PloEng ln K vs 1/T Example of van't Hoff Plot Review

8
Rela+onship between Gibbs free energy of reac+on and the equilibrium concentra+ons is defined by constant K RT G K o reaction Δ = ln Review: concentra+ons and energies Where G 0 comes from chem. poten+als (molar free energies) at standard 1M concentra+ons, while K is calculated at equilibrium concentra+ons. Concentra+ons instead of Heats ΔG 0 contains Enthalpic (ΔH) and Entropic (TΔS) contribu+ons. How do we measure them? Example: Levosalbutamol vs Salbutamol (racemic) Chiral transition: ln(C R /C L ) = -(G R -G L )/(RT) RT G K o reaction Δ = ln “As a bronchodilator, it is used to treat asthma and Chronic obstruc+ve pulmonary disease (COPD). In general, levosalbutamol has similar pharmacokine+c and pharmacodynamic proper+es to salbutamol; however, its manufacturer, Sepracor, has implied (although not directly claimed) that the presence of only the Renan+omer produces fewer side effects.” Wikipedia Enthalpy and Entropy from Equilibrium at several temperatures: van’t Hoff Equa+on R S RT H K o r o r Δ + Δ = ln R S RT H K R S RT H K o r o r o r o r Δ + Δ = Δ + Δ = 2 2 1 1 ln ln Δ = 1 2 2 1 1 1 ln T T R H K K o r Equilibrium constant at two different temperatures: Subtrac+ng: Subs+tu+ng ΔG for ΔHTΔS: Jacobus Henricus van’t Hoff (18521911), a Dutch chemist Alterna+ve to Calorimetry. Idea: Equilibrium concentra+ons depend on T Higher T will favor the reac+on direc+on with gain of entropy. Recipe: Measure K ( T ) Plo]ng ln K vs 1/T ) 10 ln( 3 . 2 , 3 . 2 3 . 2 log = Δ + Δ = R S RT H K o r o r R H o r / Δ R S RT H K o r o r Δ + Δ = ln Van’t Hoff Equation with log 10 The slope is The intercept is R S o r / Δ Example of van’t Hoff Plot 1/T(K) 0.0020 0.0022 0.0024 0.0026 0.0028 0.0030 0.0032 log K 8 10 12 14 16 18 Nd(OH) 3 (cr) + 3H + = Nd 3+ + 3H 2 O(l) Review The chemical poten+al of component J: Gas Liquid mixture ΔG and entropy of mixing. The chemical equilibrium K via concentra+ons and reac+on stoichiometry From K, to ΔG o From K at T 1 and T 2 , to ΔH o and ΔS o , Van’t Hoff ln K = Δ r G o RT Δ = 2 1 2 1 1 1 ln T T R H K K o 0 ln 0 c c RT i c i i + = μ μ ] ][ [ ] [ . . , 1 B A B A K g e a K n i i i = = = ν ) ln( 0 0 P P RT i P i g i + = μ μ a i below may also be molar frac+on x i or concentra+on c i depending on the standard state and ideality R S RT H K o r o r Δ + Δ = ln

Transcript of PloEng ln K vs 1/T Example of van't Hoff Plot Review

1/28/15  

1  

Rela+onship  between  Gibbs  free  energy  of  reac+on  and  the  equilibrium  concentra+ons  is  defined  by  constant  K  

RTGKo

reactionΔ−=ln

Review:  concentra+ons  and  energies  

Where    G0  comes  from  chem.  poten+als  (molar  free  energies)  at  standard  1M  concentra+ons,  while  K  is  calculated  at  equilibrium  concentra+ons.

Concentra+ons  instead  of  Heats  

•  ΔG0  contains  Enthalpic  (ΔH)  and  Entropic  (-­‐TΔS)  contribu+ons.  How  do  we  measure  them?  

