EPMA and PIXE dating of monazite in granulites from Stary Gierałtów, NE Bohemian Massif, Poland

11
EPMA and PIXE dating of monazite in granulites from Stary Gierałtów, NE Bohemian Massif, Poland Monika A. Kusiak a,b, , Kazuhiro Suzuki b , Daniel J. Dunkley c , Janusz Lekki d , Nonna Bakun-Czubarow e , Mariusz Paszkowski a , Bartosz Budzyń f a Institute of Geological Sciences, Polish Academy of Sciences, Kraków Research Centre, Senacka 1, 31-002 Kraków, Poland b Center for Chronological Research, Nagoya University, Nagoya 464-8602, Japan c National Institute of Polar Research, 1-9-10 Kaga, Itabashi-ku, 173-8515 Tokyo, Japan d Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland e Institute of Geological Sciences, Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland f Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, 30-063 Kraków, Poland Received 11 January 2007; accepted 18 February 2008 Available online 4 March 2008 Abstract Chemical ThUtotal Pb (CHIME) dating of monazite by electron probe microanalyzer (EPMA) and proton microprobe (PIXE) was carried out on felsic granulites from Stary Gierałtów, Poland, which represent part of the Orlica-Śnieżnik Dome in the NE Bohemian Massif. Analyzed monazite is characterized by mosaic zoning rather than simple core-to-rim growth, and strontium contents of up to 750ppm. An isochron age of 347 ± 13Ma represents timing of amphibolite-facies metamorphism, in agreement with previously published estimates. © 2008 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved. Keywords: Monazite dating; CHIME; PIXE; Orlica-Śnieżnik Dome; Bohemian Massif 1. Introduction The structural and metamorphic evolution of the Orlica- Śnieżnik Dome (OSD), of the NE Bohemian Massif (BM), Western Sudetes, Poland, is a matter of some controversy. Discrepancies between tectonic interpretations are due to a lack of precisely-determined ages for crustal protoliths, magmatic activity and metamorphism. Monazite is an excellent candidate for obtaining such ages. It typically has relatively high contents of U, Th and radiogenic Pb, and the lack of Pb diffusivity at all but extreme granulite-facies temperatures on a geological timescale (Cherniak et al., 2004) makes monazite an ideal mineral for geochronology (e.g. Santosh et al., 2006a,b, 2007; Souza et al., 2006; Suzuki et al., 2006a; Skridalaite et al., 2008- this issue). In addition, single grains are capable of preserving elemental zoning patterns that reflect multiple thermal events (e.g. Townsend et al., 2000) and/or changes in chemical equilibrium during progressive metamorphic events (e.g. Pyle et al., 2001). The chemical ThUtotal Pb isochron method (CHIME) of dating by electron microprobe is an established and widely used technique for monazite geochronology (e.g. Suzuki and Adachi, 1991; Montel et al., 1996; Cocherie and Albarede, 2001; Jercinovic and Williams, 2005; Pyle et al., 2005; Williams et al., 2006, 2007). Of similar potential, but little utilized, the proton microprobe (PIXE) is capable of producing reliable age determinations, with potentially higher spatial resolution and greater peak-to-background sensitivity than CHIME. For a detailed description of the PIXE chemical dating method, see Kusiak and Lekki (2008-this issue). In this study, we present the first monazite CHIME chronological data for the felsic granulites from Stary Gierałtów in the OSD, obtained using the EPMA and PIXE. Available online at www.sciencedirect.com Gondwana Research 14 (2008) 675 685 www.elsevier.com/locate/gr Corresponding author. Institute of Geological Sciences, Polish Academy of Sciences, Kraków Research Centre, Senacka 1, 31-002 Kraków, Poland. Tel.: +48 12 422 1910; fax: +48 12 422 1609. E-mail address: [email protected] (M.A. Kusiak). 1342-937X/$ - see front matter © 2008 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved. doi:10.1016/j.gr.2008.02.005

Transcript of EPMA and PIXE dating of monazite in granulites from Stary Gierałtów, NE Bohemian Massif, Poland

Available online at www.sciencedirect.com

(2008) 675–685www.elsevier.com/locate/gr

Gondwana Research 14

EPMA and PIXE dating of monazite in granulites from StaryGierałtów, NE Bohemian Massif, Poland

Monika A. Kusiak a,b,⁎, Kazuhiro Suzuki b, Daniel J. Dunkley c, Janusz Lekki d,Nonna Bakun-Czubarow e, Mariusz Paszkowski a, Bartosz Budzyń f

a Institute of Geological Sciences, Polish Academy of Sciences, Kraków Research Centre, Senacka 1, 31-002 Kraków, Polandb Center for Chronological Research, Nagoya University, Nagoya 464-8602, Japan

c National Institute of Polar Research, 1-9-10 Kaga, Itabashi-ku, 173-8515 Tokyo, Japand Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland

e Institute of Geological Sciences, Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Polandf Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, 30-063 Kraków, Poland

Received 11 January 2007; accepted 18 February 2008Available online 4 March 2008

Abstract

Chemical Th–U–total Pb (CHIME) dating of monazite by electron probe microanalyzer (EPMA) and proton microprobe (PIXE) was carriedout on felsic granulites from Stary Gierałtów, Poland, which represent part of the Orlica-Śnieżnik Dome in the NE Bohemian Massif. Analyzedmonazite is characterized by mosaic zoning rather than simple core-to-rim growth, and strontium contents of up to 750ppm. An isochron age of347 ± 13Ma represents timing of amphibolite-facies metamorphism, in agreement with previously published estimates.© 2008 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

Keywords: Monazite dating; CHIME; PIXE; Orlica-Śnieżnik Dome; Bohemian Massif

1. Introduction

The structural and metamorphic evolution of the Orlica-Śnieżnik Dome (OSD), of the NE Bohemian Massif (BM),Western Sudetes, Poland, is a matter of some controversy.Discrepancies between tectonic interpretations are due to a lackof precisely-determined ages for crustal protoliths, magmaticactivity and metamorphism. Monazite is an excellent candidatefor obtaining such ages. It typically has relatively high contentsof U, Th and radiogenic Pb, and the lack of Pb diffusivity at allbut extreme granulite-facies temperatures on a geologicaltimescale (Cherniak et al., 2004) makes monazite an idealmineral for geochronology (e.g. Santosh et al., 2006a,b, 2007;

⁎ Corresponding author. Institute of Geological Sciences, Polish Academy ofSciences, Kraków Research Centre, Senacka 1, 31-002 Kraków, Poland. Tel.: +4812 422 1910; fax: +48 12 422 1609.

E-mail address: [email protected] (M.A. Kusiak).

1342-937X/$ - see front matter © 2008 International Association for Gondwana Rdoi:10.1016/j.gr.2008.02.005

Souza et al., 2006; Suzuki et al., 2006a; Skridalaite et al., 2008-this issue). In addition, single grains are capable of preservingelemental zoning patterns that reflect multiple thermal events(e.g. Townsend et al., 2000) and/or changes in chemicalequilibrium during progressive metamorphic events (e.g. Pyleet al., 2001). The chemical Th–U–total Pb isochron method(CHIME) of dating by electron microprobe is an established andwidely used technique for monazite geochronology (e.g. Suzukiand Adachi, 1991; Montel et al., 1996; Cocherie and Albarede,2001; Jercinovic andWilliams, 2005; Pyle et al., 2005; Williamset al., 2006, 2007). Of similar potential, but little utilized, theproton microprobe (PIXE) is capable of producing reliable agedeterminations, with potentially higher spatial resolution andgreater peak-to-background sensitivity than CHIME. For adetailed description of the PIXE chemical dating method, seeKusiak and Lekki (2008-this issue). In this study, we present thefirst monazite CHIME chronological data for the felsicgranulites from Stary Gierałtów in the OSD, obtained usingthe EPMA and PIXE.

esearch. Published by Elsevier B.V. All rights reserved.

