PARAMETRIC STUDIES OF INTZE TANK

83
PARAMETRIC STUDIES OF INTZE TANK A DISSERTATION Submitted in partial fulfillment of the requirements for the award of the degree of MASTER OF TECHNOLOGY in CIVIL ENGINEERING (With Specialization in Building Science and Technology) By MD. NOMAN s )1 DEPARTMENT OF CIVIL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY ROORKEE ROORKEE-247 667 (INDIA) JUNE, 2007

Transcript of PARAMETRIC STUDIES OF INTZE TANK

PARAMETRIC STUDIES OF INTZE TANK

A DISSERTATION

Submitted in partial fulfillment of the

requirements for the award of the degree

of

MASTER OF TECHNOLOGY in

CIVIL ENGINEERING (With Specialization in Building Science and Technology)

By

MD. NOMAN s )1

DEPARTMENT OF CIVIL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE-247 667 (INDIA)

JUNE, 2007

CANDIDATE'S DECLARATION

I hereby certify that the work, which is being presented in the dissertation entitled

"Parametric Studies of Intze Tank" in partial fulfillment of the requirement for the

award of the degree of Master of Technology in Civil Engineering with specialization

in Building Science & Technology, submitted in the department of Civil Engineering,

Indian Institute of Technology Roorkee, Roorkee, is an authentic record of my own work

carried out during the period from July 2006 to June 2007 under the guidance Dr. Vipul

Prakash, Associate Professor and Dr. Pramod Kumar Gupta, Assistant Professor,

Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee,

India:

The matter embodied in this dissertation has not been submitted by me for

the award of any other degree.

Date: 26 June, 2007 vt-As Place: Roorkee Md. Noman

CERTIFICATE

This is to certify that the above statement made by the candidate is true to the best

of our knowledge and belief.

%al rip

(Dr.Pr :■Tod K mar Gupta)

Assistant Professor

.Department of Civil Engineering

Indian Institute of Technology Roorkee

Roorkee (UA)- 247667, INDIA

va. Pvc3cO.AL (Dr. Vipul Prakash)

Associate Professor

Department of Civil Engineering

Indian Institute of Technology Roorkee

Roorkee (UA)- 247667, INDIA

ACKNOWLEDGEMENT

It is a matter of great pleasure for me to express my deep sense of gratitude to my honourable supervisors, Dr. Vipul Prakash, Associate Professor and Dr.Pramod Kumar Gupta, Assistant Professor, Department of Civil Engineering, Indian Institute of Technology Roorkee, for their meticulous guidance and generous help during the course of my work. It was very pleasant and inspiring experience for me to work under their able

and kind guidance.

I am very thankful to my friend Ramesh Kumar Gautam, for their regular help in my work.

Last but not least, I find myself fortunate enough to express my love and gratitude

to my parents, brothers and sisters, who have always been a source of inspiration and

strength to me.

Date: 24 June 2007 j.

Place: Roorkee MD. NOMAN

ii

ABSTRACT

Intze tank is an important overhead water storage tank, there for it is

necessary that it should be constructed keeping in view its economy. To obtain

economical design of tank, the proportion of container such as, staging container

diameter ratio, height of cylindrical wall container diameter ratio and horizontal angle of

dome have been varied as well as no of column for design of staging .To achieve this

objective 6 different capacity of intze tank ranging between 300 KL and 1500 KL has

been investigated. For this purpose a computer program in Microsoft excel has been

developed .In Microsoft excel program continuity correction have been work out .The

design of container is carried out by working stress method but staging is carried out by

using limit state method.

To get the economical design of intze tank horizontal angle of conical dome

should be 'less than 45°, ratio of height of cylindrical wall and container diameter ratio

should be between 0.3 and 0.35.0n the other hand staging container diameter ratio effects

the economy of higher capacity of tank only .As the capacity of tank decreases less than

750 KL its effect diminishes. It is also found that the cost of staging depend upon the

number of column.

iii

LIST OF FIGURES

FIGURE NO TITLE PAGE

1.1 Typical Detail of Intze tank 4

2.1 Forces on conical dome 12

5.1

Quantity of concrete, reinforcement and cost of

container for different Value of Xi where k2=0.3

and a=50° 42

5.2

Quantity of concrete, reinforcement and cost of

container for different value of 2 2 where X1.---0.7 and

a=50° 43

5.3

Quantity of concrete, reinforcement and cost of

container for different value of a where 22=0.3

and Xi =0.7 43

5.4

Quantity of concrete, reinforcement and cost of

staging for different no of column and for height of

staging 15m. 46

iv

LIST OF TABLES

TABLE

NO

TITLE PAGE

1.1 Variation of Parameters 5

5.1 Quantity of concrete, reinforcement and cost of

container for different Value of Xi where X2=0.3

and a=50°

39

5.2 Quantity of concrete, reinforcement and cost of

container for different value of X2 where ki=0.7

and a=50°

40

5.3 Quantity of concrete, reinforcement and cost of

container for different value of a where X2=0.3

and ki =0.7

41

5.4

.

Quantity of concrete, reinforcement and cost of

staging for different no of column and height of

staging ,15m,18m,21m.

45

6.1 Recommended proportion of container and staging 48

LIST OF NOTATION

A Semi central angle of Top dome

al Equivalent radius of cone at top face.

a2 Equivalent radius of cone at bottom face

Agt gross area of top ring beam

Agn, gross area of middle ring beam

Agb gross area of bottom ring beam

Ast total tension reinforcement

Asc total compression reinforcement

btr width of top ring beam

b., width of middle ring beam

brb width of bottom ring beam

bbr width of braces

Cf Force coefficient

D1 internal diameter of cylindrical dome

D2 internal diameter of staging

D., Mean diameter of top ring beam

D,„,m mean diameter of cylindrical wall

D.. Mean diameter of middle ring beam

Dien, Mean diameter of conical dome at top face

Deem Mean diameter of conical dome at bottom face

dip horizontal displacement of member

d20 Angular rotation of member

D2bm Mean diameter of bottom ring beam Dc diameter of column.

d effective depth

vi

Es modulus of elasticity of reinforcement

Ec modulus of elasticity of concrete FER unbalance fixed-edge reaction acting on members

He Rise of conical dome

H1 cylindrical Height of container excluding free board..

He, cylindrical height of container

HD height of water above the apex of bottom dome hbd height of bottom dome

htd height of top dome H horizontal edge load of cylindrical dome

Hs height of staging

ILI clear panel height

Hee center to center panel height

It moment of inertia of top ring beam

Im moment of inertia of middle ring beam

Ib moment of inertia of bottom ring beam

coefficient of lever arm

K1 probability factor (risk coefficient)

K2 terrain height and structure size factor

K3 topography factor

length of conical portion from origin

Lbr length of brace.

m modular ratio

Meb bending moment in bottom beam

Mx bending moment in middle ring beam due to cantilever portion.

Mt moment due to torsion

M. ultimate moment.

Me equivalent bending moment

Mp joint moment column braces.

Mbr hogging moment braces meeting at joint.

Nc no of column

vii

Np no of panel Nb no of braces

NO meridional stress NO hoop stress Neow° differentiation of NO with respect to angle.

differentiation of NO with respect to angle Nx force along length of cylindrical wall from top face Ns force along length of conical dome from top face.

P % reinforcement

Pu factored load. PO force in meridional direction Pr force in normal direction Rmi mean radius of top dome

R1 inner radius of top dome

R2 inner radius of bottom dome

Rm2 mean radius of bottom dome

RW mean radius of cylindrical wall.

Rtm mean radius of top ring beam.

R. mean radius of middle ring beam

Rbm mean radius of bottom ring beam

S= length measured from origin of conical dome in the direction of inclined length

of Conical dome

S 11 Stiffness of member when horizontal displacement of joint is unity

S22 Stiffness of member when angular rotation of joint is unity

ttd thickness of top dome

ttr Thickness of top ring beam

tv, thickness of cylindrical wall

tmr Thickness of middle ring beam

tc thickness of conical dome

tbd thickness of bottom dome

vii'

trb thickness of bottom ring beam

tbr thickness of bracing.

T tb Hoop tension in top ring beam T nib Hoop tension in middle ring beam U1 horizontal displacement of Joint

U2 Angular rotation of Joint

V capacity of tank

X,, vertical distance from top of cylindrical dome

Ye unit weight of concrete. Yw unit weight of water

act Permissible stress in concrete on water face in direct tension

acc Permissible stress in concrete on water face in direct Compression

Est Permissible stress in high yield strength deformed bar

act, Permissible stress in concrete on water face in bending compression

cry characteristic strength of reinforcement.

ack characteristic strength of concrete.

Sarni central angle of bottom dome

a angle of inclination of conical dome

ab • semi central angle subtended by supports at the center. Poisson ratio

CONTENT

CANDIDATE'S DECLARATION

ACKNOWLEDGEMENT ii

ABSTRACT iii

LIST OF FIGURE iv

LIST OF TABLE

LIST OF NOTATIONS vi

CONTENTS

CHAPTER

1. INTRODUCTION 1

1.1 General 1 1.2 Literature Review 1 1.3 Object of Study 2 1.4 Scope and Outline of Study 3

2 ANALYSIS AND DES IGN OF CONTAINER

6

2.1 Dimensions of Container 6 2.2 Top Dome 7 .

2.3 Ton Ring beam 8 2.4 Cylindrical wall 9 2.5 Middle Ring beam 10 2.6 Conical Dome 11 2.7 Bottom Dome 14 2.8 Relevant Parameters 15

3. CONTINUITY PROBLEM 17

3.1 General 17

3.2 Continuity correction 18

3.3 Excel program for capacity 1000 KL 27

4. ANALYSIS AND DESIGN OF STAGING: 28 4.1 Introduction 28 4.2 Bottom Ring Beam 28 4.3 Columns 31 4.4 Braces 34 4.5 Relevant Parameters 36

5. RESULTS 38

5.1 Introduction 38 5.2 Container 38 5.3 Staging 44

6. DISCUSS ION AND CONCLUS IONS 47 6.1 Discussion 47 6.2 Conclusions 48 6.3 Scope of Future Study 48

REFERENCES

xi

CHAPTER 1

INTRODUCTION

1.1 GENERAL Water is an essential part of life of all living beings. Besides drinking and other

day to-day purposes it is also required for fire fighting; industrial and commercial use.

The supply of potable water is on of the top priorities of the government to ensure health of its urban and rural population. To ensure continuous supply of water at specified

pressures overhead reservoirs are necessary. Intze tank cost ten to twenty percent of the

overall cost of the water supply scheme of a town which is quite a substantial amount.

Therefore, any saving in the design of Intze tank would lead to economy in the water

supply scheme. Investigations are also required to find out safe and economic design and

constructional procedures so that scarce constructional materials are used to the optimum

limit.

Intze tank consist of a container at the top, supported on a staging to transfer the

load of the container to the foundation. Container consists of a domical roof, cylindrical

vertical wall, a conical dome and a bottom dome. The staging consists of a frame work of

columns and braces or a thin circular shaft. Generally a column-brace system is preferred as staging for Intze tank.

1.2 LITRATURE REVIEW

Elevated water tank are important civil structures, a lot of work has been done on

the methods of analysis and design. Many attempts have been made by research workers

to optimize the various parameters to obtain economical designs.

Most of the work available on intze tank in existing literature is on the tank where

containers supported on column staging. The earlier formulation for analysis and design

of Intze tanks based on the membrane and continuity analysis was done by Arya [1].

A computer programmed based on the above analysis of the container was developed by

Jain and Singh [2]. A more accurate and tedious analysis has been done using the Finite

1

Element Method [3]. Work has also been done on Intze tanks supported on circular shafts and various optimal proportions have been recommended by Rao. [4, 5]. Sharma [6] has proposed various parameters for Intze tanks stating the percentage share of each member

in the total cost of the container. It has been reported that 70% to80% of the cost of the

container is due to the cylindrical wall and the conical dome.

Damle and other [7, 8] have tried another shape of an intze tank in which .the cylindrical wall has been replaced by a number of segmental cylindrical shells in petal shape. A number of models of circular ground reservoir have been tested and reported to

be structurally safe and feasible. It has also been reported that only replacement of

vertical wall could yield 20% saving in cost of container is further stated that there is

potential of 50% reduction in the cost of the container if the conical dome is also

modified to a shape consisting of a number of inclined conical conoids.

Singh [9] has analyzed column and bracing staging by stiffness matrix method

and compared the results with the tube analogy method applied by Jai Krishna and Jain

[11]. Jain and Singh [10] have shown that the tube analogy method gives reasonably

accurate design forces apart from being simpler. Rao[12] and Kundoo[13] have also

given formulation for analysis of supporting towers acted upon by horizontal forces.

Avadesh Kumar [14] has also analyzed R.C.0 over head reservoirs and proposed a

computer program.

1.3 OBJECT OF STUDY

To judge the correct combination of height and diameter of the vertical

cylindrical wall, conical wall and horizontal angle of conical dome is based on economy.

There for we try to obtained suitable parameters by which design should be economical

for different capacity of intze tank. During design continuity correction have been done at

joints. As far as consideration of continuity effects at joints,we know that the solution

obtained by membrane theory failed to satisfy continuity of displacement at the junction.

We have apply edge loads, consisting of shears and bending moments, in order to correct

the discrepancies between the membrane displacements. For that we use bending theory

for shell of revolution. For simplicity we assume that the meridian of the dome and

cylinder meet at a common point without any eccentricity. For solving continuity

2

problem an Excel program has been developed. Apart from container, the design of the

staging is also taken up for the study in this dissertation work.