•  Example: Levosalbutamol vs Salbutamol (racemic)

•  Chiral transition: ln(CR/CL) = -(GR-GL)/(RT)  

RTGKo

reactionΔ−=ln

“As  a  bronchodilator,  it  is  used  to  treat  asthma  and  Chronic  obstruc+ve  pulmonary  disease  (COPD).  In  general,  levosalbutamol  has  similar  pharmacokine+c  and  pharmacodynamic  proper+es  to  salbutamol;  however,  its  manufacturer,  Sepracor,  has  implied  (although  not  directly  claimed)  that  the  presence  of  only  the  R-­‐enan+omer  produces  fewer  side  effects.”    Wikipedia  

Enthalpy  and  Entropy  from  Equilibrium  at  several  temperatures:    van’t  Hoff  Equa+on  

RS

RTHK

or

or Δ

−=ln

RS

RTHK

RS

RTHK

or

or

or

or

Δ+

Δ−=

Δ+

Δ−=

22

11

ln

ln

⎟⎟⎠

⎞⎜⎜⎝

⎛−

Δ=⎟⎟

⎞⎜⎜⎝

122

1 11lnTTR

HKK o

r

Equilibrium  constant  at  two  different  temperatures:  

Subtrac+ng:  

Subs+tu+ng  ΔG  for  ΔH-­‐TΔS:  

Jacobus  Henricus    van’t  Hoff  (1852-­‐1911),  a  Dutch  chemist  

Alterna+ve  to  Calorimetry.  Idea:  •  Equilibrium  concentra+ons  depend  on  T  •  Higher  T  will  favor  the  reac+on  direc+on  with  gain  of  entropy.  •  Recipe:  Measure  K  (  T  )    

Plo]ng  ln  K    vs    1/T    

)10ln(3.2,3.23.2

log =Δ

−=RS

RTHK

or

or

RHor /Δ−

RS

RTHK

or

or Δ

−=ln

Van’t Hoff Equation with log10

The slope is The intercept is RSor /Δ

Example  of  van’t  Hoff  Plot  

1/T(K)0.0020 0.0022 0.0024 0.0026 0.0028 0.0030 0.0032

log

K

8

10

12

14

16

18Nd(OH)3(cr) + 3H+ = Nd3+ + 3H2O(l)

Review  •  The  chemical  poten+al  of  component  J:  –  Gas  –  Liquid  mixture  –  ΔG  and  entropy  of  mixing.        

•  The  chemical  equilibrium  –  K  via  concentra+ons  and  reac+on  stoichiometry  

–  From  K,  to  ΔGo  

–  From  K  at  T1  and  T2,  to  ΔHo    and  ΔSo,  Van’t  Hoff   lnK = −

ΔrGo

RT

⎟⎟⎠

⎞⎜⎜⎝

⎛−

Δ−=⎟⎟

⎞⎜⎜⎝

212

1 11lnTTR

HKK o

0

ln0

ccRT ic

ii += µµ

]][[][..,

1 BABAKgeaK

n

iii

•==∏

=

ν

)ln(0

0

PPRT iP

igi += µµ

ai      below  may  also  be  molar  frac+on  xi  or  concentra+on  ci  depending  on  the  standard  state  and  ideality  

RS

RTHK

or

or Δ

−=ln

1/28/15  

2  

Gas-­‐Solu+on  Equilibrium  for  Each  Solu+on  Ingredient  

•  i  may  be  water  or  drug  

•  xi    -­‐  Solute  (or  solvent)  molar  frac+on  

•  *    -­‐  pure  (saturated)  ingredient  

µi,liq = µi,vap ; µi,liq* = µi,vap

*

µi,liq* + RT ln xi = µi,vap

* + RT ln pipi*

!

"#

$

%&

RT ln xi = RT lnpipi*

!

"#

$

%&

xliqi = pgi / pi

*g pure

Raoult’s  Law  

•  Solvent  (eg  water)  pressure  vs  molar  frac+on  of  non-­‐vola;le  solute        

•  Vapor  pressure  of  a  solu+on  is  decreased  as  the  solute  concentra+on  is  increased  

•  P*water  =  0.23  bar  at  20oC      (100C?)  

