Plio-Pleistocene basanitic and melilititic series of the Bohemian Massif: K-Ar ages, major/trace...

22
Chemie der Erde 73 (2013) 429–450 Contents lists available at ScienceDirect Chemie der Erde jou rn al homepage: www.elsevier.de/chemer Plio-Pleistocene basanitic and melilititic series of the Bohemian Massif: K-Ar ages, major/trace element and Sr–Nd isotopic data Jaromír Ulrych a , Lukᡠs Ackerman a,, Kadosa Balogh b , Ernst Hegner c , Emil Jelínek d , Zoltan Pécskay b , Antonín richystal e , Brian G.J. Upton f , Jiˇ Zimák g , Radana Folt ´ ynová e a Institute of Geology, v.v.i., Academy of Sciences of the Czech Republic, Rozvojová 269, 165 00 Praha 6, Czech Republic b Institute of Nuclear Research, Hungarian Academy of Sciences, Bemtér 18/C, Debrecen H-4026, Hungary c Department für Geowissenschaften, Universität München, Theresienstraße 41, D-8033 München, Germany d Faculty of Science, Charles University, Albertov 6, 128 43 Praha 2, Czech Republic e Faculty of Science, Masaryk University, Kotlᡠrská 2, 611 37 Brno, Czech Republic f School of Geosciences, University of Edinburgh, The King‘s Buildings, West Mains Road, Edinburgh EH9 3JW, United Kingdom g Faculty of Science, Palack´ y University, 17. listopadu 12, 779 00 Olomouc, Czech Republic a r t i c l e i n f o Article history: Received 31 August 2012 Accepted 17 February 2013 Keywords: Bohemian Massif Plio-Pleistocene Basanite Melilitite K-Ar age Magmatism Sr–Nd isotopes a b s t r a c t The Plio-Pleistocene volcanic rocks of the Bohemian Massif comprise a compositional spectrum involv- ing two series: an older basanitic series (6.0–0.8 Ma) and a younger, melilititic series (1.0–0.26 Ma). The former consists of relatively undifferentiated basaltic rocks, slightly silica-undersaturated, with Mg# ran- ging from 62 to almost primitive mantle-type values of 74. The major and trace element characteristics correspond to those of primitive intra-plate alkaline volcanic rocks from a common sub-lithospheric mantle source (European Asthenospheric Reservoir EAR) including positive Nb, and negative K and Pb anomalies. 87 Sr/ 86 Sr ratios of 0.7032–0.7034 and 143 Nd/ 144 Nd of 0.51285–0.51288 indicate a moder- ately depleted mantle source as for other mafic rocks of the central European volcanic province with signs of HIMU-like characteristics commonly attributed to recycling of subducted oceanic crust in the upper mantle during the Variscan orogeny. The melilititic series is characterized by higher degrees of silica-undersaturation, and high Mg# of 68–72 values, compatible with primitive-mantle-derived com- positions. The high OIB-like Ce/Pb (19–47) and Nb/U (32–53) ratios indicate that assimilation of crustal material was negligible. In both series, concentrations of incompatible elements are mildly elevated and 87 Sr/ 86 Sr ratios (0.7034–0.7036) and 143 Nd/ 144 Nd ratios (0.51285–0.51288) overlap. Variations in incom- patible element concentrations and isotopic compositions in the basanitic series and melilititic series can be explained by a lower degree of mantle melting for the latter with preferential melting of enriched mantle domains. The Sr and Nd isotopic compositions of both rock series are similar to those of the EAR. Minor differences in geochemical characteristics between the two series may be attributed to: (i) to dif- ferent settings with respect to crust and lithospheric mantle conditions in (a) Western Bohemia (WB) and (b) Northeastern Bohemia (NEB) and the Northern Moravia and Silesia (NMS) areas, (ii) a modally metasomatized mantle lithosphere in WB in contrast to cryptically metasomatized domains in the NEB and NMS, (iii) different degrees of partial melting with very low degrees in WB but higher degrees in NEB and NMS. The geochemical and isotopic similarity between the Plio-Pleistocene volcanic rocks and those of the late Cretaceous and Cenozoic (79–6 Ma) suggests that their magmas came from composi- tionally similar mantle sources, that underwent low degrees of melting over an interval of 80 Ma. The Oligocene to Miocene basanitic series that accompanied the Plio-Pleistoicene basanitic series in the NMS region indicate that they shared a common mantle source. There is no geochemical evidence for ther- mal erosion of the lithospheric mantle or significant changes in mantle compositions within the time of a weak thermal perturbation in the asthenospheric mantle. These perturbations were caused by a dispersed mantle plume or passively upwelling asthenosphere in zones of lithospheric thinning. © 2013 Elsevier GmbH. All rights reserved. Corresponding author. Tel.: +420233087240. E-mail address: [email protected] (L. Ackerman). 1. Introduction Although the Central European rift system and its associated vol- canism is well known, the underlying reasons for mantle melting and the composition and origin of source materials have remained 0009-2819/$ see front matter © 2013 Elsevier GmbH. All rights reserved. http://dx.doi.org/10.1016/j.chemer.2013.02.001

Transcript of Plio-Pleistocene basanitic and melilititic series of the Bohemian Massif: K-Ar ages, major/trace...

PK

JAa

b

c

d

e

f

g

a

ARA

KBPBMKMS

0h

Chemie der Erde 73 (2013) 429– 450

Contents lists available at ScienceDirect

Chemie der Erde

jou rn al homepage: www.elsev ier .de /chemer

lio-Pleistocene basanitic and melilititic series of the Bohemian Massif:-Ar ages, major/trace element and Sr–Nd isotopic data

aromír Ulrycha, Lukás Ackermana,∗, Kadosa Baloghb, Ernst Hegnerc, Emil Jelínekd, Zoltan Pécskayb,ntonín Prichystale, Brian G.J. Uptonf, Jirí Zimákg, Radana Foltynováe

Institute of Geology, v.v.i., Academy of Sciences of the Czech Republic, Rozvojová 269, 165 00 Praha 6, Czech RepublicInstitute of Nuclear Research, Hungarian Academy of Sciences, Bemtér 18/C, Debrecen H-4026, HungaryDepartment für Geowissenschaften, Universität München, Theresienstraße 41, D-8033 München, GermanyFaculty of Science, Charles University, Albertov 6, 128 43 Praha 2, Czech RepublicFaculty of Science, Masaryk University, Kotlárská 2, 611 37 Brno, Czech RepublicSchool of Geosciences, University of Edinburgh, The King‘s Buildings, West Mains Road, Edinburgh EH9 3JW, United KingdomFaculty of Science, Palacky University, 17. listopadu 12, 779 00 Olomouc, Czech Republic

r t i c l e i n f o

rticle history:eceived 31 August 2012ccepted 17 February 2013

eywords:ohemian Massiflio-Pleistoceneasaniteelilitite

-Ar ageagmatism

r–Nd isotopes

a b s t r a c t

The Plio-Pleistocene volcanic rocks of the Bohemian Massif comprise a compositional spectrum involv-ing two series: an older basanitic series (6.0–0.8 Ma) and a younger, melilititic series (1.0–0.26 Ma). Theformer consists of relatively undifferentiated basaltic rocks, slightly silica-undersaturated, with Mg# ran-ging from 62 to almost primitive mantle-type values of 74. The major and trace element characteristicscorrespond to those of primitive intra-plate alkaline volcanic rocks from a common sub-lithosphericmantle source (European Asthenospheric Reservoir – EAR) including positive Nb, and negative K andPb anomalies. 87Sr/86Sr ratios of 0.7032–0.7034 and 143Nd/144Nd of 0.51285–0.51288 indicate a moder-ately depleted mantle source as for other mafic rocks of the central European volcanic province withsigns of HIMU-like characteristics commonly attributed to recycling of subducted oceanic crust in theupper mantle during the Variscan orogeny. The melilititic series is characterized by higher degrees ofsilica-undersaturation, and high Mg# of 68–72 values, compatible with primitive-mantle-derived com-positions. The high OIB-like Ce/Pb (19–47) and Nb/U (32–53) ratios indicate that assimilation of crustalmaterial was negligible. In both series, concentrations of incompatible elements are mildly elevated and87Sr/86Sr ratios (0.7034–0.7036) and 143Nd/144Nd ratios (0.51285–0.51288) overlap. Variations in incom-patible element concentrations and isotopic compositions in the basanitic series and melilititic seriescan be explained by a lower degree of mantle melting for the latter with preferential melting of enrichedmantle domains. The Sr and Nd isotopic compositions of both rock series are similar to those of the EAR.Minor differences in geochemical characteristics between the two series may be attributed to: (i) to dif-ferent settings with respect to crust and lithospheric mantle conditions in (a) Western Bohemia (WB)and (b) Northeastern Bohemia (NEB) and the Northern Moravia and Silesia (NMS) areas, (ii) a modallymetasomatized mantle lithosphere in WB in contrast to cryptically metasomatized domains in the NEBand NMS, (iii) different degrees of partial melting with very low degrees in WB but higher degrees inNEB and NMS. The geochemical and isotopic similarity between the Plio-Pleistocene volcanic rocks andthose of the late Cretaceous and Cenozoic (79–6 Ma) suggests that their magmas came from composi-

tionally similar mantle sources, that underwent low degrees of melting over an interval of ∼80 Ma. TheOligocene to Miocene basanitic series that accompanied the Plio-Pleistoicene basanitic series in the NMSregion indicate that they shared a common mantle source. There is no geochemical evidence for ther-mal erosion of the lithospheric mantle or significant changes in mantle compositions within the timeof a weak thermal perturbation in the asthenospheric mantle. These perturbations were caused by adispersed mantle plume or passively upwelling asthenosphere in zones of lithospheric thinning.

∗ Corresponding author. Tel.: +420233087240.E-mail address: [email protected] (L. Ackerman).

009-2819/$ – see front matter © 2013 Elsevier GmbH. All rights reserved.ttp://dx.doi.org/10.1016/j.chemer.2013.02.001

© 2013 Elsevier GmbH. All rights reserved.

1. Introduction

Although the Central European rift system and its associated vol-canism is well known, the underlying reasons for mantle meltingand the composition and origin of source materials have remained

4 der Er

aRmcsDaW

Mhs(acrAWpa

bitmme2fasbascz2ateo12

wogwH1aHHdPd

2

fipVDB

30 J. Ulrych et al. / Chemie

topic of debate. The role of mantle plumes (Granet et al., 1995;itter et al., 2001; Wilson and Patterson, 2001), and decompressionelting due to lithospheric flexuring and/or lithospheric extension

aused by Alpine orogeny resulting in passive upwelling of astheno-pheric and lithospheric mantle have been considered (Wilson andownes, 1991; Wedepohl et al., 1994; Ulrych and Pivec, 1997; Jungnd Masberg, 1998; Wedepohl and Baumann, 1999; Bogaard andörner, 2003).Lustrino and Wilson (2007) concluded that the Circum-

editerranean Anorogenic Cenozoic Igneous (CiMACI) provincead been supplied by an underlying sub-lithospheric magmaource which they referred to as the Common Mantle ReservoirCMR). Most of the primitive magmas (MgO > 7 wt.%) have rel-tively homogeneous incompatible trace element compositionsorresponding to those of primitive intra-plate alkaline volcanicocks from a common sub-lithospheric mantle source (Europeansthenospheric Reservoir – EAR) (Wilson and Patterson, 2001;ilson and Downes, 2006). However, the wide ranges of incom-

atible elements suggest a heterogeneous mantle source (Lustrinond Wilson, 2007).

The composition of primitive basaltic rocks cannot be explainedy simple partial melting of a common mantle source, but require

nvolvement of metasomatically enriched domains in the subcon-inental lithospheric mantle (Pfänder et al., 2012). Metasomatically

odified lithospheric mantle is, together with the asthenosphericantle, the source of the intraplate Cenozoic volcanism in west-

rn and central Europe (Lustrino and Wilson, 2007; Ulrych et al.,011). There is some evidence of local metasomatically trans-ormed lithospheric mantle including the occurrence of glimmeritend mica clinopyroxenite xenoliths (Ulrych et al., 2000) and meta-omatized lherzolite xenoliths with K-bearing hydrous mineralseneath the Bohemian Massif (Fryda and Fediuk, 1996; Kramernd Seifert, 2000; Geissler et al., 2007). Additionally, cryptic meta-omatism of lithospheric mantle was invoked to explain theompositions of clinopyroxene and interstitial glass in the lher-olite xenoliths (Ackerman et al., 2007; Matusiak-Malek et al.,010). Carbonatite metasomatism of the lithospheric mantle islso considered to have substantially affected replenishment ofhe lithospheric mantle in incompatible trace elements (Rudnickt al., 1993; Pilet et al., 2008) and consequently, the genesisf alkaline magmas in the central Europe (Fryda and Vokurka,995; Ulrych et al., 2008; Abratis et al., 2009; Pfänder et al.,012).

The episodic anorogenic Plio-Pleistocene volcanic activity inestern and central Europe can be regarded as a waning phase

f the major Cenozoic volcanism (Nowell et al., 2006). Scarceeophysical, volcanological and geochemical data exist for theestern Bohemian Plio-Pleistocene volcanic rocks (Sibrava andavlícek, 1980; Schwarzkopf, 1993; Hradecky, 1994; Gottsmann,999; Wagner et al., 2002; Mrlina et al., 2007; Geissler et al., 2007),nd even less for northern Moravia and Czech Silesia (Sibrava andavlícek, 1980; Foltynová and Prichystal, 2004; Cajz et al., 2012).ere we present new K-Ar ages, geochemical and Sr–Nd isotopicata from a large collection of these little known volcanic rocks oflio-Pleistocene age that represent the youngest magmatic eventuring ∼80 Ma magmatic activity in central Europe.

. Geological setting

Volcanic activity in the European Cenozoic rift system was con-ned to grabens and their uplifted shoulders, as well as along

rominent faults in the Variscan basement. The rifts extend fromalencia through the French Massif Central, including Rhôneepression, Limagne Graben and Bresse-Saône Graben system, thelack Forest and Vosges (Rhine Graben) splitting the Rhenish Massif

de 73 (2013) 429– 450

into a NW branch (Lower Rhine Embayment) and a N branch (Hes-sen Depression) – Prodehl et al. (1995).

The Cenozoic volcanic activity has been related to the flexur-ing caused by displacement of large lithospheric units, such asAlpine nappes, resulting in mantle upwelling, adiabatic decompres-sion, partial melting and ascent of mantle-derived magmas (Wilsonand Downes, 1991). However, there had been some pre-rift vol-canism, proceeding since the late Cretaceous (Ulrych and Pivec,1997). Rift volcanism reached its maximum in the Oligocene toMiocene, but in some segments of the rift system it persisted intothe Plio-Pleistocene (Ulrych et al., 1999, 2011). The most recentmanifestations of magmatic activity in the Ohre/Eger Rift is the con-tinuous emission of CO2, He and N (e.g., Weinlich et al., 1999), highheat-flow, and elevated seismicity (Kopecky, 1986).

The easternmost segment of the European Cenozoic rift sys-tem is represented by the ENE–WSW trending Ohre Graben in theBohemian Massif (Kopecky, 1978; Ziegler, 1994). Cenozoic alka-line volcanic rocks similar to those occurring in the Ohre Grabencan also be found farther north in Lusatia and south in the UpperPalatinate of Germany (Fig. 1). The thickness of the seismic litho-sphere in the Bohemian Massif is ∼80 km (Babuska and Plomerová,1992). The other volcano-tectonic zones of the Bohemian Massifare the NNW–SSE-trending Cheb–Domazlice Graben in WB withvolcanism occurring on its NE flank (Kopecky, 1978; Ulrych et al.,2003) and the NW–SE-trending Labe/Elbe–Odra Fault System withscattered volcanic activities in the NE part of the Bohemian Massif(Fediuk and Fediuková, 1985; Birkenmajer et al., 2004; Ulrych et al.,2011).

The Cenozoic alkaline volcanic activity of the western part ofthe Bohemian Massif is situated above the “triple junction” of theSaxothuringian – Teplá–Barrandian and Moldanubian lithosphericunits (Babuska et al., 2007). It is characterized by the neotectonicOhre Graben and the Cheb–Domazlice Graben. The Pleistocene vol-canic activity is represented by scoria cones at the junction of thesetwo structures.

The rocks of the NMS are associated with the Odra tectono-volcanic zone of Kopecky (1978, 1986 that is part of the Labe–OdraFault System of Scheck et al. (2002) and Ulrych et al. (2011). TheOdra zone principally occurs in Polish Silesia but extends into theNízky Jeseník Upland in the Czech Republic. The Plio-Pleistocenemagmatic conduits were concentrated at the intersection of theseismically still active Marginal Sudetic Fault (Stepancíková et al.,2010), and the SSW–NNE faults. The Plio-Pleistocene volcanismwas concentrated in the central part of the Nízky Jeseník Upland,around the town of Bruntál south of the supposed Marginal Sude-tic Fault continuation whereas the Oligocene–Miocene lavas occurexclusively north of this fault (Wilschowitz, 1927; Pacák, 1928).The volcanic products overlie Lower Carboniferous sediments.

3. Analytical methods

Whole-rock major element concentrations were determined atthe Analytical Laboratory of Faculty of Science, Charles University,Praha, using wet chemical methods. Analyses of the USGS interna-tional rock standard BCR-2, and duplicate analyses of the samples,yield total procedure errors of ±10% (2�), see Table 2d. A quadruple-based ICP-MS (VG Elemental PQ3) was used for determination ofREE and other trace elements using the methods of Strnad et al.(2005). The accuracy, with errors of ±5% (2�), was determinedusing the USGS international rock standard BCR-2, see Table 2d.The precision was determined by replicate analyses of the same ref-

erence material and was better than ±10% (2�). Mineral analyseswere carried out on a Cameca SX 100 electron microprobe using thewavelength-dispersive spectrometry (WDS) analyser at the Insti-tute of Geology Academy of Sciences of the Czech Republic, Praha.

J. Ulrych et al. / Chemie der Erde 73 (2013) 429– 450 431

Fig. 1. Sketch map of the Bohemian Massif showing occurrences of the Cenozoic volcanic rocks. The contour map of lithospheric thickness (km) in central Europe is derivedfrom seismic surface wave data by Panza in Blundell et al. (1992). OR – Ohre/Eger Rift, ChB– Cheb Basin, MLF – Mariánské Lázne Fault, LF – Lusatian Fault. Plio-Pleistocenelocalities: Melilititic series. 11 – Zelezná hurka Hill and Mytina at Cheb, 12 – Komorní hurka Hill at Frantiskovy Lázne; Basanitic series. 9 – Kozákov Hill at Turnov, 10 – Prísovskáhomolka Hill at Plzen. Inset: Outcrops of Cenozoic volcanic rocks in northern Moravia and Czech Silesia. Plio-Pleistocene localities: Basanitic series. 1 – Uhlírsky vrch Hill atBruntál; 2 – Venusina sopka Volcano at Mezina, 3 – Velky Roudny and Maly Roudny Hills at Roudno, 4 – Krist’anovice, 5 – Volárensky vrch Hill at Roudno, 6 – Zlatá lípa Risenear Stará Libavá with occurrences on cadastres of Guntramovice, Norbercany and Podlesí nad Odrou, 7 – Bridlicná, 8 – Cedicovy vrch Hill at Zálesí. Oligocene to Miocenelocalities: 13 – Pohor, 14 – Hurka Hill and Malá hurka Hill at Stemplovec, 15 – Kamenná hora Hill at Otice, 16 – Ostrava (Petr Bezruc Shaft).

