LAPORAN AKHIR PENELITIAN MULTI TAHUN - SIMPel

17
Direktorat Riset dan Pengabdian Masyarakat Direktorat Jenderal Riset dan Pengembangan Kementerian Riset, Teknologi, dan Pendidikan Tinggi Gedung BPPT II Lantai 19, Jl. MH. Thamrin No. 8 Jakarta Pusat http://simlitabmas.ristekdikti.go.id/ PROTEKSI ISI LAPORAN AKHIR PENELITIAN Dilarang menyalin, menyimpan, memperbanyak sebagian atau seluruh isi laporan ini dalam bentuk apapun kecuali oleh peneliti dan pengelola administrasi penelitian LAPORAN AKHIR PENELITIAN MULTI TAHUN ID Proposal: e4aa0a37-3168-4a97-926a-f82f83723e82 Laporan Akhir Penelitian: tahun ke-2 dari 3 tahun 1. IDENTITAS PENELITIAN A. JUDUL PENELITIAN PEMANFAATAN CO2 MENJADI DIALKYL CARBONATE DENGAN SINTESA LANGSUNG MENGGUNAKAN KATALIS HOMOGEN DAN HETEROGEN B. BIDANG, TEMA, TOPIK, DAN RUMPUN BIDANG ILMU Bidang Fokus RIRN / Bidang Unggulan Perguruan Tinggi Tema Topik (jika ada) Rumpun Bidang Ilmu Energi Berkelanjutan - Integrasi Sistem Energi Terbarukan Teknik Kimia C. KATEGORI, SKEMA, SBK, TARGET TKT DAN LAMA PENELITIAN Kategori (Kompetitif Nasional/ Desentralisasi/ Penugasan) Skema Penelitian Strata (Dasar/ Terapan/ Pengembangan) SBK (Dasar, Terapan, Pengembangan) Target Akhir TKT Lama Penelitian (Tahun) Penelitian Desentralisasi Penelitian Dasar Unggulan Perguruan Tinggi SBK Riset Dasar SBK Riset Dasar 3 3 2. IDENTITAS PENGUSUL Nama, Peran Perguruan Tinggi/ Institusi Program Studi/ Bagian Bidang Tugas ID Sinta H-Index I GEDE WIBAWA Ketua Pengusul Institut Teknologi Sepuluh Nopember Teknik Kimia 6030568 8 RIZKY TETRISYANDA S.T, M.T Anggota Pengusul 1 Institut Teknologi Sepuluh Nopember Teknik Kimia 6198410 1 ANNAS WIGUNO S.T, M.T Anggota Pengusul 2 Institut Teknologi Sepuluh Nopember Teknik Kimia 6198531 1

Transcript of LAPORAN AKHIR PENELITIAN MULTI TAHUN - SIMPel

Direktorat Riset dan Pengabdian Masyarakat Direktorat Jenderal Riset dan Pengembangan Kementerian Riset Teknologi dan Pendidikan Tinggi Gedung BPPT II Lantai 19 Jl MH Thamrin No 8 Jakarta Pusat httpsimlitabmasristekdiktigoid

PROTEKSI ISI LAPORAN AKHIR PENELITIAN Dilarang menyalin menyimpan memperbanyak sebagian atau seluruh isi laporan ini dalam bentuk apapun

kecuali oleh peneliti dan pengelola administrasi penelitian

LAPORAN AKHIR PENELITIAN MULTI TAHUN

ID Proposal e4aa0a37-3168-4a97-926a-f82f83723e82Laporan Akhir Penelitian tahun ke-2 dari 3 tahun

1 IDENTITAS PENELITIAN

A JUDUL PENELITIAN

PEMANFAATAN CO2 MENJADI DIALKYL CARBONATE DENGAN SINTESA LANGSUNG MENGGUNAKAN KATALIS HOMOGEN DAN HETEROGEN

B BIDANG TEMA TOPIK DAN RUMPUN BIDANG ILMU

Bidang Fokus RIRN Bidang Unggulan Perguruan Tinggi

Tema Topik (jika ada) Rumpun Bidang Ilmu

Energi Berkelanjutan -Integrasi Sistem Energi Terbarukan

Teknik Kimia

C KATEGORI SKEMA SBK TARGET TKT DAN LAMA PENELITIAN

Kategori (Kompetitif Nasional

Desentralisasi Penugasan)

Skema Penelitian

Strata (Dasar Terapan

Pengembangan)

SBK (Dasar Terapan

Pengembangan)

Target Akhir TKT

Lama Penelitian (Tahun)

Penelitian Desentralisasi

Penelitian Dasar

Unggulan Perguruan

Tinggi

SBK Riset Dasar SBK Riset Dasar 3 3

2 IDENTITAS PENGUSUL

Nama PeranPerguruan

Tinggi Institusi

Program Studi Bagian

Bidang Tugas ID Sinta H-Index

I GEDE WIBAWA

Ketua Pengusul

Institut Teknologi Sepuluh

Nopember

Teknik Kimia 6030568 8

RIZKY TETRISYANDA

ST MT

Anggota Pengusul 1

Institut Teknologi Sepuluh

Nopember

Teknik Kimia 6198410 1

ANNAS WIGUNO ST MT

Anggota Pengusul

2

Institut Teknologi Sepuluh

Nopember

Teknik Kimia 6198531 1

3 MITRA KERJASAMA PENELITIAN (JIKA ADA)

Pelaksanaan penelitian dapat melibatkan mitra kerjasama yaitu mitra kerjasama dalam melaksanakan penelitian mitra sebagai calon pengguna hasil penelitian atau mitra investor

Mitra Nama Mitra

4 LUARAN DAN TARGET CAPAIAN

Luaran Wajib

Tahun Luaran

Jenis Luaran

Status target capaian (accepted published terdaftar

atau granted atau status lainnya)

Keterangan (url dan nama jurnal penerbit url paten

keterangan sejenis lainnya)

2 Publikasi Ilmiah Jurnal Internasional

acceptedpublished J Chem Eng Data (ACS) Indonesia Journal of Chemistry (IJC)

Luaran Tambahan

Tahun Luaran

Jenis LuaranStatus target capaian (accepted published terdaftar atau granted

atau status lainnya)

Keterangan (url dan nama jurnal penerbit url paten keterangan

sejenis lainnya)

5 ANGGARAN

Rencana anggaran biaya penelitian mengacu pada PMK yang berlaku dengan besaran minimum dan maksimum sebagaimana diatur pada buku Panduan Penelitian dan Pengabdian kepada Masyarakat Edisi 12

Total RAB 3 Tahun Rp 199000000

Tahun 1 Total Rp 0

Tahun 2 Total Rp 86000000

Jenis Pembelanjaan Item Satuan VolBiaya

SatuanTotal

Bahan ATK Paket 1 2000000 2000000

BahanBahan Penelitian (Habis Pakai)

Unit 1 34400000 34400000

Bahan Barang Persediaan Unit 1 29600000 29600000

Pelaporan Luaran Wajib dan Luaran Tambahan

Biaya seminar internasional

Paket 1 10000000 10000000

Pelaporan Luaran Wajib dan Luaran Tambahan

Publikasi artikel di Jurnal Internasional

Paket 1 10000000 10000000

Tahun 3 Total Rp 113000000

Jenis Pembelanjaan Item Satuan VolBiaya

SatuanTotal

Bahan ATK Paket 1 2000000 2000000

BahanBahan Penelitian (Habis Pakai)

Unit 1 39955000 39955000

Bahan Barang Persediaan Unit 1 31045000 31045000

Pelaporan Luaran Wajib dan Luaran Tambahan

Biaya seminar internasional

Paket 1 20000000 20000000

Jenis Pembelanjaan Item Satuan VolBiaya

SatuanTotal

Pelaporan Luaran Wajib dan Luaran Tambahan

Publikasi artikel di Jurnal Internasional

Paket 1 20000000 20000000

6 HASIL PENELITIAN

A RINGKASAN Tuliskan secara ringkas latar belakang penelitian tujuan dan tahapan metode penelitian luaran yang ditargetkan serta uraian TKT penelitian

Karbon dioksida (CO2) merupakan salah satu gas yang diketahui sebagai sumber utama dari efek pemanasan global Hal ini juga berakibat langsung pada peningkatan jumlah dari materi partikulat dan senyawa karbon di udara Senyawa CO2 berpotensi untuk menjadi bahan baku produksi senyawa bernilai ekonomi seperti dialkyl carbonate Dialkyl carbonate memiliki manfaat salah satunya adalah sebagai zat aditif pada bahan bakar untuk mengurangi emisi dari partikulat dan senyawa karbon Sehingga dengan konsep pemanfaatan zat emisi yang dihasilkan oleh industri penghasil energi dapat diperoleh zat digunakan sebagai bahan tambahan agar bahan bakar berbasis fosil dapat menjadi lebih sempurna Dengan kata lain tidak hanya mengurangi emisi karbon dari sektor perindustrian tetapi jadi dari sektor penggunaan bahan bakar tersebut Penelitian ini bertujuan untuk memanfaatkan zat emisi karbon dioksida menjadi zat bernilai ekonomi dialkyl carbonate melalui reaksi langsung bersama alkohol menggunakan katalis homogen dan heterogen Skema dari penelitian ini dimulai dari data literatur studi menganai pemanfaatan CO2 menajdi bahan baku dialkyl carbonate Studi dilajutkan dengan menganalisa efek dari berbagai jenis reaktan baik alkohol dan agen pendehidrasi untuk mendapatkan mekanisme reaksi sintesa Setelah terbentuk pola sintesa maka dilakukan pengamatan mengenai pengaruh jenis katalis terhadap performa sintesa berupa yield konversi dan selektivitas katalis yang kemudian data tersebut digunakan untuk optimasi kondisi operasi Dari hasil penelitian ini diharapkan dapat menghasilkan yield produk dialkyl carbonate khususnya Diethyl carbonate dan Dimethyl Carbonate yang tinggi sehingga terlihat adanya potensi yang tinggi juga dalam pemanfaatan CO2 sebagai bahan baku sintesis dialkyl carbonate dan rute mekanisme reaksi terbaik untuk melakukan sintesa dialkyl carbonate Konsep pemanfaatan CO2 menjadi bahan baku pembuatan senyawa lain merupakan studi yang telah banyak dilakukan oleh berbagai peneliti Penelitian ini adalah dalam bentuk TKT tingkat 3 dimana pembuktian konsep atau karakteristik sintesa dialkyl carbonate perlu dianalisa secara eksperimental Luaran utama yang ditargetkan dalam penelitian ini adalah jurnal internasional terindeks scopus seperti J Chem Eng Data (ACS) Indonesia Journal of Chemistry (IJC) dan lain sebagainya Dari hasil penelitian ini dapat diketahui bahwa penggunaan KI-Zeolite dalam sintesis Dimethyl Carbonate dengan raw material berupa CO2 methanol dan agen pendehidrasi propylene oxide menghasilkan yield DMC tertinggi yaitu sebesar 3471 dengan waktu reaksi selama 2 jamSedangkan pada sintesis DMC menggunakan butylene oxide dan katalis KIEtONa didapatkan yield tertinggi yaitu sebesar 3684 dengan waktu reaksi selama 4 jam Berdasarkan sintesis DEC dengan menggunakan epoksida propylene oxide pada eksperimen sebelumnya juga dapat diketahui bahwa penggunaan zeolite sebagai katalis juga memiliki hasil yield DEC yang lebih tinggi Sedangkan berdasarkan hasil sintesis DMC dengan menggunakan katalis KIEtONa menggunakan agen pendehidrasi butylene oxide didapatkan hasil yield tertinggi dengan waktu reaksi yang lebih lama dibandingkan dengan penggunaan katalis KIZeolite pada sintesis DMC menggunakan propylene oxide Selain itu karena harganya yang lebih murah maka Zeolite disini dapat disimpulkan berpotensi digunakan sebagai pengganti katalis EtONa

B KATA KUNCI Tuliskan maksimal 5 kata kunci

Karbondioksida Dimethyl Carbonate Sintesis Katalis

Pengisian poin C sampai dengan poin H mengikuti template berikut dan tidak dibatasi jumlah kata atau halaman namun disarankan seringkas mungkin Dilarang menghapusmemodifikasi template ataupun menghapus penjelasan di setiap poin

C HASIL PELAKSANAAN PENELITIAN Tuliskan secara ringkas hasil pelaksanaan penelitian yang telah dicapai sesuai tahun pelaksanaan penelitian Penyajian dapat berupa data hasil analisis dan capaian luaran (wajib dan atau tambahan) Seluruh hasil atau capaian yang dilaporkan harus berkaitan dengan tahapan pelaksanaan penelitian sebagaimana direncanakan pada proposal Penyajian data dapat berupa gambar tabel grafik dan sejenisnya serta analisis didukung dengan sumber pustaka primer yang relevan dan terkini

Pengisian poin C sampai dengan poin H mengikuti template berikut dan tidak dibatasi jumlah kata atau halaman namun disarankan seringkas mungkin Dilarang menghapusmemodifikasi template ataupun menghapus penjelasan di setiap poin

Sumber energi berbasis fosil (minyak bumi gas alam dan batu bara) merupakan sumber

energi utama yang digunakan sebagian besar masyarakat Indonesia Dalam perkembangannya

konsumi sumber energi berbasis fosil akan semakin meningkat pada beberapa tahun kedepan

[1] Akan tetapi sumber daya energi berbasis fosil dikenal sebagai emitor karbon utama Hal

ini menunjukkan bahwa saat ini industri minyak bumi gas alam dan batu bara memiliki

tanggung jawab dan tantangan nyata dalam pemenuhan kebutuhan energi mendatang dengan

menghadapi dampak dan isu lingkungan

Alternatif yang dapat dilakukan adalah dengan memberikan nilai tambah pada karbon yaitu

dengan pemanfaatan karbon dioksida (CO2) sehingga industri energi berbasis fosil akan

menjadi lebih ramah lingkungan dan tetap memenuhi kebutuhan energi nasional Pemanfaatan

CO2 yang dihasilkan dari pembakaran atau pengolahan sumber energi berbasis fosil dapat

dilakukan dengan mengkonversi CO2 menjadi berbagai macam produk kimia yang bernilai

ekonomi Sebagai contoh adalah dry reforming CH4 dengan CO2 untuk memproduksi syngas

transformasi CO2 menjadi cyclic carbonates melalui cycloaddition oxidative carboxylation

olefin dengan CO2 sintesis metanol dari CO2 dan H2 serta masih banyak lainnya Dari berbagai

macam metode tersebut sintesa karbonat organik dari alkohol dan CO2 memiliki daya tarik

yang tinggi karena produk komersial yang dihasilkan bernilai tinggi dan banyak digunakan

pada berbagai industri

Organic carbonate merupakan salah satu bahan kimia alami yang sangat penting di abad ini

Karena karakteristiknya seperti polaritas ramah lingkungan dan tidak beracun organic

carbonate ini berpotensi untuk menggantikan bahan kimia yang berbahaya Selain ituSintesa

organic carbonate membantu dalam proses mitigasi dan penggunaan CO2 seperti senyawa

dialkyl carbonate khususnya Diethyl Carbonate dan Dimethyl Carbonate Senyawa DEC dan

DMC yang disintesis dalam eksperimen ini merupakan senyawa organic carbonate yang paling

penting DEC dan DMC ini merupakan zat aditif terbarukan yang dapat ditambahkan ke bahan

bakar untuk meningkatkan pembakaran dan mengurangi emisi gas buang [2]

Dari uraian diatas dapat diamati bahwa produksi DEC dan DMC dengan pemanfaatan CO2

menjadi produk yang bernilai ekonomi merupakan proses yang menarik CO2 merupakan salah

satu permasalahan yang timbul akibat peningkatan konsumsi energi Hal ini dikarenakan

peningkatannya yang sangat besar di bumi memiliki tanggung jawab atas fenomena gas rumah

kaca yang terjadi Namun berdasarkan beberapa penelitian CO2 dapat dimanfaatkan untuk

menghasilkan bahan kimia lainnya seperti DEC dan DMC dimana bahan ini biasa digunakan

sebagai zat aditif dalam bahan bakar yang lebih aman dan ramah lingkungan

Menurut berbagai penelitian yang pernah dilakukan DEC dan DMCdapat disintesa

dengan berbagai bahan baku serta metode Pertama DEC dapat disintesa dari urea[3ndash5]CO[6-

10] DMC[11] Ethyl Carbamate[12ndash15] ethylene carbonate[16] Selain itu DEC dan DMC

juga pernah dilaporkan dalam bebrapa penelitian bahwa senyawa ini dapat dihasilkan dari

bahan baku CO2[21ndash26]

Akan tetapi dalam sejarah penelitian yang telah ada dengan berbagai metode khususnya

untuk sintesa langsung kondisi operasi dan katalis yang digunakan tersebut masih belum

menunjukkan hasil yang maksimal Sehingga dalam penelitian ini telah dilakukan sintesis

C HASIL PELAKSANAAN PENELITIAN Tuliskan secara ringkas hasil pelaksanaan penelitian yang telah dicapai sesuai tahun pelaksanaan penelitian Penyajian dapat berupa data hasil analisis dan capaian luaran (wajib dan atau tambahan) Seluruh hasil atau capaian yang dilaporkan harus berkaitan dengan tahapan pelaksanaan penelitian sebagaimana direncanakan pada proposal Penyajian data dapat berupa gambar tabel grafik dan sejenisnya serta analisis didukung dengan sumber pustaka primer yang relevan dan terkini

DEC dan DMC dari CO2 menggunakan metode sintesa langsung dan katalis homogen dan

heterogen Sehingga hasil dari penelitian ini dapat dijadikan sebagai acuan dalam pemanfaatan

zat emisi karbon dioksida menjadi zat bernilai ekonomi DEC ataupun DMC melalui reaksi

langsung bersama etanol menggunakan katalis homogen dan heterogen

Setelah didapatkan hasil sebelumnya pada sintesis DEC pada eksperimen ini juga

dilakukan sintesis DMC dengan menggunakan metode kondisi operasi yang sama dan

bahan baku berupa CO2 agar dapat dibandingkan apakah metode dan kondisi operasi yang

sama yang diterapkan pada sintesis DEC sebelumnya juga dapat diaplikasikan untuk

sintesis DMC

Pada eksperimen sintesis dimethyl carbonate (DMC) didapatkan data yang diamati

secara langsung yaitu berupa waktu suhu dan tekanan Waktu suhu dan tekanan ini diamati

selama jalannya proses sintesis untuk memastikan adanya kebocoran pada reaktor serta

kestabilan suhu reaktor selama eksperimen Berikut ini pada Tabel 1 merupakan data waktu

suhu dan tekanan rata-rata yang didapatkan pada setiap eksperimen sintesis dimethyl

carbonate

Tabel 1 Data waktu suhu dan tekanan rata-rata pada setiap eksperimen sintesis dimethyl

carbonate

Waktu (menit) Suhu (oC) Tekanan (bar)

0 169 40

30 169 40

60 169 40

90 167 40

120 167 40

150 169 40

180 170 40

210 170 40

240 168 40

270 170 40

300 169 40

Kemudian setelah dilakukan eksperimen sintesis DMC ini produk yang dihasilkan

dianalisa secara kualitatif menggunakan GC-MS dan secara kuantitatif menggunakan GC

Hasil analisa kualitatif menggunakan GC-MS pada sintesis DMC dari CO2 menggunakan agen

pendehidrasi senyawa epoksida berupa propylene oxide menghasilkan beberapa senyawa yang

terkandung dalam produknya diantaranya yaitu DMC Propylene carbonate dan Propylene

Glycol Sedangkan hasil analisa kualitatif menggunakan GC-MS pada sintesis DMC dari CO2

menggunakan agen pendehidrasi senyawa epoksida berupa butylene oxide menghasilkan

beberapa senyawa yang terkandung dalam produknya diantaranya yaitu DMC Butylene

carbonate dan Butylene glycol Hal ini telah sesuai dengan reaksi kimia dari sintesis DMC

pada literature dimana DMC merupakan produk utama dari sintesis Propylene carbonate atau

Butylene carbonate yang merupakan produk tengahnya dan Propylene Glycol atau Butylene

glycol yang merupakan produk sampingnya[26]

Selain dilakukan analisa secara kualitatif Produk DMC ini juga dilakukan analisa

secara kuantitatif menggunakan GC Berikut ini pada Tabel 2 dipaparkan mengenai hasil

analisa kuantitatif dari sintesis DMC dari CO2 yang direaksikan dengan methanol epoksida

berupa propylene oxide atau butylene oxide serta katalis homogen dan katalis heterogen

Jenis

Epoksida

Waktu reaksi

(jam) Katalis

Yield

DMC

()

Konversi

Reaksi ()

Propylene

Oxide

1

KI-EtONa

1051 1051

2 1999 1999

3 2683 2683

4 2681 2681

5 2852 2852

1

KI-Zeolite

892 893

2 3471 3471

3 2338 2338

4 1586 1586

5 1419 1419

Butylene

Oxide

1

KI-EtONa

1377 1377

2 2206 2206

3 2426 2426

4 3684 3684

5 2159 2159

Dari hasil penelitian dapat diketahui bahwa penggunaan KI-Zeolite dalam sintesis

Dimethyl Carbonate menggunakan agen pendehidrasi propylene oxide dan katalis KIZeolite

menghasilkan yield DMC tertinggi yaitu sebesar 3471 dengan waktu reaksi selama 2 jam

Sedangkan untuk sintesis DMC menggunakan agen pendehidrasi butylene oxide dan katalis

KIEtONa menghasilkan yield DMC tertinggi sebesar 3684 dengan waktu reaksi sebesar 4

jam Berdasarkan hasil eksperimen sintesis DMC menggunakan katalis propylene oxide disini

Kemudian berdasarkan sintesis DEC dengan menggunakan epoksida propylene oxide pada

eksperimen sebelumnya juga dapat diketahui bahwa penggunaan zeolite juga memiliki hasil

yield DEC yang lebih tinggi Selain itu berdasarkan hasil eksperimen sintesis DMC

menggunakan agen pendehidrasi berupa butylene oxide dan katalis KIEtONa yield tertinggi

didapatkan dengan waktu reaksi yang lebih lama dibandingkan dengan hasil sintesis DMC

yang menggunakan katalis KIZeolite Sehingga penggunaan Zeolite membuktikan bahwa

bahan ini berpotensi untuk digunakan sebagai pengganti katalis EtONa karena harganya yang

jauh lebih murah

Berdasarkan dari hasil penelitian ini telah di dapatkan beberapa luaran wajib dan tambahan diantaranya

yaitu untuk luaran wajib yang telah dicapai adalah berupa jurnal internasional yang berjudul ldquoVapor

Pressure of 2-Butanol+Diethyl Carbonate and tert-Butanol + Diethyl Carbonate at The

Temperature 30315-32315Krdquo yang telah dipublikasikan di Journal of Chemical amp

Engineering Data pada tahun 2020 dan draft manuscript yang berjudul ldquoCatalytic Synthesis of

