PLATINUM PALLADIUM NUGGETS AND MERCURY-RICH PALLADIFEROUS PLATINUM FROM SERRO, MINAS GERAIS, BRAZIL

14
385 § E-mail address: [email protected] or [email protected] The Canadian Mineralogist Vol. 44, pp. 385-397 (2006) PLATINUM–PALLADIUM NUGGETS AND MERCURY-RICH PALLADIFEROUS PLATINUM FROM SERRO, MINAS GERAIS, BRAZIL ALEXANDRE RAPHAEL CABRAL § AND GEORGES BEAUDOIN Département de géologie et de génie géologique, Université Laval, Pavillon Adrien-Pouliot, Québec, QC G1K 7P4, Canada ROGERIO KWITKO-RIBEIRO Centro de Desenvolvimento Mineral, Companhia Vale do Rio Doce, Rodovia BR 262/km 296, Caixa Postal 09, 33030-970 Santa Luzia – MG, Brazil BERND LEHMANN Institut für Mineralogie und Mineralische Rohstoffe, Technische Universität Clausthal, Adolph-Roemer-Str. 2A, D–38678 Clausthal-Zellerfeld, Germany JOSÉ CARLOS POLÔNIA Rua Paris 105, 34800-000, Caeté – MG, Brazil MARC CHOQUETTE Département de géologie et de génie géologique, Université Laval, Pavillon Adrien-Pouliot, Québec, QC G1K 7P4, Canada ABSTRACT Arborescent, botryoidal and reniform grains of platinum and palladium from Córrego Bom Sucesso, Serro, Minas Gerais, Brazil, were investigated by scanning electron microscopy and electron-microprobe analysis. The nuggets reach a maximum length of 2.5 mm and exhibit core-to-rim compositional zoning in platinum, palladium and mercury contents. One grain is note- worthy for a marginal halo of mercury-rich palladiferous platinum and internal vermiform lamellae enriched in mercury and gold. The mercury-rich palladiferous platinum has 10–20 wt% Hg and an empirical stoichiometry close to (Pt,Hg) 2 Pd. Hexagonal crystals occur in palladiferous platinum forming a peripheral zone of an arborescent grain. These crystals are compositionally analogous to stoichiometric PdPt and seem to represent an ordered phase distinct from either platinum or palladium. Most Pt–Pd grains have dissolution pits, suggesting that they are primary nuggets that have been weathered. Anatase, with or without inter- growth of gold, and Na–K–Cl-bearing aggregates postdate the Pt–Pd nuggets. Selenium is a minor alloying constituent (up to 0.3 wt%) in the Pt–Pd nuggets. The ratio S:Se is <1 and suggests fractionation of selenium from sulfur under low-temperature oxidizing conditions. Such oxidizing conditions are reflected in the Fe-poor bulk composition of the alloys. The Pt–Pd nuggets from Córrego Bom Sucesso are consistent with the observation that almost all economically important Brazilian Pd–Pt-bearing deposits associated with gold or hematite (or both) have a distinctive seleniferous signature. Keywords: platinum, palladium, mercury-rich palladiferous platinum, PdPt, alluvial nuggets, Córrego Bom Sucesso, Serro, Minas Gerais, Brazil. SOMMAIRE Des grains arborescents, botryoïdaux et réniformes de platine et de palladium provenant de Córrego Bom Sucesso, Serro, Minas Gerais, Brésil, ont fait l’objet d’analyses avec un microscope électronique à balayage et une microsonde électronique. Les pépites atteignent une longueur maximale de 2.5 mm et montrent une zonation du noyau à la bordure en Pt, Pd et Hg. Un grain est particulier pour son liseré de platine palladifère riche en mercure et des lamelles internes vermiformes enrichies en Hg et Au. Le liseré contient 10–20% de Hg par poids, et possède une stoechiométrie empirique proche de (Pt,Hg) 2 Pd. Des cristaux hexa- gonaux de platine palladifère forment une zone périphérique d’un grain arborescent. Ces cristaux ont une composition analogue

Transcript of PLATINUM PALLADIUM NUGGETS AND MERCURY-RICH PALLADIFEROUS PLATINUM FROM SERRO, MINAS GERAIS, BRAZIL

385

§ E-mail address:[email protected]@yahoo.com.br

The Canadian MineralogistVol.44,pp.385-397(2006)

PLATINUM–PALLADIUM NUGGETS AND MERCURY-RICH PALLADIFEROUS PLATINUM FROM SERRO, MINAS GERAIS, BRAZIL

AlexAndrerAphAelCABrAl§AndGeorGesBeAUdoIn

Département de géologie et de génie géologique, Université Laval, Pavillon Adrien-Pouliot, Québec, QC G1K 7P4, Canada

roGerIoKWITKo-rIBeIro

Centro de Desenvolvimento Mineral, Companhia Vale do Rio Doce, Rodovia BR 262/km 296, Caixa Postal 09, 33030-970 Santa Luzia – MG, Brazil

BerndlehMAnn

Institut für Mineralogie und Mineralische Rohstoffe, Technische Universität Clausthal, Adolph-Roemer-Str. 2A, D–38678 Clausthal-Zellerfeld, Germany

JoséCArlospolÔnIA

Rua Paris 105, 34800-000, Caeté – MG, Brazil

MArCChoQUeTTe

Département de géologie et de génie géologique, Université Laval, Pavillon Adrien-Pouliot, Québec, QC G1K 7P4, Canada