4 der Er

A21u

tDTbiii

vcrmi1

1

rtiuWr(1

dT(

4

Pag

4

ttgoNcotriba

eiemmc

pzsm

32 J. Ulrych et al. / Chemie

nalytical conditions were as follows: 15 kV accelerating voltage,0 nA beam current and 2 �m beam diameter. A counting time of0 s was used for all elements. Synthetic and natural minerals weresed as standards.

The K-Ar isotope measurements were carried out at the Insti-ute of Nuclear Research of the Hungarian Academy of Sciences,ebrecen, according to the procedures described in Balogh (1985).he results of an interlaboratory calibration have been presentedy Odin et al. (1982). Standards LP-6 and HD-B1 were used for cal-

bration of the measurement of 40Ar(rad) and K concentrations. Arsotopic ratios have been normalized to by atmospheric Ar, accept-ng 295.5 for the (40Ar/36Ar)atm ratio.

The Sm–Nd isotopic work was carried out at the Uni-ersität München isotope laboratory according to the pro-edures outlined in Hegner et al. (1995). The 143Nd/144Ndatios were determined with a MAT 261 using a dynamiculti-cup data collection method and monitoring 147Sm; Sm

sotopes were determined in static data collection mode. The43Nd/144Nd ratios were normalized to 146Nd/144Nd = 0.7219 and47Sm/152Sm = 0.56081. The external precision of the 143Nd/144Ndatios is 1.2 × 10−5, determined with an Ames Nd standard solu-ion yielding 0.512142 ± 12 (N = 35), corresponding to 0.511854n the La Jolla Nd reference standard material. The εNd val-es were calculated using the parameters of Jacobsen andasserburg (1980). Present-day values for the chondrite uniform

eservoir (CHUR): 147Sm/144Nd = 0.1967, 143Nd/144Nd = 0.512638Jacobsen and Wasserburg, 1980; 143Nd/144Nd re-normalized to46Nd/144Nd = 0.7219). 87Sr/86Sr ratios were determined with aynamic double cup method and normalized to 86Sr/88Sr = 0.1194.he NIST 987 reference material yielded 87Sr/86Sr = 0.710223 ± 11N = 22).

. Results

The geochemical data of about forty new analyses of Plio-leistocene basaltic rocks (Table 1) are listed in Tables 2a–2d, Srnd Nd isotopic data in Table 3, and K–Ar data providing a broadeochronological framework in Table 4.

.1. Petrography and mineral chemistry

Petrographic descriptions of the Plio-Pleistocene and Oligoceneo Miocene volcanic rocks are summarized in Table 1. Despitehe fact that these samples tend to be compositionally homo-eneous, individually they come from contrasting modes ofccurrence such as e.g., massive rocks, slags, bombs, and tuffs.evertheless, principally different mineral associations of plagio-lase/anorthoclase ± nepheline are characteristic of rocks of thelder basanitic series, and melilite ± nepheline, and/or sodalite ofhe younger melilititic series, cf. Table 1. The prevalent massiveocks crystallized under similar PTX conditions in generally sim-lar geological environments. Accordingly, they are characterizedy similar textures, phenocryst/matrix ratios and grain-size char-cteristics.

Most of the Plio-Pleistocene volcanic rocks have a common min-ralogy: a brief presentation of main rock-forming minerals inndividual rock samples is presented in Table 1. For detailed min-ralogical data of Moravian and Silesian volcanic rocks based onicroprobe analyses see Foltynová (2003). The main rock-forminginerals of the Plio-Pleistocene volcanic rocks show the following

haracteristics:Olivine generally occurs as euhedral to subhedral phenocrysts

artly grading into the groundmass. The crystals show concentriconing Fo85–55 in the basanitic series and Fo88–85 in the melilititiceries with Mg-rich cores: the anhedral olivines in the matrix areostly less magnesian (Fo60–55 and ∼Fo85). Marginal zones of the

de 73 (2013) 429– 450

phenocrysts are partly iddingsitised in volcanic rocks from the NMSarea (Foltynová, 2003). Olivine megacrysts (Fo85–82) are charac-teristic of scoria of the melilititic series at Zelezná hurka Hill andMezina in WB (Geissler et al., 2007). Anhedral olivine xenocrystsrepresent disaggregated lherzolite mantle xenoliths in the basaniticseries, particularly at Kozákov Hill (Fo91–90) and Cedicovy vrch Hill(Fo91–89).

Clinopyroxene is present either in subhedral phenocrysts(with rare Fe-rich rims) or in groundmass. Clinopyroxenesshow a prevailing concentric zonation and rarely (basaniticseries, Mezina) sector zoning. Their composition fluctuates inthe range of En34–46Fs07–14Wo45–58 in the basanitic series andEn31–43Fs8–15Wo49–53 in the melilititic series, corresponding todiopside (fassaite). Rare augite (En47Fs11Wo42) is found only atMalá Hurka Hill at Stemplovec, Venusina sopka Volcano, NMS(basanitic series) (Foltynová, 2003) and at Kozákov Hill, NEB(En51Fs07Wo42). The more magnesian phenocryst cores havehigher Si and Na contents and lower Al and Ti contents compared tothe more ferroan margins. The AlIV/AlVI ratios decrease from coreto rim, as is characteristic for gradual lowering of crystallizationtemperatures (Wass, 1979).

Phlogopite forms euhedral phenocrysts (up to 15 mm) in olivinesodalite-bearing olivine melilitite scoria (melilititic series) fromZelezná hurka Hill, WB. Ba-rich phlogopite (13–16 wt.% BaO) in thegroundmass of nepheline-bearing olivine melilitite from Komorníhurka Hill was described by Seifert and Kämpf (1994).

Amphibole of pargasitic composition and rhönite occurs in sub-stantial amounts in tuff from the Prísovská homolka Hill.

Plagioclase (andesine to labradorite) occurs in the groundmassof samples from Zlatá Lípa Rise, Bridlicná, Venusina sopka Vol-cano, Maly Roudny Hill, Krist’anovice (basanitic series) in NMS(Foltynová, 2003) and Kozákov Hill in NEB.

Alkali feldspar occurs exclusively in rocks of the basanitic series.Subhedral to anhedral anorthoclase occurs at Maly Roudny Hill. K-andesine from Bridlicná and anorthoclase from Krist’anovice havecompositions characteristic of high-temperature ternary feldsparssensu Barth (1969). Anorthoclase with a high celsian component(BaO up to 5 wt.%) occurs at Krist’anovice, NMS (Foltynová, 2003),and Prísovská homolka Hill where it shows transitions to sanidineboth in tuff and in a basanite dyke. Glass of anorthoclase to sanidinecomposition is also present at Prísovská homolka Hill.

Nepheline (Ks = 7–20 mol.% in basanitic series andKs = 10–25 mol.% in melilititic series) occurs in the matricesof the basanitic series and, with melilite, in the melilititic series.

The nepheline compositions, plotted in the condensed Quater-nary diagram Ne–Ks–Qz–H2O at 700 ◦C and 1 kbar pH2O are farfrom the “Barth join” which denotes the main compositional trendfor natural nephelines. They lie closer to the full line of solutionof feldspar in nepheline at 1068 ◦C at 1 bar (Wilkinson and Hensel,1994) corresponding to the high-temperature Si-rich nephelines.

Sodalite replacing nepheline is present, together with glass, car-bonate and zeolites, in minor amounts in the groundmass of samplesfrom the Venusina sopka and Cedicovy vrch basanitic series. Mem-bers of the sodalite–nosean group occur together with melilite asmajor felsic minerals in the Komorní hurka Hill lapilli and Zeleznáhurka Hill scoria (melilititic series).

Melilite forms euhedral microphenocrysts in the Plio-Pleistocene lavas and scoria of the melilititic series (Komorníhurka and Zelezná hurka hills – WB) and also the Oligocenenephelinite (Pohor and Kamenná hurka at Otice, NMS). Themicrophenocrysts show an increase in the soda melilite compo-nent from core to rim. The soda melilite and ferro-akermanite

contents of the Plio-Pleistocene rocks of WB are higher than inolivine melilitites from Erzgebirge, Saxony (Abratis et al., 2009)and the Osecná Complex, northern Bohemia (Pivec et al., 1998;Ulrych et al., 2008).

J. Ulrych et al. / Chemie der Erde 73 (2013) 429– 450 433

Table 1Geological and petrographical characteristics of the Plio-Pleistocene volcanic samples from the Bohemian Massif and associated Oligocene to Miocene volcanic rocks fromnorthern Moravia and Czech Silesia.

No. Sample Location Latitude Longitude Rock type Petrographic characteristic

Plio-Pleistocene basanitic seriesNorthern Moravia and Czech Silesia1.1. 6671 Uhlírsky vrch Hill 49◦58′24′′ 17◦28′01′′ Nepheline basanite lava Massive, hemicrystalline, porphyritic

with aphanitic groundmass1.2. 6677 Uhlírsky vrch Hill 49◦58′24′′ 17◦28′01′′ Nepheline basanite lava Groundmass: olivine, clinopyroxene,

nepheline, magnetite, apatite, glass1.3. Fo-10 (2003) Uhlírsky vrch Hill 49◦58′24′′ 17◦28′01′′ Nepheline basanite lava Phenocrysts: olivine Fo85–70,

clinopyroxene2.1. 6673 Venusina sopka Volcano 49◦57′27′′ 17◦29′15′′ Nepheline basanite lava Massive, hemicrystalline, porphyritic

with aphanitic groundmass2.2. 6679 Venusina sopka Volcano 49◦57′27′′ 17◦29′15′′ Nepheline basanite lava Groundmass: olivine, clinopyroxene,

nepheline (altered), sodalite, andesiteto K-andesite, magnetite, apatite, glass

2.3. Fo-2 (2003) Venusina sopka Volcano 49◦57′27′′ 17◦29′15′′ Nepheline basanite lava2.4. Fo-3 (2003) Venusina sopka Volcano 49◦57′27′′ 17◦29′15′′ Nepheline basanite lava Phenocrysts: olivine Fo85–70,

clinopyroxene3.1. Fo-6 (2003) Velky Roudny H.(Bílcice) 49◦53′04′′ 17◦34′16′′ Nepheline basanite lava Massive, hemicrystalline, porphyritic

with aphanitic groundmass3.2. Fo-7 (2003) Velky Roudny H.(Bílcice) 49◦53′04′′ 17◦34′16′′ Nepheline basanite lava Phenocrysts: olivine Fo80–60,

clinopyroxene3.3. 15-31-13 Velky Roudny H.(Bílcice) 49◦53′04′′ 17◦34′16′′ Nepheline tephrite – basanite

lavaGroundmass: olivine Fo75–65,clinopyroxene, nepheline (altered),plagioclase (altered), magnetite,ilmenite, apatite, glass

3.4. Fo-8 (2003) Velky Roudny Hill 49◦53′42′′ 17◦31′45′′ Nepheline basanite lava3.5. Fo-9 (2003) Velky Roudny Hill 49◦53′42′′ 17◦31′45′′ Nepheline basanite lava3.6. 15-31-10 Roudno I 49◦54′12′′ 17◦30′06′′ Olivine nephelinite lava3.7. 15-31-15 Roudno II 49◦54′12′′ 17◦30′06′′ Alkali olivine basalt lava4.1. Fo-18 (2003) Maly Roudny Hill 49◦52′42′′ 17◦29′55′′ Nepheline basanite lava Massive, hemicrystalline, porphyritic

with aphanitic groundmass, porousstructure

4.2. 15-33-25 Krist’anovice 49◦51′12′′ 17◦30′56′′ Nepheline basanite lava Massive, hemicrystalline, porphyriticwith aphanitic matrix, continuation ofthe Maly Roudny lava flow

4.3. Fo-19 (2003) Krist’anovice 49◦51′12′′ 17◦30′56′′ Nepheline basanite lava Phenocrysts: olivine Fo85–55,clinopyroxene. Groundmass: olivineFo75–55, clinopyroxene, nepheline,

4.4. Fo-20 (2003) Krist’anovice 49◦51′12′′ 17◦30′56′′ Nepheline basanite lava Andesite to labradorite, anorthoclase,nepheline, magnetite, apatite, glass

5.1. Fo-5 (2003) Volárensky vrch Hill 49◦53′36′′ 17◦29′19′′ Alkali olivine basalt lava Massive, hemicrystalline, porphyriticwith aphanitic matrix, “Sonnenbrand”.Phenocrysts: olivine, clinopyroxeneGroundmass: olivine, clinopyroxene,plagioclase, nepheline (altered),magnetite, apatite, glass

6.1. 6674 Zlatá lípa Rise (StaráLibavá)

49◦46′29′′ 17◦31′29′′ Nepheline basanite lava Massive, hemicrystalline, porphyriticwith aphanitic groundmass,amygdaloidal structure,“Sonnenbrand”

6.2. 6676 Zlatá lípa Rise (StaráLibavá)

49◦46′29′′ 17◦31′29′′ Nepheline basanite lava Phenocrysts: olivine, clinopyroxene

6.3. Fo-4 (2003) Zlatá lípa Rise (Cervenyvrch)

49◦45′59′′ 17◦31′50′′ Nepheline basanite boulders Groundmass: olivine, clinopyroxene,labradorite, nepheline (altered),magnetite, apatite, glass

6.4. 15-33-19 Zlatá lípa Rise (Podlesí n.O.)

49◦45′59′′ 17◦31′50′′ Nepheline basanite lava

6.5. 15-33-20 Zlatá lípa Rise(Guntramovice)

49◦46′28′′ 17◦31′44′′ Nepheline basanite lava

6.6. 15-33-22 Zlatá lípa Rise(Norbercany)

49◦46′29′′ 17◦31′29′′ Nepheline basanite lava

7.1. 6672 Bridlicná 49◦54′51′′ 17◦23′44′′ Nepheline tephrite – basanitelava

Massive, hemicrystalline, porphyriticwith aphanitic groundmass,“Sonnenbrand”

7.2. 6678 Bridlicná 49◦54′51′′ 17◦23′44′′ Alkali olivine basalt lava Phenocrysts: olivine Fo80–65,clinopyroxene

7.3. Fo-11 (2003) Bridlicná 49◦54′51′′ 17◦23′44′′ Alkali olivine basalt dyke involcanic pipe

Groundmass: olivine Fo75–60,clinopyroxene, nepheline, labradoriteto K-andesite, magnetite, apatite, glass

7.4. Fo-12 (2003) Bridlicná 49◦54′51′′ 17◦23′44′′ Alkali olivine basalt dyke involcanic pipe

8.1. Ul-Pr-1 Cedicovy vrch Hill atZálesí

50◦21′13′′ 16◦55′24′′ Nepheline tephrite – basanitelava

Massive, hemicrystalline, porphyriticwith aphaniticgroundmass,“Sonnenbrand”, xenolithsof mica schists and peridotite.Phenocrysts: olivine, clinopyroxene

434 J. Ulrych et al. / Chemie der Erde 73 (2013) 429– 450

Table 1 (Continued)

No. Sample Location Latitude Longitude Rock type Petrographic characteristic

8.2. Ul-Pr-1A Cedicovy vrch Hill atZálesí

50◦21′13′′ 16◦55′24′′ Nepheline tephrite – basanitelava

8.3. Fo-1 (2003) Cedicovy vrch Hill atZálesí

50◦21′13′′ 16◦55′24′′ Nepheline tephrite – basanitelava

Groundmass: olivine, clinopyroxene,nepheline, sodalite, plagioclase,magnetite, ilmenite, apatite

Northeastern Bohemia9.1. Ul-Pr-7 Kozákov Hill (Slap) 50◦36′48′′ 15◦18′03′′ Nepheline basanite lava Massive, holocrystalline, porphyritic

with aphanitic groundmass, numerousperidotite xenoliths

9.2. A&J-1 Kozákov Hill (Slap) 50◦36′48′′ 15◦18′03′′ Nepheline basanite lava Phenocrysts: olivine Fo85–75,clinopyroxene; Xenocrysts: Fo91–90

9.3. A&J-2 Kozákov Hill (Slap) 50◦36′48′′ 15◦18′03′′ Nepheline basanite lava Groundmass: olivine, clinopyroxene,magnetite, Cr-Al-spinel, apatite

Western Bohemia10.1. PH/1 Prísovská homolka Hill 49◦49′09′′ 13◦17′49′′ Grey-brown lapilli tuff of older

eruptionIrregular hemicrystalline lapilli ofvariable size, rare highly porouspumices and ash; strongly contaminedand altered, contains epiclasticadmixture, quartz pebles andcarbonized wood

10.2. PH/2 Prísovská homolka Hill 49◦49′09′′ 13◦17′49′′ Grey-brown lapilli tuff of oldereruption

10.3. PH/4 Prísovská homolka Hill 49◦49′05′′ 13◦17′45′′ Red-brown lapilli tuff ofyounger eruption

Minerals: clinopyroxene, amphibole,rhönite, anorthoclase, magnetite, glass

10.4. PH/5 Prísovská homolka Hill 49◦49′05′′ 13◦17′45′′ Red-brown lapilli tuff ofyounger eruption

10.5. Ul-Pr-12 Prísovská homolka Hill 49◦49′05′′ 13◦17′43′′ Nepheline basanite dyke cutingred-brown tuff

Massive, hemicrystalline, porphyriticwith aphanitic groundmass.Phenocrysts: olivine (altered),clinopyroxene. Groundmass:clinopyroxene, sanidine toanorhoclase, magnetite, apatite

Plio-Pleistocene melilititic series11.1. 67/1 Zelezná hurka Hill 49◦59′31′′ 12◦26′35′′ Scoriaceous sodalite-bearing

olivine melilitite layer of cindercone

Highly vesiculated scoria layer, porous,hemicrystalline, rare peridotitexenoliths Microphenocrysts: olivineFo85–75, clinopyroxene

11.2. 67/2 Zelezná hurka Hill 49◦59′31′′ 12◦26′35′′ Scoriaceous sodalite-bearingolivine melilitite layer of cindercone contamined by phyllite

Groundmass: olivine, clinopyroxene,melilite, sodalite (altered), nepheline(altered), magnetite, Cr-Al-spinel,apatite, glass (altered)

11.3. 67/3 Zelezná hurka Hill 49◦59′31′′ 12◦26′35′′ As above Megacrysts: olivine, clinopyroxene,phlogopite, amphibole

11.4. 67/4 Zelezná hurka Hill 49◦59′31′′ 12◦26′35′′ As above11.5. MR-1 Mytina at Zelezná hurka

Hill50◦0′21′′ 12◦26′26′′ Sodalite-bearing olivine

melilitite volcanic bomb ofmaar wall strongly contaminedby phyllite

Highly vesiculated bomb (fist-size),porous, hemicrystalline, numerousphyllite xenoliths Megacrysts: olivine,clinopyroxene, phlogopite, amphibole

12.1. 68 Komorní hurka Hill 50◦06′02′′ 12◦20′14′′ Nepheline olivine melilititeconduit and flow

Massive, holocrystalline, porphyriticwith aphanitic groundmass

12.2. Ul-Pr-2 Komorní hurka Hill 50◦06′02′′ 12◦20′14′′ Nepheline olivine melilititeconduit and flow

Phenocrysts: olivine Fo89–74,clinopyroxene

12.3. 69 Komorní hurka Hill 50◦06′02′′ 12◦20′18′′ Sodalite-bearing olivinemelilitite lapilli