Diethyl Carbonate from Carbon dioxide and Ethanol as Raw Material using KISodium

Ethoxide and KIMolecular Sieve as Catalystrdquo dimana nantinya akan disubmit pada chemical

engineering journal Sedangkan untuk luaran tambahan yang telah dicapai adalah berupa Manuscript

dengan judul ldquoThe Effect of Temperature Reaction in Catalytic Synthesis of Diethyl Carbonate

via One Pot Reactionrdquo yang akan diseminarkan pada 4th International Conference on Chemical

amp Material Engineering (ICCME 2020) yang akan diselenggarakan pada 6-7 Oktober 2020

melalui Video Meeting via ZOOM

D STATUS LUARAN Tuliskan jenis identitas dan status ketercapaian setiap luaran wajib dan luaran tambahan (jika ada) yang dijanjikan pada tahun pelaksanaan penelitian Jenis luaran dapat berupa publikasi perolehan kekayaan intelektual hasil pengujian atau luaran lainnya yang telah dijanjikan pada proposal Uraian status luaran harus didukung dengan bukti kemajuan ketercapaian luaran sesuai dengan luaran yang dijanjikan Lengkapi isian jenis luaran yang dijanjikan serta mengunggah bukti dokumen ketercapaian luaran wajib dan luaran tambahan melalui Simlitabmas mengikuti format sebagaimana terlihat pada bagian isian luaran

Untuk luaran wajib ada dua yaitu

1 Jurnal internasional yang berjudul ldquoVapor Pressure of 2-Butanol + Diethyl Carbonate

and tert-Butanol + Diethyl Carbonate at The Temperature 30315-32315Krdquo yang telah

dipublikasikan di Journal of Chemical amp Engineering Data pada tahun 2020 (Status

Published)

2 Manuscript yang berjudul ldquoCatalytic Synthesis of Diethyl Carbonate from Carbon

dioxide and Ethanol as Raw Material using KISodium Ethoxide and KIMolecular

Sieve as Catalystrdquo dimana nantinya akan disubmit pada chemical engineering journal

(Status Draft)

Sedangkan untuk luaran tambahan yaitu

Manuscript dengan judul ldquoThe Effect of Temperature Reaction in Catalytic Synthesis of

Diethyl Carbonate via One Pot Reactionrdquo yang akan diseminarkan pada 4th International

Conference on Chemical amp Material Engineering (ICCME 2020) yang akan diselenggarakan

pada 6-7 Oktober 2020 melalui Video Meeting via ZOOM

E PERAN MITRA Tuliskan realisasi kerjasama dan kontribusi Mitra baik in-kind maupun in-cash (jika ada) Bukti pendukung realisasi kerjasama dan realisasi kontribusi mitra dilaporkan sesuai dengan kondisi yang sebenarnya Bukti dokumen realisasi kerjasama dengan Mitra diunggah melalui Simlitabmas mengikuti format sebagaimana terlihat pada bagian isian mitra

F KENDALA PELAKSANAAN PENELITIAN Tuliskan kesulitan atau hambatan yang dihadapi selama melakukan penelitian dan mencapai luaran yang dijanjikan termasuk penjelasan jika pelaksanaan penelitian dan luaran penelitian tidak sesuai dengan yang direncanakan atau dijanjikan

Kendala pada pelaksanaan penelitian ini berada pada sulitnya menjaga kondisi reaktan yang

ada pada reaktor karena adanya faktor kesalahan teknis dalam menutup reaktor sehingga ada

kebocoran sedikit pada reaktor yang menyebabkan prosedur eksperimen harus diulangi

kembali sedangkan hambatan yang dihadapi selama melakukan penelitian adalah supplay

listrik yang tidak menentu pada saat pelaksanaan eksperimen menghasilkan supplay panas pada

electrical heater yang berbeda-beda setiap waktunya sehingga suhu reaktor sangat sulit untuk

dikendalikan Selain itu pada masa pandemic ini juga ada hambatan pada waktu penelitian

yang sangat terbatas sehingga pengerjaan penelitian juga menjadi terhambat

G RENCANA TINDAK LANJUT PENELITIAN Tuliskan dan uraikan rencana tindaklanjut penelitian selanjutnya dengan melihat hasil penelitian yang telah diperoleh Jika ada target yang belum diselesaikan pada akhir tahun pelaksanaan penelitian pada bagian ini dapat dituliskan rencana penyelesaian target yang belum tercapai tersebut

Penelitian selanjutnya akan difokuskan untuk sintesis Dimethyl Carbonate dengan agen

pendehidrasi berupa butylene oxide dan jenis katalis yang berbeda dan eksperimen

kesetimbangan uap-cair antar komponennya yang ada di produk

H DAFTAR PUSTAKA Penyusunan Daftar Pustaka berdasarkan sistem nomor sesuai dengan urutan pengutipan Hanya pustaka yang disitasi pada laporan akhir yang dicantumkan dalam Daftar Pustaka

1 Hanpattanakit P Pimonsree L Jamnongchob A Boonpoke A 2018 CO2 Emission

and Reduction of Tourist Transportation at Kok Mak Island Thailand Chemical

Engineering Transactions 63 37-42

2 K Shukla and V C Srivastava ldquoRSC Advances Diethyl carbonate  critical review of

synthesis routes catalysts used and engineering aspectsrdquo RSC Adv vol 6 pp 32624ndash

32645 201

3 D Wang B Yang X Zhai L Zhou Synthesis of diethyl carbonate by catalytic alcoholysis of urea 88 (2007) 807ndash812 doi101016jfuproc200704003

4 S Xin L Wang H Li K Huang F Li Synthesis of diethyl carbonate from urea and ethanol over lanthanum oxide as a heterogeneous basic catalyst Fuel Process Technol 126 (2014) 453ndash459 doi101016jfuproc201405029

5 K Shukla VC Srivastava Diethyl carbonate synthesis by ethanolysis of urea using Ce-Zn oxide catalysts Fuel Process Technol 161 (2017) 116ndash124 doi101016jfuproc201703004

6 P Zhang S Wang S Chen Z Zhang X Ma The effects of promoters over PdCl 2 -CuCl 2 HMS catalysts for the synthesis of diethyl carbonate by oxidative carbonylation of ethanol 143 (2008) 220ndash224 doi101016jcej200804008

7 DN Briggs G Bong E Leong K Oei G Lestari AT Bell Effects of support composition and pretreatment on the activity and selectivity of carbon-supported PdCu n Cl x catalysts for the synthesis of diethyl carbonate J Catal 276 (2010) 215ndash228 doi101016jjcat201008004

8 P Zhang X Ma Catalytic synthesis of diethyl carbonate by oxidative carbonylation of ethanol over PdCl 2 Cu-HMS catalyst Chem Eng J 163 (2010) 93ndash97 doi101016jcej201007025

9 D Zhu F Mei L Chen W Mo T Li G Li An efficient catalyst Co ( salophen ) for synthesis of diethyl carbonate by oxidative carbonylation of ethanol Fuel 90 (2011) 2098ndash2102 doi101016jfuel201102023

10 P Zhang Y Zhou M Fan P Jiang Catalytic synthesis of diethyl carbonate with supported Pd ‐ Cu bimetallic nanoparticle catalysts  Cu ( I ) as the active species Chinese J Catal 36 (2015) 2036ndash2043 doi101016S1872-2067(15)60973-1

11 C Murugan HC Bajaj Synthesis of diethyl carbonate from dimethyl carbonate and ethanol using KF Al 2 O 3 as an ef fi cient solid base catalyst Fuel Process Technol 92 (2011) 77ndash82 doi101016jfuproc201008023

12 GUO Lian Z Xinqiang AN Hualiang W Yanji Catalysis by Lead Oxide for Diethyl Carbonate Synthesis from Ethyl Carbamate and Ethanol Chinese J Catal 33 (2012) 595ndash600 doi101016S1872-2067(11)60373-2

13 H An X Zhao L Guo C Jia B Yuan Y Wang Applied Catalysis A  General Synthesis of diethyl carbonate from ethyl carbamate and ethanol over ZnO-PbO catalyst Applied Catal A Gen 433ndash434 (2012) 229ndash235 doi101016japcata201205023

14 L Wang H Li S Xin F Li Generation of solid base catalyst from waste slag for the ef fi cient synthesis of diethyl carbonate from ethyl carbamate and ethanol CATCOM 50 (2014) 49ndash53 doi101016jcatcom201402028

15 L Zhao Z Hou C Liu Y Wang L Dai Original article A catalyst-free novel synthesis of diethyl carbonate from ethyl carbamate in supercritical ethanol Chinese Chem Lett 25 (2014) 1395ndash1398 doi101016jcclet201405012

16 H Iida R Kawaguchi K Okumura Production of diethyl carbonate from ethylene carbonate and ethanol over supported fl uoro-perovskite catalysts Intensity cps Catal Commun 108 (2018) 7ndash11 doi101016jcatcom201801019

17 F Gasc S Thiebaud-roux Z Mouloungui The Journal of Supercritical Fluids Methods for synthesizing diethyl carbonate from ethanol and supercritical carbon dioxide by one-pot or two-step reactions in the presence of potassium carbonate 50 (2009) 46ndash53 doi101016jsupflu200903008

18 E Leino P Maumlki-arvela K Eraumlnen M Tenho D Yu T Salmi J Mikkola Enhanced yields of diethyl carbonate via one-pot synthesis from ethanol carbon dioxide and butylene oxide over cerium ( IV ) oxide Chem Eng J 176ndash177 (2011) 124ndash133 doi101016jcej201107054

19 E Leino P Maumlki-arvela V Eta N Kumar F Demoisson A Samikannu A Leino A Shchukarev D Yu J Mikkola The influence of various synthesis methods on the catalytic activity of cerium oxide in one-pot synthesis of diethyl carbonate starting from CO 2 ethanol and butylene oxide Catal Today 210 (2013) 47ndash54 doi101016jcattod201302011

20 E Leino N Kumar P Maumlki-arvela A Aho K Kordaacutes In fl uence of the synthesis parameters on the physico-chemical and catalytic properties of cerium oxide for application in the synthesis of diethyl carbonate Mater Chem Phys 143 (2013) 65ndash75 doi101016jmatchemphys201308012

21 L Wang H Li S Xin P He Y Cao F Li X Hou Applied Catalysis A  General Highly efficient synthesis of diethyl carbonate via one-pot reaction from carbon dioxide epoxides and ethanol over KI-based binary catalyst system Applied Catal A Gen 471 (2014) 19ndash27 doi101016japcata201311031

22 E Leino N Kumar P Maumlki-arvela A Rautio J Dahl J Roine J-P Mikkola Synthesis and characterization of ceria-supported catalysts for carbon dioxide transformation to diethyl carbonate Catal Today (2017) 1ndash10 doi101016jcattod201701016

23 W Yanlou J Dongdong Z Zhen S Yongyue Synthesis of Diethyl Carbonate from Carbon Dioxide Catal MDPI (2016) doi103390catal6040052

24 L Wang M Ammar P He Y Li Y Cao F Li X Han H Li The efficient synthesis of diethyl carbonate via coupling reaction from propylene oxide CO 2 and ethanol over binary PVEImBr MgO catalyst Catal Today 281 (2017) 360ndash370 doi101016jcattod201602052

25 H Hattori HeterogeneousBasicCatalysispdf (1995)

26 Fan Bin Bo Qu Q Chen Y Wen L Cai R Zhang An improved one-pot synthesis of dimethyl carbonate from propylene oxide CO2 and methanol Journal of Chemical Research (2011) 654-656

Dokumen pendukung luaran Wajib 1

Luaran dijanjikan Publikasi Ilmiah Jurnal Internasional

Target acceptedpublished

Dicapai Published

Dokumen wajib diunggah

1 Artikel yang terbit

Dokumen sudah diunggah

1 Artikel yang terbit

Dokumen belum diunggah

- Sudah lengkap

Nama jurnal Journal of Chemical amp Engineering Data

Peran penulis corresponding author | EISSN 00219568 15205134

Nama Lembaga Pengindek scopus

URL jurnal httpspubsacsorgdoi101021acsjced9b01079

Judul artikel Vapor Pressure of 2-Butanol + Diethyl Carbonate and tert-Butanol +

Diethyl Carbonate at The Temperature 30315-32315K

Tahun 2020 | Volume 65 | Nomor 5

Halaman awal 2441 | akhir 2445

URL artikel httpspubsacsorgdoi101021acsjced9b01079

DOI httpsdoiorg101021acsjced9b01079

Vapor Pressure of 2‑Butanol + Diethyl Carbonate and tert-Butanol +Diethyl Carbonate at the Temperature of 30315minus32315 KAnnas Wiguno Rizky Tetrisyanda and Gede Wibawa

Cite This J Chem Eng Data 2020 65 2441minus2445 Read Online

ACCESS Metrics amp More Article Recommendations

ABSTRACT In this work the vapor pressure of binary mixtures of 2-butanol +diethyl carbonate and tert-butanol + diethyl carbonate was measured in thetemperature range from 30315 to 32315 K The experimental apparatus used inthis work was a simple quasi-static ebulliometer developed in our previous works Thereliability of this apparatus was verified by comparing the measured vapor pressures of2-butanveol tert-butanol and diethyl carbonate with literature data The comparisonsshowed that the vapor pressures of pure 2-butanol tert-butanol and diethyl carbonatewere in good agreement with the literature data with average absolute deviations of 0606 and 08 respectively The experimental results show that the vapor pressuresincreased with the alcohol mole fraction for all systems studied The experimental datawere well-correlated with the Wilson nonrandom two-liquid and universal quasi-chemical activity coefficient models giving an average absolute deviation of no morethan 19 The binary vaporminusliquid equilibrium data obtained in this work showed apositive deviation from Raoultrsquos law

1 INTRODUCTION

Ethanol is commonly used in gasoline blends because of itshigh octane number and oxygen number as well as itscapability to accelerate flame propagation However theaddition of ethanol to isooctane at a mole fraction of 01was found to elevate the vapor pressure12 A higher vaporpressure of gasoline mixtures causes increased emissions andthe potential for vapor lock in the engine On other handlonger-chain alcohols such as 2-butanol and tert-butanol havelower vapor pressures and higher heating values and theirproperties are closer to gasoline than to ethanol3 Butanol hasbeen used as a mixture in engines without any significantengine changes4 Butanol may be produced from renewableresources as well for example from lignocellulose the mostplentiful renewable material5 The combustion of a butanolminusgasoline mixture produces a high temperature because of itshigh heating value and low vaporization rate Therefore 2-butanoltert-butanol are expected to be able to be used asgasoline additives that are alternatives to ethanol The octanenumber of butanol is lower than that of ethanol and thus theaddition of an octane booster is required Diethyl carbonate(DEC) is such an octane booster The addition of 5 wt ofdiethyl carbonate (DEC) into diesel fuel can decrease theemissions by up to 50 due to its higher oxygen content of406 wt6 DEC is a nontoxic chemical that is degradable andable to be decomposed gradually into CO2 and ethanol whichare environmentally friendly78 Although methyl tert-butylether (MTBE) has been successfully applied in gasoline blendsas it is nonbiodegradable it has contributed to groundwater

contamination9 Thus DEC is a potential candidate to replaceMTBETo design the blend of gasoline + 2-butanoltert-butanol +

DEC the vapor pressure data of the binary system of 2-butanoltert-butanol + DEC are required Studies on the vaporpressure of mixtures including diethyl carbonate have beenconducted by many researchers Rodriguez et al10 examinedthe vapor pressure for the binary systems of diethyl carbonatewith five alcohols (methanol ethanol 1-propanol 1-butanoland 1-pentanol) at a pressure of 1013 kPa and temperatures of35173minus39602 K Octavian et al1 measured the vaporpressure of the ethanol + isooctane and 1-butanol + isooctanesystems using a new ebulliometer Ho et al11 examined thevapor pressure of binary mixtures containing diethyl carbonatephenyl acetate diphenyl carbonate or ethyl acetate at 3732minus4532 K Jeremy et al12 conducted experiments on the vaporliquid equilibrium of a binary mixture of 2-propanone + 2-butanol at 33315 and 35315 K and 2-propanone + propanoicacid at 33315 35315 and 37315 K Anugraha et al13

measured the vapor pressure of binary mixtures of diethylcarbonate + isooctanen-heptanetoluene To our knowledge

Received November 14 2019Accepted March 30 2020Published April 3 2020

Articlepubsacsorgjced

copy 2020 American Chemical Society2441

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

Dow

nloa

ded

via

UPP

SAL

A U

NIV

on

June

21

202

0 at

00

502

1 (U

TC

)Se

e ht

tps

pub

sac

sor

gsh

arin

ggui

delin

es f

or o

ptio

ns o

n ho

w to

legi

timat

ely

shar

e pu

blis

hed

artic

les

vaporminusliquid equilibrium (VLE) data of 2-butanoltert-butanol+ DEC at low temperatures are unavailable in the availableliterature Therefore the aim of this study is to determine theisothermal VLE of 2-butanoltert-butanol + DEC at 30315minus32315 K In addition the experimental data were correlatedwith the Wilson14 nonrandom two-liquid (NRTL)15 anduniversal quasi-chemical (UNIQUAC)16 models

2 EXPERIMENTAL SECTION21 Materials The chemicals used in this experiment were

2-butanol tert-butanol and DEC All chemicals were usedwithout any additional purification The compound details arelisted in Table 1

22 Apparatus and Procedures The apparatus used inthis study is a simple static ebulliometer The ebulliometerused was an apparatus developed by Oktavian et al1 andrevalidated by Wibawa et al17 Wiguno et al18 and Anugrahaet al13 to ensure that the initial composition has not changedsignificantly when the equilibrium condition is achieved Thedetailed apparatus was shown in our previous publication1

The equipmentrsquos main parts are the ebulliometer cellcondenser and some auxiliaries such as a vacuum pump(VALUE VG140) for eliminating the gas impurities from theebulliometer magnetic stirrer temperature controller andindicator (AUTONICS TC4S) RTD Pt 100 thermocouplewith an accuracy of plusmn01 K pressure gauge (AUTONICSPSAN) with an accuracy of plusmn01 kPa and ambient pressuregauge (Lutron MHB 382SD)The experimental procedure was described in detail in the

previous work19 Initially each pure componentrsquos vaporpressure was measured by charging the pure component intothe equilibrium cell and vacuum conditions were created byturning on the vacuum pump The pressure at each desiredtemperature was recorded as the vapor pressure The vaporpressure data for the two binary systems ie 2-butanol + DECand tert-butanol + DEC were obtained by the followingprocedure The experiment was begun by introducing 225 mLof a mixture having a known composition into the ebulliometercell Cooling water was circulated in the condenser and thenthe magnetic stirrer was switched on to stir the solution to mixevenly After that the vacuum pressure was created in theequilibrium cell by turning on the vacuum pump The heatingsystem was then lit to heat the solution according to thedesired temperature This heating causes some of the liquid toevaporate The temperature and pressure in the system areshown by temperature indicator and pressure gaugerespectively The pressure is recorded when the temperaturereaches a constant value The apparatus was validated bycomparing the measured pure vapor pressures of 2-butanoltert-butanol and DEC with literature data calculated using theWagner and Antoine equations with parameter constantsobtained from Poling et al20 and Luo et al21 respectively

Based on this experiment the data obtained are the molefractions of component i in the liquid phase (xi) theequilibrium pressure (P) and the temperature (T) Theexperimental data are correlated with 3 activity coefficientmodels ie the Wilson NRTL and UNIQUAC equationsand the binary interaction parameter pairs of each equationwere optimized using the experimental data obtained in thiswork

3 RESULTS AND DISCUSSION31 Reliability of Apparatus The validity of the

experimental apparatus was checked by comparing theexperimental pure vapor pressures of 2-butanol tert-butanoland DEC with the literature pure vapor pressures of 2-butanoland tert-butanol calculated from the Wagner equation(equation 1) and that of DEC calculated from the Antoineequation (equation 2) The parameter constants of the Wagnerand Antoine equations are listed in Tables 2 and 3respectively

Pa b c d

Tln (kPa)

15 25 5

r

τ τ τ τ= + + +(1)

P AB

T Clog (kPa)

(K)10 = minus+ (2)

where τ = 1 minus Tr and Tr = TTc

A comparison between the experimental data and literaturedata obtained from the Wagner or Antoine equations arepresented in Table 4 and the average absolute deviation

Table 1 Pure Chemicals Description and Properties

component supplier CAS reg noMWa

(gmol) purityb

2-butanol Merck Germany 78minus92minus2 7412 09900tert-butanol Merck Germany 75minus65minus0 7412 09950diethylcarbonate

Wuhan FortunaChemical Co China

105minus58minus8 11813 09992

aMW = molecular weight bPurity from supplier in mass fraction

Table 2 Wagner Parameter of 2-Butanol and tert-Butanol20

component a b c d

2-butanol minus80982 164406 minus749 minus52735tert-butanol minus84792 247845 minus9279 minus25399

Table 3 Antoine Parameter of DEC21

component A B C

DEC 5883 122377 minus84304

Table 4 Vapor Pressures of 2-Butanol tert-Butanol andDECa

2-butanol tert-butanol DEC

TK Pexp Plit Pexp Plit Pexp Plit

(kPa)30315 322 320 764 766 196 19530565 374 376 884 892 227 22630815 443 441 1032 1034 257 26131065 513 516 1182 1196 296 29931315 604 600 1371 1378 346 34331565 705 697 1571 1583 396 39231815 804 806 1803 1813 445 44632065 934 930 2055 2071 504 50732315 1081 1069 2356 2359 582 575AAD 06 06 08

aThe standard uncertainty of measurements are u(T) = 01 K andu(P) = 03 kPa where u(T) is the uncertainty in temperature andu(P) is the uncertainty in pressure

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2442

(AAD) between the experimental data and calculated vaporpressures were obtained by the following equation

n

P P

PAAD

1100

i

n

1

exp lit

litsum=

minustimes

= (3)

where Pexp is the vapor pressure obtained from the experimentPlit is the literature value and n is the number of data points Aspresented in Table 4 good agreement was shown by all purecomponents with a 06 AAD for 2-butanol 06 AAD fortert-butanol and 08 AAD for DEC The result indicates thatthe ebulliometer used in this experiment is reliable32 Vapor Pressure Data Measurement and Correla-

tion The vapor pressure data obtained in this work for the 2-butanol (1) + DEC (2) and tert-butanol (1) + DEC (2)systems are presented in Tables 5 and 6 respectively The

experimental equilibrium temperatures were set in the range of30315minus32315 K to accommodate common fuel storageconditions in tropical countries This is done in the absence of

changes in the pressure temperature and composition of thesystemIn vaporminusliquid equilibrium conditions the liquid-compo-

nent fugacity is equal to the vapor-component fugacity Due tolow vapor pressure of the mixture the ideal gas law is appliedConsidering the differences between the alcohol and DECmolecules the liquid becomes a nonideal mixture Thereforean activity coefficient of component i γi is used as a nonidealfactor for the liquid phase in solution Accordingly thecalculation of the vapor pressure of the mixture is based on thefollowing equation