1.4 SCOPE AND OUTLINE OF STUDY

To get the optimum values of the various parameters of the container and the staging, the parameters were varied as listed in Table 1.1.

This dissertation is divided into 6 chapters. Chapter 1 introduces the problem and

in chapters 2, 3 and 4 the analysis and design of the container and staging is covered. In chapter 3 an excel sheet has been developed to over come continuity effect and to

calculate redundant forces as well as design the container and staging of capacity

1000 KL. In chapters 5 and 6 the results have been discussed and relevant conclusions

have been reported.

3

CYLINDRICAL WALL

BALCONY CUM

MIDDLE RING BEAM

TOP RING BEAM

CONICAL DOME

BOTTOM RING BEAM

H.

GROUND LEVEL

BRACE

COLUMN

CONTAINER A

Hcw

y

to

FIG 1.1 TYPICAL DETAIL OF INTZE TANK

4

Table 1.1 variations of parameters

S.No Name of parameter Value of parameter No. of values of

each parameter

1 Basic parameter

i. Capacity(V) of container in KL

300,500,750,1000,1250,1500, 6

ii. Lateral forces a) Wind Zones Zone 2

1

2 Geometrical parameter i. Height diameter ratio, A2 Q.20,0.25,0.30,0.35,0.4,0.45,and

0.5 7

ii. Staging-container diameter ratio Ai

0.5,0.55,0.6,0.65 and 0.7,and 0.75

6

iii. Horizontal angle of cone a

350,400.450,500,550,600 6

iv. Height of staging 15m,18m,21m 3

v. Number of panels Minimum .

5

CHAPTER 2 ANALYSIS AND DESIGN OF CONTAINER

2.1 DIMENSIONS OF CONTAINER

The capacity of an Intze tank container can be expressed in terms of the volume of the of water is obtained by summation of water containing by cylindrical wall and conical dome and subtracting the volume of bottom dome lies in conical region

V1=volume of water containing by cylindrical wall.

V2= volume of water containing by conical dome

V3= bottom dome lies in conical region

vi=fn*(R)2 *H0 (2.1) 2

V2={—r1*(1)2 *H2} –{—n *A2 *H3} (2.2) 3 2 3 2

11*R 3 V3= 2 (2 3 *Cos° +Cos30) (2.3) 3

V=V1+V2-V3 (2.4)

Tana 2

H3=2 * Tana

Let

_ 2 D1

- 11

2= D1 For a given capacity the diameter of container

2 D13– 4*V

Other dimensions

6.12 + Tan a (1 – 3) 213 (2 – 3Cos 0 + Cos3 0) Sin3 0

(2.5)

6

Hi= /1.2 *Di =cylindrical height of container containing water.

Free board=0.3 m FIcw= Hi+0.3= cylindrical height of container

D2= Ai *D1 =staging diameter

htd =5' =Rise of top dome

5 .—Rise of bottom dome

He--(H2-H3)= Height of conical dome

2Sin A

R2= D2

2Sint9

2.2 TOP DOME Top dome subjected to live load and dead load. The dome is accessible only for

maintenance purposes and hence live load can be taken as 1 KN/m2 as per

IS: 875-1987 [19]. It is supported by top ring beam and cylindrical dome. The rise of

top dome (htd) is usually kept 0.2 times the diameter of container D1 .

The Radius of top dome is given by

R.17 2sD1 ttd

inA 2 (2.6)

The maximum stress occurs at the edge of the dome. The membrane stresses in the dome

are

Ni:Lotd— Wid * R,,,1 N/m

1+ CosA (2.7)

NOtd= — Wtd. * R * CosA 1 N/m (2.8) 1+ Cosil

Where

Wtd-----(Dead load +live load) per unit area of dome Di

2(Ri — hid ) A= Tan-1 (2.9)

7

The circumferential stress changes from compressive to tensile if Semi central angle of dome exceeds 51.8 degree.

Hence it is desirable to keep Semi central angle less than 45 degree to avoid double form of shuttering for the shell. The thickness of dome for maximum thrust criterion is

ttd NO mrn (2.10) 1000* cr„

Thickness of dome is primary controlled by practical consideration, since the stress is compressive nature and the thickness obtained from equation (2.10) is small. The thickness normally provided is 80 mm. Dome is reinforced by nominal reinforcement of

0.3% mild steel and 0.24% for steel in the form of square mesh.

2.3 TOP RING BEAM

Top ring beam provided to resist horizontal component of the meridional thrust

of top dome. The center line of the ring beam is aligned with center line of the top

dome. The hoop tension is given by

T tb— fd Cos

2 A*Dtin kg.... (2.11)

Area of tension reinforcement is given by

Ast2,_ cm2 (2.12) Est .

The top ring beam is also designed on no crack basis as to avoid possible corrosion of

the reinforcement and also to provide good stiffness to support the roof dome:

Thickness of top ring beam is primary controlled by consideration

Computed tensile stress (at) — Tib < act (2.13) b„ * t„ + (m — 1)* Ast2

ast =Permissible stress in high yield strength deformed bar act =Permissible stress in concrete on water face in direct tension

8

2.4 CYLINDRICAL WALL For membrane analysis, the wall is assumed free to deform at both edges and

thus under a pure hoop tension. Minimum thickness for wall will be taken as 100mm. The effects continuity on wall has been discussed in next chapter (3).

For dead load . W1=Dead load of top ring beam

=2500*ttr*bt kg/m (2.14)

Nx=(N 0 td*sinA+W1)-Y0t,*Xw kg/m (2.15)

Where Nx= Load on cylindrical wall due to its dead load per unit length

NO=0

For water load

Nx=0

Yw*D.*Xw NOw— ....kg/m (2.16) 2

Where

Xw= vertical distance from top of wall

Area of tension reinforcement is given by

AstiNO(avg.)* Ax

CM2

Est

(2.17)

Area of compression reinforcement is given by

Asc3=0.24% bw*tw for steel.

Where .

A x=zone length

bw=100 cm

The cylindrical wall is also designed on no crack basis. Thickness of cylindrical wall is

controlled by consideration

)* Ax Computed tensile stress (at) — NO(avg. c< t •

, * t,s, + (m — 1) * Asti

9

2.5 MIDDLE RING BEAM The purpose of ring beam is to provide a horizontal support to conical wall. It is

provided wide enough so as function as a balcony for inspection purposes. The design of ring beam is governed by hoop tension caused by horizontal component of meridonial

thrust. The effects continuity on conical dome will studies in next chapter (3).

The total load on middle ring beam is

Let W1 =Dead load+Live load of top ring beam ....kg/m

W2 =. Nx(at Xw=11,,,,) ....kg/m

W3 = dead load of middle ring beam.

= (2500*bmr*tmr) kg/m (2.18)

We = (Wl+W2+W3)

Hoop tension in middle ring beam is given by

We * cota * Tmb kg (2.19)

2

Where

a is inclination of conical Dome with horizontal

Area of tension reinforcement is given by

ASt4a= lb o.sl

(2.20)

Thickness of middle ring beam is primary controlled by consideration

Computed tensile stress (at) — < act b.,.* Tmb

+ (m —1)* Ast4c,

Live load on the balcony can be taken as 1.5 KN/m2 as per IS: 875-1987 [19].

Self weight and live load on the balcony ring beam

Wbc=(2500*bmr*tm,-+1.50*tm0

N— 1

1 + cfr m* crcb

J=1-N/3

kg,/m (2.21)

(2.22)

10

Area of tension reinforcement in redial direction.

cm2 Astab= cyst* j*d (2.23)

d=tmr 25-- mm 2 4- W. bc * b 2nir

X 2

Where ast =Permissible stress in high yield strength deformed bar acb=Permissible stress in concrete on water face in bending compression

2.6 CONICAL DOME Conical dome support a uniform vertical wall at it top edge. If this dome is

assumed as consisting of individual slanting strips, then each strip will tend to rotate

outwards about it bottom edge. This will increase the circumference of the circle joining at the top of these strips and each strip will separate out from each other. Since the strips

are joined to each other monolithically and can not separate, a hoop tension will created

at the top of this dome. This hoop tension will exert a radical inward force at each strip

and will oppose it rotation outward. So that the moment about bottom edge of strip,

causing rotation is zero. The resultant force must lie along the slant surface of strip. The

magnitude of radial force created at top edge is so much that on combining with vertical load the resultant lies along the meridian of conical dome. Thus the vertical load at top

edge of the conical dome is supported by it with the creation of meridian thrust and hoop

tension. In the same way water pressure on the conical dome and its own weight acting at

any point give rise to hoop tension at each plane, whose inward reaction, together with

the water pressure and weight of dome, cause a resultant force which is meridoinal.There

is no moment and shear in conical dome.

11

W11+W22+W33+W4

S

r

•****,.

0

*4.41

Fig 2.1: FORCES ON CONICAL DOME

For Dead load

Let

W11= weight of W1

=W1*II* Dtm kg (2.24)

W22=weight of W2

= W2*II*Dw. kg (2.25)

W33= weight of W3

=W3*II* Dm. kg (2.26)

Lc=length of conical portion from origin of conical dome

Dc. Lc= m ... (2.27) 2Cosa r=radius at any height Xc from top face conical dome where Xc He

_( Dc. )( LcSina — Xc m.... 2 LcSina

S=length measured from origin of conical dome in the direction of incline length

= Lc Xc (2.29) Sina W4= weight of conical dome at distance" r "as shown in figure

(2.28)

12

Dan Dcm 11(+ r) (Xc2 + ( r)2 kg 2 2

(2.30)

NsD W11+W22+W33+W4

2*n*r*Since kg/m (2.31)

NODc=circumferential force in conical dome due to dead load.

= Yc* tc * Cosa(Lc* Cota

For Water Load

Xc * Cota )) kg/m ..... Sina

(2.32)

H1=height of water above top of cone

Ns,r=force along length of conical dome from top due to water.

Yw* Cota ( H1 * Lc2 ) ( Lc3 *Sina )+ ( H1 + LcSina)* S) (S2 * Sina Nsw= [

2 6* s 2 3 )

Kg/m (2.33)

NO ,,,= circumferential force in conical dome due to water

Newt Yw(H/ + LcSina S * Sina)S * Cota kg/m (2.34)

Area of tension reinforcement is given by

Ast5— NO(avg.)* AS

(2.35)

Area of compression reinforcement is given by

Asc5=0.24% betc for for steel.

Where

A S=zone length in conical dome

The conical dome is also designed on no crack basis. Thickness of conical dome is

controlled by consideration

AS Computed tensile stress (at) = NO(avg.)* < act - b,* t, + (m —1) * Asts

13

2.7 BOTTOM DOME The bottom dome is of spherical shape and is subjected to the weight of water

over it and self weight. It is supported by a bottom ring beam. The rise of top dome (hbd) is usually kept 0.2 times the diameter of container D2. The Radius of top dome is

given by

Rm2 = D2 + tbd 2Sin0 2

m (2.36)

The thickness normally provided is 80 mm. The maximum stress occurs at the edge of

the dome. The membrane stress resultants in the dome are obtained separately for dead

load and water.

For Dead Load

W bd * Rm2 NODbd- 1 + COS kg/m (2.37)

() NODbd= — Wbd * FL in2 * Cosa 1 kg/m

1+ Cost,

For Water Load:

HD=height of water above the apex of bottom dome= (H1+Hc-hbd)

(2.38)

Yw*Rm2 [H + R Owbd=

Sin 02 2 3 D m2 )* (cos0) 2 — Rm2 * (cos0)3)

2 6 HD Rm 2 N kg/m....(2.39)

1\18wbd=- YW*Rm2 [H D Rm2 (1 — cos 0)] - N 0 wbd kg/m (2.40)

NO= Neorma + NOwbd N0= NODbd+ NeWbd

Thickness of dome is primary controlled by practical consideration, since the stress is

compressive nature and the thickness obtained from equation (2.10) is small, the

thickness normally provided is 100 mm.The dome is reinforced by nominal

reinforcement of 0.3% mild steel and 0.24% for steel in the form of square mesh.

14

2.8 RELEVENT PARAMETER

2.8.1 Volume of concrete

(a) Top Dome

Vtdc— 27r *to * Rna * hId (2 — 3CosA+Cos3 A)

3* (1— Cavil) (b) Top Ring beam

Vtrc=2 7c * Rtm * bfr * t„

(c)Cylindrical Wall

Vcw,c=. 2 * * H c,* 12,,* t

(d) Middle Ring beam

Vmre=2 a.* Rm.* bmr * tmr .....m3

(e)Conical Dome n- * t c * Seca

cdc— 3 (Dl cm )

(f) Bottom Dome 27r* tbd * Rm2 * hbd (2 —3Cost9 +Cos30)

Vbc—

111 3*(1— Cos 0)

Total Volume of oncrete

Vs= Vtdc +Vtrc + Vcwc+ Vmrc+ Vcdc+ Vbc

2.8.2 Volume of reinforcement

(a) Top Dome

Vtds=0.0048 Vtdc m3

(b) Top Ring Beam

Vtrs=71- * D, * Ast2 m3

(c) Conical Wall

VcwS * Dwm * Ast3 + 0.0024 * Ticwc m3

(d) Middle Ring beam

M3

M3

M3

M3

(2.41)

(2.42)

(2.43)

(2.44)

(2.45 )

(2.46 )

(2.47 )

(2.48 )

(2.49 )

15

V.„=71- * Dm m * Ast 4a + Ast 4b * bmr

(e) Conical Dome

-Yeas= 0.0024 * Vcdc E 27r r„„* Ast

Where i=no of zonal length in He

E Ast = Ast,

(f) Vbs=0.0048 Vbc

Total Volume of reinforcement Vs= Vtds +Vtrs + Vows+ Vnus+ Vcds+ Vbs

M3

1113

M3

(2.50 )

(2.51)

(2.52)

(2.53)

2.8.3 Cost of container

On the basis of the present prevailing rates of material the rates of various items are given as under: (1) Cement concrete of grade M25 in superstructure excluding Rs.2900 per cu.m

cost of centering and shuttering (2) Tor steel reinforcement including cutting,bending,placement Rs18000 per ton

and its wastage There for the cost of container =Vc*29000+78.5*18000*Vs Rupees (2.54)

16

CHAPTER 3

CONTINUTY PROBLEM

3.1 GENRAL The pure membrane state of stress will exit so long as each shell is simply

supported at its edges, that is, it is able to undergo resulting displacement without

"restrain, while the supports supply the necessary reaction to balance the meridionally

forces. This however is not possible in practices and the edge displacement is actually restrained. This give to raise secondary stresses in the form of edge moment and hoop

stresses. It will be seen that discontinuity would occur at junction of different shells.

