Mesonic correlation functions at finite temperature in the NJL model

29
Mesonic correlation functions at finite temperature in the NJL model Ricardo Farias a Advisor: G. Krein IFT - UNESP - SP FB18 August 25th, 2006 a G. Dallabona, G.Krein and O.A. Battistel

Transcript of Mesonic correlation functions at finite temperature in the NJL model

Mesonic correlation functions atfinite temperature in the NJL

modelRicardo Farias

a

Advisor: G. Krein

IFT - UNESP - SP

FB18

August 25th, 2006

aG. Dallabona, G.Krein and O.A. Battistel

OutlineMotivation

Properties of dense matter

Lattice QCD

Four-fermion models

NJL model

Scalar, pseudoscalar, vector and axial-vector couplings

Real-time finite temperature

Hadronic correlation functions

Implicit regularization scheme

Numerical Results

Comparison with lattice QCD results

Conclusions

Future applications

Mesonic correlation functions at finite temperature in the NJL model – p.1/28

Motivation

Properties of dense matter −→ diquark condensation and color superconductivity

Inapplicability of weak coupling techniques −→ densities/temperatures ofphenomenological interest

Nonperturbative lattice techniques are not yet sufficiently developed to deal withsuch problems

Phenomenological models −→ to make progress in the field.

Nonrenormalizable four-fermion interactions −→ aspects of dynamical chiralsymmetry breaking (DχSB) and high density/temperature quark matter.

Mesonic correlation functions at finite temperature in the NJL model – p.2/28

NJL model

The lagrangian of the NJL model which we will work is

L = ψ (x) (iγµ∂µ −m0)ψ (x) +GS

»

ψ (x)ψ (x)”2

+“

ψ (x) iγ5−→τ ψ (x)

”2–

− GV

»

ψ (x) γµ−→τ ψ (x)

”2+“

ψ (x) γ5γµ−→τ ψ (x)

”2–

At one loop approximation, the gap equation is given by

M = 48GMˆ

iIquad(M) − I(T )˜

where Iquad(M2) is the quadratically divergent integral

Iquad(M2) =

Z

d4k

(2π)41

k2 −M2

and I(T, µ) is the finite integral

I(T, µ) =

Z

d3k

(2π)3n(k)

E(k)and n(k) being the Fermi-Dirac distribution

Mesonic correlation functions at finite temperature in the NJL model – p.3/28

NJL model

At this one-loop approximation, besides the quadratically divergent integralIquad(M2) there appears also a logarithmically divergent integral

Ilog(M2) =

Z

d4k

(2π)41

(k2 −M2)2

The traditional approach −→ three- or four-momentum cutoff Λ

The finite integral I(T ) containing the Fermi-Dirac distributions is also cutoff

In this way leaving out the high-momentum components

Mesonic correlation functions at finite temperature in the NJL model – p.4/28

Real-time finite temperature

The self-energy satisfies the following relationsa

Re Π = Re Π11

Im Π = sech (2θp) Im Π11

where Π11 means that the polarization functions are evaluated using the (1,1)component of free-thermal fermionic propagator

iS (6k) =i

6k −m+ iε− 2π (6k +m) δ

`

k2 −m2´

n (k0)

and

sech(2θp) =1 − e−β|p0|

1 + e−β|p0|

aKobes and Semenoff, Nucl. Phys. B260, 747

Mesonic correlation functions at finite temperature in the NJL model – p.5/28

Hadronic correlation functions

The correlation functions, in Minkowski space, are defined as

Cij = i

Z

d4x e−ipx 〈T (Ji (x) Jj (0))〉β

with the currents

Ji (x) = ψα1(x) Γα1β1λiψβ1

(x)

where Γ = (1, iγ5, γµ, γµγ5, σµν) are the Dirac matrices. Here Cij

`

p2, T´

represents the full (meson ) polarization propagator in the random-phaseapproximation.

