Oldest records of stingray spines (Chondrichthyes, Myliobatiformes

6
PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by: [Consorci de Biblioteques Universitaries de Catalunya] On: 20 May 2010 Access details: Access Details: [subscription number 919083124] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK Journal of Vertebrate Paleontology Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t917000010 Oldest records of stingray spines (Chondrichthyes, Myliobatiformes) Josep Marmi a ; Bernat Vila a ; Oriol Oms b ; Àngel Galobart a ;Henri Cappetta c a Institut Català de Paleontologia, Edifici ICP, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain b Facultat de Ciències (Geologia), Universitat Autònoma de Barcelona, Bellaterra, Spain c ISE-M, Université de Montpellier II-Sciences et Techniques du Languedoc, Montpellier Cedex 5, France Online publication date: 19 May 2010 To cite this Article Marmi, Josep , Vila, Bernat , Oms, Oriol , Galobart, Àngel andCappetta, Henri(2010) 'Oldest records of stingray spines (Chondrichthyes, Myliobatiformes)', Journal of Vertebrate Paleontology, 30: 3, 970 — 974 To link to this Article: DOI: 10.1080/02724631003758011 URL: http://dx.doi.org/10.1080/02724631003758011 Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Transcript of Oldest records of stingray spines (Chondrichthyes, Myliobatiformes

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [Consorci de Biblioteques Universitaries de Catalunya]On: 20 May 2010Access details: Access Details: [subscription number 919083124]Publisher Taylor & FrancisInforma Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Vertebrate PaleontologyPublication details, including instructions for authors and subscription information:http://www.informaworld.com/smpp/title~content=t917000010

Oldest records of stingray spines (Chondrichthyes, Myliobatiformes)Josep Marmi a; Bernat Vila a; Oriol Oms b; Àngel Galobart a;Henri Cappetta c

a Institut Català de Paleontologia, Edifici ICP, Campus de la Universitat Autònoma de Barcelona,Bellaterra, Spain b Facultat de Ciències (Geologia), Universitat Autònoma de Barcelona, Bellaterra,Spain c ISE-M, Université de Montpellier II-Sciences et Techniques du Languedoc, Montpellier Cedex 5,France

Online publication date: 19 May 2010

To cite this Article Marmi, Josep , Vila, Bernat , Oms, Oriol , Galobart, Àngel andCappetta, Henri(2010) 'Oldest records ofstingray spines (Chondrichthyes, Myliobatiformes)', Journal of Vertebrate Paleontology, 30: 3, 970 — 974To link to this Article: DOI: 10.1080/02724631003758011URL: http://dx.doi.org/10.1080/02724631003758011

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial orsystematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply ordistribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contentswill be complete or accurate or up to date. The accuracy of any instructions, formulae and drug dosesshould be independently verified with primary sources. The publisher shall not be liable for any loss,actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directlyor indirectly in connection with or arising out of the use of this material.

Journal of Vertebrate Paleontology 30(3):970–974, May 2010© 2010 by the Society of Vertebrate Paleontology

SHORT COMMUNICATION

OLDEST RECORDS OF STINGRAY SPINES (CHONDRICHTHYES, MYLIOBATIFORMES)

JOSEP MARMI,∗ ,1,# BERNAT VILA,1,# ORIOL OMS,2 ANGEL GALOBART,1 and HENRI CAPPETTA3; 1Institut Catala de

Paleontologia, Edifici ICP, Campus de la Universitat Autonoma de Barcelona, 08193, Bellaterra, Spain, [email protected];[email protected]; [email protected]; 2Universitat Autonoma de Barcelona, Facultat de Ciencies (Geologia), 08193,Bellaterra, Spain, [email protected]; 3ISE-M, Universite de Montpellier II–Sciences et Techniques du Languedoc, Cc 064,Place Eugene Bataillon, 34095, Montpellier Cedex 5, France, [email protected]