676 M.A. Kusiak et al. / Gondwana Research 14 (2008) 675–685

2. Geological setting

2.1. Bohemian Massif

The BM represents one of the largest and most complextectonic units of the central European Variscides, a collage ofGondwana-derived terranes. These terranes migrated northwardfrom the Gondwana margin and collided with northerncontinental blocks in the early Paleozoic (Tait et al., 1997; seealso Vaughan and Pankhurst, 2008 for a recent review ofGondwana margin). The BM contains a number of well-defined,geologically distinct regions of dissimilar origin, including theSaxothuringian and Moldanubian Tectonic Zones (Škvor andZeman, 1969) (Fig. 1). The Sudetes consist of a collage ofNeoproterozoic to Early Carboniferous terranes located alongthe northeastern margin of the BM (e.g. Kryza et al., 2004).Commonly interpreted as a part of the European Variscan Belt,the Sudetes include the southeastern-most extent of the

Fig. 1. A. Geological sketch of the Bohemian Massif (simplified after Turniak et aKłodzko-Złoty Stok Granitoid Massif, MGH—Mid-German Crystalline High, MO—RH— Rhenohercynian Zone, SBF— Sudetic Boundary Fault, SX— Saxothuringia(simplified after Kryza et al., 1996); SMB — Staré Město Belt.

Saxothuringian Zone (Franke and Żelaźniewicz, 2002). TheMoldanubian Zone is also represented by the OSD (Don et al.,1990; Matte et al., 1990) and its northern continuation, theStrzelin Hills Complex.

2.2. The Orlica-Śnieżnik Dome, West Sudetes (Lugicum)

The OSD forms the eastern-most part of the West Sudetes(Fig. 1). It is bound to the east by the Staré Město Shear Zone,part of the Moldanubian wrench–thrust system that defines thewestern boundary of the Moravo-Silesian domain of theVariscan Belt (Aleksandrowski et al., 1997). The OSD isbound by the granodioritic Kłodzko-Złoty Stok GranitoidMassif to the north, the Sudetes Marginal Fault to the northeast,and the Ramzovian Thrust to the southeast. The Nysa grabendivides the OSD into the Śnieżnik region (Lądek-Śnieżnikmetamorphic complex) to the east, and the Orlica and BystrzycaMountains to the west (Don et al., 1990). In terms of terrane

l., 2000). EFZ — Elbe Fault Zone, ISF — Intra-Sudetic Fault Zone, KZG —Moldanubian Zone, NP— Northern Phyllite Zone, OFZ— Odra-Fault Zone,

n Zone. B. Sketch of the Orlica-Śnieżnik Dome and the location of the study area

Table 1Microprobe analyses of ThO2, UO2, PbO, CaO, Y2O3 and S (wt.%) togetherwith apparent age (Ma) of monazite from the granulite sample from StaryGierałtów

No. ThO2 UO2 PbO Age ThO2⁎ CaO Y2O3 S

M1-01 4.36 0.18 0.067 321 4.96 0.36 nd 0.013M1-02 4.54 0.13 0.068 322 4.98 0.35 0.02 0.013M1-03 3.38 0.16 0.056 337 3.88 0.33 0.42 0.007M1-04 4.55 0.14 0.074 347 5.02 0.35 0.01 0.018M1-05 5.51 0.12 0.086 342 5.91 0.37 0.01 0.010M1-06 4.18 0.22 0.070 338 4.90 0.42 1.12 ndM1-07 3.90 0.15 0.059 320 4.37 0.32 nd 0.020M1-08 3.71 0.15 0.056 313 4.22 0.35 0.47 0.010M1-09 4.44 0.21 0.064 297 5.12 0.47 1.05 0.008M1-10 4.06 0.21 0.069 342 4.74 0.43 1.10 ndM1-11 3.04 0.10 0.050 353 3.37 0.31 0.11 ndM1-12 3.79 0.14 0.056 311 4.25 0.32 0.01 0.022M1-13 2.89 0.19 0.048 320 3.51 0.33 0.63 ndM1-14 3.28 0.17 0.054 335 3.83 0.36 0.76 ndM1-15 4.70 0.16 0.063 284 5.22 0.49 0.28 0.012M1-16 3.04 0.09 0.048 343 3.32 0.29 0.08 ndM1-17 4.06 0.19 0.067 340 4.67 0.34 nd ndM1-18 4.04 0.16 0.068 350 4.57 0.35 0.01 0.014M1-19 3.94 0.15 0.060 320 4.42 0.34 0.01 0.013M1-20 4.01 0.12 0.052 278 4.39 0.36 0.01 0.013M2-01 5.47 0.15 0.080 317 5.95 0.51 0.01 0.012M2-02 5.84 0.18 0.092 336 6.43 0.53 0.02 0.035M2-03 5.36 0.15 0.087 350 5.85 0.50 0.02 0.003M2-04 4.83 0.12 0.091 411 5.23 0.46 0.02 0.006M2-05 4.55 0.10 0.079 384 4.86 0.44 0.01 0.009M2-06 5.25 0.13 0.076 315 5.69 0.48 0.02 0.007M2-07 5.07 0.13 0.077 331 5.50 0.48 0.02 0.007M2-08 5.84 0.14 0.099 370 6.29 0.54 0.03 0.030M2-09 5.45 0.16 0.087 342 5.97 0.49 0.01 0.004M2-10 5.12 0.12 0.077 331 5.52 0.49 0.01 0.009M2-11 6.95 0.13 0.109 348 7.39 0.51 0.01 0.004M2-12 6.87 0.14 0.102 330 7.32 0.56 0.03 0.005M2-13 6.53 0.14 0.103 346 7.00 0.53 0.02 0.012M2-14 5.41 0.12 0.077 311 5.80 0.45 0.02 0.011M2-15 5.46 0.13 0.083 332 5.89 0.47 0.02 0.012M2-16 5.30 0.14 0.083 342 5.76 0.48 0.01 0.004M2-17 4.96 0.09 0.072 324 5.24 0.45 0.01 0.003M2-18 7.41 0.15 0.117 347 7.91 0.66 0.01 0.004M2-19 7.39 0.15 0.117 349 7.88 0.49 0.01 0.008M2-20 5.95 0.16 0.094 344 6.46 0.58 0.01 0.003M2-21 5.41 0.15 0.083 333 5.91 0.52 0.01 0.008M2-22 5.29 0.20 0.078 309 5.93 0.54 nd 0.010M2-23 7.29 0.13 0.110 337 7.72 0.60 0.01 0.004M2-24 6.15 0.18 0.094 330 6.74 0.49 0.02 0.007M2-25 6.85 0.09 0.098 324 7.14 0.60 0.03 0.011M2-26 5.27 0.20 0.085 340 5.91 0.23 0.01 0.009M2-27 5.07 0.16 0.078 327 5.60 0.48 0.01 0.008M2-28 6.00 0.18 0.095 342 6.59 0.48 0.02 ndM2-29 6.99 0.15 0.113 356 7.49 0.57 0.01 0.004M2-30 5.03 0.16 0.078 329 5.55 0.50 0.02 0.010M2-31 5.18 0.12 0.080 338 5.56 0.25 0.02 0.005M2-32 5.01 0.09 0.078 346 5.31 0.46 0.02 0.004M2-33 5.07 0.15 0.075 318 5.57 0.48 0.02 0.007M2-34 5.25 0.12 0.080 334 5.64 0.48 nd 0.005M2-35 5.58 0.11 0.103 406 5.95 0.51 0.01 0.009M2-36 5.47 0.10 0.086 350 5.79 0.44 0.02 0.009M2-37 5.45 0.12 0.078 313 5.84 0.44 0.01 0.007M2-38 5.45 0.14 0.086 345 5.89 0.44 0.01 0.005M2-39 5.77 0.26 0.105 374 6.62 0.55 0.03 0.032M2-40 5.56 0.15 0.096 374 6.04 0.49 0.02 0.016M3-01 5.04 0.12 0.080 348 5.44 0.44 0.02 ndM3-02 5.28 0.13 0.081 336 5.69 0.49 0.03 nd

(continued on next page)

Table 1 (continued )