ABsTrACT

Arborescent,botryoidalandreniformgrainsofplatinumandpalladiumfromCórregoBomSucesso,Serro,MinasGerais,Brazil,wereinvestigatedbyscanningelectronmicroscopyandelectron-microprobeanalysis.Thenuggetsreachamaximumlengthof2.5mmandexhibitcore-to-rimcompositionalzoninginplatinum,palladiumandmercurycontents.Onegrainisnote-worthyforamarginalhaloofmercury-richpalladiferousplatinumandinternalvermiformlamellaeenrichedinmercuryandgold.Themercury-richpalladiferousplatinumhas10–20wt%Hgandanempiricalstoichiometrycloseto(Pt,Hg)2Pd.Hexagonalcrystalsoccurinpalladiferousplatinumformingaperipheralzoneofanarborescentgrain.ThesecrystalsarecompositionallyanalogoustostoichiometricPdPtandseemtorepresentanorderedphasedistinctfromeitherplatinumorpalladium.MostPt–Pdgrainshavedissolutionpits,suggestingthattheyareprimarynuggetsthathavebeenweathered.Anatase,withorwithoutinter-growthofgold,andNa–K–Cl-bearingaggregatespostdatethePt–Pdnuggets.Seleniumisaminoralloyingconstituent(upto0.3wt%)inthePt–Pdnuggets.TheratioS:Seis<1andsuggestsfractionationofseleniumfromsulfurunderlow-temperatureoxidizing conditions. Such oxidizing conditions are reflected in the Fe-poor bulk composition of the alloys. The Pt–Pd nuggets fromCórregoBomSucessoareconsistentwiththeobservationthatalmostalleconomicallyimportantBrazilianPd–Pt-bearingdepositsassociatedwithgoldorhematite(orboth)haveadistinctiveseleniferoussignature.

Keywords: platinum, palladium, mercury-rich palladiferous platinum, PdPt, alluvial nuggets, Córrego Bom Sucesso, Serro,MinasGerais,Brazil.

soMMAIre

Desgrainsarborescents,botryoïdauxetréniformesdeplatineetdepalladiumprovenantdeCórregoBomSucesso,Serro,MinasGerais,Brésil,ontfaitl’objetd’analysesavecunmicroscopeélectroniqueàbalayageetunemicrosondeélectronique.Lespépitesatteignentunelongueurmaximalede2.5mmetmontrentunezonationdunoyauàlabordureenPt,PdetHg.UngrainestparticulierpoursonliserédeplatinepalladifèrericheenmercureetdeslamellesinternesvermiformesenrichiesenHgetAu.Leliserécontient10–20%deHgparpoids,etpossèdeunestoechiométrieempiriqueprochede(Pt,Hg)2Pd.Descristauxhexa-gonauxdeplatinepalladifèreformentunezonepériphériqued’ungrainarborescent.Cescristauxontunecompositionanalogue

386 TheCAnAdIAnMInerAloGIsT

auPtPdstoechiométriqueetsemblentreprésenteruneespèceordonnéedistincteàlafoisduplatineoudupalladium.LaplupartdesgrainsdePt–Pdmontrentdespiqûresdedissolution,quiconcorderaientavecl’hypothèsequ’ilssontdespépitesprimairesassujettiesàunlessivage.L’anatase,avecousansintercroissanceavecl’or,etdesaggrégatsrichesenNa–K–Cl,sontvenusparlasuite.Leséléniumestprésentenproportionsmineures(jusqu’à0.3%parpoids)danslespépitesPt–Pd.LerapportS:Seest<1etsembleindiquerunfractionnementduSeàpartirduSenmilieuoxydantàfaibletempérature.Detelsmilieuxoxydantsexpliqueraient les faibles teneurs en Fe des alliages. Les pépites Pt–Pd de Córrego Bom Sucesso concordent avec l’observation quelagrandemajoritédesindicesdePd–PtéconomiquementimportantsauBrésilassociésavecl’oroul’hématite(oulesdeux)possèdentunesignaturesélénifèredistinctive.

(TraduitparlaRédaction)

Mots-clés:platine,palladium,platinepalladifèrericheenmercure,PdPt,pépitesalluvionnaires,CórregoBomSucesso,Serro,MinasGerais,Brésil.

the first time a natural mercury-bearing alloy of palla-diferous platinum, although platinum forms syntheticcompoundswithmercury(Berlincourtet al.1981).WealsodocumentcrystalsofPdPtstoichiometry,aswellas a significant enrichment in selenium of the Pt–Pd assemblage.

sAMpleMATerIAlAndCórreGoBoMsUCesso

Grainsofplatinumandpalladiumwerepurchasedfromaprospector,whorecoveredthembypanningallu-vium from a seasonal stream known as Corrégo Bom Sucesso,nearthebaroquevillageofSerro.AregionalgeologicalmapandalocationmapofthehistoricalBomSucessoprospectcanbefoundelsewhere(Cassedanneet al. 1996, Fleet et al.2002).Theprospecthasbeenworked manually for diamond, gold and platinum for more than twocenturies. It consists of unsorted allu-viumprotected fromerosionbybouldersofquartzite(Cassedanne & Alves 1992). The source rock for the Pt–Pd nuggets is unknown.

The Bom Sucesso valley runs over a sequence ofquartzite intercalated with schists, layers of massivehematite and lenses of diamantiferous metacon-glomerate, cut by a mafic intrusion metamorphosed to amphibolite grade (Cassedanne et al. 1996).Thequartzitesequence,previouslyattributedtothePaleo-proterozoic Minas Supergroup (Cassedanne &Alves1992, Fleet et al.2002),possiblybelongstotheMeso-proterozoicEspinhaçoSupergroupbecausediamantif-erousmetaconglomeratesarecharacteristicofthelatter(e.g., Chaves et al. 1998,Almeida-Abreu & Renger1999).TheEspinhaçoSupergroupwasdeformedduringtheBrasilianoorogeny,atabout600Ma(Trompetteet al.1992).