Vesiculated lapilli (25 by 15 by 10 mm)layer, porous, hemicrystalline,numerous phyllite xenoliths Minerals:olivine, clinopyroxene, melilite,sodalite (altered), nepheline (altered),magnetite, Cr-Al-spinel

Oligocene to Miocene basanitic series13.1. Ul-Pr-4 Pohor at Odry 49◦39′05′′ 17◦50′56′′ Melilite-bearing olivine

nephelinite dykeMassive, hemicrystalline, porphyriticwith aphanitic groundmass,Phenocrysts: olivine Fo85–80,clinopyroxene Groundmass: olivine,clinopyroxene, melilite, nepheline,hauyne (altered), magnetite, apatite,glass

14.1. Fo-17 (2003) Hurka Hill at Stemplovec 49◦58′57′′ 17◦46′48′′ Picrobasalt – nephelinebasanite boulders

Massive, hemicrystalline, porphyriticwith aphanitic groundmass.Phenocrysts: olivine Fo80–60,clinopyroxene

14.2. 15-32-07 Stemplovec I 49◦58′57′′ 17◦46′48′′ Olivine nephelinite boulders Groundmass: olivine, clinopyroxene,nepheline, magnetite, ilmenite, apatite,glass

14.3. 15-32-11 Stemplovec II 49◦58′57′′ 17◦46′48′′ Olivine nephelinite boulders

J. Ulrych et al. / Chemie der Erde 73 (2013) 429– 450 435

Table 1 (Continued)

No. Sample Location Latitude Longitude Rock type Petrographic characteristic

14.4. Fo-15 (2003) Malá hurka Rise atStemplovec

49◦58′55′′ 17◦46′30′′ Subvolcanic nepheline basanite Massive, hemicrystalline, porphyriticwith aphanitic groundmass.Phenocrysts: olivine Fo80–60,clinopyroxene

14.5. Fo-16 (2003) Malá hurka Rise atStemplovec

49◦58′55′′ 17◦46′30′′ Subvolcanic nepheline basanite Groundmass: olivine Fo85,clinopyroxene, nepheline, magnetite,apatite, glass

15.1. Fo-13 (2003) Kamenná hora Hill atOtice

49◦54′50′′ 17◦51′34′′ Nepheline basanite lava Massive, hemicrystalline, porphyriticwith aphanitic groundmass

15.2. Fo-14 (2003) Kamenná hora Hill atOtice

49◦54′50′′ 17◦51′34′′ Nepheline basanite lava Phenocrysts: olivine Fo80–65,clinopyroxene

15.3. 15-32-10 Kamenná hora Hill atOtice

49◦54′50′′ 17◦51′34′′ Melilite-bearing (altered)nepheline basanite lava

Groundmass: olivine, clinopyroxene,biotite (altered), nepheline, melilite(altered), magnetite, apatite, glass

16.1. 3260 Petr Bezruc Shaft,Ostrava

49◦50′33′′ 18◦18′34′′ Subvertical dyke of picrobasalt Massive, holocrystalline, porphyriticwith aphanitic groundmass.Substantially contamined and altered.Phenocrysts: olivine Fo85–75,clinopyroxene. Groundmass: olivine,clinopyroxene, amphibole, nepheline,

F

TsAvFhK

4

tit

(

o1f

oss(TaicTicc

paop

o-X (2003) – Foltynová (2003).

Magnetite, ilmenite and chromian spinel occur in the groundmass.he subhedral magnetite crystals in the basanitic and melilititiceries have moderate contents of Ti (12–18 wt.% TiO2), Mg andl. Ilmenite occurs only in the basanitic series (e.g., at Uhlírskyrch Hill and Venusina sopka Volcano, Maly Roudny Hill, NMS), seeoltynová (2003). Chromian spinel is common in lavas of Komorníurka Hill and in the glassy matrix of scoria from Zelezná hurka andomorní hurka hills (melilititic series) in WB.

.2. Major and trace element geochemical characteristics

Compositions of representative Plio-Pleistocene samples fromhe Bohemian Massif are given in Tables 2a–2d. The data, plottedn the Total Alkali–Silica (TAS) diagram (Le Maitre, 2002) indicatehat there are two principal series (Fig. 2):

(i) a basanitic series (basanite/tephrite – olivine basalt – trachy-basalt) in the NMS, NEB and WB (Tables 2a and 2b),

ii) a melilititic series (olivine nephelinite/olivine melilitite) con-fined to the WB (Table 2c).

Additionally, the Miocene basanite – nephelinite series (Fig. 2d)ccurs both in the NMS (24–18 Ma) and the WB (29–19 Ma) (Lütig,998; Ulrych et al., 1999). Only the melilite-olivine nepheliniterom Pohor in the NMS is Oligocene age (32 Ma).

Major element variation diagrams (Fig. 3) show a small increasef SiO2 in the basanitic series compared with those of the melilititiceries. In the TAS diagram, only the rocks of the Plio-Pleistoceneeries rocks with their low SiO2 contents plot in the foidite fieldFig. 2). With increasing SiO2, the levels of Na2O, and K2O increase asiO2, CaO, and P2O5 decrease. There is no correlation between SiO2nd Al2O3, FeOtot, MgO and Mg#. The melilititic series is character-zed by low SiO2, Al2O3 and, typically, Na2O > K2O. CaO and MgOontents are high in comparison to those of the basanitic series.he Oligocene to Miocene basanitic rock series from the NMS rarelyncluding also rocks of melilititic affinity, shares some geochemi-al characteristics, e.g., low SiO2 and Al2O3 contents and high CaOontents with the melilititic rock series (see Fig. 3).

Trace element variation diagrams (Fig. 4) display characteristic

ositive correlation of Rb vs. K and U vs. Nb, while the Pb vs. Cend Cr vs. Mg# correlations are not distinctly expressed. Rocksf the Oligocene to Miocene basanitic series from the NMS showrevalently special trends in trace element distribution. According

analcime (altered), carbonate,magnetite, apatite

to the criteria of Frey et al. (1978), both series represent primitivemantle melts which underwent a small degree of low pressurecrystal fractionation. They have high Mg# (=100 Mg/Mg + Fe2+, forFe3+/Fe2+ = 0.15) 65–71 and high contents of Ni (100–450 ppm),Co (40–60 ppm), Cr (200–500 ppm) and Sc (15–30 ppm)(Tables 2a–2d). Some of these characteristics may have resultedfrom assimilation of upper mantle lherzolitic xenoliths (Fediukand Fediuková, 1989; Fryda and Fediuk, 1996; Geissler et al., 2007;Ackerman et al., 2007; Matusiak-Malek et al., 2010). The K/Rb ratiosrange from 100 to 500 with the exception of the Prísovská homolkaHill tuffs (3200–5600) which are extremely depleted in Rb and Sr,probably due to rock alteration. These three elements are generallydepleted relative to elements of similar incompatibility in all sam-ples studied. The Kozákov Hill basanites have exceptionally lowK/Rb ratios (105–125). The average K/Rb ratios for the melilititicseries are 230–260 and 340 for the northern Bohemian basaniticseries (Ulrych and Pivec, 1997). The German Cenozoic alkalinebasaltic rocks have K/Rb ratios of 160 to 250 (Wedepohl et al., 1994).

The incompatible trace element patterns in both series showdistinct negative K anomalies (Fig. 5) implying the presence ofresidual amphibole and/or phlogopite in their mantle source. Largeion lithophile elements (LILE) and high field strength elements(HFSE) concentrations of both rock series are very similar to thoseof Cenozoic intra-plate magmas of the European volcanic provinces(e.g., Ulrych et al., 2011; Pfänder et al., 2012). Weak positiveanomalies for Nb–Ta and P probably reflect low-degree melting ofenriched mantle sources. Both series have Nb/U ratios of 30–57and Ce/Pb ratios of 19–47 (Tables 2a–2d), similar to those ofOIB (Nb/U = 47 ± 10 and Ce/Pb = 25 ± 5) and higher than those ofprimitive mantle (Nb/U = 30 and Ce/Pb = 9) and continental crust(Nb/U = 10 and Ce/Pb = 4) (Hofmann, 1986). Pb concentrations inboth series are similar: 2–5 ppm (basanitic series) and 3–6.5 ppm(melilititic series) with negative anomalies relative to Ce. ThePlio-Pleistocene tuffs have partly higher Pb contents (6–8 ppm)but similar Ce/Pb ratios (30–47). The crustally-contaminated vol-canic bomb has a Pb content of ∼6.5 ppm but a lower Ce/Pb ratio(∼21).

The REE patterns of the two series are similar in showing asubstantial fractionation of the light (LREE) to heavy (HREE) rare-

earth elements as indicated by their LaN/YbN ratios. The melilititicseries has the highest concentrations of LREE and the highestLaN/YbN ratios (28–32; Eu/Eu* = ∼0.9) whereas the weakly differen-tiated basanitic series has the lowest ones (28–19; Eu/Eu* = 1.0–1.2)

436J.

Ulrych

et al.

/ Chem

ie der

Erde 73 (2013) 429– 450

Table 2aMajor and trace element analyses of the Plio-Pleistocene basanitic series samples from northern Moravia and Czech Silesia.

Sample 1.1. 1.2. 1.3.a 2.1. 2.2. 2.3.a 2.4.a 3.1a 3.2.a 3.3. 3.4.a 3.5.a 3.6. 3.7. 4.1.a 4.2. 4.3.a 4.4.a 5.1.a 6.1. 6.2. 6.3.a 6.4. 6.7. 6.8. 7.1. 7.2. 7.3.a 7.4.a 8.1. 8.2. 8.3.a

Rock BA BA BA BA BA BA BA B BA TE BA BA ON-TE B BA BA BA BA B BA BA BA BA BA BA TE B B B TE TE TE

SiO2 (wt.%) 44.22 41.98 43.73 43.00 42.12 42.88 40.59 45.17 40.91 41.08 43.06 42.60 40.10 43.92 42.31 43.44 42.93 41.33 46.86 42.81 44.32 44.79 43.02 43.22 43.51 44.27 44.84 45.79 43.90 43.02 43.97 44.66TiO2 2.33 2.35 2.80 2.41 2.53 2.71 2.72 2.47 2.86 2.13 2.46 2.89 2.19 2.16 2.71 2.19 2.58 2.63 2.70 2.62 2.40 2.77 2.27 2.24 2.15 2.46 2.49 2.66 2.63 2.27 2.66 2.50Al2O3 12.92 11.85 11.78 11.66 11.59 10.79 10.98 11.40 12.67 12.41 12.02 11.84 12.82 12.45 12.80 12.17 12.15 12.10 12.40 11.53 13.31 12.11 12.38 12.02 12.82 13.01 11.92 10.35 11.20 12.51 12.19 12.33Fe2O3(tot) 5.12 5.38 12.68 5.63 5.30 13.37 13.71 12.67 12.92 4.59 12.69 12.98 6.05 4.98 12.67 4.18 12.96 13.20 11.98 5.01 3.81 12.58 4.10 4.06 4.02 3.81 3.25 13.08 12.90 3.88 4.11 12.41FeO 7.05 7.36 n.d. 7.46 7.72 n.d. n.d. n.d. n.d. 7.49 n.d. n.d. 6.27 6.34 n.d. 7.20 n.d. n.d. n.d. 7.66 7.83 n.d. 7.74 7.85 7.63 8.49 8.45 n.d. n.d. 8.72 7.11 n.d.MnO 0.19 0.23 0.18 0.18 0.23 0.17 0.16 0.18 0.17 0.18 0.17 0.18 0.19 0.17 0.16 0.18 0.17 0.18 0.16 0.20 0.22 0.16 0.17 0.16 0.17 0.21 0.22 0.18 0.17 0.20 0.16 0.20MgO 10.32 11.69 9.00 11.85 12.76 11.08 12.02 10.19 9.34 11.64 10.72 9.22 11.69 11.63 10.45 11.23 9.94 10.04 9.33 11.96 10.78 10.58 11.92 11.72 11.04 9.57 12.87 12.15 13.08 10.20 10.03 9.50CaO 11.26 11.21 12.21 10.68 10.40 12.23 12.64 12.02 12.50 11.70 12.18 12.45 12.16 10.86 11.61 11.47 12.22 12.56 10.37 11.12 10.04 10.88 10.67 10.81 10.49 9.61 9.17 10.02 9.51 10.89 10.57 10.37Na2O 3.78 3.63 3.50 3.55 3.47 3.43 3.36 3.22 2.34 3.94 3.28 2.29 4.32 3.51 2.20 4.02 2.90 2.24 3.58 3.56 4.05 3.46 3.98 3.23 4.02 4.75 3.06 2.63 2.71 3.68 4.00 4.35K2O 1.23 1.47 0.98 1.56 1.50 1.49 1.62 1.15 0.81 1.49 1.18 0.85 1.35 1.35 0.91 1.47 1.05 0.89 1.38 1.47 1.43 1.42 1.58 1.59 1.57 1.79 1.52 1.35 1.42 1.71 1.44 1.49P2O5 0.99 1.48 1.22 1.12 1.30 1.49 1.41 0.90 1.16 1.69 0.88 1.26 1.80 1.05 0.72 1.31 0.96 1.03 0.72 0.99 0.92 0.90 1.25 1.27 1.24 0.99 0.72 0.74 0.68 0.99 1.11 1.08H2O+ 0.19 0.20 n.d. 0.22 0.12 n.d. n.d. n.d. n.d. 0.26 n.d. n.d. 0.10 0.38 n.d. 0.08 n.d. n.d. n.d. 0.15 0.12 n.d. 0.04 0.48 0.02 0.30 0.36 n.d. n.d. 0.34 1.91 n.d.H2O− 0.51 0.77 n.d. 0.64 0.58 n.d. n.d. n.d. n.d. 1.08 n.d. n.d. 0.51 1.01 n.d. 0.74 n.d. n.d. n.d. 0.66 0.42 n.d. 0.90 1.21 1.22 0.80 0.57 n.d. n.d. 0.12 0.48 n.d.CO2 0.12 0.16 n.d. 0.18 0.15 n.d. n.d. n.d. n.d. 0.07 n.d. n.d. 0.08 0.05 n.d. 0.04 n.d. n.d. n.d. 0.19 0.17 n.d. 0.06 0.06 0.07 0.15 0.14 n.d. n.d. 0.92 0.27 n.d.L.O.I. n.d. n.d. 1.79 n.d. n.d. 0.18 0.29 0.58 3.69 n.d. 0.78 3.28 n.d. n.d. 3.09 n.d. 1.69 3.41 0.18 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 1.08 1.30 n.d. n.d. 0.70Total 100.23 99.76 99.87 100.14 99.77 99.82 99.50 99.95 99.37 99.75 99.42 99.84 99.63 99.86 99.63 99.72 99.55 99.61 99.66 99.93 99.82 99.65 100.08 99.92 99.97 100.21 99.58 100.03 99.50 99.45 100.01 99.59

Rb (ppm) 42 41 50 37 36 45 44 24 48 42 52 25 35 25 21 28 26 17 36 29 30 36 32 29 33 29 31 34 33 45 50 61Sr 973 874 1171 782 769 949 929 1033 1168 1487 1275 945 1251 903 933 1088 1113 1178 881 761 796 986 883 979 911 639 669 745 727 1112 1115 1278Ba 579 527 507 445 469 472 456 507 662 712 666 497 709 474 513 581 552 658 461 452 470 493 493 520 509 409 403 439 427 616 613 622Sc 20 18 20 19 18 18 18 21 21 22 21 19 21 19 19 19 19 19 19 20 20 19 18 19 18 19 19 19 17 20 19 19V 201 184 237 193 182 239 239 208 248 250 246 210 242 222 225 221 218 224 230 184 172 230 219 223 210 191 189 214 227 222 227 235Cr 227 188 294 272 224 376 335 246 253 220 212 308 200 264 260 259 239 260 233 211 181 239 257 268 255 344 313 513 397 252 269 328Co 49 56 n.d. 58 59 n.d. n.d. n.d. n.d. 57 n.d. n.d. 56 50 n.d. 50 n.d. n.d. n.d. 57 52 n.d. 54 56 50 62 61 n.d. n.d. 46 41 n.d.Ni 130 255 111 255 277 199 256 186 149 181 109 209 171 208 226 186 213 233 161 243 215 183 218 222 194 320 318 270 315 189 180 205Y 27 26 29 24 23 25 26 28 30 27 30 28 26 22 27 25 30 31 26 24 25 26 20 21 21 21 21 22 21 25 26 32Zr 285 263 269 265 250 248 247 194 260 243 279 186 242 219 200 257 229 240 212 214 217 212 213 226 214 241 237 226 223 363 372 364Nb 86 78 88 70 69 70 67 72 80 91 89 65 90 62 57 80 70 76 60 63 63 68 64 67 64 65 64 65 58 130 131 105La 60 59 60 49 47 51 51 61 62 73 62 59 75 45 50 57 60 67 44 50 53 54 45 50 48 41 42 42 42 67 67 77Ce 112 113 113 97 92 97 100 110 111 142 115 109 145 87 92 110 111 119 84 92 97 95 90 96 94 78 79 77 78 129 132 143Pr 13 13 14 12 11 13 11 13 12 15 14 11 16 10 10 13 12 13 11 11 11 12 10 11 10 9.1 9.2 10 8.3 15 15 17Nd 50 51 59 47 43 52 47 53 51 58 60 45 60 40 40 49 48 54 44 41 42 50 40 42 40 36 36 41 37 57 60 72Sm 9.8 9.8 10.1 9.3 8.7 9.9 9.6 9.7 9.8 10.4 10.4 8.3 10.9 7.8 9.3 9.6 9.9 9.9 8.7 8.1 8.2 9.5 7.7 8.2 7.9 7.4 7.3 8.2 6.9 11 10.8 12.5Eu 3.1 3.1 3.1 3.0 2.8 2.9 3.1 3.0 3.0 3.3 3.2 2.9 3.3 2.6 2.6 3.1 3.1 3.4 2.5 2.7 2.7 2.8 2.5 2.5 2.5 2.4 2.4 2.2 2.2 3.2 3.2 3.6Gd 9.3 9.2 8.2 8.8 8.3 7.8 8.3 7.6 7.9 11 8.2 7.4 11 7.9 7.8 9.6 8.7 9.0 7.4 7.9 8.1 7.5 7.8 8.2 7.6 7.0 7.0 5.7 6.2 10 10.3 10Tb 1.2 1.2 1.2 1.1 1.1 1.1 1.0 1.1 1.1 1.3 1.2 1.0 1.3 1.0 1.1 1.2 1.2 1.2 1.0 1.0 1.1 1.0 1.0 1.0 1.0 0.9 0.9 0.9 0.8 1.3 1.3 1.3Dy 5.6 5.4 5.9 5.2 4.8 5.4 5.3 5.6 5.9 6.1 6.3 4.9 5.8 5.0 5.3 5.5 6.0 6.1 5.4 5.0 5.1 5.1 4.5 5.0 4.7 4.3 4.3 4.4 4.6 5.8 5.9 6.3Ho 1.0 0.9 1.0 0.9 0.8 0.9 0.9 1.0 1.0 1.0 1.0 0.9 1.0 0.8 0.9 0.9 1.0 1.0 0.9 0.9 0.9 1.0 0.8 0.8 0.8 0.8 0.8 0.7 0.7 1.0 1.0 1.2Er 2.5 2.3 2.6 2.2 2.1 2.2 2.1 2.5 2.3 2.7 2.6 2.2 2.7 2.2 2.2 2.6 2.2 2.4 2.3 2.2 2.3 2.2 2.0 2.1 2.2 1.9 1.9 1.7 1.7 2.6 2.6 2.8Tm 0.30 0.28 0.31 0.26 0.25 0.25 0.25 0.30 0.32 0.33 0.32 0.35 0.32 0.26 0.28 0.30 0.34 0.34 0.26 0.26 0.28 0.29 0.24 0.26 0.26 0.22 0.23 0.19 0.24 0.29 0.30 0.33Yb 1.8 1.6 2.0 1.5 1.5 1.7 1.6 2.2 1.9 2.0 2.1 1.9 2.1 1.6 1.5 1.7 1.8 2.0 1.9 1.5 1.7 1.7 1.4 1.6 1.6 1.3 1.3 1.6 1.3 1.7 1.7 2.3Lu 0.25 0.23 0.29 0.20 0.20 0.21 0.25 0.30 0.29 0.28 0.31 0.27 0.27 0.23 0.28 0.25 0.27 0.29 0.24 0.22 0.23 0.26 0.18 0.22 0.23 0.18 0.17 0.16 0.19 0.23 0.25 0.32Th 7.5 7.3 6.6 5.4 5.7 4.4 5.7 6.3 7.7 8.3 6.7 6.8 8.5 5.3 5.1 7.0 5.9 6.8 6.1 6.2 6.8 6.3 5.3 5.8 5.7 5.8 5.8 5.4 4.0 8.4 8.4 8.1Pb 4.5 4.2 3.2 2.6 3.0 2.3 2.3 2.4 3.2 4.7 3.8 2.4 5.0 2.8 2.0 3.4 3.0 2.6 2.5 3.4 4.1 2.8 2.8 3.0 2.9 3.3 3.9 2.5 4.0 3.9 3.6 3.7U 1.5 1.6 1.8 1.1 1.2 1.5 1.0 1.8 2.2 2.3 1.8 1.6 2.4 1.6 1.8 2.2 1.9 2.5 1.4 1.3 1.7 1.4 1.6 1.6 1.7 1.2 1.2 1.7 1.2 2.5 2.6 3.0Hf 5.7 5.6 n.d. 5.6 5.3 n.d. n.d. n.d. n.d. 5.3 n.d. n.d. 5.4 4.9 n.d. 5.5 n.d. n.d. n.d. 4.7 4.1 n.d. 5.0 5.3 5.0 5.2 5.1 n.d. n.d. 8.5 8.4 n.d.Ta 6.6 6.0 n.d. 5.6 5.5 n.d. n.d. n.d. n.d. 4.2 n.d. n.d. 4.3 3.1 n.d. 4.0 n.d. n.d. n.d. 4.8 6.8 n.d. 3.3 3.5 3.2 5.3 5.2 n.d. n.d. 5.3 5.3 n.d.Cs 0.43 0.62 0.70 0.29 0.39 0.60 0.40 0.40 0.50 0.49 0.80 0.30 0.50 0.37 0.40 0.47 0.40 0.50 0.80 0.24 0.37 0.60 0.46 0.43 0.42 0.24 0.18 0.50 0.40 0.70 0.66 1.10