No. ThO2 UO2 PbO Age ThO2⁎ CaO Y2O3 S

M3-03 4.64 0.17 0.075 340 5.19 0.44 0.02 0.009M3-04 4.67 0.08 0.074 354 4.92 0.44 0.02 0.005M3-05 5.50 0.14 0.089 352 5.94 0.47 0.02 0.005M3-06 5.70 0.09 0.086 338 5.99 0.49 0.01 0.009M3-07 5.97 0.13 0.088 325 6.41 0.47 0.02 0.007M3-08 6.02 0.13 0.092 335 6.45 0.51 0.03 0.006M3-09 6.01 0.14 0.098 357 6.48 0.53 0.03 ndM3-10 4.46 0.21 0.072 331 5.15 0.51 0.01 0.006M3-11 5.04 0.12 0.081 352 5.42 0.48 0.03 0.007M3-12 5.81 0.16 0.090 334 6.33 0.50 0.02 0.007M3-13 5.92 0.13 0.082 304 6.34 0.51 0.01 0.011M3-14 5.97 0.15 0.088 322 6.47 0.54 0.03 0.005M3-15 6.25 0.15 0.098 344 6.74 0.53 0.03 0.005M3-16 6.09 0.14 0.097 349 6.56 0.50 0.02 0.006M3-17 5.77 0.11 0.091 348 6.15 0.50 0.02 ndM3-18 5.82 0.13 0.088 333 6.23 0.46 0.04 ndM3-19 5.37 0.15 0.085 341 5.86 0.48 0.04 0.008M3-20 4.66 0.13 0.074 343 5.08 0.38 0.02 0.006M3-21 6.02 0.14 0.089 323 6.48 0.46 0.02 ndM3-22 5.98 0.15 0.097 354 6.46 0.44 0.02 ndM3-23 5.88 0.15 0.092 342 6.38 0.45 0.01 0.005M3-24 4.95 0.15 0.080 347 5.43 0.42 0.02 ndM3-25 5.13 0.12 0.080 343 5.52 0.45 0.02 ndM3-26 5.26 0.16 0.081 330 5.77 0.43 nd 0.006M3-27 5.24 0.16 0.079 324 5.75 0.44 0.01 0.004M3-28 4.68 0.19 0.074 330 5.28 0.35 0.01 0.029M3-29 5.82 0.13 0.089 337 6.24 0.52 0.02 0.008M3-30 5.49 0.14 0.092 362 5.96 0.50 0.02 0.008M3-31 4.58 0.14 0.075 351 5.04 0.46 0.03 0.005M3-32 4.63 0.16 0.074 337 5.16 0.43 0.02 0.007M3-33 5.23 0.15 0.081 336 5.71 0.49 0.02 0.004M3-34 5.05 0.16 0.083 350 5.56 0.47 0.02 0.007M3-36 4.88 0.23 0.081 340 5.63 0.48 0.02 ndM3-37 4.57 0.14 0.062 289 5.02 0.41 0.02 0.009M3-38 5.05 0.16 0.074 313 5.57 0.44 0.02 0.007M3-39 4.90 0.17 0.080 346 5.45 0.43 0.02 0.007M3-40 4.92 0.15 0.079 345 5.41 0.43 0.02 0.006M3-41 5.56 0.14 0.090 350 6.03 0.50 0.02 ndM3-42 5.42 0.14 0.079 316 5.89 0.47 0.02 ndM3-43 4.37 0.17 0.068 326 4.93 0.43 0.02 0.035M3-44 4.68 0.16 0.072 325 5.21 0.48 0.02 0.006M3-45 5.38 0.13 0.085 343 5.82 0.50 0.03 0.008M3-46 5.19 0.15 0.081 334 5.69 0.47 0.03 0.007M3-47 4.73 0.14 0.075 342 5.19 0.42 0.03 0.006M3-48 4.68 0.14 0.068 312 5.14 0.44 0.03 0.007M3-49 4.57 0.23 0.075 334 5.31 0.49 0.01 0.009M3-50 4.54 0.27 0.078 338 5.42 0.49 0.02 0.023M4-01 2.64 0.12 0.045 350 3.04 0.32 0.05 ndM4-02 3.14 0.12 0.052 347 3.54 0.36 0.06 ndM4-03 3.29 0.11 0.052 337 3.64 0.32 0.04 ndM4.04 2.74 0.12 0.045 340 3.12 0.34 0.07 ndM4-05 3.08 0.12 0.050 342 3.46 0.32 0.07 ndM4-06 3.14 0.13 0.053 353 3.56 0.31 0.05 ndM4-07 3.28 0.13 0.047 299 3.69 0.34 0.06 ndM4-08 3.30 0.13 0.051 323 3.74 0.35 0.05 ndM4-09 3.45 0.12 0.054 334 3.84 0.32 0.06 ndM4-10 2.90 0.13 0.049 348 3.34 0.36 0.08 ndM4-11 3.49 0.13 0.052 311 3.93 0.38 0.06 ndM4-12 4.99 0.16 0.084 360 5.50 0.36 0.01 0.033M4-13 4.59 0.12 0.071 338 4.97 0.40 0.03 ndM4-14 2.81 0.04 0.043 348 2.94 0.32 0.06 ndM4-23 2.84 0.12 0.050 368 3.23 0.30 0.06 ndM4-15 2.86 0.10 0.047 347 3.17 0.35 0.04 ndM4-16 2.84 0.12 0.049 359 3.24 0.22 0.06 nd

(continued on next page)

677M.A. Kusiak et al. / Gondwana Research 14 (2008) 675–685

Table 1 (continued )

No. ThO2 UO2 PbO Age ThO2⁎ CaO Y2O3 S

M4-17 3.84 0.18 0.059 316 4.42 0.34 0.01 0.036M4-18 5.71 0.09 0.087 339 6.02 0.38 0.02 0.006M4-19 2.91 0.14 0.049 344 3.38 0.34 0.07 ndM4-20 2.59 0.12 0.038 301 2.98 0.33 0.06 ndM4-21 3.55 0.13 0.056 331 3.99 0.37 0.04 0.004M4-22 2.96 0.10 0.050 357 3.29 0.23 0.02 0.032M5-01 4.89 0.16 0.079 344 5.42 0.40 0.04 0.010M5-02 2.48 0.14 0.042 335 2.93 0.29 0.08 0.005M5-03 5.50 0.15 0.087 344 5.99 0.33 0.01 0.025M5-04 2.93 0.13 0.050 352 3.35 0.31 0.08 ndM5-05 2.43 0.11 0.040 339 2.78 0.34 0.07 ndM5-06 3.46 0.13 0.057 349 3.87 0.22 0.10 ndM5-07 4.65 0.22 0.077 339 5.36 0.39 0.04 ndM5-08 4.22 0.09 0.073 385 4.50 0.29 0.01 0.032M5-09 4.95 0.17 0.075 323 5.49 0.37 0.03 ndM5-10 2.38 0.09 0.039 341 2.68 0.24 0.07 0.008M5-11 3.97 0.14 0.061 324 4.43 0.20 0.05 ndM5-12 4.41 0.18 0.069 328 4.99 0.40 0.05 ndM5-13 3.87 0.12 0.061 336 4.25 0.34 nd 0.029M5-14 5.64 0.11 0.085 334 6.00 0.50 0.02 ndM5-15 4.22 0.15 0.068 343 4.70 0.39 0.05 ndM5-16 4.19 0.15 0.069 347 4.67 0.40 0.05 ndM5-17 4.38 0.15 0.070 342 4.86 0.40 0.05 ndM5-18 3.44 0.13 0.057 348 3.87 0.28 0.01 0.044M5-19 5.47 0.18 0.084 328 6.07 0.33 0.01 0.028M5-20 5.19 0.16 0.084 347 5.70 0.43 0.04 ndM5-21 3.81 0.11 0.060 341 4.18 0.34 0.01 0.029M6-01 4.87 0.11 0.079 358 5.23 0.45 0.07 0.035M6-02 4.67 0.09 0.074 349 4.97 0.46 0.12 ndM6-04 3.30 0.15 0.051 319 3.78 0.39 0.16 ndM6-05 3.21 0.14 0.054 345 3.66 0.41 0.17 ndM6-06 6.78 0.18 0.108 347 7.36 0.49 0.05 0.025M6-07 3.82 0.12 0.054 301 4.22 0.41 0.12 0.008M6-08 3.67 0.13 0.059 341 4.09 0.40 0.13 0.004M6-09 4.66 0.16 0.077 351 5.17 0.46 0.24 nd

nd — not detected.

Fig. 2. Plot of PbO vs. ThO2* showing distribution of apparent ages formonazite grains from the felsic granulite from Stary Gierałtów.

678 M.A. Kusiak et al. / Gondwana Research 14 (2008) 675–685

analysis in the BM, the OSD is considered to be either part ofthe Gföhl Terrane of the Moldanubian Zone (Matte et al., 1990;Cymerman and Piasecki, 1994), or a segment of the SudetesBatholith Terrane (Oliver et al., 1993), due to the presence ofabundant granite gneisses. The core of the OSD comprises twomain rock series: 1) the supracrustal Młynowiec-StronieFormation, consisting of Neoproterozoic to Cambrian micaschist and paragneiss with intercalations of marble, quartziteand amphibolite; and 2) the amphibolite-facies Śnieżnik andGierałtów gneisses, which were derived from early Paleozoicgranitic protoliths that intrude the Młynowiec-Stronie Forma-tion (Fischer, 1936). Granitic gneisses are typically exposedbetween synforms in the Młynowiec-Stronie Formation.