P x Pi

m

i i1

isatsum γ=

= (4)

where m is the number of components in the mixture P is thevapor pressure in the equilibrium condition xi is thecomponent i mole fraction in the liquid phase γi is the activitycoefficient of component i and Pi

sat is the vapor pressure ofcomponent i Data correlation is carried out by using theWilson NRTL and UNIQUAC equations The binaryinteraction parameters are determined using Barkerrsquos method22

by minimizing the following objective function (OF)

OF (P P )i

n

i i1

cal exp2sum= minus

= (5)

where n is the number of data points and the subscripts cal andexp indicate the calculated and experimental valuesrespectively The values of the AAD are presented in Table 7

The experimental data were well-correlated with the WilsonNRTL and UNIQUAC activity coefficient models givingaverage absolute deviations in the range of 18minus19 Thecorrelation results were plotted in Figure 1 and Figure 2Figure 1 shows that the increasing temperature causes a rise

in the vapor pressure of the 2-butanol + DEC mixture Atconstant temperature increasing the content of 2-butanol (x1)leads to an increase of equilibrium pressure of the mixture tothe peak point and then a decrease in the 2-butanol vaporpressureFigure 2 shows that the increasing temperature causes a rise

in the vapor pressure of the mixture In addition at constanttemperature the vapor pressure of the mixture increases withthe increasing content of tert-butanol (x1) Therefore thepressure of the mixture is between the pure vapor pressures ofeach component

Table 5 Experimental VLE data for 2-Butanol (1) + DEC(2)a

PexpkPa

x1 30315 K 30815 K 31315 K 31815 K 32315 K

0 196 257 346 445 58201 272 373 474 616 78902 293 402 542 701 86203 298 428 578 749 94104 317 431 561 742 96105 323 452 593 792 99306 34 449 588 775 102207 305 444 601 8 106708 341 461 603 796 105609 327 467 626 807 10761 322 443 604 804 1081

aThe standard uncertainty of measurements are u(xi) = 00002 u(T)= 01 K and u(P) = 03 kPa where u(xi) is the uncertainty ofcomponent i of the liquid phase mole fractions u(T) is theuncertainty in temperature and u(P) is the uncertainty in pressure

Table 6 Experimental VLE Data for tert-Butanol (1) + DEC(2)a

PexpkPa

x1 30315 K 30815 K 31315 K 31815 K 32315 K

0 196 257 346 445 58201 362 461 571 76 99702 437 567 751 1005 127503 534 714 895 1138 145404 626 754 972 1312 166805 633 802 1055 142 179606 662 846 115 1526 195707 71 897 1202 1578 202108 74 94 1257 1635 210309 767 969 1291 1736 22061 764 1032 1371 1803 2356

aThe standard uncertainty of measurements are u(xi) = 00002 u(T)= 01 K and u(P) = 03 kPa where u(xi) is the uncertainty ofcomponent i of the liquid phase mole fractions u(T) is theuncertainty in temperature and u(P) is the uncertainty in pressure

Table 7 Parameter and AADs of Correlation Results

2-Butanol(1) + DEC(2) System

Wilson NRTL UNIQUAC

a12(Jmol)

a21(Jmol)

α(minus)

b12(Jmol)

b21(Jmol)

Δu12(Jmol)

Δu21(Jmol)

51428 minus9777 03 minus10506 49176 minus12239 25901AAD = 19 AAD = 18 AAD = 19

tert-butanol(1) + DEC(2) system

Wilson NRTL UNIQUAC

a12(Jmol)

a21(Jmol)

α(minus)

b12(Jmol)

b21(Jmol)

Δu12(Jmol)

Δu21(Jmol)

16342 9713 03 14669 9951 1081 4603AAD = 19 AAD = 19 AAD = 19

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2443

The composition of the vapor can be obtained based on theconcept of equilibrium by using the values of the activitycoefficients obtained from the Wilson NRTL and UNIQUACequations The result of calculated of y1 is then plotted inFigures 1 and 2According to Figure 1 the correlation results for 2-butanol +

DEC showing that at the point of x1 above 06 the x1 has samevalue of y1 where it could be suspected as azeotrope pointHowever due to the differences between the maximumequilibrium pressures and the vapor pressure of pure 2-butanolare smaller than the uncertainty of pressure measurement (03kPa) the azeotrope behavior still could not be justified for thissystem The small vapor pressure differences indicate that theeffect of DEC at the point of x1 above 06 is insignificant Thevapor pressure is greatly affected by 2-butanol

4 CONCLUSIONSAn experiment was successfully conducted to obtain accuratevaporminusliquid equilibrium data for binary systems of 2-butanol

(1) + DEC (2) and tert-butanol (1) + DEC (2) at 30315minus32315 K The experimental data for the 2-butanol (1) + DEC(2) system were well-correlated using the Wilson NRTL andUNIQUAC models with AADs in the vapor pressure of 1918 and 19 respectively For the tert-butanol (1) + DEC (2)system correlation using the Wilson NRTL and UNIQUACmodels gave the same AAD of 19 The systems studied showpositive deviations from Raoultrsquos law in the temperature rangestudied

AUTHOR INFORMATION

Corresponding AuthorGede Wibawa minus Department of Chemical Engineering Facultyof Industrial Technology Sepuluh Nopember Institute ofTechnology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia orcidorg0000-0002-1255-9210 Phone +62-31-5946240 Email gwibawachem-engitsacid Fax +62-31-5999282

AuthorsAnnas Wiguno minus Department of Chemical Engineering Facultyof Industrial Technology Sepuluh Nopember Institute ofTechnology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia

Rizky Tetrisyanda minus Department of Chemical EngineeringFaculty of Industrial Technology Sepuluh Nopember Instituteof Technology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia

Complete contact information is available athttpspubsacsorg101021acsjced9b01079

NotesThe authors declare no competing financial interest

ACKNOWLEDGMENTS

The author are grateful to Kementrian Riset Teknologi danPendidikan Tinggi Sepuluh Nopember Institute of Technol-ogy (ITS) for a research grant with the PUPT research schemaunder Contract 622PKSITS2017 The authors would liketo thank Andika Dwimasputra and Naomi Hurayah Aden forexperimental work

REFERENCES(1) Oktavian R Amidelsi V Rasmito A Wibawa G VaporPressure Measurements of Ethanolminusisooctane and 1-Butanolminusisooctane Systems Using a New Ebulliometer Fuel 2013 107 47minus51(2) Hull A Kronberg B van Stam J Golubkov I Kristensson JVaporminusLiquid Equilibrium of Binary Mixtures 1 Ethanol + 1-Butanol Ethanol + Octane 1-Butanol + Octane J Chem Eng Data2006 51 1996minus2001(3) Moxey B G Cairns A Zhao H A Comparison of Butanol andEthanol Flame Development in an Optical Spark Ignition Engine Fuel2016 170 27minus38(4) Varol Y Oner C Oztop H F Altun S Comparison ofMethanol Ethanol or n-Butanol Blending with Unleaded Gasoline onExhaust Emissions of an SI Engine Energy Sources Part A 2014 36938minus948(5) Procentese A Guida T Raganati F Olivieri G Salatino PMarzocchella A Process Simulation of Biobutanol Production fromLignocellulosic Feedstocks Chem Eng Trans 2014 38 343minus348(6) Dunn B C Guenneau C Hilton S A Pahnke J Eyring EM Dworzanski J Meuzelaar H L C Hu J Z Solum M SPugmire R J Production of Diethyl Carbonate from Ethanol and

Figure 1 Diagram of Pminusx1minusy1 for 2-butanol (1) + DEC (2) system atvarious temperatures

Figure 2 Diagram of Pminusx1minusy1 for tert-butanol (1) + DEC (2) systemat various temperatures

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2444

Carbon Monoxide over a Heterogeneous Catalyst Energy Fuels 200216 177minus181(7) Pacheco M A Marshall C L Review of Dimethyl Carbonate(DMC) Manufacture and Its Characteristics as a Fuel AdditiveEnergy Fuels 1997 11 2minus29(8) M Eyring E L C Meuzelaar H Pugmire R Synthesis andTesting of Diethyl Carbonate as a Possible Diesel Fuel Additive 2000(9) Moran M Zogorski J Squillace P MTBE and GasolineHydrocarbons in Ground Water of the United States 2005 Vol 43(10) Rodriacuteguez A Canosa J Domiacutenguez A Tojo J IsobaricPhase Equilibria of Diethyl Carbonate with Five Alcohols at 1013KPa J Chem Eng Data 2003 48 86minus91(11) Ho H-Y Shu S-S Wang S-J Lee M-J Isothermal(Vapour+liquid) Equilibrium (VLE) for Binary Mixtures ContainingDiethyl Carbonate Phenyl Acetate Diphenyl Carbonate or EthylAcetate J Chem Thermodyn 2015 91 35minus42(12) Pillay J Iwarere S A Raal J D Naidoo P RamjugernathD Isothermal Vapour-Liquid Equilibrium Data for the Binary Systems2-Propanone + (2-Butanol or Propanoic Acid) Fluid Phase Equilib2017 433 119minus125(13) Anugraha R P Altway A Wibawa G Measurement andCorrelation of Isothermal Binary VaporminusLiquid Equilibrium forDiethyl Carbonate + Isooctanen-HeptaneToluene Systems JChem Eng Data 2017 62 2362minus2366(14) Wilson G M Vapor-Liquid Equilibrium XI A NewExpression for the Excess Free Energy of Mixing J Am Chem Soc1964 86 127minus130(15) Renon H Prausnitz J M Local Composition Thermody-namic Excess Functions for Liquid Mixtures AIChE J 1968 14 135minus144(16) Prausnitz J M Abrams D S Statistical Thermodynamics ofLiquid Mixtures A New Expression for the Excess Gibbs Energy ofPartly or Completely Miscible Systems AIChE J 1975 21 116minus128(17) Wibawa G Mustain A Akbarina M F Ruslim R MIsothermal VaporminusLiquid Equilibrium of Ethanol + Glycerol and 2-Propanol + Glycerol at Different Temperatures J Chem Eng Data2015 60 955minus959(18) Wiguno A Mustain A Irwansyah W F E Wibawa GIsothermal Vapor-Liquid Equilibrium of Methanol + Glycerol and 1-Propanol + Glycerol Indones J Chem 2018 16 111minus116(19) Anugraha R P Wiguno A Altway A Wibawa G VaporPressures of Diethyl Carbonate + Ethanol Binary Mixture and DiethylCarbonate + Ethanol + IsooctaneToluene Ternary Mixtures atTemperatures Range of 303 15 minus 323 15 K J Mol Liq 2018 26432minus37(20) Poling B E Prausnitz J M OrsquoConnel J P The Properties ofGases and Liquids 5th ed McGraw-Hill New York 2001(21) Luo H-P Xiao W-D Zhu K-H Isobaric VaporminusliquidEquilibria of Alkyl Carbonates with Alcohols Fluid Phase Equilib2000 175 91minus105(22) Barker J A Determination of Activity Coefficients from TotalPressure Measurements Aust J Chem 1953 6 207minus210

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2445

3 MITRA KERJASAMA PENELITIAN (JIKA ADA)

Pelaksanaan penelitian dapat melibatkan mitra kerjasama yaitu mitra kerjasama dalam melaksanakan penelitian mitra sebagai calon pengguna hasil penelitian atau mitra investor

Mitra Nama Mitra

4 LUARAN DAN TARGET CAPAIAN

Luaran Wajib

Tahun Luaran

Jenis Luaran

Status target capaian (accepted published terdaftar

atau granted atau status lainnya)

Keterangan (url dan nama jurnal penerbit url paten

keterangan sejenis lainnya)

2 Publikasi Ilmiah Jurnal Internasional

acceptedpublished J Chem Eng Data (ACS) Indonesia Journal of Chemistry (IJC)

Luaran Tambahan

Tahun Luaran

Jenis LuaranStatus target capaian (accepted published terdaftar atau granted

atau status lainnya)

Keterangan (url dan nama jurnal penerbit url paten keterangan

sejenis lainnya)

5 ANGGARAN

Rencana anggaran biaya penelitian mengacu pada PMK yang berlaku dengan besaran minimum dan maksimum sebagaimana diatur pada buku Panduan Penelitian dan Pengabdian kepada Masyarakat Edisi 12

Total RAB 3 Tahun Rp 199000000

Tahun 1 Total Rp 0

Tahun 2 Total Rp 86000000

Jenis Pembelanjaan Item Satuan VolBiaya

SatuanTotal

Bahan ATK Paket 1 2000000 2000000

BahanBahan Penelitian (Habis Pakai)

Unit 1 34400000 34400000

Bahan Barang Persediaan Unit 1 29600000 29600000

Pelaporan Luaran Wajib dan Luaran Tambahan

Biaya seminar internasional

Paket 1 10000000 10000000

Pelaporan Luaran Wajib dan Luaran Tambahan

Publikasi artikel di Jurnal Internasional

Paket 1 10000000 10000000

Tahun 3 Total Rp 113000000

Jenis Pembelanjaan Item Satuan VolBiaya

SatuanTotal

Bahan ATK Paket 1 2000000 2000000

BahanBahan Penelitian (Habis Pakai)

Unit 1 39955000 39955000

Bahan Barang Persediaan Unit 1 31045000 31045000

Pelaporan Luaran Wajib dan Luaran Tambahan

Biaya seminar internasional

Paket 1 20000000 20000000

Jenis Pembelanjaan Item Satuan VolBiaya

SatuanTotal

Pelaporan Luaran Wajib dan Luaran Tambahan

Publikasi artikel di Jurnal Internasional

Paket 1 20000000 20000000

6 HASIL PENELITIAN

A RINGKASAN Tuliskan secara ringkas latar belakang penelitian tujuan dan tahapan metode penelitian luaran yang ditargetkan serta uraian TKT penelitian

Karbon dioksida (CO2) merupakan salah satu gas yang diketahui sebagai sumber utama dari efek pemanasan global Hal ini juga berakibat langsung pada peningkatan jumlah dari materi partikulat dan senyawa karbon di udara Senyawa CO2 berpotensi untuk menjadi bahan baku produksi senyawa bernilai ekonomi seperti dialkyl carbonate Dialkyl carbonate memiliki manfaat salah satunya adalah sebagai zat aditif pada bahan bakar untuk mengurangi emisi dari partikulat dan senyawa karbon Sehingga dengan konsep pemanfaatan zat emisi yang dihasilkan oleh industri penghasil energi dapat diperoleh zat digunakan sebagai bahan tambahan agar bahan bakar berbasis fosil dapat menjadi lebih sempurna Dengan kata lain tidak hanya mengurangi emisi karbon dari sektor perindustrian tetapi jadi dari sektor penggunaan bahan bakar tersebut Penelitian ini bertujuan untuk memanfaatkan zat emisi karbon dioksida menjadi zat bernilai ekonomi dialkyl carbonate melalui reaksi langsung bersama alkohol menggunakan katalis homogen dan heterogen Skema dari penelitian ini dimulai dari data literatur studi menganai pemanfaatan CO2 menajdi bahan baku dialkyl carbonate Studi dilajutkan dengan menganalisa efek dari berbagai jenis reaktan baik alkohol dan agen pendehidrasi untuk mendapatkan mekanisme reaksi sintesa Setelah terbentuk pola sintesa maka dilakukan pengamatan mengenai pengaruh jenis katalis terhadap performa sintesa berupa yield konversi dan selektivitas katalis yang kemudian data tersebut digunakan untuk optimasi kondisi operasi Dari hasil penelitian ini diharapkan dapat menghasilkan yield produk dialkyl carbonate khususnya Diethyl carbonate dan Dimethyl Carbonate yang tinggi sehingga terlihat adanya potensi yang tinggi juga dalam pemanfaatan CO2 sebagai bahan baku sintesis dialkyl carbonate dan rute mekanisme reaksi terbaik untuk melakukan sintesa dialkyl carbonate Konsep pemanfaatan CO2 menjadi bahan baku pembuatan senyawa lain merupakan studi yang telah banyak dilakukan oleh berbagai peneliti Penelitian ini adalah dalam bentuk TKT tingkat 3 dimana pembuktian konsep atau karakteristik sintesa dialkyl carbonate perlu dianalisa secara eksperimental Luaran utama yang ditargetkan dalam penelitian ini adalah jurnal internasional terindeks scopus seperti J Chem Eng Data (ACS) Indonesia Journal of Chemistry (IJC) dan lain sebagainya Dari hasil penelitian ini dapat diketahui bahwa penggunaan KI-Zeolite dalam sintesis Dimethyl Carbonate dengan raw material berupa CO2 methanol dan agen pendehidrasi propylene oxide menghasilkan yield DMC tertinggi yaitu sebesar 3471 dengan waktu reaksi selama 2 jamSedangkan pada sintesis DMC menggunakan butylene oxide dan katalis KIEtONa didapatkan yield tertinggi yaitu sebesar 3684 dengan waktu reaksi selama 4 jam Berdasarkan sintesis DEC dengan menggunakan epoksida propylene oxide pada eksperimen sebelumnya juga dapat diketahui bahwa penggunaan zeolite sebagai katalis juga memiliki hasil yield DEC yang lebih tinggi Sedangkan berdasarkan hasil sintesis DMC dengan menggunakan katalis KIEtONa menggunakan agen pendehidrasi butylene oxide didapatkan hasil yield tertinggi dengan waktu reaksi yang lebih lama dibandingkan dengan penggunaan katalis KIZeolite pada sintesis DMC menggunakan propylene oxide Selain itu karena harganya yang lebih murah maka Zeolite disini dapat disimpulkan berpotensi digunakan sebagai pengganti katalis EtONa

B KATA KUNCI Tuliskan maksimal 5 kata kunci

Karbondioksida Dimethyl Carbonate Sintesis Katalis

Pengisian poin C sampai dengan poin H mengikuti template berikut dan tidak dibatasi jumlah kata atau halaman namun disarankan seringkas mungkin Dilarang menghapusmemodifikasi template ataupun menghapus penjelasan di setiap poin

C HASIL PELAKSANAAN PENELITIAN Tuliskan secara ringkas hasil pelaksanaan penelitian yang telah dicapai sesuai tahun pelaksanaan penelitian Penyajian dapat berupa data hasil analisis dan capaian luaran (wajib dan atau tambahan) Seluruh hasil atau capaian yang dilaporkan harus berkaitan dengan tahapan pelaksanaan penelitian sebagaimana direncanakan pada proposal Penyajian data dapat berupa gambar tabel grafik dan sejenisnya serta analisis didukung dengan sumber pustaka primer yang relevan dan terkini

Pengisian poin C sampai dengan poin H mengikuti template berikut dan tidak dibatasi jumlah kata atau halaman namun disarankan seringkas mungkin Dilarang menghapusmemodifikasi template ataupun menghapus penjelasan di setiap poin

Sumber energi berbasis fosil (minyak bumi gas alam dan batu bara) merupakan sumber

energi utama yang digunakan sebagian besar masyarakat Indonesia Dalam perkembangannya

konsumi sumber energi berbasis fosil akan semakin meningkat pada beberapa tahun kedepan

[1] Akan tetapi sumber daya energi berbasis fosil dikenal sebagai emitor karbon utama Hal

ini menunjukkan bahwa saat ini industri minyak bumi gas alam dan batu bara memiliki

tanggung jawab dan tantangan nyata dalam pemenuhan kebutuhan energi mendatang dengan

menghadapi dampak dan isu lingkungan

Alternatif yang dapat dilakukan adalah dengan memberikan nilai tambah pada karbon yaitu

dengan pemanfaatan karbon dioksida (CO2) sehingga industri energi berbasis fosil akan

menjadi lebih ramah lingkungan dan tetap memenuhi kebutuhan energi nasional Pemanfaatan

CO2 yang dihasilkan dari pembakaran atau pengolahan sumber energi berbasis fosil dapat

dilakukan dengan mengkonversi CO2 menjadi berbagai macam produk kimia yang bernilai

ekonomi Sebagai contoh adalah dry reforming CH4 dengan CO2 untuk memproduksi syngas

transformasi CO2 menjadi cyclic carbonates melalui cycloaddition oxidative carboxylation

olefin dengan CO2 sintesis metanol dari CO2 dan H2 serta masih banyak lainnya Dari berbagai

macam metode tersebut sintesa karbonat organik dari alkohol dan CO2 memiliki daya tarik

yang tinggi karena produk komersial yang dihasilkan bernilai tinggi dan banyak digunakan

pada berbagai industri

Organic carbonate merupakan salah satu bahan kimia alami yang sangat penting di abad ini

Karena karakteristiknya seperti polaritas ramah lingkungan dan tidak beracun organic

carbonate ini berpotensi untuk menggantikan bahan kimia yang berbahaya Selain ituSintesa

organic carbonate membantu dalam proses mitigasi dan penggunaan CO2 seperti senyawa

dialkyl carbonate khususnya Diethyl Carbonate dan Dimethyl Carbonate Senyawa DEC dan

DMC yang disintesis dalam eksperimen ini merupakan senyawa organic carbonate yang paling

penting DEC dan DMC ini merupakan zat aditif terbarukan yang dapat ditambahkan ke bahan

bakar untuk meningkatkan pembakaran dan mengurangi emisi gas buang [2]

Dari uraian diatas dapat diamati bahwa produksi DEC dan DMC dengan pemanfaatan CO2

menjadi produk yang bernilai ekonomi merupakan proses yang menarik CO2 merupakan salah

satu permasalahan yang timbul akibat peningkatan konsumsi energi Hal ini dikarenakan

peningkatannya yang sangat besar di bumi memiliki tanggung jawab atas fenomena gas rumah

kaca yang terjadi Namun berdasarkan beberapa penelitian CO2 dapat dimanfaatkan untuk

menghasilkan bahan kimia lainnya seperti DEC dan DMC dimana bahan ini biasa digunakan

sebagai zat aditif dalam bahan bakar yang lebih aman dan ramah lingkungan

Menurut berbagai penelitian yang pernah dilakukan DEC dan DMCdapat disintesa

dengan berbagai bahan baku serta metode Pertama DEC dapat disintesa dari urea[3ndash5]CO[6-

10] DMC[11] Ethyl Carbamate[12ndash15] ethylene carbonate[16] Selain itu DEC dan DMC

juga pernah dilaporkan dalam bebrapa penelitian bahwa senyawa ini dapat dihasilkan dari

bahan baku CO2[21ndash26]

Akan tetapi dalam sejarah penelitian yang telah ada dengan berbagai metode khususnya

untuk sintesa langsung kondisi operasi dan katalis yang digunakan tersebut masih belum

menunjukkan hasil yang maksimal Sehingga dalam penelitian ini telah dilakukan sintesis

C HASIL PELAKSANAAN PENELITIAN Tuliskan secara ringkas hasil pelaksanaan penelitian yang telah dicapai sesuai tahun pelaksanaan penelitian Penyajian dapat berupa data hasil analisis dan capaian luaran (wajib dan atau tambahan) Seluruh hasil atau capaian yang dilaporkan harus berkaitan dengan tahapan pelaksanaan penelitian sebagaimana direncanakan pada proposal Penyajian data dapat berupa gambar tabel grafik dan sejenisnya serta analisis didukung dengan sumber pustaka primer yang relevan dan terkini