AnAlyTICAlTeChnIQUes

Nuggetsofplatinumandpalladiumofupto2.5mmacrosswereinvestigatedbyscanningelectronmicros-copy(SEM)atCompanhiaValedoRioDoce(CVRD),Brazil,andattheLaboratoiredeMicroanalyse,Univer-sité Laval (UL), Canada. Some grains were mountedinresinandpolishedforelectron-microprobeanalysis

InTrodUCTIon

Whatthehodiernalliteraturedesignatesas“uncon-ventional” deposits of platinum and palladium (i.e.,nonmagmatic,e.g.,Wildeet al.2003)usedtobequiteconventional in Brazil. Sample material from Brazil,possibly from Minas Gerais, gave the first evidence ofanaturalgold–palladiumalloy(Gehlen1811).ThecharacteristicallylightercolorofpalladiferousgoldwasnoticedbylocalminersatthedawnoftheGoldCyclein Minas Gerais (~1695–1785), when ouro branco(whitegold)wasrecoveredfromspecular-hematite-richplacers (Hussak 1904). Much of the ouro preto (black gold)thenextractedfromtheOuroPretoregionorigi-natedfromitabirite-hosted,palladiferous-gold-bearinglodes(e.g.,Eschwege1818,Hartt1870,Touzeau1892,Ferrand 1894, Scott 1902, Hussak 1904, Jedwab & Cassedanne 1998, Cabral et al. 2003).A vein withPt–Ag–Ir–Os-bearing gold associated with specularhematite from Minas Gerais was documented byLampadius&Plattner(1833).Humboldt(1826)notedtheoccurrenceofplatinumandpalladiumindiamantif-erousalluviaintheSerroarea.Thealluviaprovided(i)the samples in which Wollaston (1809) identified native palladium for the first time (Hussak 1904, Atencio 2000),andprobably(ii)thespecimensfromwhichtheelementpalladiumwasdiscoveredin1803(Cassedanne&Alves1992,Cassedanneet al.1996).

Alluvial platinum and palladium from the Serroregionarenoteworthyforthesui generismorphologyofbotryoidal,coralloidalandarborescentgrains,aswellasthe low content of base metals, particularly iron (Hussak 1904, 1906, Guimarães 1959, Cassedanne & Casse-danne1974,Cassedanne&Alves1992,Cassedanneet al. 1996, Fleet et al. 2002). Such uniqueness led Hussak (1904,1906)toproposeasecondary(supergene)recrys-tallization of platinum after a primary platiniferousmineral. Recently, a low-temperature hydrothermalorigin for the alluvial platinum and palladium fromCórregoBomSucessohasbeen favored (Cassedanneet al. 1996, Fleet et al.2002).

New observations on grains of platinum andpalladium from Córrego Bom Sucesso, Serro, MinasGerais,arepresentedhere.Inthisstudy,wereportfor

pt–pdnUGGeTs,serro,MInAsGerAIs,BrAzIl 387

with a Cameca SX100 at UL.Analytical conditions,standardsandX-rayemissionlineswereasfollows:15kV and 40 nA, a beam size 2 to 5 mmindiameter,andcounting times of 20 s and 10 s on peak and background, respectively; we used PtFe and pure Pt (PtLa), HgS(HgLa),Au(AuLa), CuFeS2(CuKa),PdS(PdLa), FeS2(SKa),andpureSe(SeLa)asstandards.X-ray-gener-atedelement-distributionimagesof512 3 512pixelswereacquiredusingthesamelinesandspectrometersona256 3 256-mmsquareareawithacountingtimeof50ms/pixel.

MorpholoGyAndCoMposITIonAlzonInG

Grainmorphologies arevariable anddelicate, andinclude arborescent (Fig. 1a), spongy (Fig. 1b) and botryoidal (Fig. 1c) types. Many of the botryoidal grains have a coating of titanium oxide (Fig. 1d). The Ti–Ophaseisconsideredtobeanatase(Cassedanneet al.1996).Anataseisnotrestrictedtothesurfaceofthegrains, but is also found as veinlets and as infillings of cavities, where it is intergrown with nanometricgold (Fig. 1e). Remarkably, though rarely observed, K-bearing NaCl occurs on grain surfaces (Fig. 1f). It possibly consists of fine-grained crystals of halite and sylvite. Some nuggets display a coralloidal habit(Fig. 2a), which is composed of intricately reticulated, delicate threads of palladiferous platinum (Figs. 2b, c). This form is strikingly similar to that of Wollaston’s originalspecimens,fromwhichtheelementpalladiumwas discovered (vide Fig. 3 of Cassedanne & Alves 1992).

Some grains show prominent cracking (Fig. 3a). Althoughbotryoidalnuggetshaveasmoothappearance,closerinspectionrevealsthatthesurfaceiscorrugatedand pitted (Fig. 3b). One botryoidal nugget has a particularlycomplexinternalmicrostructure,withrimsof brighter (higher mean Z) material surrounding anirregular core with lower mean Z (Figs. 3c, 4a). The core contains vermiform lamellae of brighter mate-rial and gold (Figs. 3c, 4a). Platinum tends to be most enriched in the margin (Fig. 4b). This marginal halo is followedbyamercury-enrichedzonetowardthecore(Fig. 4c), where relatively Pd–Pt-depleted (Figs. 4b, d), worm-shaped intergrowths are abundant (Fig. 4a). Gold occurs as Hg-bearing vermiform lamellae (Figs. 4c, e) andalsoasdisseminated,patchyinclusionsupto30mmin length (Fig. 3c). Selenium, though a trace component, exhibits a more homogeneous distribution (Fig. 4f).

Platinum,however,isnotinvariablyconcentratedatthemarginofnuggets.Onereniformgrainofpalladif-erousplatinumhasinternalareasofauriferousPd–Hgalloy (potarite) surrounded by a concentric rim ofalmost pure platinum (Fig. 5a). Generally, palladium ismore abundant in the internal areasof thenuggets(Figs. 5b, c, d), ranging from platiniferous palladium, with or without mercury, to auriferous, Hg-depletedpotarite (Fig. 5e) (Cassedanne et al. 1996, Fleet et al.

