New data on Early Pleistocene vertebrates from Monte Argentario (Central Italy). Paleoecological and...

16
Original article New data on Early Pleistocene vertebrates from Monte Argentario (Central Italy). Paleoecological and biochronological implications § Maria Stella Siori a , Andrea Boero b , Giorgio Carnevale b , Simone Colombero b , Massimo Delfino b,c , Raffaele Sardella d , Marco Pavia b, * a Dipartimento di Scienze della Vita e Biologia dei Sistemi, Universita ` degli Studi di Torino, via Accademia Albertina 13, 10123 Torino, Italy b Dipartimento di Scienze della Terra, Universita ` degli Studi di Torino, via Valperga Caluso 35, 10125 Torino, Italy c Institut Catala de Paleontologia Miquel Crusafont, Universitat Auto `noma de Barcelona, Edifici Z (ICTA-ICP), Carrer de les Columnes s/n, Campus de la UAB, E-08193 Cerdanyola del Valles, Barcelona, Spain d Dipartimento di Scienze della Terra, Sapienza Universita ` di Roma, piazzale Aldo Moro 5, 00185 Roma, Italy 1. Introduction Remains of small mammals, birds and reptiles have been collected in 2001 in a fissure filling exposed in a limestone quarry opened in the eastern slope of the Monte Argentario (Grosseto, Central Italy) by one of the authors (M.P.) (Fig. 1). The infilling, opened in the southern side of the so-called ‘‘Miniera della Polveriera’’, consists of a succession of conglomerate layers with centimetric clasts and red clay-sand layers, both strongly cemented. The finest layers are concentrated in the lower part of the fillings. The vertebrate remains were collected from the clay- sand layers, mainly in the less-cemented portions. This site is known since the 1950s, discovered and described by Baschieri and Segre (1957), who reported a large mammal assemblage including the Etruscan rhino and saber-toothed cat. The assemblage also included Castor sp., Lepus etruscus, Machairodus crenatidens, Panthera pardus, Lynx issiodorensis, Ursus etruscus, Hyaena sp., Canis falconeri, Dicerorhinus etruscus, Leptobos cf. L. etruscus, Tragulidae indet., Aves indet., Testudo hermanni, and Bufo sp. Subsequent researches have been focused on a single skull of Panthera ex gr. toscana-gombaszoegensis, a partial skeleton of Megantereon whitei, and a single humerus of Homotherium sp. (Sardella, 2006; Sardella et al., 2008), the first Italian occurrence of the ovibovine bovid Soergelia cf. S. minor (Martı ´nez-Navarro et al., 2012), as well as on the taxonomic updating of the other recorded taxa. As a consequence, the updated list of large mammals found at Monte Argentario includes: Ursus etruscus, Canis sp., Pachycrocuta brevirostris, Lynx issiodorensis, Panthera ex gr. toscana-gombaszoe- gensis, Homotherium sp., Megantereon whitei, Stephanorhinus cf. S. hundsheimensis, Pseudodama sp., Leptobos sp., Soergelia cf. S. minor, Bovidae indet. (Sardella et al., 2008; Martı ´nez-Navarro et al., 2012). The large mammal remains are housed in the Istituto Italiano di Paleontologia Umana, Roma. The bird remains had been provi- sionally studied by Bedetti (2003), with the identification of Geobios 47 (2014) 403–418 A R T I C L E I N F O Article history: Received 15 May 2014 Accepted 20 October 2014 Available online 24 October 2014 Keywords: Small mammals Birds Herpetofauna Early Pleistocene Farneta-Pirro Faunal Unit Early Biharian Italy A B S T R A C T A first record of non-mammalian remains and small mammals from the Early Pleistocene of Monte Argentario (Central Italy) is reported herein, together with paleoecological and biochronological remarks based on the whole fossil assemblage. This site is known since the 1950s mostly for large mammal remains. So far, the known taxa collected from this site comprise mainly large mammals with few birds and reptiles. Recent fieldworks in this locality led to the recognition of a small mammal assemblage that consists of twelve taxa, including Talpa cf. T. fossilis, Sorex cf. S. minutus, Petenyia hungarica, Asoriculus gibberodon, Oryctolagus cf. O. valdarnensis, Eliomys cf. E. intermedius, Glis sackdillingensis, Microtus (Allophaiomys) cf. M. (A.) ruffoi, Victoriamys chalinei, Apodemus (Sylvaemus) sylvaticus, Apodemus (S.) flavicollis, Apodemus (S.) gr. sylvaticus-flavicollis, and Apodemus (Karstomys) gr. mystacinus-epimelas. An updated description of amphibians, squamates and birds is also provided. Following the chronological data derived from the large and small mammals, the vertebrate assemblage of Monte Argentario can be referred to the Early Pleistocene, Early Biharian, corresponding to the Farneta and Pirro Faunal Units of the Italian biochronological scheme. In addition, the data presented herein support the hypothesis of a biochronological equivalence of these two Italian Faunal Units. ß 2014 Elsevier Masson SAS. All rights reserved. § Corresponding editor: Gilles Escarguel. * Corresponding author. E-mail address: [email protected] (M. Pavia). Available online at ScienceDirect www.sciencedirect.com http://dx.doi.org/10.1016/j.geobios.2014.10.001 0016-6995/ß 2014 Elsevier Masson SAS. All rights reserved.

Transcript of New data on Early Pleistocene vertebrates from Monte Argentario (Central Italy). Paleoecological and...

Geobios 47 (2014) 403–418

Original article

New data on Early Pleistocene vertebrates from Monte Argentario(Central Italy). Paleoecological and biochronological implications§

Maria Stella Siori a, Andrea Boero b, Giorgio Carnevale b, Simone Colombero b,Massimo Delfino b,c, Raffaele Sardella d, Marco Pavia b,*a Dipartimento di Scienze della Vita e Biologia dei Sistemi, Universita degli Studi di Torino, via Accademia Albertina 13, 10123 Torino, Italyb Dipartimento di Scienze della Terra, Universita degli Studi di Torino, via Valperga Caluso 35, 10125 Torino, Italyc Institut Catala de Paleontologia Miquel Crusafont, Universitat Autonoma de Barcelona, Edifici Z (ICTA-ICP), Carrer de les Columnes s/n, Campus de la UAB,

E-08193 Cerdanyola del Valles, Barcelona, Spaind Dipartimento di Scienze della Terra, Sapienza Universita di Roma, piazzale Aldo Moro 5, 00185 Roma, Italy

A R T I C L E I N F O

Article history:

Received 15 May 2014

Accepted 20 October 2014

Available online 24 October 2014

Keywords:

Small mammals

Birds

Herpetofauna

Early Pleistocene

Farneta-Pirro Faunal Unit

Early Biharian

Italy

A B S T R A C T

A first record of non-mammalian remains and small mammals from the Early Pleistocene of Monte

Argentario (Central Italy) is reported herein, together with paleoecological and biochronological remarks

based on the whole fossil assemblage. This site is known since the 1950s mostly for large mammal

remains. So far, the known taxa collected from this site comprise mainly large mammals with few birds

and reptiles. Recent fieldworks in this locality led to the recognition of a small mammal assemblage that

consists of twelve taxa, including Talpa cf. T. fossilis, Sorex cf. S. minutus, Petenyia hungarica, Asoriculus

gibberodon, Oryctolagus cf. O. valdarnensis, Eliomys cf. E. intermedius, Glis sackdillingensis, Microtus

(Allophaiomys) cf. M. (A.) ruffoi, Victoriamys chalinei, Apodemus (Sylvaemus) sylvaticus, Apodemus (S.)

flavicollis, Apodemus (S.) gr. sylvaticus-flavicollis, and Apodemus (Karstomys) gr. mystacinus-epimelas. An

updated description of amphibians, squamates and birds is also provided. Following the chronological

data derived from the large and small mammals, the vertebrate assemblage of Monte Argentario can be

referred to the Early Pleistocene, Early Biharian, corresponding to the Farneta and Pirro Faunal Units of

the Italian biochronological scheme. In addition, the data presented herein support the hypothesis of a

biochronological equivalence of these two Italian Faunal Units.

� 2014 Elsevier Masson SAS. All rights reserved.

Available online at

ScienceDirectwww.sciencedirect.com

1. Introduction

Remains of small mammals, birds and reptiles have beencollected in 2001 in a fissure filling exposed in a limestone quarryopened in the eastern slope of the Monte Argentario (Grosseto,Central Italy) by one of the authors (M.P.) (Fig. 1). The infilling,opened in the southern side of the so-called ‘‘Miniera dellaPolveriera’’, consists of a succession of conglomerate layers withcentimetric clasts and red clay-sand layers, both stronglycemented. The finest layers are concentrated in the lower partof the fillings. The vertebrate remains were collected from the clay-sand layers, mainly in the less-cemented portions. This site isknown since the 1950s, discovered and described by Baschieri andSegre (1957), who reported a large mammal assemblage includingthe Etruscan rhino and saber-toothed cat. The assemblage also

§ Corresponding editor: Gilles Escarguel.

* Corresponding author.

E-mail address: [email protected] (M. Pavia).

http://dx.doi.org/10.1016/j.geobios.2014.10.001

0016-6995/� 2014 Elsevier Masson SAS. All rights reserved.

included Castor sp., Lepus etruscus, Machairodus crenatidens,Panthera pardus, Lynx issiodorensis, Ursus etruscus, Hyaena sp.,Canis falconeri, Dicerorhinus etruscus, Leptobos cf. L. etruscus,Tragulidae indet., Aves indet., Testudo hermanni, and Bufo sp.Subsequent researches have been focused on a single skull ofPanthera ex gr. toscana-gombaszoegensis, a partial skeleton ofMegantereon whitei, and a single humerus of Homotherium sp.(Sardella, 2006; Sardella et al., 2008), the first Italian occurrence ofthe ovibovine bovid Soergelia cf. S. minor (Martınez-Navarro et al.,2012), as well as on the taxonomic updating of the other recordedtaxa. As a consequence, the updated list of large mammals found atMonte Argentario includes: Ursus etruscus, Canis sp., Pachycrocuta

brevirostris, Lynx issiodorensis, Panthera ex gr. toscana-gombaszoe-

gensis, Homotherium sp., Megantereon whitei, Stephanorhinus cf. S.hundsheimensis, Pseudodama sp., Leptobos sp., Soergelia cf. S. minor,Bovidae indet. (Sardella et al., 2008; Martınez-Navarro et al., 2012).The large mammal remains are housed in the Istituto Italiano diPaleontologia Umana, Roma. The bird remains had been provi-sionally studied by Bedetti (2003), with the identification of

Fig. 1. Location map of the Monte Argentario, Grosseto, Central Italy (left), with view of the fossiliferous deposit (top right) and detail of the cemented clay-sand with small

vertebrate remains (bottom right).

M.S. Siori et al. / Geobios 47 (2014) 403–418404

Columba livia and Alectoris graeca. The Monte Argentario vertebrateassemblage has been referred to the Early Pleistocene, EarlyBiharian, corresponding to the Late Villafranchian Farneta andPirro Faunal Units of the Italian biochronological scheme (Salaand Masini, 2007). The Italian localities with fossil vertebratesdating to this timespan are not very numerous (Masini and Sala,2007), but of a key importance as they represent the scenario forthe earliest human occupation of Europe, testified at Pirro Nord(Arzarello et al., 2007, 2009). The Monte Argentario is one of thefew Late Villafranchian fossil assemblages with a record ofmacro- and micro-mammals, birds, reptiles and amphibians,together with Pietrafitta and Pirro Nord, making the study of thenew fossil material of a great importance for the knowledge ofthis timespan.

A preliminary investigation of the newly collected material hasbeen carried out by Angelone et al. (2008) and revealed thepresence of Bufo sp., Serpentes indet., Anas sp., Alectoris graeca,Columba livia, Bubo bubo, Strigidae indet., Corvidae indet.,Passeriformes indet., Talpa sp., Soricidae indet., Allocricetus sp.,Apodemus gr. sylvaticus-flavicollis, Microtus (Allophaiomys) cf.M. (A.) ruffoi, and Leporidae indet. A detailed analysis of thismaterial is provided herein together with a discussion of itsbiochronological and paleoenvironmental implications.

2. Material and methods

Vertebrate teeth and bones were originally contained in astrongly cemented clay-sand and were extracted after dissolution

of the matrix using acetic acid. The occlusal surface of vole andlagomorph teeth was drawn employing a camera lucida mountedon a WILD M4 stereomicroscope. The teeth and small bones werephotographed and measured using a LEICA M205C with thesoftware LEICA Application Suite 3.1.

Anatomical nomenclature follows Bailon (1999) and Sanchiz(1998) for anurans, Estes (1983) for lacertilians, and Szyndlar(1991a,b) for snakes. The osteological terminology for birdsfollows Baumel and Witmer (1993). Terminology and measure-ments of dental and postcranial remains of Soricomorpha followHutchison (1974), Popov (2004) for the Talpidae, Reumer (1984)for the Soricidae, while the teeth of leporids are described afterLopez-Martinez et al. (2007). The anatomical terminology andmeasurements for Gliridae are after Daams (1981) and Daoud(1993), respectively. The nomenclature of the microtine first lowermolar follows van der Meulen (1973) and Nadachowski (1982); themeasurements and ratios were obtained according to van derMeulen (1973) and Masini and Santini (1991), and the SDQ valuesfollow Lippi et al. (1998) and Kosciow and Nadachowski(2002). The nomenclature of dental morphology and the measure-ments of Apodemus are based on Van de Weerd (1976).

The fossil remains described herein are housed in the Museo diGeologia e Paleontologia of the Universita degli Studi di Torino(MGPT-PU); the material used for comparative purposes is storedin the Dipartimento di Scienze della Terra (Massimo DelfinoHerpetological Collection, MGPT-MDHC; Marco Pavia OsteologicalCollection, MGPT-MPOC) and in the Dipartimento di Scienze dellaVita e Biologia dei Sistemi, Universita degli Studi di Torino.