The superorder Batomorphii is the most derived amongelasmobranches and is composed of cartilaginous fishes withdorsoventrally flattened bodies. Myliobatiformes (rays) are oneof the orders within Batomorphii and the fossil record showsthat their Mesozoic remains are not as abundant as those fromthe Tertiary, which includes a wide array of isolated teeth, der-mal denticles, few serrated caudal spines, and, exceptionally,articulated specimens (de Carvalho et al., 2004). The oldeststingray fossils are of Early Cretaceous (Hauterivian) age, fromnortheast England (Underwood et al., 1999). The Late Cre-taceous fossil record of stingrays consists of isolated remainsof Cenomanian (Dasyatidae and Gymnuridae) and Campanian-Maastrichitian (Myliobatidae and Rhombodontidae) ages show-ing a wide distribution—North and South America, Africa, Eu-rope, and Middle East—for this group of fishes (Cappetta etal., 1993; de Carvalho et al., 2004). In Europe, the batoid fossilrecord of the same age consists of only isolated teeth of Raji-formes and Myliobatiformes (Albers and Weiler, 1964; Cappetta,1987; Astibia et al., 1990; Soler-Gijon and Lopez-Martınez, 1998;Kriwet et al., 2007). In the Late Cretaceous of the Pyrenees, iso-lated teeth of myliobatoids of genera Coupatez ia Cappetta, 1982,Igdabatis Cappetta, 1972, and Rhombodus Dames, 1881 (Soler-Gijon and Lopez-Martınez, 1998; Kriwet et al., 2007), and feed-ing depression traces (Martinell et al., 2001) have been reported.The most complete specimens of stingrays are first reported fromthe Eocene of northeastern Italy and Wyoming (United States)(de Carvalho et al., 2004).

Caudal spines are one of the synapomorphic characters ofmyliobatoids (Nelson, 2006) and show a degree of morphologi-cal characters that could be complementary for defining speciesand elucidate phylogenetic relationships among current and fos-sil taxa (Schwartz, 2005, 2007, 2008). However, their presence inthe fossil record is very unusual. The most ancient stingray cau-dal spines have been attributed to the extinct genera Coupatez iaCappetta, 1982, and Rhombodus Dames, 1881, and were citedin the Maastrichtian from Belgium and Morocco, respectively(Arambourg, 1952; Herman, 1977). Additionally, few isolatedspines are reported in the Cenozoic record (e.g., PtychacanthusAgassiz, 1837, from unknown origin [Cappetta, 1987], indeter-minate stings in the Miocene from Montpellier [Cappetta, 1970],Potamotrygon africana Arambourg, 1947, in the Pleistocene fromEthiopia). Well-preserved caudal stings have been described inEarly Eocene specimens of genus Asterotrygon de Carvalho et al.,2004, and Heliobatis Marsh, 1877, from Wyoming (de Carvalhoet al., 2004). Recent prospecting at the Vallcebre syncline (south-eastern Pyrenees) has yielded for the first time stingray caudalspines from the Late Cretaceous, Iberian Peninsula. Reportedhere is their description and discussion of possible affinities withcurrent and extinct taxa.

*Corresponding author. #These authors contributed equally to this ar-ticle.

GEOLOGICAL AND PALEONTOLOGICAL SETTING

The southern Pyrenees basins with Late Cretaceous to Pa-leocene deposits record a regression from marine carbonateplatforms to fully continental environments. Part of this re-gression process can be studied in detail in the Aren Sand-stone and Tremp Formations (Mey et al., 1968). They haveyielded a diverse and abundant fossil record that includes di-nosaurs (titanosaur sauropods, dromaeosaurid theropods, andhadrosauroid ornithopods), crocodiles, turtles, as well as eggclutches, footprints and trackways, invertebrates, and plants (Vilaet al., 2006, 2008).

In the Vallcebre syncline (southeastern Pyrenees), the TrempFormation encompasses a ca. 500-m-thick Maastrichtian se-quence composed of transitional and continental deposits. Thebasal-most lithologic unit, the roughly 5-m-thick marly limestone(or ‘concrete’) level is placed within the C32n.1n magnetochron(ca. 71 Ma) (Oms et al., 2007) and reveals a transitional muddyenvironment. The unit’s top, and the overlaying five centimeter(<5 cm) laminated marl layers, preserve thousands of sauropodichnites, logs, palm leaf impressions, conifer (Cheirolepidiaceae)axes, and other plant remains, as well as impressions of gastro-pod shells and sulfur nodules (Vila et al., 2008; Riera et al., 2010).All of these paleontological and sedimentological data indicatebrackish conditions (Oms et al., 2007).