2002). Hexagonal crystals of approximate Pd50Pt50composition (Fig. 5f) occur in the marginal zone of an arborescentgrain.

MInerAlCheMIsTry

Representative electron-microprobe analyses ofCórregoBomSucessonuggetsindicatethatplatinum,palladiumandmercuryarethemajorelements(Table1, Fig. 6). Five compositional fields (Fig. 6) were distinguishedfortheCórregoBomSucessonuggetsbyFleet et al.(2002):(1)pureplatinum(>90at.%Pt),(2)palladiferous platinum, (3) platinum–palladium alloy(~PtPd),(4)platiniferouspalladium,(5)auriferous,Hg-depletedpotarite.Acompilationofprevious informa-tionandournewdatasuggestthatanalmostcompletePt–Pd solid solution exists in nature and, therefore,that fields (2), (3) and (4) of Fleet et al.(2002)arenotdiscrete. We have identified two new compositional fields: (6) mercury-enriched platiniferous palladium, and (7) mercury-enriched palladiferous platinum.Field (6) may be fortuitous, since it is represented by only one data point. Field (7) comprises compositions closeto(Pt,Hg)2Pd, with up to 20 wt% Hg. Figure 3c demonstrates that the micro-analyses were made inclearly resolved areas that display different mean Z.Theanalyticalpointscannotrepresentintricatemixturesof potarite and palladiferous platinum because thecompositionofadjacentmercury-enrichedpalladiferousplatinum and host Pt–Pd alloy are linked by tie-lines at a high angle to hypothetical mixing lines betweenpotarite and various Pt–Pd alloy compositions (Fig. 6). This (Pt,Hg)2Pdphasedisplaysanegativecorrelationbetween levels of mercury and platinum (Fig. 7), which suggestssubstitutionofplatinumformercury.

ThealloyclosetothestoichiometryPdPtnotonlyoccurs in core areas of botryoidal nuggets (Fig. 3c), as also observed by Fleet et al. (2002), but also ashexagonal crystals (Fig. 5f). Such discrete crystals suggest an ordered Pd50Pt50 phase. Bimetallic PdPtclusters produced by laser vaporization have well-formed hexagonal faces (Rousset et al. 1995), whichare analogous to those of Figure 5f.

Selenium is present as a minor element, possiblyin solid solution in the alloy (Fig. 4f). Its concentra-tion ranges frombelow thedetection limit,0.03wt%to 0.29 wt% Se (Table 1). Sulfur was occasionallydetected (up to 0.06 wt% S), but was mostly belowthedetectionlimit,0.01wt%S.Itisthusreasonabletoaffirm that the grains of platinum and palladium have S:Selessthan1.

dIsCUssIon

The Pd–Pt nuggets at Córrego Bom Sucesso arecharacterized by: (i) delicate shapes, (ii) the absenceof mineral inclusions other than gold (Figs. 3c, 4a, e) and PdPt (Fig. 5f), (iii) open spaces between the limbs

388 TheCAnAdIAnMInerAloGIsT

FIG. 1. Back-scattered electron (BSE, a, b, c and e) and secondary electron (SE, d and f) images of alluvial Pt–Pd–Hg nuggets fromCórregoBomSucesso.(a)ArborescentPt–Pdgrain.(b)Grainofpotarite(p,ideallyPdHg).(c)BotryoidalPt–Pdnugget(white)partiallycoatedwithaggregatesoftitaniumoxide.(d)Detailofthecoatingoftitaniumoxide(Ti–O,possiblyanatase)on the pitted surface of the grain in c. (e) Submicrometric gold associated with anatase (Ti–O) that fills part of a cavity in the Pt–Pdnugget(vide Fig. 5b). (f) Aggregate of K-bearing sodium chloride (K–NaCl) on the pitted surface of a Pt–Pd grain.

pt–pdnUGGeTs,serro,MInAsGerAIs,BrAzIl 389

ofarborescentgrains,(iv)intragranularmicrofractures,and(v)veryunusualcompositions,withoutbasemetals.Preliminaryresultsofquantitativemicro-analysesindi-catethatironisgenerallybelowthedetectionlimit,0.05wt% Fe. Copper does not exceed 0.3 wt% (Table 1). In this respect, our findings, like those of Fleet et al.(2002), do not corroborate the SEM investigation ofCassedanneet al.(1996),whofound“cuproplatinum”inCórregoBomSucesso.

Dissolution pits on the surface of grains havemorphologicalcharacteristicsanalogoustothoseformedduring tropical weathering of residual (primary) gold(Colinet al.1997,Varajãoet al.2000).Consequently,theCórregoBomSucessonuggetswerederivedfromaprimarysourcethatwasweathered,i.e.,theyarenotsupergene in origin as proposed by Hussak (1904) and Cassedanne&Alves(1992).Theoccurrenceofanatase(Fig. 1d) and Na–K–Cl-bearing aggregates (Fig. 1f) on pitted surfaces supports the interpretation that a latefluid circulated through the Mesoproterozoic quartzite sequenceanddissolvedchlorinefromapatiteandtita-nium from rutile (and other titaniferous minerals) in

quartzitetoprecipitatesaltandanataseon,andwithin,thenuggets,assuggestedbyCassedanneet al.(1996).Goldprecipitatedasnanometricparticleswithinanatase(Fig. 1e). Therefore, the Na–K–Cl-bearing aggregates, anatase and its associated gold are most likely of super-geneoriginandpostdate thenuggetsofplatinumandpalladium. These supergene saline fluids could have originated by evaporation of groundwater during dryseasons.