M.S. Siori et al. / Geobios 47 (2014) 403–418 405

3. Systematic paleontology

AMPHIBIA Linnaeus, 1758ANURA Fischer von Waldheim, 1813Family BUFONIDAE Gray, 1825Genus Bufo Garsault, 1764cf. Bufo bufo (Linnaeus, 1758)Fig. 2(A)Material: One fragmentary humerus; one tibiofibula; one

ungueal phalanx; one vertebra.Description: The fragmentary humerus MGPT-PU 132090 pre-

serves only the distal portion of the diaphysis preceeding theeminentia capitata; its maximum width is 6.1 mm. The tibiofibula,MGPT-PU 132091 (Fig. 2A), is nearly completely sunk in a block ofbreccia, but the distal tip (9.3 mm wide) sticks out showing thepresence of the hollow, fused tibia and fibula. The ungual phalanx,MGPT-PU 132092, 1.9 mm long, is characterized by a distal tipconstricted at the base, and slightly pointing downward. Despitebeing not complete, the trunk vertebra MGPT-PU 132093, is clearlyprocoelous and has a dorsoventrally depressed centrum which is2.3 mm long and a flattened and rather short neural archdelimiting a relatively small neural canal.

Fig. 2. Amphibians and birds from the Early Pleistocene of Monte Argentario. A. cf.

Bufo bufo: tibiofibula (MGPT-PU 132091). B. Porzana parva vel P. pusilla: proximal

left humerus (MGPT-PU 135018). C. Bubo sp.: proximal left humerus (MGPT-PU

135010). Scale bars: 5 mm.

Remarks: The size itself of all the remains described in thissection, except MGPT-PU 132093, matches well with that of full-grown specimens of Bufo bufo, the largest living European anuran(Gasc et al., 1997). However, despite its relatively small size,MGPT-PU 132093 is morphologically congruent with a youngB. bufo, or more generally with the morphology of Bufo s.l.(Bailon, 1999). By combining the evidence coming from all theseremains it is possible to tentatively refer the material to cf.B. bufo.

ANURA indet.Material: One fragmentary humerus.Description and Remarks: A very small fragmentary humerus

is represented solely by its distal epiphysis. The eminentia capitatais rounded and the ulnar epicondyle is well defined. Due to thepoor preservation, it is not possible to identify more precisely thiselement.

DIAPSIDA Osborn, 1903SQUAMATA Oppel, 1811LACERTILIA Gunther, 1867Family LACERTIDAE Bonaparte, 1831Genus Lacerta Linnaeus, 1758Lacerta s.l.Material: One fragmentary dentary.Description: Two fragments belonging to the same dentary

preserve collectively 7 teeth characterized by being pleurodont,slender, cylindrical, and apically provided by a small anteriorcusplet and a much larger posterior cusp. The whole tooth row wasprobably longer than 9 mm.

Remarks: The morphology of the teeth indicates the presenceof a lacertid lizard, whereas the size of the tooth row excludes thereferral of the material to a small member of this clade (Barahonaand Barbadillo, 1997). Because it is not possible to refer withconfidence the material to either a member of the group of Lacerta

viridis (Laurenti, 1768) or of Timon lepidus (Daudin, 1802), it is herereferred to Lacerta s.l., that includes both of these clades.

LACERTILIA gen. et sp. indet.Material: One coxal; one caudal vertebra.Description: MGPT-PU 132096 is a very small coxal preserving

the acetabular cavity and part of the ilium and of the ischium.MGPT-PU 132097 is an elongated caudal vertebra whoseprocoelous centrum, 4.5 mm long, is very slender and devoid ofany lateral process and of plane of fracture for autotomy; theneural arch develops a modest but evident sagittal ridgeoriginating between the small prezygapophyses and terminatingat the base of the incomplete neural spine.

Remarks: The morphology of the coxal does not allow toidentify any specific taxon, but it is however compatible with ajuvenile member of Lacerta s.l. Conversely, the absence of anautotomy plane in the caudal vertebra allows excluding its referralto Lacerta s.l., suggesting the presence of a non lacertid taxon, as anundetermined agamid. Even if agamids were present in thePleistocene of Tuscany (Delfino et al., 2008), it is here preferred notto identify this taxon on the basis of a single caudal vertebra.

SERPENTES Linnaeus, 1758Family COLUBRIDAE Oppel, 1811‘‘Colubrines’’ sensu Szyndlar, 1991‘‘Colubrines’’ gen. et sp. indet.Material: Two fragmentary trunk vertebrae.Description and Remarks: MGPT-PU 132098 corresponds to

the posterior tip of two vertebral centra characterized by theabsence of hypapophysis and therefore the presence of a well-defined haemal keel. This feature alone allows us to refer these twovertebrae to an undetermined colubrid of the group ‘‘Colubrines’’sensu Szyndlar (1991a).

M.S. Siori et al. / Geobios 47 (2014) 403–418406

Genus Vipera Laurenti, 1768Vipera sp.Material: One vertebral fragment.Description and Remarks: This vertebral fragment preserves

only part of the left prezygapophysis, left paradiapophysis,centrum and left lateral wall of the neural canal, as well as ofpart of the left postzygapophysis. The cotyle is rounded andflanked by an evident left paracotylar foramen. The condyle isbroken off. Even if not complete, the centrum clearly hosts thehypapophysis. The total length of the centrum can be estimated inroughly about 3 mm. Both the preserved pre- and postzygapo-physis are markedly tilted in dorsolateral direction. The posterioredge of the neural arch, even if nearly completely broken off,appears to be dorsoventrally depressed. The orientation of the pre-and postzygapophysis, as well the dorsoventrally depressed neuralarch clearly indicate the presence of a member of the genus Vipera

(Szyndlar, 1991b).

SERPENTES gen. et sp. indet.Material: One fragmentary tooth-bearing bone; four vertebral

fragments.Remarks: A fragmentary tooth-bearing bone, corresponding to

5 teeth positions, some of which still preserving partial teeth, istentatively referred to an undermined snake. To undeterminedsnakes clearly belong also four vertebral fragments too damaged tobe identified at genus level.

AVES Linnaeus, 1758ANSERIFORMES Wagler, 1831Family ANATIDAE Vigors, 1825Genus Anas Linnaeus, 1758Anas sp.Material: Cranial fragment of a right coracoid.Description and Remarks: The coracoid is referable to a duck

of the genus Anas, rather than to other genera, because of theventrally extended facies articularis clavicularis (Woelfle, 1967).The coracoid is referable to a large-sized Anas, but the fragmentarypreservation does not allow a more detailed taxonomic attribution.

GALLIFORMES Temminck, 1820Family PHASIANIDAE Horfield, 1821Genus Alectoris Kraup, 1829Alectoris cf. A. graeca (Meisner, 1804)Material: Distal half of a right humerus.Description and Remarks: The distal humerus documented

herein can be attributed to Alectoris, based on the morphologicalcharacteristics pointed out by Kraft (1972). The various Alectoris

species are not easily distinguishable from each other on the basisof the skeletal morphology; the morphology of the condylusmedialis, however, supports the tentative attribution of the fossilfrom Monte Argentario to Alectoris graeca, partially in contrast tothe opinion of Angelone et al. (2008).

GRUIFORMES Bonaparte, 1854Family RALLIDAE Vigors, 1825Genus Porzana Veillot, 1816Porzana parva vel P. pusilla

Fig. 2(B)Material: Damaged proximal end of a left humerus.Description and Remarks: The morphological characteristics

of the humerus fit those of the Rallidae, as defined by Cracraft(1973). The very small size of this humerus allows referring it toone of the smallest European species of the family, Porzana parva orP. pusilla, but its fragmentary status does not allow recognizing anymorphological feature useful to properly interpret its affinities.

COLUMBIFORMES Latham, 1790Family COLUMBIDAE Illiger, 1811

Genus Columba Linnaeus, 1758Columba livia vel C. oenas

Material: Damaged proximal end of a left humerus; distal endof a right tibiotarsus.

Description and Remarks: The morphology of these remains isconsistent with that of the genus Columba as described by differentauthors (Fick, 1974; Bedetti and Pavia, 2007). Their overall sizeallows the exclusion of the larger Columba palumbus, but theirfragmentary status does not allow to properly discriminatingbetween the species C. livia and C. oenas, which are very similar insize (Fick, 1974).

STRIGIFORMES Wagler, 1830Family STRIGIDAE Vigors, 1825Genus Bubo Dumeril, 1806Bubo sp.Fig. 2(C)Material: Damaged proximal end of a left humerus; distal end

of a left ulna; one damaged right posterior phalanx III/4; oneundeterminate ungual phalanx.

Description: The fossil remains clearly show the typicalmorphology characteristic of the Strigidae in having a wide crusventrale fossae on the proximal humerus, well-developed andcaudally protruding tuberculum ventrale of the distal ulna, pointedtuberculum carpale, and ventrally extended condylus ventralisulnaris. The posterior phalanx III/4 also exhibits the morphologicalcharacteristics of a large-sized Strigidae and, based on its size, itappears to be related to Bubo sp.

Remarks: The material from the Monte Argentario is morpho-logically very similar to the extant B. bubo even if slightly smaller.In the Late Pliocene and Early Pleistocene of Italy, remains of large-sized Strigidae were usually referred to B. bubo mainly based on thesize (Bedetti, 2003; Bedetti and Pavia, 2013), but they arerepresented by highly fragmentary bones or poorly diagnosticskeletal elements. However, a recently collected, nearly completetarsometatarsus from the Early Pleistocene of Spain exhibitsremarkable differences from B. bubo, providing demonstration thatthere was significant morphological variations within the genusBubo in Early and Middle Pleistocene (Meijer et al., 2014). For thisreason, the fossil remains from Monte Argentario are referredherein to Bubo sp.

PASSERIFORMES Linnaeus, 1758Remarks: Some highly fragmented and inadequately preserved

bird remains are assigned to indeterminate taxa of Passeriformes.

MAMMALIA Linnaeus, 1758SORICOMORPHA Gregory, 1910Family TALPIDAE Gray, 1825Subfamily TALPINAE Gray, 1825Genus Talpa Linnaeus, 1758Talpa cf. T. fossilis Petenyi, 1864Fig. 3(A)Material: One P4; one M3; two incomplete humeri; one cubitus

without distal end; one radius; one proximal phalanx of the II digitof the forelimb; one middle phalanx of the forelimb; one proximalphalanx of the V digit of the forelimb; one mandibular fragmentwithout teeth.

Measurements: see Table 1.Description: The size of the postcranial remains is comparable

to that of the middle-sized Talpa fossilis and the smaller T. minor

from Pliocene and Pleistocene European localities; however, thedimensions seem to be closer to T. fossilis. Moreover, the minimalwidth of the humerus as well as the radius length fall within therange or are closely similar to those of T. fossilis from the Italiansites of Montagnola Senese and Monte Peglia (Fondi, 1972; van derMeulen, 1973). The teeth are robust and larger than those of

Fig. 3. Insectivora from the Early Pleistocene of Monte Argentario. A. Talpa cf. T. fossilis: left humerus (MGPT-PU 129935). B. Sorex cf. S. minutus: right mandibular fragment

with M2-M3 (MGPT-PU 101757). C, F. Petenyia hungarica: C, right mandibular fragment with M1-M2 (MGPT-PU 129788); F, right lower incisor (MGPT-PU 101759). D, E, G, H.Asoriculus gibberodon: D, left P4 (MGPT-PU 101760); E, right M1 (MGPT-PU 101496); G, right lower incisor (MGPT-PU 101490); H, left M2 (MGPT-PU 101475). Scale bars:

1 mm.

M.S. Siori et al. / Geobios 47 (2014) 403–418 407

T. minor; however, the talonid of the M3 is narrower than in theextant species T. europaea (Table 1).

Remarks: The identification of fossil moles is mainly achievableon the basis of the size of the postcranial bones; however, thesignificant intraspecific variation of the size related to sexualdimorphism and/or to local environmental peculiarities can makedifficult the specific allocation of these remains (Fanfani andMasini, 1998; Popov, 2004). These items and the scarcity ofremains do not allow a reliable attribution at the specific level ofthe Monte Argentario remains. Talpa fossilis, together with T. minor

and other species of the genus, which differ from each otherespecially in size, are common elements in Pliocene andPleistocene assemblages of Europe. They are mainly distributedin eastern and western Europe (Hungary, Bulgaria, Slovakia,Poland, Austria, France, Germany, and the Netherlands).

Family SORICIDAE Fisher von Waldheim, 1817Subfamily SORICINAE Fisher von Waldheim, 1817Tribe SORICINI Fisher von Waldheim, 1817Genus Sorex Linnaeus, 1758Sorex cf. S. minutus Linnaeus, 1766Fig. 3(B)

Table 1Dental and postcranial measurements (in mm) of Talpa cf. T. fossilis from the Early Pleistoc

minimum width of mole humerus; L: maximum length; W: maximum width; TRW an

Species Localities Humerus WS Radius L

Talpa cf. T. fossilis Monte Argentario 3.58 (3.50�3.65)

n = 2

11.20

Talpa cf. T. fossilis Monte Pegliaa 3.44 (3.05�3.85)

n = 87

11.05 (10.85

n = 5

Talpa fossilis Montagnola Seneseb 3.5 (3.40�3.60)

n = 3

10.35 (10.10

n = 2

Talpa minor Pirro Nordc 2.87 (2.75�3.05)

n = 3

Talpa minor Monte La Mesad 3.35 (3.21�3.73)

n = 8

Talpa minor Soavee – 10.35 (10.00

n = 2

Talpa minor Rivoli Veronesef 3.29 (3.08�3.57)

n = 6

11.20

Data from:a van der Meulen (1973);b Fondi (1972);c De Giuli and Torre (1984);d Marchetti et al. (2000);e Pasa (1947);f Fanfani and Masini (1998).

Material: One broken M1; one fragment of mandibular corpuswith broken M2; one broken M2; one mandibular fragment withM2-M3.

Measurements: see Table 2.Description: The small-sized teeth display a red pigmentation,

sometimes very pale. In the single upper molar, the trigon isnarrower than the talon, the metaloph curves towards thehypocone, and lingually, a small but distinct cingulum is evident.In M2, a small mesoconid is well visible in the unworn specimenMGPT-PU 101474 and the entoconid has a moderately high crest.Cingula are present on both sides of the crown, the lingual onebeing weaker. In M3 the talonid is well-developed and basined,lacking the lingual cingulum. The well-developed metaloph on M1,the lack of the lingual cingulum on M3, and the overall size slightlysmaller than that of Sorex bor concur to tentatively support theattribution of the available material from Monte Argentario toSorex cf. S. minutus.