DEC dan DMC dari CO2 menggunakan metode sintesa langsung dan katalis homogen dan

heterogen Sehingga hasil dari penelitian ini dapat dijadikan sebagai acuan dalam pemanfaatan

zat emisi karbon dioksida menjadi zat bernilai ekonomi DEC ataupun DMC melalui reaksi

langsung bersama etanol menggunakan katalis homogen dan heterogen

Setelah didapatkan hasil sebelumnya pada sintesis DEC pada eksperimen ini juga

dilakukan sintesis DMC dengan menggunakan metode kondisi operasi yang sama dan

bahan baku berupa CO2 agar dapat dibandingkan apakah metode dan kondisi operasi yang

sama yang diterapkan pada sintesis DEC sebelumnya juga dapat diaplikasikan untuk

sintesis DMC

Pada eksperimen sintesis dimethyl carbonate (DMC) didapatkan data yang diamati

secara langsung yaitu berupa waktu suhu dan tekanan Waktu suhu dan tekanan ini diamati

selama jalannya proses sintesis untuk memastikan adanya kebocoran pada reaktor serta

kestabilan suhu reaktor selama eksperimen Berikut ini pada Tabel 1 merupakan data waktu

suhu dan tekanan rata-rata yang didapatkan pada setiap eksperimen sintesis dimethyl

carbonate

Tabel 1 Data waktu suhu dan tekanan rata-rata pada setiap eksperimen sintesis dimethyl

carbonate

Waktu (menit) Suhu (oC) Tekanan (bar)

0 169 40

30 169 40

60 169 40

90 167 40

120 167 40

150 169 40

180 170 40

210 170 40

240 168 40

270 170 40

300 169 40

Kemudian setelah dilakukan eksperimen sintesis DMC ini produk yang dihasilkan

dianalisa secara kualitatif menggunakan GC-MS dan secara kuantitatif menggunakan GC

Hasil analisa kualitatif menggunakan GC-MS pada sintesis DMC dari CO2 menggunakan agen

pendehidrasi senyawa epoksida berupa propylene oxide menghasilkan beberapa senyawa yang

terkandung dalam produknya diantaranya yaitu DMC Propylene carbonate dan Propylene

Glycol Sedangkan hasil analisa kualitatif menggunakan GC-MS pada sintesis DMC dari CO2

menggunakan agen pendehidrasi senyawa epoksida berupa butylene oxide menghasilkan

beberapa senyawa yang terkandung dalam produknya diantaranya yaitu DMC Butylene

carbonate dan Butylene glycol Hal ini telah sesuai dengan reaksi kimia dari sintesis DMC

pada literature dimana DMC merupakan produk utama dari sintesis Propylene carbonate atau

Butylene carbonate yang merupakan produk tengahnya dan Propylene Glycol atau Butylene

glycol yang merupakan produk sampingnya[26]

Selain dilakukan analisa secara kualitatif Produk DMC ini juga dilakukan analisa

secara kuantitatif menggunakan GC Berikut ini pada Tabel 2 dipaparkan mengenai hasil

analisa kuantitatif dari sintesis DMC dari CO2 yang direaksikan dengan methanol epoksida

berupa propylene oxide atau butylene oxide serta katalis homogen dan katalis heterogen

Jenis

Epoksida

Waktu reaksi

(jam) Katalis

Yield

DMC

()

Konversi

Reaksi ()

Propylene

Oxide

1

KI-EtONa

1051 1051

2 1999 1999

3 2683 2683

4 2681 2681

5 2852 2852

1

KI-Zeolite

892 893

2 3471 3471

3 2338 2338

4 1586 1586

5 1419 1419

Butylene

Oxide

1

KI-EtONa

1377 1377

2 2206 2206

3 2426 2426

4 3684 3684

5 2159 2159

Dari hasil penelitian dapat diketahui bahwa penggunaan KI-Zeolite dalam sintesis

Dimethyl Carbonate menggunakan agen pendehidrasi propylene oxide dan katalis KIZeolite

menghasilkan yield DMC tertinggi yaitu sebesar 3471 dengan waktu reaksi selama 2 jam

Sedangkan untuk sintesis DMC menggunakan agen pendehidrasi butylene oxide dan katalis

KIEtONa menghasilkan yield DMC tertinggi sebesar 3684 dengan waktu reaksi sebesar 4

jam Berdasarkan hasil eksperimen sintesis DMC menggunakan katalis propylene oxide disini

Kemudian berdasarkan sintesis DEC dengan menggunakan epoksida propylene oxide pada

eksperimen sebelumnya juga dapat diketahui bahwa penggunaan zeolite juga memiliki hasil

yield DEC yang lebih tinggi Selain itu berdasarkan hasil eksperimen sintesis DMC

menggunakan agen pendehidrasi berupa butylene oxide dan katalis KIEtONa yield tertinggi

didapatkan dengan waktu reaksi yang lebih lama dibandingkan dengan hasil sintesis DMC

yang menggunakan katalis KIZeolite Sehingga penggunaan Zeolite membuktikan bahwa

bahan ini berpotensi untuk digunakan sebagai pengganti katalis EtONa karena harganya yang

jauh lebih murah

Berdasarkan dari hasil penelitian ini telah di dapatkan beberapa luaran wajib dan tambahan diantaranya

yaitu untuk luaran wajib yang telah dicapai adalah berupa jurnal internasional yang berjudul ldquoVapor

Pressure of 2-Butanol+Diethyl Carbonate and tert-Butanol + Diethyl Carbonate at The

Temperature 30315-32315Krdquo yang telah dipublikasikan di Journal of Chemical amp

Engineering Data pada tahun 2020 dan draft manuscript yang berjudul ldquoCatalytic Synthesis of

Diethyl Carbonate from Carbon dioxide and Ethanol as Raw Material using KISodium

Ethoxide and KIMolecular Sieve as Catalystrdquo dimana nantinya akan disubmit pada chemical

engineering journal Sedangkan untuk luaran tambahan yang telah dicapai adalah berupa Manuscript

dengan judul ldquoThe Effect of Temperature Reaction in Catalytic Synthesis of Diethyl Carbonate

via One Pot Reactionrdquo yang akan diseminarkan pada 4th International Conference on Chemical

amp Material Engineering (ICCME 2020) yang akan diselenggarakan pada 6-7 Oktober 2020

melalui Video Meeting via ZOOM

D STATUS LUARAN Tuliskan jenis identitas dan status ketercapaian setiap luaran wajib dan luaran tambahan (jika ada) yang dijanjikan pada tahun pelaksanaan penelitian Jenis luaran dapat berupa publikasi perolehan kekayaan intelektual hasil pengujian atau luaran lainnya yang telah dijanjikan pada proposal Uraian status luaran harus didukung dengan bukti kemajuan ketercapaian luaran sesuai dengan luaran yang dijanjikan Lengkapi isian jenis luaran yang dijanjikan serta mengunggah bukti dokumen ketercapaian luaran wajib dan luaran tambahan melalui Simlitabmas mengikuti format sebagaimana terlihat pada bagian isian luaran

Untuk luaran wajib ada dua yaitu

1 Jurnal internasional yang berjudul ldquoVapor Pressure of 2-Butanol + Diethyl Carbonate

and tert-Butanol + Diethyl Carbonate at The Temperature 30315-32315Krdquo yang telah

dipublikasikan di Journal of Chemical amp Engineering Data pada tahun 2020 (Status

Published)

2 Manuscript yang berjudul ldquoCatalytic Synthesis of Diethyl Carbonate from Carbon

dioxide and Ethanol as Raw Material using KISodium Ethoxide and KIMolecular

Sieve as Catalystrdquo dimana nantinya akan disubmit pada chemical engineering journal

(Status Draft)

Sedangkan untuk luaran tambahan yaitu

Manuscript dengan judul ldquoThe Effect of Temperature Reaction in Catalytic Synthesis of

Diethyl Carbonate via One Pot Reactionrdquo yang akan diseminarkan pada 4th International

Conference on Chemical amp Material Engineering (ICCME 2020) yang akan diselenggarakan

pada 6-7 Oktober 2020 melalui Video Meeting via ZOOM

E PERAN MITRA Tuliskan realisasi kerjasama dan kontribusi Mitra baik in-kind maupun in-cash (jika ada) Bukti pendukung realisasi kerjasama dan realisasi kontribusi mitra dilaporkan sesuai dengan kondisi yang sebenarnya Bukti dokumen realisasi kerjasama dengan Mitra diunggah melalui Simlitabmas mengikuti format sebagaimana terlihat pada bagian isian mitra

F KENDALA PELAKSANAAN PENELITIAN Tuliskan kesulitan atau hambatan yang dihadapi selama melakukan penelitian dan mencapai luaran yang dijanjikan termasuk penjelasan jika pelaksanaan penelitian dan luaran penelitian tidak sesuai dengan yang direncanakan atau dijanjikan

Kendala pada pelaksanaan penelitian ini berada pada sulitnya menjaga kondisi reaktan yang

ada pada reaktor karena adanya faktor kesalahan teknis dalam menutup reaktor sehingga ada

kebocoran sedikit pada reaktor yang menyebabkan prosedur eksperimen harus diulangi

kembali sedangkan hambatan yang dihadapi selama melakukan penelitian adalah supplay

listrik yang tidak menentu pada saat pelaksanaan eksperimen menghasilkan supplay panas pada

electrical heater yang berbeda-beda setiap waktunya sehingga suhu reaktor sangat sulit untuk

dikendalikan Selain itu pada masa pandemic ini juga ada hambatan pada waktu penelitian

yang sangat terbatas sehingga pengerjaan penelitian juga menjadi terhambat

G RENCANA TINDAK LANJUT PENELITIAN Tuliskan dan uraikan rencana tindaklanjut penelitian selanjutnya dengan melihat hasil penelitian yang telah diperoleh Jika ada target yang belum diselesaikan pada akhir tahun pelaksanaan penelitian pada bagian ini dapat dituliskan rencana penyelesaian target yang belum tercapai tersebut

Penelitian selanjutnya akan difokuskan untuk sintesis Dimethyl Carbonate dengan agen

pendehidrasi berupa butylene oxide dan jenis katalis yang berbeda dan eksperimen

kesetimbangan uap-cair antar komponennya yang ada di produk

H DAFTAR PUSTAKA Penyusunan Daftar Pustaka berdasarkan sistem nomor sesuai dengan urutan pengutipan Hanya pustaka yang disitasi pada laporan akhir yang dicantumkan dalam Daftar Pustaka

1 Hanpattanakit P Pimonsree L Jamnongchob A Boonpoke A 2018 CO2 Emission

and Reduction of Tourist Transportation at Kok Mak Island Thailand Chemical

Engineering Transactions 63 37-42

2 K Shukla and V C Srivastava ldquoRSC Advances Diethyl carbonate  critical review of

synthesis routes catalysts used and engineering aspectsrdquo RSC Adv vol 6 pp 32624ndash

32645 201

3 D Wang B Yang X Zhai L Zhou Synthesis of diethyl carbonate by catalytic alcoholysis of urea 88 (2007) 807ndash812 doi101016jfuproc200704003

4 S Xin L Wang H Li K Huang F Li Synthesis of diethyl carbonate from urea and ethanol over lanthanum oxide as a heterogeneous basic catalyst Fuel Process Technol 126 (2014) 453ndash459 doi101016jfuproc201405029

5 K Shukla VC Srivastava Diethyl carbonate synthesis by ethanolysis of urea using Ce-Zn oxide catalysts Fuel Process Technol 161 (2017) 116ndash124 doi101016jfuproc201703004

6 P Zhang S Wang S Chen Z Zhang X Ma The effects of promoters over PdCl 2 -CuCl 2 HMS catalysts for the synthesis of diethyl carbonate by oxidative carbonylation of ethanol 143 (2008) 220ndash224 doi101016jcej200804008

7 DN Briggs G Bong E Leong K Oei G Lestari AT Bell Effects of support composition and pretreatment on the activity and selectivity of carbon-supported PdCu n Cl x catalysts for the synthesis of diethyl carbonate J Catal 276 (2010) 215ndash228 doi101016jjcat201008004

8 P Zhang X Ma Catalytic synthesis of diethyl carbonate by oxidative carbonylation of ethanol over PdCl 2 Cu-HMS catalyst Chem Eng J 163 (2010) 93ndash97 doi101016jcej201007025

9 D Zhu F Mei L Chen W Mo T Li G Li An efficient catalyst Co ( salophen ) for synthesis of diethyl carbonate by oxidative carbonylation of ethanol Fuel 90 (2011) 2098ndash2102 doi101016jfuel201102023

10 P Zhang Y Zhou M Fan P Jiang Catalytic synthesis of diethyl carbonate with supported Pd ‐ Cu bimetallic nanoparticle catalysts  Cu ( I ) as the active species Chinese J Catal 36 (2015) 2036ndash2043 doi101016S1872-2067(15)60973-1

11 C Murugan HC Bajaj Synthesis of diethyl carbonate from dimethyl carbonate and ethanol using KF Al 2 O 3 as an ef fi cient solid base catalyst Fuel Process Technol 92 (2011) 77ndash82 doi101016jfuproc201008023

12 GUO Lian Z Xinqiang AN Hualiang W Yanji Catalysis by Lead Oxide for Diethyl Carbonate Synthesis from Ethyl Carbamate and Ethanol Chinese J Catal 33 (2012) 595ndash600 doi101016S1872-2067(11)60373-2

13 H An X Zhao L Guo C Jia B Yuan Y Wang Applied Catalysis A  General Synthesis of diethyl carbonate from ethyl carbamate and ethanol over ZnO-PbO catalyst Applied Catal A Gen 433ndash434 (2012) 229ndash235 doi101016japcata201205023

14 L Wang H Li S Xin F Li Generation of solid base catalyst from waste slag for the ef fi cient synthesis of diethyl carbonate from ethyl carbamate and ethanol CATCOM 50 (2014) 49ndash53 doi101016jcatcom201402028

15 L Zhao Z Hou C Liu Y Wang L Dai Original article A catalyst-free novel synthesis of diethyl carbonate from ethyl carbamate in supercritical ethanol Chinese Chem Lett 25 (2014) 1395ndash1398 doi101016jcclet201405012

16 H Iida R Kawaguchi K Okumura Production of diethyl carbonate from ethylene carbonate and ethanol over supported fl uoro-perovskite catalysts Intensity cps Catal Commun 108 (2018) 7ndash11 doi101016jcatcom201801019

17 F Gasc S Thiebaud-roux Z Mouloungui The Journal of Supercritical Fluids Methods for synthesizing diethyl carbonate from ethanol and supercritical carbon dioxide by one-pot or two-step reactions in the presence of potassium carbonate 50 (2009) 46ndash53 doi101016jsupflu200903008

18 E Leino P Maumlki-arvela K Eraumlnen M Tenho D Yu T Salmi J Mikkola Enhanced yields of diethyl carbonate via one-pot synthesis from ethanol carbon dioxide and butylene oxide over cerium ( IV ) oxide Chem Eng J 176ndash177 (2011) 124ndash133 doi101016jcej201107054

19 E Leino P Maumlki-arvela V Eta N Kumar F Demoisson A Samikannu A Leino A Shchukarev D Yu J Mikkola The influence of various synthesis methods on the catalytic activity of cerium oxide in one-pot synthesis of diethyl carbonate starting from CO 2 ethanol and butylene oxide Catal Today 210 (2013) 47ndash54 doi101016jcattod201302011

20 E Leino N Kumar P Maumlki-arvela A Aho K Kordaacutes In fl uence of the synthesis parameters on the physico-chemical and catalytic properties of cerium oxide for application in the synthesis of diethyl carbonate Mater Chem Phys 143 (2013) 65ndash75 doi101016jmatchemphys201308012

21 L Wang H Li S Xin P He Y Cao F Li X Hou Applied Catalysis A  General Highly efficient synthesis of diethyl carbonate via one-pot reaction from carbon dioxide epoxides and ethanol over KI-based binary catalyst system Applied Catal A Gen 471 (2014) 19ndash27 doi101016japcata201311031

22 E Leino N Kumar P Maumlki-arvela A Rautio J Dahl J Roine J-P Mikkola Synthesis and characterization of ceria-supported catalysts for carbon dioxide transformation to diethyl carbonate Catal Today (2017) 1ndash10 doi101016jcattod201701016

23 W Yanlou J Dongdong Z Zhen S Yongyue Synthesis of Diethyl Carbonate from Carbon Dioxide Catal MDPI (2016) doi103390catal6040052

24 L Wang M Ammar P He Y Li Y Cao F Li X Han H Li The efficient synthesis of diethyl carbonate via coupling reaction from propylene oxide CO 2 and ethanol over binary PVEImBr MgO catalyst Catal Today 281 (2017) 360ndash370 doi101016jcattod201602052

25 H Hattori HeterogeneousBasicCatalysispdf (1995)

26 Fan Bin Bo Qu Q Chen Y Wen L Cai R Zhang An improved one-pot synthesis of dimethyl carbonate from propylene oxide CO2 and methanol Journal of Chemical Research (2011) 654-656

Dokumen pendukung luaran Wajib 1

Luaran dijanjikan Publikasi Ilmiah Jurnal Internasional

Target acceptedpublished

Dicapai Published

Dokumen wajib diunggah

1 Artikel yang terbit

Dokumen sudah diunggah

1 Artikel yang terbit

Dokumen belum diunggah

- Sudah lengkap

Nama jurnal Journal of Chemical amp Engineering Data

Peran penulis corresponding author | EISSN 00219568 15205134

Nama Lembaga Pengindek scopus

URL jurnal httpspubsacsorgdoi101021acsjced9b01079

Judul artikel Vapor Pressure of 2-Butanol + Diethyl Carbonate and tert-Butanol +

Diethyl Carbonate at The Temperature 30315-32315K

Tahun 2020 | Volume 65 | Nomor 5

Halaman awal 2441 | akhir 2445

URL artikel httpspubsacsorgdoi101021acsjced9b01079

DOI httpsdoiorg101021acsjced9b01079

Vapor Pressure of 2‑Butanol + Diethyl Carbonate and tert-Butanol +Diethyl Carbonate at the Temperature of 30315minus32315 KAnnas Wiguno Rizky Tetrisyanda and Gede Wibawa

Cite This J Chem Eng Data 2020 65 2441minus2445 Read Online

ACCESS Metrics amp More Article Recommendations

ABSTRACT In this work the vapor pressure of binary mixtures of 2-butanol +diethyl carbonate and tert-butanol + diethyl carbonate was measured in thetemperature range from 30315 to 32315 K The experimental apparatus used inthis work was a simple quasi-static ebulliometer developed in our previous works Thereliability of this apparatus was verified by comparing the measured vapor pressures of2-butanveol tert-butanol and diethyl carbonate with literature data The comparisonsshowed that the vapor pressures of pure 2-butanol tert-butanol and diethyl carbonatewere in good agreement with the literature data with average absolute deviations of 0606 and 08 respectively The experimental results show that the vapor pressuresincreased with the alcohol mole fraction for all systems studied The experimental datawere well-correlated with the Wilson nonrandom two-liquid and universal quasi-chemical activity coefficient models giving an average absolute deviation of no morethan 19 The binary vaporminusliquid equilibrium data obtained in this work showed apositive deviation from Raoultrsquos law

1 INTRODUCTION

Ethanol is commonly used in gasoline blends because of itshigh octane number and oxygen number as well as itscapability to accelerate flame propagation However theaddition of ethanol to isooctane at a mole fraction of 01was found to elevate the vapor pressure12 A higher vaporpressure of gasoline mixtures causes increased emissions andthe potential for vapor lock in the engine On other handlonger-chain alcohols such as 2-butanol and tert-butanol havelower vapor pressures and higher heating values and theirproperties are closer to gasoline than to ethanol3 Butanol hasbeen used as a mixture in engines without any significantengine changes4 Butanol may be produced from renewableresources as well for example from lignocellulose the mostplentiful renewable material5 The combustion of a butanolminusgasoline mixture produces a high temperature because of itshigh heating value and low vaporization rate Therefore 2-butanoltert-butanol are expected to be able to be used asgasoline additives that are alternatives to ethanol The octanenumber of butanol is lower than that of ethanol and thus theaddition of an octane booster is required Diethyl carbonate(DEC) is such an octane booster The addition of 5 wt ofdiethyl carbonate (DEC) into diesel fuel can decrease theemissions by up to 50 due to its higher oxygen content of406 wt6 DEC is a nontoxic chemical that is degradable andable to be decomposed gradually into CO2 and ethanol whichare environmentally friendly78 Although methyl tert-butylether (MTBE) has been successfully applied in gasoline blendsas it is nonbiodegradable it has contributed to groundwater

contamination9 Thus DEC is a potential candidate to replaceMTBETo design the blend of gasoline + 2-butanoltert-butanol +

DEC the vapor pressure data of the binary system of 2-butanoltert-butanol + DEC are required Studies on the vaporpressure of mixtures including diethyl carbonate have beenconducted by many researchers Rodriguez et al10 examinedthe vapor pressure for the binary systems of diethyl carbonatewith five alcohols (methanol ethanol 1-propanol 1-butanoland 1-pentanol) at a pressure of 1013 kPa and temperatures of35173minus39602 K Octavian et al1 measured the vaporpressure of the ethanol + isooctane and 1-butanol + isooctanesystems using a new ebulliometer Ho et al11 examined thevapor pressure of binary mixtures containing diethyl carbonatephenyl acetate diphenyl carbonate or ethyl acetate at 3732minus4532 K Jeremy et al12 conducted experiments on the vaporliquid equilibrium of a binary mixture of 2-propanone + 2-butanol at 33315 and 35315 K and 2-propanone + propanoicacid at 33315 35315 and 37315 K Anugraha et al13

measured the vapor pressure of binary mixtures of diethylcarbonate + isooctanen-heptanetoluene To our knowledge

Received November 14 2019Accepted March 30 2020Published April 3 2020

Articlepubsacsorgjced

copy 2020 American Chemical Society2441

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

Dow

nloa

ded

via

UPP

SAL

A U

NIV

on

June

21

202

0 at

00

502

1 (U

TC

)Se

e ht

tps

pub

sac

sor

gsh

arin

ggui

delin

es f

or o

ptio

ns o

n ho

w to

legi

timat

ely

shar

e pu

blis

hed

artic

les

vaporminusliquid equilibrium (VLE) data of 2-butanoltert-butanol+ DEC at low temperatures are unavailable in the availableliterature Therefore the aim of this study is to determine theisothermal VLE of 2-butanoltert-butanol + DEC at 30315minus32315 K In addition the experimental data were correlatedwith the Wilson14 nonrandom two-liquid (NRTL)15 anduniversal quasi-chemical (UNIQUAC)16 models

2 EXPERIMENTAL SECTION21 Materials The chemicals used in this experiment were

2-butanol tert-butanol and DEC All chemicals were usedwithout any additional purification The compound details arelisted in Table 1