There will, therefore come into play additional joint reaction to maintain continuity. It

will be seen that the angle at corner of top dome ,cylindrical wall and corner of

cylindrical wall and conical dome tend to close resulting in sagging moment, while the

angle at corner of conical dome and bottom ring beam tend to increase to hogging

moment. Also at the joint the edge of top dome and vertical wall are pulled outward,

resulting in tensile hoop stresses, while the top ring beam at that joint is pushed inward

and hoop tension reduced. Similarly the middle ring beam and edges of conical dome at

joint are pushed inward causing reduction of hoop tension while the vertical wall is

pulled outwards with increased hoop tension. At joint of conical dome and bottom dome

the conical dome is pushed inward, the bottom dome and bottom ring beam pulled

outward. This cause a hoop compression in conical dome and cause of reduction of hoop

compression in bottom ring beam and bottom dome.

The complete analysis of intze tank, consist two parts (a) membrane analysis (b)

effect of continuity. The net stress are obtained by adding the stresses due to the above

two cause. The stresses due to continuity are obtained by applying the principle of consist

deformation. the vertical displacement are always consistent at each joint as each shell is

free to deform in this direction and consistency has only to be satisfied for horizontal and

angular displacement between shell meeting at a joint. This will need of stiffness of each

shell at edge for horizontal and angular movements. The stiffness is given by Kelkar V.S

and Sewell R.T," Fundamental of the analysis and design of shell structures"

17

3.2 CONTINUTY CORRECTION The forces due to continuity are obtained by applying equation of compatibility Xi=Si*UFFFERi (3.1) Where

i=symbol of Dome, ring beam, cylindrical wall, conical shell

FER=unbalance fixed- edge reaction acting on the members , corresponding to U1 and U2, acting on different member.

Xland X2 are the redundant forces of members For solving Ul and U2 the governing equation is

(3.2) s21 E s22 FER 2

where

FERi= -(S11*(110+S12*d2o) (3.3) FER2= -(S21*dio+S22*d2o) (3.4) U1= horizontal displacement of Joint

U2= Angular rotation of Joint

dio=horizontal displacement of member

d20=Angular rotation of member

After obtaining U1 ,U2 ,FERI and FER2 of each member, redundant forces X1and X2 of each members obtained by governing equation

[ xl .s11 s12 Ul FER1

x2 s21 s22 U2 - FER2

±

• _

sll E s12 E FER,

(3.5)

18

ASSUMPTION (1) Radial thrust (2) Moment

Out ward positive Clock wise positive

Inward negative (looking at the meridian on the left hand Side of the axis of revolution) Anti clock wise negative

3.2.1 Continuity correction 1: At joint of top dome, cylindrical wall and Top ring beam.

STIFFNESS OF TOP DOME

E* t id

E*tid 2al,2 *sinA

E*t td *R ml

2alt 3

Std=

Rmi * (sinA )2 (3.6)

E * t td

2a11 2 * sinA

Where

E=5000 6a,

4 12(1 — V2) * Rm1 2 4a1, = ttd 2

EMI = Eck, = R,,,i * SinA(NO,d — vN00) tt d

1+ COtA(1+.0(N 0 id 'NOW) = Ed 20 = [N td° VN Old° t tc,

Where 'Ail= horizontal diflection X= angle of rotation

W,, * R , Now_ m. 1+ CosA

(3.7)

(3.8)

(3.9)

(3.10)

19

NOtd= — Wtd * R ml (COSA 1

1+ CosA ) (3.11)

NeOtd°--Wtd* Rmi * SinA (1+ CosA)2

0 Wed * R 1 * SinA * (2 + 2CosA + CosA2) NOtd m (1+ CosA) 2

(3. 1 2)

(3.13)

Where

(0°) indicate differentiation

STIFFNESS OF CYLINDRICAL WALL

Sw=

EAH

Ex

Where

4otiw

E*t w -E*tw

(3.14)

(3.15)

(3.16)

(3.17)

R w *aim, 2a1 2

-E*tw E*t w *R, 2a1„2 2a1,,,

= Ed 10 = H * Ri„3

3

3 2*(K

E " )al

= Ed20 = —H*Rw 2 K 2 2* (E")oti

4 =

12(1—v 2 * R, 2

t w

K — E*tw3 (3.18) iv 12(1—v2 )

H=Neotd*CosA (3.19)

20

Dl cmEquivalent radius at top of cone (al)— 2 *Sina m (3.22)

Equivalent radius at bottom of cone (a2)— D2 cm

2* Sina m (3.23)

STIFFNESS OF TOP RING BEAM

E * Agt 2 R tin

0

(3.20) Str E* It R 2 tm

For top ring beam

EAH = Edio = Tb * Rim

Agt (3.21)

Ex = Ed20 = 0

After getting d10 and d20

Xiand X2 redundant forces of members obtained by governing equation (3.5)

3.2.2 Continuity correction 2: At joint of cylindrical wall, middle ring beam, conical

dome.

For solving continuity effect conical dome is treated as spherical dome whose

equivalent radius is obtained by

STIFFNESS OF CONICAL DOME

E*tc a l *alc *(sina)2

E*tc 2a1,2 * sina

(3.24) E*tc E*tc*a l

2a1 3 2a1c 2 *sina

S c 1 —

21

• NeDci= — Wcd * al ( Cosa 1

+ os a) kg/m

\ 1-Opei 1+ Cosa kg/m Wcd * al

Where

4 = 12(1— V2 )* a l2 4a lc te2

For imaginary conical dome For Dead Load

1\10Dei — o wca * *Sina (1+ Cos a)2

NOpei°— Wca * * Sina * (2 + 2Cos a + Cos a2 ) 0 4- COS00 2

Where

Wca is dead load of imaginary conical dome For Water Load

From definite integral approach

[N0 * r2 * Sin2a10 f(P,.Cos a — Pgina)rl* r2 * Sina * da 0

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

where

rl=r2=ai

Pc1)=0

Pr= — * Hw + * al (1 Cosa)) = —(Y„, * Hw +1— Cosa)) .. al

(3.31)

and a is dummy variable. Then we get

[— Y.,„ *a/2 [H„ NOwci=- (1 Cos2a) + 4Cos3 a —3Cos2a —1]

Sin 2a 4a/ 12

2 w , w Newel= —Yw * .(

H +1— Cos a) --Ar6 1 a1

(3.32)

(3.33)

22

—Y„,* ai2

Sina 4 6Sin2a * Sin2a —12Cos 2 aSin3 — Sin2a +1.5Sin4a — 4 sin 2aCos 3 a

12 1

NOwci° =

(3.34)

Newc1°= —Y„* al Sin —

No:Dc 1— NODei+ NOwei 1•Tesc1°=NODe1°+N(Dvvel °

Neci=NeDci+ Newci

NOci°=NeDci°+ Newc10

EAI = Ed 10 = al * Sinot(N ci — v * NO.1) tc

Ex = Ed 20 = [NO ci ° - vN ci 0 j+ Cota(1+ v)( N61,1 NOci ) tc

STIFFNESS OF MIDDLE RING BEAM

E*As.

R 2 mm

Smr

E*I. R. 2 m

For middle ring beam

EMI = Ed 10 = Tmb * Rmni 2

_Aga;

Ex = Ed 20 =0

After getting d10 and d20

X1and X2 redundant forces of members obtained by governing equation (3.5)

0 wcl

0

0

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

23

* a2 * (Cosa 1 + Cosa) Ne D c2

1

3.2.3 Continuity correction 3: at joint of conical dome, bottom Dome, Bottom ring

beam. STIFFNESS OF CONICAL DOME

E*tc E*tc 2c

* (sin a)2 2a2,2 *sina S C2=-- (3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

E * tc E*tc*a2 2a2c2 * sina 2a2c 3

Where

4a2, 4

= 12(1—v2 a 2 2

tC 2

For Dead load

NWroc2 = Wed * a2 1 ± Cosa

0 —Wcd *a2 * Sina Nwpc2 _ (1+ Cosa)2

— Wcd

*a2 *Shia * (2Cos a + Cosa 2) NO Dc2°— Cosa)2 For Water Load

From definite integral approach

kg/m

kg/m

[NO *r2*Sin2a]o

where

rl=r2=a2

P(1)=-0

a = f(PrCos a — POSina)r1* r2* Sina * da

o

Pi= — * fl,„ -1-- H c ) Y,„* a2 1—Cosa)) = —(Y„,* a2( (Hw + H e) +1 Cosa)) (3.46) a2

24

and a is dummy variable. Then we get

4Cos3 a — 3Cos2a —11 NOwc2= — .1c * a22 [(H.'

+ Hc) (1 Cos2a) +-

Sin2 a 4a2 12

(3.47)

NeWc2= yw * a22 [ + H3 3 1 Cos a — NO,,c2 a2 (3.48)

NOwc2°

— Yw * a2 2 Sina 4

6Sin2a * Sin2 a —12Cos2 aSin3 a — Sin2a +1.5Sin4a — 4 sin 2aCos3 a 12

(3.49)

— Yw * a22Sina — NOwc2° (3.50)

NiDe2= NODe2+ NOwe2 N4b2= NODei+ NOwe2° Nec2=NeDc2+ Newc2

•Nec2D=NeDc20+ Newc20

EMI = Edio = a2 * Sina(NOG2 — vN0c2) tc

Ex = d20 = [NO 2° vN0,2) Cota(1+ v)( Nec2 - NOc2 ) tc

(3.52)

STIFFNESS OF BOTTOM RING BEAM

E*Agb R bm 2

(3.51)

0

(3.53) E*Ib

R b 2

For bottom ring beam

Sbr=

0

25

EdH

Ex =

Sbd=

4a

For Dead

NIDbd

NODbc =.

= Ed 10 = (Ncobd * Cos° N s * Cosa)* Rb m 2 (3.54)

STIFFNESS

A gb Ed 20 = 0

OF BOTTOM DOME

E*tb E*tb

(3.55)

(2.37)

kg/m (2.38)

R m2 * alb * (sinA)2 2a1b 2 * sinA

E*t b E*t b

2alb 2 * sinA 2a, b 3

4 12(1—v 2 )*Rm22 = lb • 2

tbd

Load

Wbd * Rm2 kg/m 1+ Cos°

* 1 ) Wbd * Rm2 (Cos° I+ Cos°

For Water Load:

HD=height of water above the apex of bottom dome= (HI+Hc-hbd)

Yw R HD + R m2 * * 0)3 ) — HD k/m....2.39*

— Rm2 (cos Rm2 g ( ) Nolwbd— sine 2

( ) (COS [

2 3 2 6

kg/m..... (2.40)

INT(Dobd°— W bd* R7122 * Sin° (3.56)

(1+ Cos0)2

-?„-rn 0_ Wm * R„,2 * Sin° * (2 + 2Cost9 + Cos02 ) (3.57) uDbd (1 + COSO)2

NOwbd= - Yw*Rm22 [H D -4--Rm2 (1— cos 0)] - N 0 Wbd

26

1\1.(pwbd°=

—(11 + R„, * Sin20]+[R.2 * Cos 20* 01+ Sin20 R",2* Cos3 0 + H + R2 )i 2 3 2 [

Y„* R.2 Sin04

(3.58)

Newbd°' —Yw* R.2 2 * Sin° — NO; Now

NelDba + NOwbd

Nebd= NeDbd+ NeWbd NObdt3= NODbd° + NOWbd° NObd°' NODbd0+ NuWbdo

EAFI = Edio . R„,2 * SinU(NObd — vN0bd) tbd

Ex=Ed20 =[NObd° -vN0bd°]+Cot0(1+v)(NObd -N0bd ) tbd

After getting dlo and d20

Xi and X2 redundant forces of members obtained by governing equation (3.5)

(3.59)

(3.60)

(3.61)

3.3 EXCEL PROGRAM FOR CAPACITY OF 1000 KL With the help of above equation a program in Microsoft excel has been developed

which shows complete design of container and staging in wind zone 2nd. As far as staging

is concern required parameter and equation mention in chapter (4). Excel program cover

the codal provision related to design of water storage tank. With the help of excel

program we can predict where is section safe or not, quantity of reinforcement in

container and staging as well as spacing of reinforcement.

27

N a

00

N. co

No of b

ar

calcu

la te

6.

0831

521

4.91

2153

1

6.74

5207

1

CO N-

CO CD T

N.: 5.33

2404

1

CO W

0 ..,

1113

7.17

1

2473

6.77

I

3833

6.37

15. 4

1 1

ar o

n eac

CD 0

Li-

---, 15. co a) Z

30. 7

6018

41.0

1358

24.6

0815

N LC)

CO

Cri r

CO CO

CO N-CO 0)

N N

Nb

(e)

0

fe) 'l .