P = xw P*w= (1- xsolute) P*

w

P*w-P=ΔP = xsolute P*

w

French  physicist  François-­‐Marie  Raoult  

•  Water  pressure  will  be  lower  as  you  add  salt  •  Salty  water  will  boil  at  higher  temperature  

xliqi = pgi / pi

*g purei  is  water  

Henry’s  Law  (gas  in  solvent)  •  Gas  dissolves  in  liquid  propor+onally  to  

its  pressure.  Example:  Oxygen  in  blood  

•  Here  K  is  an  empirical  constant,  slope  of  the  tangent  to  the  experimental  curve.  

•  Pi  =  xi  P0    -­‐  Dalton’s  law  

Pi,gas = xi,sol⋅KxH

Henry’s Law

Raoul’s Law for xsolvent→1 Henry’s Law for xsolute→0 Mixtures that obey

and are called ideal-dilute solutions.

xliqi = pgi / pi

*g pure i  is  gas  component  (eg  oxygen)  

Air  Pressure  vs  O2  in  Blood  •  oxygen  (O2)  :  KH=769.2  L·∙atm/mol                •  carbon  dioxide  (CO2)  :  KH=29.4  L·∙atm/mol                •  hydrogen  (H2)  :  KH=1282.1  L·∙atm/mol            

8,848  m  (M.Everest)  4,421  m  (M.Whitney)  

Temp  (C)    P(kPa)  P(mmHg)    0  0.6  4.5    3  0.8  6.0    5  0.9  6.8    8  1.1  8.3    10  1.2  9.0    12  1.4  10.5    14  1.6  12.0    16  1.8  13.5    18  2.1  15.8    19  2.2  16.5    20  2.3  17.5    21  2.5  18.7    22  2.6  19.8    23  2.8  21.1    24  3.0  22.4    25  3.2  23.8    26  3.4  25.2    27  3.6  26.7    28  3.8  28.4    29  4.0  30.0    30  4.2  31.5    32  4.8  36.0    35  5.6  42.0    40  7.4  55.5    50  12.3  92.3    60  19.9  149.3    70  31.2  234.1    80  47.3  354.9    90  70.1  525.9    100  101.3  760.0    

Water  pressure  vs  T  

Ph  =  P0  •  e  -­‐M  g  h/RT    

Classifica3on  of  Membranes  

 Permeable    impermeable    semi-­‐permeable            Cellular  plasma  membrane  is    semi-­‐permeable  

Osmosis  •  The  biological  membrane  is  not  permeable  for  electrolytes    

1/28/15  

3  

Osmosis  •  Differen+ally  permeable  membrane  •  Osmo3c  pressure  is  the  hydrosta+c  pressure  produced  by  a  solu+on  in  a  space  divided  by  a  differen+ally  permeable  membrane  due  to  a  differen+al  in  the  concentra+ons  of  water  (or  other  solute).    

Osmo+c  Pressure  

•  Colliga+ve  property.  Osmo+c  pressure  depends  on  the  number  of  solute  molecules,  not  on  their  iden+ty  

•  Water  flows  to  the  area  where  there  are  more  non-­‐water  molecules    

•  Osmo+c  pressure  looks  like  the  gas  law  formula,  where  n  is  the  total  number  of  moles  of  the  solute  par+cles  

•  For  V  =  1L  ,  Δn/V  becomes  ΔM  •  Posm  =  Phigher-­‐Plower   PosmV = ΔnsoluteRT

Posm = ΔMsoluteRT

Higher  pressure      :    lower  pressure  

P1V = n1,soluteRTminusP2V = n2,soluteRT

Deriving  van’t  Hoff’s  equa+on  for  Osmo+c  Pressure  

•  Decrease  in  Free  energy  in  the  “polluted”  chamber  is  compensated  by  extra  work  PosmV.  V=1L  =  10-­‐3  m3  

                                                                                                                                             at  T=36oC    •  M  is  molarity  (molar  concentra+on),  not  mass!    •  The  total  M  can  be  calculated  via  van’t  Hoff’s  

factors,  i,  i.e.  M →i!M

GP =GP0+VΔP

PosmV = −nwRT ln xw= −nwRT ln(1− xstuff ) ≈ nwRTxstuff

Posm = (nstuff /V )RT = ΔMRTPosm[bar]= ΔMRT ≈ 25.7ΔM[bar]

Van’t  Hoff  factor,  i•  The  number  of  moles  of  par+cles  per  mole  of  solute  is  the  van't  Hoff  factor,  i.    