Remarks: The size of the material documented herein is similarto that of S. minutus from the Ruscinian/Villanyian European sitesof Osztramos 3/2 and 7, Csarnota 2, Tegelen (Reumer, 1984),Hundsheim (Rabeder, 1972), and also falls in the range of Sorex cf.minutus from Varshets (Bulgaria; Popov, 2003) and Saint-Vallier

ene of Monte Argentario compared with moles of Early Pleistocene Italian sites. WS:

d TAW: trigonid and talonid widths.

P4 L P4 W M3 L M3 TRW M3 TAW

1.83 1.22 2.28 1.22 0.85

�11.50) – – – – –

�10.60) – – – –

– – – – –

– – – – –

�10.70) – – – – –

– – 2.09 (1.80�2.26)

n = 3

0.99 0.73

Table 2Dental measurements (in mm) of Sorex cf. S. minutus from the Early Pleistocene of Monte Argentario. L: maximum length; LL: lingual length; PE: length to the posterior

emargination; W: maximum width; TRW and TAW: trigonid and talonid widths.

Dental element L LL PE W TRW TAW

M1 – MGPT-PU 101458 – 1.24 0.96 – – –

M2 – MGPT-PU 101474 – – – 0.72 0.78

M2 – MGPT-PU 101494 1.26 – – – 0.68 0.72

M2 – MGPT-PU 101757 1.32 – – – 0.74 0.80

M3 – MGPT-PU 101757 0.98 – – 0.62 – –

M.S. Siori et al. / Geobios 47 (2014) 403–418408

(Martın-Suarez and Mein, 2004). S. minutus was widespread inEurope since the earliest Pliocene; it is the first of the still extantSorex species to appear in the European record and it ischaracterized by a very conservative morphology (Rzebik-Kowalska, 1998). In Italy, S. minutus is reported from the EarlyBiharian sites of Monte La Mesa and Pietrafitta (Farneta FU; Gentiliet al., 1996; Marchetti et al., 2000). Although the Sorex materialfrom the Montagnola Senese, together with those from Pirro Nordand Soave/Cava Sud, were recently assigned to S. bor by Fanfani(2000) in his revision of the Neogene and Quaternary Italianinsectivores, it is worth noting that S. bor is a slightly larger specieswith which S. minutus can be associated (Fanfani and Masini,1998).

Tribe BLARINELLINI Reumer, 1998Genus Petenyia Kormos, 1934Petenyia hungarica Kormos, 1934Fig. 3(C, F)Material: One lower incisor; one M2; one mandibular fragment

with M1-M2; one mandibular fragment with M2-M3.Measurements: See Table 3.Description: The teeth are dark-brown stained. The mental

foramen is located between the protoconid and the hypoconid ofM1; the lower margin of the mandibular body below M2 is clearlyconvex. The lower incisor is bicuspulate, with a poorly differ-entiated third posterior cuspule and without a buccal cingulum,and the apex is pointed and not spatulate. The M1 and M2 aresubrectangular in outline, the entoconid is close to the metaconid,the entoconid crest is moderately high, the buccal cingulum is wellpronounced and weakly undulated, and the lingual cingulum isless evident. The M3 has a reduced talonid, the cingula are presenton both sides of the crown, but the lingual cingulum is weaker thanthe buccal one.

Remarks: The overall size of the available material falls withinthe range of variability of Petenyia hungarica from some centraland eastern European Plio-Pleistocene localities (Reumer, 1984;Popov, 2003). As far as the Italian forms are concerned, the averagesize of the material from Monte Argentario is larger than that fromRivoli Veronese (Fanfani and Masini, 1998) and is consistent withthat of P. hungarica from Monte La Mesa (Marchetti et al., 2000).According to Rzebik-Kowalska (1989), the morphology of thisspecies has not changed throughout its chronological range, but aslight increase in size can be observed from older to youngerpopulations.

Table 3Measurements (in mm) of the lower teeth of Petenyia hungarica from the Early

Pleistocene of Monte Argentario. L: maximum length; W: maximum width; TRW

and TAW: trigonid and talonid widths.

Dental element L W TRW TAW

M1 – MGPT-PU 129788 1.52 – – 0.96

M2 – MGPT-PU 101758 1.48 – 0.84 0.86

M2 – MGPT-PU 129788 1.38 – – 0.90

M2 – MGPT-PU 101493 1.34 – 0.84 0.88

M3 – MGPT-PU 101493 1.08 0.62 – –

P. hungarica is known from the Ruscinian to the Late Bihariandeposits of Europe. This species spread over Italy and, only later,over France (Clot et al., 1976) from eastern and central Europe(Rzebik-Kowalska, 1994, 1998, 2005; Popov, 2003; Rzebik-Kowalska and Popov, 2005). Recent studies have documentedthat its geographical range extended also in the Iberian Peninsula(Minwer-Barakat et al., 2010; Agustı et al., 2011). In Italy,P. hungarica is present at Arondelli (Berzi et al., 1967), RivoliVeronese (Fanfani and Masini, 1998), Cava Sud (Pasa, 1947), MonteLa Mesa (Marchetti et al., 2000), and Pirro Nord (Arzarello et al.,2009).

Tribe NEOMYINI Matschie, 1909Genus Asoriculus Kretzoi, 1959Asoriculus gibberodon (Petenyi, 1864)Fig. 3(D, E, G, H)Material: Four upper incisors; two P4; four M1; two M2; one

mandibular fragment with broken I1-M1; one mandibular frag-ment with I1-M2; one mandibular fragment with M2-M3; two I1;six M1; two M2.

Measurements: see Table 4.Description: The tips of the teeth are weakly pigmented in

orange. The mental foramen is located under the talonid of M1. Theupper incisors are fissident; the posterolabial margin has a slightundulation on its middle part; there is a well-pronouncedcingulum along the posterolabial and posterolingual borders; inMGPT-PU 101476 the cingulum is interrupted at the middle part ofthe posterolabial margin. The hypocone of P4 is isolated by a smallvalley from the ridge that surrounds the hypoconal flange(morphotype A of Reumer, 1984), the parastylar crest ismoderately high, the protocone is relatively close to the parastyle,a well-pronounced cingulum is observed along the labial side, andthe posterior emargination is well pronounced. On M1 and M2, thehypocone is less developed and connected to the posteroloph(morphotype B) and there is no evidence of a metaloph. Themetastyle is less protruding in M2 with the hypocone placedfarther lingually relative to the protocone, and the posterioremargination is moderate (see PE-index in Table 4). The lowerincisors are short and bicuspulate, the anterior cuspule actuallyrepresents a slight undulation of the dorsal margin that candisappear with the wear, a posterior cingulum is present, and thetip might be aligned with the rest of the tooth or strongly upturned.Generally, the talonid of M1 is wider than the trigonid, whereasthat of M2 is wider than or equal to the trigonid, and a smallmesoconid may be visible in unworn teeth. The entoconid is highand the entoconid crest usually is low.

Remarks: Considering the high biometric variability of thedental elements, the comparison with the forms found in otherEuropean localities is relatively problematic. The material found atMonte Argentario is larger than that of A. gibberodon from manyHungarian sites (Reumer, 1984) and Rivoli Veronese (Fanfani andMasini, 1998), and its overall size overlaps the variability range ofthe specimens from Varshets (Bulgaria; Popov, 2003) and Monte LaMesa (Italy; Marchetti et al., 2000), at least regarding the lowermolars. The size of the lower molar also falls in the range ofvariability of Asoriculus thenii from Podumci1 and Tatinja Draga

Table 4Dental measurements (in mm) of Asoriculus gibberodon from the Early Pleistocene of Monte Argentario. L: maximum length; LT and H: length and height of the talon; BL and

LL: buccal and lingual lengths; PE: length to the posterior emargination; AW and PW: anterior and posterior widths; PE-index: degree of emargination given by (LL + BL/

2PE) – 1; TRW and TAW: trigonid and talonid widths.

Dental

element

L LT H BL LL PE W AW PW PE-index TRW TAW

I1 1.66

(1.58–1.72)

n = 4

0.67

(0.56–0.8)

n = 4

1.25

(1.24–1.28)

n = 4

– – – – – – – – –

P4 – – – 1.80

n = 2

1.15

(1.10–1.20)

n = 2

0.98 1.73

(1.70–1.76)

n = 2

– – – – –

M1 – – – 1.66

(1.60–1.72)

n = 2

1.70

(1.62–1.76)

n = 4

1.38

(1.32–1.38)

n = 4

– 1.74

(1.72–1.76)

n = 3

1.74

(1.72–1.76)

n = 3

0.22

(0.22–0.23)

n = 2

– –

M2 – – – 1.52 1.44 1.26 – 1.66 1.86 0.17 – –

I1 3.90 – – – – – – – – – – –

M1 1.64

(1.56–1.72)

n = 7

– – – – – – – – – 0.97

(0.92–1.00)

n = 7

1.01

(0.96–1.06)

n = 7

M2 1.55

(1.52–1.66)

n = 4

– – – – – – – – – 0.95

(0.94–0.96)

n = 3

0.99

(0.96–1.02)

n = 3

M.S. Siori et al. / Geobios 47 (2014) 403–418 409

(Croatia; Malez and Rabeder, 1984), but the lower incisors of thislatter species are much longer (Rofes and Cuenca-Bescos, 2006).

Asoriculus is considered as a genus of Mediterranean origin andthe stratigraphic distribution of A. gibberodon ranges from the LateMiocene to the Early Pleistocene in south-central Europe to Turkey(Rzebik-Kowalska, 1998; Storch et al., 1998). In the EarlyPleistocene, this species was relatively common in southwesternEurope probably for a southward return due to a climate warming(Rofes and Cuenca-Bescos, 2006; Agustı et al., 2010). In Italy, inaddition to A. gibberodon from Brisighella (Late Turolian), recentlyascribed to the genus Neomysorex by Fanfani (2000), and fromCascina Arondelli (Early Villanyian; Berzi et al., 1967), this specieshas been reported in continental Italy at Rivoli Veronese and MonteLa Mesa (Fanfani and Masini, 1998; Marchetti et al., 2000) and inSardinia, Capo Mannu D1 (Furio and Angelone, 2010). Moreover,Soricidae indet. cf. Asoriculus gibberodon is also present at Verduno,a latest Miocene locality of Piedmont (Colombero et al., 2014a). TheA. gibberodon from Pirro Nord (De Giuli et al., 1987) is regarded asAsoriculus aff. A. thenii by Fanfani (1995).

LAGOMORPHA Brandt, 1855Family LEPORIDAE Gray, 1821Genus Oryctolagus Lilljeborg, 1874Oryctolagus cf. O. valdarnensis (Weithofer, 1889)Fig. 4(A-C)Material: One maxillary fragment with P3-M3; two adult P2;

one juvenile P2; two upper molariforms; two lower molariforms;one juvenile M3.

Measurements: see Table 5.Description: In the upper molariforms, the hypoflex exceeds

half of the tooth width, with its margins strongly crenulated; thehypoflex can occur as a simple undulation along the distal side,with the crenulation decreasing from P3 backward. P2 is suboval inshape, with three enamel inflections in the mesiolingual side; thehypoflex is V-shaped and shallow, whereas the mesoflex is a littledeeper than the hypoflex and narrower; the central inflection, theparaflex, penetrates over the half of the crown length and iscrenulated on both of its edges in the adult tooth. Postcone,lagicone, and mesial hypercone are nearly equally developed, butthe distal hypercone is definitely larger and rounded.

Remarks: The available material belongs to a relatively large-sized leporid, larger than Oryctolagus laynensis and the extantOryctolagus cuniculus. Compared to the modern Lepus, the outlineof the P2 is less compressed mesiodistally, the paraflex and

mesoflex are deeper, the distal hypercone is bigger, and theparaflex is strongly crenulated. All these features are clearlyindicative of Oryctolagus. P2 also differs from that of Oryctolagus

burgi (Nocchi and Sala, 1997) in its more flattened mesiodistaloutline, shallower hypoflex, and deeper and crenulated paraflex.

In a recent revision of the Quaternary lagomorphs fromTuscany, Angelone and Rook (2012) retained Oryctolagus valdar-

nensis as a valid species, and assigned to this taxon the leporidremains from Monte Argentario, Montagnola Senese, Torre Picchio,Upper Valdarno, Pietrafitta, and Pirro Nord, whose chronologicaldistribution spans the Late Villanyan/Early Biharian, in particularfrom Olivola to Pirro Faunal Units. Some of the diagnosticcharacters highlighted in the review of the type material are,unfortunately, not preserved in the new remains of Oryctolagus

from Monte Argentario (i.e., hooked loop in the labial side of theparaflexus and deep hypoflexus), although other features establisha parallel between the remains of Monte Argentario and theleporids from Montagnola Senese (hypoflexus crenulated also inthe posterior side) and Pietrafitta (crenulate paraflexus) (Fondi,1972; Argenti and Kotsakis, 2009). The Monte Argentario speci-mens are smaller than the type specimen from Castello d’Incisa(Table 5) and are comparable to those from Montagnola Senese.Given the high morphometric variability and the paucity of thediagnostic remains, the specimens from Monte Argentario are onlytentatively assigned to O. valdarnesis.

RODENTIA Bodwich, 1821Family GLIRIDAE Thomas, 1897Genus Eliomys Wagner, 1840Eliomys cf. E. intermedius Friant, 1953Fig. 4(D, E)Material: One P4; three M1-2.Measurements (in mm): P4: L =1.44, W = 1.80; M1-2: L = 1.56,

W = 2.05; M1-2: L = 1.59, W = 2.11; M1-2: W = 2.07.Description: P4 has a subtriangular outline, the paracone and

metacone are higher than the protocone, the anteroloph is low andconnected only to the paracone, the protoloph is discontinuous,interrupted at its middle point, and short anterior and posteriorcentrolophs are present. Roots, one lingual and two labial, are notpreserved. The morphology of the upper molars is relativelyconstant; their outline is subrectangular, with slightly convexedges, and strongly concave occlusal surface with high crestslinked together by the connected lophs. Short anterior andposterior centrolophs are always present and a single specimen

Table 5Mean dental measurements (in mm) of Oryctolagus cf. O. valdarnensis from the Early Pleistocene of Monte Argentario, compared with those from other Early Pleistocene

Italian sites. L: maximum length; W: maximum width.