LO CD CO

L

CO (71 In

`.--r

1.

74.7

7527

4 I

9.87

3428

I

13.55

787

1

14.46

813

1

10.7

1813

1

S in e

0.

6943

78

Tens

ion(K

g

n- n- a) cNi C.0

1481

0.14

'N

-

:

2033

6.8

2170

2.2 N

r•-: C O CO

per u

nit h

eig h

t D

ES

IGN

OF

CO

LU

MN

768.

7 046

i

esoo

.— - CO a) N-- N-

6 1.23

0407

1.23

0407

0.98

4326

.— 4- . N- CO N--

0 0.68

9028

co ci

redi

an CD

r-- coco I's

0

cu CD

Z 5 821

.57

7

1203

6.78

2066

0.64

1

2755

9.7

2

LO

cri cy) Cf" Cr) N

load

of c

olum

n

0.4

OBTA

NING

DIA

MET

ER O

F IN

TZE

TANK

CD 44

ton

by co

ntini

C) 0

W 0 -4- 4 72

45.7

481

2

1682

7.8

11

01 "l-. CO

Ori 0) 4. N .4- 30

625.

981

5

•Cr 0

W 0

co _

X '••••• 0

In 00 I-.

• c) co CD

C3

C ca I—

0

a) (Ni

0) 0)

6

ON cl

7245

.74

8

168 2

7.8

1

2449

3.46

3062

5.9

8

3599

1.94

0 0 co

C co '6 2 2 0.

785

DE

SIG

N O

F CY

LIN

DR

I CA

L W

AL

L

>-

Loan. 1000

1000

1000

1000

1000

75 =

CO

-4-

0 45

D

EGSI

GN

OF

CO

NT

AIN

ER

E 3

0

15. 57

543

1

DE

SIG

N O

F CO

L

-0

Z

l-. 0 --- 1 C7i .<

COCI 0

15.4

0543

I

Np

ch

.•••••■ tE N 0

...t

1.... •

p

1.23

0407

1

2.46

081

5 I

3.44

5141

I

4.23

2601

I

4.92

1629

I

15

>

CO

,C-•

0 J

N.

N 0

Top r

ing

I

bea

m( r

ib) 1

1090

5.49

Ast

for

CI=

10m

m

a) .5 =

.4- o

mem

be r

4.921629

2.30

8975

1.25

in 10

1

co ci

Z -1

942.2

4

e

PR

ESS.

mem

ber

r,syl

in.p

o rtio

r

Con

.

Rin

g B

ean]

E c, ,-. A C7) 0

E a r v 0 0

•—

E LO CV ci.

' C Z CNI

x— 0) cp

N— 0) c)

.,—. 0 ..-

(.0

..-. 0 C•4

'r—

I I

Z

- ,

r-- %- c=i

ght f

rom

gro

t

0 ,- 15

0 c•4

CD cr) 5

0

— N O

CO .. %-

b, ,-.

(sta

g.)

ai Y

co ci

btu CN1

0

DESIG

N OF

CO

LUM

N

17 ..Y v-

AST

( Cal

) (0 LO CV CO CD CD CD

re) Y 1--

chec

k

0 0

>1'0

>10 0

T— r■ 0

..., . 1:)

4.02

9921

8.01

1113

10.7

133

5

11.4

3264

Cr) •.:1" CO CI) co cc

3N

OF CO

LUM

N W

IND

PRESSU

RE

clas

t

<

Act

ual A

st

co Csl c ri.

co c. N

co cp co

co co

12.0

6

terr

ain

cat.

ce) •

Hco

ne Cr)

0 CO C \I a

ctual

bar

co co co oo co

Vb(

m/s

)

47

.- 2

4.6

22

at of ba

r

0.78

5 , c) cNi

,-

N

.-- cp. CV

I 2.01

a) c o N .>

mid

dle

ring

I

E 1– E Ct1 a) co

rrec

tion

c) + U.1 Li-) C°.

.-. U) <

12. 3

5535

25

no

of ba

r

r- •:1- o) co ..–

act

ual s

teel

IX) c) CO

6.86849479

O.K

CO

total

hpr

izon

tal.F

5968

.803

95

2337

.1939 I

1024

.563

44

248.

43183

0 1.--- cn 04

1....-: V)

45.2

3 762

61

Mid

dle

ring

— .0 E

i–

E co a) _a 35

015.241

Ast

for

(D=

16rti

m

DES

IGN

OF CO

LU

MN

forc

e(kg

/m)

1212

.769

88

1012

.221

26

819.

650

748.

CO CO 0, CD co co

oi .4- 43.7

2970

53

75.3

9604

36

Ce) CY,

C:11 1r) ■.1) tri CT .-4

C? 1

.

Ae

1.C) •-•

•;/- I.0 1`.... ID Ili 1– 13

.631

8041

11.3

6380

21

0.58

0.58

CO 0

W3

-625

cf 1.0

6 0.5

0.5

CO 6

CO cz)

0.4

-1731

47

.0 -.

.4- N. •4- o)

c,-)

6 L0.1

7633

0.11

5915

[25.

86207

Cs1

-354

0.34

Vz*

b

804.

7529

791.

310

2

531

.47

11

U)

Cf) 01 CNI 06 CV 26

.543

06

.--4 v.-4

• C.) cD

I. Pz

kg/m

2

LC) 1.0 I's •-•

6 CO •-•

CO N- 00 (N

N LO ,- 14

5.7359

142.

7769

125.6601

.

0

DES

IGN

OF CO

LUM

N

Vz

0 00

CD

LO 50.2

1314

694

49.

2842

48.7

813 0,

01 CO

LO .4-

xN

-354

0.33961

.

CV

Li cp

a)

1.02

7403024

0.99

8471

802

0.98

N- CA

Co

x- CA

Top

rin

g

beam

( Ttb)

corr

ectio

n

CD + W 1.0 r) Ch

C CV

CD 1"-- CO CO in. n

o of ba

r

CD •cr CO CO cf .). -.– a

ct AST

CO CNI C \,1

CI Ce LC) CA a) cr U)

O.K

I hei

ght f

rom

gro

und

I 23

.480

6O5

1

rl 8.55

8975

16.2

5

15

10

Hw

4.62162

9464

0.

009922881

I

0.

013189508

et CI -lc _Y 0 b

M LC) CD CD LO coCO

0 o o

7227.

253081

6743.

908055

6216.

6225721 .."..

N (1)

13 0 CD Z 5381.

75389 r- CO r, CD N. N- co r...... LC) N.

(.0 co C.0 CO N- CD C.0 LO 0.

4

12279423 I

0.63

8939

423

1

0.8655994

23 CD

— " 0 0 ...Y 0

0_=

b

Ns(dead)

-5941.82

-6230.82

-7243.761

-7945.79

-

8367

.48

1

0) CO N N- CO 9

Tota

l

loa d

kg

3833

6.4

I

51936

2473

6.8

tc 00 CO O Mc

3594

.38

5358

.36 CO

CO N CV,

.1- CD Lo LC) N

CN . r--- co L)

CO N N CD lei

CO 4 CN m-

CO a; CO •■-• cp

S M

ax

CO CD LLO ,t-

0 CO Co N N.

r--- Co O CO

7.

601581

DES

IGN

OF

CO

NIC

AL D

OM

E C

ON

TIN

UE

0.87

741

Wj %- N. 0) N-

N C!) 0)

T■

CD

6.53

86

CS) Q CD 0) LO 5.

6604

91

Q.

1051:7711

1680

8 2 I

co T--. 44- C3) CN

11.27

9.243

8.427 co

LO N- O T•-•

CO CD O ..-- 8.

00

2

27870

Sp

botto

m r

ing

1406

5

N-CD 0) 0 CN

Xc

0.

36944

1.43156

CD PL

AN

2.00

881

CO 0) CO 0 CO N

0 -i

11. 2

6864

8

force

on

on column

45.2376261

6857

. 288

83

redian

0.785

4.897803

4-

° o) 0

a)

LO 9-

Cl) N

0 to ..:t.

ring

beam

10636.

30758

forc

e on

con

tain

er

0) C

.5 = 0 c

15.94

26189

ID

cm

ground

21.

01979

IC

G of f

orce

from

01

CD 1- CO 0) CO

T■ N--

141 CN CO 1.6

5 2 8 U ...... —I —I + —I 0 ...-...

•4- 0 4. LEI r- CD ai

CD

Z 6

0903.8

6244

61928.4

0 23 I

CNI NLO 0 N- CN.I C \I CNI CO 6

1584.1

3784 * I

LO 0 DJ V" C.1 •c•—•

C.) CD

30.4

2049965

Ne(

DL+

LL)

59699. 7

81

60903.8

62

61928. 4

02

1

62212.7

05

61584. 1

38

1

60884. 3

77

1

..--, e

..-... -(.17) <

mv. Z.7 1

(NI CO V. Cr)

sv

LN C \I LO c:i 0.

718671

CO Co

0.7

84004 +--

C-- (.0 C CO D

C) 0.424669

requ

ire d

--1

0 >

CO :J76■71

Cl)

J --I o

0. 5

2267

v. co ,

CN N- 2

. 025345

co "CS CN .1- co C \i 3

. 266685

Svc

43. 8

651

8

in r- c) 0 ,

in 0.1

Lc

Lc) (D OD N

11. 2

6865

CO uo OD CC) N

CO co CO N

11.2

6865

11. 2

6865

dia

of

tie

cLa -CD . ti 00

11. 2

6865

10. 7

4598

10.02731

9.243303

C N.1 VI CO CN V. cci 8

. 001963

. C0 ICTJ

5 Cr)

e(D

L+W

5 9700

60904

61928 co .i-

C■1 CO 61584

60884

. DL

20

314

Ns(

DL+

wL)

-

273547. 9

5

-

27514 3

.89

-

2777 2

1.8

2

-28

1090

. 64

LO C Ni 0 co Lo co ci

-287816. 2

8

min

imum

TL) a)

1%

10067. 6

25

Nem

52121

53676. 6

1

55184. 49

55996.0

8 N.

N. co

Lo U) 5

55 0

2.62

C7.. CD CO a CD

cr) Z

1-267606 co

a) co CO N

1-271044

- 273847

- 277357

- 279449

w Cl) D

(0 %—. Cl- U)

_,c 0 0.

LO CN NI-d

I Xc m

ax

2. 3

089753

I d

'/Dc

I 0.

075

I

Ast

(cm

2) I

24.1

2 I

N ■— 4 CV

•1- %-- 06 N 28

.14 I

N N- 4 N V

ubr

8454

.815

1178

6.56

1

ast

(cm

2

n-- C)

CV

mi- CD CV

•■- C:) N

•L- CS N 2

.01 sr

_CD --I

CO CO 0) Cr) CO C)

N

O. K

Y

0 O. K

Y

0

)f.0 D

ESIG

N OF

BRACI

CD >

25 2

5.15

1462

CO -4-

c\Ito

CV C::; CV CO CO

6

10.0

1595

10.7

7219

•cr

-4 . CO rs: ..t- a-

al

CY) CO x- 0•11 %- • 9.

6245

79

r-

brac

e

1- r_.....

631.

2879

880.

0563

I

ac t

ual n

o

of ba

r us

ed

c N I cNi I -4-1 , 1 NI e-1

r, ..,. C =

r.._.Es a a)

o E n

o o f

bar

Bar

on

each

0

E 0 a CLII

) C.) Ca 1

8. 7

111

6032

11.9

7784

54

, 11. 2

0006

33

11. 6

667326

CO N-r-- ,L. cc, ,.... . C) ... N

DES

IGN

OF BRACIN

G

0..

c.c. co • c, .

CV

no

o f b

ar

calc

ula t

ed

10. 7

4610

014

11. 5

5 746

961

12. 7

4 249516

13. 2

3662297

10. 3

2619703

As t

(min

) e-

LO CO N CO • CO CO

0) 'Cr 49

1.56

6265

1

.••••■

N E 0

V) <

21.

5996

6128

23. 2

3051392

25.6

1241

5 28

26. 6

0561217

Tr CD CO LO CO CO CO N-- C7 csi

Ast

I

637.

4978

832

907.

2265761 1

.

C) :I > C6 .a::). z 41

039.

3564

3

4413

7.97644

486

63. 5

8902

5055

0.6631

1

3943

5.74

647

mom

e nt

CO

brac

e x co E E

1262

5.75

731

1760

1.12

571

- L_ > co ....-

Z

I 785

18. 7

3334

I 614

16. 1

3237

CO r-(-0 Lo In ci I-- o (..1 co 61

898.

42153

I 9

2862

.300

74

c co :0 a) 1._ (...) a)

I0.

5309

3 787

9

I

I

4.77

3844

348

4.77

3844

3 48

4.77

3 844

348

4.77

3844

348

4.77

3844

348

4.7 7

3844

348

4.77

3844

348

4,77

3844

348

4.77

3844

348

4.77

3844

348

_a in cr) ci

.

as as N v

CD Z

-

1371

. 14

-135

8.1

-

1319

.03

-

1254

.05

-

1163

.34

-

1047

. 15

-

905.

768 oo

CNI 1.0 oi Cr, 1"-- -5

48.7

51

- 378

. 662

1

AS

278

116 -

CV4-

..4- •:,- 1.6 N-

cs.

a)

.9 z

-137

1.13

8557

- 137

3.74

9675

-

1381

. 622

924

-139

4.87

9285

-141

3.72

4804

-

1438

.457

468

-

1469

. 477

383

-150

7.30

0857

Cf) CD C \I

r-- DJ LLoo 7 - 1

594.