•  How  many  moles  of  ALL  DERIVATIVE  FORMS  are  in  solu3on  upon  adding  1  mole  of  solid  solute?        

•  E.g.  NaCl    results  in  Na+  and  Cl-­‐,    x1=0, x2=1 i=2•  Example  with  par+al  dissolu+on:      

–  50%  undissociated,  30%  in  2  par+cles,  20%  in  3  par+cles:      i = 0.5 + 2*0.3 + 3*0.2 = 1.7; P=25.7*i*M [bar]

i = x1 + 2x2 + 3x3 + ..

Posm=ΔM RT i

Examples  •  The  observed  lower  van’t  Hoff  factors  illustrate  the  differences  between  ac+vi+es  and  concentra+ons.  Ions  are  not  fully  independent  on  each  other.  

Tonicity  

Isotonic,                Hypotonic  ,        Hypertonic  environments    (plant  cells)  

Normal    Turgid    Plasmolysis  

1/28/15  

4  

Cell  Lysis  

•  Cells  are  full  of  stuff,  water  flows  into  them  un+l  the  number  of  molecules  inside  and  outside  equates.    

•  Water  moves  in  and  out  via  aquaporins  •  When  solu+on  around  the  red  blood  cells  is  diluted,  water  flows  into  the  cell  and  it  explodes.  This  is  how  cellular  components  and  proteins  are  extracted  

Cell  shrinkage  

•  Too  many  molecules  OUTSIDE  the  cell  cause  them  to  shrink  and  dye  

•  Salt,  sugar  are  an+bacterial  agents  par+ally  because  they  suck  all  the  water  from  the  cells  and  the  cells  get  crushed.  

Molality  

•  Molarity      M    ≡  n  /  liter  of  solu;on  •  Mole  frac+on  x    ≡  n  /  Σni    •  Molality      m  ≡  n  /  kg  of  solvent  

1  molal  solu+on:  1  mole  of  solute  per  1kg  of  solvent  

x  =  nsolute/nwater  =  Msolute  /55.5      One  liter  of  water  contains  55.5  Moles  of  water  molecules.  

Osmolarity  and  Osmolality  •  The  number  of  moles  of  substance  mul+plied  by  the  van’t  Hoff  factor  per  liter  of  solu+on  is  called  osmolarity  

•  a  mole  of  glucose  in  solu+on  is  one  osmole,  whereas  a  mole  of  NaCl  in  solu+on  is  two  osmoles    

•  (m)osmolarity  –  (m  =  milli)  .  1  osmol  of  solute  =  when  dissolved  in  1  liter  of  solu;on  will  exert  an  osmo+c  pressure  equal  to  that  of  1  mole  of  an  ideal  unionized  substance  

•  …molality  -­‐  …  per  1kg  of  solvent  

Tonicity  of  intravenous  fluids  •  Osmolality:   total   solute  concentra+on   in  a  fluid  

compartment.  •  Tonicity:   the   combined   ability   of   solutes   to  

produce   a   osmo+c   driving   force   that   causes  water   to   move   from   one   compartment   to  another.    –  Solutes   that   are   capable   of   moving   water   are  

called  “effec+ve  osmoles”.    –  These   are   solutes   that   are   unable   to   cross   from  

the   ex t race l lu la r   to   the   in t race l lu la r  compartment:   sodium,   glucose,   mannitol,  sorbitol.      

–  The  control  of  tonicity  will  determine  the  normal  state  of  cellular  hydra+on  and  cell  size.  This  is  of  par+cular  concern  in  the  case  of  brain  cells.    