Mercury-enriched palladiferous platinum

Mercury-enriched palladiferous platinum, a(Pt,Hg)2Pd-like alloy, occurs as continuous, clearly resolved areas in Figures 3c and 5d. The mineral’s composition therefore representsadiscretephaseandnot an intimate mixture of palladiferous platinum(Pt80Pd20) and potarite (Fig. 6). The mercurian palla-diferousplatinumcoexistswithPtPdalloy(Pt50Pd50),notwithPt80Pd20 (Figs. 3c, 6, Table 1). The tie-lines atahighanglewiththehypotheticalmixinglinethusindicatethatthe(Pt,Hg)2Pdalloycannotbeanintricate

FIG.2. (a)SEimageofacoralloidalgrainofplatinumandpalladium,(b)itsdelicatedendriticthreads,and(c)aBSEimageofitscross-section.

390 TheCAnAdIAnMInerAloGIsT

FIG.3. SEimagesof(a)abotryoidalnuggetand(b)itssurface,showingdissolutionpits.(c)BSEimageofacross-sectionindicatingthecore-to-rimcompositionalzoningwithvermiformlamellaeofrelativelyhighmeanZ.Brightwhitepatchesare gold (arrow). The outlined area is presented in Figure 4; numbers correspond to sites of micro-analyses, with results recordedinTable1.

pt–pdnUGGeTs,serro,MInAsGerAIs,BrAzIl 391

mixtureofPt50Pd50andauriferouspotarite. If itwereso,themercury-enrichedpalladiferousplatinumshouldliealongahypotheticalPt50Pd50–auriferouspotaritemixing line (Fig. 6). This is consistent with the negative correlation between mercury and platinum (Fig. 7). If thismineralphasewereamixtureofpotariteandPt–Pdalloyphases,onewouldexpectnocorrelationbetweenmercuryandplatinum.

The S:Se ratio

Differences in the geochemical behavior of sele-nium and sulfur result in distinct ratios of S:Se thatcan assist in understanding the origin of rocks and ores (e.g.,Goldschmidt&Hefter1933,Stanton1972).Most

clastic sedimentary rocks, evaporites and seawater have S:Se in excess of 105 (Hattoriet al. 2004).Electron-microprobe analyses indicate that the Córrego BomSucessonuggets haveS:Se less than1.This extremefractionation of selenium from sulfur is expected tooccur where reduced selenium predominates overreduced sulfur in hydrothermal fluids at conditions within the stability field of hematite (Simon et al.1997,Xiong2003).However,valuesoftheratioS:Selessthan1 are also known from supergene iron sulfoselenides formedbybacterialactivityinastagnantbodyofwaterover the Zapadno–Ozernoe copper–zinc massive sulfide deposit,SouthUrals (Belogubet al. 2003, Yakovleva et al. 2003). Such a stagnant fluid regime, if applied to CórregoBomSucesso,couldnotaccountforthezoning

392 TheCAnAdIAnMInerAloGIsT

of platinum, palladium and mercury, which likely repre-sents episodic fluctuation in the supply of metals during growth of the nuggets (Fleet et al.2002).

ThepossibilitythattheS:SeratiointhePt–Pdalloyswas not acquired during precipitation should be taken intoaccount.TheS:Seratiowouldthusbearnorelationto the fluid from which the alloys precipitated. As an alternative,itsratiomaybeaproductofweathering,i.e.,leachingofseleniumandsulfurfromthePt–Pdnuggetsby supergene fluids. There is, however, no evidence for changeinthedistributionofseleniuminthealloysthatcould be related to weathering (Fig. 4f). On the contrary, selenium is homogeneously distributed (Fig. 4f). For a weathering-derived S:Se ratio to be viable, one must

assumethatsomesulfur-bearingphaseformedcontem-poraneously with the Pt–Pd alloys so that sulfur waspartitionedintotheoriginalsulfur-bearingphase,whichwaslaterdissolvedselectively.ThereisnoevidencefortheformerexistenceofaS-bearingmineralintimatelyintergrown with the alloys (Fleet et al.2002).

Origin of metals

The origin of the alluvial Pt–Pd nuggets fromCórrego Bom Sucesso is controversial. Cassedanneet al. (1996) and Fleet et al.(2002)consideredalow-temperature hydrothermal origin more likely than the diagenetic hypothesis of Hussak (1904). Within the

pt–pdnUGGeTs,serro,MInAsGerAIs,BrAzIl 393

drainage basin, the most probable source-rocks for the preciousmetals in thenuggetsare theamphibolitizedmafic intrusive rocks that cut the quartzite sequence (Cassedanneet al. 1996). Fleet et al.(2002)suggestedthat hydrothermally remobilized platinum and palla-diumprecipitatedinopenspacesinthehostquartzite.However, mafic–ultramafic rocks are unlikely sources for mercury, and it is conceivable that mercury mayhavebeenleachedfromthesurroundingmetasediments(cf.Araiet al.1999).

Since mercury is an element closely related tonear-surfacehydrothermalsystems(Barnes&Seward1997)andsincethearborescentandbotryoidalshapesof nuggets are suggestive of open-space-filling,shallow-level circulation of hydrothermal fluid through the quartzite sequence and the amphibolite lenses isfavored (Cassedanne et al. 1996, Fleet et al. 2002).Significantly, there is some Hg-bearing overprint by manganiferous veinlets, with and without hematite,thatcross-cutBrasilianofabricsinthePaleoproterozoicbanded iron formations (Cauê Formation) of the Quadri-látero Ferrífero (Cabral et al.2002d,Cabral2006),inthe southern extension of the Brasiliano belt, ~200 km south–southwestofSerro.Thislate-topost-BrasilianoenrichmentinmercuryprobablyledtotheHg-bearingPt–Pd alloys sporadically associated with Pd–O-like species after Pd–Sb–As phases in palladiferous gold(Cabralet al.2002c,Cabral&Lehmann2003).WethussuggestthatthePt–Pd–HgnuggetsfromCórregoBomSucesso(Serro)arelate-topost-Brasilianoinage.