Stingray caudal spine IPS-41761 was found on the top of themarly limestone unit at the Mina Esquirol site, in close contactwith a sauropod manus-only trackway (Vila et al., 2005), whereasspecimens IPS-41758 and IPS-41759 were collected within thesame lithologic unit at the Placa de Sant Roma site (Fig. 1). Bothspecimens are associated with accumulations of Cerithium gastro-pod shells.

METHODS

Measurements were obtained from photographs with theImageJ (Image Processing and Analysis in Java) software(http://rsb.info.nih.gov/ij/index.html). The following measure-ments were noted: TSL (total spine length from the base to thetip of the spine), MSW (maximum spine width, transversally mea-sured), NSL (number of serrations at left side), NSR (number ofserrations at right side), S/mm (number of serrations per millime-ter), SPL (length of the serrated part of the sting), SLM (serra-tion length mean), and SWM (serration width mean). Taxonomicclassification follows Compagno (1973, 2005).

SYSTEMATIC PALEONTOLOGY

Class CHONDRICHTHYES Huxley, 1880Subclass ELASMOBRANCHII Bonaparte, 1838

Superorder BATOMORPHII Cappetta, 1980Order MYLIOBATIFORMES Compagno, 1973Suborder MYLIOBATOIDEI Compagno, 2005

(Table 1, Fig. 2)

970

Downloaded By: [Consorci de Biblioteques Universitaries de Catalunya] At: 09:32 20 May 2010

SHORT COMMUNICATIONS 971

FIGURE 1. Geographic location of the Vallcebre syncline and stratigraphy of the base of Tremp Formation outcropping at Mina Esquirol (Fumanyaarea) and Placa Sant Roma (Sant Corneli) sites, where stingray spines were recovered (see text for details).

Referred Specimens—Three complete to partially preservedcaudal stings (IPS-41758, IPS-41759, IPS-41761) housed at the In-stitut Catala de Paleontologia collection.

Description—IPS-41759 and IPS-41761 are complete and verysimilar in form and size (Fig. 2, Table 1). However, specimenIPS-41759 is only preserved as a cast. Both spines display lon-gitudinal grooves extending along the body of the spine, from thebase and smoothing out or becoming absent in the serrated por-tion of the spine. The spine shape is elongated and narrower dis-tally. In cross-section the spine is slightly rounded in shape at itsbasal-most extreme and becomes more flat with a rounded cen-tral ridge distally. On the proximal extreme a constriction existsbetween the spine and its root. Serrations are triangular, asym-

metric, and harpoon-like with retroserrate orientations. The ser-rations are longer than wide (Table 1) and decrease in size prox-imally with distal serrations (1 to 7) longer (mean length: 0.68mm) than proximal (8 to 12) serrations (mean length: 0.45 mm).

The distal end is preserved in spine IPS-41758 (Fig. 2) and cor-responds to a part of a serrated segment that measures 12.34 mmlength. No longitudinal grooves are distinguished on the dorsalside of the preserved segment but in cross-section a ventral ridgeis in evidence. The spine displays 11 serrations per side whoseshape and size are very close to those of the previous specimensdiscussed (Fig. 2). Serrations increase in size towards the prox-imal end on both sides although the most proximal end of thespecimen is missing.

TABLE 1. Measurements, in mm, of Vallcebre stingray caudal spines.

TSL TSW NSL NSR S/mm SPL SLM SLR SWM SWR

IPS 41758 ? ? ? ? 0.75–1.5 ? 0.99 0.60–1.43 0.23 0.14–0.30IPS 41759 32.1 3.2 9 9 0.5–1 12.9 1.10 0.91–1.34 0.22 0.18–0.29IPS 41761 28.6 2.7 ? 12 1–2 8.8 0.65 0.39–0.84 0.19 0.10–0.23

Abbreviations: NSL, number of serrations left; NSR, number of serrations right; SPL, serrated part length; SLM, serration length mean; SLR, serrationlength range; SWM, serration width mean; SWR, serration width range; S/mm, serrations per millimetre; TSL, total spine length; TSW, total spinewidth; ?, missing data.