Solving the Bethe-Salpeter equation (for reviews seea)

Cσ (q) =Πσ (q)

1 − 2GSΠσ (q)

aU. Vogl and W. Weise, Prog. Part. Nucl. Phys. 27, 195 (1991), S.P. Klevansky, Rev. Mod. Phys. 64,

649 (1992), M.K. Volkov, Part. Nucl. B 24, 1 (1993) Mesonic correlation functions at finite temperature in the NJL model – p.6/28

Hadronic correlation functions

Cπ =Ππ (q) [1 + 2GV ΠA (q)] − 2q2GV Π2

πA (q)

[1 + 2GV ΠA (q)] [1 − 2GSΠπ (q)] + 4q2GSGV Π2πA (q)

Cρ =ΠB (q)

1 − 2GV ΠB (q)

−gµν +qµqν

q2

«

defining

CA (p) = CµµA (p)

CA (p) = −4`

Π(B) − Π(A)´

1 −GV

ˆ

Π(B) − Π(A)˜

+CP (p)

n

[1 −GSΠπ ] Π(B) + p2GS (ΠπA)2o

n

Ππˆ

1 +GV Π(A)˜

− p2GV (ΠπA)2o

˘

1 +GV

ˆ

Π(A) − Π(B)˜¯

Mesonic correlation functions at finite temperature in the NJL model – p.7/28

Hadronic correlation functions

where

ΠπA =Π(A)

2M

Axial polarization:

ΠµνA = gµνΠ(A) +

−gµν +pµpν

p2

«

Π(B)

and

Π(A) = Π(A)00 + Π

(A)0β + Π

(A)β0 + Π

(A)ββ

Π(B) = Π(B)00 + Π

(B)0β + Π

(B)β0 + Π

(B)ββ

Mesonic correlation functions at finite temperature in the NJL model – p.8/28

Scalar polarization function

In the case of the scalar mesons

Cσ =Πσ

1 − 2GS (T )Πσ

The imaginary part of Cσ can be written as

ImCσ =Im Πσ

(1 − 2GSRe Πσ)2 + (2GS Im Πσ)2

where

Π11σ = −i

Z

d4k

(2π)4Tr [iS (6k) iS (6k−6p)]

The free thermal propagator is

iS (6k) = iS0 (6k) + iSβ (6k)

Mesonic correlation functions at finite temperature in the NJL model – p.9/28

Scalar polarization function

where

iS0 (6k) =i

6k −m+ iε

iSβ (6k) = −2π (6k +m) δ`

k2 −m2´

n (k0)

and

n (k0) =1

eβ|k0| + 1

Then

Π11σ = −i

Z

d4k

(2π)4Tr˘ˆ

iS0 (6k) + iSβ (6k)˜ ˆ

iS0 (6k−6p) + iSβ (6k−6p)˜¯

With these definitions we may write

Π11σ = Π00 + Π0β + Πβ0 + Πββ

Mesonic correlation functions at finite temperature in the NJL model – p.10/28

Scalar polarization function

Performing trace we rewrite Π00 as

Π00 = iNcNf [Tσ (p)]

where

Tσ (p) = 4

ˆ

Iquad

`

m2´˜

+1

2

`

4m2 − p2´ ˆ

Ilog

`

m2´˜

−1

2

`

4m2 − p2´

i

16π2

«

ˆ

Z0

`

p2,m2´˜

ff

and

Z0

`

p2,m2´

= −2 +

s

1 − 4m2

p2ln

0

B

@

1 +q

1 − 4m2

p2

1 −q

1 − 4m2

p2

1

C

A

− iπ

s

1 − 4m2

p2Mesonic correlation functions at finite temperature in the NJL model – p.11/28

Scalar polarization function

The imaginary part of Π00 is

Im Π00 =NcNf

8πp2„

1 − 4m2

p2

«3

2

and the real part is

Re Π00 = 4NcNf iˆ

Iquad

`

m2´˜

+ 2NcNf

`

4m2 − p2´

Ilog

`

m2´˜

− NcNf

8π2

`

4m2 − p2´

2

6

42 −

s

1 − 4m2

p2ln

0

B

@

q

1 − 4m2

p2+ 1

1 −q

1 − 4m2

p2

1

C

A

3

7

5

Mesonic correlation functions at finite temperature in the NJL model – p.12/28

Scalar polarization function

For the Π0β contribution

Im Π0β = −NcNf

8πp2„

1 − 4m2

p2

«3

2

n“p

2

ReΠ0β =1

πPZ ∞

4M2

dq2ImΠ0β

`

q2´

q2 − p2

For the Πββ contribution

Im Πββ =NcNf

4πp2„

1 − 4m2

p2

«3

2 h

n“p

2

”i2

Mesonic correlation functions at finite temperature in the NJL model – p.13/28

Scalar polarization function

for |p| = 0 and p0 > 0

Im Πσ =NcNf

8πp20

1 − 4M2

p20

«3

2 n

1 − 2n“p0

2

”o

and

Re Πσ = Re Π00

`

p2´

+ 2Re Π0β

`

p2, T´

where

Re Π00 = 4NcNf iˆ

Iquad

`

m2´˜

+ 2NcNf

`

4m2 − p20´

Ilog

`

m2´˜

− NcNf

8π2

`

4m2 − p20´

2

6

6

4

2 −s

1 − 4m2

p20ln

0

B

B

@

r

1 − 4m2

p2

0

+ 1

1 −r

1 − 4m2

p2

0

1

C

C

A

3

7

7

5

Mesonic correlation functions at finite temperature in the NJL model – p.14/28

Implicit regularization scheme

aWe assume that each integral is regularized through an unspecified distribution

f(k/Λ), where Λ is a parameter with the dimensions of momentum such that

Iquad(M2) =

Z

d4k

(2π)4f(k/Λ)