Localities P2 P3 P4 M1 M2

n L W n L W n L W n L W n L

Monte Argentario 2 2.10 3.40 1 2.30 – 1 2.35 4.50 1 2.30 4.45 1 2.30

Montagnola Senesea 4 1.82 3.52 4 2.37 4.45 – – – – – – – –

Pietrafittab 1 1.52 2.38 1 2.19 4.30 1 2.30 4.12 1 2.26 3.82 – –

Castello dell’Incisac 2 2.42 5.00 – – – – – – – – – – –

Upper Valdarnoc 2 2.47 4.78 – – – – – – – – – – –

Data from:a Fondi (1972);b Argenti and Kotsakis (2009);c Angelone and Rook (2012).

Fig. 4. Lagomorpha and Rodentia from the Early Pleistocene of Monte Argentario. A-C. Oryctolagus cf. O. valdarnensis: A, right maxillary fragment with P3-M3 (MGP-PU

101763); B, right P2 (MGPT-PU 101463); C, left upper molariform (MGPT-PU 101461). D, E. Eliomys cf. E. intermedius: D, right P4 (MGPT-PU 101471); E, right M1-2 (MGPT-PU

129936). F, G. Glis sackdillingensis: F, right M2 (MGPT-PU 101469); G, right M2 (MGPT-PU 101470). H, I. Microtus (Allophaiomys) cf. M. (A.) ruffoi: H, right M1 (MGPUT-PU

129819); I, left M1 (MGPUT-PU 129818). J. Victoriamys chalinei: left M1 (MGPUT-PU 129797). Scale bars: 1 mm.

M.S. Siori et al. / Geobios 47 (2014) 403–418410

also shows two small precentrolophs. None of the three roots ispreserved.

Remarks: Because of their large size, the remains from theMonte Argentario cannot be confidently assigned to E. truci andE. quercinus. Compared with E. intermedius from Spanish andFrench sites, including the type-locality, the material from Monte

Argentario is larger than that from Sete and Seynes (Chaline, 1972),but comparable to that from Mas Rambault 2 (Aguilar et al., 2002),and with some sites of southern Spain (Garcıa-Alix et al., 2008).E. intermedius appeared around the Mio-Pliocene boundary in thesouthern Europe and survived until the Early Pleistocene; itsgeographical range includes Europe and western Asia. This species,

M.S. Siori et al. / Geobios 47 (2014) 403–418 411

common in Pliocene deposits of the Iberian Peninsula, is some-times associated with E. truci. Up to date, remains of E. intermedius

have not been recorded in Italy (Kotsakis, 2003). However, Eliomys

aff. intermedius found in the latest Miocene deposits of MoncuccoTorinese differs from the typical material in the slightly smallersize and for the less frequent anterior centroloph in upper molars(Colombero et al., 2014b).

Despite the ancestor of E. intermedius remains elusive,E. quercinus is currently regarded as its possible descendant(Nadachowski and Daoud, 1995; Minwer-Barakat, 2005; Garcıa-Alix et al., 2008). According to Chaline (1972) and Garcıa-Alix et al.(2008), the evolutionary trend of this lineage resulted in a higherfrequency of M1-2 with two centrolophs, a lower frequency ofaccessory crests in upper and lower molars, and a general sizedecrease. However, due to the scarcity of the fossil remains, thistrend is not verifiable in the material from Monte Argentario.

Genus Glis Brisson, 1762Glis sackdillingesis (Heller, 1930)Fig. 4(F, G)Material: One M2; one M2.Measurements (in mm): M2: L = 1.77, W = 1.91; M2: L = 1.74,

W = 1.75.Description: The occlusal surface of the teeth is nearly flat or

shallowly basined, four main and three extra enamel ridges arewell developed. The roots are not preserved. The M2 has arectangular outline and displays a single lower tertiary ridgebetween the centroloph and the metaloph. The crown of M2 issubrectangular, slightly narrower posteriorly, the morphologydiffers from the morphotype 1 described by Daoud (1993) inlacking the lingual connection between the mesolophid and theposterolophid, and the posterior extra ridge reaches the lingualedge of the crown and connects to the posterolophid.

Remarks: The dormouse from Monte Argentario differs fromGlis minor in having a larger size and much more extra ridges; it issmaller than Glis glis. The tooth morphology and size are consistentwith those of the material of G. sackdillingensis from Monte LaMesa; the range of variability is also comparable with that of thesame species from some European Biharian sites (Kowalski, 1963;Daoud, 1993; Marchetti et al., 2000).

G. sackdillingensis has been recorded from several Pleistocenelocalities from central Europe (Germany, Poland, Hungary,

Table 6Comparison of the M1 lenghts (in mm) and ratios of Microtus (Allophaiomys) cf. M. (A.)

Pleistocene sites. L: maximum length; A: anteroconid complex length; B: shortest dist

distance between BSA3 and LSA4; SDQ3 = (SDQT1 + SDQT2 + SDQT3)/3 with SDQT1, T2, T

of each triangle.

L A/L

Taxon Localities n mean n me

M. (A.) cf. M. (A.) ruffoi Monte Argentario 17 2.87 17 41

M. (A.) cf. M. (A.) ruffoi Pietrafittaa 10 2.84 10 42

M. (A.) cf. M. (A.) ruffoi Cava dell’Erbaa 29 2.60 29 43

M. (A.) ex gr. ruffoi Pirro (PN34)a,g 31 2.84 31 41

M. (A.) ex gr. ruffoi Cava Pirrob 249 2.81 249 43

M. (A.) ruffoi Soave/Cava Suda,c 66 2.83 66 43

M. (A.) pliocaenicus Betfia–2e 146 2.62 146 42

M. (A.) nutiensis Monte Peglia Ad,f 59 2.57 59 46

M. (A.) burgondiae Monte Peglia Bd,f,g 391 2.78 391 46

Data from:a Lippi et al. (1998);b Masini and Santini (1991);c Pasa (1947);d van der Meulen (1973);e Hir (1998);f van der Meulen and Zagwijn (1974);g Masini et al. (1998).

Romania, Slovenia), but it was absent or rare in Western Europe(Spain, France, and Italy). The evolutionary lineage G. minor –G. sackdillingensis – G. glis is well established during the Plioceneand Pleistocene; its dental pattern has experienced morphologicalsimplification and increase in size (Nadachowski and Daoud,1995). This species has been identified in Italy only in the EarlyBiharian at Monte La Mesa (Tasso FU) and Palena (Pirro FU)(Kotsakis, 2003).

Family CRICETIDAE Rochebrune, 1883Subfamily MICROTINAE Cope, 1891Tribe MICROTINI Miller, 1896Genus Microtus Schrank, 1798Subgenus Allophaiomys (Kormos, 1932)Microtus (Allophaiomys) cf. M. (A.) ruffoi (Pasa, 1947)Figs. 4(H, I), 5Material: 19 M1; five M2; 19 M3; 14 M1; 12 fragments of M1;

eight M2; one mandibular fragment with incomplete I1 and M1;two mandibular fragments with broken I1 and M1; two mandibularfragments with M1 and M2; three mandibular fragments withbroken M1.

Measurements: see Table 6.Description: The teeth are rootless, with cementum in the

reentrant angles and thick enamel bands exhibiting the patternsMimomys-type and Microtus-type (Maul et al., 1998). The M1 ischaracterized by the presence of three alternating closed triangles,T4 and T5 (Pitymys-rhombus) more or less confluent, and anteriorcap (AC2) of varying complexity. The material documented hereindiffers from M. (A.) pliocaenicus by having a greatly elongated firstlower molar, more constricted neck (B/W) and a larger pinching ofthe Pitymys-rhombus (C/W); however, the development of theanteroconid complex (ACC, A/L) is very similar to that ofA. pliocaenicus. The lengths of M1 and AC2 from Monte Argentarioare generally consistent with those of M. (A.) ruffoi from some EarlyPleistocene Italian localities, from which the Monte Argentariomaterial differs in its higher degree of separation of the anteriorcap (B/W) and larger pinching of the pitymyoid-rhombus (C/W)(Masini and Santini, 1991; Gentili et al., 1996). Many of the SDQ3reveal a Microtus-like differentiation of the enamel, even thoughless than half of the specimens are characterized by a Mimomys-type differentiation. The area without enamel is usually ratherwide (D = 0.40–0.84; Table 6).

ruffoi from the Early Pleistocene of Monte Argentario with those from other Early

ance between BRA3 and LRA4; C: shortest distance between BRA3 and LRA3; W:

3 = 100 � thickness of the trailing edge/thickness of the leading edge of enamel band

B/W C/W SDQ3

an n mean n mean n mean

.94 17 25.75 17 16.23 18 94.99 (85.86–107.54)

.35 11 27.46 11 18.50 10 102.80 (88.92–114.6)

.03 1 27.29 1 19.50 30 99.89 (77.97–108.89)

.93 31 31.06 31 19.29 29 101.80 (92.39–116.00)

.02 249 28.79 249 19.08 – –

.93 1 25.85 1 19.64 63 100.70 (76.83–119.31)

.72 144 24.07 144 19.77 – –

.43 59 10.15 59 19.86 29 73.48 (58.18–83.38)

.47 391 19.18 391 16.60 34 77.83 (67.27–89.30)

Fig. 5. Morphotypes of the M1 of Microtus (Allophaiomys) cf. M. (A.) ruffoi from the Early Pleistocene of Monte Argentario. See text for the explanation of the various

morphotypes. Scale bar: 1 mm.

M.S. Siori et al. / Geobios 47 (2014) 403–418412

The morphological analysis of the occlusal surface of the adultM1 from Monte Argentario allowed the recognition of the followingmorphotypes (Fig. 5):

� Morphotype 1, the most primitive, with three triangles and ashort ACC (low A/L values). The high values of B/W and C/Wreveal a reduced pinching of the neck and of the T4;� Morphotype 2 with a more elongated ACC and low values of B/W

and C/W, i.e., with a distinct pinching of the anterior cap andpitymyoid rhombus;� Morphotype 3 which differs from morphotype 2 in the

appearance of the salient angle LSA5;� Morphotype 4 adds the reentrant angle BSA4 to the morphotype

3;� Morphotype 5 and Morphotype 6 are rare and more advanced,

with the former characterized by the presence of the reentrantangles LRA5 and BRA4, and the latter by four closed triangles.

Each of the first three morphotypes exhibits a frequency of26.3%, morphotype 4 of 10.5%, whereas only two specimens relateto morphotypes 5 and 6, respectively. Morphotypes and theirfrequencies are comparable with those of A. ruffoi from Pietrafittaand Pirro Nord (PU-10, PU-21, and PN34 fissures), whereas theydiffer from the more evolved morphotypes of the type populationfrom Cava Sud (Masini and Santini, 1991; Marcolini et al., 2013).

Remarks: Microtus (A.) ruffoi is regarded as a southern variantof the Central European M. (A.) pliocaenicus, representing acommon element of Early Biharian assemblages. In Italy, thisspecies is present from the Farneta FU (Pietrafitta) to Pirro FU (CavaSud, Cava Pirro and Cava dell’Erba) (Sala and Masini, 2007; Agustıet al., 2010).

Genus Victoriamys Martin, 2012Victoriamys chalinei (Alcade, Agustı and Villalta, 1981)Fig. 4(J)

Table 7Biometric data of M1 of Victoriamys chalinei from the Early Pleistocene of Monte Argent

Table 6.

Localities n L n A n A

Monte Argentario 1 3.22 1 1.34 1 4

Cueva Victoriaa 33 3.04 – – 17 4

Pietrafittab 1 3.26 1 1.29 1 3

Data from:a Alcalde et al. (1981) and Agustı (1992);b Gentili et al. (1996).

Material: One M1.Measurements: see Table 7.Description: The lower first molar of the larger form of

microtine is characterized by a broad AC2, mesiodistally com-pressed and relatively symmetrical, and by a wide anteriorenamel-free area (D = 1.04). On the anterior cap, LSA5 is developed,providing the morphological basis for a separation from thematerial ascribed to Victoriamys chalinei from Pietrafitta (Gentiliet al., 1996), but not from that of the type locality, Cueva Victoria(Alcalde et al., 1981; Agustı, 1992). The neck is narrow and open;T4 and T5 are confluent. The enamel is scarcely differentiated, ofMimomys-type, and the cement is abundant. The overall size isconsistent with that of the material from Pietrafitta, from which itdiffers also in the narrower neck and a more pinched T4.

Remarks: Victoriamys chalinei is a new combination to whichAllophaiomys chalinei was recently allocated by Martin (2012). Inthe Iberian Peninsula, in addition to the type-locality of CuevaVictoria, this species has been reported from several late EarlyPleistocene localities, e.g., Atapuerca (TD3-TD6 levels; Cuenca-Bescos et al., 2010), Torrent de Vallparadıs (layer Cal Guardiola D5;Minwer-Barakat et al., 2011), and Almenara-Casablanca (ACB3 deposit; Agustı et al., 2011). In Italy it is recorded only from thelower Early Pleistocene site of Pietrafitta (Gentili et al., 1996).

Family MURIDAE Gray, 1821Subfamily MURINAE Murray, 1866Genus Apodemus Kaup, 1829Subgenus Sylvaemus Ognev and Worobiev, 1923Apodemus (Sylvaemus) sylvaticus (Linnaeus, 1758)Fig. 6(B, C)Material: eight M2.Measurements: see Table 8.Description: t3 smaller than t1 (half size) and separated from

t5 until an advanced stage of wear; t7 rather close to but separatedfrom t4; t9 well developed and clearly distinct in the labial margin;

ario compared with those from other Early Pleistocene sites. For abbreviations, see

/L n B/W n C/W n SDQ3

1.61 1 16.67 1 13.33 1 101.23

3.00 17 16.00 17 20.00 – –

9.57 1 27.54 1 20.59 1 113.40

Fig. 6. Apodemus from the Early Pleistocene of Monte Argentario. A. Apodemus (Karstomys) gr. mystacinus-epimelas: left M2 (MGPT-PU 129761). B, C. Apodemus (Sylvaemus)

sylvaticus: B, right M2 (MGPT-PU 129776); C, left M2 (MGPT-PU 129784). D, E. Apodemus (Sylvaemus) flavicollis: D, left M2 (MGPT-PU 129773); E, right M2 (MGPT-PU 129785).

