2(

0+0H ) Z4

Curmingtonite series (¡t9.Fe2

[nd rBmber

Hagnes ì o- cr.rnnì ngtoni te

Gruneri te

Tirodite

0dnnemofli te

MgzSìB0zz(0H)z

Fejs r rorr( 0x ),HnzMg5s ì

tozz(oH) z

Mn-Felsì-o2z(oH)?

,Mn) TsiBozZ

__{_oIms

(oti ),

fomuìa

297