Comparison with other (Au)–Pd–Pt deposits

The high oxidation state of the ore fluid from which theCórregoBomSucessoPt–PdalloysprecipitatedisindicatedbythelowS:Seratio.Thishighoxidationstateis reflected in the bulk composition of the Pt–Pd alloys, which lack significant iron and resemble the Fe-free Pt–Pdalloyfromhematite-richveinsoftheWaterbergdeposit,SouthAfrica(Wagner1929,McDonaldet al.1999). A veinlet of Fe-poor Pt–Pd alloy, enveloped by an iron oxide halo, is also known from the Elefante prospect,SerraPeladaarea,northernBrazil(Cabralet al.2002b).AlltheseoccurrencesofPt–Pdalloys,whicharecharacterizedbylowcontentsofiron,corroborateexperimentalevidencethatunderlowfugacityofsulfurand low-temperature conditions, platinum alloys arepoor in iron (Evstigneeva & Tarkian 1996).

TheoccurrenceofsomeseleniuminsolidsolutionintheCórregoBomSucessoPt–Pdalloysisnoteworthy.All known instances of economically important palla-diferousgoldmineralizationinBrazil,comprisingtheworld-classSerraPeladaAu–Pd–Ptdeposit(Moroniet al.2001,Șener et al.2002,Cabralet al.2002a,b)andtheouro preto-bearinghematitedepositsofMinasGerais(Hussak 1904, 1906, Olivo & Gauthier 1995, Cabral 2006), have a seleniferous signature.This signatureresultsfromoxidizingconditionsunderwhichsulfurisin the form of sulfate and accentuates the sulfide-poor characterofallthesedeposits.Therecognitionofthisfactisrelevantbecauseprospectingforplatinum-andpalladium-bearing mineralization in Brazil has tradi-tionally focused on sulfide-rich systems.

FIG. 4. Detail of the grain shown in Figure 3, with (a) BSE image depicting the internal fabric and X-ray element-distribution mapsfor(b)platinum,(c)mercury,(d)palladium,(e)gold,and(f)selenium.

394 TheCAnAdIAnMInerAloGIsT

FIG.5. BSEimagesillustratingacore-to-rimpatternofcompositionalzoning.Numberscorrespondtositesofmicro-analysesbeingreportedinTable1.(a)Auriferouspotarite,p,surroundedbyarimofplatinum(white)withinpalladiferousplatinum(medium grey), which is partially coated by platiniferous palladium (dark grey). (b) Arborescent grain of platiniferous palla-dium core (dark grey) and platinum rim (white). (c) Dendritic grain of platiniferous palladium core (dark grey) and palladi-ferousplatinumrim(mediumgrey).(d)Botryoidalgrainconsistingofacorevaryingincompositionfrommercury-bearingplatiniferous palladium (medium grey) to platiniferous palladium (darker grey tints). (e) Botryoidal cluster of palladiferous platinum(mediumgrey),withacoreofauriferouspotarite,p.(f)Hexagon-shapedcrystalsofPdPtstoichiometryinpalladi-ferousplatinumfromamarginalzoneofanarborescentgrain.

pt–pdnUGGeTs,serro,MInAsGerAIs,BrAzIl 395

ConClUsIon

In summary, we provide the first evidence of anatural Hg-bearing Pt–Pd alloy, with an empiricalcompositioncloseto(Pt,Hg)2Pd,aswellasevidenceforPdPtcrystals.Wealsoshowthat(i)thepeculiarnuggetsofplatinumandpalladiumfromCórregoBomSucessohavebeensubjectedtoweathering(i.e.,residualprimarygrains),andthat(ii)theyformedunderoxidizingcondi-tions. The high oxidation state of the ore fluid, where sulfurismainlyintheformofsulfate,isindicatedbythe seleniferous signature and the Fe-poor composition ofthePt–Pdalloys.

ThehistoricalPd–Pt-bearingdepositsofeconomicimportance in Brazil are hosted by metasedimentaryrocks and were formed in an oxidizing environment that favored fractionation of selenium from sulfur.ThenuggetsofplatinumandpalladiumfromCórregoBomSucessocorroboratethisobservation.Itshouldbenoted that one century after its publication, Hussak’s work on palladium and platinum remains stimulating andinspiring.

FIG.6. CompositionalvariationofplatinumandpalladiumnuggetsfromCórregoBomSucesso (Table 1) and other localities. Areas numbered 1 to 5 are compositional fields from Fleet et al.(2002):(1)platinum(>90at.%Pt),(2)palladiferousplatinum,(3)pla-tinum–palladiumalloy(~PtPd),(4)platiniferouspalladium,(5)auriferous,Hg-depletedpotarite. Continuous lines link mercury-rich palladiferous platinum compositions with nearby host platiniferous palladium (Fig. 4, Table 1). Dashed lines are hypothetical mixinglinesbetweenPt80Pd20orPt50Pd50andpotarite.

FIG. 7. Compositional variation of mercury-rich palladife-rous platinum from Córrego Bom Sucesso (Table 1, Fig. 4)intermsofmercuryversusplatinum.

396 TheCAnAdIAnMInerAloGIsT

ACKnoWledGeMenTs

CVRDprovidedaccesstoitsinternalreports.ARCacknowledges the Rudolf-Vogel-Preis (TU Clausthal) for financing his travel to the Serro region. Reviews by Drs. M.E. Fleet, E.H. Nickel and S. Arai, as well as the careful editorial handling by R.F. Martin, improved our manuscript significantly. This research was completed in the Divex research team during a “ValorisationRecherche Québec” postdoctoral fellowship to ARC.

reFerenCes

AlMeIdA-ABreU, p.A. & renGer, F.e. (1999): Discussão– Sobre a polêmica da origem do diamante na Serra doEspinhaço(MinasGerais):umenfoquemineralógico.Rev. Bras. Geoc.29,669-672.