22 Apparatus and Procedures The apparatus used inthis study is a simple static ebulliometer The ebulliometerused was an apparatus developed by Oktavian et al1 andrevalidated by Wibawa et al17 Wiguno et al18 and Anugrahaet al13 to ensure that the initial composition has not changedsignificantly when the equilibrium condition is achieved Thedetailed apparatus was shown in our previous publication1

The equipmentrsquos main parts are the ebulliometer cellcondenser and some auxiliaries such as a vacuum pump(VALUE VG140) for eliminating the gas impurities from theebulliometer magnetic stirrer temperature controller andindicator (AUTONICS TC4S) RTD Pt 100 thermocouplewith an accuracy of plusmn01 K pressure gauge (AUTONICSPSAN) with an accuracy of plusmn01 kPa and ambient pressuregauge (Lutron MHB 382SD)The experimental procedure was described in detail in the

previous work19 Initially each pure componentrsquos vaporpressure was measured by charging the pure component intothe equilibrium cell and vacuum conditions were created byturning on the vacuum pump The pressure at each desiredtemperature was recorded as the vapor pressure The vaporpressure data for the two binary systems ie 2-butanol + DECand tert-butanol + DEC were obtained by the followingprocedure The experiment was begun by introducing 225 mLof a mixture having a known composition into the ebulliometercell Cooling water was circulated in the condenser and thenthe magnetic stirrer was switched on to stir the solution to mixevenly After that the vacuum pressure was created in theequilibrium cell by turning on the vacuum pump The heatingsystem was then lit to heat the solution according to thedesired temperature This heating causes some of the liquid toevaporate The temperature and pressure in the system areshown by temperature indicator and pressure gaugerespectively The pressure is recorded when the temperaturereaches a constant value The apparatus was validated bycomparing the measured pure vapor pressures of 2-butanoltert-butanol and DEC with literature data calculated using theWagner and Antoine equations with parameter constantsobtained from Poling et al20 and Luo et al21 respectively

Based on this experiment the data obtained are the molefractions of component i in the liquid phase (xi) theequilibrium pressure (P) and the temperature (T) Theexperimental data are correlated with 3 activity coefficientmodels ie the Wilson NRTL and UNIQUAC equationsand the binary interaction parameter pairs of each equationwere optimized using the experimental data obtained in thiswork

3 RESULTS AND DISCUSSION31 Reliability of Apparatus The validity of the

experimental apparatus was checked by comparing theexperimental pure vapor pressures of 2-butanol tert-butanoland DEC with the literature pure vapor pressures of 2-butanoland tert-butanol calculated from the Wagner equation(equation 1) and that of DEC calculated from the Antoineequation (equation 2) The parameter constants of the Wagnerand Antoine equations are listed in Tables 2 and 3respectively

Pa b c d

Tln (kPa)

15 25 5

r

τ τ τ τ= + + +(1)

P AB

T Clog (kPa)

(K)10 = minus+ (2)

where τ = 1 minus Tr and Tr = TTc

A comparison between the experimental data and literaturedata obtained from the Wagner or Antoine equations arepresented in Table 4 and the average absolute deviation

Table 1 Pure Chemicals Description and Properties

component supplier CAS reg noMWa

(gmol) purityb

2-butanol Merck Germany 78minus92minus2 7412 09900tert-butanol Merck Germany 75minus65minus0 7412 09950diethylcarbonate

Wuhan FortunaChemical Co China

105minus58minus8 11813 09992

aMW = molecular weight bPurity from supplier in mass fraction

Table 2 Wagner Parameter of 2-Butanol and tert-Butanol20

component a b c d

2-butanol minus80982 164406 minus749 minus52735tert-butanol minus84792 247845 minus9279 minus25399

Table 3 Antoine Parameter of DEC21

component A B C

DEC 5883 122377 minus84304

Table 4 Vapor Pressures of 2-Butanol tert-Butanol andDECa

2-butanol tert-butanol DEC

TK Pexp Plit Pexp Plit Pexp Plit

(kPa)30315 322 320 764 766 196 19530565 374 376 884 892 227 22630815 443 441 1032 1034 257 26131065 513 516 1182 1196 296 29931315 604 600 1371 1378 346 34331565 705 697 1571 1583 396 39231815 804 806 1803 1813 445 44632065 934 930 2055 2071 504 50732315 1081 1069 2356 2359 582 575AAD 06 06 08

aThe standard uncertainty of measurements are u(T) = 01 K andu(P) = 03 kPa where u(T) is the uncertainty in temperature andu(P) is the uncertainty in pressure

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2442

(AAD) between the experimental data and calculated vaporpressures were obtained by the following equation

n

P P

PAAD

1100

i

n

1

exp lit

litsum=

minustimes

= (3)

where Pexp is the vapor pressure obtained from the experimentPlit is the literature value and n is the number of data points Aspresented in Table 4 good agreement was shown by all purecomponents with a 06 AAD for 2-butanol 06 AAD fortert-butanol and 08 AAD for DEC The result indicates thatthe ebulliometer used in this experiment is reliable32 Vapor Pressure Data Measurement and Correla-

tion The vapor pressure data obtained in this work for the 2-butanol (1) + DEC (2) and tert-butanol (1) + DEC (2)systems are presented in Tables 5 and 6 respectively The

experimental equilibrium temperatures were set in the range of30315minus32315 K to accommodate common fuel storageconditions in tropical countries This is done in the absence of

changes in the pressure temperature and composition of thesystemIn vaporminusliquid equilibrium conditions the liquid-compo-

nent fugacity is equal to the vapor-component fugacity Due tolow vapor pressure of the mixture the ideal gas law is appliedConsidering the differences between the alcohol and DECmolecules the liquid becomes a nonideal mixture Thereforean activity coefficient of component i γi is used as a nonidealfactor for the liquid phase in solution Accordingly thecalculation of the vapor pressure of the mixture is based on thefollowing equation

P x Pi

m

i i1

isatsum γ=

= (4)

where m is the number of components in the mixture P is thevapor pressure in the equilibrium condition xi is thecomponent i mole fraction in the liquid phase γi is the activitycoefficient of component i and Pi

sat is the vapor pressure ofcomponent i Data correlation is carried out by using theWilson NRTL and UNIQUAC equations The binaryinteraction parameters are determined using Barkerrsquos method22

by minimizing the following objective function (OF)

OF (P P )i

n

i i1

cal exp2sum= minus

= (5)

where n is the number of data points and the subscripts cal andexp indicate the calculated and experimental valuesrespectively The values of the AAD are presented in Table 7

The experimental data were well-correlated with the WilsonNRTL and UNIQUAC activity coefficient models givingaverage absolute deviations in the range of 18minus19 Thecorrelation results were plotted in Figure 1 and Figure 2Figure 1 shows that the increasing temperature causes a rise

in the vapor pressure of the 2-butanol + DEC mixture Atconstant temperature increasing the content of 2-butanol (x1)leads to an increase of equilibrium pressure of the mixture tothe peak point and then a decrease in the 2-butanol vaporpressureFigure 2 shows that the increasing temperature causes a rise

in the vapor pressure of the mixture In addition at constanttemperature the vapor pressure of the mixture increases withthe increasing content of tert-butanol (x1) Therefore thepressure of the mixture is between the pure vapor pressures ofeach component

Table 5 Experimental VLE data for 2-Butanol (1) + DEC(2)a

PexpkPa

x1 30315 K 30815 K 31315 K 31815 K 32315 K

0 196 257 346 445 58201 272 373 474 616 78902 293 402 542 701 86203 298 428 578 749 94104 317 431 561 742 96105 323 452 593 792 99306 34 449 588 775 102207 305 444 601 8 106708 341 461 603 796 105609 327 467 626 807 10761 322 443 604 804 1081

aThe standard uncertainty of measurements are u(xi) = 00002 u(T)= 01 K and u(P) = 03 kPa where u(xi) is the uncertainty ofcomponent i of the liquid phase mole fractions u(T) is theuncertainty in temperature and u(P) is the uncertainty in pressure

Table 6 Experimental VLE Data for tert-Butanol (1) + DEC(2)a

PexpkPa

x1 30315 K 30815 K 31315 K 31815 K 32315 K

0 196 257 346 445 58201 362 461 571 76 99702 437 567 751 1005 127503 534 714 895 1138 145404 626 754 972 1312 166805 633 802 1055 142 179606 662 846 115 1526 195707 71 897 1202 1578 202108 74 94 1257 1635 210309 767 969 1291 1736 22061 764 1032 1371 1803 2356

aThe standard uncertainty of measurements are u(xi) = 00002 u(T)= 01 K and u(P) = 03 kPa where u(xi) is the uncertainty ofcomponent i of the liquid phase mole fractions u(T) is theuncertainty in temperature and u(P) is the uncertainty in pressure

Table 7 Parameter and AADs of Correlation Results

2-Butanol(1) + DEC(2) System

Wilson NRTL UNIQUAC

a12(Jmol)

a21(Jmol)

α(minus)

b12(Jmol)

b21(Jmol)

Δu12(Jmol)

Δu21(Jmol)

51428 minus9777 03 minus10506 49176 minus12239 25901AAD = 19 AAD = 18 AAD = 19

tert-butanol(1) + DEC(2) system

Wilson NRTL UNIQUAC

a12(Jmol)

a21(Jmol)

α(minus)

b12(Jmol)

b21(Jmol)

Δu12(Jmol)

Δu21(Jmol)

16342 9713 03 14669 9951 1081 4603AAD = 19 AAD = 19 AAD = 19

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2443

The composition of the vapor can be obtained based on theconcept of equilibrium by using the values of the activitycoefficients obtained from the Wilson NRTL and UNIQUACequations The result of calculated of y1 is then plotted inFigures 1 and 2According to Figure 1 the correlation results for 2-butanol +

DEC showing that at the point of x1 above 06 the x1 has samevalue of y1 where it could be suspected as azeotrope pointHowever due to the differences between the maximumequilibrium pressures and the vapor pressure of pure 2-butanolare smaller than the uncertainty of pressure measurement (03kPa) the azeotrope behavior still could not be justified for thissystem The small vapor pressure differences indicate that theeffect of DEC at the point of x1 above 06 is insignificant Thevapor pressure is greatly affected by 2-butanol

4 CONCLUSIONSAn experiment was successfully conducted to obtain accuratevaporminusliquid equilibrium data for binary systems of 2-butanol

(1) + DEC (2) and tert-butanol (1) + DEC (2) at 30315minus32315 K The experimental data for the 2-butanol (1) + DEC(2) system were well-correlated using the Wilson NRTL andUNIQUAC models with AADs in the vapor pressure of 1918 and 19 respectively For the tert-butanol (1) + DEC (2)system correlation using the Wilson NRTL and UNIQUACmodels gave the same AAD of 19 The systems studied showpositive deviations from Raoultrsquos law in the temperature rangestudied

AUTHOR INFORMATION

Corresponding AuthorGede Wibawa minus Department of Chemical Engineering Facultyof Industrial Technology Sepuluh Nopember Institute ofTechnology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia orcidorg0000-0002-1255-9210 Phone +62-31-5946240 Email gwibawachem-engitsacid Fax +62-31-5999282

AuthorsAnnas Wiguno minus Department of Chemical Engineering Facultyof Industrial Technology Sepuluh Nopember Institute ofTechnology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia

Rizky Tetrisyanda minus Department of Chemical EngineeringFaculty of Industrial Technology Sepuluh Nopember Instituteof Technology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia

Complete contact information is available athttpspubsacsorg101021acsjced9b01079

NotesThe authors declare no competing financial interest

ACKNOWLEDGMENTS

The author are grateful to Kementrian Riset Teknologi danPendidikan Tinggi Sepuluh Nopember Institute of Technol-ogy (ITS) for a research grant with the PUPT research schemaunder Contract 622PKSITS2017 The authors would liketo thank Andika Dwimasputra and Naomi Hurayah Aden forexperimental work

REFERENCES(1) Oktavian R Amidelsi V Rasmito A Wibawa G VaporPressure Measurements of Ethanolminusisooctane and 1-Butanolminusisooctane Systems Using a New Ebulliometer Fuel 2013 107 47minus51(2) Hull A Kronberg B van Stam J Golubkov I Kristensson JVaporminusLiquid Equilibrium of Binary Mixtures 1 Ethanol + 1-Butanol Ethanol + Octane 1-Butanol + Octane J Chem Eng Data2006 51 1996minus2001(3) Moxey B G Cairns A Zhao H A Comparison of Butanol andEthanol Flame Development in an Optical Spark Ignition Engine Fuel2016 170 27minus38(4) Varol Y Oner C Oztop H F Altun S Comparison ofMethanol Ethanol or n-Butanol Blending with Unleaded Gasoline onExhaust Emissions of an SI Engine Energy Sources Part A 2014 36938minus948(5) Procentese A Guida T Raganati F Olivieri G Salatino PMarzocchella A Process Simulation of Biobutanol Production fromLignocellulosic Feedstocks Chem Eng Trans 2014 38 343minus348(6) Dunn B C Guenneau C Hilton S A Pahnke J Eyring EM Dworzanski J Meuzelaar H L C Hu J Z Solum M SPugmire R J Production of Diethyl Carbonate from Ethanol and

Figure 1 Diagram of Pminusx1minusy1 for 2-butanol (1) + DEC (2) system atvarious temperatures

Figure 2 Diagram of Pminusx1minusy1 for tert-butanol (1) + DEC (2) systemat various temperatures

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2444

Carbon Monoxide over a Heterogeneous Catalyst Energy Fuels 200216 177minus181(7) Pacheco M A Marshall C L Review of Dimethyl Carbonate(DMC) Manufacture and Its Characteristics as a Fuel AdditiveEnergy Fuels 1997 11 2minus29(8) M Eyring E L C Meuzelaar H Pugmire R Synthesis andTesting of Diethyl Carbonate as a Possible Diesel Fuel Additive 2000(9) Moran M Zogorski J Squillace P MTBE and GasolineHydrocarbons in Ground Water of the United States 2005 Vol 43(10) Rodriacuteguez A Canosa J Domiacutenguez A Tojo J IsobaricPhase Equilibria of Diethyl Carbonate with Five Alcohols at 1013KPa J Chem Eng Data 2003 48 86minus91(11) Ho H-Y Shu S-S Wang S-J Lee M-J Isothermal(Vapour+liquid) Equilibrium (VLE) for Binary Mixtures ContainingDiethyl Carbonate Phenyl Acetate Diphenyl Carbonate or EthylAcetate J Chem Thermodyn 2015 91 35minus42(12) Pillay J Iwarere S A Raal J D Naidoo P RamjugernathD Isothermal Vapour-Liquid Equilibrium Data for the Binary Systems2-Propanone + (2-Butanol or Propanoic Acid) Fluid Phase Equilib2017 433 119minus125(13) Anugraha R P Altway A Wibawa G Measurement andCorrelation of Isothermal Binary VaporminusLiquid Equilibrium forDiethyl Carbonate + Isooctanen-HeptaneToluene Systems JChem Eng Data 2017 62 2362minus2366(14) Wilson G M Vapor-Liquid Equilibrium XI A NewExpression for the Excess Free Energy of Mixing J Am Chem Soc1964 86 127minus130(15) Renon H Prausnitz J M Local Composition Thermody-namic Excess Functions for Liquid Mixtures AIChE J 1968 14 135minus144(16) Prausnitz J M Abrams D S Statistical Thermodynamics ofLiquid Mixtures A New Expression for the Excess Gibbs Energy ofPartly or Completely Miscible Systems AIChE J 1975 21 116minus128(17) Wibawa G Mustain A Akbarina M F Ruslim R MIsothermal VaporminusLiquid Equilibrium of Ethanol + Glycerol and 2-Propanol + Glycerol at Different Temperatures J Chem Eng Data2015 60 955minus959(18) Wiguno A Mustain A Irwansyah W F E Wibawa GIsothermal Vapor-Liquid Equilibrium of Methanol + Glycerol and 1-Propanol + Glycerol Indones J Chem 2018 16 111minus116(19) Anugraha R P Wiguno A Altway A Wibawa G VaporPressures of Diethyl Carbonate + Ethanol Binary Mixture and DiethylCarbonate + Ethanol + IsooctaneToluene Ternary Mixtures atTemperatures Range of 303 15 minus 323 15 K J Mol Liq 2018 26432minus37(20) Poling B E Prausnitz J M OrsquoConnel J P The Properties ofGases and Liquids 5th ed McGraw-Hill New York 2001(21) Luo H-P Xiao W-D Zhu K-H Isobaric VaporminusliquidEquilibria of Alkyl Carbonates with Alcohols Fluid Phase Equilib2000 175 91minus105(22) Barker J A Determination of Activity Coefficients from TotalPressure Measurements Aust J Chem 1953 6 207minus210

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2445

Jenis Pembelanjaan Item Satuan VolBiaya

SatuanTotal

Pelaporan Luaran Wajib dan Luaran Tambahan

Publikasi artikel di Jurnal Internasional

Paket 1 20000000 20000000

6 HASIL PENELITIAN

A RINGKASAN Tuliskan secara ringkas latar belakang penelitian tujuan dan tahapan metode penelitian luaran yang ditargetkan serta uraian TKT penelitian

Karbon dioksida (CO2) merupakan salah satu gas yang diketahui sebagai sumber utama dari efek pemanasan global Hal ini juga berakibat langsung pada peningkatan jumlah dari materi partikulat dan senyawa karbon di udara Senyawa CO2 berpotensi untuk menjadi bahan baku produksi senyawa bernilai ekonomi seperti dialkyl carbonate Dialkyl carbonate memiliki manfaat salah satunya adalah sebagai zat aditif pada bahan bakar untuk mengurangi emisi dari partikulat dan senyawa karbon Sehingga dengan konsep pemanfaatan zat emisi yang dihasilkan oleh industri penghasil energi dapat diperoleh zat digunakan sebagai bahan tambahan agar bahan bakar berbasis fosil dapat menjadi lebih sempurna Dengan kata lain tidak hanya mengurangi emisi karbon dari sektor perindustrian tetapi jadi dari sektor penggunaan bahan bakar tersebut Penelitian ini bertujuan untuk memanfaatkan zat emisi karbon dioksida menjadi zat bernilai ekonomi dialkyl carbonate melalui reaksi langsung bersama alkohol menggunakan katalis homogen dan heterogen Skema dari penelitian ini dimulai dari data literatur studi menganai pemanfaatan CO2 menajdi bahan baku dialkyl carbonate Studi dilajutkan dengan menganalisa efek dari berbagai jenis reaktan baik alkohol dan agen pendehidrasi untuk mendapatkan mekanisme reaksi sintesa Setelah terbentuk pola sintesa maka dilakukan pengamatan mengenai pengaruh jenis katalis terhadap performa sintesa berupa yield konversi dan selektivitas katalis yang kemudian data tersebut digunakan untuk optimasi kondisi operasi Dari hasil penelitian ini diharapkan dapat menghasilkan yield produk dialkyl carbonate khususnya Diethyl carbonate dan Dimethyl Carbonate yang tinggi sehingga terlihat adanya potensi yang tinggi juga dalam pemanfaatan CO2 sebagai bahan baku sintesis dialkyl carbonate dan rute mekanisme reaksi terbaik untuk melakukan sintesa dialkyl carbonate Konsep pemanfaatan CO2 menjadi bahan baku pembuatan senyawa lain merupakan studi yang telah banyak dilakukan oleh berbagai peneliti Penelitian ini adalah dalam bentuk TKT tingkat 3 dimana pembuktian konsep atau karakteristik sintesa dialkyl carbonate perlu dianalisa secara eksperimental Luaran utama yang ditargetkan dalam penelitian ini adalah jurnal internasional terindeks scopus seperti J Chem Eng Data (ACS) Indonesia Journal of Chemistry (IJC) dan lain sebagainya Dari hasil penelitian ini dapat diketahui bahwa penggunaan KI-Zeolite dalam sintesis Dimethyl Carbonate dengan raw material berupa CO2 methanol dan agen pendehidrasi propylene oxide menghasilkan yield DMC tertinggi yaitu sebesar 3471 dengan waktu reaksi selama 2 jamSedangkan pada sintesis DMC menggunakan butylene oxide dan katalis KIEtONa didapatkan yield tertinggi yaitu sebesar 3684 dengan waktu reaksi selama 4 jam Berdasarkan sintesis DEC dengan menggunakan epoksida propylene oxide pada eksperimen sebelumnya juga dapat diketahui bahwa penggunaan zeolite sebagai katalis juga memiliki hasil yield DEC yang lebih tinggi Sedangkan berdasarkan hasil sintesis DMC dengan menggunakan katalis KIEtONa menggunakan agen pendehidrasi butylene oxide didapatkan hasil yield tertinggi dengan waktu reaksi yang lebih lama dibandingkan dengan penggunaan katalis KIZeolite pada sintesis DMC menggunakan propylene oxide Selain itu karena harganya yang lebih murah maka Zeolite disini dapat disimpulkan berpotensi digunakan sebagai pengganti katalis EtONa

B KATA KUNCI Tuliskan maksimal 5 kata kunci

Karbondioksida Dimethyl Carbonate Sintesis Katalis

Pengisian poin C sampai dengan poin H mengikuti template berikut dan tidak dibatasi jumlah kata atau halaman namun disarankan seringkas mungkin Dilarang menghapusmemodifikasi template ataupun menghapus penjelasan di setiap poin

C HASIL PELAKSANAAN PENELITIAN Tuliskan secara ringkas hasil pelaksanaan penelitian yang telah dicapai sesuai tahun pelaksanaan penelitian Penyajian dapat berupa data hasil analisis dan capaian luaran (wajib dan atau tambahan) Seluruh hasil atau capaian yang dilaporkan harus berkaitan dengan tahapan pelaksanaan penelitian sebagaimana direncanakan pada proposal Penyajian data dapat berupa gambar tabel grafik dan sejenisnya serta analisis didukung dengan sumber pustaka primer yang relevan dan terkini

Pengisian poin C sampai dengan poin H mengikuti template berikut dan tidak dibatasi jumlah kata atau halaman namun disarankan seringkas mungkin Dilarang menghapusmemodifikasi template ataupun menghapus penjelasan di setiap poin

Sumber energi berbasis fosil (minyak bumi gas alam dan batu bara) merupakan sumber

energi utama yang digunakan sebagian besar masyarakat Indonesia Dalam perkembangannya

konsumi sumber energi berbasis fosil akan semakin meningkat pada beberapa tahun kedepan

[1] Akan tetapi sumber daya energi berbasis fosil dikenal sebagai emitor karbon utama Hal

ini menunjukkan bahwa saat ini industri minyak bumi gas alam dan batu bara memiliki

tanggung jawab dan tantangan nyata dalam pemenuhan kebutuhan energi mendatang dengan

menghadapi dampak dan isu lingkungan

Alternatif yang dapat dilakukan adalah dengan memberikan nilai tambah pada karbon yaitu

dengan pemanfaatan karbon dioksida (CO2) sehingga industri energi berbasis fosil akan

menjadi lebih ramah lingkungan dan tetap memenuhi kebutuhan energi nasional Pemanfaatan