7085

77

chec

k

. Y 0

_. 0

cC

-274

2.27

7113

. > KJ,

0.71

6084

743

I

-4. ap co aD ONO CY) 0) O

CNI E

CK

7.83

5077

467

N.JsCl)

0.37

4 129

956

0.43

5112

095

CV 0

10. 7

8380

208

uppe

r lim

it

0.49

CD -4- ci

N.,....,

........

-CD C3 ix) cy)

low

er li

mit

0.36

CO co O

Ire

dian

0.08

7222

0.17

4444

I- CO CD ..t—

CNI ci 0.

3488

89

0.43

6111

tn CO Cf.) Cr) CN CO o::5 0.

6105

561

co N-r•--- N- CD CO ci 0.

7675

56

DES

IGN

OF

BRAC

ING

DD

AL V

ALU

E

0, .8'9

uppe

r lim

it

LO Ci

LO Ci

botto

m

13tom

eang

(e

O La co %-

I 1

5

c) N

La N 3

0

CO V' to 'Cr

:.-. E = L... G.) 0

Lo N c;

in N c;

I AST

(CAL

)

LO IL-

•:1"

C;

LO

CL

0.27

7173

I

0.39

4446

Ir A

vg

[7. 7

8644

4

CD CO CO r-- •zr co r-: 1 6

.815

902

I 6. 2

4 975

2

I 5.8

1069

81

I ve

I

1646

9.95

2296

0.1

8

CO

NTI

NU

0

15.4

3725

9.78

9649

8.85

707

I

8.8

57

07

I

CO CO O) CO 0.1 r r-

N N-r CO CO CO IL)

>

0.15

96'0 0.15

Lo .- 6

Ls, ,-. ci

Lc) .-- c;

CO

NTIN

UITY

.,... CO C)

0

: 1r—

0 0.17

0.38

co cY) ci

top

ring

beam

0.2

mid

dle

ring

beam

0.25

torn

rin

g be

am

.1) (NI ..c-

Rm

( dom

e c- cs) cNi C) r ,-. ,--

r- r-

Lc)O

CO co . r4-

— (1:1

7.78

7716

7.78

7716

1

Con

ical

wal

co CO r- 1,-. N N- ,-•

co CO cfr CO Cs..1 co . r- 7.

8027

16. 1

8.20

271

6 I

1901

1

Vsst

ag C\I

LO N IT

No

o f ba

r

b

oth

dire

c tio

n

Vc s

tag

0) 0) S .

N—

Ast=

.24 %

bd

360

mm

2 8

Vs co

C3 0) CO CO 0 ci

-,-. In CO n-- CO 0 ci

N3<-

b

r o-) N- co

CO ..-

N 0) 0)

CO , 13

.813

41

14.3

5068

15.0

9898

04

16.0

5452

17. 2

1257

18.5

6756

CO CV CO

.-- ci N

N In N

■4 , N

>

0.49

2957

ke( D

L+W

L - 2

0072

. 9

-

2023

4.9

- 207

20. 1

CD N II)

qj - 226

4 8.5

C°. N..

.4"

C.1.1 - 258

18. 9

-

2785

1.3

- 301

69. 8

- 322

23. 8

CD

.1.5

Cl)

0)

CO

00

CN 175.4 I

+ J o

,...).,

-.

-

2007

2.9

- 201

33.8

-

2031

5.7

- 20

61

6

- 210

30.5

- 215

53. 1

-22 1

76.2

- 22

89

0

-

2368

3.1

-

2436

5.7

1. ••••-■

>,

›7‹

N- CA r-- 0) c; r- .4.

I.-

C13

CD

-

1870

1.72

014

-

1887

6.78

085

-194

01. 0

7783

-

2027

1.97

435

Z , L -.

-214

85. 1

3865

-

2303

4.63

989

-

2491

3.08

612

-

2711

1.80

822

- 296

21.0

959

-4- ..;r CO C \ I r

co CY)

i

r

CO CO r ('41 r-- v- cfi CO 1.0

CO 3

$ Z - 1

8701

.7

- 187

60

-

18

93

4

-192

21. 1

C

i f

CO

.- co co cn r

I -201

14. 7

N- CO 0 N--

- 213

82.7

-221

30. 5

-

22

77

1

CD .-

358.

472 1

I

E

7835

. 077

7835

. 077

7835

. 077

7835

. 077

7835

.077'

7835

.077

7835

. 077

7835

. 077

7835

.077.

7835

.077

r MI

I0.

57

5 I

a) E 0

70 300

350

1

CD LO 0)

CD 1.0 0)

by rin

g be

am

Idle

rin

g be

am

om r

ing

beam

top

dom

e

otto

rifido

E 0

73. Co U c.

R

CV N (i)

F302

622.

3

146 1

436

2381

764

238 1

764

1478

5352

1

1797

7344

1

cao cn Co Lri 1-- .4. U) 48

379.

73

7310

203

. CNI ' U")

N LO , CO .4- 0 CO 26

2970

9

-270

8811

-270

8811

13222955

CO NI CO OD •:1" CO C7) x--

0

-

CD CD

. N-- .,- CD

op U) U) v.) ,- N 94

6379

6

6161533

6 161

533

23651320

4251

4495

1

164251

2

9288909

56142363

E=Kg

/m^2

)

2.5E

+09

o 4- tr) N

CO

T A

1.0

36337

N-. CO cn co cn O. 1.

0007

97

1.0

00797

< CN.1 Z CO 0.

9993

63 co

CO (Y)

CT)CO

0) 0

..-. .-

< Z — CO

CO r--- oo .4* 0)

ci cr)

00 r co-- d"

c:i. co03

0. 7

06825]

0.7

06825

CO

S2A

0.03

5678

0.03

5678

co 0) N-CD 0 CD a 0.

0007

96

. CO

SA

0.71

961

0.71

961 co

oo (e) 1*-- CD r-- ci 0

.707388

w IA

or

44 '

44

Lo ..:1- u-.)

.4

a Li= CD Z

co cei N N N C? -5

5807

.7 1

-403

30.3

1

.

Noe

CO N.: cp 0

CO (6 up N CO 28

091.

79

. C -e- Z

-

2314

9.7

CO CD c,, , C?

-

313

30.1

r

c, 3

CD Z

co Cs./ CNI 01 C.

-155

136

-709

80.1

CO

NTIN

UIT

Y E

FFECT CO

NTIN

UE .

NO

„,

-

3184

5.1

5450

3.8

-

3944

8.3

c:)

la Z

-940

3.84

6523

8.5

2984

8.91

43. Z

-227

71

-348

32.9

N bc; -4- .4.c$ M

T =

I n

4.77

3844

0/ 4.

6216

29

LO CD CO CD CO

CD

>- 1000

C:) 0 10

00

D (3i:oo

Z

3103

. 422

16

2548

.120

65

1017

0.442

1

6879

.424

01

40

Z

-784

. 275

-643

.943

r- 1.*.■ 0) In C".1 -1

757.12

I. N

ed CO

v--

COI"

CO CO CO COCO N C? -1

303.85

-881

.939

ET z

I -1

942.

24

-159

4.71

-627

4.93

-424

4.45

LI

Y

0.000419 I

0.00

0419

1

cylin

dric

a l w

all

I FER2 Lo cs) ,—

7 , , 1008

. 322

2835

. 787

2464

. 529

1

c, c, c,

7E

7R1 0

•t- ..-

ci VI 39

29. 1

52

In

7535

.909

CO 1*--

N-CY> CO

CC;

-

1090

5.5

-

3501

5.2

- 208

651

S22*

d20 0

LU cr) .,— i

1- v-

W r—

• .1-

N •t-

W co 6

N ..- W cNi

c6

CI Co c•

Y E

FFECT

CO

NTI

NU

E

s21 *d

0) 0 -I- LU 01 C . I

N -I- N- LLJ 0)

I

co T

4" LU Tzr

I

N T

÷ LU 0)

I .

0 0 00

S12

%12

0

-3.8

E+10

T

-7 W ..t— LI") N:

CV

+ W CO N— co

CV

+ W LO 0

c) .

co a)

O x•-•

co -4E+

10 co

W T

7

co N-

1.11 LO

CI.

Co •t-

W T

fI.

co x-

W COl'''.

oi

co 7 W N- cci

-4- %-- + LLI

N1 CNI Lri

cp CNA 73 Li

..i-r....: c.4 co Ec\31

2855

86. v

l

4657

92. 51

2070

33. 9

CD CD 0

I EX

co CD N: CI Cf) N CO - 2

8558

6

-465

793

- 207034

0 0 CD

Ed10

- 164

12.5

0) 0) CNI N. T T

7 -105

6978

1

- 505572

116

5988

071

9423

938

9291165 I

i a C-1-1

Lo (Ni ;-- CD 7

g c\I rs- %-- 7 -1

056978

-505

572

16598807

9423

9381

9291

165

I

CD Z

I-3

0674

.8

-144

965

-641

00.7

ce Lu u_ I..1

CN CNI N-RI .-- - 6

3471

. 3 I

- 197

743

%-.

"E _ o jo

int 2

join

t 3

FER2 CV

a-

Cf)

(Si;

U-1 U-

•-- -1

397.

65

(3).

LOa) cr) 1

CO

NTI

NU

ITY

EFFE

CT C

ON

TIN

UE s2

2 d2

0

3.07

E+12

cr) 7 tu , r-: a)

0 A-- 1:3

C•4

CV 17 + L1.1

CI -7.9

E+13

C:) V

co

CV C \I + LIJ

Cr;

.— +

c) -0 .— .t— U)

CN + 11.1

• a)

4- , + ILI 00

0 CV V 1.1.1,

1289

9 14

332 1

7464

X L1.1

- 128

9914

-3.3

E+07

0 .— V tu

1134

177

O Ca 0) CD 0 0) C \ I CA

ioriz

onta

l thr

ust

EAH

1134

177

CO CO 0) CD CD CN1 0) CNI

=

1139

7.65

3452

3599

1.93

667

mem

ber

I

Top d

ome

top

ring

bea

rni

cylin

dric

al w

a l.

Mid

dle

ring

beat

' 45

coni

cal w

all

conic

al w

all

bot

tom

dom

e

bot

tom

e rin

g b

e

Cs.I

1".1

-5.3

7E- 1

3 C '1/41 .— Lb

0) CA

7

N ..— di

0)

N X

co 0 + Lu

N .•--

00 C5 + W CNI c"! 7

c) CI + u J , ., CO

cf) C' + IA 0 N..- cci;

0 + ui r, r— cd

co C5 + W a) CO (.

-4- 0 + uj Lo 0 '‘-

v" C5 + W to '4: 7

co 0 + uj 0) CID Cr)

>

0.0

0E+

00

0.0

0E+

00

1"1

.4— ,—. di

CSI

CO

NTIN

UTY C

ORR

ECTIO

N OVER

'-' ----.. 0)

.. ,

`8_,.. , Lu co ..--

-8.5

6E+03

co 0 + Lil 0 •;1'

•zr Cs "I'

11-1 .CD 0

'Tr 0 + U-1 LO (-0.

-4. 0 + ILI COCO

44- 0 + ILI o

00

-8.3

1E+

04

•cf 0 + W 0) 0).

.

N

co

ill N

4L—

cso

Lu N „ ,—.

or)

Lu csi , ‘—.

CO

W CO co 4,—

1

CO

111 CO co 4,—

1

CO

W CO or) .,—

1

CO

L ILI co a) •l•

1

CO

W 00 0) l .

1

CO

W CO 0) '1"

1

''— D

CO 1

W C*1 NI:

CO 1

W Cy, v"

1.4

3E-0

3

2.0

0E03

V) Q

di 0 0 N

CO C.1 Li, 0 0 N 2

. 24E-0

3

CO 9 W .4 N N 2

. 24E-0

3

co. N N

1/.1

2689862

172154 9

6

,26748984

CNI U)

1"1

-210449

6

'4' -4-

Lo cp l- 2

217833 7

. .— ci) Inl

10217597

39101761

00 C) + ILIco cp ,

.

1FE

R2 Lo

0) ,— .7

..-- l- 28

35.7

87

3472.8

51

Hw

or H

e 0) CN CO ..— r-- co

2.30

8975

IME OF CO

NC

RET A

ND

VO

LUM

E O

F R

EIN

FO

RCEM

EN

T I

t --

W

11.1

3297

1

co N.

0 CO N.:

CO %—. ti

CO N-, r--: 8.

2027

16

CS) Co CO

N.- 01 r--: 5.

6604

95

7.83

5077

5.6

819

01

a C) a) u) +

r=1 15.9

4262

1

11.3

2099

1

t) C.) a) N 4,

0.53

7 187

1

0.53

7187

1

I m

omen

t CO C() •t-- O CD 0 ci

M

CN 0

CD 0 ci 0.

0944

01

Are

a

0.04

CO CN O 0.

725

.

TO

FIN

D V

OL

-Q cv 6 ..—

0.58

t(m

) co CD O

CV C;

r— •t— 6

CO CN c-.5

CO C) .6

CO (Y) 6 0.

14

V) (N ..,—

htd

3.08

1086

2.1

5676

C cti

2 0.76

7556

0.767556

a) 0) C'. <

-... 4'

Nr .4. 44

T a

115.4

054315 I

co .,-.- co vi-1.1, c) vt U) •-• 15

.4054315 I

15. 4

0543

15 I

15.4

0543

15

10.7

838

021

10.7

838021

10.7

8380

21

ALL

DIM

EN

SIO

N O

F L

.0 ..- 7-1

751

.0 .0

co in c;

Dc(

dia.

colu

miA

Co

Co

GIN

G CO

NTIN

UE j

Rm

2

■-• C) 0) ,M•

ao

L CD

L._ 2 2,'

CD

cy

i_ ......