Mg# 65.0 66.8 62.3 66.5 68.2 65.9 67.2 65.2 62.8 67.8 66.3 62.4 67.7 69.3 65.8 68.3 64.1 63.9 64.5 67.4 66.8 66.2 68.6 68.1 67.3 62.8 70.4 68.4 70.3 63.7 66.1 64.1Th/U 5.0 4.6 3.7 4.9 4.9 2.9 5.7 3.5 3.5 3.5 3.7 4.3 3.6 3.3 2.8 3.2 3.1 2.7 4.4 4.9 4.0 4.5 3.4 3.6 3.3 4.8 4.7 3.2 3.3 3.4 3.3 2.7Zr/Hf 50 47 47 47 46 45 45 47 46 53 43 42 43 47 47 42 44Nb/Ta 13 13 12 12 22 21 20 20 13 9 19 19 20 12 12 25 25Ce/Pb 25 27 35 37 30 42 43 46 35 30 30 45 29 31 46 33 37 46 33 28 24 34 32 32 33 24 20 31 19 33 37 39Nb/U 58 49 49 63 58 47 67 40 36 39 49 41 38 40 32 37 37 30 43 49 37 49 42 41 37 53 52 38 49 53 51 35K/Rb 244 301 163 350 342 277 308 396 140 296 188 283 321 450 361 435 333 448 315 418 398 327 415 459 401 505 407 330 353 313 239 203�REE 269 270 280 237 224 244 241 270 269 326 287 255 334 211 224 264 265 288 213 224 233 243 214 229 222 190 192 195 190 304 311 349LaN/YbN 24 26 21 24 23 22 23 20 24 26 21 23 26 20 24 24 24 24 17 24 22 23 23 23 22 23 23 19 23 28 28 24Eu/Eu* 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.0 0.9 1.0 1.1 0.9 1.0 0.9 1.0 1.0 1.1 1.0 1.0 1.0 1.0 1.0 0.9 1.0 1.0 1.0 1.0 1.0 0.9 0.9 1.0

B – alkali basalt; BA – basanite; TE – tephrite; ON – olivine nephelinite; TB – trachybasalt. Mg# (=100 × Mg/Mg + Fe2+, for Fe3+/Fe2+ = 0.15); n.d. – not determined.a Data from Foltynová (2003).

J. Ulrych et al. / Chemie der Erde 73 (2013) 429– 450 437

Table 2bMajor and trace element analyses of the Plio-Pleistocene basanitic series samples from northeastern and western Bohemia.

Sample 9.1. 9.2. 9.3. 10.1. 10.2. 10.3. 10.4. 10.5.Rock BA BA BA Tuff (Pb) Tuff (Pb) Tuff (B) Tuff (B) BA

SiO2 (wt.%) 43.59 43.02 42.82 39.36 39.16 39.68 40.92 40.02TiO2 2.12 2.12 2.10 2.92 3.26 2.93 2.52 2.82Al2O3 11.85 11.92 11.98 13.96 13.74 12.37 11.73 14.42Fe2O3 3.98 11.90 11.68 7.78 7.58 9.76 9.31 7.10FeO 7.31 n.d. n.d. 3.26 4.22 2.26 2.26 4.33MnO 0.20 0.25 0.25 0.19 0.24 0.11 0.29 0.32MgO 14.14 14.78 14.59 6.49 6.92 5.01 5.88 7.21CaO 10.59 10.79 10.77 12.23 14.03 9.21 9.42 12.85Na2O 3.01 3.24 3.55 0.36 0.43 0.25 0.44 1.46K2O 1.02 1.05 0.92 0.76 0.39 0.68 0.94 1.30P2O5 0.80 0.69 0.70 0.83 1.01 0.59 0.70 0.80H2O+ 1.00 n.d. n.d. 6.06 4.28 10.90 9.34 3.85H2O− 0.19 n.d. n.d. 5.06 4.30 4.96 4.58 2.76CO2 0.11 n.d. n.d. 0.25 0.32 1.08 1.42 0.67L.O.I. n.d. 0.30 0.25 n.d. n.d. n.d. n.d. n.d.Total 99.91 100.06 99.61 99.51 99.88 99.79 99.75 99.91

Rb (ppm) 69 69 73 2.0 1.6 1.2 1.4 220Sr 938 988 953 74 124 44 57 957Ba 679 671 659 1146 503 478 621 700Sc 24 23 20 25 26 23 20 24V 231 220 221 315 325 272 255 306Cr 499 478 471 143 147 131 113 138Co 61 59 62 37 48 41 40 41Ni 434 469 452 123 80 67 55 64Y 25 27 27 48 45 35 32 33Zr 228 232 236 422 425 376 329 393Nb 109 112 114 174 130 152 131 120La 76 81 75 158 154 120 110 122Ce 131 117 122 296 299 244 214 229Pr 16 16 15 33 34 28 24 26Nd 53 54 54 122 124 101 87 97Sm 8.8 8.9 8.8 19 19 16 14 15Eu 2.8 2.8 2.8 5.5 5.5 4.5 3.9 4.3Gd 6.3 6.0 6.1 16 16 13 12 15Tb 1.0 1.0 1.0 2.0 2.0 1.6 1.4 1.8Dy 5.3 5.2 5.3 9.6 9.5 7.9 6.7 7.2Ho 0.9 0.9 0.9 1.7 1.7 1.4 1.2 1.3Er 2.5 2.5 2.6 4.6 4.4 3.7 3.1 3.8Tm 0.35 0.32 0.33 0.57 0.55 0.46 0.39 0.41Yb 2.1 2.2 2.2 3.5 3.4 2.8 2.4 2.6Lu 0.33 0.31 0.32 0.50 0.48 0.39 0.33 0.38Th 11 12 13 15 15 13 12 12Pb 2.9 4.0 4.0 7.2 6.4 8.1 6.8 6.7U 2.9 2.0 2.0 4.0 2.9 4.2 2.9 2.4Hf 5.1 5.0 5.0 10 11 9.1 7.9 9.2Ta 7.0 6.5 7.0 12 12 11 9.7 8.1Cs 0.53 0.50 0.50 2.0 12 1.2 1.4 n.d.

Mg# 73.2 74.3 74.4 57.0 56.8 48.8 53.7 58.5Th/U 3.8 6.0 6.5 3.6 5.2 3.1 4.1 5.1Zr/Hf 45 46 47 42 40 41 42 43Nb/Ta 16 17 16 14 10 14 14 15Ce/Pb 45 29 30 41 47 30 32 34Nb/U 37 56 57 43 46 36 45 50K/Rb 122 126 105 3154 2023 4703 5573 49�REE 306 297 296 672 675 544 480 525LaN/YbN 26 27 25 33 33 30 32 33

9

B

(att(

4

(O

Eu/Eu* 1.1 1.2 1.2 0.

A – basanite; Pb – altered tuff of picrobasal composition; n.d. – not determined.

Tables 2a–2d, Fig. 6). The average LaN/YbN and Eu/Eu* ratios are 28nd 0.9, respectively, for the late Cretaceous to Palaeocene melili-itic rocks from northern Bohemia and 34 and 0.8, respectively, forhe late Eocene to Oligocene basanitic rocks from the same regionUlrych et al., 1997).

.3. 87Sr/86Sr and 143Nd/144Nd isotopic systematics

The Nd-Sr isotopic compositions of the Plio-Pleistocene∼7.2–0.4 Ma) basanitic and melilititic series and of theligocene–Miocene basanite – nephelinite series (∼32–18 Ma)

0.9 0.9 0.9 0.9

are listed in Table 3 and plotted in Fig. 7 together with the dataof Lustrino and Wilson (2007). Initial �Nd values for all samplesrange from +5.3 to +4.1 (Fig. 7) with samples of tuff and a volcanicbomb showing lower values of +3.8 to +1.7. The latter samplecontains remnants of Variscan pelitic material so that its isotopiccomposition is likely to be contaminated. Crustal contamination isalso the cause of the relatively low εNd values in the tuff samples.

The Oligocene to Miocene samples have overall higher εNd values(∼+5) than the younger volcanic rocks (+4.1 to +4.8). The latterappear to be isotopically more heterogeneous than the olderbasalts.

438 J. Ulrych et al. / Chemie der Erde 73 (2013) 429– 450

Table 2cMajor and trace element analyses of the Plio-Pleistocene melilitic series samples from western Bohemia.

Sample 11.1. 11.2. 11.3. 11.4. 11.5. 12.1. 12.2. 12.3.Rock SOM SOM(BA) SOM(BA) SOM(BA) SOM(BA) NOM NOM SNOM

SiO2 (wt.%) 40.08 41.82 43.86 40.48 39.91 38.06 38.68 38.40TiO2 2.99 2.93 2.80 3.01 2.98 3.23 3.01 3.22Al2O3 11.21 11.25 11.65 11.25 12.07 11.07 11.12 11.17Fe2O3 6.73 7.12 6.61 8.07 7.25 9.80 8.52 6.90FeO 5.10 4.34 4.23 3.71 4.33 2.64 4.99 5.63MnO 0.20 0.19 0.18 0.19 0.19 0.22 0.25 0.22MgO 13.27 12.96 11.77 12.74 11.53 12.72 12.51 12.39CaO 13.13 12.56 10.54 13.01 12.61 13.38 13.25 13.18Na2O 3.09 2.51 1.97 2.57 1.62 3.84 4.22 3.61K2O 1.92 2.19 2.10 2.25 1.00 1.96 2.08 2.05P2O5 0.84 0.79 0.61 0.88 1.09 0.94 1.01 1.05H2O+ 0.86 0.60 1.56 0.68 1.44 0.64 0.30 0.87H2O− 0.26 0.16 1.06 0.26 3.11 0.34 0.11 0.26CO2 0.16 0.15 0.42 0.23 0.55 0.52 0.11 0.24L.O.I. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.Total 99.84 99.57 99.36 99.33 99.68 99.36 100.16 99.19

Rb (ppm) 59 70 77 66 62 55 60 68Sr 953 981 830 1035 640 993 630 1183Ba 836 881 850 952 747 855 759 930Sc 29 27 26 28 30 27 29 27V 296 276 243 284 358 267 344 304Cr 294 287 266 294 322 315 404 247Co 51 48 46 50 54 49 56 49Ni 187 178 178 183 175 165 249 162Y 24 23 22 24 22 28 24 28Zr 279 263 247 273 271 317 302 318Nb 138 130 119 134 110 152 146 163La 68 65 63 67 69 83 84 84Ce 133 127 124 132 132 162 161 164Pr 15 15 15 15 15 19 18 19Nd 59 57 55 59 58 71 68 72Sm 10 10 10 11 10 12 12 13Eu 3.1 3.0 2.8 3.1 3.0 3.6 3.4 3.6Gd 8.9 8.7 8.4 9.0 10 10 11 11Tb 1.1 1.1 1.0 1.1 1.1 1.3 1.3 1.3Dy 5.3 5.2 4.9 5.3 5.2 6.1 5.8 6.2Ho 0.90 0.86 0.83 0.88 0.87 1.0 1.0 1.0Er 2.3 2.2 2.2 2.3 2.5 2.7 2.6 2.7Tm 0.28 0.28 0.27 0.27 0.29 0.32 0.31 0.33Yb 1.7 1.7 1.6 1.7 1.8 1.9 1.9 2.0Lu 0.23 0.23 0.23 0.24 0.23 0.27 0.26 0.28Th 9.5 9.6 10 10 10 12 11 12Pb 2.8 5.5 6.4 5.2 6.4 5.0 5.7 5.4U 2.6 2.8 2.8 2.8 2.3 3.1 3.0 3.3Hf 6.8 6.6 6.2 6.7 6.4 7.5 7.1 7.7Ta 8.9 8.4 8.0 8.9 6.2 10 7.0 10Cs 0.70 1.6 2.5 1.1 1.4 0.50 0.47 0.90

Mg# 71.4 71.7 70.8 70.9 69.0 70.0 67.5 68.7Th/U 3.6 3.4 3.7 3.5 4.6 3.9 3.7 3.8Zr/Hf 41 40 40 41 43 42 43 41Nb/Ta 15 16 15 15 18 15 21 16Ce/Pb 47 23 19 25 21 32 29 31Nb/U 52 46 43 49 49 50 49 50K/Rb 270 261 226 284 133 297 288 251�REE 309 298 289 308 309 375 370 379LaN/YbN 29 28 28 28 28 31 32 31Eu/Eu* 1.0 1.0 0.9 1.0 0.9 1.0 0.9 1.0

S sodalc

ym0atwaco

OM – sodalite-bearing olivine melilite; NOM – nepheline olivine melilitite; SNOM –ontamination); n.d. – not determined.

Initial 87Sr/86Sr ratios in the Oligocene basalts with εNd +5ield values of ∼0.7032–0.7035. Pliocene basanites and Pleistoceneelilitites with εNd of +4.1 to +4.8 show less variable ratios of

.7033–0.7034. Exceptions are attributable to sample alterationnd/or contamination. This is documented by the radiogenic ini-ial 87Sr/86Sr ratios of 0.7036 in tuff samples 11.1 and 11.2 (Table 3),

here the very low Sr concentrations are probably due to alteration

nd Sr mobility. The bomb sample 11.6, with evidence for peliticontamination has an even higher calculated initial 87Sr/86Sr ratiof 0.7041.

ite-bearing olivine melilitite; (BA) – basanite (actual composition including phyllite

As the Sm–Nd isotopic system is more robust during low-temperature and auto-hydrothermal alteration than the Rb–Srsystem, the initial εNd values of +4.1 to +5.3 are interpreted as pri-mary mantle-derived values. The corresponding initial 87Sr/86Srratios, also interpreted as primary mantle-derived values, rangefrom 0.7033 to 0.7034. These overlap the isotopic ratios reported

from other parts of the Cenozoic volcanic province of central andwestern Europe (Alibert et al., 1983; Wörner et al., 1986; Blusztainand Hart, 1989; Wilson and Downes, 1991; Wilson et al., 1994;Hegner et al., 1995).

J. Ulrych et al. / Chemie der Erde 73 (2013) 429– 450 439

Table 2dMajor and trace element analyses of the Oligocene to Miocene series samples from northern Moravia and Czech Silesia.