•  Pharmaceu+cal  labeling  regula+ons  may  require  a  statement  on  tonicity.  

Non-­‐polar  molecules  cross  membranes:  oxygen,  carbon  dioxide,  ethanol    Water,  urea  use  some  assistance  

Fas+ng  glucose:  4.4  to  6.1  mmol/L                                                      (79.2  to  110  mg/dL)  Urea:  ~  3  to  7  mmol/L  

Examples  

•  Osmolali+es  of  some  intravenous  fluids  

•  High  tonicity  of  enteral  feeding  of  premature  infants  has  been  implicated  in  necro+sing  enterocoli+s  (NEC)  

1/28/15  

5  

What  Osmolarity  is  Normal?  •  Osmolarity  of  plasma  is  285-­‐295  mosmoles/L  •  I.V.:  any  fluid  >  550  mOsm/L  should  not  be  infused  rapidly  •  The  higher  the  tonicity,  the  lower  should  be  the  rate  of  infusion.  

•   Calculated  osmolarity  in  mM  units  =    2[Na+]  +  (2[K])  +[Glucose]+[Urea]+  ([Ethanol])    (  all  in  mmol/L)        (glucose  MM=180g/mol:      3.5  –  6.5  mmol/L)  

•  Alterna+ve  formula  with  [Conc]  in  mg/dL  (corrected  by  MM):    2[Na+]  +  [Glucose]/18  +  [BUN]/2.8  +  [Ethanol]/3.7  –  BUN  means  Blood  Urea  Nitrogen:  6  to  20  mg  of  urea  per  100  ml  of  blood  (6–20  mg/dL,  2  to  7  mmol/L)  

–  Na+  ~11g/mol;  glucose  MM=180g/mol  

How  to  measure  osmolari+es?  

•  Osmolari+es  of  iv  or  oral  medica+ons  can  be  measured  by  freezing  point  depression  

•  Why?  

•  Osmometer  that  measures  freezing  point  depression    

•  Osmometer  that  measures  vapor  pressure  depression  

Boiling  and  Freezing  Points  

•  Adding  solute  makes  the  liquid  state  more  desirable  because  of  the  entropy  increases  and  the  chemical  poten+al  becomes  lower.  

Δµwater = RT ln(1− xsolutes) ≈ −RTxsolutesΔSwater _ in _ solution = Rxsolutes

µw = µwpure + RT ln xw

Boiling  point  eleva+on  of  a  solu+on  

•  A  solu+on  exhibits  a  higher  boiling  temperature  than  that  of  pure  solvent  

ΔTboiling  =  Kbx  

Pure solvent: xw = 1, boiling temperature T*

0=Δ−Δ ∗ STH vapvap

Solute added: xw < 1, boiling temperature T

Δ vapH −T(Δ vapS + Rxsolute ) = 0

ΔT⋅ Δ vapS = ΔT⋅ Δ vapH /T = TRxsolute

ΔT = T −T∗ ≈ xsoluteRT∗2

Δ vapH

'

( ) )

*

+ , ,

Pure solvent: xw = 1, freezing temperature T*

Solute added: xw < 1, freezing temperature T

Freezing  point  depression  of  a  solu+on  

•  A  solu+on  exhibits  a  lower  freezing  temperature  than  that  of  pure  solvent  

ΔTfreezing  =  Kf  x  

ΔT = T −T∗ ≈ xsoluteRT∗2

Δ fusH

&

' ( (

)

* + + €

Δ fusH −T∗Δ fusS = 0

Δ fusH −T(Δ fusS + Rxsolute )

Review  •  Chemical  poten+al  of  the  same  molecule  in  

different  phases  or  compartments  (osmosis)  must  be  equal  

•  Chemical  poten+al  of  water  is  lower  (be|er)  in  solu+on  If  xsolutes  is  small:  

•  Osmo+c  pressure:  Posm=MRT,  where  M  is  molarity  corrected  by  dissocia+on,  i,  M=iM0  

•  Osmosis:  semi  permeable  membranes.  •  Osmolarity  and  Tonicity:  coun+ng  solutes  

that  can  not  cross  the  membrane  and  taking  dissocia+on  into  account  (  i,  van’t  Hoff’s  factor).    