F-S. Apodemus (Sylvaemus) gr. sylvaticus-flavicollis: F, right M2 (MGPT-PU 129780); G, left M2 (MGPT-PU 129786); H, left M1 (MGPT-PU 129892); I, right M1 (MGPT-PU

129897); J, left M1 (MGPT-PU 129904); K, right M1 (MGPT-PU 129848); L, left M1 (MGPT-PU 129856); M, left M1 (MGPT-PU 129877); N, right M3 (MGPT-PU 129721); O, left

M3 (MGPT-PU 129723); P, right M2 (MGPT-PU 129739); Q, right M2 (MGPT-PU 129926); R, right M3 (MGPT-PU 129712); S, right M3 (MGPT-PU 129726). Scale bar: 1 mm.

M.S. Siori et al. / Geobios 47 (2014) 403–418 413

t12 always reduced and absent in two specimens. Four or threeroots.

Apodemus (Sylvaemus) flavicollis (Melchior, 1834)Fig. 6(D, E)Material: four M2.Measurements: see Table 8.Description: t1 large; t3 small or very small, isolated from t5 in

one specimen, connected by low and short enamel spur in three;t4-t7 widely separated with t7 posteriorly inclined and very closeto t8; t9 very reduced or nearly absent in one specimen where it is

Table 8Dental measurements (in mm) of Apodemus (Sylvaemus) sylvaticus, Apodemus (S.)

flavicollis, and Apodemus (S.) gr. sylvaticus-flavicollis from the Early Pleistocene of

Monte Argentario.

Taxon Dental

element

Length Width

Apodemus (S.) sylvaticus M2 1.31 (1.24–1.37)

n = 8

1.21 (1.14–1.33)

n = 8

Apodemus (S.) flavicollis M2 1.35 (1.27–1.39)

n = 4

1.24 (1.21–1.27)

n = 4

A. (S.) gr. sylvaticus– flavicollis M1 1.98 (1.84–2.14)

n = 32

1.23 (1.13–1.33)

n = 32

A. (S.) gr. sylvaticus– flavicollis M2 1.31 (1.21–1.39)

n = 11

1.21 (1.16–1.25)

n = 11

A. (S.) gr. sylvaticus– flavicollis M1 1.84 (1.74–2.01)

n = 26

1.11 (1.00–1.21)

n = 26

A. (S.) gr. sylvaticus– flavicollis M2 1.27 (1.22–1.33)

n = 26

1.11 (1.03–1.22)

n = 26

represented by a thick crest; t12 absent in two out of fourspecimens, very reduced in one and reduced in another. Three orfour roots.

Apodemus (Sylvaemus) gr. sylvaticus-flavicollis

Fig. 6(F-S)Material: 32 M1, 11 M2, 5 M3 26 M1, 26 M2, 14 M3.Measurements: see Table 8.Description: M1. t1 usually in a backward position with respect

to t3; it can be very close to t5 or develop a posterior spur; posteriorspur of t3 usually present, occasionally reaching the base of t5; t1bis

is present in only 3 unworn specimens and it is sketched as a smallenamel bulge; t2bis present in 78% of the specimens; the t7 neverproduces a strong protrusion from the basal outline being morecrest-like than the other lingual cusps; t4-t7 separated in 85% ofunworn or poorly worn specimens. t9 well developed andconnected to t6. t12 present and poorly reduced usually connectedto t8 and t9. Four roots.

M2. t1 large and separated from t5; t3 smaller than t1 (half size).t3 close to t5 and occasionally connected to it by a low enamelspur; t9 present and well distinct but usually smaller than t6; t12absent or reduced. When preserved, three or four roots areobserved.

M3. t1 large, one out of two has a tiny t3 developed as an enamelbulge; t4-t5 and t6 united in a chevron; t6 barely connected to thet8-t9 complex; t4 free; t8 and t9 fused in a bilobed or transversalyelongated posterior complex. Three roots.

M1. tma always present; c1 present and well developed withtwo (62%) or three (28%) supplementary cusplets on the labial

M.S. Siori et al. / Geobios 47 (2014) 403–418414

cingulid; posterior heel small, rounded or elliptical, slightly shiftedon the lingual side; tma connected to the anteroconid complex;anteroconid complex connected to the protconid-metaconidcomplex more frequently to the lingual side. Two roots.

M2. anterolabial cuspid always present; c1 absent or extremelyreduced and present in 21% of unworn specimens; very reducedlabial cingulid, with a rare supplementary cusplet developed as anenamel bulge close to the protoconid (33% of specimens); welldeveloped elongated posterior heel. Two roots.

M3. c1 absent or very tiny in five out of 13 specimens andconnected to the posterior complex; anterolabial cuspid sketchedon 6 specimens. No roots preserved.

Remarks: The late Pliocene and Pleistocene record of Apodemus

from Italy includes the fossil species Apodemus cf. A. alsomyoides,Apodemus atavus (= Apodemus dominans; see Martın-Suarez andMein, 2004; Colombero et al., 2014b for details), Apodemus

maastrichtiensis, and Apodemus uralensis; the extant speciesApodemus (Sylvaemus) flavicollis, Apodemus (S.) sylvaticus, andApodemus (Karstomys) mystacinus. Apodemus alsomyoides is pre-sent at Villany 3 (MN17, late Villanyian; Janossy, 1986) and A. cf.alsomyoides at Villany 6 (early Biharian; Janossy, 1986). In Italy,this species has been found in the early Villanyian localities ofArondelli and Cava RDB (Michaux, 1970; Argenti, 1999; Kotsakiset al., 2003). The observed measurements are similar to thosereported for the studied material (Arondelli) or only slightly larger(Cava RDB). However, on the basis of the descriptions provided byMichaux (1970) for the Italian remains of Arondelli, A. alsomyoides

exhibits less developed longitudinal connections in the M1 onlyoccasionally displaying a spur in the t1; a t2bis is never reported inthe M1; the t12 of M2 is more developed and the lower molarsexhibit more developed labial cingulids.

The medium-sized species Apodemus atavus (= A. dominans) isreported from many localities of Europe since the latest Mioceneup to the early Pleistocene (Rietschel and Storch, 1974; Fejfar andStorch, 1990; Bolliger et al., 1993; Marchetti et al., 2000; Martın-Suarez and Mein, 1998, 2004; Minwer-Barakat et al., 2005; Garcıa-Alix et al., 2009; Hordijk and de Bruijn, 2009; Colombero et al.,2014b). The measurements of the dental remains from MonteArgentario are slightly larger than those reported forA. atavus. Moreover, A. atavus differs for the more commonpresence of three roots in M1 (four roots are reported for one out of168 specimens at Monte La Mesa, early Biharian; Marchetti et al.,2000), the t2bis is less frequent, the M2 displays a more developedt12, the labial cingulid of m2 bears more developed cuspids. InItaly, this specie has been previously reported at MoncuccoTorinese (late Turolian; Colombero et al., 2014b), Cava Toppetti,Rivoli Veronese, Casa Sgherri (Late Villanyian; Kotsakis et al.,2003), and Monte La Mesa (early Biharian; Marchetti et al., 2000).

The species Apodemus maastrichtiensis differs from the assem-blage from Monte Argentario by its smaller size (van Kolfschoten,1985). A. maastrichtiensis displays poorly developed t7 and t9 in theM1-M2 and a strong reduction of the t3 in the M2, three roots aremore common than four roots in M1; moreover the tma is reducedand the anteroconid complex is usually isolated from theprotoconid-metaconid complex in the M1. Apodemus cf.A. maastrichtiensis has been previously reported in Italy at MontePeglia (Early Biharian; Argenti, 1999, 2004; Kotsakis, 2003).Apodemus uralensis displays a dental morphology similar to thatof A. (Sylvaemus) gr. sylvaticus-flavicollis, to which it is closelyrelated (Filippucci et al., 2002; Hoofer et al., 2007). However, theattribution to this species can be easily excluded based onbiometrical data since it is much smaller than the studiedassemblage. In Italy, this species is reported at Spessa II (EarlyToringian; Kotsakis et al., 2003).

The biometrical data of the studied sample from MonteArgentario fit well with the variability observed for the teeth of

A. (S.) sylvaticus, the extant wood mouse, and A. (S.) flavicollis, theextant yellow-necked mouse (Pasquier, 1974; Reumer, 2003; Mauland Parfitt, 2010). The studied assemblages assigned herein toA. (S.) sylvaticus, A. (S.) flavicollis, and A. (S.) gr. sylvaticus-flavicollis

are consistent with the dental morphology of A. (S.) sylvaticus andA. (S.) flavicollis for the presence of the backward position of t1,presence of longitudinal spurs in t1 and t3, high frequency of t2bis,poorly developed or absent t12 in M2, and poorly developed labialcingulid in M2. The average size is more similar to that observed forthe extant Northern European populations of A. (S.) flavicollis

(Pasquier, 1974; Maul and Parfitt, 2010). However, during the earlyPleistocene size ranges similar to those recorded at MonteArgentario are observed also for A. (S.) sylvaticus (Michaux andPasquier, 1974; Cuenca-Bescos et al., 1997; Minwer-Barakat et al.,2011). As previously indicated by other authors (Pasquier, 1974;Michaux and Pasquier, 1974), differences in dental measurementscannot be considered as the main discriminative elementsbetween A. (S.) sylvaticus and A. (S.) flavicollis. As a matter of fact,size variations for both A. (S.) flavicollis and A. (S.) sylvaticus aredocumented through time and space (Michaux and Pasquier, 1974;Tchernov, 1979; Cuenca-Bescos et al., 1997) due to the incidence ofmultiple factors involving climatic and/or latitudinal variationsand interspecific competition (Tchernov, 1979; Renaud andMichaux, 2003, 2007; Filippucci et al., 1989). In general, the sizeof A. (S.) flavicollis decreases southward whereas the size ofA. (S.) sylvaticus increases (Filippucci et al., 1989).

The morphological distinction of the two species of thesubgenus Sylvaemus is particularly problematic. The main mor-phological feature to distinguish A. (S.) sylvaticus fromA. (S.) flavicollis is the occurrence of a well-developed t9 in M2

(Pasquier, 1974). As a matter of fact A. (S.) flavicollis exhibits apoorly developed or ‘‘crest-like’’ cusp whereas A. (S.) sylvaticus

displays a well distinct tubercle. As regard the studied materialfrom Monte Argentario, four M2 can be assigned to A. (S.) flavicollis

due to the very reduced or even absent t9 whereas eight M2

displaying a well distinct t9 are here ascribed toA. (S.) sylvaticus. The intermediate conditions exhibited by theremaining specimens of M2 do not allow a more preciseidentification and are therefore assigned to A. (S.) gr. sylvaticus-flavicollis. Remains of the other dental elements are assigned toA. (S.) gr. sylvaticus-flavicollis as they do not display any reliablefeature for a conclusive discrimination between the two species.

Apodemus (S.) sylvaticus and A. (S.) flavicollis are reported innumerous European localities since the early Pleistocene (Pasqu-ier, 1974; Michaux and Pasquier, 1974; Argenti and Kotsakis, 1999;Maul and Parfitt, 2010; Minwer-Barakat et al., 2011; Marcoliniet al., 2013). These two species of field mouse are currently widelydistributed in Europe where they can live in sympatry (Hoffmeyer,1973). As regard the assemblages described herein, Apodemus

mystacinus and Apodemus epimelas, the extant broad-toothed fieldmice belonging to the subgenus Karstomys can be excluded on thebase of biometrical data because of their larger size (Tchernov,1979; Pasquier, 1974). Moreover, they clearly differ by a muchmore developed t12 and t7 in M1 and especially in M2 (Miller,1912; van der Meulen, 1973; Pasquier, 1974) and for stout builtteeth displaying a broader width with respect to that observed inthe studied material.

Subgenus Karstomys Martino, 1939Apodemus (Karstomys) gr. mystacinus-epimelas

Fig. 6(A)Material: one M2.Measurements (in mm): L = 1.42, W = 1.33.Description: Stout built tooth; t3 smaller than t1, round in

shape and separated from t5; t4-t7 separated, t7 very large, largerthan t4; t9 very well developed; t12 very well developed, close but

M.S. Siori et al. / Geobios 47 (2014) 403–418 415

not connected to t9. Three roots, large posterior one, small antero-lingual and large anterior.

Remarks: This single M2 clearly differs from the other remainsof Monte Argentario for its robust structure, the occurrence of astout t7 larger than t4 and well protruding from the basaloutline and for the large t12. Moreover, this specimen displays aslightly larger size especially as regard the width. These morpho-logical and dimensional features prevent the attribution toApodemus (S.) sylvaticus or A. (S.) flavicollis in which the t12 of M2

is absent or poorly developed and the t7 is smaller. On the contrary,they are indicative of the extant rock mice species A. (Karstomys)

mystacinus and A. (K.) epimelas. The measurements of tooth fromMonte Argentario fully agree with those reported for the Pleistocenerecord of A. (K.) mystacinus (Lopez-Martınez et al., 1976; Agustı,1982; Montoya et al., 1999), but are smaller than some fossil andextant samples (Tchernov, 1968; Pasquier, 1974). The size-increas-ing trend of A. (K.) mystacinus through the Pleistocene has beenpreviously observed by some authors (Pasquier, 1974; Agustı, 1982).However, size variations may also be related to interspecificcompetition and climatic variations (Tchernov, 1979). The dentalremains of A. (K.) mystacinus differ from A. (K.) epimelas for thepresence of the t12-t9 connection in the M1 (Storch, 1977, 2004). Theabsence of such a contact in the M2 from Monte Argentario is notsufficient for a definitive identification of A. (K.) epimelas. Pendingthe analysis of further material, we prefer to attribute this single M2

to Apodemus (Karstomys) gr. mystacinus-epimelas.In Italy, A. (K.) mystacinus is reported from Montagnola Senese

(late Villanyan; Argenti, 1999; Kotsakis et al., 2003) and Cava 2(early Biharian; Argenti and Kotsakis, 1999). CurrentlyA. (K.) mystacinus in found in Georgia, Middle-East, Turkey, Creteand in the Greek islands close to Asia Minor (Musser and Carleton,2005), whereas A. (K.) epimelas is widespread in the Balkans andGreece. Phylogenetic analyses suggested that the separationbetween Karstomys and Sylvaemus took place between 7–8 Ma(Michaux et al., 2002, 2004) or even before, around 10 Ma (Liuet al., 2004). A. (K.) mystascinus and A. (K.) epimelas diverged in theLate Pliocene/Early Pleistocene (2.2–3.5 Ma; Michaux et al. (2002),or even earlier between 4.2 and 5.1 in the earliest part of thePliocene (Michaux et al., 2005).