CO2 yang dihasilkan dari pembakaran atau pengolahan sumber energi berbasis fosil dapat

dilakukan dengan mengkonversi CO2 menjadi berbagai macam produk kimia yang bernilai

ekonomi Sebagai contoh adalah dry reforming CH4 dengan CO2 untuk memproduksi syngas

transformasi CO2 menjadi cyclic carbonates melalui cycloaddition oxidative carboxylation

olefin dengan CO2 sintesis metanol dari CO2 dan H2 serta masih banyak lainnya Dari berbagai

macam metode tersebut sintesa karbonat organik dari alkohol dan CO2 memiliki daya tarik

yang tinggi karena produk komersial yang dihasilkan bernilai tinggi dan banyak digunakan

pada berbagai industri

Organic carbonate merupakan salah satu bahan kimia alami yang sangat penting di abad ini

Karena karakteristiknya seperti polaritas ramah lingkungan dan tidak beracun organic

carbonate ini berpotensi untuk menggantikan bahan kimia yang berbahaya Selain ituSintesa

organic carbonate membantu dalam proses mitigasi dan penggunaan CO2 seperti senyawa

dialkyl carbonate khususnya Diethyl Carbonate dan Dimethyl Carbonate Senyawa DEC dan

DMC yang disintesis dalam eksperimen ini merupakan senyawa organic carbonate yang paling

penting DEC dan DMC ini merupakan zat aditif terbarukan yang dapat ditambahkan ke bahan

bakar untuk meningkatkan pembakaran dan mengurangi emisi gas buang [2]

Dari uraian diatas dapat diamati bahwa produksi DEC dan DMC dengan pemanfaatan CO2

menjadi produk yang bernilai ekonomi merupakan proses yang menarik CO2 merupakan salah

satu permasalahan yang timbul akibat peningkatan konsumsi energi Hal ini dikarenakan

peningkatannya yang sangat besar di bumi memiliki tanggung jawab atas fenomena gas rumah

kaca yang terjadi Namun berdasarkan beberapa penelitian CO2 dapat dimanfaatkan untuk

menghasilkan bahan kimia lainnya seperti DEC dan DMC dimana bahan ini biasa digunakan

sebagai zat aditif dalam bahan bakar yang lebih aman dan ramah lingkungan

Menurut berbagai penelitian yang pernah dilakukan DEC dan DMCdapat disintesa

dengan berbagai bahan baku serta metode Pertama DEC dapat disintesa dari urea[3ndash5]CO[6-

10] DMC[11] Ethyl Carbamate[12ndash15] ethylene carbonate[16] Selain itu DEC dan DMC

juga pernah dilaporkan dalam bebrapa penelitian bahwa senyawa ini dapat dihasilkan dari

bahan baku CO2[21ndash26]

Akan tetapi dalam sejarah penelitian yang telah ada dengan berbagai metode khususnya

untuk sintesa langsung kondisi operasi dan katalis yang digunakan tersebut masih belum

menunjukkan hasil yang maksimal Sehingga dalam penelitian ini telah dilakukan sintesis

C HASIL PELAKSANAAN PENELITIAN Tuliskan secara ringkas hasil pelaksanaan penelitian yang telah dicapai sesuai tahun pelaksanaan penelitian Penyajian dapat berupa data hasil analisis dan capaian luaran (wajib dan atau tambahan) Seluruh hasil atau capaian yang dilaporkan harus berkaitan dengan tahapan pelaksanaan penelitian sebagaimana direncanakan pada proposal Penyajian data dapat berupa gambar tabel grafik dan sejenisnya serta analisis didukung dengan sumber pustaka primer yang relevan dan terkini

DEC dan DMC dari CO2 menggunakan metode sintesa langsung dan katalis homogen dan

heterogen Sehingga hasil dari penelitian ini dapat dijadikan sebagai acuan dalam pemanfaatan

zat emisi karbon dioksida menjadi zat bernilai ekonomi DEC ataupun DMC melalui reaksi

langsung bersama etanol menggunakan katalis homogen dan heterogen

Setelah didapatkan hasil sebelumnya pada sintesis DEC pada eksperimen ini juga

dilakukan sintesis DMC dengan menggunakan metode kondisi operasi yang sama dan

bahan baku berupa CO2 agar dapat dibandingkan apakah metode dan kondisi operasi yang

sama yang diterapkan pada sintesis DEC sebelumnya juga dapat diaplikasikan untuk

sintesis DMC

Pada eksperimen sintesis dimethyl carbonate (DMC) didapatkan data yang diamati

secara langsung yaitu berupa waktu suhu dan tekanan Waktu suhu dan tekanan ini diamati

selama jalannya proses sintesis untuk memastikan adanya kebocoran pada reaktor serta

kestabilan suhu reaktor selama eksperimen Berikut ini pada Tabel 1 merupakan data waktu

suhu dan tekanan rata-rata yang didapatkan pada setiap eksperimen sintesis dimethyl

carbonate

Tabel 1 Data waktu suhu dan tekanan rata-rata pada setiap eksperimen sintesis dimethyl

carbonate

Waktu (menit) Suhu (oC) Tekanan (bar)

0 169 40

30 169 40

60 169 40

90 167 40

120 167 40

150 169 40

180 170 40

210 170 40

240 168 40

270 170 40

300 169 40

Kemudian setelah dilakukan eksperimen sintesis DMC ini produk yang dihasilkan

dianalisa secara kualitatif menggunakan GC-MS dan secara kuantitatif menggunakan GC

Hasil analisa kualitatif menggunakan GC-MS pada sintesis DMC dari CO2 menggunakan agen

pendehidrasi senyawa epoksida berupa propylene oxide menghasilkan beberapa senyawa yang

terkandung dalam produknya diantaranya yaitu DMC Propylene carbonate dan Propylene

Glycol Sedangkan hasil analisa kualitatif menggunakan GC-MS pada sintesis DMC dari CO2

menggunakan agen pendehidrasi senyawa epoksida berupa butylene oxide menghasilkan

beberapa senyawa yang terkandung dalam produknya diantaranya yaitu DMC Butylene

carbonate dan Butylene glycol Hal ini telah sesuai dengan reaksi kimia dari sintesis DMC

pada literature dimana DMC merupakan produk utama dari sintesis Propylene carbonate atau

Butylene carbonate yang merupakan produk tengahnya dan Propylene Glycol atau Butylene

glycol yang merupakan produk sampingnya[26]

Selain dilakukan analisa secara kualitatif Produk DMC ini juga dilakukan analisa

secara kuantitatif menggunakan GC Berikut ini pada Tabel 2 dipaparkan mengenai hasil

analisa kuantitatif dari sintesis DMC dari CO2 yang direaksikan dengan methanol epoksida

berupa propylene oxide atau butylene oxide serta katalis homogen dan katalis heterogen

Jenis

Epoksida

Waktu reaksi

(jam) Katalis

Yield

DMC

()

Konversi

Reaksi ()

Propylene

Oxide

1

KI-EtONa

1051 1051

2 1999 1999

3 2683 2683

4 2681 2681

5 2852 2852

1

KI-Zeolite

892 893

2 3471 3471

3 2338 2338

4 1586 1586

5 1419 1419

Butylene

Oxide

1

KI-EtONa

1377 1377

2 2206 2206

3 2426 2426

4 3684 3684

5 2159 2159

Dari hasil penelitian dapat diketahui bahwa penggunaan KI-Zeolite dalam sintesis

Dimethyl Carbonate menggunakan agen pendehidrasi propylene oxide dan katalis KIZeolite

menghasilkan yield DMC tertinggi yaitu sebesar 3471 dengan waktu reaksi selama 2 jam

Sedangkan untuk sintesis DMC menggunakan agen pendehidrasi butylene oxide dan katalis

KIEtONa menghasilkan yield DMC tertinggi sebesar 3684 dengan waktu reaksi sebesar 4

jam Berdasarkan hasil eksperimen sintesis DMC menggunakan katalis propylene oxide disini

Kemudian berdasarkan sintesis DEC dengan menggunakan epoksida propylene oxide pada

eksperimen sebelumnya juga dapat diketahui bahwa penggunaan zeolite juga memiliki hasil

yield DEC yang lebih tinggi Selain itu berdasarkan hasil eksperimen sintesis DMC

menggunakan agen pendehidrasi berupa butylene oxide dan katalis KIEtONa yield tertinggi

didapatkan dengan waktu reaksi yang lebih lama dibandingkan dengan hasil sintesis DMC

yang menggunakan katalis KIZeolite Sehingga penggunaan Zeolite membuktikan bahwa

bahan ini berpotensi untuk digunakan sebagai pengganti katalis EtONa karena harganya yang

jauh lebih murah

Berdasarkan dari hasil penelitian ini telah di dapatkan beberapa luaran wajib dan tambahan diantaranya

yaitu untuk luaran wajib yang telah dicapai adalah berupa jurnal internasional yang berjudul ldquoVapor

Pressure of 2-Butanol+Diethyl Carbonate and tert-Butanol + Diethyl Carbonate at The

Temperature 30315-32315Krdquo yang telah dipublikasikan di Journal of Chemical amp

Engineering Data pada tahun 2020 dan draft manuscript yang berjudul ldquoCatalytic Synthesis of

Diethyl Carbonate from Carbon dioxide and Ethanol as Raw Material using KISodium

Ethoxide and KIMolecular Sieve as Catalystrdquo dimana nantinya akan disubmit pada chemical

engineering journal Sedangkan untuk luaran tambahan yang telah dicapai adalah berupa Manuscript

dengan judul ldquoThe Effect of Temperature Reaction in Catalytic Synthesis of Diethyl Carbonate

via One Pot Reactionrdquo yang akan diseminarkan pada 4th International Conference on Chemical

amp Material Engineering (ICCME 2020) yang akan diselenggarakan pada 6-7 Oktober 2020

melalui Video Meeting via ZOOM

D STATUS LUARAN Tuliskan jenis identitas dan status ketercapaian setiap luaran wajib dan luaran tambahan (jika ada) yang dijanjikan pada tahun pelaksanaan penelitian Jenis luaran dapat berupa publikasi perolehan kekayaan intelektual hasil pengujian atau luaran lainnya yang telah dijanjikan pada proposal Uraian status luaran harus didukung dengan bukti kemajuan ketercapaian luaran sesuai dengan luaran yang dijanjikan Lengkapi isian jenis luaran yang dijanjikan serta mengunggah bukti dokumen ketercapaian luaran wajib dan luaran tambahan melalui Simlitabmas mengikuti format sebagaimana terlihat pada bagian isian luaran

Untuk luaran wajib ada dua yaitu

1 Jurnal internasional yang berjudul ldquoVapor Pressure of 2-Butanol + Diethyl Carbonate

and tert-Butanol + Diethyl Carbonate at The Temperature 30315-32315Krdquo yang telah

dipublikasikan di Journal of Chemical amp Engineering Data pada tahun 2020 (Status

Published)

2 Manuscript yang berjudul ldquoCatalytic Synthesis of Diethyl Carbonate from Carbon

dioxide and Ethanol as Raw Material using KISodium Ethoxide and KIMolecular

Sieve as Catalystrdquo dimana nantinya akan disubmit pada chemical engineering journal

(Status Draft)

Sedangkan untuk luaran tambahan yaitu

Manuscript dengan judul ldquoThe Effect of Temperature Reaction in Catalytic Synthesis of

Diethyl Carbonate via One Pot Reactionrdquo yang akan diseminarkan pada 4th International

Conference on Chemical amp Material Engineering (ICCME 2020) yang akan diselenggarakan

pada 6-7 Oktober 2020 melalui Video Meeting via ZOOM

E PERAN MITRA Tuliskan realisasi kerjasama dan kontribusi Mitra baik in-kind maupun in-cash (jika ada) Bukti pendukung realisasi kerjasama dan realisasi kontribusi mitra dilaporkan sesuai dengan kondisi yang sebenarnya Bukti dokumen realisasi kerjasama dengan Mitra diunggah melalui Simlitabmas mengikuti format sebagaimana terlihat pada bagian isian mitra

F KENDALA PELAKSANAAN PENELITIAN Tuliskan kesulitan atau hambatan yang dihadapi selama melakukan penelitian dan mencapai luaran yang dijanjikan termasuk penjelasan jika pelaksanaan penelitian dan luaran penelitian tidak sesuai dengan yang direncanakan atau dijanjikan

Kendala pada pelaksanaan penelitian ini berada pada sulitnya menjaga kondisi reaktan yang

ada pada reaktor karena adanya faktor kesalahan teknis dalam menutup reaktor sehingga ada

kebocoran sedikit pada reaktor yang menyebabkan prosedur eksperimen harus diulangi

kembali sedangkan hambatan yang dihadapi selama melakukan penelitian adalah supplay

listrik yang tidak menentu pada saat pelaksanaan eksperimen menghasilkan supplay panas pada

electrical heater yang berbeda-beda setiap waktunya sehingga suhu reaktor sangat sulit untuk

dikendalikan Selain itu pada masa pandemic ini juga ada hambatan pada waktu penelitian

yang sangat terbatas sehingga pengerjaan penelitian juga menjadi terhambat

G RENCANA TINDAK LANJUT PENELITIAN Tuliskan dan uraikan rencana tindaklanjut penelitian selanjutnya dengan melihat hasil penelitian yang telah diperoleh Jika ada target yang belum diselesaikan pada akhir tahun pelaksanaan penelitian pada bagian ini dapat dituliskan rencana penyelesaian target yang belum tercapai tersebut

Penelitian selanjutnya akan difokuskan untuk sintesis Dimethyl Carbonate dengan agen

pendehidrasi berupa butylene oxide dan jenis katalis yang berbeda dan eksperimen

kesetimbangan uap-cair antar komponennya yang ada di produk

H DAFTAR PUSTAKA Penyusunan Daftar Pustaka berdasarkan sistem nomor sesuai dengan urutan pengutipan Hanya pustaka yang disitasi pada laporan akhir yang dicantumkan dalam Daftar Pustaka

1 Hanpattanakit P Pimonsree L Jamnongchob A Boonpoke A 2018 CO2 Emission

and Reduction of Tourist Transportation at Kok Mak Island Thailand Chemical

Engineering Transactions 63 37-42

2 K Shukla and V C Srivastava ldquoRSC Advances Diethyl carbonate  critical review of

synthesis routes catalysts used and engineering aspectsrdquo RSC Adv vol 6 pp 32624ndash

32645 201

3 D Wang B Yang X Zhai L Zhou Synthesis of diethyl carbonate by catalytic alcoholysis of urea 88 (2007) 807ndash812 doi101016jfuproc200704003

4 S Xin L Wang H Li K Huang F Li Synthesis of diethyl carbonate from urea and ethanol over lanthanum oxide as a heterogeneous basic catalyst Fuel Process Technol 126 (2014) 453ndash459 doi101016jfuproc201405029

5 K Shukla VC Srivastava Diethyl carbonate synthesis by ethanolysis of urea using Ce-Zn oxide catalysts Fuel Process Technol 161 (2017) 116ndash124 doi101016jfuproc201703004

6 P Zhang S Wang S Chen Z Zhang X Ma The effects of promoters over PdCl 2 -CuCl 2 HMS catalysts for the synthesis of diethyl carbonate by oxidative carbonylation of ethanol 143 (2008) 220ndash224 doi101016jcej200804008

7 DN Briggs G Bong E Leong K Oei G Lestari AT Bell Effects of support composition and pretreatment on the activity and selectivity of carbon-supported PdCu n Cl x catalysts for the synthesis of diethyl carbonate J Catal 276 (2010) 215ndash228 doi101016jjcat201008004

8 P Zhang X Ma Catalytic synthesis of diethyl carbonate by oxidative carbonylation of ethanol over PdCl 2 Cu-HMS catalyst Chem Eng J 163 (2010) 93ndash97 doi101016jcej201007025

9 D Zhu F Mei L Chen W Mo T Li G Li An efficient catalyst Co ( salophen ) for synthesis of diethyl carbonate by oxidative carbonylation of ethanol Fuel 90 (2011) 2098ndash2102 doi101016jfuel201102023

10 P Zhang Y Zhou M Fan P Jiang Catalytic synthesis of diethyl carbonate with supported Pd ‐ Cu bimetallic nanoparticle catalysts  Cu ( I ) as the active species Chinese J Catal 36 (2015) 2036ndash2043 doi101016S1872-2067(15)60973-1

11 C Murugan HC Bajaj Synthesis of diethyl carbonate from dimethyl carbonate and ethanol using KF Al 2 O 3 as an ef fi cient solid base catalyst Fuel Process Technol 92 (2011) 77ndash82 doi101016jfuproc201008023

12 GUO Lian Z Xinqiang AN Hualiang W Yanji Catalysis by Lead Oxide for Diethyl Carbonate Synthesis from Ethyl Carbamate and Ethanol Chinese J Catal 33 (2012) 595ndash600 doi101016S1872-2067(11)60373-2

13 H An X Zhao L Guo C Jia B Yuan Y Wang Applied Catalysis A  General Synthesis of diethyl carbonate from ethyl carbamate and ethanol over ZnO-PbO catalyst Applied Catal A Gen 433ndash434 (2012) 229ndash235 doi101016japcata201205023

14 L Wang H Li S Xin F Li Generation of solid base catalyst from waste slag for the ef fi cient synthesis of diethyl carbonate from ethyl carbamate and ethanol CATCOM 50 (2014) 49ndash53 doi101016jcatcom201402028

15 L Zhao Z Hou C Liu Y Wang L Dai Original article A catalyst-free novel synthesis of diethyl carbonate from ethyl carbamate in supercritical ethanol Chinese Chem Lett 25 (2014) 1395ndash1398 doi101016jcclet201405012

16 H Iida R Kawaguchi K Okumura Production of diethyl carbonate from ethylene carbonate and ethanol over supported fl uoro-perovskite catalysts Intensity cps Catal Commun 108 (2018) 7ndash11 doi101016jcatcom201801019

17 F Gasc S Thiebaud-roux Z Mouloungui The Journal of Supercritical Fluids Methods for synthesizing diethyl carbonate from ethanol and supercritical carbon dioxide by one-pot or two-step reactions in the presence of potassium carbonate 50 (2009) 46ndash53 doi101016jsupflu200903008

18 E Leino P Maumlki-arvela K Eraumlnen M Tenho D Yu T Salmi J Mikkola Enhanced yields of diethyl carbonate via one-pot synthesis from ethanol carbon dioxide and butylene oxide over cerium ( IV ) oxide Chem Eng J 176ndash177 (2011) 124ndash133 doi101016jcej201107054

19 E Leino P Maumlki-arvela V Eta N Kumar F Demoisson A Samikannu A Leino A Shchukarev D Yu J Mikkola The influence of various synthesis methods on the catalytic activity of cerium oxide in one-pot synthesis of diethyl carbonate starting from CO 2 ethanol and butylene oxide Catal Today 210 (2013) 47ndash54 doi101016jcattod201302011

20 E Leino N Kumar P Maumlki-arvela A Aho K Kordaacutes In fl uence of the synthesis parameters on the physico-chemical and catalytic properties of cerium oxide for application in the synthesis of diethyl carbonate Mater Chem Phys 143 (2013) 65ndash75 doi101016jmatchemphys201308012

21 L Wang H Li S Xin P He Y Cao F Li X Hou Applied Catalysis A  General Highly efficient synthesis of diethyl carbonate via one-pot reaction from carbon dioxide epoxides and ethanol over KI-based binary catalyst system Applied Catal A Gen 471 (2014) 19ndash27 doi101016japcata201311031

22 E Leino N Kumar P Maumlki-arvela A Rautio J Dahl J Roine J-P Mikkola Synthesis and characterization of ceria-supported catalysts for carbon dioxide transformation to diethyl carbonate Catal Today (2017) 1ndash10 doi101016jcattod201701016

23 W Yanlou J Dongdong Z Zhen S Yongyue Synthesis of Diethyl Carbonate from Carbon Dioxide Catal MDPI (2016) doi103390catal6040052

24 L Wang M Ammar P He Y Li Y Cao F Li X Han H Li The efficient synthesis of diethyl carbonate via coupling reaction from propylene oxide CO 2 and ethanol over binary PVEImBr MgO catalyst Catal Today 281 (2017) 360ndash370 doi101016jcattod201602052

25 H Hattori HeterogeneousBasicCatalysispdf (1995)

26 Fan Bin Bo Qu Q Chen Y Wen L Cai R Zhang An improved one-pot synthesis of dimethyl carbonate from propylene oxide CO2 and methanol Journal of Chemical Research (2011) 654-656

Dokumen pendukung luaran Wajib 1

Luaran dijanjikan Publikasi Ilmiah Jurnal Internasional

Target acceptedpublished

Dicapai Published

Dokumen wajib diunggah

1 Artikel yang terbit

Dokumen sudah diunggah

1 Artikel yang terbit

Dokumen belum diunggah

- Sudah lengkap

Nama jurnal Journal of Chemical amp Engineering Data

Peran penulis corresponding author | EISSN 00219568 15205134

Nama Lembaga Pengindek scopus

URL jurnal httpspubsacsorgdoi101021acsjced9b01079

Judul artikel Vapor Pressure of 2-Butanol + Diethyl Carbonate and tert-Butanol +

Diethyl Carbonate at The Temperature 30315-32315K

Tahun 2020 | Volume 65 | Nomor 5

Halaman awal 2441 | akhir 2445

URL artikel httpspubsacsorgdoi101021acsjced9b01079

DOI httpsdoiorg101021acsjced9b01079

Vapor Pressure of 2‑Butanol + Diethyl Carbonate and tert-Butanol +Diethyl Carbonate at the Temperature of 30315minus32315 KAnnas Wiguno Rizky Tetrisyanda and Gede Wibawa

Cite This J Chem Eng Data 2020 65 2441minus2445 Read Online

ACCESS Metrics amp More Article Recommendations

ABSTRACT In this work the vapor pressure of binary mixtures of 2-butanol +diethyl carbonate and tert-butanol + diethyl carbonate was measured in thetemperature range from 30315 to 32315 K The experimental apparatus used inthis work was a simple quasi-static ebulliometer developed in our previous works Thereliability of this apparatus was verified by comparing the measured vapor pressures of2-butanveol tert-butanol and diethyl carbonate with literature data The comparisonsshowed that the vapor pressures of pure 2-butanol tert-butanol and diethyl carbonatewere in good agreement with the literature data with average absolute deviations of 0606 and 08 respectively The experimental results show that the vapor pressuresincreased with the alcohol mole fraction for all systems studied The experimental datawere well-correlated with the Wilson nonrandom two-liquid and universal quasi-chemical activity coefficient models giving an average absolute deviation of no morethan 19 The binary vaporminusliquid equilibrium data obtained in this work showed apositive deviation from Raoultrsquos law