Sample 13.1. 14.1.a 14.2. 14.3. 14.4.a 14.5.a 15.1.a 15.2.a 15.3. 16.1. USGS BCR-2 standardRock MON PB ON ON BA BA BA BA ON PB this work ref. values

SiO2 (wt.%) 37.10 39.07 38.91 39.12 42.05 42.09 39.48 39.86 37.44 39.48 53.90 54.10TiO2 2.95 3.11 2.29 2.03 2.74 2.75 2.74 2.72 2.11 2.54 2.37 2.26Al2O3 10.81 11.76 11.59 11.04 12.08 12.13 9.07 9.31 10.28 11.01 13.24 13.50Fe2O3tot 6.03 12.87 6.09 5.63 12.21 12.30 12.51 12.25 4.38 5.48 13.53 13.80FeO 5.28 n.d. 5.46 5.70 n.d. n.d. n.d. n.d. 6.41 5.37 10.18 n.d.MnO 0.16 0.26 0.19 0.19 0.21 0.21 0.20 0.20 0.18 0.14 0.19 n.d.MgO 12.22 7.83 12.27 12.70 9.82 9.90 15.64 15.51 17.26 12.54 3.80 3.59CaO 15.58 14.87 13.74 14.02 12.63 12.60 11.37 11.15 12.34 11.61 7.15 7.12Na2O 1.75 2.00 3.50 3.73 2.14 2.11 2.56 2.66 3.54 1.81 3.18 3.16K2O 0.73 0.75 1.40 1.46 1.23 1.15 1.27 1.25 1.40 0.66 1.70 1.79P2O5 1.56 1.34 1.71 1.75 0.85 0.84 1.62 1.60 1.94 0.80 0.38 0.35H2O+ 3.80 n.d. 0.50 0.34 n.d. n.d. n.d. n.d. 0.52 2.16 1.01 n.d.H2O− 1.21 n.d. 2.04 1.93 n.d. n.d. n.d. n.d. 1.77 3.60 n.d. n.d.CO2 0.72 n.d. 0.06 0.15 n.d. n.d. n.d. n.d. 0.11 2.21 0.20 n.d.L.O.I. n.d. 5.67 n.d. n.d. 3.58 3.49 3.04 3.57 n.d. n.d. n.d. n.d.Total 99.90 99.53 99.75 99.79 99.54 99.57 99.50 100.08 99.68 99.41 100.65 99.67

Rb (ppm) 31 14 28 24 35 35 33 32 31 18 47 48Sr 1396 1153 1373 1296 992 960 883 892 1186 768 345 346Ba 1214 1274 1000 889 1303 1314 1090 1091 1140 854 660 683Sc 58 24 24 23 22 22 27 26 28 24 32 33V 275 284 291 269 259 255 257 270 294 222 420 416Cr 247 315 360 340 376 411 547 534 488 407 16 18Co 54 n.d. 57 52 n.d. n.d. n.d. n.d. 64 52 35 37Ni 225 280 231 190 309 304 322 318 361 251 12 13Y 28 33 27 25 25 26 32 32 28 21 35 37Zr 286 244 274 261 203 202 239 241 258 205 188 188Nb 131 113 134 123 78 78 138 140 133 105 14 14La 124 108 105 96 66 64 122 124 118 55 25 25Ce 214 179 183 170 115 113 196 200 203 101 52 53Pr 22 18 19 18 12 11 22 22 21 11 6 6.8Nd 80 67 68 64 48 46 82 85 74 42 28 28Sm 13 12 11 11 9.3 8.3 13 13 12 7.9 6.5 6.7Eu 4.1 3.7 3.6 3.4 2.9 2.8 3.8 3.7 3.8 2.5 2.0 2.0Gd 11 8.8 12 11 8.1 7.8 8.7 9.7 12 7.3 6.7 6.8Tb 1.6 1.3 1.4 1.3 1.1 1.0 1.3 1.3 1.4 0.9 1.1 1.1Dy 6.9 6.7 6.2 6.0 4.9 5.2 6.4 6.8 6.2 4.7 6.1 6.3Ho 1.2 1.2 1.1 1.0 0.9 1.0 1.1 1.2 1.1 0.78 1.3 1.3Er 3.4 2.8 2.9 2.7 2.1 2.1 2.8 2.8 2.9 2.0 3.6 3.6Tm 0.38 0.41 0.35 0.30 0.27 0.32 0.32 0.37 0.34 0.24 0.50 0.54Yb 2.4 2.5 1.9 1.9 1.8 1.7 2.4 2.4 2.1 1.5 3.3 3.5Lu 0.34 0.32 0.28 0.25 0.28 0.23 0.30 0.33 0.28 0.20 0.49 0.51Th 12 14 14 14 7.9 9.8 17 16 17 7.9 5.9 6.2Pb 9.2 2.8 3.0 4.6 2.7 4.2 4.1 3.5 3.9 4.1 11 11U 6.2 2.8 3.6 3.5 2.1 2.1 5.4 5.9 4.5 2.1 1.6 1.7Hf 6.1 n.d. 6.1 5.6 n.d. n.d. n.d. n.d. 5.7 4.9 5.1 4.8Ta 7.5 n.d. 6.5 6.1 n.d. n.d. n.d. n.d. 6.1 6.2 0.80 0.81Cs 1.3 0.5 0.6 0.5 1.1 1.0 1.2 1.3 0.7 15 1.1 1.1

Mg# 70.5 58.7 70.2 71.2 65.2 65.2 74.5 74.7 77.8 71.9Th/U 1.9 5.1 4.0 3.9 3.8 4.7 3.2 2.8 3.8 3.8Zr/Hf 47 45 47 45 41Nb/Ta 18 21 20 22 17Ce/Pb 23 64 61 37 42 27 48 57 52 24Nb/U 21 40 37 36 37 37 26 24 30 51K/Rb 199 445 419 496 294 272 324 324 380 313�REE 484 411 416 385 272 264 462 473 459 237LaN/YbN 37.1 31.5 39.5 36.7 26.6 26.4 35.9 37.1 39.6 26.9Eu/Eu* 1.0 1.1 0.9 0.9 1.0 1.1 1.1 1.0 0.9 1.0

B pheli

4

6e(

aPf

A – basanite; ON – olivine nephelinite; PC – picrobasalt; MON – melilite olivine nea Data from Foltynová (2003).

.4. K-Ar geochronology

K-Ar ages of the Plio-Pleistocene volcanic rocks range from.6 to 0.26 Ma (Fig. 8) with ages overlapping the most recentpisodes of volcanism of the Bohemian Massif of Ulrych et al.2011).

Most of the volcanoes and associated volcanic occurrences werective between ∼1 and ∼3.5 Ma, representing the typical Plio-leistocene basanitic volcanism of the NMS (Table 4). Only samplesrom Bridlicná in the NMS give older ages of ∼5.0 to ∼2.5 Ma. Ages

nite; n.d. – not determined.

of 5.7–3.8 Ma for basalts from Cedicovy vrch Hill and associatedlocalities in the near Ladek Zdrój in Poland are similar to the ages(6.6–4.0 Ma) of the Kozákov Hill volcano in NEB. Both volcanoeswere tectonically related to the Labe/Elbe–Odra Fault System. Onlysamples from the Venusina sopka Volcano (0.80 Ma) and the vicin-ity of the Zlatá lípa Rise (0.91 Ma) from the NMS area gave ages

similar to or younger than 0.9 Ma which is the upper limit for theyoungest episode according to Ulrych et al. (2011). Nevertheless,in the NMS there are also older basaltic volcanics occur relatedto the mid-Eocene to mid-Miocene rifting in the Bohemian Massif

440J.

Ulrych

et al.

/ Chem

ie der

Erde 73 (2013) 429– 450

Table 3Rb–Sr and Sm–Nd isotopic data for the Plio-Pleistocene volcanic rocks of the Bohemian Massif and associated Oligocene to Miocene volcanic rocks from northern Moravia and Czech Silesia.

Sample Rock type Age (Ma) Rb (ppm) Sr (ppm) 87Rb/86Sr 87Sr/86Sr(m) 87Sr/86Sr(t) Nd (ppm) Sm (ppm) 147Sm/144Nd 143Nd/144Nd(m) 143Nd/144Nd(t) εNd(t)

Plio-Pleistocene basanitic series3.3. BA 2.40 41.8 1487 0.081 0.703382 ± 11 0.70338 58.1 10.4 0.1079 0.512859 ± 11 0.512857 4.33.6. BA 1.03 34.9 1251 0.081 0.703290 ± 11 0.70329 60.1 10.9 0.1085 0.512862 ± 10 0.512861 4.43.7. BA 3.05 24.9 903 0.080 0.703335 ± 09 0.70333 39.6 7.83 0.1190 0.512882 ± 11 0.512880 4.84.4. BA 2.46 28.0 1088 0.074 0.703273 ± 11 0.70327 49.3 9.58 0.1170 0.512877 ± 10 0.512875 4.76.6. BA 2.47 31.6 883 0.103 0.703296 ± 11 0.70329 40.3 7.69 0.1148 0.512874 ± 09 0.512872 4.66.7. BA 2.89 28.8 979 0.085 0.703390 ± 10 0.70339 42.1 8.23 0.1178 0.512884 ± 10 0.512882 4.86.8. BA 1.73 32.5 911 0.103 0.703272 ± 10 0.70327 40.3 7.85 0.1172 0.512877 ± 08 0.512876 4.78.2. BA 5.73 50.0 1115 0.130 0.703306 ± 09 0.70331 60.1 10.8 0.1086 0.512875 ± 10 0.512871 4.710.1 Tuff (Pb) 5.89 2.00 74 0.078 0.703645 ± 11 0.70364 116 17.7 0.0925 0.512815 ± 10 0.512811 3.510.2. Tuff (Pb) 7.23 11.6 124 0.271 0.703556 ± 12 0.70355 118 18.1 0.0930 0.512829 ± 12 0.512825 3.8

Plio-Pleistocene melilitic series11.1. SOM 0.43a 59.0 953 0.179 0.703500 ± 11 0.70350 57.6 10.1 0.1055 0.512864 ± 12 0.512864 4.411.2. SOM 0.43a 69.6 981 0.205 0.703643 ± 11 0.70364 56.3 9.89 0.1061 0.512847 ± 12 0.512847 4.111.6. MON 19.5 62.5 640 0.282 0.704141 ± 10 0.70414 57.7 10.5 0.1092 0.512713 ± 10 0.512699 1.712.1. NOM 1.01a 54.7 993 0.159 0.703437 ± 12 0.70344 68.5 11.7 0.1030 0.512870 ± 11 0.512869 4.512.2. NOM 1.01 67.9 1183 0.166 0.703438 ± 10 0.70344 68.3 11.6 0.1030 0.512868 ± 12 0.512867 4.5

Oligocene to Miocene basanitic series14.2. BA 23.7 27.8 1373 0.058 0.703239 ± 10 0.70324 68.0 11.2 0.0995 0.512893 ± 11 0.512878 5.314.3. BA 23.7 24.4 1296 0.055 0.703243 ± 09 0.70324 63.8 10.9 0.1029 0.512895 ± 10 0.512879 5.315.3. BA 22.4 30.6 1186 0.075 0.703514 ± 11 0.70351 74.1 12.1 0.0985 0.512877 ± 10 0.512863 4.916.1. ON 17.9 17.5 768 0.066 0.705730 ± 12 0.70573 41.2 7.59 0.1113 0.512897 ± 12 0.512884 5.2

BA – basanite; ON – olivine nephelinite; SOM – sodalite olivine melilitite; NOM – nepheline olivine melilitite; MON – melilite olivine nephelinite; Pb – picrobasalt. m = measured ratio, t = initial ratio; 87Sr/86Sr are normal-ized to 86Sr/88Sr = 0.1194. The accuracy and external precision as determined on NIST 987 is 87Sr/86Sr = 0.710237 ± 11 (N = 18). 143Nd/144Nd ratios are normalized to 146Nd/144Nd = 0.7219. The La Jolla Nd standard yielded:143Nd/144Nd = 0.511847 ± 8 (N = 6). The external precision for 143Nd/144Nd is estimated at 1.1 × 10−5. Rb, Sr, Sm and Nd were determined by ICP MS.

a Data from Sibrava and Havlícek (1980) and Lustrino and Wilson (2007).

J. Ulrych et al. / Chemie der Erde 73 (2013) 429– 450 441

Table 4K-Ar ages of the Plio-Pleistocene volcanic rocks of the Bohemian Massif and associated Oligocene to Miocene volcanic rocks from northern Moravia and Czech Silesia.

Sample Rock type K (%) 40Ar(rad) (×10−6 ccSTP/g) 40Ar(rad) (%) Age ± 1� (Ma)

Plio-Pleistocene basanitic series3.3. BA 1.143 1.068 35.0 2.40 ± 0.123.6. BA 1.029 0.412 12.6 1.03 ± 0.123.7. BA 0.969 1.149 0.32 3.05 ± 0.174.2. BA 0.969 0.969 27.5 2.46 ± 0.156.6. BA 1.163 1.118 25.2 2.47 ± 0.206.7. BA 1.092 1.229 30.1 2.89 ± 0.206.8. BA 1.095 1.095 12.5 1.73 ± 0.208.1. BA 1.433 0.319 42.7 5.73 ± 0.2610.1. Tuff (Pb) 0.671 0.154 33.3 5.89 ± 0.3010.2. Tuff (Pb) 0.333 0.094 13.2 7.23 ± 0.77

Plio-Pleistocene melilitic series11.6. SOM 0.727 0.727 64.1 19.5 ± 0.8012.2. NOM 1.854 0.073 20.8 1.01 ± 0.10

Oligocene to Miocene age basanitic series13.1. MON 0.775 0.981 51.1 32.3 ± 1.414.2. BA 0.996 9.237 67.1 23.7 ± 1.014.3. BA 1.040 9.664 69.2 23.7 ± 1.015.3. BA 1.035 9.076 55.9 22.4 ± 0.916.1. ON 0.753 0.526 26.8 17.9 ± 1.1

Bc

FOb

A – basanite; ON – olivine nephelinite; SOM – sodalite olivine nephelinite; NOM – nepheonstants according to Steiger and Jäger (1977) have been used for calculation of ages.

ig. 2. Total alkali-silica diagrams (Le Maitre, 2002) for the Plio-Pleistocene volcanic rocksligocene to Miocene volcanic rocks from northern Moravia and Czech Silesia are preseasalt.

line olivine melilitite; MON – melilite olivine nephelinite; Pb – picrobasalt. Atomic

of the Bohemian Massif: basanitic rocks – A, B, C and melilitic rocks – D. Associatednted in C. F, foidite; Te, tephrite; Bn, basanite; Pb, picrobasalt; Tb, trachybasalt; B,

442 J. Ulrych et al. / Chemie der Erde 73 (2013) 429– 450

Fig. 3. Characteristic major element variation diagrams for the Plio-Pleistocene volcanic rocks of the Bohemian Massif and associated Oligocene to Miocene volcanic rocks.S

(oTB

(rH2oeov

xessa5

Pvlste

ymbols as in Fig. 2.

Ulrych et al., 2011). The new K-Ar data (32.3 Ma) for the melilite-livine nephelinite from Pohor indicates a Lower Oligocene age.he basaltic dyke (17.9 Ma) from the Ostrava Basin area (the Petrezruc Shaft) dates from the Lower Miocene.

The melilititic rocks of the youngest Plio-Pleistocene episode1.0–0.26 Ma, Ulrych et al., 2011) occur exclusively in the WB. Theeported K-Ar ages of these rocks are 1.0–0.26 Ma (Sibrava andavlícek, 1980); 0.43–0.11 Ma (Lustrino and Wilson, 2007) and.0 Ma (Todt and Lippot, 1975). Our new K-Ar data confirm the agef ∼1 Ma of the Komorní hurka Hill. Dating by thermoluminescence,lectron-spin resonance, alpha-recoil track and fission track meth-ds, gave generally younger ages (0.9–0.17 Ma) for both of the WBolcanoes (Wagner et al., 2002).

The volcanic bomb from Mytina (∼17 Ma), contains micro-enoliths of the Variscan Cheb phyllites. This new dating couldxplain the age of 5 Ma of the tephra from the same locality pre-ented by Sibrava and Havlícek (1980) which probably contains theame inclusions of phyllites. The K-Ar ages of partly contaminatednd altered tuffs from Prísovská homolka Hill range from 7.2 to.9 Ma.

K-Ar ages of altered Plio-Pleistocene samples, e.g., tuffs fromrísovská homolka Hill and especially the crustally-contaminatedolcanic bomb from Mytina with the high 87Sr/86Sr ratio, are

ess reliable than those from fresh samples. Oligocene to Mioceneamples from the NMS are commonly more altered and charac-erized by higher 87Sr/86Sr ratios than those of Plio-Pleistocenexposures.

5. Discussion

5.1. The source, composition and evolution of magmas

The geochemical character of the Plio-Pleistocene magmas thatsupplied the Bohemian Massif volcanoes varies only slightly. Nev-ertheless, compositions of the older basanitic series from the NMSand NB regions indicate different magma sources and/or differentdegrees of partial melting if compared to than those of the youngermelilititic series. Basaltic magma generation started >31 Ma in theNMS, more or less simultaneously with that in the WB region(>33 Ma, Ulrych et al., 2003).

Both Plio-Pleistocene series are compositionally homogeneousand resemble typical Cenozoic intra-plate magmas of the centraland western Europe provinces (e.g., Wörner et al., 1986; Wilsonand Downes, 1991; Wedepohl et al., 1994; Wilson et al., 1995a,b;Jung and Masberg, 1998; Wedepohl and Baumann, 1999; Jung andHoernes, 2000; Wedepohl, 2000; Ulrych et al., 2002, 2011; Bogaardand Wörner, 2003; Haase et al., 2004; Jung et al., 2005, 2006, 2011;Lustrino and Wilson, 2007; Haase and Renno, 2008). Most of thesamples analysed have high contents of elements such as Cr, Ni,Co, Sc (Tables 2a–2d) indicative of the primitive nature of theirsource. Most of them show negative K, Rb, Pb and (Sr) anomalies on

normalized multi-element diagrams together with small positiveanomalies for Nb and P. The REE distribution is similar to EuropeanCenozoic continental alkali basalts from other regions with steepslopes from LREE to HREE implying the presence of residual garnet

J. Ulrych et al. / Chemie der Erde 73 (2013) 429– 450 443

F canic rS

ictHucae

bFtWemrclSdrsbremLmmri

ig. 4. Characteristic trace element variation diagrams for the Plio-Pleistocene volymbols as in Fig. 2.

n the source. Magmas of both series contain mantle xenoliths,ommonly partly disaggregated, suggesting rapid ascent fromhe lithospheric mantle (e.g., Kozákov Hill volcano, Cedicovy vrchill; Zelezná hurka Hill). Such magmas would be unlikely to havendergone significant fractional crystallization and/or crustalontamination during ascent or even “underplating”. This is inccordance with their rather constant MgO and compatible tracelement contents as well as 87Sr/86Sr and 143Nd/144Nd.

The late Miocene/Pleistocene to early Pleistocene (6.0–0.8 Ma)asanitic (Mg# 62–74) eruptions are associated with the Labe–Odraault System (Ulrych et al., 2011). The basanitic rocks occur inhe NEB and NMS (Sibrava and Havlícek, 1980; Lustrino and

ilson, 2007; Rapprich et al., 2007; Pécskay et al., 2009; Cajzt al., 2009). The restricted variation in Mg# implies that theagmas underwent only minor fractionation of olivine, clinopy-

oxene ± plagioclase and Fe–Ti oxide. Whilst generally similar inomposition to the melilitite series, they generally differ in havingower contents of incompatible elements and more primitiver–Nd signatures. These features may be related with a higheregree of partial melting (∼4–6% in the Carpathian–Pannonianegion – Harangi et al., 2006) and/or a more depleted mantleource. The trace element and REE patterns of the Plio-Pleistoceneasanitic series are similar to those typical of Cenozoic intra-plateift settings, e.g., the Ohre Rift (Ulrych et al., 2002). Ladenbergert al. (2006) interpreted variations of major elements, trace ele-ents and Sr–Nd isotopic ratios in the primitive basaltic rocks of

ower Silesia to be the result of polybaric melting of heterogeneous

antle, including melting of both asthenospheric and lithosphericantle sources. Such heterogeneous mantle composition may be

elated with a significant contribution of pyroxenite-derived meltn the magma source (Sobolev et al., 2007). The genesis of the

ocks of the Bohemian Massif and associated Oligocene to Miocene volcanic rocks.

primitive mafic volcanic rocks of Hocheifel (Jung et al., 2006) hasbeen explained similarly, namely through mixing of melt fractionsfrom amphibole-bearing garnet peridotite and spinel peridotite.

The magmas of rocks of the melilititic series are most likely can-didates for primary partial melts of the thermal boundary layer atthe base of the lithosphere (Wilson et al., 1995a,b; Hegner et al.,1995). The primitive nature of the Plio-Pleistocene melilititic seriescan be used to constrain the compositional characteristics of itsmantle source including its genesis and development (Dunworthand Wilson, 1998; Di Batistini et al., 2001). The incompatible ele-ment enrichment and primitive Sr–Nd isotopic composition of themelilititic series in the WB are very similar to those of other melili-titic rocks of continental settings including Cretaceous to Paleocenerocks from northern Bohemia (Pivec et al., 1998; Ulrych et al., 2008,2011), Oligocene to Miocene rocks from Erzgebirge, Saxony (Abratiset al., 2009) and the Cenozoic volcanic rocks of France and Germany(Alibert et al., 1983; Wilson et al., 1995b). New geochemical dataon melilite nephelinites from Pohor in NMS (32.3 Ma – this study)are very similar. The strongly silica-undersaturated magmas thatyielded the WB melilititic series are inferred to be derivatives oflow-degree melting of a modally metasomatized lithospheric man-tle source. Melting took place in a sub-rift region as a consequenceof adiabatic decompression and partial melting, triggered by man-tle upwelling (e.g., Alibert et al., 1983; Dawson et al., 1985; Wilsonet al., 1995b; Hegner et al., 1995; Hegner and Vennemann, 1997;Dunworth and Wilson, 1998; Pivec et al., 1998; Di Batistini et al.,2001; Lustrino and Wilson, 2007; Ulrych et al., 2008; Abratis et al.,

2009).