ArAI, s., prIChArd, h.M., MATsUMoTo, I. & FIsher, p.C.(1999): Potarite (Pd–Hg) in thermally metamorphoseddunite from the Inazumi-yama ultramafic complex, south-western Japan: an implication for the behaviour of mercury in PGE mineralization in peridotite. Mineral. Mag. 63,369-377.

ATenCIo, d. (2000): Type Mineralogy of Brazil. Institutode Geociências, Universidade de São Paulo, São Paulo,Brazil.

BArnes,h.l.&seWArd,T.M. (1997):Geothermal systemsandmercurydeposits.InGeochemistryofHydrothermalOre Deposits (H.L. Barnes, ed.). John Wiley & Sons, New York, N.Y. (699-736).

BeloGUB,e.V.,noVoseloV,C.A.,spIro,B.&yAKoVleVA,B.A. (2003): Mineralogical and S isotopic features ofthe supergene profile of the Zapadno–Ozernoe massive sulphide andAu-bearing gossan deposit, South Urals.Mineral. Mag.67,339-354.

BerlInCoUrT,l.e.,hUMMel,h.h.&sKInner,B.J. (1981):Phases and phase relations of the platinum-group ele-ments.InPlatinum-GroupElements:Mineralogy,Geology,Recovery (L.J. Cabri, ed.). Can. Inst. Mining Metall., Spec. Vol.23,233-250.

CABrAl,A.r.(2006):Palladiferous Gold Mineralisation (Ouro Preto) in Brazil: Gongo Soco, Itabira and Serra Pelada.Sonderhefte Reihe D – Geol. Jahrb. 8.Schweizerbart'sche,Stuttgart,Germany(inpress).

CABrAl,A.r.&lehMAnn,B.(2003):Atwo-stageprocessofnativepalladiumformationatlowtemperatures:evidencefromapalladiangoldnugget(GongoSocoironoremine,MinasGerais,Brazil).Mineral. Mag.67,453-463.

CABrAl,A.r., lehMAnn, B., KWITKo, r. & CrAVo CosTA,C.h.(2002a):TheSerraPeladaAu–Pd–Ptdeposit,Carajásmineral province, northern Brazil: reconnaissance min-eralogyandchemistryofveryhighgradepalladiangoldmineralization.Econ. Geol.97,1127-1138.

CABrAl,A.r., lehMAnn, B., KWITKo, r. & CrAVo CosTA,C.h.(2002b):PalladiumandplatinummineralsfromtheSerraPeladaAu–Pd–Ptdeposit,Carajásmineralprovince,northernBrazil.Can. Mineral.40,1451-1463.

CABrAl,A.r., lehMAnn, B., KWITKo, r. & Jones, r.d.(2002c): Palladian gold and palladium arsenide–antimo-nide minerals from Gongo Soco iron ore mine, Quadri-látero Ferrífero, Minas Gerais, Brazil. Appl. Earth Sci.(Trans. Inst. Mining. Metall. B)111,74-80.

CABrAl,A.r., lehMAnn, B., KWITKo-rIBeIro, r., Jones,r.d.&roChAFIlho,o.G.(2003):Ontheassociationofpalladium-bearinggold,hematiteandgypsuminanouro pretonugget.Can. Mineral.41,473-478.

CABrAl,A.r., lehMAnn, B., sATTler, C.d., pIres, F.r.M.&KAneKo,K.(2002d):Hg–Tl-bearingmanganeseoxidefrom Conta História manganese deposit, Quadrilátero Fer-rífero, Minas Gerais, Brazil. Appl. Earth Sci.(Trans. Inst. Mining Metall. B)111,123-127.

CAssedAnne,J.p.&AlVes,J.n.(1992):Palladiumandplati-num from Córrego Bom Sucesso, Minas Gerais, Brazil.Mineral. Rec.23,471-474.

CAssedAnne, J.p. & CAssedAnne, J.o. (1974):As aluviõesplatiníferas de Serro (Minas Gerais). Anais XXVIII Con-gresso Brasileiro de Geologia(Porto Alegre)6,33-47.

CAssedAnne, J.p., JedWAB, J. &AlVes, J.n. (1996):Apportd’une prospection systématique à l’étude de l’originede l’oretduplatinealluviauxduCórregoBomSucesso(Serro–MinasGerais).Anais da Academia Brasileira de Ciências68,569-582.

ChAVes, M.l.s.C., KArFUnKel, J. & sVIsero, d.p. (1998):Sobre a polêmica da origem do diamante na Serra doEspinhaço(MinasGerais):umenfoquemineralógico.Rev. Bras. Geoc.28,285-294.

ColIn,F.,sAnFo,z.,BroWn,e.,BoUrlès,d.&MInKo,A.e.(1997):Gold:atracerofthedynamicsoftropicallaterites.Geology25,81-84.

esChWeGe,W.l.V. (1818): Physikalische und bergmännische Nachrichten aus Brasilien. Annalen der Physik 59, 117-139.

eVsTIGneeVA,T. &TArKIAn, M. (1996): Synthesis of plati-num-groupmineralsunderhydrothermalconditions.Eur. J. Mineral.8,549-564.

FerrAnd, M.p. (1894): L’or a Minas Geraes (Brésil) II(1).Imprensa Official do Estado de Minas Geraes, Ouro Preto, Brasil.