5.('

cE

M CO

r.....

ci

STAG

UD

Lon

bott

om

RIN

G B

EAM

ab(a

ngle

)

0.17

4444

FO

R

BOTTOM

no o

f co

lun

00 ..k—

AST

4

1.25

6913

ring

beam

In CO L.0 CO CO 0)

N

L..]

LO CD N—.

• •L--

Vs

0.02

103

0.01

1074

co r--- 0) 0) Ce) ci 0.

0828

33

r-- 0) CDCY) CO CO ci

N... CNI Co ,-. CO ci

E Vc CO

C\I 1"-- 01

'6 >

14.3

8038

3

CNI 0. cp CD 0).

I8.8

407

12.8

7826

35.3

945 8

13.7

7642

2

T) M

- 284

18.1

1

-285

5.68

1

2396

4.55

1

3466

9.5

4250

0.72

1

494 1

2.05

1

Mt

-

5726

.87

-285

5.68

-170

3.23

-

1384

.03

-973

.455

O

2163

51.1

1811

68.7

1272

07.6

,

o coc

U) c) 0) Lr) 64

175.

18

cp

7 I-

-308

5.62

- 33 1

6.02

-289

5.5 -4-

co c.i LC) CO

Cil - 165

4.87

1

c:::,

Mu

-226

91.2

5 0) 0

W 1

CO

C:

CO CO r.... .._ • 1-- CO

CO Co NI 36

053.

531

4347

4.17

8

4941

2.05

1

i

ye

-567

4.71

-

6098

.44

-

5325

.06

-

4327

.07

lf) 'Zr Cr) -zr O

M

0

T(TO

)b

-205

7.08

co CO O .,-. N Cii -1

930.

33

-156

8.56

-110

3.25

CD

M(m

0)

- 151

27.5

-7.2

E- 1

0 CO CO •-• N- N.- N-

CS) CO LO CZ) Nr NI 28

982.

79

3294

1.37

Vu(

s hea

r)

1385

59.4

1146

80.7

794

80.0

2

59

61

0.0

2

39

74

0.0

1

(D

E a) -0 5....? 20

0 469

-0

1812

.5

_EN

GIN

IN M

ETER

o 0 V

CD V o

CD

a) a) N NI U) c) c; 0.

0737

63

r-- CO CO 'Cr CD c- ci

,—

NI NJ .- ci

.a-

0.13

9556

1

nr

NI- Vr r■ 1-- C;

.

Ul rCI ------

D 0 a

CD

C:73 CI) I's NI I.0 CD C;

Ast r

eq.

I u)

1484

.94

1484

.94

I

<

1484

.94

I

1484

.94

-ci-a)

co

,-. 1484

.94

I

CO

DAL

VAL

UE

0 0) CNJ O

CO CO a 0.

49

0.57

•:1' CO c:i 0.

7.

•a- 1.-- ci 0.

78

0.82

0.85

0.88

C .

O

CV CA a

ifi. ,I.g. ' d 0.

25

c i 0.75

•- 14) CV .-

LO • ,-.

in

LO 1...s ,-.

C \I 11, CSI c.,„i

to • 04

2.

75

CO

4.1.. ia- 2 '>-<" 03 E C)

7 cn

no of b

ar O U) a a a a

c=20

mm

-4- .- C)

Ast(M

e2) 0

1484

.94 0 0 0 0

CO

0 0 C

vt V' "zr Nt '' '4'

(DI_

in m

m

25

Ast of b

ar

490.

625

490.

625

490.

625

490.

625 LO

04 co ci cy) -a- 49

0.62

5

C_ E 405 <

1484

.94

1484

.94

1484

.94

1484

.94

1484

.94

1484

.94

---.. ,-- a) 2 .-- u) <

.4- h..4- c\i Lo co 64

.664

08

548.

8721

798.

7775

983.

5332

- _ 1

147.

987

Me2

O

2855

.682

1

a a a a

Mt-M

u

-

1696

4.4

2855

.682

-

2396

4.6

-346

69.5

N. O cp 1.0 Cs4

.,-- CV .— V' C) I

CH

EK

o a)

1...P

0.43

4216

867

I

0.05

2799

23

eve

CO (NI cNi Nr Lo O ir) -4- 0 cri

,

.

uppe

r lim

it

0.57

to

a) N.1,

0.45

1888

.

low

er li

mit

up CO 6

0

:.-. =

ai a_ D.

=

E *sof 0

'St: CZ)

uppe

r lim

it

0 0

0.49

FRO

M FA

CE O

F CO

LUM

N T

O M

AXIM

UM

TO

RSIO

N i.e

AID

=

low

er li

mit

0.36

.--

1-- .--

TV N 1--

6

for 4

c

low

er li

mit

Cr) N

6 0.36

CD

uppe

r lim

it

C:) C)

0.49

CO CO 9 0.

64

0.7

0.74

0.78

..1 CO 6

CO CO 6

o CO 6

o) d 0.

92

0

uppe

r lim

it

1.0 1*--

0

0 ,s j.

0 4-

E = L a)

0

0) CNI

CD 0.36

0 0 0 0 0 0 CI C) 0 0 0

0.10

466 7

E = 6- CD

0

LO Cs4 c;

uppe

r lim

it

LO •

0

FRO

M lab =

trai

l for

pt%

uppe

r lim

it

0 0 0.5

4-' E =

o

0.25

low

er li

mit

0.15

0.25

c)

trail fo

r pt

% up

per l

imit,

0 0 1.0 • O

to r-- ci ,

to c‘, .1— 1.

5

to I-- 1—

04 to C•1

( \ 1

, ''' '

("Ni

to is-

( \i

ce)

low

er li

mit

LC) 'V"'

6 0.25

P P P P (:) P P 0 CD CD c)

0

0.. ....9. °

U CI r.-

N. CO N 'Tr 6

h-

r--

N CO

,cr 6 0.

4267

07

0.42

6707

r.-- 0 N-

CV CO

nr 6

N- 0 1"--

CVCD

•:1- 6 .

to

I

uppe

r lim

it

LO CD

E

6 0

0.36

I

0) co r- CV 1.0 c, ci lo

wer l

imit

in N d

(0 in Lo

.-- ci

CD ce)

uppe

r lim

it

0 0 0) V ci

FRO

M eb

:

uppe

r lim

it CD 0 0.

5 0.75

‘-- Lo CV .- 1.

5 Lo 1*""; .-

CV u) N c,si

Lo •

CV

Li, N-• csi

cY) to

for

lowe

r lim

it

0) CV Ci 0.

36

0

FOR

%pt

lower

lim

it

L.0 T-

c; 0.25

CD CD ID CD CD 0 0 CD CD 0 0

T .-- .F.4 cs.1 x-- Ci up

per l

imit

LO

CD

FRO

M e

b

:.-• E = i- a)

o

Li, N 6

.8 > Cf)

54.2

522

trail f

or p

t%

uppe

r lim

it

CD 0 LO • 0

..zr >- + .).%

437.

2361

lowe

r lim

it

Lo ,- O 0.

25

c•

T- cv 1--- .4- oi O c■1 T--

e

..-

539.

4721

SV

br CNI

Cs1 "Cr IC) co

rrec t

> (1)

153.

6507

N— N.— Cs!

CO

153.

6507

0.53

Y IA

U

c5

Asv

226

N > 1■1`

c) co co 0).4- CI) T

0.07

3762

974

I

uppe

r limit I

O

(.0 In In in InLO 03 CO •-•

Ci

uppe

r lim

it I

LC)

FRO

M e

b

low

er li

mit

in N 0

..-

= i_ (1)

0

1.0 N 6

trail fo

r pt

% up

per

limit

0 6 0.5

0.75

r Li> N. ..t-

• . ,-.

N LO CNI CNi

F

trai

l for

pt%

upp e

r lim

it

0 0

low

er li

mit

0.15

0.25

0 0 0 0 0 0 0 0 0

low

er li

mit

I.0 .t- 6

LO N 6

c)

w

r- O Lr) 6 r•-: co

But

CD 0 N-Co

CH

EK

ci.

N NJ, IN

0.45

1888

SVbr

311

. 6961

BU

T

uppe

r lim

it

0) 41.

C) CH

EK

low

er li

mit

0.36

4ve

0.90

324

uppe

r lim

it

0 C:) 0) 'a' 6 0.

57

Nr C.0 6 0.

7 NJ-

1.--- 6 0.

78

N CO 6 0.

85

03CO 6

0')

° N O) 6

0.45

1888

10.

0737

63

o 6 a)

0

I 0.29

0.36

0 C) 0 C3 0 0 0 0 0 0 0

uppe

r lim

it!

(3)

0

a)

(

7)

long

itudi

nal

rein

forc

em

er

r)

ch° >

r-- co Lo c•

O

VSi

ort2

O cl N- co .,.- cl ci

c) c) c) c)

,... .fa

LO >

U, r-- CO CO LO 0 O 0.

023376

0.03

446

0.0

19452

0.01

9452

0.03

8904

FIN

AL

Vs

0.4

78178

1

U >

25.8697

U)

CO LO 0 T- 6 0 T-

, = -°

\— •

L O 0 N--

13- > cr)

no n

eed

L beca

use

CH

EK

o LLI i 0 0.k

> I \Js

1.7 9

0395724

a) > p....p

al

a) NJ`

0.45

1887

55

a) NJ

0.4

51

88

8

upp e

r lim

it

CD

44-

O '

upp e

r lim

it

0.4

9

[low

er li

mit

0.3

6

low

er

limit

CO co 6

N. CO CO •,:r cl , ci u

pper

limit

CD 0 CD 'cr ci

N- LO ci

I 0.64

0.7

•zr N- c;

CO N- a;

C\I CO c:5 0.

85

I

CO CO d

0.174444 1

upper

limit'

CD CD

0.4

9

O NJ` M ,_ 0

Ilo

wer

limit

0.29

CO c ) CD

c) c) c) c) CD 0 0 0 0 to KJ'

t5

Ilo

wer

lim

it!

0) CN 0 0.

36

I

0

CHAPTER 4

ANALYSIS AND DESIGN OF STAG ING

4.1 INTRODUCTION The design of container is described in chapter (2). A framework of vertical

circular columns connected by horizontal braces of rectangular cross section having ring beam at top has been proposed for the staging. The analysis for horizontal forces has been carried out by the tube analogy method and the design is based on limit state method.

4.2 BOTTOM RING BEAM The bottom ring beam is considered as a part of the staging because its design is

governed by the number of columns in the staging. The bottom ring beam is subjected to

the total vertical load of the container and the water including self weight in the vertical

direction. In addition it is also subjected to a radial force which is the difference of the

horizontal components of the meridional thrust from the conical dome and bottom dome.

The bottom ring beam is analyzed as a beam curved in plan and continuous over

column supports. In this case, the center of gravity of load lie out side the line joining it

supports. This cause an over turning of the beam which can be prevented if barn fixed at

its ends or continuous over the supports. The design is based on the recommendation of

limit state methods per IS: 456-2000.the number of column is fixed by angle ab so that

the edge beam is connected to the column directly.

4.2.1 Design Forces:

Bending moment in bottom ring beam at any point

Meb= Wrb * Rbm 2 (ab sin 9b ab cot ab cos Ob —1) kg m (4.1)

Torsion moment in bottom ring beam at any angle Ob

Tab= Wrb * Rbm 2 (ab eb — ab cos Bb ab cot ab sin s Bb ) kg m (4.2)

Where Wrb is load per unit length in bottom ring beam which is obtained by governing

equation

28

= NObd sin 0 + Ns sin a kg/m .... (4.3)

Hoop compression in bottom ring beam

Tbb = NObdCOS 0 NsCosa kg/m (4.4)

0/, =angle (radian) at the center that a section make from left support

ab =semi central angle subtended by supports at the center.

Angle between the center of column support and the point of maximum torsion

sin ab 19b1=ab —Cos-1 a (4.5)

(a) longitudinal reinforcement

The code IS 456:2000[17] recommended a simplified skew- bending based formulation

for design of longitudinal reinforcement to resist torsion combined with flexure in beam

With' rectangular cross section. The torsion moment Tu is converted into an effective bending moment Mt defend as follow

I:, (1+ 12Lt) Mt— Ft' kg m (4.6) 1.7

So calculated Mt, is combined with actual bending moment Mu at the section, to give equivalent bending moment Mel and Mee

Mei=Mt+Mu .(4.7)

Me2=Mt-Mu (4.8)

The longitudinal reinforcement area Ast is design to resist the equivalent -rbL1 -S

moment Meband reinforcement is to be located in the flexural tension zone .In

addition if Mez>0, then reinforcement area Astrm2 is to be designed to resist this equivalent moment, and this reinforcement is to be located in the flexural

compression zone. It follow from the above that in the limiting case of pure tension

29

i.e Mu=0 equal to longitudinal reinforcement is required at top and bottom of rectangular beam, each capable of resisting an equivalent bending moment equal to

Mt.

The longitudinal reinforcement should not less than.0.85 brbtrbifY

(b) Transverse reinforcement

Vertical shear force at any angle 9 b

VOrb= Wrb * -Rb. tab — 9b) kgm

Equivalent shear

Vu +1.6 Tu brb

brbt rb

If 'rye exceed 're, max the section has to be suitably redesign by in creasing the cross

sectional area (especially width) and for improving grade of concrete

Spacing of Shear reinforcement at support section

(i)when 0.5; <Tye < tie

0.87fi/ * As, 0.4brb

(ii) when ; <Ty, < ; max

(4.11)

DVC N/mm2 ....