4. Discussion

The rich fossil assemblage described herein congruentlyindicates, together with the large mammals already described inother articles (Sardella et al., 2008; Martınez-Navarro et al., 2012),the high levels of biodiversity characteristic of the Tyrrhenian sideof Central Italy during the Early Pleistocene (Masini and Sala,2007). From a biochronological point of view, the presence of themicrotine vole Victoriamys chalinei and Microtus (Allophaiomys)ruffoi points to an Early Biharian age for the Monte Argentario fossilvertebrate assemblages. In particular, this assemblage can bereferred to the Farneta Faunal Unit (FU) or Pirro FU of the Italianbiochronological scheme (Sala and Masini, 2007). In the Farneta FUboth species have been recorded, even if their morphology is lessadvanced than that observed in the Monte Argentario material,while in the Pirro FU only M. (A.) ruffoi has been reported(Marcolini et al., 2013), but the rodent communities were so poorlydiversified, probably for ecological reasons, that the absence ofVictoriamys chalinei cannot be considered here of biochronologicalsignificance. The abundance of common elements in the Farnetaand Pirro FUs, further confirmed in this work, supports thehypothesis that they have to be considered as included in the samebiochronological unit. In fact, the slight differences in the faunalcomposition between these two FUs can be easily explained bytaphonomical and ecological constraints observed in the two mainlocalities of each FU (Pietrafitta and Pirro Nord, respectively).

In addition to the Italian deposits, the two microtine volesfound in the Monte Argentario vertebrate assemblage have beenfound so far only in Spanish sites. M. (A.) ruffoi is present in theGuadix-Baza Basin, at Venta Micena 1 (1.6–1.4 Ma), withOryctolagus sp. and Asoriculus gibberodon (Agustı et al., 2010).Victoriamys chalinei has been reported from Cueva Victoria (Alcaldeet al., 1981), Atapuerca (TD3-TD6 levels; Cuenca-Bescos et al.,2010), Torrent de Vallparadıs (layer Cal Guardiola D5; Minwer-Barakat et al., 2011), and Almenara-Casablanca (ACB 3 deposit;Agustı et al., 2011). These deposits habe been referred to theAllophaiomys chalinei biozone (0.98-0.79 Ma; Cuenca-Bescos et al.,2010), i.e., in a much more recent time interval than the Italian siteof Pietrafitta (Sala and Masini, 2007). Due to the revisedbiochronology of the Spanish Early Pleistocene deposits and thelack of a suitable ancestor (Cuenca-Bescos et al., 2010; Martin,2012), V. chalinei is no longer considered an Iberian endemicspecies. It might have been an immigrant to the Iberian Peninsula,with an older, still unclear, evolutionary history elsewere, assuggested by its occurrence in the Italian sites of Pietrafitta andMonte Argentario, significantly older than the Spanish sites (Salaand Masini, 2007; Cuenca-Bescos et al., 2010). In addition, Agustıet al. (2010) consider M. (A.) ruffoi as the southern and more archaicvariant of M. (A.) pliocaenicus; they found it as the most abundantrootless vole species in the key site of Venta Micena. This factallows to precisely correlating the Early Pleistocene sites ofPietrafitta, Argentario, and Pirro Nord to the Venta Micena site inthe Spanish Guadix-Baza Basin (contra Cuenca-Bescos et al., 2010).

The various small mammal species recorded from the EarlyPleistocene of Monte Argentario suggest the presence of aheterogenous mosaic of open environments (Microtus (A.) ruffoi)with extensive woodlands. As a matter of fact, forested areas aresuggested by Sorex minutus and Apodemus (S.) flavicollis whereaswell-connected tree canopies are indicated by the occurrence ofGlis. The existence of nearby freshwater reservoirs is indicated bythe neomyin Asoriculus gibberodon, the birds Anas and Porzana, andthe amphibians. Finally, Apodemus (Karstomys) gr. mystacinus-

epimelas, Bubo sp., Alectoris graeca, and lacertids point to thepresence of rocky outcrops with grass and shrubs coverage.

Monte Argentario represents the first Italian locality in whichtwo species of the subgenus Sylvaemus, namely Apodemus (S.)sylvaticus and A. (S.) flavicollis, are reported together with thesubgenus Karstomys. The present geographic ranges ofA. (S.) sylvaticus, A. (S.) flavicollis and A. (K.) epimelas overlap inthe Balkan region, whereas A. (S.) flavicollis and A. (K.) mystacinus

co-occur in Middle East and Turkey (Filippucci et al., 1989, 2002;Macholan et al., 2001; Abu-Baker and Amr, 2008; Bugarski-Stanojevic et al., 2011). The presence of A. (S.) sylvaticus in theMiddle East has been excluded by recent analyses (Macholan et al.,2001; Filippucci et al., 2002; Musser and Carleton, 2005; Abu-Baker and Amr, 2008).

5. Conclusions

The Monte Argentario faunal assemblage includes largemammals such as Megantereon whitei and Soergelia cf. S. minor

that spread into Europe during the Early Pleistocene and representa significant biotic renewal in the composition of the terrestrialecosystems of Western Europe at that time (Sardella et al., 2008;Martınez-Navarro et al., 2012). The dispersal of the early humansinto Europe is also part of this renewal and is documented in Italyin the site of Pirro Nord (Arzarello et al., 2007; Pavia et al., 2012). InItaly, these types of Early Pleistocene assemblages are representedby the Farneta and Pirro Faunal Units, whereas in Europe nearlycoeval sites are documented in Spain (Venta Micena, FuenteNueva-3, Barranco Leon-5), France (Sainzelles), and Greece(Apollonia-1) (Sardella et al., 2008; Rook and Martınez-Navarro,

M.S. Siori et al. / Geobios 47 (2014) 403–418416

2010). Monte Argentario provides further evidence of this type ofassemblage in Western Europe. The analysis of the newly foundfossil remains described herein allows us to define its biochrono-logical significance in much more details, also suggesting the needof revisiting the Italian biochronologial scheme.

The faunal assemblage of Monte Argentario supports thebiochronological equivalence of Farneta and Pirro Faunal Units,given their similar absolute ages and the great differences in thetaphonomical and palaeoecological constraints of their two mainlocalities: Pietrafitta and Pirro Nord, respectively. Indeed, theseconstraints may play an important role in explaining thedifferences in their faunal composition, rather than their absoluteage difference. The site of Monte Argentario confirms that most ofthe fossil vertebrate assemblages, including the Early Pleistoceneor even older ones, also contain remains of small mammals andother non-mammalian vertebrates, the absence of which in theliterature is mainly due to collection and/or analysis biases.Relatively abundant non-mammalian and small mammals remainswere recently described from several Neogene and Early Pleisto-cene fossil localities, even in sites where only large mammals werepreviously reported (Delfino et al., 2011; Pavia et al., 2012;Colombero et al., 2013, 2014a, 2014b; Rook et al., 2013a, 2013b).Since the study of these often neglected vertebrate remains mayprovide much more precise information about the palaeoenviron-ment and palaeogeography and, especially the small mammals,detailed biochronological data, the search, collection and inves-tigation of these fossil vertebrate remains from all the fossilvertebrate-bearing localities must be strongly encouraged.

Acknowledgments

We thank F. Marcolini who helped us during the field works andthe early phases of the study of the fossil material. C. Angelonecontributed to the preliminary determination of the fossilmaterial; B. Villier helped during acid treatments of the cementedblocks. We thank B. Sala and C. Berto for their kindness during ourvisit to the collections of Apodemus in the Department of HumanStudies of Ferrara, and P. Gambogi of Soprintendenza per I. BeniArcheologici della Toscana. We also thank the reviewers (G. Mayr,R. Minwer-Barakat, and J.-C. Rage) and the Editor (G. Escarguel) fortheir critical comments and suggestions that greatly improved themanuscript. Research funded by University of Torino LocalResearch 2012-2013, Italian MIUR PRIN 2012MY8AB2, CGL2011-28681 (Spanish Ministry of Economy and Competitiveness) andSGR2014-416 GRC (Government of Catalonia).

References

Abu-Baker, M.A., Amr, Z., 2008. Mice of the Genus Apodemus in Jordan. VertebrateZoology 58, 127–135.

Aguilar, J.-P., Crochet, J.-Y., Hebrard, O., Le Strat, P., Michaux, J., Pedra, S., Sige, B.,2002. Les micromammiferes de Mas Rambault 2, gisement karstique du Plio-cene superieur du Sud de la France: age, paleoclimat, geodynamique. Geologiede la France 4, 17–37.

Agustı, J., 1982. Los roedores (Mammalia) del Pleistoceno Inferior de la CuevaVictoria (Murcia, Espana). Endins 9, 49–55.

Agustı, J., 1992. The Allophaiomys complex in Southern Europe. Geobios 25, 133–144.Agustı, J., Blain, H.-A., Furio, M., De Marfa, R., Santos-Cubedo, A., 2010. The early

Pleistocene small vertebrate succession from the Orce region (Guadix-BazaBasin, SE Spain) and its bearing on the first human occupation of Europe.Quaternary International 223-224, 162–169.

Agustı, J., Santos-Cubedo, A., Furio, M., De Marfa, R., Blain, H.-A., Oms, O., Sevilla, P.,2011. The late Neogene-early Quaternary small vertebrate succession from theAlmenara-Casablanca karst complex (Castellon, Eastern Spain): Chronologicand paleoclimatic context. Quaternary International 243, 183–191.

Alcalde, G., Agustı, J., Villalta, J.F., 1981. Un nuevo Allophaiomys (Arvicolidae,Rodentia, Mammalia) en el Pleistoceno inferior del sur de Espana. Acta Geo-logica Hispanica 16, 203–205.

Angelone, C., Marcolini, F., Pavia, G., Pavia, M., 2008. Dati preliminari sul PleistoceneInferiore del Monte Argentario (Grosseto): uccelli e micromammiferi. VIIIGiornate di Paleontologia, Siena, Abstract Book, 66.

Angelone, C., Rook, L., 2012. Late Neogene and Quaternary lagomorphs fromTuscany: a revision based on specimens in Basel Naturhistorisches Museumand Florence University collections. Swiss Journal of Palaeontology 131, 127–145.

Argenti, P., 1999. La biocronologia dei Roditori del Plio-Pleistocene dell’Umbria el’evoluzione del genere Apodemus in Italia. Ph. D. thesis, University of Perugia(unpublished).

Argenti, P., 2004. Plio-Quaternary mammal fossiliferous sites of Umbria (CentralItaly). Geologica Romana 37, 67–78.

Argenti, P., Kotsakis, T., 1999. Fossil Apodemus (Rodentia: Muridae) in italy: theBiochronological meaning. Riassunti del 28 Forum Italiano Scienze della Terra 1,59–61.

Argenti, P., Kotsakis, T., 2009. The fossil remains of Soricidae and Leporidae(Mammalia) in the Lower Pleistocene of Pietrafitta (Perugia, Central Italy).Bollettino della Societa Paleontologica Italiana 48, 59–62.

Arzarello, M., Marcolini, F., Pavia, G., Pavia, M., Petronio, C., Petrucci, M., Rook, L.,Sardella, R., 2007. Evidence of the earliest human occurrence in Europe: the siteof Pirro Nord (Southern Italy). Naturwissenschaften 94, 107–112.

Arzarello, M., Marcolini, F., Pavia, G., Pavia, M., Petronio, C., Petrucci, M., Rook, L.,Sardella, R., 2009. L’industrie lithique du site Pleistocene inferieur de Pirro Nord(Apricena, Italie du sud): une occupation humaine entre 1,3 et 1,7 Ma. L’Anthro-pologie 113, 47–58.

Bailon, S., 1999. Differenciation osteologique des anoures (Amphibia, Anura) deFrance. In: Desse, J., Desse-Berset, N. (Eds.), Fiches d’osteologie animale pourl’Archeologie. Centre de Recherches Archeologiques-CNRS, Valbonne, Serie C:Varia, pp. 1–38.

Barahona, F., Barbadillo, L.J., 1997. Identification of some Iberian lacertids usingskull characters. Revista Espanola de Herpetologıa 11, 47–62.

Baschieri, F., Segre, A.G., 1957. Notizie sul ritrovamento di fauna a Rinoceronteetrusco e Macairodo all’Argentario (prov. di Grosseto). Quaternaria 4, 195–197.

Baumel, J.J., Witmer, L.M., 1993. Osteologia. In: Baumel, J.J. (Ed.), Handbook of aviananatomy: Nomina Anatomica Avium. Second Edition. Nuttall OrnithologicalClub, Cambridge, Massachussets, pp. 45–132.

Bedetti, C., 2003. Le avifaune fossili del Plio-Pleistocene italiano: sistematica,paleoecologia ed elementi di biocronologia. Ph.D thesis, University Sapienzadi Roma (unpublished).

Bedetti, C., Pavia, M., 2007. Reinterpretation of the Late Pleistocene Ingarano cavedeposits based on the fossil bird associations (Apulia, South-Eastern Italy).Rivista Italiana di Paleontologia e Stratigrafia 113, 487–507.