•  Boiling  point  eleva+on  •  Freezing  point  depression  (Kf  does  not  

depend  on  solutes!).  Kf  =  1.858  K  kg/mol  •  Water  pressure  reduc+on:  Raoult’s  law  •  Gas  dissolu+on  in  water:  Henry’s  law  •  The  effects  are  entropic  and  to  the  first  

approxima+on  do  not  depend  on  the  nature  of  solutes    (colliga+ve  proper+es)  

µw _ in _ solution = µw _ pure + RT ln(xw )Δµw = RT ln(1− xsolutes) ≈ −RTxsolutesΔSw ≈ Rxsolutes

Posm =ΔnsolV

RT = iMRT

ΔTboiling = KbxsolutesΔTfreezing = K f xsolutesPw_ vap_ solution = Pw_ vap_ purexwaterPsolute_ in_ gas = KHenry

solutexsolute_ in_water

1/28/15  

6  

Osmo+c  Pumps  for  Drug  Delivery  

•  Acutrim®  Delivered  the  appe+te  suppressant  phenylpropanolamine  for  16h  

•  Other  products  under  development  are  a  controlled  release  form  for  vitamin  C  and  a  drug  combina+on  for  trea+ng  symptoms  of  the  common  cold  

Semi-­‐permeable  

OROS  (Osmo+c  [Controlled]  Release  Oral  [Delivery]  System)  is  a  controlled  release  oral  drug  delivery  system  in  the  form  of  a  tablet.  The  tablet  has  a  rigid  water-­‐permeable  jacket  with  one  or  more  laser  drilled  small  holes.  As  the  tablet  passes  through  the  body,  the  osmo+c  pressure  of  water  entering  the  tablet  pushes  the  ac+ve  drug  through  the  opening  in  the  tablet.  

Delivery  by  Osmo+c  Pressure  

Some  Problems:  §  P  ~  25  atm  •  ΔM  §  Subject  to  dose  dumping  if  membrane  breaks    §  [e.g.  someone  chews  it]  

§  Slightly  more  expensive  to  formulate  than  coa+ng  tablets  

§  Possible  hole  plugging  

Drugs  delivered  by  OROS:  Adalat  OROS  (nifedipine)  Alpress  LP  (prazosin)  Cardura  XL  (doxazosin)  Concerta  (methylphenidate)  Covera-­‐HS  (verapamil)  Ditropan  XL/Lyrinel  XL  (oxybutynin)  DynaCirc  CR  (isradipine)  Glucotrol  XL  (glipizide)  Invega  (paliperidone)  Jurnista  /  Exalgo  (hydromorphone)  Procardia  XL  (nifedipine)  Volmax  (salbutamol)  

Reminders:  concentra+ons  •  Molality  is  rarely  used  •  Molarity:  symbol  “M”  means  moles/liter  not  moles.  

•   Physiological  concentra+ons  are  low.  •   millimolar        (mM)        =        10-­‐3    M  •   micromolar    (µM)        =        10-­‐6      M  •   nanomolar      (nM)          =        10-­‐9        M  •   picomolar        (pM)          =        10-­‐12      M  

•  Molar  frac+on  (dimensionless)    x  ≈  M/55.5  •  The  water  number  is  5  (55.5  M)  

–  18g  :  1mole  ;    1000g  (L)    n=55.5    

A  simple  model  of  a  pa+ent  

•  Two  Compartment  Model  –  Intracellular  =  Cytoplasmic  (inside  cells)    

– Extracellular  (outside  cells)  ECF    ICF  

Body’s  fluid  compartments.  1/3  •  Total   Body   Water   =   WEIGHT   x   0.5  (women)  or  0.6  (men)  

•  Fat  +ssue  is  ~  water  free  

The  rule  of  1/3  :    •  Cells      (ICF)    =  Water  x  2/3  •  Fluids  (ECF)  =  Water  x  1/3  

–  Lymph                    =  Fluids  x  2/3  –  Blood/plasma=  Fluids  x  ¼  

•  Explana;ons  –  ICF  =  Inters++al  =  Intercellular  =  Lymph,  

between  the  cells  in  the  +ssues  –  Plasma  =  fluid  por+on  of  the  blood  

Cells,  ICF  

Homeostasis  

•  Defini3on:  Processes  by  which  bodily  equilibrium  is  maintained  constant.  