High-pressure (HP) granulites accompany Gierałtówgneisses, and contain boudins and lenses of eclogite concen-trated in relatively thin lithostratigraphic layers in antiformalexposures. These bodies provide evidence for initial highpressure–middle temperature (HP–MT) and high pressure–hightemperature (HP–HT) metamorphic events (Smulikowski andBakun-Czubarow, 1973; Bakun-Czubarow, 1989, 1991;Bröcker and Klemd, 1996; Kryza et al., 1996). A characteristicmember of the HP eclogite–granulite rock series occurs in theeastern part of the OSD as a narrow SSW–NNE trending belt of

HP eclogite and granulite extending between Stary Gierałtówand Javornik. Omphacite-bearing granulite, with relatively thinlayers of plagioclase-free eclogite, makes up around 10% offelsic lithologies. Associated felsic granulites consist predomi-nantly of quartz, oligoclase and potassium feldspar in almostequal parts, with accessory garnet, biotite, rutile, and rarekyanite. Most eclogites occurring within the Gierałtów gneissequilibrated at 620–740°C and 13.5–16kbar, except thosehosted by granulite, which show evidence of decompressionfrom ultra-high-pressure (UHP) conditions to 800–900°C and15–18kbar (Bakun-Czubarow, 1989; Brueckner et al., 1991;Bakun-Czubarow and Kusy, 2001). Quartz pseudomorphs aftercoesite and quartz occur as exsolutions in omphacite, indicatingthe pre-existence of non-stoichiometric clinopyroxene stableduring UHP metamorphism of omphacite-bearing granulite andeclogite (Bakun-Czubarow, 1992). Geochemical studies indi-cate that the eclogite–granulite rocks were formed at the expenseof a volcano–sedimentary sequence dominated by bimodalvolcanics (Bakun-Czubarow, 1991).

The origin and age of the different rock series composing theOSD has been variously interpreted over recent decades (e.g.Don et al., 1990). Orthogneisses derived from granitic pre-cursors, which differ in texture and some bulk-compositionalfeatures, are referred to as Śnieżnik and Gierałtów gneisses.Protolith ages determined in the granitic Śnieżnik and Gierałtówgneisses by zircon chronology concentrate around 500Ma(Oliver et al., 1993; Borkowska and Dörr, 1998; Kröner et al.,1997, 2001). It is debatable whether the protoliths are geneticallyrelated (e.g. Turniak et al., 2000; Lange et al., 2002). The originof eclogite associated with the Gierałtów gneiss is also con-troversial (Klemd et al., 1995). On the basis of structural re-lations, Don et al. (1990) interpreted the eclogite as exotictectonic inclusions in the host gneisses. Alternatively, grossular-rich garnets (Gr30–50) in the host gneiss (Borkowska et al., 1990)may indicate that the Gierałtów gneiss has also experienced HPmetamorphism, as proposed by Smulikowski (1967).

Themost prominent structural feature of the Śnieżnik gneiss is awidespread non-coaxial fabric, indicating north to northeast ductilethrusting under amphibolite-facies conditions (Cymerman, 1992).

Fig. 3. (A, B) — Sketches of monazite grains reflecting the back-scattered electrons images. (C, D) — Age maps based on EPMA analyzes.

Fig. 4. Monazite U–Th–total Pb age results calculated based on EPMA andPIXE analyzes of monazite grains from the felsic granulite from Stary Gierałtów.

679M.A. Kusiak et al. / Gondwana Research 14 (2008) 675–685

This has been attributed to dextral transpression along thesoutheast margin of the BM in Early Carboniferous times (Schul-mann et al., 1991).

2.3. Previous geochronology

Geochronological data available for granulites of the Gier-ałtów eclogite–granulite series include conventional multigrainanalyses of zircon frommafic granulite that provided 207Pb/206Pbages of 360–369Ma (Klemd and Bröcker, 1999). A similar age of372 ± 8Ma was also reported for monazite from gneisses from theOrlica Mountains (Gordon et al., 2005). Age of 473 ± 8Ma wasobtained on a zircon from a felsic granulite from the CzechRychleby Mountains (Štipska et al., 2004). Lange et al. (2005b)determined 206Pb/238U SHRIMP zircon ages of 322–462Ma,with a distinct cluster at ca. 365Ma from granulites in both thePolish and Czech parts of the OSD. Eclogite-facies metamorph-ism was dated at 324–341Ma for the Międzygórze and ŚnieżnikUnits in the OSD (garnet–clinopyroxene–whole rock Sm–Ndisochron, Brueckner et al., 1991). Using the same method, an ageof 352 ± 4Ma was obtained for eclogite from the Gierałtóweclogite–granulite rock series (Brueckner et al., 1991). Bakun-Czubarow (1968, 1998) reported K–Ar phengite and biotite agesof 368 ± 16 and 366 ± 16Ma for eclogite and Gierałtów gneiss inthe Międzygórze tectonic unit, respectively. A Rb–Sr whole rockage of 385 ± 35Ma for Śnieżnik augen gneiss was interpreted as

Fig. 5. PIXE spectrum of monazite grain M01, containing X-ray peaks of Th, U,and Pb L lines and the K line of Y, showing the presence of Sr K line.

Table 2Proton microprobe analyses of monazite grains from granulite from StaryGierałtów; element concentrations in ppm, age value in Ma; measured elementlines are given in brackets

Pt# Sr (K) Y (K) Pb (L) Th (L) U (L) Age

M1-A 748 6684 727 43798 1014 346±10.9M1-B 329 3381 484 30443 614 335±8.5M2 27 229 1300 94643 725 301±10.4M3 270 801 650 46724 670 298±16.9M4 nd 321 948 60720 808 336±13.0M6 305 1737 655 37792 774 364±11.4

nd — not detected.

680 M.A. Kusiak et al. / Gondwana Research 14 (2008) 675–685

an intrusion age, whereas mica ages of 335 ± 5Ma were consi-dered as dating a metamorphic overprint (Borkowska et al.,1990). Lu–Hf garnet-whole rock chronology of mafic and felsicgranulites from the Gierałtów unit provide a minimum age of ca.380Ma for the UHP event (Szczepański et al., 2004; Anczkiewiczet al., 2007).

3. Analytical methods

Felsic and mafic varieties of granulite were collected inoutcrops on the banks of the Biała Lądecka River near StaryGierałtów. Preliminary examination of samples was performed ona carbon coated thin sections using a field emission scanningelectron microscope coupled with a NORAN Vantage energydispersive spectrometer at the Institute of Geological Sciences,Jagiellonian University, Kraków. Samples of felsic granulite withmonazite grains suitable for microprobe analysis were chosen forfurther geochronological analyses. For a more detailed descrip-tion of this variety of granulite from Stary Gierałtów seeSmulikowski and Bakun-Czubarow (1973), Kryza et al. (1996),Anczkiewicz et al. (2007).

3.1. Electron microprobe

CHIME dating of monazite was performed at the NagoyaUniversity Center for Chronological Research, Japan, whichhouses a JEOL JXA-733 Superprobe equipped with fourwavelength dispersive spectrometers (WDS), each with140mm radius Rowland circles. The instrument was operatedat an accelerating voltage of 15kV, a 0.2μA probe current, and abeam spot size 3–5μm as focused on a carbon coated thinsection. PET diffraction crystals in sealed Xe gas detectors wereused for the simultaneous measurement of Th Mα, U Mβ, PbMα and Y Lα. Additionally, Ca Kα, K Kα and S Kα lines weremeasured. Standards that were used included euxenite for Thand U provided by Smellie et al. (1978), synthesized glass with10.18wt.% PbO (Suzuki and Adachi, 1998) for Pb, synthesized

Y-bearing glass for Y and Ca and pyrite for S. For quantitativeanalysis of Th, U, Pb, and Y, X-ray intensities were integratedover 400s periods for peak positions and over 200s periods foroptimum background positions above and below each peak; thiswas accomplished by cyclic stepping of spectrometers, fivetimes at each position. For analysis of other elements, X-rayintensities were integrated over 40s at peak positions and 20s attwo background positions. The background value for each linewas estimated by linear interpolation. Spectral interferences ofYLγ, ThMς1, 2 and NbLβ2,3,15 on PbMα, and of ThMγ, ThM3-N4, KKα and SKα3,4 on UMβ, were corrected by estimatingpeak values from equivalent α- or β-lines for each interferingelement, calibrated against appropriate standards and referencematerials (Åmli and Griffin, 1975). CHIME ages for analyzedminerals were calculated using the method of Suzuki and Adachi(1991, 1994) and the least-squares fitting procedure of York(1966), taking into account estimated errors in the microprobeanalyses. Areas of low Y content (b 1.12wt.% Y2O3) werechosen to minimize interferences of YLγ on PbMα. A detaileddescription of the CHIME dating method is given by Suzuki andKato (2008-this issue).