Bedetti, C., Pavia, M., 2013. Early Pleistocene birds from Pirro Nord (Puglia, southernItaly). Palaeontographica Abteilung A-Palaozoologie-Stratigraphie 298, 31–53.

Berzi, A., Michaux, J., Hutchison, J.H., Lindsay, E., 1967. The Arondelli Local Fauna, anassemblage of small vertebrates from the Villafranchian stage near Villafrancad’Asti, Italy. Giornale di Geologia 35, 133–136.

Bolliger, T., Engesser, B., Weidman, M., 1993. Premiere decouverte de mammiferespliocenes dans le Jura neuchatelois. Eclogae Geologicae Helvetiae 86, 1031–1068.

Bugarski-Stanojevic, V., Blagojevic, J., Stamenkovic, G., Adnadevic, T., GiaGia-Atha-nasopoulou, E.B., Vujosevic, M., 2011. Comparative study of the phylogeneticstructure in six Apodemus species (Mammalia Rodentia) inferred from ISSR-PCRdata. Systematics and Biodiversity 9, 95–106.

Chaline, J., 1972. Les rongeurs du Pleistocene moyen et superieur de France. Cahiersde Paleontologie. Ed. CNRS, Paris.

Clot, A., Chaline, J., Heintz, E., Jammot, E., Mourer-Chauvire, C., Rage, J.-C., 1976.Montousse 5 (Hautes Pyrenees), un nouveau remplissage de fissures a faune devertebres du Pleistocene inferieur. Geobios 9, 512–514.

Colombero, S., Bonelli, E., Kotsakis, T., Pavia, G., Pavia, M., Carnevale, G., 2013.Late Messinian rodents from Verduno (Piedmont, NW Italy): Biochronologi-cal, paleoecological and paleobiogeographical implications. Geobios 46,111–125.

Colombero, S., Angelone, C., Bonelli, E., Carnevale, G., Cavallo, O., Delfino, M.,Giuntelli, P., Mazza, P., Pavia, G., Pavia, M., Repetto, G., 2014a. The upperMessinian assemblages of fossil vertebrate remains of Verduno (NW Italy):Another brick for a latest Miocene bridge across the Mediterranean. NeuesJahrbuch fur Geologie und Palaontologie. Abhandlungen 272, 287–324.

Colombero, S., Pavia, G., Carnevale, G., 2014b. Messinian rodents from MoncuccoTorinese, NW Italy: palaeobiodiversity and biochronology. Geodiversitas 36 (3),421–475.

Cracraft, J., 1973. Systematics and evolution of the Gruiformes (Class Aves). 3. Phy-logeny of the Suborder Grues. Bulletin of the American Museum of NaturalHistory 151, 1–128.

Cuenca-Bescos, G., Laplana, C., Canudo, J.I., Arsuaga, J.L., 1997. Small mammals fromSima de los Huesos. Journal of Human Evolution 33, 175–190.

Cuenca-Bescos, G., Rofes, J., Lopez-Garcıa, J.M., Blain, H.A., De Marfa, R.J., Galindo-Pellicena, M.A., Bennasar-Serra, M.L., Melero-Rubio, M., Arsuaga, J.L., Bermudezde Castro, J.M., Carbonell, E., 2010. Biochronology of Spanish Quaternary smallvertebrate faunas. Quaternary International 212, 109–119.

Daams, R., 1981. The dental pattern of the dormice Dryomys, Myomimus, Micro-dyromys and Peridyromys. Utrecht Micropaleontological Bulletin (Special Pub-lication) 3, 1–115.

Daoud, A., 1993. Evolution of Gliridae (Rodentia, Mammalia) in the Pliocene andQuaternary of Poland. Acta Zoologica Cracoviensia 36, 199–231.

De Giuli, C., Masini, F., Torre, D., 1987. The latest Villafranchian faunas of Italy: thePirro Nord fauna (Apricena, Gargano). Paleontographia Italica 74, 51–62.

De Giuli, C., Torre, D., 1984. A microfauna with Allophaiomys pliocaenicus fromGargano (Southern Italy). Paleontographia Italica 74, 51–62.

M.S. Siori et al. / Geobios 47 (2014) 403–418 417

Delfino, M., Kotsakis, T., Arca, M., Tuveri, C., Pitruzzella, G., Rook, L., 2008. Agamidlizards from the Plio-Pleistocene of Sardinia (Italy) and an overview of theEuropean fossil record of the family. Geodiversitas 30, 641–656.

Delfino, M., Pitruzzella, G., Bailon, S., 2011. The Late Pliocene amphibians andreptiles from ‘‘Capo Mannu D1 Local Fauna’’ (Mandriola, Sardinia, Italy). Geo-diversitas 33 (2), 357–382.

Estes, R., 1983. Handbuch der Palaoherpetologie, part 10A, Sauria terrestria,Amphisbaenia. Gustav Fischer Verlag, Stuttgart/New York.

Fanfani, F., 1995. Gli insettivori del Pleistocene inferiore di Cava PirroNord e Cava Dell’Erba (Gargano, Foggia) e del Neogene e Pleistocene dialtre localita della penisola italiana. Dissertation, Pisa University (unpub-lished).

Fanfani, F., 2000. Revisione degli insettivori (Mammalia) tardo-neogenici e qua-ternari dell’Italia peninsulare. Ph.D. Thesis, University of Bologna, Firenze,Modena, Roma ‘‘La Sapienza’’ (unpublished).

Fanfani, F., Masini, F., 1998. Insectivores (Mammalia) from Rivoli Veronese, a LateVillanyian site in Northeastern Italy. Bollettino della Societa PaleontologicaItaliana 36, 367–380.

Fejfar, O., Storch, G., 1990. Eine Pliozane (ober-Ruscinische) Kleinsaugerfauna ausGundersheim, Rheinhessen-1. Nagetiere: Mammalia, Rodentia. Senckenbergi-ana Lethaea 71, 139–184.

Fick, O.K.W., 1974. Vergleichend morphologische Untersuchungen an Eizelknocheneuropaischer Taubenarten. Dissertation Tierarztl, University of Munchen (un-published).

Filippucci, M.G., Macholan, M., Michaux, J.R., 2002. Genetic variation and evolutionin the genus Apodemus (Muridae: Rodentia). Biological Journal of the LinneanSociety 75, 395–419.

Filippucci, M.G., Simson, S., Nevo, E., 1989. Evolutionary biology of the genusApodemus Kaup, 1829 in Israel. Allozymic and biometric analyses with de-scription of a new species: Apodemus hermonensis (Rodentia, Muridae). Bol-letino di Zoologia 56, 361–376.

Fondi, R., 1972. Fauna cromeriana della Montagnola Senese. Paleontographia Italica68, 1–25.

Furio, M., Angelone, C., 2010. Insectivores (Erinaceidae, Soricidae, Talpidae; Mam-malia) from the Pliocene of Capo Mannu D1 (Mandriola, central-westernSardinia, Italy). Neues Jahrbuch fur Geologie und Palaontologie - Abhandlungen258, 229–242.

Garcıa-Alix, A., Minwer-Barakat, R., Martın-Suarez, E., Freudenthal, M., 2008. Cri-cetidae and Gliridae (Rodentia, Mammalia) from the Miocene and Pliocene ofsouthern Spain. Scripta Geologica 136, 1–37.

Garcıa-Alix, A., Minwer-Barakat, R., Martın-Suarez, E., Freudenthal, M., 2009. Smallmammals from the early Pleistocene of the Granada Basin, southern Spain.Quaternary Research 72, 265–274.

Gasc, J.-P., Cabela, A., Crnobrnja-Isailovic, J., Dolmen, D., Grossenbacher, K., Haffner,P., Lescure, J., Martens, H., Martinez Rica, J.P., Maurin, H., Oliveira, M.E., Sofia-nidou, T.S., Veith, M., Zuiderwijk, A. (Eds.), 1997. Atlas of amphibians andreptiles in Europe. SEH and MNHN, Paris.

Gentili, S., Abbazzi, L., Masini, F., Ambrosetti, P., Argenti, P., Torre, D., 1996. Volesfrom the Early Pleistocene of Pietrafitta (central Italy, Perugia). Acta ZoologicaCracoviensia 39, 185–199.

Hir, J., 1998. The Allophaiomys type-material in the Hungarian collections. In:Martin, R.A., Tesakov, A. (Eds.), The Early Evolution of Mictrotus, 2, Paludicola,pp. 28–36.

Hoffmeyer, I., 1973. Interaction and habitat selection in the mice Apodemus flavi-collis and Apodemus sylvaticus. Oikos 24, 108–116.

Hoofer, S.R., Gaschak, S., Dunina-Barkovskaya, Y., Makluk, J., Meeks, H.N., Wickliffe,J.K., Baker, R.J., 2007. New information for systematics, taxonomy, and phylo-geography of the rodent genus Apodemus (Sylvaemus) in Ukraine. Journal ofMammalogy 88, 330–342.

Hordijk, K., de Bruijn, H., 2009. The succession of rodent faunas from the Mio/Pliocene lacustrine deposits of the Florina-Ptolemais-Servia Basin (Greece).Hellenic Journal of Geosciences 44, 21–103.

Hutchison, J.H., 1974. Notes on type specimens of European Miocene Talpidae and atentative classification of Old World Tertiary Talpidae (Insectivora: Mammalia).Geobios 7, 211–256.

Janossy, D., 1986. Pleistocene Vertebrate Faunas of Hungary. Elsevier, Amster-dam208.

Kotsakis, T., 2003. Fossil glirids of Italy: the state of the art. Coloquios de Paleonto-logıa 1, 335–343.

Kotsakis, T., Abbazzi, L., Angelone, C., Argenti, P., Barisone, G., Fanfani, F., Marcolini,F., Masini, F., 2003. Plio-Pleistocene biogeography of Italian mainland micro-mammals. In: Reumer, J.W.F., Wessels, W. (Eds.), Distribution and migration oftertiary mammals in Eurasia, 10, A volume in honour of Hans de Bruijn –Deinsea, pp. 313–342.

Kosciow, R., Nadachowski, A., 2002. Type populations of some Mimomys species(Arvicolidae, Rodentia) at the Pliocene/Pleistocene boundary in Central Europe.Folia Zoologica 51, 93–104.

Kowalski, K., 1963. The Pliocene and Pleistocene Gliridae (Mammalia, Rodentia)from Poland. Acta Zoologica Cracoviensia 8, 533–567.

Kraft, E., 1972. Vergleichend morphologische Untersuchungen an Einzelknochennord- und mitteleuropaischer kleinerer Huhnervogel. Ph.D dissertation. LudwigMaximilians Universitat, Munchen (unpublished).

Lippi, P., Masini, F., Maul, L., Abbazzi, L., 1998. Evolutionary changes of enameldifferentiation in Pleistocene Mediterranean and Middle European populationsof Microtus (Rodentia, Arvicolidae). In: Martin, R.A., Tesakov, A. (Eds.), TheEarly Evolution of Microtus, 2, Paludicola, pp. 50–61.

Liu, X.M., Wei, F.W., Li, M., Jiang, X.L., Feng, Z.J., Hu, J.C., 2004. Molecular phylogenyand taxonomy of wood mice (genus Apodemus Kaup, 1829) based on completemtDNA cytochrome b sequences, with emphasis on Chinese species. MolecularPhylogenetics and Evolution 33, 1–15.

Lopez-Martınez, N., Michaux, I., Villalta De, I.F., 1976. Rongeurs et lagomorphes deBagur-2 (Province de Gerone, Espagne), Nouveau remplissage du debut duPleistocene Moye. Acta Geologica Hispanica 11 (2), 46–54.

Lopez-Martinez, N., Likius, A., Mackaye, H.T., Vignaud, P., Brunet, M., 2007. A newLagomorph from the Late Miocene of Chad (Central Africa). Revista Espanola dePaleontologıa 22, 1–20.

Macholan, M., Filippucci, M.G., Benda, P., Frynta, D., Sadlova, J., 2001. Allozymevariation and systematics of the genus Apodemus (Muridae: Rodentia) in AsiaMinor and Iran. Journal of Mammalogy 82, 799–813.

Malez, M., Rabeder, G., 1984. Neues Fundmaterial von Kleinsaugern aus deraltpleistozanen Spaltenfullung Podumci 1 in Norddalmatien (Kroatien, Jugo-slawien). Beitrage zur Palaontologie Osterreich 11, 439–510.

Marchetti, M., Parolin, K., Sala, B., 2000. The Biharian fauna from Monte La Mesa(Verona, northeastern Italy). Acta Zoologica Cracoviensia 43, 79–105.

Marcolini, F., Masini, F., Argenti, P., 2013. The rodents of the Pirro Nord fauna(Foggia, Southern Italy). Palaeontographica Abteilung A-Palaozoologie-Strati-graphie 298, 73–85.

Martin, R.A., 2012. Victoriamys, a new generic name for Chaline’s vole from thePleistocene of Western Europe. Geobios 45, 445–450.

Martın-Suarez, E., Mein, P., 1998. Revision of the Genera Parapodemus, Apodemus,Rhagamys and Rhagapodemus (Rodentia, Mammalia). Geobios 31, 87–97.

Martın-Suarez, E., Mein, P., 2004. The Late Pliocene locality of Saint-Vallier (Drome,France). Geobios 37, S115–S125.

Martınez-Navarro, B., Sardella, R., Rook, L., Bellucci, L., Ros-Montoya, S., 2012. Firstoccurrence of Soergelia (Ovibovini, Bovidae, Mammalia) in the Early Pleistoceneof Italy. Quaternary International 267, 98–102.

Masini, F., Abbazzi, L., Lippi, P., Sala, B., Torre, D., 1998. Review and new finds ofMicrotus (Allophaiomys) (Rodentia, Arvicolidae) from the early Pleistocene ofthe Italian Peninsula. In: Martin, R.A., Tesakov, A. (Eds.), The Early Evolution ofMicrotus, 2, Paludicola, pp. 78–90.

Masini, F., Sala, B., 2007. Large- and small-mammal distribution patterns andchronostratigraphic boundaries from the Late Pliocene to the Middle Pleisto-cene of the Italian peninsula. Quaternary International 160, 43–56.