(4.9)

(4.10)

Svrb 0.87.6/ * As" (rye Tc)brb

(4.12)

Where ; is obtained from Table 19 of IS: 456 The shear reinforcement at the point of maximum torsion

A Tu + Vurb * Svrb — sv — kcl i (0.87 fy) 2.5di (0.87f y )

But total transverse reinforcement shall not be less than (1. " cr )b rb * SV rb

0.87fi)

(4.13)

Where A„ is the total area of two legs of the stirrup's is the center to center to

spacing of stirrup; bl and dl are the center to center distance between the corner bars

30

along the width and depth respectively; and T„ and V. are the factored twisting moment and factored shear force acting at the section of consideration.

Specific maximum limits to spacing of the stirrups provide as tensional reinforcement, to control crack widths and to control the fall in tensional stiffness on account of tensional cracks, should not exceed xi or (xi+yi)/4 or 300mm where x1 and 3/1

are respectively ,the short and long center to center dimensions of the rectangular closed stirrup.

4.3. COLUMNS

The columns are to be designed for vertical loads due to the weight of the container, the weight of water and the self weight as well as horizontal forces due to

wind. Generally the columns provided have the same cross-sectional area and are placed symmetrically. Therefore the vertical loads are shared equally by all the columns.

The lateral forces induce bending moments, shear forces' and axial forces in the columns. The magnitude of these reactions depends upon the condition of the end-fixidity

of the columns at the top and bottom. This problem is statically indeterminate and

involves the analysis of the tower as a space frame.

The analysis for horizontal loads is done by the tube analogy method. In this

method the tower is assumed to behave as a cantilever under the action of horizontal

forces with the neutral axis passing through the bending axis of the tower. The columns

which are built monolithically with the container base at the top, braces in the middle and

the foundation at the bottom are considered infinitely rigid and therefore, the rotation of

columns at these points is considered to be zero. If the bending moment and shear forces

due to the lateral loads on the tower are calculated on this equivalent vertical cantilever

beam at the horizontal sections passing through points of inflexion, then the bending

stresses in the equivalent vertical cantilever beam will give the vertical forces in the

columns and the shear stresses in the cantilever beam will give the horizontal shear force

in the columns at their points of inflexion. The detailed formulation has been explained

by Jai Krishna and Jain[11]

31

4.3.1 Dimensions:

The columns are normally designed as short columns and the minimum number of panels

in the staging is given by

H ,

Np- 12*D,

Np is rounded off to the nearest higher number to get whole number

Therefor the number of braces is given by

Nb=Np-1

and clear panel height is obtained from

I-IeL=Hs-Nb*tbr.

The center to center panel height of the column is given by

Elec=HGL+tbr m

The effective length of the brace is obtained from

(D2 +D)*2r Lbe

D, m Arc

And clear length of brace

LbeL=Lbe-De

4.3.2 Wind Loads:

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

The basic wind pressure is taken as per provision of IS: 875(Part-3)-1987[20] for place

where the structure is suited. The wind load on the container and staging is computed as

follow:

The wind force on container member is given by

Wf cylinderef cylinder*Pd cylinder*Ae cylinder kg..... ( 4.20)

Wf cone=ef cone *Pd cone *Ae cone kg..... ( 4.21)

Wf bottom ring beam =ef bottom ring beam *Pd bottom ring beam *Ac bottom ring beam kg... ( 4.23) Resultant force on container

Wfm= Wf cylinder*Hcw+ Wf cone*Hc+ Wf bottom ring beam* trb kg (4.24)

32

This force acting at the Zs distance from bottom dome portion The Wind force on column of each panel is Wfc=cfc*Pd*(0.5Nc+1)HeL*Dc kg ..... (4.25) Wind load on braces of each panel are

Wthr=cfbr*Pd*(D2+2Dc) Kg (4.26) There for the maximum panel shear at the mid height of first panel from ground level is Sp=Wfen+(Np-0.5)Wfc+(Np-1)Wfbr Kg (4.27) and the panel moment at the mid height of the above panel Mp=

[W f,„{Zs + (Np —1)H + 0.5H ,L }+ 0 .5Wfc{0 .251 + (Np „}+{(Wf, + Wf br )(0 .5Np 2 Np + 0.5. Kgm (4.28)

4.3.3 Forces on Columns:

(a) The gravity forces on each column of the lowest panel is given by

Wc — + 2500(‘ ?I` bb, *H L )* Nb Kgm (4.29) Nc c

(b)Horizontal forces:

Maximum thrust on leeward column of the lowest panel lying farthest from the bending

axis

Tc- 4M p

Kg (4.30) N * (D2 + D ,)

Maximum bending moment on the column of lowest lying on the bending axis

H mc= cL *Sp Nc

Kgm (4.31)

33

4.3.4 Reinforcement in columns

(a) Longitudinal Reinforcement

Each column of the staging is to be designed for the maximum thrust and the combined effect of thrust and moment .The reinforcement is calculated by using design chart (for uniaxial eccentric compression)in SP:16 .In circular column at least six bars are required and they are equally placed

(b) Transverse Reinforcement:

The pitch and diameter of the lateral ties or helical reinforcement is kept as per

clause 26.5.3.2 of IS: 456 2000 [17]. The minimum diameter should be 6mm.

4.4 BRACES

Bending moment in a brace is developed at the junction due to shear force acting

at the mid height of columns. The bending moment has to be resisted by the two braces

meeting at the junction. The bending moment in the brace about the vertical axis of its

section is almost zero and even the twisting moment is negligible. Thus the brace bear the

joint moment mostly by developing bending moment about the horizontal axis of its

section. These moments in the brace can easily be calculated by considering the statically

equilibrium of moments at the joint.

4.4.1 Wind Forces on Braces:

Moment in the lowest brace rigidly connected to the column making an angle Oc with the

bending axis of tower is given by

Mbr 2Sp* H„* Cos 20c* Sin(Oc + ab )

N, * Sin2ab Kgm .(4.32)

For maximum moment in the brace

—3Tanab +11((3Tanab )2 + 8) TanO, =

4 (4.33)

Shear force in the lowest brace lying between the column making angles (0c — ab ) and

Oc with the bending axis of the tower.

34

2S * H c Vbr " tCos20 Sin(19

c + ab ) — Cos 2 (Oc — 2ab)Sin(0, -3ab )} kg....(4.34)

Nc * Sin2ab

For maximum values of shear force 06 = ab I.e. wind blowing parallel to the brace. Hence

maximum shear force

Vbr(Max)— 4S

P * H *

CC Cos20c

kg... .(4.35) Nc

Twisting moment (Tube)=5% Mbr(Max)

Equivalent shear

bbr t br N/mm2.... (4.36)

Iftve exceed rcmax the section has to be suitably redesign by in creasing the cross

sectional area (especially width) and /or improving grade of concrete

4.4.2 Reinforcement in bracing

(a)The longitudinal reinforcement area Ast-brL is i design to resist moment Mbr and

reinforcement is to be located in the flexural tension zone. The moment in braces may be

positive or negative according to the direction of wind .hence the brace must be

reinforced equally. at top and bottom. The longitudinal reinforcement should not less than

0.85 bbrtbr/fY

(b)Spacing of Shear reinforcement at support section

(i) When 0.5tc <Tve <

0.87fy* As 3vbr-

0 .4bbr

(ii) when tie <Tve < "re max

0.87fr * As, 3vb

r (rve — rc )bb ,.

Where is is obtained from Table 19 of IS: 456-2000[17] The shear reinforcement at the point of maximum torsion

(4.37)

(4.38)

rye =

VU br +1.6 T„' br bbr

35

Tub ,. + Vub ,. * Sv bi (0.87fy ) 2.5d1 (0.87fy )

mnri2 (4.39)

But total transverse reinforcement shall not be less than (rve rObb, * S v br

0.87fi,

Where Asv, is the total area of two legs of the stirrups is the center to center to spacing of stirrup; bl and dl are the center to center distance between the corner bars along the width and depth respectively; and Tu and Vu are the factored twisting moment and

factored shear force acting at the section of consideration.

Specific maximum limits to spacing S„ of the stirrups provide as tensional reinforcement,

to control crack widths and to control the fall in tensional stiffness on account of

tensional cracks, should not exceed xi or (xi+yi)/4 or 300mm where xi and yi are

respectively ,the short and long center to center dimensions of the rectangular closed

stirrup.

4.5 RELEVENT PARAMETER 4.5.1 Volume of concrete

VcoL,=— n Dc 2 Hs * Nc m3

4 Vbr= Nc * Nb* Lbr * Bbr * dbr m3

Vrb— II * Db„,r. * t b, * brb m3

VCstaging= VcoL Vbr Vrb m3

4.5.2 Volume of steel (a)Bottom ring beam

VS rbL— rID bmr( Ast rbL1 + ASt rb 1.2)

VS rbt-= Nc(brb t rb - 0.25) * AsvE ei * D2bmr

V Sib' Vs rbL + VS rbt

3

3

3

(4.40)

(4.41)

(4.42)

(4.4.3)

(4.44)

(4.45)

(4.46) (b)Column. VseL=Nc*Hs*Asc

Vset= 2 (Hs )*11* Dc

4 lry

3

3

(4.47)

(4.48)

36

VSC= VSeL, Vsct

(c)Braces VsbiL=Lbr*Astb,-*Nc*Nb*2

b

L r * 2(bbr for

m3

m3.

3

3

3

(4.49)

(4.50)

(4:51)

(4.52) (4.53)

V 0.25)* ASV Sbrt= — br SV br

VSbr= VSbrL+ VSbrt

Vst = VSrb VSC VSrb .

4.5.3 Cost of staging

On the basis of the present prevailing rates of material the rates of various items are given as under:

. (3) Cement concrete of grade M25 in superstructure excluding Rs.2900 per cu.m cost of centering and shuttering

(4) Tor steel reinforcement including cutting,bending,placement Rs18000 per ton and its wastage

There for the cost of staging =V9staging*29000+78.5*18000*Vst Rupees (4.54)

37

CHAPTER 5

RESULTS

5.1 INTRODUCTION The alternative design of container and staging are obtained by using Excel

program which is explain in chapter (3). The effect of various parameters on the cost of

container is studied and design for optimal parameter is given in the form of graph and

table.

5.2 CONTAINER

The effect of following parameters is studies by varying the parameter as per

table-1.1

(1)Staging-container diameter ratio AI (D2/D1)

(2)Height diameter ratio, 22 (H1/D1)

(3)Horizontal angle of cone a

The result are tabulated in tables 5.1 to5.3 and graph plotted between cost of container

and above parameter are drawn for all six different capacities are shown in figure 5.1 to

5.3

38

Table 5:1 Quantity of concrete, reinforcement and cost of container for different value

of .1.1 and A.2=0.3 a=50°

• Capacity

KL .

Al

Volume

of

concrete

(ms) •

Volume

of steel

( m3) \

Cost of

Container

in lac

Capacity

KL

Volume

of

concrete

(ms)

Volume

of steel

On3 )

Cost of

Container

in lac

300

0.5 30.46 0.30671 0.4379844

1 000

133.9 1.2241 1.783845 0.55

30.51 0.30499 0.4361554 131 1.25376 1.809267 0.6

30.59 0.30438 0.4356982 127.9 1.25323 1.7995933 0.65

30.72 0.30053 0.4316843 124.5 1.24948 1.7855015 0.7

30.91 0.32293 0.4577693 120.9 1.20677 1.726183 0.75

31.18 0.33468 0.4719532 116.9 1.18731 1.6924585

500

0.5 51.48 0.48885 0.7065876

1250

194.9 1.76754 2.5803188 0.55

50.97 0.50561 0.7241983 190:1 1.71954 2.511553 0.6

50.43 0.50963. 0.727228 184.8 1.70891 2.4841874 0.65

49.89 0.52192 0.7396584 179.1 1.70429 2.4623788 0.7

49.33 0.52125 0.7372871 172.9 1.6667 2.4015303 0.75

48.78 0.49681 0.7078137 166.2 1.65495 2.3684856

750

0.5 87.74 0.86091 '1.2358695

1500

259.6 2.30934 3.385619 0.55

86.26 0.85358 1.2232238 252.5 2.31486 • 3.3710966 0.6

84.67 0.84095 1.2042191 244.7. 2.26603 3.2927989 0.65

82.97 0.83083 1.1877671 236.2 2.1935 3.1854981 0.7

81.16 0.80458 1.1525728 226.9 2.15733 3.1174065 0.75

79.22 0.79965 1.1413354 216.8 2.11148 3.0356828

39

Table 5.2 Quantity of concrete, reinforcement and cost of container for different value

of X2 and Al =0.7 a=50°

Capacity

(KL)

x2

Volume

of

concrete

(m3)

Volume

of steel

(m3)

Cost of

Container,

( lac)

Capacity

(KU)

Volume

of

concrete

(m3)

Volume

of steel

(m3)

Cost of

Container

(lac)

300

0.2 32.811 0.3415 0.48447 0.

.

1000

132.6871 1.2659 1.82795

0.25 31.699 0.3239 0.46117 125.836 1.2022 1.73543

0.3 30.908 0.3229 0.45777 120.8504 1.2068 1.72618

0.35 0. 30.330 0.3234 0.45668 • 121.8994 1.1827 1.70175

0.4 29.899 0.313 0.44357 124.3927 1.2105 1.7407

0.45 29.576 0.3318 0.46401 . 133.4116 1.2034 1.75876

0.5 29.333 0.3233 0.45359 141.0548 1.1964 1.77294

500

0.2 53.702 0.5196 74807 0.74807 .