Rare earth elements (REE) analyses were performed at theWarsaw University in Warsaw, Poland, using a Cameca SX-100electron microprobe equipped with three WDS. The accelerat-ing voltage was 20kV, probe current 50nA, and 3µm spot size ofthe beam focused on the carbon coated thin section.

3.2. Proton microprobe

Proton microprobe analysis was performed at the Institute ofNuclear Physics in Kraków, Poland. The microprobe operates a2.5MeV Van de Graaf accelerator using a very short length(2.3m) forming system (Lebed et al., 2001; Kusiak and Lekki,2008-this issue). Monazite crystals were analyzed using a2.2MeV proton beam focused to a spot of 10μm at currentintensities of 200–500pA. An aluminum foil filter (60μm thick)was used to suppress low energy X-rays from the rare earthmatrix. X-ray spectra were measured using a Canberra Si(Li)detector (30mm2, FWHM 162eVat 5.9keV). Due to a relativelylow beam current and a small solid angle of the detector, everymeasurement was acquired for approximately 20min at countrates never exceeding 2000cps. Simultaneously, RBS (Ruther-ford Backscattering) proton spectra were registered, in order to

Fig. 6. BSE images of monazite; (A,B) — grains showing euhedral cores; (C) — patchy zoning in monazite grains; (D) — irregular zoning pattern; scalebars=100 μm.

681M.A. Kusiak et al. / Gondwana Research 14 (2008) 675–685

facilitate matrix effect estimation. The accumulated beamcharge was in the range of 0.3–0.8μC. The measured X-rayspectra were quantified using the software package GUPIX(Maxwell et al., 1995). Matrix composition and density wereestimated using the standard RUMP package (www.genplot.

Table 3Electron microprobe analyses of monazite grains from granulite from Stary Gierałtó

Pt# La2O3 Ce2O3 Sm2O3 Nd2O3 Pr2O3 Eu2O3 Gd2O3 Dy2O3 E

1-1 15.61 30.85 0.48 9.73 3.29 0.06 nd nd n1-2 17.26 31.41 0.46 8.77 3.03 nd 0.02 nd 02-1 C 15.34 31.47 0.74 8.97 2.80 0.02 nd nd n2-2 C 16.22 31.39 0.94 9.92 3.22 0.05 0.16 nd n2-3 C 16.07 30.96 0.48 8.65 2.89 nd nd nd n3-1 A 16.80 31.41 0.68 9.14 3.18 nd nd nd 03-2 A 15.92 31.54 0.93 10.22 3.76 0.02 0.04 nd 04-1 16.71 32.72 0.49 7.73 3.04 0.04 nd nd n4-2 16.50 32.40 0.37 7.80 2.79 0.03 0.06 nd n5-1 16.56 31.27 1.45 9.70 3.35 0.08 0.40 nd n5-2 17.34 31.69 1.33 9.58 3.03 0.09 0.78 0.05 n5-3 16.07 31.72 0.84 9.66 3.38 0.03 0.08 nd n6-1 B 17.14 30.73 0.92 9.85 2.85 nd 0.08 nd n6-2 B 17.47 32.04 1.03 9.74 2.88 nd 0.20 nd n7-1 16.66 32.00 0.93 9.41 3.60 0.12 0.03 nd n8-1 D 16.34 31.20 0.73 9.06 3.07 nd 0.10 nd n8-2 D 16.13 30.71 0.57 8.51 3.16 0.08 nd nd n9-1 16.01 32.38 1.00 9.82 2.94 nd 0.01 nd n9-2 16.36 31.44 0.77 9.01 3.57 nd nd nd n9-3 16.19 32.80 1.22 9.40 3.26 nd 0.32 nd n10-1 12.47 25.63 1.97 8.88 2.55 0.10 1.39 0.66 010-2 13.47 27.26 1.92 9.32 3.10 0.13 1.30 0.54 0

nd — not detected.

com), the proprietary RBS software and the GUPIX routine formatrix iteration. Elements used for chemical age calculationwere analyzed with detection limit up to 1ppm. REEs were notanalyzed due to peak interference problems (e.g., La is difficultto separate from Nd on the PIXE spectra).

w; all labels are the same as in Fig. 6

r2O3 Yb2O3 Y2O3 UO2 ThO2 PbO SiO2 CaO P2O5 Total

d nd nd 0.13 6.00 0.07 1.22 0.77 30.54 98.77.07 nd nd 0.08 4.93 0.01 1.09 0.69 30.92 98.76d nd nd 0.06 4.56 0.20 0.92 0.61 31.49 97.21d nd 0.03 0.09 3.48 0.04 0.63 0.60 31.14 97.92d 0.01 nd 0.13 6.47 0.11 1.26 0.89 30.56 98.48.04 nd nd 0.02 5.04 0.03 0.99 0.78 30.34 98.49.04 nd 0.13 0.10 3.56 nd 0.67 0.55 30.98 98.59d nd nd 0.04 5.73 0.04 1.20 0.71 30.71 99.17d 0.04 nd 0.23 5.49 0.03 1.16 0.74 30.73 98.36d nd 0.17 0.04 3.36 0.05 0.44 0.75 32.56 100.25d 0.01 0.55 0.06 2.04 nd 0.51 0.40 31.24 98.78d nd nd 0.02 4.26 0.04 0.82 0.63 31.78 99.34d nd nd 0.13 4.10 0.11 1.09 0.47 30.54 98.00d nd nd 0.05 2.37 0.08 0.55 0.46 31.79 98.66d nd nd 0.03 4.29 0.01 0.96 0.54 32.03 100.63d nd 0.07 0.11 5.26 0.07 0.90 0.79 31.31 98.98d 0.01 0.01 0.24 7.27 0.17 1.37 0.96 30.79 99.97d nd 0.02 0.12 3.82 0.05 0.73 0.74 30.66 98.32d nd nd 0.02 4.59 0.10 0.82 0.75 31.26 98.73d 0.01 0.10 0.04 2.26 nd 0.62 0.24 31.24 97.74.12 0.02 3.26 1.69 4.22 0.30 0.28 1.26 32.23 97.11.08 nd 2.55 1.48 3.55 0.17 0.32 1.13 32.19 98.51

682 M.A. Kusiak et al. / Gondwana Research 14 (2008) 675–685

4. Results

4.1. EPMA analyses

A total of 161 spots on 6 monazite grains were analyzed(Table 1). Compositions vary from 2.38 to 7.41wt.% for ThO2,0.18–0.16wt.% for UO2 and 0.038–0.117wt.% for PbO.Apparent spot ages are scattered between 278 and 411Ma. Agedata can be fitted to a well-defined isochron, corresponding to anage of 347 ± 13Ma (MSWD = 0.79). CHIME isochron has ay-intercept within error of the origin (− 0.0018 + 0.0030) (Fig. 2).Compositional variations inmonazite grains show no correlationswith apparent ages (Fig. 3).

4.2. PIXE analyses

The six monazite grains analyzed by electron microprobewere re-analyzed by proton microprobe. Apparent ages obtainedare consistent with those from EPMA analysis, i.e. between 298and 364Ma (Fig. 4). Most of the proton microprobe analyseshave strong Sr peaks in the PIXE spectra (Fig. 5). There is apositive correlation between Sr and Y content (Table 2).

4.3. Monazite zoning and composition

Monazite grains from felsic granulite are typically larger than100μm, with little or no zoning visible in BSE images. Wherevisible, zoning is patchy, mosaic or (less commonly) concentric,usually with no relationship to grain boundaries. In a few grains,narrow, bright rims are common (Fig. 6), with elevated Thcontents. Ten monazite grains were analyzed for REE, Ca and Si(Table 3). Results confirm the stoichiometric coupled substitu-tion of Th + Ca and Th + Si in the monazite structure (Fig. 7). Thand U are positively correlated with Si and Ca, and negativelycorrelated with LREE, suggesting substitution of huttonite andcheralite components. BSE brightness corresponds to higher Th(+Ca and Si) and lower Y (+HREE) contents. There are nosystematic correlations between U and Th contents.