•  Examples  of  Bodily  homeostasis:  •  temperature  •  blood  pressure  •  heart  rate  •  blood  glucose  level  •  body  fluid  composi+on  •  Osmolarity  •  Extra  cellular  fluid  (ECF)  volume    •  Acid-­‐Base  balance  

1/28/15  

7  

Osmo+c  pressure  of  drug  solu+ons  Freezing  Point  depression  

•  Reminder:  the  osmolarity  of  serum  is  ~290  mOsm/L    (not  lower  than  210).  

•  Dominated  by  [Na+]  and  the  associated  anions.  ~  2*[Na]  

•   Isotonic  osmolarity  translates  into    ΔTf_depr=0.52o    .    

•  If  we  know  the  ΔTf_depr  for  the  desired  drug  concentra+on,  one  can  add  NaCl  to  match  ΔTf_depr  to  make  the  solu+on  isotonic  with  blood  (or  make  net  osmolarity  equal  to  290  mOsm/L  

Distribu+on  of  Solutes  in  three  fluids  

K+  in  cells  

Cells  

No  albumin    in  lympth  

Na+  in  fluids  

Electrochemical  Equivalence  (Eq).    

•  Mul3ply  molar  concentra3on  by  the  ion  charge  

•  Monovalent  Ions  (Na+,  K+,  Cl-­‐):  – 1  milliequivalent  =  1  millimole  

•  Divalent  Ions  (Ca++,  Mg++,  and  HPO4

2-­‐)    – 1  milli-­‐equivalent  =  0.5  millimole    

Cells  vs  Fluids:  Na+/K+-­‐ATPase    

•  Na+/K+  pump  or  sodium-­‐potassium  pump  is  found  in  the  plasma  membrane  of  virtually  every  human  cell  and  is  common  to  all  cellular  life.  It  helps  maintain  cell  poten+al  and  regulate  cellular  volume  

•  It  creates  both  electric  and  chemical  gradient    

it  pumps  three  sodium  ions  out  of  the  cell  for  every  two  potassium  ions  pumped  in.  

(-­‐)  Nega+ve  Charge  and  K+  Excess  

3  

2  

(-­‐)  Posi+ve  Charge  and  N+  Excess  

Diure+cs  •  Reduc+on   of   [Na]   leads   to   change   in   ECF  

VOLUME    •  A   “water   pill”:   elevates   the   rate   of   urine  

excre+on  (also,  caffeine,  alcohol,  etc.).    •  Both   loop   and   thiazide   diure+cs   block   the  

reabsorp+on   of   Na   in   kidneys   and   can  therefore  can  lead  to  a  decrease  in  the  size  of  the  ECFV.      

•  They  differ   in  that   loops  produce  a  balanced  loss   of   Na   and   Water   à   therefore   Na  concentra+on  is  usually  undisturbed.    

•  Thiazide  causes  an  unbalanced  loss  of  Na  and  Water  –  such  that  more  Na  is  lost  rela+ve  to  water  causing  hyponatremia.  

Thirst  •  High  osmolarity  of  plasma  leads  to  dry  mouth  and  sensa+on  of  thirst.  

•  Ethanol  changes  osmolarity  but  does  not  change  tonicity.  Cells  are  permeable  for  ammonium  and  ethanol  

1/28/15  

8  

Water  and  Osmolarity  •  Body  control  systems  regulate  inges+on  and  excre+on:  –     constant  total  body  water  –     constant  total  body  osmolarity  

•  Osmolarity  is  iden+cal  in  all  body  fluid  compartments  (steady  state  condi+ons)  –   Body  water  will  redistribute  itself  as  necessary  to  accomplish  this.  