1 INTRODUCTION

Ethanol is commonly used in gasoline blends because of itshigh octane number and oxygen number as well as itscapability to accelerate flame propagation However theaddition of ethanol to isooctane at a mole fraction of 01was found to elevate the vapor pressure12 A higher vaporpressure of gasoline mixtures causes increased emissions andthe potential for vapor lock in the engine On other handlonger-chain alcohols such as 2-butanol and tert-butanol havelower vapor pressures and higher heating values and theirproperties are closer to gasoline than to ethanol3 Butanol hasbeen used as a mixture in engines without any significantengine changes4 Butanol may be produced from renewableresources as well for example from lignocellulose the mostplentiful renewable material5 The combustion of a butanolminusgasoline mixture produces a high temperature because of itshigh heating value and low vaporization rate Therefore 2-butanoltert-butanol are expected to be able to be used asgasoline additives that are alternatives to ethanol The octanenumber of butanol is lower than that of ethanol and thus theaddition of an octane booster is required Diethyl carbonate(DEC) is such an octane booster The addition of 5 wt ofdiethyl carbonate (DEC) into diesel fuel can decrease theemissions by up to 50 due to its higher oxygen content of406 wt6 DEC is a nontoxic chemical that is degradable andable to be decomposed gradually into CO2 and ethanol whichare environmentally friendly78 Although methyl tert-butylether (MTBE) has been successfully applied in gasoline blendsas it is nonbiodegradable it has contributed to groundwater

contamination9 Thus DEC is a potential candidate to replaceMTBETo design the blend of gasoline + 2-butanoltert-butanol +

DEC the vapor pressure data of the binary system of 2-butanoltert-butanol + DEC are required Studies on the vaporpressure of mixtures including diethyl carbonate have beenconducted by many researchers Rodriguez et al10 examinedthe vapor pressure for the binary systems of diethyl carbonatewith five alcohols (methanol ethanol 1-propanol 1-butanoland 1-pentanol) at a pressure of 1013 kPa and temperatures of35173minus39602 K Octavian et al1 measured the vaporpressure of the ethanol + isooctane and 1-butanol + isooctanesystems using a new ebulliometer Ho et al11 examined thevapor pressure of binary mixtures containing diethyl carbonatephenyl acetate diphenyl carbonate or ethyl acetate at 3732minus4532 K Jeremy et al12 conducted experiments on the vaporliquid equilibrium of a binary mixture of 2-propanone + 2-butanol at 33315 and 35315 K and 2-propanone + propanoicacid at 33315 35315 and 37315 K Anugraha et al13

measured the vapor pressure of binary mixtures of diethylcarbonate + isooctanen-heptanetoluene To our knowledge

Received November 14 2019Accepted March 30 2020Published April 3 2020

Articlepubsacsorgjced

copy 2020 American Chemical Society2441

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

Dow

nloa

ded

via

UPP

SAL

A U

NIV

on

June

21

202

0 at

00

502

1 (U

TC

)Se

e ht

tps

pub

sac

sor

gsh

arin

ggui

delin

es f

or o

ptio

ns o

n ho

w to

legi

timat

ely

shar

e pu

blis

hed

artic

les

vaporminusliquid equilibrium (VLE) data of 2-butanoltert-butanol+ DEC at low temperatures are unavailable in the availableliterature Therefore the aim of this study is to determine theisothermal VLE of 2-butanoltert-butanol + DEC at 30315minus32315 K In addition the experimental data were correlatedwith the Wilson14 nonrandom two-liquid (NRTL)15 anduniversal quasi-chemical (UNIQUAC)16 models

2 EXPERIMENTAL SECTION21 Materials The chemicals used in this experiment were

2-butanol tert-butanol and DEC All chemicals were usedwithout any additional purification The compound details arelisted in Table 1

22 Apparatus and Procedures The apparatus used inthis study is a simple static ebulliometer The ebulliometerused was an apparatus developed by Oktavian et al1 andrevalidated by Wibawa et al17 Wiguno et al18 and Anugrahaet al13 to ensure that the initial composition has not changedsignificantly when the equilibrium condition is achieved Thedetailed apparatus was shown in our previous publication1

The equipmentrsquos main parts are the ebulliometer cellcondenser and some auxiliaries such as a vacuum pump(VALUE VG140) for eliminating the gas impurities from theebulliometer magnetic stirrer temperature controller andindicator (AUTONICS TC4S) RTD Pt 100 thermocouplewith an accuracy of plusmn01 K pressure gauge (AUTONICSPSAN) with an accuracy of plusmn01 kPa and ambient pressuregauge (Lutron MHB 382SD)The experimental procedure was described in detail in the

previous work19 Initially each pure componentrsquos vaporpressure was measured by charging the pure component intothe equilibrium cell and vacuum conditions were created byturning on the vacuum pump The pressure at each desiredtemperature was recorded as the vapor pressure The vaporpressure data for the two binary systems ie 2-butanol + DECand tert-butanol + DEC were obtained by the followingprocedure The experiment was begun by introducing 225 mLof a mixture having a known composition into the ebulliometercell Cooling water was circulated in the condenser and thenthe magnetic stirrer was switched on to stir the solution to mixevenly After that the vacuum pressure was created in theequilibrium cell by turning on the vacuum pump The heatingsystem was then lit to heat the solution according to thedesired temperature This heating causes some of the liquid toevaporate The temperature and pressure in the system areshown by temperature indicator and pressure gaugerespectively The pressure is recorded when the temperaturereaches a constant value The apparatus was validated bycomparing the measured pure vapor pressures of 2-butanoltert-butanol and DEC with literature data calculated using theWagner and Antoine equations with parameter constantsobtained from Poling et al20 and Luo et al21 respectively

Based on this experiment the data obtained are the molefractions of component i in the liquid phase (xi) theequilibrium pressure (P) and the temperature (T) Theexperimental data are correlated with 3 activity coefficientmodels ie the Wilson NRTL and UNIQUAC equationsand the binary interaction parameter pairs of each equationwere optimized using the experimental data obtained in thiswork

3 RESULTS AND DISCUSSION31 Reliability of Apparatus The validity of the

experimental apparatus was checked by comparing theexperimental pure vapor pressures of 2-butanol tert-butanoland DEC with the literature pure vapor pressures of 2-butanoland tert-butanol calculated from the Wagner equation(equation 1) and that of DEC calculated from the Antoineequation (equation 2) The parameter constants of the Wagnerand Antoine equations are listed in Tables 2 and 3respectively

Pa b c d

Tln (kPa)

15 25 5

r

τ τ τ τ= + + +(1)

P AB

T Clog (kPa)

(K)10 = minus+ (2)

where τ = 1 minus Tr and Tr = TTc

A comparison between the experimental data and literaturedata obtained from the Wagner or Antoine equations arepresented in Table 4 and the average absolute deviation

Table 1 Pure Chemicals Description and Properties

component supplier CAS reg noMWa

(gmol) purityb

2-butanol Merck Germany 78minus92minus2 7412 09900tert-butanol Merck Germany 75minus65minus0 7412 09950diethylcarbonate

Wuhan FortunaChemical Co China

105minus58minus8 11813 09992

aMW = molecular weight bPurity from supplier in mass fraction

Table 2 Wagner Parameter of 2-Butanol and tert-Butanol20

component a b c d

2-butanol minus80982 164406 minus749 minus52735tert-butanol minus84792 247845 minus9279 minus25399

Table 3 Antoine Parameter of DEC21

component A B C

DEC 5883 122377 minus84304

Table 4 Vapor Pressures of 2-Butanol tert-Butanol andDECa

2-butanol tert-butanol DEC

TK Pexp Plit Pexp Plit Pexp Plit

(kPa)30315 322 320 764 766 196 19530565 374 376 884 892 227 22630815 443 441 1032 1034 257 26131065 513 516 1182 1196 296 29931315 604 600 1371 1378 346 34331565 705 697 1571 1583 396 39231815 804 806 1803 1813 445 44632065 934 930 2055 2071 504 50732315 1081 1069 2356 2359 582 575AAD 06 06 08

aThe standard uncertainty of measurements are u(T) = 01 K andu(P) = 03 kPa where u(T) is the uncertainty in temperature andu(P) is the uncertainty in pressure

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2442

(AAD) between the experimental data and calculated vaporpressures were obtained by the following equation

n

P P

PAAD

1100

i

n

1

exp lit

litsum=

minustimes

= (3)

where Pexp is the vapor pressure obtained from the experimentPlit is the literature value and n is the number of data points Aspresented in Table 4 good agreement was shown by all purecomponents with a 06 AAD for 2-butanol 06 AAD fortert-butanol and 08 AAD for DEC The result indicates thatthe ebulliometer used in this experiment is reliable32 Vapor Pressure Data Measurement and Correla-

tion The vapor pressure data obtained in this work for the 2-butanol (1) + DEC (2) and tert-butanol (1) + DEC (2)systems are presented in Tables 5 and 6 respectively The

experimental equilibrium temperatures were set in the range of30315minus32315 K to accommodate common fuel storageconditions in tropical countries This is done in the absence of

changes in the pressure temperature and composition of thesystemIn vaporminusliquid equilibrium conditions the liquid-compo-

nent fugacity is equal to the vapor-component fugacity Due tolow vapor pressure of the mixture the ideal gas law is appliedConsidering the differences between the alcohol and DECmolecules the liquid becomes a nonideal mixture Thereforean activity coefficient of component i γi is used as a nonidealfactor for the liquid phase in solution Accordingly thecalculation of the vapor pressure of the mixture is based on thefollowing equation

P x Pi

m

i i1

isatsum γ=

= (4)

where m is the number of components in the mixture P is thevapor pressure in the equilibrium condition xi is thecomponent i mole fraction in the liquid phase γi is the activitycoefficient of component i and Pi

sat is the vapor pressure ofcomponent i Data correlation is carried out by using theWilson NRTL and UNIQUAC equations The binaryinteraction parameters are determined using Barkerrsquos method22

by minimizing the following objective function (OF)

OF (P P )i

n

i i1

cal exp2sum= minus

= (5)

where n is the number of data points and the subscripts cal andexp indicate the calculated and experimental valuesrespectively The values of the AAD are presented in Table 7

The experimental data were well-correlated with the WilsonNRTL and UNIQUAC activity coefficient models givingaverage absolute deviations in the range of 18minus19 Thecorrelation results were plotted in Figure 1 and Figure 2Figure 1 shows that the increasing temperature causes a rise

in the vapor pressure of the 2-butanol + DEC mixture Atconstant temperature increasing the content of 2-butanol (x1)leads to an increase of equilibrium pressure of the mixture tothe peak point and then a decrease in the 2-butanol vaporpressureFigure 2 shows that the increasing temperature causes a rise

in the vapor pressure of the mixture In addition at constanttemperature the vapor pressure of the mixture increases withthe increasing content of tert-butanol (x1) Therefore thepressure of the mixture is between the pure vapor pressures ofeach component

Table 5 Experimental VLE data for 2-Butanol (1) + DEC(2)a

PexpkPa

x1 30315 K 30815 K 31315 K 31815 K 32315 K

0 196 257 346 445 58201 272 373 474 616 78902 293 402 542 701 86203 298 428 578 749 94104 317 431 561 742 96105 323 452 593 792 99306 34 449 588 775 102207 305 444 601 8 106708 341 461 603 796 105609 327 467 626 807 10761 322 443 604 804 1081

aThe standard uncertainty of measurements are u(xi) = 00002 u(T)= 01 K and u(P) = 03 kPa where u(xi) is the uncertainty ofcomponent i of the liquid phase mole fractions u(T) is theuncertainty in temperature and u(P) is the uncertainty in pressure

Table 6 Experimental VLE Data for tert-Butanol (1) + DEC(2)a

PexpkPa

x1 30315 K 30815 K 31315 K 31815 K 32315 K

0 196 257 346 445 58201 362 461 571 76 99702 437 567 751 1005 127503 534 714 895 1138 145404 626 754 972 1312 166805 633 802 1055 142 179606 662 846 115 1526 195707 71 897 1202 1578 202108 74 94 1257 1635 210309 767 969 1291 1736 22061 764 1032 1371 1803 2356

aThe standard uncertainty of measurements are u(xi) = 00002 u(T)= 01 K and u(P) = 03 kPa where u(xi) is the uncertainty ofcomponent i of the liquid phase mole fractions u(T) is theuncertainty in temperature and u(P) is the uncertainty in pressure

Table 7 Parameter and AADs of Correlation Results

2-Butanol(1) + DEC(2) System

Wilson NRTL UNIQUAC

a12(Jmol)

a21(Jmol)

α(minus)

b12(Jmol)

b21(Jmol)

Δu12(Jmol)

Δu21(Jmol)

51428 minus9777 03 minus10506 49176 minus12239 25901AAD = 19 AAD = 18 AAD = 19

tert-butanol(1) + DEC(2) system

Wilson NRTL UNIQUAC

a12(Jmol)

a21(Jmol)

α(minus)

b12(Jmol)

b21(Jmol)

Δu12(Jmol)

Δu21(Jmol)

16342 9713 03 14669 9951 1081 4603AAD = 19 AAD = 19 AAD = 19

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2443

The composition of the vapor can be obtained based on theconcept of equilibrium by using the values of the activitycoefficients obtained from the Wilson NRTL and UNIQUACequations The result of calculated of y1 is then plotted inFigures 1 and 2According to Figure 1 the correlation results for 2-butanol +

DEC showing that at the point of x1 above 06 the x1 has samevalue of y1 where it could be suspected as azeotrope pointHowever due to the differences between the maximumequilibrium pressures and the vapor pressure of pure 2-butanolare smaller than the uncertainty of pressure measurement (03kPa) the azeotrope behavior still could not be justified for thissystem The small vapor pressure differences indicate that theeffect of DEC at the point of x1 above 06 is insignificant Thevapor pressure is greatly affected by 2-butanol

4 CONCLUSIONSAn experiment was successfully conducted to obtain accuratevaporminusliquid equilibrium data for binary systems of 2-butanol

(1) + DEC (2) and tert-butanol (1) + DEC (2) at 30315minus32315 K The experimental data for the 2-butanol (1) + DEC(2) system were well-correlated using the Wilson NRTL andUNIQUAC models with AADs in the vapor pressure of 1918 and 19 respectively For the tert-butanol (1) + DEC (2)system correlation using the Wilson NRTL and UNIQUACmodels gave the same AAD of 19 The systems studied showpositive deviations from Raoultrsquos law in the temperature rangestudied

AUTHOR INFORMATION

Corresponding AuthorGede Wibawa minus Department of Chemical Engineering Facultyof Industrial Technology Sepuluh Nopember Institute ofTechnology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia orcidorg0000-0002-1255-9210 Phone +62-31-5946240 Email gwibawachem-engitsacid Fax +62-31-5999282

AuthorsAnnas Wiguno minus Department of Chemical Engineering Facultyof Industrial Technology Sepuluh Nopember Institute ofTechnology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia

Rizky Tetrisyanda minus Department of Chemical EngineeringFaculty of Industrial Technology Sepuluh Nopember Instituteof Technology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia

Complete contact information is available athttpspubsacsorg101021acsjced9b01079

NotesThe authors declare no competing financial interest

ACKNOWLEDGMENTS

The author are grateful to Kementrian Riset Teknologi danPendidikan Tinggi Sepuluh Nopember Institute of Technol-ogy (ITS) for a research grant with the PUPT research schemaunder Contract 622PKSITS2017 The authors would liketo thank Andika Dwimasputra and Naomi Hurayah Aden forexperimental work

REFERENCES(1) Oktavian R Amidelsi V Rasmito A Wibawa G VaporPressure Measurements of Ethanolminusisooctane and 1-Butanolminusisooctane Systems Using a New Ebulliometer Fuel 2013 107 47minus51(2) Hull A Kronberg B van Stam J Golubkov I Kristensson JVaporminusLiquid Equilibrium of Binary Mixtures 1 Ethanol + 1-Butanol Ethanol + Octane 1-Butanol + Octane J Chem Eng Data2006 51 1996minus2001(3) Moxey B G Cairns A Zhao H A Comparison of Butanol andEthanol Flame Development in an Optical Spark Ignition Engine Fuel2016 170 27minus38(4) Varol Y Oner C Oztop H F Altun S Comparison ofMethanol Ethanol or n-Butanol Blending with Unleaded Gasoline onExhaust Emissions of an SI Engine Energy Sources Part A 2014 36938minus948(5) Procentese A Guida T Raganati F Olivieri G Salatino PMarzocchella A Process Simulation of Biobutanol Production fromLignocellulosic Feedstocks Chem Eng Trans 2014 38 343minus348(6) Dunn B C Guenneau C Hilton S A Pahnke J Eyring EM Dworzanski J Meuzelaar H L C Hu J Z Solum M SPugmire R J Production of Diethyl Carbonate from Ethanol and

Figure 1 Diagram of Pminusx1minusy1 for 2-butanol (1) + DEC (2) system atvarious temperatures

Figure 2 Diagram of Pminusx1minusy1 for tert-butanol (1) + DEC (2) systemat various temperatures

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2444

Carbon Monoxide over a Heterogeneous Catalyst Energy Fuels 200216 177minus181(7) Pacheco M A Marshall C L Review of Dimethyl Carbonate(DMC) Manufacture and Its Characteristics as a Fuel AdditiveEnergy Fuels 1997 11 2minus29(8) M Eyring E L C Meuzelaar H Pugmire R Synthesis andTesting of Diethyl Carbonate as a Possible Diesel Fuel Additive 2000(9) Moran M Zogorski J Squillace P MTBE and GasolineHydrocarbons in Ground Water of the United States 2005 Vol 43(10) Rodriacuteguez A Canosa J Domiacutenguez A Tojo J IsobaricPhase Equilibria of Diethyl Carbonate with Five Alcohols at 1013KPa J Chem Eng Data 2003 48 86minus91(11) Ho H-Y Shu S-S Wang S-J Lee M-J Isothermal(Vapour+liquid) Equilibrium (VLE) for Binary Mixtures ContainingDiethyl Carbonate Phenyl Acetate Diphenyl Carbonate or EthylAcetate J Chem Thermodyn 2015 91 35minus42(12) Pillay J Iwarere S A Raal J D Naidoo P RamjugernathD Isothermal Vapour-Liquid Equilibrium Data for the Binary Systems2-Propanone + (2-Butanol or Propanoic Acid) Fluid Phase Equilib2017 433 119minus125(13) Anugraha R P Altway A Wibawa G Measurement andCorrelation of Isothermal Binary VaporminusLiquid Equilibrium forDiethyl Carbonate + Isooctanen-HeptaneToluene Systems JChem Eng Data 2017 62 2362minus2366(14) Wilson G M Vapor-Liquid Equilibrium XI A NewExpression for the Excess Free Energy of Mixing J Am Chem Soc1964 86 127minus130(15) Renon H Prausnitz J M Local Composition Thermody-namic Excess Functions for Liquid Mixtures AIChE J 1968 14 135minus144(16) Prausnitz J M Abrams D S Statistical Thermodynamics ofLiquid Mixtures A New Expression for the Excess Gibbs Energy ofPartly or Completely Miscible Systems AIChE J 1975 21 116minus128(17) Wibawa G Mustain A Akbarina M F Ruslim R MIsothermal VaporminusLiquid Equilibrium of Ethanol + Glycerol and 2-Propanol + Glycerol at Different Temperatures J Chem Eng Data2015 60 955minus959(18) Wiguno A Mustain A Irwansyah W F E Wibawa GIsothermal Vapor-Liquid Equilibrium of Methanol + Glycerol and 1-Propanol + Glycerol Indones J Chem 2018 16 111minus116(19) Anugraha R P Wiguno A Altway A Wibawa G VaporPressures of Diethyl Carbonate + Ethanol Binary Mixture and DiethylCarbonate + Ethanol + IsooctaneToluene Ternary Mixtures atTemperatures Range of 303 15 minus 323 15 K J Mol Liq 2018 26432minus37(20) Poling B E Prausnitz J M OrsquoConnel J P The Properties ofGases and Liquids 5th ed McGraw-Hill New York 2001(21) Luo H-P Xiao W-D Zhu K-H Isobaric VaporminusliquidEquilibria of Alkyl Carbonates with Alcohols Fluid Phase Equilib2000 175 91minus105(22) Barker J A Determination of Activity Coefficients from TotalPressure Measurements Aust J Chem 1953 6 207minus210

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2445

B KATA KUNCI Tuliskan maksimal 5 kata kunci

Karbondioksida Dimethyl Carbonate Sintesis Katalis

Pengisian poin C sampai dengan poin H mengikuti template berikut dan tidak dibatasi jumlah kata atau halaman namun disarankan seringkas mungkin Dilarang menghapusmemodifikasi template ataupun menghapus penjelasan di setiap poin

C HASIL PELAKSANAAN PENELITIAN Tuliskan secara ringkas hasil pelaksanaan penelitian yang telah dicapai sesuai tahun pelaksanaan penelitian Penyajian dapat berupa data hasil analisis dan capaian luaran (wajib dan atau tambahan) Seluruh hasil atau capaian yang dilaporkan harus berkaitan dengan tahapan pelaksanaan penelitian sebagaimana direncanakan pada proposal Penyajian data dapat berupa gambar tabel grafik dan sejenisnya serta analisis didukung dengan sumber pustaka primer yang relevan dan terkini

Pengisian poin C sampai dengan poin H mengikuti template berikut dan tidak dibatasi jumlah kata atau halaman namun disarankan seringkas mungkin Dilarang menghapusmemodifikasi template ataupun menghapus penjelasan di setiap poin

Sumber energi berbasis fosil (minyak bumi gas alam dan batu bara) merupakan sumber

energi utama yang digunakan sebagian besar masyarakat Indonesia Dalam perkembangannya

konsumi sumber energi berbasis fosil akan semakin meningkat pada beberapa tahun kedepan

[1] Akan tetapi sumber daya energi berbasis fosil dikenal sebagai emitor karbon utama Hal

ini menunjukkan bahwa saat ini industri minyak bumi gas alam dan batu bara memiliki

tanggung jawab dan tantangan nyata dalam pemenuhan kebutuhan energi mendatang dengan

menghadapi dampak dan isu lingkungan

Alternatif yang dapat dilakukan adalah dengan memberikan nilai tambah pada karbon yaitu

dengan pemanfaatan karbon dioksida (CO2) sehingga industri energi berbasis fosil akan

menjadi lebih ramah lingkungan dan tetap memenuhi kebutuhan energi nasional Pemanfaatan

CO2 yang dihasilkan dari pembakaran atau pengolahan sumber energi berbasis fosil dapat

dilakukan dengan mengkonversi CO2 menjadi berbagai macam produk kimia yang bernilai

ekonomi Sebagai contoh adalah dry reforming CH4 dengan CO2 untuk memproduksi syngas

transformasi CO2 menjadi cyclic carbonates melalui cycloaddition oxidative carboxylation

olefin dengan CO2 sintesis metanol dari CO2 dan H2 serta masih banyak lainnya Dari berbagai

macam metode tersebut sintesa karbonat organik dari alkohol dan CO2 memiliki daya tarik

yang tinggi karena produk komersial yang dihasilkan bernilai tinggi dan banyak digunakan

pada berbagai industri

Organic carbonate merupakan salah satu bahan kimia alami yang sangat penting di abad ini