Fig. 7. A diagram showing huttonitic and brabanditic substitutions in monazite(after Förster, 1998) from felsic granulite from Stary Gierałtów. Formulaproportions (REE+Y+P) vs. (Th+U+Si) are calculated on the basis of 4oxygen atoms.

5. Discussion and concluding remarks

5.1. Monazite chemistry

Monazite can incorporate many elements into its structure viawell-documented substitutions. The negative correlation betweenTh (+Ca and Si) and Y (+HREE) reflects the coupledsubstitutions: Th4+ (or U) + Ca2+ = 2REE3+ (brabantite; Rose,1980), and Th4+ (or U) + Si4+ = LREE3+ + P5+ (huttonite; Pabstand Hutton, 1951). Dissolution experiments byWolf and London(1995) have shown that, under experimental conditions of 750°Cand 200MPa, concentration profiles in REE- and Sr-rich apatiteshow high levels of La2O3 and Ce2O3 in monazite and nodetectable SrO in monazite. Garnet is known to exert a stronginfluence over the Y (+REE) budget during metamorphism; thepresence or concurrent growth of garnet in an assemblage willlead to Y (+HREE) depletion in minerals such as monazite (e.g.,Bea and Montero, 1999; Pyle et al., 2001; Kelly et al., 2006).

A characteristic feature of monazite analyzed is elevated Srcontent, up to 750ppm in some grains. Occurrences of Sr-bearingmonazite from HP rocks has been documented elsewhere in theBM (Krenn and Finger, 2004), andmay have formed as a result ofplagioclase breakdown during HP metamorphism. As such, Sr-bearing monazite can be an important indicator of HP meta-morphism in rock units or terranes (Finger and Krenn, 2007).Positive Sr anomalies have been noted in OSD amphibolites fromall formations (Floyd et al., 1996), which could reflect a degree ofprimary plagioclase accumulation, or possibly Sr mobility.Nagasaki and Enami (1998) showed that clinozoisite and epidote,common in many HP rocks, are capable of taking up Sr, thusinhibiting the formation of other Sr-bearing minerals, such as Sr-apatite. Due to a fact that lattice diffusion in monazite is muchslower relative to apatite (Cherniak and Ryerson, 1993; Cherniaket al., 2004) monazite may preserve high Sr content.

The Sr content in monazite from Gierałtów granulite is lowerthan that described by Krenn and Finger (2004). The presence ofSr can be accounted for by substitution of a Sr-brabantite end-member Sr(Th,U)(PO4)2. Investigation of the replacement of Ca2+

by other ions, such as Sr2+ shows that most of the monazite grainscould contain some amount of Sr (Montel et al., 2002). Themonazite structure also has a high capacity for Th and as wellaccompanying divalent cations. A characteristic of this is thepositive correlation of Sr and Y but not Th, which is attributed to axenotime component, since YPO4 is not known with monoclinicstructure. According to Krenn and Finger (2004), Sr-bearingmonazite may have significantly higher common Pb contents.However, the CHIME isochron has a y-intercept within error ofthe origin, suggesting that common Pb is negligible.

5.2. Evaluation of monazite geochronology

Electron and proton microprobe analyses provide similarresults to a relativelywide range techniques. The ca. 347Ma age isconsistent with U–Pb zircon and Sm–Nd garnet dating ofgranulites (Brueckner et al., 1991; Steltenpohl et al., 1993;Maluski et al., 1995; Klemd and Bröcker, 1999; Turniak et al.,2000; Lange et al., 2002; Marhaine et al., 2002; Štipska et al.,

683M.A. Kusiak et al. / Gondwana Research 14 (2008) 675–685

2004; Bröcker et al., 2005; Lange et al., 2005a,b; Anczkiewiczet al., 2007). There are no distinct age data to indicate monazitegrowth during a ca. 380Ma metamorphic event in the OSD(Borkowska et al., 1990; Klemd and Bröcker, 1999; Anczkiewiczet al., 2007). Additionally, analyzed grains exhibit patchy ormosaic age patterns. Similar internal structures have beenpreviously reported for monazite from the Góry Sowie Block ofthe BM, and were interpreted as sections through irregular butconcentric growth zones that fail to expose the centers ofmonazitecrystals (Gordon et al., 2005). Since most grains show patchyzoning, such an explanation is unsatisfactory in the present case.Monazite can be highly embayed due to irregularities in growth indifferent directions or to resorption due to monazite-consumingreactions (Spear and Pyle, 2002). Later growth of monazite mayfill embayments, resulting in mosaic textures. Another explana-tion of age inhomogeneity can be a result of possible analyticalerror in analyzed spots.

Application of electron microprobe and proton microprobeanalysis provided new age data for felsic granulites from StaryGierałtów, and the results obtained using both techniques are thesame. The 340–350Ma event was interpreted as the peak of high-pressure granulite-facies conditions metamorphism (Štipská et al.,2004; Lange et al., 2005a,b) or the cooling stage after peak of theultra-high-pressure metamorphic event (Brueckner et al., 1991;Klemd and Bröcker, 1999). However, more recently the age of ca.340Ma has been considered as that of retrograde metamorphism ofgranulites under amphibolite-facies conditions at higher crustallevels (Anczkiewicz et al., 2007). According to the latter model,monazite ages determined in our study are interpreted as related tomonazite growth under the amphibolite-facies metamorphism.

Acknowledgements

P. Dzierżanowski and L. Jeżak are thanked for their assistancein electronmicroprobe analyses.We also thankM.Bröcker andR.Wysoczański for critical comments and constructive review of themanuscript. The research was financially supported by the JapanSociety for the Promotion of Science, grant no P05729. M.A.Kusiak is a fellow of the Foundation for Polish Science.

References

Aleksandrowski, P., Kryza, R., Mazur, S., Żaba, J., 1997. Kinematic data onmajor Variscan strike–slip faults and shear zones in the Polish Sudetes,northeast Bohemian Massif. Geological Magazine 134, 727–739.

Anczkiewicz, R., Szczepański, J., Mazur, S., Storey, C., Crowley, Q., Villa, I.M.,Thirlwall,M.F., Jeffries, T.E., 2007. Lu–Hf geochronology and trace elementdistribution in garnet: Implications for uplift and exhumation of ultra-highpressure granulites in the Sudetes, SW Poland. Lithos 95, 363–380.

Åmli, R., Griffin, W.L., 1975. Microprobe analysis of REE minerals usingempirical correction factors. American Mineralogist 60, 599–606.

Bakun-Czubarow, N., 1968. Geochemical characteristics of eclogites from theenvirons of Nowa Wieś in the region of Śnieżnik Kłodzki. ArchiwumMineralogiczne 28, 243–382.

Bakun-Czubarow, N., 1989. On the Sudetic eclogite, SW Poland. Terra Cognita(Third Int. Eclogite Conf., Wurzburg, Germany), vol. 1, p. 2.

Bakun-Czubarow, N., 1991. Geodynamic significance of the Variscan HPeclogite–granulite series of the Złote Mountains in the Sudetes SW Poland.Publications of the Institute of Geophysics, Polish Academy of Sciences A-19 236, 215–242.

Bakun-Czubarow, N., 1992. Quartz pseudomorphs after coesite and quartzexsolutions in eclogitic omphacites of the Złote Mountains in the Sudetes(SW Poland). Archiwum Mineralogiczne 48 z. 1–2, 3–25.

Bakun-Czubarow, N., 1998. Ilmenite-bearing eclogites of the West Sudetes —their geochemistry and mineral chemistry. Archiwum Mineralogiczne 51, z.1–2, 29–110.

Bakun-Czubarow, N., Kusy, D., 2001. Peak metamorphism conditions ofphengite-bearing eclogite from the eastern termination of the West Sudetes(SW Poland). UHPM Workshop, Waseda University, pp. 180–184.

Bea, F., Montero, P., 1999. Behavior of accessory phases and redistribution ofZr, REE, Y, Th and U during metamorphism and partial melting of meta-pelites in the lower crust: an example from the Kinzigite Formation of Ivrea-Verbano, NW Italy. Geochimica et Cosmochimica Acta 63, 1133–1153.

Borkowska, M., Dörr, W., 1998. Some remarks on the age and mineralchemistry of orthogneisses from the Lądek – Śnieżnik Metamorphic Massif-Sudetes, Poland. Terra Nostra 98 (2), 27–30.