The normalized trace element patterns (Figs. 5 and 6) are sim-ilar to those of alkali basaltic rocks of the CEVP (Alibert et al.,1987; Blusztain and Hart, 1989; Hoernle et al., 1991; Wilson and

444 J. Ulrych et al. / Chemie der Erde 73 (2013) 429– 450

Fig. 5. Primitive mantle-normalized trace element patterns of the Plio-Pleistocene volcanic rocks of the Bohemian Massif and associated Oligocene to Miocene volcanicrocks. Normalizing values from Sun and McDonough (1989). Plio-Pleistocene basanitic series. A – northern Moravia and Czech Silesia: VS, Venusina sopka Volcano; UV,U nd MB asaniH hemia

DW2aaiNet2hsCisacdBtpmexeSb2m

hlírsky vrch Hill; B, Bridlicná; ZL, Zlatá lípa Rise; CV, Cedicovy vrch Hill; B – Velky aohemia: PH, Prísovská homolka Hill; K, Kozákov Hill and Oligocene to Miocene bill, Ostrava, P. Bezruc Shaft); D – Plio-Pleistocene melilititic series of western Bo

ownes, 1991, 2006; Chauvel et al., 1992; Lustrino et al., 2000;ilson and Patterson, 2001; Janney et al., 2002; Ulrych et al.,

002, 2011; Bogaard and Wörner, 2003) although showing higherbsolute element concentrations. Negative Pb and positive Nb–Tanomalies in OIBs are usually attributed to dehydration and melt-ng processes during subduction, produced by Pb-depleted andb-enriched recycled oceanic lithosphere component, which mayventually become a substantial part of the source of the OIB-ype magmatism with HIMU or FOZO signature (Stracke et al.,005; Ladenberger et al., 2006; Pfänder et al., 2012). On the otherand, Rosenbaum (1993) concluded that phlogopite is the mostignificant Pb repository in lithospheric mantle. High Nb/U ande/Pb ratios in our samples may support some crustal contam-

nation of parent magma. Nevertheless, continental volcanic riftystems produce OIB-like basalts, irrespective of whether they arepparently plume-driven or passive. The causes and sources ofontinental OIB-like magma remain enigmatic (Fitton, 2007). Evi-ence for subduction-related mantle metasomatism beneath theohemian Massif comes from several observations. These includehe presence of substantial amounts of amphibole and phlogo-ite in lherzolite–wehrlite xenoliths and amphibole and phlogopiteegacrysts in scoria of the WB Plio-Pleistocene volcanoes (Geissler

t al., 2007), the presence of glimmerite to mica clinopyroxeniteenoliths in the Osecná Complex melilitolite intrusion in north-rn Bohemia (Ulrych et al., 2000), and highly depleted (MORB-like)

r–Nd composition of a websterite xenolith from Dobkovickyasanites located in central part of Ohre Rift (Ackerman et al.,012). Furthermore, the influence of recycled oceanic crust in theantle melts connected with Devonian–Carboniferous subduction

aly Roudny hills (Volárensky vrch Hill, Krist’anovice); C – northeastern and westerntic series of northern Moravia and Czech Silesia (Pohor, Hurka Hill, Kamenná hora: KH, Komorní hurka Hill; ZH + M, Zelezná hurka Hill and Mytina.

emphasized by Lustrino and Wilson (2007) was also documentedfor mantle xenoliths from western continuation of Ohre Rift in NEBavaria (Ackerman et al., in review). Finally, rare Pb isotopic data ofTertiary volcanic rocks (Blusztain and Hart, 1989; Haase and Renno,2008) indicate a strong HIMU affinity (206Pb/204Pb ∼19.3–20.0).The Quaternary lava from Komorní hurka Hill is characterized by alower 206Pb/204Pb of 19.28 (Haase and Renno, 2008).

The abundance of melilititic rocks in some of the studied areasmay provide evidence for CO2-rich nature of the subcontinentalmantle, especially beneath the intersection of the Ohre Rift and theCheb–Domazlice Graben structures (Abratis et al., 2009; Haase andRenno, 2008). Rocks of the melilititic series show very low HREEand Y contents suggesting their origin from very small melt frac-tions (∼1–2%) at depths >80 km (Harangi et al., 2006). Melting ofa CO2-rich source in WB (Abratis et al., 2009) took place in equi-librium with strongly metasomatized garnet lherzolite (Wedepohl,1987; Dunworth and Wilson, 1998) as evidenced by the presenceof hydrous K-bearing phases as megacrysts in lavas of the WBregion (amphibole, phlogopite – Kämpf et al., 1993; Geissler et al.,2007, cf. presence of salic phases – e.g., Upton et al., 2009). Fur-thermore, the melilititic series of the WB tends to have higherCaO/Al2O3 ratios (1–1.5) than in the basanitic series (excluding theKozákov volcano) and average OIB and MORB (<1). This indicatesthat the melilititic magma was likely derived from a mantle sourcewith high CaO/Al2O3 ratios, probably containing carbonate. This

is in agreement with mantle xenoliths from NE Bavaria with highCaO/Al2O3 ratios containing carbonate-bearing melting pocketswhich underwent alkaline–carbonatitic metasomatism (Ackermanet al., in review).

J. Ulrych et al. / Chemie der Erde 73 (2013) 429– 450 445

Fig. 6. Chondrite-normalized REE patterns of the Plio-Pleistocene volcanic rocks (A, B, C, D) of the Bohemian Massif and the associated Oligocene to Miocene volcanic rocks(in C) from northern Moravia and Czech Silesia. Normalizing values from Sun and McDonough (1989). Plio-Pleistocene series. A – northern Moravia and Czech Silesia: VS,Venusina sopka Volcano; UV, Uhlírsky vrch Hill; B, Bridlicná; ZL, Zlatá lípa Rise; CV, Cedicovy vrch Hill; B – Velky and Maly Roudny hills (Volárensky vrch Hill, Krist’anovice);C – northeastern and western Bohemia: PH, Prísovská homolka Hill; K, Kozákov Hill and OlHurka Hill, Kamenná hora Hill, Ostrava, P. Bezruc Shaft); D – Plio-Pleistocene melilititic

Mytina.

Fig. 7. 87Sr/86Sr and 143Nd/144Nd isotopic ratios for the Plio-Pleistocene volcanicrocks of the Bohemian Massif and associated Oligocene to Miocene volcanic rocks.Data sources for CV: Ulrych et al. (2011) and Lustrino and Wilson (2007). CV, Ceno-zoic Volcanics of the Bohemian Massif; BSE, bulk silicate Earth composition; EMI,enriched mantle I; EAR, European Asthenospheric Reservoir shown as dotted con-tour (Cebrià and Wilson, 1995).

igocene to Miocene basanitic series of northern Moravia and Czech Silesia (Pohor,series of western Bohemia: KH, Komorní hurka Hill; ZH + M, Zelezná hurka Hill and

The Plio-Pleistocene basanitic and melilititic series revealonly minor variations of isotopic compositions, in particular �Nd(Table 3). Nevertheless, some overprinting of the primary mantlesignatures caused by local mantle metasomatism and/or crustalcontamination of the parent magmas is likely. The 143Nd/144Ndand 87Sr/86Sr isotopic ratios of both rock series plot in the fieldfor primitive mafic rocks (MgO > 7 wt.%) of the Bohemian MassifCenozoic volcanic rocks (Lustrino and Wilson, 2007; Haase andRenno, 2008; Ulrych et al., 2011). The Sr–Nd isotopic data of thePlio-Pleistocene volcanic rocks plot on an array between DMM andHIMU and towards to EM I enriched mantle interpreted as evi-dence for involvement of HIMU mantle plume sources (Wilson andDownes, 1991). The EM-I characteristic may have been acquiredfrom the sub-continental lithospheric mantle (Lustrino and Dallai,2003). The Sr–Nd isotope signatures (87Sr/86Sr 0.7032–0.7036and 143Nd/144Nd 0.51285–0.51288) and trace element contentsof the Plio-Pleistocene rocks series have been attributed to themixing of partial melts derived from a common asthenosphericsource (the European Asthenospheric Reservoir) and from a region-ally heterogeneous sub-continental lithospheric mantle (Cebriàand Wilson, 1995; Ulrych et al., 2011). For the isotopic sig-natures, the closest Cenozoic analogues are in Massif Central,France and in Germany (Alibert et al., 1983; Hegner et al.,1995; Dunworth and Wilson, 1998). This is consistent with theuniform isotopic compositions of primitive mafic rocks in theCheb–Domazlice Graben (87Sr/86Sr: 0.7034–0.7039; 143Nd/144Nd:0.51277–0.51288 – Ulrych et al., 2011) and its continuation in

87 86

the Naab–Pritzwalk Lineament, Saxony ( Sr/ Sr: 0.7032–0.7037;143Nd/144Nd: 0.51282–0.51287 – Abratis et al., 2004). These corre-spond closely to the data (87Sr/86Sr: 0.7032–0.7037; 143Nd/144Nd:0.51278–0.51288) from primitive Cenozoic volcanic rocks of the

446 J. Ulrych et al. / Chemie der Er

Fig. 8. Histogram of the K-Ar ages of this study (square with cross) and publishedvalues for the Plio-Pleistocene volcanic rocks of the Bohemian Massif. Data fromT ˇ ˇ ´a(

BU

5m

swHFtpti2Rppn(t

odt and Lippot (1975), Sibrava and Havlícek (1980), Kopecky (1986), Birkenmajernd Pécskay (2002), Lustrino and Wilson (2007), Pécskay et al. (2009), Cajz et al.2012). Squares with crosses – new data.

ohemian Massif (Wilson et al., 1994; Lustrino and Wilson, 2007;lrych et al., 2011).

.2. Geodynamic implications and compositional variations ofagmas

The Plio-Pleistocene magmatism involving the older basaniticeries in NEB and NMS was related to the Labe–Odra Fault Systemhich is represented by the Lusatian Fault Zone in NEB (Kozákovill volcano) and by the continuation of the Marginal Sudeticault in NMS and its junction with faults of the SSW–NNE sys-em. The melilititic series magmas were mainly produced fromartial melting of upwelling asthenospheric mantle and interac-ion of the melts with the lithospheric mantle at passive rifts, andn weakened tectonic zones (Ulrych and Pivec, 1997; Ulrych et al.,011). Volcanism was concentrated at the intersection of the Ohreift and the Cheb–Domazlice Graben in the Cheb Basin. Magmasenetrating water-rich sediments in the Cheb Basin gave rise to

hreatic or phreatomagmatic activity of monogenic scoria volca-oes of Komorní hurka and Zelezná hurka in the WB. Abratis et al.2009) stress the presence of the Oligocene to Miocene nephelinitico melilititic association in the Erzgebirge and Vogtland, relatively

de 73 (2013) 429– 450

far from the Eger Rift whereas Haase and Renno (2008) postulatedthat the melting zone beneath the rift was broader. Kopecky (1986)describes the volcanic lineament parallel to the Ohre Rift in Saxonyas the Saxonian Line. The volcanic rocks of the Erzgebirge and Vogt-land areas are characterized by a uniform Sr–Nd isotopic signatureclose to that of the Plio-Pleistocene melilitites as well as to that ofCenozoic volcanic rocks of the Ohre Rift. These are considered tohave arisen from the European asthenospheric mantle source.

The current lithospheric thickness of the western Ohre Riftarea was estimated to be ∼80 km (Babuska and Plomerová, 2006),with the lowest value being in the Bohemian Massif. The litho-sphere beneath this region of the Bohemian Massif experienceda complicated development beginning with the stretching andthinning resulting in a passive asthenospheric upwelling and sub-sequent melting. The tensional regime probably reactivated oldfaults, which in turn repeatedly provided channel-ways for primi-tive melts in the Miocene and the Pleistocene. The older basaniticPlio-Pleistocene series is compositionally similar to the Miocenebasanitic series from the NMS, in contrast to the Plio-Pleistocenemelilititic series present exclusively in the WB region, which iscompositionally distinct. There is some evidence for local het-erogeneities of the lithospheric source, including the presence ofhydrous K-bearing phases in WB – the region exclusively con-taining the Plio-Pleistocene melilititic volcanics (Ulrych et al.,2011). Despite this, the Sr–Nd isotopic characteristics of the Plio-Pleistocene series and Miocene series are notably similar.

6. Conclusions

Principal conclusions of our study on the Plio-Pleistocene vol-canic rocks of the Bohemian can be summarized as follows:

1. Two distinct rock series can be recognized: (a) an olderbasanitic (6–0.8 Ma) characterized by a lower degree of silica-undersaturation, lower Mg# (62–74) and mildly elevatedconcentrations of incompatible elements if compared to primi-tive upper mantle. The nepheline basanite magma differentiatedto an alkali basalt – trachybasalt series by polybaric frac-tionation of olivine and clinopyroxene, and (b) a youngermelilititic (1.0–0.26 Ma) characterized by a higher degree ofsilica-undersaturation, Mg# (68–72) and contents of incompat-ible elements contents.

2. The Plio-Pleistocene basanitic series is present throughout theBohemian Massif, particularly in association with the Labe–OdraFault System. The melilititic series occurs, however, exclusivelyin western Bohemia and may be genetically associated withmetasomatized, CO2-rich mantle domains and/or very low par-tial melting degrees of mantle sources.

3. Variations in incompatible element contents in the two seriescan be explained through the mixing of different melt fractionsfrom both asthenospheric and metasomatized subcontinentallithospheric sources, variable partial melting degrees of enriched(metasomatized) mantle sources and/or subordinate assimila-tion of lower crust. Nevertheless, the 87Sr/86Sr and 143Nd/144Ndisotopic compositions in both series are similar to those of theEuropean Asthenospheric Reservoir (EAR).

4. Small differences in the geochemistry of the basanitic andmelilititic rock series can be further attributed to (i) the differ-ent geodynamic conditions of magma generation with regionalLabe–Odra Fault System related to the basanitic series, whereasintersection of two graben structures associated with passive

asthenospheric upwelling allowed generation of the melilititicseries; (ii) the different character (subduction-related and/orcarbonatitic) and degrees of mantle metasomatism – crypticmetasomatism manifested by the presence of clinopyroxene in

der Er

5

A

poPawMptFrLUiScJt

As

A

A

vettttdcs

Toaelma

VtpT

J. Ulrych et al. / Chemie

lherzolites of basanitic rock series and modal metasomatismwith hydrous K-bearing minerals, both phlogopite and kaersu-tite, in the melilititic rock series; (iii) the different degrees ofpartial melting.

. Geochemical signatures of the magmas of the Plio-Pleistocenevolcanic rocks mimic those of the three late Cretaceous andCenozoic volcanic periods (79–6 Ma) of the Bohemian Massif.Large-scale generation of basaltic magmas started uniformly inthe Bohemian Massif at >33 Ma. The Plio-Pleistocene melilititicseries in WB, the late Cretaceous–Paleocene melilititic volcanicrocks in Northern Bohemia and the Plio-Pleistocene basaniticseries, together with broadly dispersed Cenozoic basanitic rocksin the Bohemian Massif, have similar trace element and isotopiccharacteristics.

cknowledgements

This research was supported by the Czech Science Foundationroject No. 205/09/1170, Grant Agency of the Academy of Sciencesf the Czech Republic project No. IAA300130902 and the Researchrogrammes of the Institute of Geology, v.v.i., CEZ: AV0Z30130516nd MSM0021620855 of Charles University. Antonín Prichystalould like to express his acknowledgements to research projectSM0021622427. Potassium-Ar dating was supported by OTKA

rojects No. T043344 and M41434 to K. Balogh. The early version ofhe manuscript benefits from the comments and criticism by Ferryediuk. We thank Vera Vonásková and Pavel Povondra for whole-ock analyses and Ladislav Strnad for ICP-MS analyses (all from theaboratories of the Geological Institutes, Faculty of Science, Charlesniversity). Pavel Martinec (Geonika, Academy of Sciences, v.v.i.)

s acknowledged for providing basaltic samples from the P. Bezruchaft. We are indebted to J. Pavková and J. Rajlichová for techni-al assistance (Institute of Geology AS CR v.v.i.) and to reviewersörg A. Pfänder and Klaus Mezger for their comments that helpedo significantly improve the manuscript.

ppendix. Field relationships and observations of theampled localities

.1. The Plio-Pleistocene basanitic series

.1.1. Northern Moravia and Czech Silesia (NMS)Uhlírsky vrch Hill near Bruntál (No. 1, samples 1, 2, 3). The Uhlírsky

rch Hill consists of a basaltic outcrop with pyroclastic rocks onither side (Knotek, 1962). The former may represent the site ofhe magmatic conduit, marked by the relicts of a lava-lake withinhe volcanic crater (Barth, 1977). On the eastern slope of the hillhere is a basaltic lava flow (∼1.8 km long and up to 12 m thick). Ofhe three volcanic phases, distinguished from boreholes, sunk to aepth of 90 m, the first two provide evidence for growth of a cinderone, followed by lava emissions and the third is represented by aingle small lava flow (Knotek, 1962).

Venusina sopka Volcano near Mezina (No. 2, samples 1, 2, 3, 4).he eroded remains of the Venusina sopka Volcano comprise partf a pyroclastic cone (up to 60 m thick) and a lava flow, trace-ble for ∼1.5 km (Kleisl and Knotek, 1957). Barth (1966) and Cajzt al. (2012) interpreted the presence of the cinder cone andava as indicative of Strombolian eruptions and from the phreato-

agmatic character of the cinder cone, they regarded the activitys having varied from phreato-Strombolian to Strombolian.

Velky Roudny Hill near Roudno (No.3, samples 1, 2, 3, 4, 5). The

elky Roudny Hill is the largest Cenozoic volcano in the NE part of

he Bohemian Massif. Apart from the pyroclastics and lavas com-osing a strato-cone, four separate lava flows can be distinguished.he largest of these dammed the Moravice River, producing a lake

de 73 (2013) 429– 450 447

in which the Razová Pyroclastic Complex developed (Barth andZapletal, 1978). The complex comprises a sub-aqueous successionof pyroclastic materials, tuffites, tuffitic conglomerates and con-glomerates. The larger lava flows resulted from two effusions ofwhich the earlier one was of nepheline basanite with limburgite atthe base and the later one was of alkali basalt (Barth, 1977).

Maly Roudny Hill near Roudno (No. 4, sample 1). The Maly RoudnyHill is generally regarded as representing an independent volcanodespite its proximity to the Velky Roudny Hill (Barth, 1974). It com-prises an eccentrically sited cinder cone of highly vesicular basalt(>32 m thick), with one or more extensive basaltic lava flows to theS (Barth, 1974).

Krist’anovice (No. 4, samples 2, 3, 4). An unnamed ridge close toKrist’anovice consists of an eroded lava flow. This is composed ofvesicular olivine basalt grading to basanite (Barth and Kocandrle,1979). Its composition and petrography suggests that it is a contin-uation of the Maly Roudny Hill lava flow.