Downloaded By: [Consorci de Biblioteques Universitaries de Catalunya] At: 09:32 20 May 2010

972 JOURNAL OF VERTEBRATE PALEONTOLOGY, VOL. 30, NO. 3, 2010

FIGURE 2. Stingray caudal stings from Placa Sant Roma (A, IPS-41758 and B, IPS-41759) and Mina Esquirol (C, IPS-41761) sites (Vallcebresyncline). Scale bar equals 1 mm for A, 5 mm for B and C.

The spines IPS-41758, IPS-41759, and IPS-41761 are at-tributed to myliobatiform batoids (Chondrichthyes). The Mylio-batiformes order is the only group in which the presence of a ser-rated caudal spine is considered a synapomorphic character (Nel-son, 2006). Because of the lack of taxonomic resolution of currenttaxa, the absence of more synapomorphic characters in caudalspines, and the scarce Cretaceous record of the group, it is notpossible at this time to provide a more accurate taxonomic clas-sification for the Vallcebre syncline specimens beyond the familylevel (see below).

DISCUSSION

Taxonomy of extant Myliobatiformes is still unresolved, es-pecially at the family and subfamily levels. The most recentstudy suggests that Myliobatiformes contain eight extant fam-ilies: Hexatrygonidae, Plesiobatidae, Urolophidae, Urotrygo-nidae, Dasyatidae, Potamotrygonidae, Gymnuridae, and Mylio-batidae (Compagno, 2005). Additionally, Cappetta et al. (1993)described one extinct family, Rhombodontidae, of Campanian-Maastrichtian age.

The Myliobatiformes fossil record in Europe is extremely poor.Among the fossil representatives only the extant Dasyatidae,

Myliobatidae, and the extinct Rhombodontidae families fromLate Cretaceous deposits are candidates for the Vallcebre spec-imens (Cappetta, 1987; Cappetta et al., 1993). Indeed, in thelatest Cretaceous (Maastrichtian) of southern and central Eu-rope, these families have been reported in deposits of Catalo-nia, Basque country, southwestern France, Belgium, and Holland(Albers and Weiler, 1964; Astibia et al., 1990; Cappetta, 1987;Soler-Gijon and Lopez-Martınez, 1998; Cappetta and Carmelo-Corral, 1999; Vullo, 2005). The outcrops of the Tremp Forma-tion from southern Pyrenees yielded Igdabatis indicus Prasadand Cappetta, 1993, Coupatez ia trempina Kriwet et al., 2007, andRhombodus ibericus Kriwet et al., 2007 (Kriwet et al., 2007),whereas fossil ray traces (Piscichnus Feibel, 1987) indicate con-temporaneous feeding activity of these animals at the samecoastal area (Martinell et al., 2001).

Extant Myliobatiformes families show great diversity in habi-tat, from fully marine and marginal brackish species (Urolophi-dae, Dasyatidae, Gymnuridae, Myliobatidae) to partial andfully freshwater species (Dasyatidae, Potamotrygonidae) (Mar-tin, 2005). Assuming similar habitat adaptations for both the ex-tant and fossil families of the group, extrapolating habitats forthe stingray taxa present in the Maastrichtian of southern Europecan be done. Thus, because Vallcebre specimens are found in a

Downloaded By: [Consorci de Biblioteques Universitaries de Catalunya] At: 09:32 20 May 2010

SHORT COMMUNICATIONS 973

transitional muddy environment, it could be inferred that the cau-dal stings may belong to some representatives of Myliobatidae,Dasyatidae, or Rhombodontidae. In the neighboring Tremp For-mation deposits, fossils of Myliobatids and Rhombodontids areassociated with transitional, near-coastal/lagoonal environments(Kriwet et al., 2007).