–   Osmolarity  balance:  ICF  vs  ECF  –   Osmolarity  balance  between  Plasma  and  interste+al  fluid  (lympth)  is  harder  to  maintain  

Plasma  vs  Lymph:  Edema  •  Edema  is  defined  as  so�  +ssue  swelling  

due  to  expansion  of  the  inters++al  volume.    Edema  can  be  localized  or  generalized.  

•   Some  extracellular  fluid  compartments,  a.k.a.  transcellular  fluids  (cerebrospinal  fluid,  intraocular  fluid  and  joint  fluid)  do  not  communicate  freely  with  the  rest  of  the  body.    

Water  flow  

Albumin  +  blood  proteins  

Less  Protein  

Cells  

Mechanisms  maintaining  inters++al  fluid  volume    

•  Plasma  vs  Lympth,  the  role  of  albumin:  70%  of  Ponc  is  due  to  albumin.  Albumin  size:  ~  10  nM    (100A)  

•  Onco+c  pressure  =  osmo;c  pressure  created  by  plasma  protein  molecules  that  are  impermeable  across  the  capillary  membrane.  

•  Starling's  Law:  Hydrostatic Pressure  -  Oncotic pressure = net fluid movement  out  of  capillary  into  inters++um.        

•  P  =  120mmHg  systolic  pressure.  The  smallest  pressure  in  capillaries  ~  20mmHg                  

60-­‐80  nm  •  endocrine  glands  •  intes+nes  •  pancreas  •  glomeruli  of  kidney  

30-­‐40  μm  Allow  cells  to  pass  •  Bone  marrow  •  Lymph  nodes  •  Adrenal  glands  

•  <  10  nM  •  Regular  capillaries  •  CNS  (+ghter)  

Human  Serum  Albumin  &  Drugs  •  HSA  maintains  osmo+c  pressure    •  C=35  -­‐  50  g/L  =3.5  -­‐  5.0  g/dL=0.5-­‐0.75mM    •  Transports  many  drugs    •  Transports  thyroid  hormones,  T3  and  T4    •  Transports  other  hormones,  par+cularly  fat  soluble  ones    

•  Transports  fa|y  acids  ("free"  fa|y  acids)  to  the  liver    

•  Transports  unconjugated  bilirubin  (heme  catabolism,  yellow  bruises  and  brown  feces)  

•  Compe++vely  binds  calcium  ions  (Ca2+)    •  Buffers  pH    

Renal  toxin  CMPF  in  drug  site  1  Stephen  Curry  

Albumin  carries  Bilirubin  from  destroyed  hemes  in  the  spleen  to  liver  

15-­‐20%  of  T3  and  T4  -­‐>  HSA  (majority  by  TBG)  [        ]  

Albumin  and  other  drug  binding  proteins  •  30  to  50  g/L  HSA  in  blood  (~0.5  

to  0.75  mM)  •  HSA  MW  67  kDa  •  Half  life  20  days    (drug  half  life  

extension)  •  Likes  to  bind  drugs  with  

carboxyls  and/or  hydrophobic  areas    

•  Other  proteins  binding  drugs  –  Lipoprotein  –  Glycoprotein  –  α,  ß‚  and  γ  globulins.    

•  The  bound  por+on  may  act  as  a  reservoir  or  depot  from  which  the  drug  is  slowly  released  in  free  form.    

HSA  with  6  palmi+c  acids  

Hypoalbuminemia  •  Liver  disease  (eg  cirrhosis)  •  Excess  excre+on  by  the  kidneys  •  Excess  loss  in  bowel  (e.g.,  Ménétrier's  

disease)  •  Wounds  and  Burns  (plasma  loss)  •  Increased  vascular  permeability  •  Acute  disease  states  (‘nega+ve  prot.’)  •  Muta+ons  causing  analbuminemia  •  Malnutri3on  (starva+on)