Volárensky vrch Hill near Roudno (No.5, sample 1). The Volárenskyvrch Hill is an eroded volcano near the Maly Roudny Hill. Weatheredpyroclastics were found by drilling beneath a small basanite lavaflow (Barth, 1974). While the latter was formerly thought to repre-sent the terminal part of a lava flow from the Maly Roudny volcano,it has subsequently been regarded as from a small independentvolcano associated with the Maly Roudny Hill (Pacák, 1928; Barth,1977).

Zlatá lípa Rise near Stará Libavá (No. 6, samples 1, 2, 3, 4, 5, 6).Three relicts of this volcano are named after the villages of StaráLibavá (1–2), Podlesí (4), Guntramovice (5) and Norbercany (6), andfrom the neighbouring Cerveny vrch Hill (3). According to Barth andKocandrle (1979), there is a basalt dyke accompanied by lapilli andagglomeratic tuffs. In addition there is thick basaltic lava (450 mlong and up to 23 m thick) above a layer (1 m thick) of pyroclasticmaterial.

Bridlicná (No. 7, samples 1, 2, 3, 4). Basaltic volcanic rocks areexposed on a small unnamed hill, ∼1.5 km E of Bridlicná. These areerosional relicts of a volcano containing vent breccia and a basalticlava. Basaltic dykes, up to several metres thick, cut Lower Carbonif-erous siliciclastic sediments. Some of the volcaniclastic rocks canbe designated as vent breccia

Cedicovy vrch Hill at Zálesí (No. 8, samples 1, 2, 3). A small occur-rence of basaltic rocks at the Cedicovy vrch Hill shows on theCzech–Polish border. This locality, together with the next threeoccurrences close to Ladek Zdrój of the Polish side, composes themost westerly Cenozoic volcano in the region under consideration.A thin layer of tuff with volcanic bombs underlies a basanite flow.This is the only Cenozoic basaltic occurrence in the region. Xeno-liths of the country-rock (Proterozoic mica-schist), together withmetasomatized mantle xenoliths and orthopyroxene megacrystsare present in the basanite (Fediuk and Fediuková, 1989; Matusiak-Malek et al., 2010).

A.1.2. Northeastern Bohemia (NEB)Kozákov Hill at Turnov (No. 9, samples 1, 2, 3). The Kozákov Hill

volcano has a spatial and genetic association with the WNW–ESEtrending Lusatian Fault Zone. The crustal thickness diminishesfrom ∼40 km in the central parts of the Bohemian Massif to 32 kmbeneath the Kozákov Hill area (Cermák et al., 1991). The principallava flow is dated as early Pliocene age (3.95–4.15 Ma; Sibrava andHavlícek, 1980). However, ages of 6.39 Ma and 6.60 Ma for the low-ermost flows were published by Bellon and Kopecky (1977) andSibrava and Havlícek (1980), respectively. Radiometric ages of the7 km long lava flows filling the bed of the Miocene Jizera River are

in accord with their occurrences above old river terraces that havea mid-Miocene age from palynological data. Rapprich et al. (2007)considers them to be products of a Strombolian eruption of the vol-cano, within the Jicín volcanic field. The Kozákov Hill lavas probably

4 der Er

e(ha2

A

4aaGbtpw

A

HCspiwt(F

cTv(fMPNme

2cflTm(agi

AM

mdses

pwha

48 J. Ulrych et al. / Chemie

rupted near the Prackov Hill that represents an eroded cinder coneCajz et al., 2009). The flows are petrographically and chemicallyomogeneous basanites contain abundant (well-studied) mantlend lower crustal xenoliths (e.g., Fediuk, 1971; Ackerman et al.,007).

.1.3. Western Bohemia (WB)Prísovská homolka Hill at Prísov near Plzen (No. 10, samples 1, 2, 3,

, 5). Prísovská homolka Hill was the site of a volcano that producedn older sequence of grey-green tuffs (basaltic pumice, lapilli andsh mixed with epiclastic material mostly from the Carboniferousrey Group) and a younger sequence of red-brown tuffs. Youngerasaltic dykes (1–1.5 m thick) of “augitite” composition penetratehe red-brown tuffs (“tuffites” of Bares, 1959). From the geologicalosition and occurrence of carbonized wood a pre-Pleistocene ageas postulated for the volcanism (Bares, 1959).

.2. The Plio-Pleistocene melilititic series – Western Bohemia

Zelezná hurka Hill at Cheb (No. 11, samples 1, 2, 3, 4). Zelezná hurkaill consists of a cinder cone overlying phyllites of the Cheb–Dylenrystalline Unit Complex. A quarry provides a cross-section in theouthern part of a (15 m high) hillock. The older part of the volcanicile was attributed to Strombolian activity. This gave way to Hawai-

an type activity (Hradecky, 1994; Schwarzkopf, 1993). The slag,hich gave a K-Ar age of 1.0 Ma (Sibrava and Havlícek, 1980), con-

ains abundant olivine, clinopyroxene and phlogopite megacrystsKämpf et al., 1993) as well as rare mantle xenoliths (Fryda andediuk, 1996).

Mytina at Zelezná hurka Hill (No. 11, sample 5). The Mytina pyro-lastics deposits occur ∼0.5 km east of Zelezná hurka Hill volcano.he latter was interpreted by Kopecky (1986) as an independentolcano active 5 Ma ago (Sibrava and Havlícek, 1980). Geissler et al.2004) speculated that the Mytina pyroclastic deposit was eruptedrom a maar that pre-dated the Zelezná hurka Hill scoria cone.

rlina et al. (2007, 2009) interpreted it as part of an independentleistocene (∼288 Ka) maar structure situated between Mytina andeualbenreuth. The tuff and tephra contains abundant xenoliths ofetasomatized mantle peridotites as well as olivine, clinopyrox-

ne, amphibole and phlogopite megacrysts (Geissler et al., 2007).Komorní hurka Hill at Frantiskovy Lázne (No. 12, samples 1,

, 3). Komorní hurka Hill is a monogenetic Strombolian cinderone (Hradecky, 1994) with a lava-filled conduit and a single lavaow on its western slope; cf. interpretation of Gottsmann (1999).he pyroclasts are composed of sodalite-nepheline-bearing olivineelilitite whereas the lava consists of melilite olivine nephelinite

Kopecky in Ulrych et al., 1991). Crustal xenoliths (Cheb phyllites)re present in the pyroclasts. K-Ar dating of the lava gave ages ran-ing from 0.26 Ma (Sibrava and Havlícek, 1980) to 0.85 Ma (Kopeckyn Ulrych et al., 1991).

.3. The Oligocene to Miocene basanitic series – Northernoravia

Pohor at Odry (No. 13, sample 1). This occurrence is the southern-ost outcrop of Cenozoic volcanic rocks in the region. The earliest

escription (Pacák, 1928) was of a small dyke found during con-truction of a railway. More recently, magnetometric data (Sesulkat al., 2012) indicate a basaltic dyke, 0.6 km long cutting Culmianediments.

Hurka Hill at Stemplovec (No. 14, samples 1, 2, 3, 5, 6). The upper

art (Velká hurka Hill – 1, 2, 3) was covered by basaltic bouldershilst on the western-side of Malá hurka Hill (4, 5), there was auge rocky outcrop of a basaltic rock. Magnetic data are interpreteds due to two basanite dykes, ∼500 m long (Gruntorád and Lhotská,

de 73 (2013) 429– 450

1973). One kilometre northwest of the hilltop there is an exposureof a small pipe (Salansky, 2004).

Kamenná hora Hill at Otice (No. 7, samples 1, 2, 3). Basaltic rockscrop out on two small hills and cut Lower Carboniferous sediments.Hrbác (1958) suggested that the hills are relicts of a small basalticlava flow and a feeding channel.

Petr Bezruc Shaft in Ostrava (No. 16, sample 1). Basaltic dykesranging up to 7 m thick, with sub-horizontal apophyses, pene-trate the NE-SW Basalt Fault Zone that cuts the HermenegildeCoal Seam within the Upper Carboniferous sandstones and silt-stones of the Ostrava Formation. These dykes are representativeof the few Cenozoic magmatic occurrences in the Ostrava Basin.On the top of Jáklovec Hill they intrude Miocene strata (Eggenbur-gian – Ctyroky, 1958). Basaltic rocks from a further five localitiesin Ostrava have been described by Pacák (1928) and Fediuk andFediuková (1985).

References

Abratis, M., Munsel, D., Viereck-Goette, L., Ulrych, J., Cajz, V., 2004. System-atic regional variations of primary and secondary chemical signatures ofstrongly alkaline Neogene volcanics in the earthquake swarm region of NWBohemia/Vogtland, Czech Republic/Germany. In: 32nd International Geologi-cal Congress, 20–28 August 2004, Florence, Italy, pp. 223–228, Abstracts Part 2,1025.

Abratis, M., Munsel, D., Viereck-Götte, L., 2009. Mineralogie Känozoischer magma-tischer Gesteine des Sächsischen Vogtlands. Z. Geol. Wiss. 37, 41–79.

Ackerman, L., Mahlen, N., Jelínek, E., Medaris Jr., G., Ulrych, J., Strnad, L., Mihaljevic,M., 2007. Geochemistry and evolution of subcontinental lithospheric mantlein central Europe: evidence from peridotite xenoliths of the Kozákov volcano,Czech Republic. J. Petrol. 48, 2235–2260.

Ackerman, L., Spacek, P., Medaris, L.G., Hegner, E., Svojtka, M., Ulrych, J., 2012. Geo-chemistry and petrology of pyroxenite xenoliths from Cenozoic alkaline basalts,Bohemian Massif. J. Geosci. 58, 199–219.

Ackerman, L., Spacek, P., Magna, T., Ulrych, J., Svojtka, M., Hegner, E., Balogh.Alkaline–carbonatitic metasomatism and melting of subcontinental litho-spheric mantle: evidence from mantle xenoliths, NE Bavaria, Bohemian Massif.J. Petrol., in review.

Alibert, C., Leterrier, J., Panasiuk, M., Zimmermann, J.L., 1987. Trace and isotope geo-chemistry of the alkaline Tertiary volcanism in southwestern Poland. Lithos 20,321–331.

Alibert, C., Michard, A., Albarède, F., 1983. The transition from alkali basalts to kim-berlites: isotope and trace element evidence from melilitites. Contrib. Mineral.Petrol. 82, 176–186.

Babuska, V., Plomerová, J., 1992. The lithosphere in central Europe – seismologicaland petrological aspects. Tectonophysics 207, 141–163.

Babuska, V., Plomerová, J., 2006. European mantle lithosphere assembled from rigidmicroplates with inherited seismic anisotropy. Phys. Earth Planet. Interiors 158,264–280.

Babuska, V., Plomerová, J., Fischer, T., 2007. Intraplate seismicity in the westernBohemian Massif (central Europe): a possible correlation with a paleoplate junc-tion. J. Geodyn. 44, 149–159.

Balogh, K., 1985. K/Ar dating of Neogene volcanic activity in Hungary. Experimentaltechnique, experience and methods of chronological studies, ATOMKI ReportD/1. Debrecen, 277–278.

Bares, M., 1959. The Prísov volcano. Sbor. Vys. Pedag. Sk. v Plzni, biologie-chemie 2,231–248 (in Czech).

Barth, R.F.W., 1969. Feldspars. Wiley Interscience, New York.Barth, V., 1966. Report on research of neovolcanites in the surroundings of Bruntál

in the Nízky Jeseník Mts. Zpr. geol. Vyzk. v R. 1964, 169–170 (in Czech).Barth, V., 1974. Die Basaltvulkane in der Umgebung von Roudno im Nízky Jeseník-

Gebirge. Acta Univ. Palacki. Olomuc., Fac. Rer. Nat. 46, Geogr.-Geol. XIV, 5–18.Barth, V., 1977. Basaltic volcanoes of the central part of the Nízky Jeseník. Cas Min-

eral. Geol. 22, 279–291 (in Czech).Barth, V., Kocandrle, J., 1979. Basalt occurrences at Bridlicná, Stará Libavá and

Krist’anovice in the Nízky Jeseník Mts. Acta Univ. Palack. Olomuc. Fac. Rer. Nat.62, Geogr. -Geol. XVIII, 23–53 (in Czech).

Barth, V., Zapletal, J., 1978. Geology of the Razov pyroclastic complex in the NízkyJeseník Upland. Sbor. geol. ved Rada G 32, 97–128 (in Czech).

Bellon, H., Kopecky, L., 1977. Spectres d’âges radiométriques du volcanisme du riftdu Massif bohémien. 5ème Réunion annuelle des sciences de la terre, Rennes.Soc. géol. Fr. éd., 57.

Birkenmajer, K., Pécskay, Z., 2002. Radiometric dating of the Tertiary volcanics inLower Silesia. Poland. I. Alkali basaltic rocks of the Opole region. Bull. Pol. Acad.

Sci. 50, 31–50.

Birkenmajer, K., Lorenc, M.W., Pécskay, Z., Zagozdzon, P.P., 2004. Age, cycles andcourse of migration of the Tertiary basaltic volcanism in Lower Silesia in thelight of K-Ar dating. Ogólnopolska Sesja Naukowa Datowanie mineralów i skal,9–10.

der Er

B

B

B

C

C

C

C

C

C

D

D

D

F

F

F

F

F

F

F

F

F

G

G

G

G

G

H

H

H

H

H

J. Ulrych et al. / Chemie

lundell, D., Freeman, R., Mueller, S. (Eds.), 1992. A Continent Revealed. The Euro-pean Geotraverse. Cambridge Univ. Press, Cambridge.

lusztain, J., Hart, S.R., 1989. Sr, Nd and Pb isotopic character of Tertiary basalts fromsouthwest Poland. Geochim. Cosmochim. Acta 53, 2689–2696.

ogaard, P.J.F., Wörner, G., 2003. Petrogenesis of basanitic to tholeiitic volcanic rocksfrom the Miocene Vogelsberg, Central Germany. J. Petrol. 44, 569–602.

ajz, V., Rapprich, V., Schnabl, P., Pécskay, Z., 2009. A proposal on lithostratigraphy ofCenozoic volcanic rocks in Eastern Bohemia. Geosci. Research Reports for 2008,pp. 9–14 (in Czech).

ajz, V., Schnabl, P., Pécskay, Z., Skácelová, Z., Venhodová, D., Slechta, S., Cízková,K., 2012. Chronological implication of paleomagnetic record of the Late Ceno-zoic volcanic activity in Moravo-Silesian Border – NE Bohemian Massif. Geol.Carpathica 63, 423–435.

ebrià, J.M., Wilson, M., 1995. Cenozoic mafic magmatism in Western/CentralEurope: a common European asthenospheric reservoir. Terra Nova AbstractSuppl. 7, 162.

hauvel, C., Hofmann, A.W., Vidal, P., 1992. HIMU-EM: the French Polynesian con-nection. Earth Planet. Sci. Lett. 110, 99–119.

ˇermák, V., Král, M., Kubík, J., Safanda, J., 1991. Heat flow, regional geophysics andlithosphere structure in Czechoslovakia and adjacent part of Central Europe. In:Cermák, V., Rybach, L. (Eds.), Terrestrial Heat Flow and Lithosphere Structure.Springer Verlag, Berlin, Heidelberg.

ˇ tyroky, P., 1958. Preliminary report on a paleontological revision study at Jaklovecin Ostrava. Vestn. Ústr. Úst. geol. 33, 71–74 (in Czech).

awson, J.B., Smith, J.V., Jones, A.P., 1985. A comparative study of bulk rock andmineral chemistry of olivine melilitites and associated rocks from East and SouthAfrica. Neu. Jb. Mineral. Abh. 152, 143–175.

i Batistini, G., Montanini, A., Vernia, L., Venturelli, G., Tonarini, S., 2001. Petrologyof melilite-bearing rocks from the Montefiascone Volcanic Complex (RomanMagmatic Province): new insight into the ultrapotassic volcanism of CentralItaly. Lithos 59, 1–24.

unworth, E.A., Wilson, M., 1998. Olivine melilitites of the SW German TertiaryProvince: mineralogy and petrogenesis. J. Petrol. 39, 1805–1836.

ediuk, F., 1971. Ultramafitites in the area Krkonose–Jizerské hory Mountains. ActaUniv. Carol., Geol., 319–343 (in Czech).

ediuk, F., Fediuková, E., 1985. Postmesozoic alkaline volcanics of northern Moravia(Czechoslovakia). Acta Univ. Carol., Geol., Neuzil 4, 355–382 (in Czech).

ediuk, F., Fediuková, E., 1989. Ultramafic nodules from basaltoids of northernMoravia. Sbor. geol. Ved 44, 9–49.

itton, J.G., 2007. The OIB paradox. In: Foulger, G.R., Jurdy, D.M. (Eds.), Plates, Plumesand Planetary. Processes. Geol. Soc. Amer. Spec. Papers 430, pp. 387–409.

oltynová, R., 2003. Geochemical–petrographical characteristics of neovolcanics ofnorthern Moravia and Silesia. MSc. Thesis. Faculty of Sciences, Masaryk Univer-sity, 87 pp. Brno (in Czech).

oltynová, R., Prichystal, A., 2004. Cenozoic basaltic volcanism of northern Moraviaand Czech part of Silesia. In: Lorenc, M.W., Zagozdzon, P.P. (Eds.), Abstract Vol-ume & Excursion Guide. Int. Workshop “BASALTS 2004”. 5–7th November 2004,Czocha Castle near Lesna, pp. 12–13.

rey, F., Green, D.H., Roy, S.D., 1978. Integrated models of basalt petrogenesis: a studyof quartz tholeiites to olivine melilitites from southeastern Australia utilizinggeochemical and experimental petrological data. J. Petrol. 19, 463–513.

ryda, J., Vokurka, K., 1995. Evidence for carbonatite metasomatism in the uppermantle beneath the Bohemian Massif. J. Czech. Geol. Soc. 43, 9–10.

ryda, J., Fediuk, F., 1996. Peridotite liquid trapped within foidite magma of theZelezná hurka Quaternary volcano (Czech Republic). In: 30th Intern. Geol.Congress, Abstracts vol. 2, Beijing, China, p. 435.

eissler, W.H., Kämpf, H., Bankwitz, P., Bankwitz, E., 2004. Das quartäre Tephra-Tuff-Vorkommen von Mytina (Südrand des westlichen Eger-Grabens/TschechischeRepublik): Indikationen für Ausbruchs- und Deformationsprozesse. Z. Geol. Wiss32, 31–54.

eissler, W.F., Kämpf, H., Seifert, W., Dulski, P., 2007. Petrological and seismic stud-ies of the lithosphere in the earthquake swarm region Vogtland/NW Bohemia,central Europe. J. Volcanol. Geoth. Res. 159, 33–69.

ottsmann, J., 1999. Tephra characteristics and eruption mechanism of the KomorníHurka Hill scoria cone, Cheb Basin, Czech Republic. Geolines 9, 35–40.

ranet, M., Wilson, M., Achauer, U., 1995. Imaging mantle plumes beneath the FrenchMassif Central. Earth Planet. Sci. Lett. 136, 199–203.

runtorád, J., Lhotská, Z., 1973. Geophysical study of neovolcanics in Lower JesenikUpland. In: Sbor. geofyz. Vyzk. Jeseníku. Charles University, Praha, pp. 56–74 (inCzech).

aase, K.M., Renno, A.D., 2008. Variation of magma generation and mantle sourcesduring continental rifting observed in Cenozoic lavas from the Eger Rift, CentralEurope. Chem. Geol. 257, 195–205.

aase, K.M., Goldschmidt, B., Garbe-Schönberg, D., 2004. Petrogenesis of Tertiarycontinental intra-plate lavas from the Westerwald region. J. Petrol. 45, 883–905.

arangi, S., Downes, H., Seghedi, I., 2006. Tertiary–Quaternary subduction pro-cesses and related magmatism in the Alpine-Mediterranean region. In: Gee, D.,Stephenson, R. (Eds.), European Lithosphere Dynamics. Geol. Soc. London Mem.32, 167–190.

egner, E., Vennemann, T.W., 1997. The role of fluids in the initiation of TertiaryEuropean intra-plate volcanism: O-H-, and Sr-isotope evidence from melilitites

of S Germany. Geology 25, 1035–1038.

egner, E., Walter, H.J., Satir, M., 1995. Pb–Sr–Nd isotopic composition and traceelement geochemistry of megacrysts and melilitites from the Tertiary Urachvolcanic field: source composition of small volume melts under SW Germany.Contrib. Mineral. Petrol. 122, 322–335.

de 73 (2013) 429– 450 449

Hoernle, K., Tilton, G., Schmincke, H.-U., 1991. Sr–Nd–Pb isotopic evolution of GranCanaria; evidence for shallow enriched mantle beneath the Canary Islands. EarthPlanet. Sci. Lett. 106, 44–63.