k2 −M2

Ilog(M2) =

Z

d4k

(2π)4f(k/Λ)

(k2 −M2)2

One interesting aspect of this regularization scheme is that Iquad and Ilog respectthe scaling relations

Iquad(M2)˜

= iˆ

Iquad(M20 )˜

+`

M2 −M20

´

Ilog(M20 )˜

− 1

16π2

»

M2 −M20 −M2 ln

M2

M20

«–

Ilog`

M2´˜

= iˆ

Ilog`

M20

´˜

+1

16π2ln

M2

M20

«

aO.A. Battistel

Mesonic correlation functions at finite temperature in the NJL model – p.15/28

Implicit regularization scheme

In the vacuum part we have basic divergent objects, Iquad(M2) and Ilog(M2),which should be treated in order to make a numerical analysis. One convenientapproach is to fit them using the following results of the NJL model

Iquad(M20 )˜

= −

D

ψψE

12M0

Ilog(M20 )˜

= − f2π

12M20

where M0 = 460 MeV is a vacuum mass obtained for 〈ψψ〉 = −260MeV3 andfπ = 93 MeV .

The gap equation can be written as

M = 48GM

(

−〈ψψ〉012M0

− (M2 −M20 )

f2π

12M20

− 1

(4π)2

»

M2 −M20 −M2 log

M2

M20

«–

− I(T )

)

Mesonic correlation functions at finite temperature in the NJL model – p.16/28

Scalar polarization function

Im Πσ =NcNf

8πp20

1 − 4M2

p20

«3/2n

1 − 2n“p0

2

”o

Re Πσ = ReΠ00

`

p20´

+ 2Re Π0β

`

p20, T´

Re Π00 = −NcNf

3

D

ψψE

M0− NcNf

3

`

M2 −M20

´ f2π

M20

+NcNf

6p20

1 − 4M2

p20

«

f2π

M20

− NcNf

4π2

»

M2 −M20 −M2 ln

M2

M20

«–

− NcNf

8π2p20

1 − 4M2

p20

«

ln

M2

M20

«

+NcNf

8π2p20

1 − 4M2

p20

«

2

6

6

4

2 −s

1 − 4M2

p20ln

0

B

B

@

1 +

r

1 − 4M2

p2

0

1 −r

1 − 4M2

p2

0

1

C

C

A

3

7

7

5

Re Π0β = −NcNf

8π2PZ ∞

4M2

dq2q2

q2 − p20

1 − 4M2

q2

«3

2

n

p

q2

2

!

Mesonic correlation functions at finite temperature in the NJL model – p.17/28

Pseudoscalar polarization function

Im Ππ =NcNf

8πp20

s

1 − 4M2

p20

n

1 − 2n“p0

2

”o

Re Ππ = ReΠ00

`

p20´

+ 2Re Π0β

`

p20, T´

Re Π00 = −NcNf

3

D

ψψE

M0− NcNf

6

ˆ

2`

M2 −M20

´

− p20˜ f2

π

M20

− NcNf

4π2

»

M2 −M20 +

1

2

`

p20 − 2M2´

ln

M2

M20

«–

+NcNf

8π2p20

8

>

>

<

>

>

:

2 −s

1 − 4M2

p20ln

0

B

B

@

1 +

r

1 − 4M2

p2

0

1 −r

1 − 4M2

p2

0

1

C

C

A

9

>

>

=

>

>

;

Re Π0β = −NcNf

8π2PZ ∞

4M2

dq2qp

q2 − 4m2n

„√q2

2

«

q2 − p20

Mesonic correlation functions at finite temperature in the NJL model – p.18/28

Vector polarization function

Im Πρ =NcNf

12π(p20 + 2m2)

s

1 − 4m2

p20

n

1 − 2n“p0

2

”o

Re Πρ = Re Π00

`

p20´

+ 2Re Π0β

`

p20, T´

Re Π00 =NcNf

9p20

f2π

M20

− NcNf

12π2p20 ln

M2

M20

«

− NcNf

12π2p20

8

>

>

<

>

>

:

1

3−„

1 +2M2

p20

«

2

6

6

4

2 −s

1 − 4M2

p20ln

0

B

B

@

r

1 − 4M2

p2

0

+ 1

1 −r

1 − 4M2

p2

0

1

C

C

A

3

7

7

5

9

>

>

=

>

>

;

Re Π0β = −NcNf

12π2PZ ∞

4M2

dq2(q2+2M2)

q

p

q2 − 4M2

q2 − p20n“ q

2

Mesonic correlation functions at finite temperature in the NJL model – p.19/28

Axial polarization function

Im Π(A) =NcNf

2πM2

s

1 − 4M2

p2

h

1 − 2n“p0

2

”i

Re Π(A) =2

3NcNfM

2 f2π

M20

− NcNf

2π2M2 ln

M2

M20

«

+NcNf

2π2M2

2

6

6

4

2 −s

1 − 4M2

p20ln

0

B

B

@

1 +

r

1 − 4M2

p2

0

1 −r

1 − 4M2

p2

0

1

C

C

A

3

7

7

5

− NcNf

π2M2

Z ∞

0ds

1

s+ 4M2 − p20

×

8

<

:

s

1 − 4M2

s+ 4M2n

√s+ 4M2

2

!

−s

1 − 4M2

p20n“p0

2

9

=

;

Mesonic correlation functions at finite temperature in the NJL model – p.20/28

Axial polarization function

Im Π(B) =NcNf

12π

1 +2m2

p20

«

p20

s

1 − 4m2

p20(1 − 2n)

Re Π(B) =NcNf

9p20

f2π

M20

− NcNfp20

12π2ln

M2

M20

«

− NcNf

12π2p20

8

>

>

<

>

>

:

1

3−„

1 +2m2

p20

«

2

6

6

4

2 −s

1 − 4m2

p20ln

0

B

B

@

1 +

r

1 − 4m2

p2

0

1 −r

1 − 4m2

p2

0

1

C

C

A

3

7

7

5

9

>

>

=

>

>

;

+2

πPZ ∞

4M2

dq2ImΠ

(B)0β

`

q2´

q2 − p20

Mesonic correlation functions at finite temperature in the NJL model – p.21/28

T dependence of coupling constants

Using the model proposed By C.M. Skakin et alla

G (T ) = G0

1 − 0.3T

Tc

«

0 50 100 150 200 250 300 350 400T (MeV)

0

50

100

150

200

250

300

350

400

450

500

M (

MeV

)

G0

G(T)

aC.M. Shakin et all PRD 67, 114012 (2003) Mesonic correlation functions at finite temperature in the NJL model – p.22/28

Numerical results

Pseudoscalar spectral function

0 5 10 15 20 25ω / Τ

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,18

σ / ω

2

T/Tc = 1.5

T/Tc = 3.0

0 5 10 15 20 250.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0 5 10 15 20 250.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

ω / T

σ / ω

2

Mesonic correlation functions at finite temperature in the NJL model – p.23/28

Numerical results

Lattice results - Peter Petreczky J. Phys. G: Nucl. Part. Phys 30 (2004)S431

Mesonic correlation functions at finite temperature in the NJL model – p.24/28

Numerical results

Vector spectral function

0 5 10 15 20 25ω / Τ

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,18

σ / ω

2

T/Tc = 1.5

T/Tc = 3.0

0 5 10 15 20 250.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

σ / ω

2

ω / T

Mesonic correlation functions at finite temperature in the NJL model – p.25/28

Numerical results

Lattice results - Peter Petreczky J. Phys. G: Nucl. Part. Phys 30 (2004)S431

Mesonic correlation functions at finite temperature in the NJL model – p.26/28

Conclusions

Hadronic correlation functions −→ 0 (absence of asymptotic freedom)

With implicit regularization scheme:

we obtain results which are consistent with all chiral properties

we avoid global and gauge symmetry violations, breaking of causality andunitarity

scaling relations −→ short-distances effects −→ quark mass increases

NJL model gives good results for hadronic correlation functions at low energies

Mesonic correlation functions at finite temperature in the NJL model – p.27/28

Future applications

Momentum dependence of hadronic correlation functions (work in progressa)

consider finite three-momentum in our calculations

compare with recent lattice results

aR.L.S.Farias, G. Dallabona, G.Krein and O.A. Battistel

Mesonic correlation functions at finite temperature in the NJL model – p.28/28