The stingray caudal spines show an amount of morphologicalcharacters that might be complementary for defining species, elu-cidate phylogenetic relationships among current and fossil taxa,or even/also discriminate between preferential habitat (Schwartz,2005, 2007, 2008). The specimens of Vallcebre herein reportedare small (<4 cm length) and have a low number of total serra-tions (∼20). Yet, the large variability observed in the current data(Schwartz, 2005, 2007, 2008), even at intraspecific level, in rele-vant characters such as total length or the number of serrationsprevents any confident comparison and description. Similarly,Schwartz (2005, 2007) noted that the number of tail spine serra-tions could be used to infer the specific habitat of extant stingrays.Thus, for benthic inhabitants, the total numbers of spine serra-tions tend to be low (25 to 50 serrations). If correct, this infer-ence would indicate a marine benthic habitat for the Vallcebrestingrays (∼20 serrations). Nevertheless, this seems to be stilla rather ambiguous character for determining stingray habitats(see Cuny and Piyapong, 2007, contra Schwartz, 2005).

The lack of bony structures in the Batomorphii strongly pre-vents the preservation of anatomical characters and thus rendersdifficulty in the establishment of a complete evolutionary history.In Myliobatiformes, the first appearance of representatives of thegroup is from the Early Cretaceous (Hauterivian; Underwood etal., 1999) by means of dental evidence. In the Cretaceous, thetaxonomy of the group is solely based on dental fossils. There-fore, the occurrence of caudal stings of Myliobatiformes in theLate Cretaceous dates the first appearance of this synapomorphiccharacter in the early evolutionary history of the group. Moreimportantly, the presence of the appendage, which carries outdefensive purposes with the production of venom, indicates thatdefensive weapons and strategies were developed in the clade inthe Cretaceous times.

ACKNOWLEDGMENTS

We thank E. Garcia and J. Matallanas for allowing the obser-vation of stingrays housed at the Museu de Ciencies Naturalsde la Ciutadella and the Universitat Autonoma de Barcelona.The authors are indebted to P. Anadon and V. Riera who wereinvolved in the finding of the specimens. Two anonymous re-viewers and the editor made constructive suggestions to im-prove the manuscript. This research has been granted by projects2006EXCAVA0001 (Generalitat de Catalunya) and CGL2005-07878-C02-01,02 and CGL2008-06533-C03-01,02/BTE (Ministe-rio de Ciencia e Innovacion). Paleontologic activities are includedwithin a project from the Departament de Cultura i Mitjans deComunicacio (Generalitat de Catalunya). J.M. has a grant fromthe Juan de la Cierva Program of the Ministerio de Ciencia e In-novacion (Ref. JCI-2007–187-1593). This paper is the contribu-tion ISE-M No. 2009-176.

LITERATURE CITED

Agassiz, L. 1837. Recherches sur les poissons fossiles III. Imprimerie Pe-titpierre, Neuchatel, 390 pp.

Albers, H., and W. Weiler. 1964. Eine fischfauna aus der oberen Kreidevon Aachen und neuere Funde von Fischresten aus dem Maestrichtdes angrenzenden belgisch-hollandischen raumes. Neues Jahrbuchfur Geologie und Palaontologie Abhandlungen 120:1–33.

Arambourg, C. 1947. Mission scientifique de l’Omo (1932–1933). Editionsdu Museum National d’Histoire Naturelle, Paris, 562 pp.

Arambourg, C. 1952. Les vertebres fossiles des gisements de phos-phates (Maroc–Algerie–Tunisie). Notes et Memoires du ServiceGeologique du Maroc 92:1–372.

Astibia, H., E. Buffetaut, A. D. Buscalioni, H. Cappetta, C. Corral, R.Estes, F. Garcia-Garmilla, J. J. Jaeger, E. Jimenez-Fuentes, J. LeLoeuff, J. M. Mazin, X. Orue-Etxebarria, X. Pereda-Suberbiola, J.E. Powell, J. C. Rage, J. Rodrıguez-Lazaro, J. L. Sanz, and H. Tong.1990. The fossil vertebrates from Lano (Basque Country, Spain):new evidence on the composition and affinities of the Late Creta-ceous continental faunas of Europe. Terra Nova 2:460–466.

Bonaparte, C. L. J. L. 1838. Selachorum tabula analytica. Nuovi Annalidella Scienze Naturali, Bologna 2:195–214.