Hofmann, A.W., 1986. Nb and Pb in oceanic basalts: new constraints on mantleevolution. Earth Planet. Sci. Lett. 79, 33–46.

Hradecky, P., 1994. Volcanology of Zelezná and Komorní hurka in Western Bohemia.Vest. Ces. geol. Úst. 69, 89–92.

Hrbác, V., 1958. Geological position of the basalt body at Otice near Opava. Cas. Slez.Muz., Vedy prír. VII (1), 8–25 (in Czech).

Jacobsen, S.B., Wasserburg, G.J., 1980. Sm–Nd isotopic evolution of chondrites. EarthPlanet. Sci. Lett. 50, 139–155.

Janney, P.E., Le Roex, A.P., Carlson, R.W., 2002. A chemical and multi-isotope study ofthe Western Cape olivine melilitite province, South Africa: implications for thesources of kimberlites and the origin of the HIMU signature in Africa. J. Petrol.43, 2339–2370.

Jung, H., Hoernes, S., 2000. The major-trace-element and isotope (Sr, Nd, O) geo-chemistry of Cenozoic alkaline rift-type volcanic rocks from the Rhön area(central Germany): petrology, mantle source characteristics and implicationsfor asthenosphere–lithosphere interactions. J. Volcanol. Geotherm. Res. 99,27–53.

Jung, S., Masberg, P., 1998. The major- and trace-element and isotope (Sr, Nd, O)geochemistry of Cenozoic alkaline rift type volcanic rocks from the Rhön area(central Germany): petrology, mantle source characteristics and implications forasthenosphere-lithosphere ineractions. J. Volcanol. Geotherm. Res. 99, 27–53.

Jung, C., Jung, S., Hoffer, E., Berndt, M.J., 2006. Petrogenesis of Tertiary mafic alkalinemagmas in the Hocheifel, Germany. J. Petrol. 47, 1637–1671.

Jung, S., Pfänder, J.A., Brauns, M., Maas, R., 2011. Crustal contamination and mantlesource characteristics in continental intra-plate volcanic rocks: Pb, Hf, and Osisotopes from central European volcanic province basalts. Geochim. Cosmochim.Acta 75, 2664–2683.

Jung, S., Pfänder, J.A., Brügmann, G., Stracke, A., 2005. Sources of primitive alkalinevolcanic rocks from the central European Volcanic province (Rhön, Germany)inferred from Hf, Pb and Os isotopes. Contrib. Mineral. Petrol. 150, 546–559.

Kämpf, H., Seifert, W., Ziemann, M., 1993. Mantel – Kruste – Wechselwirkungen imBereich der Marienbader Störungszone. Teil 1: Neue Ergebnisse zum quartärenVulkanismus in NW-Böhmen. Z. geol. Wiss. 21, 117–134.

Kleisl, J., Knotek, Z., 1957. Research of tuffs 1957, Venusina sopka Volcano.Manuscript, Geofond, Praha (in Czech).

Knotek, Z., 1962. Geological edifice of the Lower Jeseník volcanoes. I. Uhlírsky vrchHill. Prírodoved. Cas. Slez. 23, 61–72 (in Czech).

Kopecky, L., 1978. Neoidic taphrogenic evolution of young alkaline volcanism of theBohemian Massif. Sbor. Geol. Ved., R. Geol. 30, 91–107.

Kopecky, L., 1986. Geological development and block structure of the Cenozoic Ohrerift (Czechoslovakia). In: Aldrich Jr., M.J., Laughlin, A.W. (Eds.), Proc. 6th Intern.Conf. Basement Tectonic. 16–20 September 1985, Santa Fe, USA. Intern. Bas. Tect.Assoc., Salt Lake City, USA, pp. 111–124.

Kramer, W., Seifert, W., 2000. Mafische Xenolithe und Magmatite im östlichenSaxothuringikum und westlichen Lugikum: Ein Beitrag zum Krustenbau undzur regionalen Geologie. Z. geol. Wiss. 28, 133–156.

Ladenberger, A., Michalik, M., Tomek, C., Peate, D.W., 2006. Alkaline magmatism inSW Poland – an example of asthenosphere–lithosphere interactions? Mineral.Polon. Spec. Papers 29, 40–48.

Le Maitre, R.W., 2002. Igneous Rocks. A Classification and Glossary of Terms, 2ndedition. Cambridge University Press, Cambridge.

Lustrino, M., Dallai, L., 2003. On the origin of EM-I end-member. Neu. Jb. Mineral.Abh. 179, 85–100.

Lustrino, M., Wilson, M., 2007. The circum-Mediterranean anorogenic Cenozoicigneous province. Earth-Sci. Rev. 81, 1–65.

Lustrino, M., Melluso, L., Morra, V., 2000. The role of lower continental crust andlithospheric mantle in the genesis of Plio-Pleistocene volcanic rocks from Sar-dinia (Italy). Earth Planet. Sci. Lett. 180, 259–270.

Lütig, G., 1998. Zum Alter der jungen Vulkanite in NE-Bayern (und Umgebung). Geol.Bl. NO-Bayern 48, 21–50.

Matusiak-Malek, M., Puziewicz, J., Ntaflos, T., Downes, H., 2010. Metasomatic effectsin the lithospheric mantle beneath the NE Bohemian Massif: a case study ofLutynia (SW Poland) peridotite xenoliths. Lithos 117, 49–60.

Mrlina, J., Kämpf, H., Geissler, W.H., van den Bogaard, P., 2007. Assumed Quaternarymaar structure at the Czech/German border between Mytina and Neualbenreuth(western Eger Rift, Central Europe): geophysical, petrochemical and geochrono-logical indications. Z. geol. Wiss., Berlin 35, 213–230.

Mrlina, J., Kämpf, H., Kroner, C., Mingram, J., Brauer, A., Geissler, W.H., Kallmeyer,J., Matthes, H., Seidl, M., 2009. Discovery of the first Quaternary maar in theBohemian Massif, Central Europe, based on combined geophysical and geologi-cal surveys. J. Volcanol. Geotherm. Res. 182, 97–112.

Nowell, D.A.G., Jones, N.C., Pyle, D.M., 2006. Episodic Quaternary volcanism in Franceand Germany. J. Quaternary Sci. 21, 645–675.

Odin, G.S., et al., 1982. Interlaboratory standards for dating purposes. In: Odin,G.S. (Ed.), Numerical Dating in Stratigraphy. Wiley & Sons, Chichester/NewYork/Brisbane, pp. 123–149.

Pacák, O., 1928. Basalts of Jeseník Mts. and neighbour areas. In: Vest. Král. ces. Spolec.Nauk, Tr. math. -prírodoved, 172 pp. (in Czech with French summary).

Pécskay, Z., Prichystal, A., Tomek, C., Zapletal, J., 2009. New radiometric dataof neovolcanics of northern Moravia and Silesia. In: Sbor. Abstr. KonferenceMoravskoslezské paleozoikum 2009, XIII, pp. 15–16, Olomouc (in Czech).

Pfänder, J.A., Jung, S., Münker, C., Stracke, A., Mezger, K., 2012. A possible high Nb/Tareservoir in the continental lithospheric mantle and consequences on the global

4 der Er

P

P

P

R

R

R

R

S

S

S

S

S

S

S

S

S

S

S

S

T

U

U

50 J. Ulrych et al. / Chemie

Nb budget – evidence from continental basalts from Central Germany. Geochim.Cosmochim. Acta 77, 232–251.

ilet, S., Baker, M.B., Stolper, E.M., 2008. Metasomatized lithosphere and the originof alkaline lavas. Science 320, 916–919.

ivec, E., Ulrych, J., Höhndorf, A., Rutsek, J., 1998. Melilitic rocks from northernBohemia: geochemistry and mineralogy. Neu. Jb. Mineral., Abh. 173, 119–154.

rodehl, C., Mueller, S., Haak, V., 1995. The European Cenozoic rift system. In: Olsen,K.H. (Ed.), Continental Rifts: Evolution, Structure, Tectonics. Develop. in Geotect.25. Elsevier, Amsterdam, pp. 133–212.

apprich, V., Cajz, V., Kost’ák, V., Pécskay, Z., Rídkosil, T., Raska, P., Radon, M., 2007.Reconstruction of eroded monogenic Strombolian cones of Miocene age: a casestudy on character of volcanic activity of the Jicín Volcanic Field (NE Bohemia)and subsequent erosional rates estimation. J. Geosci. 52, 169–180.

itter, J.R.R., Jordan, M., Christensen, U.R., Achauer, U., 2001. A mantle plume belowthe Eifel volcanic fields, Germany. Earth Planet. Sci. Lett. 186, 7–14.

osenbaum, J.M., 1993. Mantle phlogopite: a significant lead repository? Chem. Geol.Isot. Geosci. 106, 475–483.

udnick, R.L., McDonough, W.F., Chappell, B.W., 1993. Carbonatite metasomatism inthe northern Tanzanian mantle: petrographic and geochemical characteristics.Earth Planet. Sci. Lett. 114, 463–475.

check, M., Bayer, U., Otto, V., Lamarche, J., Banka, D., Pharaoh, T., 2002. The ElbeFault System in North Central Europe – a basement controlled zone of crustalweakness. Tectonophysics 360, 281–299.

chwarzkopf, L., 1993. Zur Geologie des Zelezná Hurka (Eisenbühl) und seinesUmfeldes. Thesis. Friedrich-Alexander-Univ. Erlangen-Nürenberg, 126 pp.

eifert, W., Kämpf, H., 1994. Ba-enrichment in phlogopite of a nephelinite fromBohemia. Eur. J. Mineral. 6, 497–502.

obolev, A.V., Hofmann, A.W., Kuzmin, D.V., Yaxley, G.M., Arndt, N.T., Chung, S.-L.,Danyushevsky, L.V., Elliott, T., Frey, F.A., Garcia, M.O., Gurenko, A.A., Kamenetsky,V.S., Kerr, A.C., Krivolutskaya, N.A., Matvienkov, V.V., Nikogosian, I.K., Rocholl, A.,Sigurdsson, I.A., Sushchevskaya, N.M., Teklay, M., 2007. The amount of recycledcrust in sources of mantle-derived melts. Science 316, 412–417.

teiger, R.H., Jäger, E., 1977. Subcommission on geochronology: convention on theuse of decay constants in geology and geochronology. Earth Planet. Sci. Lett. 36,359–362.

tracke, A., Hofmann, A.-W., Hart, S.R., 2005. FOZO, HIMU, and the rest of the mantlezoo. Geochem. Geophys. Geosyst., 6.

trnad, L., Mihaljevic, M., Sebek, O., 2005. Laser ablation and solution ICP-MS deter-mination of rare earth elements in USGS BIR-1G, BHVO-2G and BCR-2G glassreference material. Geostand. Geoanal. Res. 29, 303–314.

un, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanicbasalts: implications for mantle composition and processes. In: Saunders, A.D.,Norry, M.J. (Eds.), Magmatism in the Ocean Basins. Geol. Soc. London, Spec. Publ.,vol. 42, pp. 313–345.

ˇalansky, K., 2004. Neovolcanics of the Czech Republic and their geophysical mani-festations. Czech Geol. Survey Spec. Papers 17, 174 pp. (in Czech).

ˇesulka, V., Drápalová, R., Prichystal, A., Vsiansky, D., 2012. New knowledge about aneovolcanic rock at Pohor near Odry (district Novy Jicín). Geol. vyzk. Mor. Slez.XIX (1–2), 48–52 (in Czech).

ˇibrava, V., Havlícek, P., 1980. Radiometric age of Plio-Pleistocene volcanic rocks inthe Bohemian Massif. Vest. Ústr. Úst. Geol. 55, 129–150.

ˇtepancíková, P., Hók, J., Nyvlt, D., Dohnal, J., Sykorová, I., Stemberk, J., 2010. Activetectonics research using trenching technique on the south-eastern section of theSudetic Marginal Fault (NE Bohemian Massif, central Europe). Tectonophysics485, 269–282.

odt, W., Lippot, H.J., 1975. K-Ar-Alterbestimmungen an Vulkaniten bekannterpaläomagnetischer Feldrichtung I. Oberpfalz und Oberfranken. J. Geophys. 41,43–61.

lrych, J., Pivec, E., 1997. Age-related contrasting alkaline volcanic series in NorthBohemia. Chem. Erde 57, 300–323.

lrych, J., Dostal, J., Adamovic, J., Jelínek, E., Spacek, P., Hegner, E., Balogh, K., 2011.Recurrent Cenozoic volcanic activity in the Bohemian Massif (Czech Republic).Lithos 123, 133–144.

de 73 (2013) 429– 450

Ulrych, J., Dostal, J., Hegner, E., Balogh, K., Ackerman, L., 2008. Late Cretaceousto Paleocene melilitic rocks of the Ohre/Eger Rift in northern Bohemia, CzechRepublic: insights into the initial stages of continental rifting. Lithos 101,141–161.

Ulrych, J., Lloyd, F.E., Balogh, K., 2003. Age relations and geochemical constraints ofCenozoic alkaline volcanic series in W Bohemia: a review. Geolines 15, 168–180.

Ulrych, J., Kopecky, L., Kropácek, V. (Eds.), 1991. Guide to the Post-symposium excur-sion: Neoidic Volcanism of the Bohemian Massif. SCEAVR, Praha, p. 58.

Ulrych, J., Pivec, E., Lang, M., Balogh, K., Kropácek, V., 1999. Cenozoic intraplatevolcanic rock series of the Bohemian Massif: a review. Geolines 9, 123–129.

Ulrych, J., Pivec, E., Povondra, P., Rutsek, J., 2000. Upper-mantle xenoliths in meliliticrocks of the Osecná Complex, northern Bohemia. J. Czech. Geol. Soc. 45, 79–93.

Ulrych, J., Svobodová, J., Balogh, K., 2002. The source of Cenozoic volcanism in theCeské stredohorí Mts., Bohemian Massif. Neu. Jb. Mineral. Abh. 177, 133–162.

Upton, B.G.J., Finch, A.A., Slaby, E., 2009. Megacrysts and salic xenoliths in Scottishalkali basalts: derivatives of deep crustal intrusions and small-melt fractionsfrom the upper mantle. Mineral. Mag. 73, 943–956.

Wagner, G.A., Gögen, K., Jonckhere, R., Wagner, I., Woda, C., 2002. Dating of Quater-nary volcanoes Komorní Hurka (Kammerbühl) and Zelezná Hurka (Eisenbühl),Czech Republic, by TL, ESR, alpha-recoil and fission track chronometry. Z. geol.Wiss. 30, 191–200.

Wass, S.Y., 1979. Multiple origin of clinopyroxenes in alkali basaltic rocks. Lithos 12,115–132.

Wedepohl, K.H., 1987. Kontinentaler Intraplaten-Vulkanismus am Beispiel der ter-tiären Basalte der Hessischen Senke. Fortschr. Miner. 65, 19–47.

Wedepohl, K.H., 2000. The composition and formation of Miocene tholeiites in theCentral Cenozoic plume volcanism. Contrib. Mineral. Petrol. 136, 225–239.

Wedepohl, K.H., Baumann, A., 1999. Central European Cenozoic plume volcanismwith OIB characteristics and indications of a lower mantle source. Contrib. Min-eral. Petrol. 136, 225–239.

Wedepohl, K.H., Gohn, E., Hartmann, G., 1994. Cenozoic alkali basaltic magmas ofwestern Germany and their products of differentiation. Contrib. Mineral. Petrol.115, 253–278.

Weinlich, F.H., Bräuer, K., Kämpf, H., Strauch, G., Tesar, J., Weise, S., 1999. An activesubcontinental mantle volatile system in the western Eger Rift, Central Europe:gas flux, isotopic (He, C, and N) and compositional fingerprints. Geochim. Cos-mochim. Acta 63, 3653–3671.

Wilkinson, J.F.G., Hensel, H.D., 1994. Nephelines and analcimes in some alkalineigneous rocks. Contrib. Mineral. Petrol. 118, 71–91.

Wilschowitz, H., 1927. Das tektonische Netz der mährisch-schlesischen Basalte undder Hauptgebirgsquerbruch des Hohen Gesenks. Montan. Rdsch. 30, 1–13.

Wilson, M., Downes, H., 1991. Tertiary–Quaternary extension-related alkaline mag-matism in western and central Europe. J. Petrol. 32, 811–850.

Wilson, M., Downes, H., 2006. Tertiary–Quaternary intra-plate magmatism inEurope and its relationship to mantle dynamics. In: Gee, D., Stephemson, R.(Eds.), European Lithosphere Dynamics. Geol. Soc. London Mem. 32, 147–166.

Wilson, M., Patterson, R., 2001. Intra-plate magmatism related to hot fingers inthe upper mantle: evidence from the Tertiary–Quaternary volcanic provinceof western and central Europe. In: Ernst, R., Buchan, K. (Eds.), Mantle Plumes:Their Identification through Time. Geol. Soc. Am. Spec. Papers 352, 37–58.

Wilson, M., Downes, H., Cebrià, J.M., 1995a. Contrasting fractionation trends in coex-isting continental alkaline magma series, Cantal, Massif Central, France. J. Petrol.36, 1729–1750.

Wilson, M., Rosenbaum, J., Dunworth, E.A., 1995b. Melilitites: partial melts of thethermal boundary layer? Contrib. Mineral. Petrol. 119, 181–196.

Wilson, M., Rosenbaum, J., Ulrych, J., 1994. Cenozoic magmatism of the Ohre rift,Czech Republic: geochemical signatures and mantle dynamics. In: AbstractsIntern. Volcanol. Congress, Ankara, p. 1.

Wörner, G., Zindler, A., Staudigel, H., Schmincke, H.-U., 1986. Sr, Nd and Pbisotope geochemistry of Tertiary and Quaternary alkaline volcanism from West-Germany. Earth Planet. Sci. Lett. 79, 107–119.

Ziegler, P.A., 1994. Cenozoic rift system of Western and Central Europe: an overview.Geol. Mijnbouw 73, 99–127.