Borkowska, M., Choukroune, P., Hameuret, J., Martineau, F., 1990. Ageochemical investigation of the age, significance and structural evolutionof the Caledonian–Variscan granite–gneisses of the Śnieżnik metamorphicarea (Central Sudetes, Poland). Geologica Sudetica 25, 1–27.

Bröcker, M., Klemd, R., 1996. Ultrahigh-pressure metamorphism in theŚnieżnik Mountains (Sudetes, Poland): P–T constraints and geologicalimplications. Journal of Geology 104, 417–433.

Bröcker, M., Brock, W., Cosca, M., Klemd, R., 2005. The importance of pre-350Ma ages in eclogites from the Orlica-Śnieżnik complex, BohemianMassif,Poland.Mitteilungen derOÉsterreichischenMineralogischenGesellschaft 150.

Brueckner, H.K., Medaris, L.G., Bakun-Czubarow, N., 1991. Nd and Sr ageisotope patterns from the Variscan eclogite of the eastern Bohemian Massif.Neues Jahrbuch für Mineralogie, Abhandlungen 163, 169–196.

Cherniak, D.J., Ryerson, F.J., 1993. A study of strontium diffusion in apatiteusing Rutherford backscattering spectroscopy and ion implantation.Geochimica et Cosmochimica Acta 57, 829–840.

Cherniak, D.J., Watson, E.B., Grove, M., Harrison, T.M., 2004. Pb diffusion inmonazite: a combined RBS/SIMS study. Geochimica et Cosmochimica Acta68, 829–840.

Cocherie, A., Albarede, F., 2001. An improved U–Th–Pb age calculation forelectron microprobe dating of monazite. Geochimica et Cosmochimica Acta65, 4509–4522.

Cymerman, Z., 1992. Rotational ductile deformations in the ŚnieżnikMetamorphic Complex. Geological Quarterly 36, 393–420.

Cymerman, Z., Piasecki, M., 1994. The terrane concept in the Sudetes,Bohemian massif. Geological Quarterly 38, 191–210.

Don, J., Dumicz, M., Wojciechowska, I., Żelaźniewicz, A., 1990. Lithology andtectonics of the Orlica-Śnieżnik dome, Sudetes— recent state of knowledge.Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen 179,159–388.

Finger, F., Krenn, E., 2007. Three metamorphic monazite generations in a high-pressure rock from the Bohemian Massif and the potentially important roleof apatite in stimulating polyphase monazite growth along a PT loop. Lithos95, 103–115.

Fischer, G., 1936. Der Bau des Glatzer Schneegebirges, Jahrbuch Preuss.Geologischen Landesamt 56, 712–732.

Floyd, P.A.,Winchester, J.A., Ciesielczuk, J., Lewandowska, A., Szczepański, J.,Turniak, K., 1996. Geochemistry of early Paleozoic amphibolites from theOrlica-Śnieżnik dome, Bohemian massif: petrogenesis and paleotectonicaspects. Geologische Rundschau 85, 225–238.

Förster, H.-J., 1998. The chemical composition of REE–Y–Th–U-richaccessory minerals in peraluminous granites of the Erzgebirge–Fichtelge-birge region, Germany, Part I: the monazite–(Ce)–brabantite solid solutionseries. American Mineralogist 83, 259–272.

Franke, W., Żelaźniewicz, A., 2002. Structure and evolution of the BohemianArc. In: Winchester, J.A., Pharaoh, T.C., Verniers, J. (Eds.), PaleozoicAmalgamation of Central Europe. Special Publication — GeologicalSociety of London, 201, pp. 279–293.

Gordon, S.M., Schneider, D.A., Manecki, M., Holm, D.K., 2005. Exhumationand metamorphism of an ultrahigh-grade terrane: geochronometric inves-tigations of the Sudete Mountains (Bohemia), Poland and Czech Republic.Journal of the Geological Society, London 162, 841–855.

684 M.A. Kusiak et al. / Gondwana Research 14 (2008) 675–685

Jercinovic, M.J., Williams, M.L., 2005. Analytical perils (and progress) inelectron microprobe trace element analysis applied to geochronology:background acquisition, interferences, and beam irradiation effects. Amer-ican Mineralogist 90, 246–526.

Kelly, N.M., Clarke, G.L., Harley, S.L., 2006. Monazite behavior and agesignificance in poly-metamorphic high-grade terrains: a case study from thewestern Musgrave Block, central Australia. Lithos 88, 100–134.

Klemd, R., Bröcker, M., 1999. Fluid influence on mineral reactions in ultrahigh-pressure granulites: a case study in the Śnieżnik Mts. (West Sudetes,Poland). Contributions to Mineralogy and Petrology 136, 358–373.

Klemd, R., Bröcker, M., Schramm, J., 1995. Characterization of amphibolite-facies fluids of Variscan eclogite from the Orlica-Śnieżnik dome (Sudetes,SW Poland). Chemical Geology 119, 101–113.

Krenn, E., Finger , F., 2004. Metamorphic formation of Sr-apatite and Sr-bearingmonazite in a high-pressure rock from the Bohemian Massif. AmericanMineralogist 89, 1323–1329.

Kröner, A., Hegner, E., Jaeckel, P., 1997. Cambrian to Ordovician granitoidorthogneisses on the Polish and Czech West Sudetes Mts and theirgeodynamic significance. Terra Nostra 97, 67–68.

Kröner, A., Jaeckel, P., Hegner, E., Opl, M., et al., 2001. Single zircon ages andwhole-rock Nd isotopic systematics of early Palaeozoic granitoid gneissesfrom the Czech and Polish Sudetes (Jizerské hory, Krkonoše Mountains andOrlice–Snežník Complex). International Journal of Earth Sciences 90,1437–3262.

Kryza, R., Pin, C., Vielzeuf, D., 1996. High-pressure granulites from the Sudetes(south-west Poland): evidence of crustal subduction and collisional thickeningin the Variscan Belt. Journal of Metamorphic Geology 14, 531–546.

Kryza, R., Mazur, S., Oberc-Dziedzic, T., 2004. The Sudetic geological mosaic:insights into the root of the Variscan orogen. Przegląd Geologiczny 52,761–773.

Kusiak, M.A., Lekki, J., 2008. Proton microprobe for chemical dating ofmonazite. Gondwana Research 14, 617–643 (this issue).

Lange, U., Bröcker, M., Mezger, K., Don, J., 2002. Geochemistry and Rb–Srgeochronology of a ductile shear zone in the Orlica-Śnieżnik dome (WestSudetes, Poland). International Journal of Earth Sciences 91, 1005–1016.

Lange, U., Bröcker, M., Armstrong, R., Trapp, E., Mezger, K., 2005a. Sm–Ndand U–Pb dating of high-pressure granulites from the Złote and RychlebyMts (Bohemian Massif, Poland and Czech Republic). Journal ofMetamorphic Geology 23, 133–145.

Lange, U., Bröcker, M., Armstrong, R., Żelaźniewicz, A., Trapp, E., Mezger, K.,2005b. The orthogneisses of the Orlica-Śnieżnik complex (West Sudetes,Poland): geochemical characteristics, the importance of pre-Variscanmigmatization and constraints on the cooling history. Journal of theGeological Society, London, 162, 973–984.

Lebed, S., Stachura, Z., Cholewa, M., Legge, G.J.F., Lekki, J., Maranda, S.,Potempa, A., Sarmecki, C., Szklarz, Z., Styczen, J., Sulkio-Cleff, B., 2001.The new Cracow scanning nuclear microprobe. Nuclear Instruments andMethods in Physics Research B 181, 85–98.

Maluski, H., Rajlich, P., Souček, J., 1995. Pre-Variscan, Variscan and earlyAlpine thermo-tectonic history of the north-eastern Bohemian Massif: an40Ar/39Ar study. Geologische Rundschau 84, 345–358.

Marheine, D., Kachlik, V., Maluski, H., Patocka, F., Żelaźniewicz, A., 2002. The40Ar–39Ar ages from the West Sudetes (NE Bohemian Massif): constraintson the Variscan polyphase tectonothermal development. PalaeozoicAmalgamation of Central Europe. Special Publication. Geological SocietyLondon, pp. 133–135.

Matte, Ph., Maluski, H., Rajlich, P., Franke, W., 1990. Terrane boundaries in theBohemian Massif: Result of large-scale Variscan shearing. Tectonophysics177, 151–170.

Maxwell, J.A., Teesdale, W.J., Campbell, J.L., 1995. The Guelph PIXESoftware Package. Nuclear Instruments and Methods in Physics Research B95, 407–421.