1250

190.0523 1.6926 2.48073

0.25 51.175 0.5138 0.73419 180.1343 1.6781 2.43548

0.3 49.330 0.5213 0.73729 172.9295 1.6667 2.40153

0.35 47.937 0.5157 0.72693 173.1034 1.6682 2.40376

0.4 46.860 0.5124 0.72003 181.1545 1.6093 2.35991

0.45 48.782 0.4963 0.70727 191.3672 1.6533 2.43976

0.5 50.048 0.5467 0.76839 200.0845 1.6839 2.49992

750

0.2 88.739 0.8839 1. 1.26495

1500

250.5416 2.2733 3.31817

0.25 84.350 0.8243 1.18427 236.8773 2.1869 3.18002

0.3 81.157 0.8046 1.15257 226.9128 • 2.1573 - 3.11741

0.35 0. 78.755 0.8169 1.15968 236.7901 2.0798 3.05769

0.4 81.098 0.816 1.16548 245.5014 2.1223 3.13137

0.45 79.862 0.8083 1.15304 253.2507 2.173 3.21162

0.5 88.157 0.8778 1.25633 266.5529 2.2271 3.31184

40

Table 5.3 Quantity of concrete, reinforcement and cost of container for different value

of a and A2=0.3 Al =0.7

Capacity

KL

a

Volume

of

concrete

(m3)

Volume

of steel

(m3)

Cost of

Container

in lac

Capacity

KL

Volume

of

concrete

(m3)

Volume

of steel

(m3)

Cost of

Container

in lac

300

35 28.7409 0.355435 0.488545

1000

93.17201 1.271578 1.719798

40 29.20365 0.353309 0.487463 99.82198 1.238748 1.701656

45 29.88701 0.337145 0.471017 108.6655 1.190994 1.672864

50 30.90829 0.322926 0.457769 120.8504 1.206769 1.726183

55 32.47002 0.309947 0.447503 138.3493 1.255399 1.832368

60 34.94639 0.311486 0.456438 164.8083 1.299719 1.959623

500

35 41.99098 0.550561 0.749414

1250

129.4937 1.752411 2.37328

40 43.71413 0.535028 0.736703 139.9523 1.726115 2.373633

45 46.05342 0.518818 0.725008 153.8313 1.684742 2.366717

50 49.3304 0.521253 0.737287 172.9295 1.666697 2.40153

55 54.09622 0.526566 0.757164 200.3463 1.676157 2.491823

60 61.36443 0.522186 0.773249 241.8319 1.796442 2.749256

750 •

35 65.25571 0.880233 1.192708

1500

176.4983 2.231715 3.056001

40 69.05107 0.850311 1.169603 191.0981 2.169519 3.027437

45 74.12865 0.820228 1.150033 210.4978 2.112708 3.018931

50 81.15752 0.804575 1.152573 226.9128 2.157333 3.117406

55 91.28529 0.820364 1.199943 275.693 2.161142 3.263211

60 106.6266 0.875638 1.307444 334.0363 2.325848 3.620172

41

• • •

—E-- V-500 ,a=50,A2=0.3 •

—A— V=750 ,a=50,A2=0.3

V=1000 ,a=50,A2=0.3 • •

—s— V=1250 ,a=50,A2=0.3

—•— V-1500 ,a=50,A2=0.3

4

V-250 ,a=50,A2=0.3

3.5

3 ea

2.5

a) c

2

0 1.5 U 5

0 0.5

0

Ir A A

0 4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

Staging-container diameter ratio Al

FIG 5.1 VARIATION OF COST OF CONTAINER WITH RATIO X1

42

3.5

—a— V=1500 ,a=50,A 1=0.70 —a—V=1250 ,a=50,A1=0.70 —A—V-1000 ,a=50,h1=0.70 —N— V=750„ a=50.A 1=0.70

3

o m 2.5

._ .

IA c

o il C_) 0 4- 1.5

0 0

0.5

0

.--.1--V=500 , a=50,A 1=0.70 --V=300 ,a=50,A1=0.70

0.15 02 0.25 03 0.35 04 0.45 05

. _ Height-container diameter ratio A2

.FIG 5.2 VARIATION OF COST OF CONTAINER WITH RATIO X2

4

--.--V=1500 ,a=50,A1=0.70 ---+-V=1250 ,a=50,A1=0.70 -a-V=1000 ,a=50,A1=0.70 -a-V=750 ,a=50,A1=0.70 -+-V=500 ,a=50,A1=0.70 -m-V=300 ,a=50,A1=0.70 3.5 ea

-1 e .-

6- 2.5 3

2 c...) , 5 .b. 1.5 co U 1 A- —

0.5 •

0 30 35 40 45 50 55 60 - 65

Horizontal angle Of Conical Dome a

FIG 5.3 VARIATION OF COST OF CONTAINER WITH RATIO a

43

5.3 STAGING Obtaining from optimum value of different parameter of container, the design of staging

is done by varying the values of basic parameter such as capacity of tank V, height of staging Hs

and various wind zones .for economical design we have varied no of columns, column diameter,

and minimum no of panels .the design is carried out by limit state approach. The result of cost of

staging are tabulated in table 5.2 for six different capacities and for three height of staging, 15m,

18m, 21m.The table 5.4 graphically presented from Fig 5.4 for staging height 15m. The curves

clearly indicate the effect of column in the cost of staging.

44

Table 5.4 Quantity of concrete, reinforcement and cost of staging for different number of

column and height of staging, 15m, 18m, and 21m.The container has value of a=45° X2=0.3 and

.1./ =0.7

Capacity

KL

Height

of

sta ging

Hs

No

Of

column

Volume

of

concrete

(m3)

Volume

of steel

(m3)

Cost of

Container

in lac

Capacity

KL,

No

of

column

Volume

of

concrete

(m3)

Volume

of steel

(m3)

Cost of

Container

in lac

300

15 10 45.0 1.73 2.57

1000

14 113.5 3.81 5.72 12 49.6 1.67 2.51 16 116.3 .3.63 5.4 14 54.29 1.69 2.55 18 119.7 3.89 ' 5.8

18 10 56.03 .2.42 3.58 14 136.94 5.45 ' 8.09 12 61.54. 2.59 3.85 16 143.39 5.59 ! 8.32 14 67.0 2.74 4.07 18 150.9 5.27 7.89

21 10 68.63 3.31 4.89 14 151.94 7.23 10.66 12 67.26 3.46 5.08 16 159.31 7.54 11.12 14 73.77 3.72 5.47 18 168.85 8.05 , 11.87

500

15 12 65.50 2.28 3.42

1250

20 135.9 4.29 6.462 14 68.41 2.22 3.34 22 139.7 4.37 6.5817 16 72.06 2.42 3.63 24 143.5 4.65 6.98

18 12 72.56 3.09 4.59 20 152.93 6.24 9.26 14 76.65 3.24 4.80 22 158.4 5.95 8.88 16 81.48 3.39 5.03 24 168.54 6.41 . 9.55

21 12 86.89 4.27 6.28 20 169.89 8.63 , 12.69 14 94.94 4.63 6.81 22 177.0 8.73 : 12.85 16 98:76 4.93 7.25 24 188.8 9.39 13.81

750

15 14 99.36 3.06 4.62

1500

20 148.8 4.913; 7.37 16 102.9 2.87 4.36 22 149.8 4.64 , 7.0031 18 111.38 3.15 4.77 24 158.29 4.98 7.50

18 14 111.2 4.58 6.80 20 170.6 6.76 10.0 16 116.56 4.35 6.48 22 16.8.53 6.59 ' 9.8 18 126.6 4.77 7.10 24 178.6 7.06 . 10.49 14 123.1 6.08 8.95 20 182.7 9.19 13.5

21 16 130.12 5.92 8.74 22 187.19 9.18 ' 13.5 18 . 141.90 . 6.57 9.7 24 198.9 9.85 14.5

Cl) 8 w

< 7 _11 Z 6

v-1500 KL,HS=15m

KL,HS=15m

KL,HS=15m

KL,HS=15m

KL,HS=15m

KL,HS=15m

--E-- v=1250

A-- V=1000

-X-- v=750

--X v=500

—0-- v=300

5 z

0 4

3 co

LI- 2 0 (7) 1 0 0.0

8 10 12 14 16 18 20 22 24 26

NO OF COLUMN IN STAGING

FIG 5.4 VARIATION OF COST OF CONTAINER WITH NO OF COLUMN

46

CHAPTER 6

DISCUSSION AND CONCLUSION

6.1 DISCUSSION As the ratio A.1 is increase from 0.5 to 0.75 the cost of container decreases. The

effect is more significant in when water storage capacity is more than 750 KL .For lower

value of X1 the reduction in capacity in conical portion of container which enhance the

container dimensions and hence the cost of container. The curve Fig 5.1 represents

variation of cost of container with value of A,1.

From the result of previous chapter we obtain, as we increase in height —diameter

ratio it reduce the cost of top ring beam and bottom dome. But over all cost of container

increases due to increasing the cost of cylindrical wall effectively which is shown in

Fig 5.2. The cost of container increases rapidly when 2L2 value increases from 0.35. For

0.3 to. 0.35 the curves for all capacity are nearly a straight line which has very less

increment in slope but beyond this slop increases significantly.

Keeping other parameter constant and varying the value of a from 35° to 60°, it is

observed that the value of cost of container decreases when a less than 45°.As the a

increased from 45°, an added capacity is created in conical portion of container which

decreases the dimension of cylindrical wall but over all cost of container increase. The

change of cost of container with a has been shown in Fig 5.3.

From figure 5.4 it is observed that cost of staging increases as the no of column

decreases to a curtain limit because significantly in crease the value of .For ch * D 2

c

safe design as well as economical it is observed that up to 500 KL capacity 12 to 14

column are economical. For capacities between 500 KL and 1000KL 16 column are

economical and beyond 1000KL up to 1500KL 20 to 22 are sufficient.

47

6.2 CONCLUSION The most economical combination of various parameter for the container are

given below 'TABLE 6.1 Recommended proportion of container and staging.

Parameter Optimum value of parameter of container capacity( KL)

Capacity 300 500 750 1000 1250 1500

ill (D2/D1) 0.5 to 0.6 0.6 tO 0.7 0.7 to 0.75 00.7 to 0.75 0.7 to 0.75 0.7 to 0.75

22 (H1/D1) 0.3 to 0.35 0.3 to 0.35 0.3 to 035 0.3 to 0.35 0.35 to 0.4 0.3 to 0.35

Angle(a) 40° to 45° 40° to 45° 40° to 45° 40° to 45° 40° to 45° 40° to 45°

Nc(column) 14 14 - 16 16 20 22

6.3 SCOPE OF FUTURE STUDY

(a) Excel program can extend to design for foundation. After designing of

foundation we can make, a correct combination of parameter for different

capacity of intze tank.

(b) Forces obtained at different location in container and staging can be verified by

software packages.

48

REFERENCES

1. Araya, A. S,"Water tower project (Exact Analysis of intze Tank)", M.E.Thesis submitted to University of Roorkee 1957.

2. Jain, 0.P., and Singh, K. K,"Computer analysis of intze tank", Indian concrete journal, vol.51, August.1977.

3. Singh, K. K., Prakash, A. and Jain, 0. P.,"Finit Element Analysis of Intze tanks". 4. Rao, K., C.V.S. and Raghwan, T.M.S,"Optimum design of intze tank on shafts"

Indian concrete journal, January 1982.

5. Rao, K.,C.V.S.. "Data for rapid calculation of continuity effects in• intze

tanks",Indian concrete journal, August 1982.

6. Sharma, L. D,"On optimal Design of R.C.C. intze tank"M.E thesis submitted to University of Roorkee, 1971.

7. Damle, S. R. and Pathak,, S. P."Water tank with vertical walls curved inward" Indian concrete journal, January 1978.

8. Damle, S. R. and Pathak, S. P.,"Convex petal shaped vertical walls for prototype

water tank", Indian concrete journal, February 1980. 9. Singh, C.,"Matrix analysis of framed staging for water Towers" M.E thesis

submitted to. University of Roorkee 1967. 10. Jain,O.P. and Singh,C."Analysis of R.C.Water Towers frames" journal of the

institution of engineers(India),Jan.1969. 11. Jai Krishna . and Jain 0.P,"plain and reinforcement concrete" Nem Chand and

Bros, Vol.land Vol.2, 2000 12. Rao, K., C.V.S."Analysis of Supporting Tower of overhead Tanks" Indian

concrete journal,October 1983. 13. Kundoo, S. K.,"Distribution of horizontal loads on supporting tower for circular

tank" Indian Concrete Journal.Vol.51.Feb.1977. 14. Avadesh Kumar," Analysis and Design of R.0 over Head Reservoirs" M.E.Thesis

is submitted to University of Roorkee"Roorkee, 1988. 15. Kelkar, V. S., and Sewell, R.T," Fundamental of the analysis and design of shell

structures".

49

16. Macdonald, A. J.,"Wind loading on buildings" Applied . Science Publishers Ltd

London. 17. Indian Standard code of Practice for Plain and Reinforced Concrete IS: 456-2000

Bureau of Indian standards, New Delhi.

18. Indian Standard Code of practice for concrete structures for the storage of liquids IS: 3370(part 1 part 11)-1965 Bureau of Indian standards, New Delhi January

1966, August1976. 19. Indian Standard code of practice for design load (Other than earthquake) for

building and structures, Part 2 imposed loads IS 875(part 2):1987 Bureau of

Indian standards, New Delhi

20. Indian Standard code of practice for design load (Other than earthquake) for

building and structures, Part 3 wind loads IS 875(part 3):1987 Bureau of Indian

standards, New Delhi

21. Explanatory hand Book on Indian Standard code of practice for design load

(Other than earthquake) for building and structures, Part 3 wind loads IS 875(part

3):1987 Bureau of Indian standards, New Delhi.

50