Cappetta, H. 1970. Les selaciens du Miocene de la region de Montpellier.Palaeovertebrata, Memoire Extraordinaire, Montpellier, pp. 1–139.

Cappetta, H. 1972. Les poissons cretaces et tertiaires du Bassin desLullemmeden (Republique du Niger). Palaeovertebrata 5:179–251.

Cappetta, H. 1980. Le selaciens du Cretace superieur du Liban. II. Ba-toides. Palaeontographica 168:149–229.

Cappetta, H. 1982. Revision de Cestracion duponti Winkler, 1874(Selachii, Batomorphii) du Bruxellien de Woluwe-Saint-Lambert(Eocene moyen de Belgique). Mededelingen van de Werk-groepvoor Tertiaire en Kwartaire Geologie 19:113–125.

Cappetta, H. 1987. Chondrichthyes II. Mesozoic and Cenozoic Elas-mobranchii; pp. 1–193 in H. P. Schultze (ed.), Handbook of Pale-oichthyology, Volume 3B. Gustav Fisher Verlag, Stuttgart.

Cappetta, H., and J. Carmelo-Corral. 1999. Upper Maastrichtian selachi-ans from the Condado de Trevino (Basque-Cantabrian region,Iberian peninsula). Estudios del Museo de Ciencias Naturales deAlava 14;339–372.

Cappetta, H., C. Duffin, and J. Zidek. 1993. Chondrichthyes; pp. 593–609in M. J. Benton (ed.), The Fossil Record, Volume 2. Chapman andHall, London.

Compagno, L. J. V. 1973. Interrelationships of living elasmobranch fishes;pp. 55–61 in P. H. Greenwood, C. Patterson, and R. Miles (eds.),Interrelationships of Fishes. Academic Press, London.

Compagno, L. J. V. 2005. Checklist of living Chondrichthyes; pp. 503–548in W. Hamlett (ed.), Reproductive Biology and Phylogeny of Chon-drichthyes (Sharks, Batoids and Chimaeras). Science Publishers,Inc., UK.

Cuny, G., and C. Piyapong. 2007. Tail spine characteristics of stingrays(order myliobatiformes): a comment to Schwartz (2005). ElectronicJournal of Ichthyology 1:15–17.

Dames, W. 1881. Ueber Zahne von Rhombodus aus der obersenonenTuffkreide von Maastricht. Sitzungsberichte der Gesellschaft derNaturforschenden Freunde zu Berlin 1:1–3.

De Carvalho, M. R., J. G. Maisey, and L. Grande. 2004. Freshwaterstingrays of the Green River Formation of Wyoming (early Eocene),with the description of a new genus and species and an analysis of itsphylogenetic relationships (Chondrichthyes: Myliobatiformes). Bul-letin American Museum of Natural History 284, 136 pp.

Feibel, C. S. 1987. Fossil fish nests from the Koobi Fora Forma-tion (Plio-Pleistocene) of northern Kenya. Journal of Paleontology61:130–134.

Herman, J. 1977. Les selaciens des terrains neocretaces et paleocenesde Belgique et des contrees limitrophes. Elements d’une biostrati-graphie intercontinentale. Memoires pour Servir a l’Explication desCartes Geologiques et Minieres de la Belgique, 1975 (paru 1977) 15,401 pp.

Huxley, T. H. 1880. On the application of the laws of evolution to thearrangement of the Vertebrata, and more particularly of the Mam-malia. Proceedings of the Scientific Meetings of the Zoological So-ciety of London 1880:649–662.

Kriwet, J., R. Soler-Gijon, and N. Lopez-Martınez. 2007. Neoselachiansfrom the Upper Campanian and Lower Maastrichtian (Upper Cre-taceous) of the Southern Pyrenees, Northern Spain. Paleontology50:1051–1071.

Marsh, O. C. 1877. New vertebrate fossils. American Journal of Science.14:249–256.

Martin, R. A. 2005. Conservation of freshwater and euryhaline elasmo-branchs: a review. Journal of Marine Biology 85:1049–1073.