Montel, J.M., Foret, S., Veschambre, M., Nicollet, Ch., Provost, A., 1996.Electron microprobe dating of monazite. Chemical Geology 131, 37–53.

Montel, J.M., Devidal, J.L., Avignant, D., 2002. X-ray diffraction study ofbrabantite–monazite, solid solution. Chemical Geology 191, 89–104.

Nagasaki, A., Enami, M., 1998. Sr-bearing zoisite and epidote in ultra-high-pressure (UHP) metamorphic rocks from the Su-Lu province, eastern China:

an important Sr reservoir UHP conditions. American Mineralogist 83,240–247.

Oliver, G.J.H., Corfu, F., Krogh, T.E., 1993. U–Pb ages from SW Poland:evidence for a Caledonian suture zone between Baltica and Gondwana.Journal of the Geological Society, London 150, 69–355.

Pabst, A., Hutton, C.O., 1951. Huttonite, a new thorium silicate. AmericanMineralogist 36, 60–69.

Pyle, J., Spear, F.S., Rudnick, R.L., McDonough, W.F., 2001. Monazite–xenotime–garnet equilibrium in metapelites and a new monazite–garnetthermometer. Journal of Petrology 42, 2083–2107.

Pyle, J.M., Spear, F.S., Wark, D.A., Daniel, C.G., Storm, L.C., 2005.Contributions to precision and accuracy of monazite microprobe ages.American Mineralogist 90, 547–577.

Rose, D., 1980. Brabantite, CaTh(PO4)2 a new mineral of the monazite group.Neues Jahrbuch für Mineralogie - Monatshefte 6, 247–257.

Santosh, M., Sajeev, K., Li, J.H., 2006a. Extreme crustal metamorphism duringColumbia supercontinent assembly: evidence from the North China Craton.Gondwana Research 10, 256–266.

Santosh, M., Collins, A.S., Tamashiro, I., Koshimoto, S., Tsutsumi, Y.,Yokoyama, K., 2006b. The timing of ultrahigh-temperature metamorphismin southern India: U–Pb electron microprobe ages from zircon and monazitein sapphirine-bearing granulites. Gondwana Research 10, 128–155.

Santosh, M., Tsunogae, T., Li, J.H., Liu, S.J., 2007. Discovery of sapphirine-bearing Mg–Al granulites in the North China Craton: implications forPaleoproterozoic ultrahigh temperature metamorphism. GondwanaResearch 11, 263–285.

Schulmann, K., Ledru, P., Autran, A., Melka, R., Lardeaux, J.M., Urban, M.,Lobkowicz, M., 1991. Evolution nappes in the eastern margin of theBohemian Massif: a kinematic interpretation. Geologische Rundschau 80,73–92.

Skridalaite, G., Baginski, B., Whitehouse, M., 2008. Significance of ca.1.5Gazircon and monazite ages from charnockites in southern Lithuania and NEPoland. Gondwana Research 14, 663–674 (this issue).

Smellie, J.A.T., Cogger, N., Herrington, J., 1978. Standards for quantitativemicroprobe determination of uranium and thorium with additionalinformation on the chemical formulae of davidite and euxenite polycrase.Chemical Geology 22, 1–10.

Smulikowski, 1967. Eclogite of the Śnieżnik Mountains in the Sudetes.Geologia Sudetica 3, 157–174.

Smulikowski, K., Bakun-Czubarow, N., 1973. New data concerning thegranulite–eclogite rock series of Stary Gierałtów, East Sudetes, Poland.Bulletin de l'Académie Polonaise des Sciences 21, 1, 25–34.

Souza, D.Z.S., Montel, J.M., Gioia, S.M.L.C., Hollanda, M.H.B.M., Nasci-mento, A.L., de Sa, E.F.J., Amaro, V.E., Pimentel, M.M., Ladeaux, J.M.,Veschambre, M., 2006. Electron microprobe dating of monazite from high-Tshear zones in the São José de Campestre Massif, NE Brazil. GondwanaResearch 9, 441–455.

Spear, F.S., Pyle, J.M., 2002. Apatite, monazite, and xenotime in metamorphicrocks. In: Kohn, M.J., Rakovan, J., Hughes, J.M. (Eds.), Phosphates: Geo-chemical, Geobiological, and Materials Importance. Reviews in Mineralogyand Geochemistry, vol. 48. Mineralogical Society of America, Washington,D.C., pp. 293–335.

Steltenpohl, M.G., Cymerman, Z., Krogh, E.J., Kunk, M.J., 1993. Exhumationof eclogitized continental basement during Variscan lithospheric delamina-tion and gravitational collapse, Sudety Mountains, Poland. Geology 21,1111–1114.

Suzuki, K., Adachi, M., 1991. Precambrian provenance and Silurianmetamorphism of the Tsubonosawa paragneiss in the South Kitakamiterrane, Northeast Japan, revealed by the chemical Th–U–total Pbisochron ages of monazite, zircon and xenotime. Geochemical Journal 25,357–376.

Suzuki, K., Adachi, M., 1994. Middle Precambrian detrital monazite and zirconthe Hide gneiss on Oki-Dogo Island, Japan: their origin and implicationsfor the correlation of basement gneiss of Southwest Japan and Korea.Tectonophysics 235, 277–292.

Suzuki, K., Adachi, M., 1998. Denudation history of the high T/P Ryokemetamorphic belt, Southwest Japan: constraints from CHIMEmonazite agesof gneisses and granitoids. Journal of Metamorphic Geology 16, 23–37.

685M.A. Kusiak et al. / Gondwana Research 14 (2008) 675–685

Suzuki, K., Kato, T., 2008. CHIME dating of monazite, xenotime, zircon andpolycrase: protocol, pitfalls and chemical criterion of possibly discordantage data. Gondwana Research 14, 569–586 (this issue).

Suzuki, K., Dunkley, D., Adachi, M., Chwae, U., 2006. Discovery of a c.370Magranitic gneiss clast from the Hwanggangri pebble-bearing phyllite in theOkcheon metamorphic belt, Korea. Gondwana Research 9, 85–94.

Szczepański, J., Anczkiewicz, R., Mazur, S., Thirlwall, M., 2004. Constraints ontiming of ultra-high pressuremetamorphism in the Orlica-Śnieżnik dome,WestSudetes. Mineralogical Society of Poland— Special Papers 24, 365–368.

Škvor, V., Zeman, J., 1969. The Variscides of the Bohemian Massif.Tectonophysics 8, 145–155.

Štipska, P., Schulmann, K., Kröner, A., 2004. Vertical extrusion and middlecrustal spreading of omphacite granulite: a model of syn-convergentexhumation (Bohemian Massif, Czech Republic). Journal of MetamorphicGeology 22, 179–198.

Tait, J.A., Bachtadse, V., Franke, W., Soffel, H.C., 1997. Geodynamic evolutionof the European Variscan fold belt: pelaeomagnetic and geologicalconstraints. Geologische Rundschau 86, 585–598.

Townsend, K.J., Miller, C.F., Andrea, J.L.D., Ayers, J.C., Harrison, T.M., Coath,C.D., 2000. Low temperature replacement of monazite in the Ireteba granite,

Southern Nevada: geochronological implications. Chemical Geology 172,95–112.

Turniak, K., Mazur, S., Wysoczański, R., 2000. SHRIMP zircon geochronologyand geochemistry of the Orlica-Śnieżnik gneisses (Variscan belt of CentralEurope) and their tectonic implications. Geodinamica Acta 13, 293–312.

Vaughan, P.M., Pankhurst, R.J., 2008. Tectonic overview of the West Gondwanamargin. Gondwana Research 13, 150–162.

Williams, M.L., Jercinovic, M.J., Goncalves, P., Mahan, K., 2006. Format andphilosophy for collecting, compiling, and reporting microprobe monaziteages. Chemical Geology 225, 1–15.

Williams, M.L., Jercinovic, M.J., Hetherington, C.L., 2007. Microprobe monazitegeochronology: understanding geologic processes by integrating compositionand chronology. Annual Review of Earth and Planetary Sciences 35, 137–175.

Wolf, M.B., London, D., 1995. Incongruent dissolution of REE-and Sr-richapatite in peraluminous granitic liquids: differential apatite, monazite, andxenotime solubilities during anatexis. American Mineralogist 80, 765–775.

York, D., 1966. Least-square fitting of straight line. Canadian Journal of Physics44, 1079–1088.