FleeT,M.e., deAlMeIdA,C.M.&AnGelI,n. (2002):Bot-ryoidal platinum, palladium and potarite from the BomSucessostream,MinasGerais,Brazil:compositionalzon-ingandorigin.Can. Mineral.40,341-355.

pt–pdnUGGeTs,serro,MInAsGerAIs,BrAzIl 397

Gehlen,A.F. (1811):PlatinundPalladium inBrasilienundSt. Domingo gefunden. Journal für Chemie und Physik1,362-373.

GoldsChMIdT,V.M. & heFTer, o. (1933): Zur Geochemiedes Selens. Nachrichten von der Gesellschaft der Wis-senschaften zu Göttingen, Mathematisch-Physikalische Klasse,245-252.

GUIMArães, d. (1959): Notas à margem de “o paládio e aplatina no Brasil”, de E. Hussak. Departamento Nacional da Produção Mineral, Divisão de Fomento da Produção Mineral, Rio de Janeiro, Boletim106,81-98.

hArTT,C.F.(1870):Geology and Physical Geography of Bra-zil. Fields, Osgood, and Co., Boston, Massachusetts.

hATTorI,K.h.,CABrI,l.J., JohAnson,B.&zIenTeK,M.l.(2004):Originofplacer laurite fromBorneo:SeandAscontents,andSisotopiccompositions.Mineral. Mag.68,353-368.

hUMBoldT,A.V. (1826): Ueber die Lagerung des Platins.Annalen der Physik83,515-520.

hUssAK,e. (1904): Über das Vorkommen von Palladium und Platin in Brasilien. Sitzungsberichte der mathematisch-naturwissenschaftlichen Klasse der Kaiserlichen Akad-emie der Wissenschaften113,379-466.

hUssAK,e. (1906): Über das Vorkommen von Palladium und PlatininBrasilien.Z. prakt. Geol.14,284-293.

JedWAB,J.&CAssedAnne,J.(1998):Historicalobservationsonoxygen-bearingcompoundsofplatinumandpalladiuminMinasGerais,Brazil.Can. Mineral.36,887-893.

lAMpAdIUs, W.A. & plATTner, G.p. (1833): Ueber dasgemeinschaftliche Vorkommen des Platinerzes und des gediegenenSilbergoldesineinemGangfossileausBrasil-ien.Journal für Technische und Ökonomische Chemie18,353-365.

MCdonAld,I.,ohnensTeTTer,d.,roWe,J.p.,TredoUx,M.,pATTrICK,r.A.d.&VAUGhAn,d.J.(1999):Platinumpre-cipitationintheWaterbergdeposit,Naboomspruit,SouthAfrica.S. Afr. J. Geol.102,184-191.

MoronI, M., GIrArdI,V.A.V. & FerrArIo,A. (2001):TheSerra PeladaAu–PGE deposit, Serra dos Carajás (ParáState,Brazil):geologicalandgeochemicalindicationsforacompositemineralizingprocess.Mineral. Deposita36,768-785.

olIVo,G.r.&GAUThIer,M.(1995):PalladiummineralsfromtheCauêironmine,Itabiradistrict,MinasGerais,Brazil.Mineral. Mag.59,455-463.

roUsseT, J.l., CAdroT,A.M., CAdeTe sAnTosAIres, F.J.,renoUprez,A., MélInon, p., perez,A., pellArIn, M.,VIAlle, J.l. & Broyer, M. (1995): Study of bimetallicPd–Ptclustersinbothfreeandsupportedphases.J. Chem. Phys.102,8574-8585.

sCoTT,h.K.(1902): The gold field of the state of Minas Ger-aes,Brazil.Trans. Am. Inst. Mining Eng.33,406-444.

Șener,A.K.,GrAInGer,C.J.&GroVes,d.I.(2002):Epigen-etic gold – platinum-group element deposits: examplesfrom Brazil andAustralia.Appl. Earth Sci. (Trans. Inst. Mining Metall. B)111,65-73.

sIMon,G.,Kesler,s.e.&essene,e.J. (1997):Phase rela-tions among selenides, sulfides, tellurides, and oxides. II. Applicationstoselenide-bearingoredeposits.Econ. Geol.92,468-484.

sTAnTon, r.l. (1972): Ore Petrology. McGraw-Hill Book Company, New York, N.Y.

ToUzeAU, e.M. (1892): Gold-mining in Brazil. Trans. Fed. Inst. Min. Eng.4,219-232.

TroMpeTTe, r., UhleIn,A., dA sIlVA, M.e. & KArMAnn,I. (1992): The Brasiliano São Francisco craton revisited (centralBrazil).J. S. Am. Earth Sci.6,49-57.

VArAJão, C.A.C., ColIn, F., VIeIllArd p., MelFIA.J. &nAhon d. (2000): Early weathering of palladium goldunder lateritic conditions, Maquiné mine, Minas Gerais,Brazil.Appl. Geochem.15,245-263.

WAGner,p.A. (1929):The Platinum Deposits and Mines of South Africa.OliverandBoyd,Edinburgh,U.K.

WIlde,A.,edWArds,A.&yAKUBChUK,A.(2003):Unconven-tionaldepositsofPtandPd:areviewwithimplicationsforexploration.Soc. Econ. Geol. Newslett.52(1),10-18.

WollAsTon,W.h. (1809): On platina and native palladiumfromBrazil.Philos. Trans.99,189-194.

xIonG,y.(2003):Predictedequilibriumconstantsforsolidandaqueousseleniumspeciesto300°C:applicationstosele-nium-richmineraldeposits.Ore Geol. Rev.23,259-276.

yAKoVleVA,V.A.,BeloGUB,e.V.&noVoseloV,K.A.(2003):Supergeneironsulpho-selenidesfromtheZapadno–Ozer-noe copper–zinc massive sulphide deposit, South Urals,Russia: a new solid-solution between pyrite FeS2 anddzharkenite FeSe2.Mineral. Mag.67,355-361.

Received December 7, 2004, revised manuscript accepted October 1, 2005.