Martinell, J., J. M. deGibert, R. Domenech, A. A. Ekdale, and P. P.Steen. 2001. Cretaceous ray traces? An alternative interpretationfor the alleged dinosaur tracks of La Posa, Isona, NE Spain. Palaios16:409–416.

Mey, P. H., P. J. C. Nagtegaal, K. J. Roberti, and J. J. A. Hartevelt.1968. Lithostratigraphic subdivision of Post-Hercynian deposits inthe South-Central Pyrenees, Spain. Leidse Geologische Mededelin-gen 41:221–228.

Downloaded By: [Consorci de Biblioteques Universitaries de Catalunya] At: 09:32 20 May 2010

974 JOURNAL OF VERTEBRATE PALEONTOLOGY, VOL. 30, NO. 3, 2010

Nelson, J. S. 2006. Fishes of the World, fourth edition. John Wiley andSons, Inc., New York, 624 pp.

Oms, O., J. Dinares-Turell, E. Vicens, R. Estrada, B. Vila, A. Galobart,and A. M. Bravo. 2007. Integrated stratigraphy from the Vallcebrebasin (southeastern Pyrenees, Spain): new insights on the continen-tal Cretaceous-Tertiary transition in southwest Europe. Palaeogeog-raphy, Palaeoclimatology, Palaeoecology 255:35–47.

Prasad, G. V. R., and H. Cappetta. 1993. Late Cretaceous selachians fromIndia and the age of the Deccan Traps. Palaeontology 36:231–248.

Riera, V., J. Marmi, O. Oms, and B. Gomez. 2010. Orientated plantfragments revealing tidal palaeocurrents in the Fumanya mudflat(Maastrichtian, southern Pyrenees): insights in palaeogeographic re-constructions. Palaeogeography, Palaeoclimatology, Palaeoecology288:82–92.

Schwartz, F. J. 2005. Tail spine characteristics of stingrays (order mylio-batiformes) found in the Northeast Atlantic, Mediterranean, andBlack seas. Electronic Journal of Ichthyology 1:1–9.

Schwartz, F. J. 2007. Tail spine characteristics of stingrays (Order Mylio-batiformes) frequenting the FAO fishing area 61 (20N 120E–50N150E) of the Northwest Pacific Ocean. The Raffles Bulletin of Zool-ogy 14:121–130.

Schwartz, F. J. 2008. A survey of tail spine characteristics of stingrays fre-quenting African, Arabian to Chagos-Maldive Archipelago waters.Smithiana Bulletin 8:41–52.

Soler-Gijon, R., and N. Lopez-Martınez. 1998. Sharks and rays (chon-drichthyes) from the Upper Cretaceous red beds of the south-central Pyrenees (Lleida, Spain): indices of an India-Eurasia connec-tion. Palaeogeography, Palaeoclimatology, Palaeoecology 141:1–12.

Underwood, C. J., S. F. Mitchell, and K. J. Veltkamp. 1999. Shark andray teeth from the Hauterivian (Lower Cretaceous) of north-eastEngland. Palaeontology 42:287–302.

Vila, B., O. Oms, and A. Galobart. 2005. Manus-only titanosaurid track-way from Fumanya (Maastrichtian, Pyrenees): further evidence foran underprint origin. Lethaia 38:211–218.

Vila, B., O. Oms, J. Marmi, and A. Galobart. 2008. Tracking Fu-manya footprints (Maastrichtian, Pyrenees): historical and ichnolog-ical overview. Oryctos 8: 115–130.

Vila, B., R. Gaete, A. Galobart, O. Oms, J. Peralba, and J. Escuer. 2006.Nuevos hallazgos de dinosaurios y otros tetrapodos continentales enlos Pirineos Sur-centrales y orientales: resultados preliminares; pp.365–378 in Colectivo Arqueologico-Paleontologico Salense (ed.),Actas de las III Jornadas sobre Dinosaurios y su Entorno. Salas delos Infantes, Burgos, Espana.

Vullo, R. 2005. Selachians from the type Campanian area (LateCretaceous), Charentes, western France. Cretaceous Research26:609–632.

Submitted February 9, 2009; September 13, 2009.

Downloaded By: [Consorci de Biblioteques Universitaries de Catalunya] At: 09:32 20 May 2010