Masini, F., Santini, G., 1991. Microtus (Allophaiomys) (Arvicolidae, Rodentia, Mam-malia) from Cava Pirro (Apricena, Gargano) and other Italian localities. Bollet-tino della Societa Paleontologica Italiana 30, 355–380.

Maul, L., Masini, F., Abbazzi, L., Turner, A., 1998. The use of different morphometricdata for absolute age calibration of some South- and Middle European arvicolidpopulations. Palaeontographia Italica 85, 111–151.

Maul, L.C., Parfitt, S.A., 2010. Micromammals from the 1995 Mammoth Excavationat West Runton, Norfolk, UK: Morphometric data, biostratigraphy and taxo-nomic reappraisal. Quaternary International 228, 91–115.

Meijer, H.J.M., Pavia, M., Madurell-Malapeira, J., Alba, D.M., 2014. An eagle owl fromthe Early Pleistocene of Cal Guardiola (Valles-Penedes Basin, Iberian Peninsula)and variation within early Bubo. XII EAVP Meeting, Torino. Abstract Book, 111.

Michaux, J., 1970. Les rongeurs (Arvicolides, Murides et Glirides) de la localiteArondelli a Villafranca d’Asti (Italie). Palaeontographia Italica 66, 69–80.

Michaux, J., Pasquier, L., 1974. Dynamique des populations de mulots (Rodentia,Apodemus) en Europe durant le Quaternaire. Premieres donnees. Bulletin de laSociete geologique de France 16, 431–438.

Michaux, J.R., Bellinvia, E., Lymberakis, P., 2005. Taxonomy, evolutionary historyand biogeography of the broad-toothed field mouse (Apodemus mystacinus) inthe eastern Mediterranean area based on mitochondrial and nuclear genes.Biological Journal of the Linnean Society 85, 53–63.

Michaux, J.R., Chevret, P., Filippucci, M.G., Macholan, M., 2002. Phylogeny of thegenus Apodemus with a special emphasis on the subgenus Sylvaemus using thenuclear IRBP gene and two mitochondrial markers: cytochrome b and 12S rRNA.Molecular phylogenetics and Evolution 23, 123–136.

Michaux, J.R., Libois, R.M., Filippucci, M.G., 2004. So close and so different. Com-parative phylogeography of two closely related rodent species (Apodemusflavicollis and A. sylvaticus) in the Western Palearctic region. Heredity 94,52–63.

Miller, G.S., 1912. Catalogue of the mammals of western Europe (Europe exclusiveof Russia) in the collection of the British Museum. British Museum (NaturalHistory), London, 1019 pp.

Minwer-Barakat, R., 2005. Roedores e Insectıvoros del Turoliense Superior y elPlioceno del sector central de la Cuenca de Guadix. Doctorate dissertation,Granada University (unpublished).

Minwer-Barakat, R., Garcıa-Alix, A., Martın-Suarez, E., Freudenthal, M., 2005. Mur-idae (Rodentia) from the Pliocene of Tollo de Chiclana (Granada, SouthernSpain). Journal of Vertebrate Paleontology 25, 426–441.

Minwer-Barakat, R., Garcıa-Alix, A., Martın Suarez, E., Freudenthal, M., 2010.Soricidae (Soricomorpha, Mammalia) from the Pliocene of Tollo de Chiclana(Guadix Basin, Southern Spain). Journal of Vertebrate Paleontology 30, 535–546.

Minwer-Barakat, R., Madurell-Malapeira, J., Alba, D.M., Aurell-Garrido, J., De Este-ban-Trivigno, S., Moya -Sola, S., 2011. Pleistocene rodents from the Torrent deVallparadis section (Terrassa, northeastern Spain) and biochronological impli-cations. Journal of Vertebrate Paleontology 31, 849–865.

Montoya, P., Alberdi, M.T., Blazquez, A.M., Barbadillo, L.J., Fumanal, M.P., van derMade, J., Marfn, J.M., Molina, A., Morales, J., Mure-Iaga, X., Penalver, E., Robles, F.,Ruiz Bustos, A., Sanchez, A., Sanchiz, B., Soria, D., Szyndlar, Z., 1999. La fauna del

M.S. Siori et al. / Geobios 47 (2014) 403–418418

Pleistoceno Inferior de la Sierra de Quibas (Abanilla, Murcia). Estudios Geolo-gicos 55, 127–161.

Musser, G.G., Carleton, M.D., 2005. Superfamily Muroidea. In: Wilson, D.E., Reeder,D.M. (Eds.), Mammal species of the World a taxonomic and geographicreference. third ed. The Johns Hopkins University Press, Baltimore, pp. 894–1531.

Nadachowski, A., 1982. Late Quaternary Rodents of Poland with Special Reference toMorphotype Dentition Analysis of Voles. PWN, Warszawa, Krakow.

Nadachowski, A., Daoud, A., 1995. Patterns of Myoxid Evolution in the Pliocene andPleistocene of Europe. Hystrix (n.s.) 6, 141–149.

Nocchi, G., Sala, B., 1997. The fossil rabbit from Valdemino Cave (Borgio Verezzi,Savona) in the context of Western Europe Oryctolagini of Quaternary. Palaeo-vertebrata 26, 167–187.

Pasa, A., 1947. I Mammiferi di alcune antiche brecce veronesi. Memorie del MuseoCivico di Storia Naturale di Verona 1, 1–111.

Pasquier, L., 1974. Dynamique evolutive d’un sous-gendre des Muridae, Apodemus(Sylvaemus). Etude bio-metrique des caracteres dentaires de populations fos-siles et actuelles d’Europe occidentale. Ph.D thesis, Universite des Sciences etTechnique de Montpellier. (unpublished).

Pavia, M., Zunino, M., Coltorti, M., Angelone, C., Arzarello, M., Bagnus, C., Bellucci, L.,Colombero, S., Marcolini, F., Peretto, C., Petronio, C., Petrucci, M., Pieruccini, P.,Sardella, R., Tema, E., Villier, B., Pavia, G., 2012. Stratigraphical and palaeonto-logical data from the Early Pleistocene Pirro 10 site of Pirro Nord (Puglia, southeastern Italy). Quaternary International 267, 40–55.

Popov, V.V., 2003. Late Pliocene Soricidae (Insectivora, Mammalia) from Varshets(North Bulgaria). Acta Zoologica Cracoviensia 46, 43–72.

Popov, V.V., 2004. Late Pliocene Erinaceidae and Talpidae (Mammalia: Insectivora)from Varshets (North Bulgaria). Acta Zoologica Cracoviensia 47, 61–80.

Rabeder, G., 1972. Die Insectivoren und Chiropteren (Mammalia) aus dem Altpleis-tozan von Hundsheim (Niederosterreich). Annalen des Naturhistorisches Mu-seum in Wien 76, 375–474.

Renaud, S., Michaux, J.R., 2003. Adaptive latitudinal trends in the mandible shape ofApodemus wood mice. Journal of Biogeography 30, 1617–1628.

Renaud, S., Michaux, J.R., 2007. Mandibles and molars of the wood mouse, Apodemussylvaticus (L.): integrated latitudinal pattern and mosaic insular evolution.Journal of Biogeography 34, 339–355.

Reumer, J.W.F., 1984. Ruscinian and early Pleistocene Soricidae (Insectivora, Mam-malia) from Tegelen (The Netherlands) and Hungary. Scripta Geologica 73,1–173.

Reumer, J.W., 2003. Muridae (Mammalia, Rodentia) from the Zuurland boreholesnear Rotterdam (the Netherlands) Muridae (Mammalia, Rodentia) de los son-deos de Zuurland cerca de Rotterdam (Holanda). Coloquios de PaleontologıaVol. Ext. 1, 569–578.

Rietschel, S., Storch, G., 1974. Aussergewohnlich erhaltene Waldmause (Apodemusatavus Heller, 1936) aus dem Ober-Pliozan von Willershausen am Harz. Senck-enbergiana Lethaea 54, 491–519.

Rofes, J., Cuenca-Bescos, G., 2006. First evidence of the Soricidae (Mammalia)Asoriculus gibberodon (Petenyi, 1864) in the Pleistocene of North Iberia. RivistaItaliana di Paleontologia e Stratigrafia 112, 301–315.

Rook, L., Croitor, R., Delfino, M., Ferretti, M.P., Gallai, G., Pavia, M., 2013a. The UpperValdarno Plio-Pleistocene vertebrate records: an historical overview, with noteson palaeobiology and stratigraphic significance of some important taxa. ItalianJournal of Geosciences 132, 104–125.

Rook, l., Ghinassi, M., Carnevale, G., Delfino, M., Pavia, M., Bondioli, L., Candillo, F.,Coppa, A., Martınez-Navarro, B., Medin, T., Papini, M., Zanolli, C., Libsekal, T.Y.,2013b. Stratigraphic context and paleoenvironmental significance of minortaxa (Pisces, Reptilia, Aves, Rodentia) from the late Early Pleistocene paleoan-thropological site of Buia (Eritrea). Journal of Human Evolution 64, 83–92.

Rook, L., Martınez-Navarro, B., 2010. Villafranchian: The long story of a Plio-Pleistocene European large mammal biochronologic unit. Quaternary Interna-tional 219, 134–144.

Rzebik-Kowalska, B., 1989. Pliocene and Pleistocene Insectivora (Mammalia) ofPoland. V. Soricidae: Petenyia Kormos, 1934 and Blarinella Thomas, 1911. Actazoological cracoviensia 32, 521–546.

Rzebik-Kowalska, B., 1994. Pliocene and Quaternary Insectivora (Mammalia) ofPoland. Acta Zoologica Cracoviensia 37, 77–136.

Rzebik-Kowalska, B., 1998. Fossil history of shrews in Europe. In: Wojcik, J.M.,Wolsan, M. (Eds.), Evolution of Shrews. Mammal Research Institute. PolishAcademy of Sciences, Bialowieza, pp. 23–92.

Rzebik-Kowalska, B., 2005. Poland. In: van den Hoek Ostende, L.W., Doukas, C.S.,Reumer, J.W.F. (Eds.), The fossil Record fo the Eurasian Neogene Insectivores(Erinaceomorpha, Soricomorpha, Mammalia), 5, Part I. Scripta Geologica SpecialIssue, pp. 119–134.

Rzebik-Kowalska, B., Popov, V.V., 2005. Bulgaria. In: van den Hoek Ostende, L.W.,Doukas, C.S., Reumer, J.W.F. (Eds.), The fossil Record fo the Eurasian NeogeneInsectivores (Erinaceomorpha, Soricomorpha, Mammalia), 5, Part I. ScriptaGeologica Special Issue, pp. 31–35.

Sala, B., Masini, F., 2007. Late Pliocene and Pleistocene small mammal chronology inthe Italian peninsula. Quaternary International 160, 4–16.

Sanchiz, B., 1998. Handbuch der Palaoherpetologie, part 4, Salientia. Verlag Frie-drich Pfeil, Munchen.

Sardella, R., 2006. The late villafranchian Panthera ex gr. toscana-gombaszoegensisfrom Monte Argentario (Grosseto, South Tuscany, central Italy). Courier For-schungsinstitut Senckenberg 256, 23–27.

Sardella, R., Petrucci, M., Rook, L., 2008. The African species Megantereon whitei fromthe early Pleistocene of Monte Argentario (South Tuscany, Central Italy).Comptes Rendu Palevol 7, 601–606.

Storch, G., 1977. Die Ausbreitung der Felsenmaus (Apodemus mystacinus): ZurProblematik der Inselbesiedlung und Tiergeographie in der Agais. Natur undMuseum 107, 174–182.

Storch, G., 2004. Late Pleistocene rodent dispersal in the Balkans. In: Griffiths, H.I.,Krystufek, B., Reed, J.M. (Eds.), Balkan Biodiversity – Pattern and Process in theEuropean Hotspot. Kluwer Academic Publishers Dordrecht, pp. 135–145.

Storch, G., Qiu, Zh., Zazhigin, V.S., 1998. Fossil history of shrews in Asia. In: Wojcik,J.M., Wolsan, M. (Eds.), Evolution of Shrews. Mammal Research Institute. PolishAcademy of Sciences, Bialowieza, pp. 93–120.

Szyndlar, Z., 1991a. A review of Neogene and Quaternary snakes of Central andEastern Europe. Part I: Scolecophidia, Boidae, Colubrinae. Estudios Geologicos47, 103–126.

Szyndlar, Z., 1991b. A review of Neogene and Quaternary snakes of Central andEastern Europe. Part II: Natricinae, Elapidae, Viperidae. Estudios Geologicos 47,237–266.

Tchernov, E., 1968. Succession of rodent faunas during the upper Pleistocene ofIsrael. Series Mammalia depicta 156.

Tchernov, E., 1979. Polymorphism, size trends and Pleistocene paleoclimatic re-sponse of the subgenus Sylvaemus (Mammalia, Rodentia) in Israel. IsraelianJournal of Zoology 28, 131–159.

Van de Weerd, A., 1976. Rodent faunas of the Mio-Pliocene continental sediments ofthe Teruel-Alfambra region, Spain. Utrecht Micropaleontological Bulletins,special publication 2, 1–217.

van der Meulen, A.J., 1973. Middle Pleistocene smaller mammals from the MontePeglia (Orvieto, Italy) with special reference to the phylogeny of Microtus(Arvicolidae, Rodentia). Quaternaria 17, 1–144.

van der Meulen, A.J., Zagwijn, W.H., 1974. Microtus (Allophaiomys) pliocaenicusfrom the Lower Pleistocene near Brielle, The Netherlands. Scripta Geologica21, 1–12.

van Kolfschoten, T., 1985. The Middle Pleistocene (Saalianl and Late PleistoceneWeichselian) mammal faunas from Maastricht-Belvedere, Southern Limburg(The Netherlands). Mededelingen Rijks Geologische Dienst 39, 45–74.

Woelfle, E., 1967. Vergleichend morphologische Untersuchungen an Eizelknochendes postkranialen Skeletts in Mitteleuropa vorkommender Enten, Halbganseund Sager. Dissertationen Tierartztl, Universitat Munchen (unpublished).