Karena karakteristiknya seperti polaritas ramah lingkungan dan tidak beracun organic

carbonate ini berpotensi untuk menggantikan bahan kimia yang berbahaya Selain ituSintesa

organic carbonate membantu dalam proses mitigasi dan penggunaan CO2 seperti senyawa

dialkyl carbonate khususnya Diethyl Carbonate dan Dimethyl Carbonate Senyawa DEC dan

DMC yang disintesis dalam eksperimen ini merupakan senyawa organic carbonate yang paling

penting DEC dan DMC ini merupakan zat aditif terbarukan yang dapat ditambahkan ke bahan

bakar untuk meningkatkan pembakaran dan mengurangi emisi gas buang [2]

Dari uraian diatas dapat diamati bahwa produksi DEC dan DMC dengan pemanfaatan CO2

menjadi produk yang bernilai ekonomi merupakan proses yang menarik CO2 merupakan salah

satu permasalahan yang timbul akibat peningkatan konsumsi energi Hal ini dikarenakan

peningkatannya yang sangat besar di bumi memiliki tanggung jawab atas fenomena gas rumah

kaca yang terjadi Namun berdasarkan beberapa penelitian CO2 dapat dimanfaatkan untuk

menghasilkan bahan kimia lainnya seperti DEC dan DMC dimana bahan ini biasa digunakan

sebagai zat aditif dalam bahan bakar yang lebih aman dan ramah lingkungan

Menurut berbagai penelitian yang pernah dilakukan DEC dan DMCdapat disintesa

dengan berbagai bahan baku serta metode Pertama DEC dapat disintesa dari urea[3ndash5]CO[6-

10] DMC[11] Ethyl Carbamate[12ndash15] ethylene carbonate[16] Selain itu DEC dan DMC

juga pernah dilaporkan dalam bebrapa penelitian bahwa senyawa ini dapat dihasilkan dari

bahan baku CO2[21ndash26]

Akan tetapi dalam sejarah penelitian yang telah ada dengan berbagai metode khususnya

untuk sintesa langsung kondisi operasi dan katalis yang digunakan tersebut masih belum

menunjukkan hasil yang maksimal Sehingga dalam penelitian ini telah dilakukan sintesis

C HASIL PELAKSANAAN PENELITIAN Tuliskan secara ringkas hasil pelaksanaan penelitian yang telah dicapai sesuai tahun pelaksanaan penelitian Penyajian dapat berupa data hasil analisis dan capaian luaran (wajib dan atau tambahan) Seluruh hasil atau capaian yang dilaporkan harus berkaitan dengan tahapan pelaksanaan penelitian sebagaimana direncanakan pada proposal Penyajian data dapat berupa gambar tabel grafik dan sejenisnya serta analisis didukung dengan sumber pustaka primer yang relevan dan terkini

DEC dan DMC dari CO2 menggunakan metode sintesa langsung dan katalis homogen dan

heterogen Sehingga hasil dari penelitian ini dapat dijadikan sebagai acuan dalam pemanfaatan

zat emisi karbon dioksida menjadi zat bernilai ekonomi DEC ataupun DMC melalui reaksi

langsung bersama etanol menggunakan katalis homogen dan heterogen

Setelah didapatkan hasil sebelumnya pada sintesis DEC pada eksperimen ini juga

dilakukan sintesis DMC dengan menggunakan metode kondisi operasi yang sama dan

bahan baku berupa CO2 agar dapat dibandingkan apakah metode dan kondisi operasi yang

sama yang diterapkan pada sintesis DEC sebelumnya juga dapat diaplikasikan untuk

sintesis DMC

Pada eksperimen sintesis dimethyl carbonate (DMC) didapatkan data yang diamati

secara langsung yaitu berupa waktu suhu dan tekanan Waktu suhu dan tekanan ini diamati

selama jalannya proses sintesis untuk memastikan adanya kebocoran pada reaktor serta

kestabilan suhu reaktor selama eksperimen Berikut ini pada Tabel 1 merupakan data waktu

suhu dan tekanan rata-rata yang didapatkan pada setiap eksperimen sintesis dimethyl

carbonate

Tabel 1 Data waktu suhu dan tekanan rata-rata pada setiap eksperimen sintesis dimethyl

carbonate

Waktu (menit) Suhu (oC) Tekanan (bar)

0 169 40

30 169 40

60 169 40

90 167 40

120 167 40

150 169 40

180 170 40

210 170 40

240 168 40

270 170 40

300 169 40

Kemudian setelah dilakukan eksperimen sintesis DMC ini produk yang dihasilkan

dianalisa secara kualitatif menggunakan GC-MS dan secara kuantitatif menggunakan GC

Hasil analisa kualitatif menggunakan GC-MS pada sintesis DMC dari CO2 menggunakan agen

pendehidrasi senyawa epoksida berupa propylene oxide menghasilkan beberapa senyawa yang

terkandung dalam produknya diantaranya yaitu DMC Propylene carbonate dan Propylene

Glycol Sedangkan hasil analisa kualitatif menggunakan GC-MS pada sintesis DMC dari CO2

menggunakan agen pendehidrasi senyawa epoksida berupa butylene oxide menghasilkan

beberapa senyawa yang terkandung dalam produknya diantaranya yaitu DMC Butylene

carbonate dan Butylene glycol Hal ini telah sesuai dengan reaksi kimia dari sintesis DMC

pada literature dimana DMC merupakan produk utama dari sintesis Propylene carbonate atau

Butylene carbonate yang merupakan produk tengahnya dan Propylene Glycol atau Butylene

glycol yang merupakan produk sampingnya[26]

Selain dilakukan analisa secara kualitatif Produk DMC ini juga dilakukan analisa

secara kuantitatif menggunakan GC Berikut ini pada Tabel 2 dipaparkan mengenai hasil

analisa kuantitatif dari sintesis DMC dari CO2 yang direaksikan dengan methanol epoksida

berupa propylene oxide atau butylene oxide serta katalis homogen dan katalis heterogen

Jenis

Epoksida

Waktu reaksi

(jam) Katalis

Yield

DMC

()

Konversi

Reaksi ()

Propylene

Oxide

1

KI-EtONa

1051 1051

2 1999 1999

3 2683 2683

4 2681 2681

5 2852 2852

1

KI-Zeolite

892 893

2 3471 3471

3 2338 2338

4 1586 1586

5 1419 1419

Butylene

Oxide

1

KI-EtONa

1377 1377

2 2206 2206

3 2426 2426

4 3684 3684

5 2159 2159

Dari hasil penelitian dapat diketahui bahwa penggunaan KI-Zeolite dalam sintesis

Dimethyl Carbonate menggunakan agen pendehidrasi propylene oxide dan katalis KIZeolite

menghasilkan yield DMC tertinggi yaitu sebesar 3471 dengan waktu reaksi selama 2 jam

Sedangkan untuk sintesis DMC menggunakan agen pendehidrasi butylene oxide dan katalis

KIEtONa menghasilkan yield DMC tertinggi sebesar 3684 dengan waktu reaksi sebesar 4

jam Berdasarkan hasil eksperimen sintesis DMC menggunakan katalis propylene oxide disini

Kemudian berdasarkan sintesis DEC dengan menggunakan epoksida propylene oxide pada

eksperimen sebelumnya juga dapat diketahui bahwa penggunaan zeolite juga memiliki hasil

yield DEC yang lebih tinggi Selain itu berdasarkan hasil eksperimen sintesis DMC

menggunakan agen pendehidrasi berupa butylene oxide dan katalis KIEtONa yield tertinggi

didapatkan dengan waktu reaksi yang lebih lama dibandingkan dengan hasil sintesis DMC

yang menggunakan katalis KIZeolite Sehingga penggunaan Zeolite membuktikan bahwa

bahan ini berpotensi untuk digunakan sebagai pengganti katalis EtONa karena harganya yang

jauh lebih murah

Berdasarkan dari hasil penelitian ini telah di dapatkan beberapa luaran wajib dan tambahan diantaranya

yaitu untuk luaran wajib yang telah dicapai adalah berupa jurnal internasional yang berjudul ldquoVapor

Pressure of 2-Butanol+Diethyl Carbonate and tert-Butanol + Diethyl Carbonate at The

Temperature 30315-32315Krdquo yang telah dipublikasikan di Journal of Chemical amp

Engineering Data pada tahun 2020 dan draft manuscript yang berjudul ldquoCatalytic Synthesis of

Diethyl Carbonate from Carbon dioxide and Ethanol as Raw Material using KISodium

Ethoxide and KIMolecular Sieve as Catalystrdquo dimana nantinya akan disubmit pada chemical

engineering journal Sedangkan untuk luaran tambahan yang telah dicapai adalah berupa Manuscript

dengan judul ldquoThe Effect of Temperature Reaction in Catalytic Synthesis of Diethyl Carbonate

via One Pot Reactionrdquo yang akan diseminarkan pada 4th International Conference on Chemical

amp Material Engineering (ICCME 2020) yang akan diselenggarakan pada 6-7 Oktober 2020

melalui Video Meeting via ZOOM

D STATUS LUARAN Tuliskan jenis identitas dan status ketercapaian setiap luaran wajib dan luaran tambahan (jika ada) yang dijanjikan pada tahun pelaksanaan penelitian Jenis luaran dapat berupa publikasi perolehan kekayaan intelektual hasil pengujian atau luaran lainnya yang telah dijanjikan pada proposal Uraian status luaran harus didukung dengan bukti kemajuan ketercapaian luaran sesuai dengan luaran yang dijanjikan Lengkapi isian jenis luaran yang dijanjikan serta mengunggah bukti dokumen ketercapaian luaran wajib dan luaran tambahan melalui Simlitabmas mengikuti format sebagaimana terlihat pada bagian isian luaran

Untuk luaran wajib ada dua yaitu

1 Jurnal internasional yang berjudul ldquoVapor Pressure of 2-Butanol + Diethyl Carbonate

and tert-Butanol + Diethyl Carbonate at The Temperature 30315-32315Krdquo yang telah

dipublikasikan di Journal of Chemical amp Engineering Data pada tahun 2020 (Status

Published)

2 Manuscript yang berjudul ldquoCatalytic Synthesis of Diethyl Carbonate from Carbon

dioxide and Ethanol as Raw Material using KISodium Ethoxide and KIMolecular

Sieve as Catalystrdquo dimana nantinya akan disubmit pada chemical engineering journal

(Status Draft)

Sedangkan untuk luaran tambahan yaitu

Manuscript dengan judul ldquoThe Effect of Temperature Reaction in Catalytic Synthesis of

Diethyl Carbonate via One Pot Reactionrdquo yang akan diseminarkan pada 4th International

Conference on Chemical amp Material Engineering (ICCME 2020) yang akan diselenggarakan

pada 6-7 Oktober 2020 melalui Video Meeting via ZOOM

E PERAN MITRA Tuliskan realisasi kerjasama dan kontribusi Mitra baik in-kind maupun in-cash (jika ada) Bukti pendukung realisasi kerjasama dan realisasi kontribusi mitra dilaporkan sesuai dengan kondisi yang sebenarnya Bukti dokumen realisasi kerjasama dengan Mitra diunggah melalui Simlitabmas mengikuti format sebagaimana terlihat pada bagian isian mitra

F KENDALA PELAKSANAAN PENELITIAN Tuliskan kesulitan atau hambatan yang dihadapi selama melakukan penelitian dan mencapai luaran yang dijanjikan termasuk penjelasan jika pelaksanaan penelitian dan luaran penelitian tidak sesuai dengan yang direncanakan atau dijanjikan

Kendala pada pelaksanaan penelitian ini berada pada sulitnya menjaga kondisi reaktan yang

ada pada reaktor karena adanya faktor kesalahan teknis dalam menutup reaktor sehingga ada

kebocoran sedikit pada reaktor yang menyebabkan prosedur eksperimen harus diulangi

kembali sedangkan hambatan yang dihadapi selama melakukan penelitian adalah supplay

listrik yang tidak menentu pada saat pelaksanaan eksperimen menghasilkan supplay panas pada

electrical heater yang berbeda-beda setiap waktunya sehingga suhu reaktor sangat sulit untuk

dikendalikan Selain itu pada masa pandemic ini juga ada hambatan pada waktu penelitian

yang sangat terbatas sehingga pengerjaan penelitian juga menjadi terhambat

G RENCANA TINDAK LANJUT PENELITIAN Tuliskan dan uraikan rencana tindaklanjut penelitian selanjutnya dengan melihat hasil penelitian yang telah diperoleh Jika ada target yang belum diselesaikan pada akhir tahun pelaksanaan penelitian pada bagian ini dapat dituliskan rencana penyelesaian target yang belum tercapai tersebut

Penelitian selanjutnya akan difokuskan untuk sintesis Dimethyl Carbonate dengan agen

pendehidrasi berupa butylene oxide dan jenis katalis yang berbeda dan eksperimen

kesetimbangan uap-cair antar komponennya yang ada di produk

H DAFTAR PUSTAKA Penyusunan Daftar Pustaka berdasarkan sistem nomor sesuai dengan urutan pengutipan Hanya pustaka yang disitasi pada laporan akhir yang dicantumkan dalam Daftar Pustaka

1 Hanpattanakit P Pimonsree L Jamnongchob A Boonpoke A 2018 CO2 Emission

and Reduction of Tourist Transportation at Kok Mak Island Thailand Chemical

Engineering Transactions 63 37-42

2 K Shukla and V C Srivastava ldquoRSC Advances Diethyl carbonate  critical review of

synthesis routes catalysts used and engineering aspectsrdquo RSC Adv vol 6 pp 32624ndash

32645 201

3 D Wang B Yang X Zhai L Zhou Synthesis of diethyl carbonate by catalytic alcoholysis of urea 88 (2007) 807ndash812 doi101016jfuproc200704003

4 S Xin L Wang H Li K Huang F Li Synthesis of diethyl carbonate from urea and ethanol over lanthanum oxide as a heterogeneous basic catalyst Fuel Process Technol 126 (2014) 453ndash459 doi101016jfuproc201405029

5 K Shukla VC Srivastava Diethyl carbonate synthesis by ethanolysis of urea using Ce-Zn oxide catalysts Fuel Process Technol 161 (2017) 116ndash124 doi101016jfuproc201703004

6 P Zhang S Wang S Chen Z Zhang X Ma The effects of promoters over PdCl 2 -CuCl 2 HMS catalysts for the synthesis of diethyl carbonate by oxidative carbonylation of ethanol 143 (2008) 220ndash224 doi101016jcej200804008

7 DN Briggs G Bong E Leong K Oei G Lestari AT Bell Effects of support composition and pretreatment on the activity and selectivity of carbon-supported PdCu n Cl x catalysts for the synthesis of diethyl carbonate J Catal 276 (2010) 215ndash228 doi101016jjcat201008004

8 P Zhang X Ma Catalytic synthesis of diethyl carbonate by oxidative carbonylation of ethanol over PdCl 2 Cu-HMS catalyst Chem Eng J 163 (2010) 93ndash97 doi101016jcej201007025

9 D Zhu F Mei L Chen W Mo T Li G Li An efficient catalyst Co ( salophen ) for synthesis of diethyl carbonate by oxidative carbonylation of ethanol Fuel 90 (2011) 2098ndash2102 doi101016jfuel201102023

10 P Zhang Y Zhou M Fan P Jiang Catalytic synthesis of diethyl carbonate with supported Pd ‐ Cu bimetallic nanoparticle catalysts  Cu ( I ) as the active species Chinese J Catal 36 (2015) 2036ndash2043 doi101016S1872-2067(15)60973-1

11 C Murugan HC Bajaj Synthesis of diethyl carbonate from dimethyl carbonate and ethanol using KF Al 2 O 3 as an ef fi cient solid base catalyst Fuel Process Technol 92 (2011) 77ndash82 doi101016jfuproc201008023

12 GUO Lian Z Xinqiang AN Hualiang W Yanji Catalysis by Lead Oxide for Diethyl Carbonate Synthesis from Ethyl Carbamate and Ethanol Chinese J Catal 33 (2012) 595ndash600 doi101016S1872-2067(11)60373-2

13 H An X Zhao L Guo C Jia B Yuan Y Wang Applied Catalysis A  General Synthesis of diethyl carbonate from ethyl carbamate and ethanol over ZnO-PbO catalyst Applied Catal A Gen 433ndash434 (2012) 229ndash235 doi101016japcata201205023

14 L Wang H Li S Xin F Li Generation of solid base catalyst from waste slag for the ef fi cient synthesis of diethyl carbonate from ethyl carbamate and ethanol CATCOM 50 (2014) 49ndash53 doi101016jcatcom201402028

15 L Zhao Z Hou C Liu Y Wang L Dai Original article A catalyst-free novel synthesis of diethyl carbonate from ethyl carbamate in supercritical ethanol Chinese Chem Lett 25 (2014) 1395ndash1398 doi101016jcclet201405012

16 H Iida R Kawaguchi K Okumura Production of diethyl carbonate from ethylene carbonate and ethanol over supported fl uoro-perovskite catalysts Intensity cps Catal Commun 108 (2018) 7ndash11 doi101016jcatcom201801019

17 F Gasc S Thiebaud-roux Z Mouloungui The Journal of Supercritical Fluids Methods for synthesizing diethyl carbonate from ethanol and supercritical carbon dioxide by one-pot or two-step reactions in the presence of potassium carbonate 50 (2009) 46ndash53 doi101016jsupflu200903008

18 E Leino P Maumlki-arvela K Eraumlnen M Tenho D Yu T Salmi J Mikkola Enhanced yields of diethyl carbonate via one-pot synthesis from ethanol carbon dioxide and butylene oxide over cerium ( IV ) oxide Chem Eng J 176ndash177 (2011) 124ndash133 doi101016jcej201107054

19 E Leino P Maumlki-arvela V Eta N Kumar F Demoisson A Samikannu A Leino A Shchukarev D Yu J Mikkola The influence of various synthesis methods on the catalytic activity of cerium oxide in one-pot synthesis of diethyl carbonate starting from CO 2 ethanol and butylene oxide Catal Today 210 (2013) 47ndash54 doi101016jcattod201302011

20 E Leino N Kumar P Maumlki-arvela A Aho K Kordaacutes In fl uence of the synthesis parameters on the physico-chemical and catalytic properties of cerium oxide for application in the synthesis of diethyl carbonate Mater Chem Phys 143 (2013) 65ndash75 doi101016jmatchemphys201308012

21 L Wang H Li S Xin P He Y Cao F Li X Hou Applied Catalysis A  General Highly efficient synthesis of diethyl carbonate via one-pot reaction from carbon dioxide epoxides and ethanol over KI-based binary catalyst system Applied Catal A Gen 471 (2014) 19ndash27 doi101016japcata201311031

22 E Leino N Kumar P Maumlki-arvela A Rautio J Dahl J Roine J-P Mikkola Synthesis and characterization of ceria-supported catalysts for carbon dioxide transformation to diethyl carbonate Catal Today (2017) 1ndash10 doi101016jcattod201701016

23 W Yanlou J Dongdong Z Zhen S Yongyue Synthesis of Diethyl Carbonate from Carbon Dioxide Catal MDPI (2016) doi103390catal6040052

24 L Wang M Ammar P He Y Li Y Cao F Li X Han H Li The efficient synthesis of diethyl carbonate via coupling reaction from propylene oxide CO 2 and ethanol over binary PVEImBr MgO catalyst Catal Today 281 (2017) 360ndash370 doi101016jcattod201602052

25 H Hattori HeterogeneousBasicCatalysispdf (1995)

26 Fan Bin Bo Qu Q Chen Y Wen L Cai R Zhang An improved one-pot synthesis of dimethyl carbonate from propylene oxide CO2 and methanol Journal of Chemical Research (2011) 654-656

Dokumen pendukung luaran Wajib 1

Luaran dijanjikan Publikasi Ilmiah Jurnal Internasional

Target acceptedpublished

Dicapai Published

Dokumen wajib diunggah

1 Artikel yang terbit

Dokumen sudah diunggah

1 Artikel yang terbit

Dokumen belum diunggah

- Sudah lengkap

Nama jurnal Journal of Chemical amp Engineering Data

Peran penulis corresponding author | EISSN 00219568 15205134

Nama Lembaga Pengindek scopus

URL jurnal httpspubsacsorgdoi101021acsjced9b01079

Judul artikel Vapor Pressure of 2-Butanol + Diethyl Carbonate and tert-Butanol +

Diethyl Carbonate at The Temperature 30315-32315K

Tahun 2020 | Volume 65 | Nomor 5

Halaman awal 2441 | akhir 2445

URL artikel httpspubsacsorgdoi101021acsjced9b01079

DOI httpsdoiorg101021acsjced9b01079

Vapor Pressure of 2‑Butanol + Diethyl Carbonate and tert-Butanol +Diethyl Carbonate at the Temperature of 30315minus32315 KAnnas Wiguno Rizky Tetrisyanda and Gede Wibawa

Cite This J Chem Eng Data 2020 65 2441minus2445 Read Online

ACCESS Metrics amp More Article Recommendations

ABSTRACT In this work the vapor pressure of binary mixtures of 2-butanol +diethyl carbonate and tert-butanol + diethyl carbonate was measured in thetemperature range from 30315 to 32315 K The experimental apparatus used inthis work was a simple quasi-static ebulliometer developed in our previous works Thereliability of this apparatus was verified by comparing the measured vapor pressures of2-butanveol tert-butanol and diethyl carbonate with literature data The comparisonsshowed that the vapor pressures of pure 2-butanol tert-butanol and diethyl carbonatewere in good agreement with the literature data with average absolute deviations of 0606 and 08 respectively The experimental results show that the vapor pressuresincreased with the alcohol mole fraction for all systems studied The experimental datawere well-correlated with the Wilson nonrandom two-liquid and universal quasi-chemical activity coefficient models giving an average absolute deviation of no morethan 19 The binary vaporminusliquid equilibrium data obtained in this work showed apositive deviation from Raoultrsquos law

1 INTRODUCTION

Ethanol is commonly used in gasoline blends because of itshigh octane number and oxygen number as well as itscapability to accelerate flame propagation However theaddition of ethanol to isooctane at a mole fraction of 01was found to elevate the vapor pressure12 A higher vaporpressure of gasoline mixtures causes increased emissions andthe potential for vapor lock in the engine On other handlonger-chain alcohols such as 2-butanol and tert-butanol havelower vapor pressures and higher heating values and theirproperties are closer to gasoline than to ethanol3 Butanol hasbeen used as a mixture in engines without any significantengine changes4 Butanol may be produced from renewableresources as well for example from lignocellulose the mostplentiful renewable material5 The combustion of a butanolminusgasoline mixture produces a high temperature because of itshigh heating value and low vaporization rate Therefore 2-butanoltert-butanol are expected to be able to be used asgasoline additives that are alternatives to ethanol The octanenumber of butanol is lower than that of ethanol and thus theaddition of an octane booster is required Diethyl carbonate(DEC) is such an octane booster The addition of 5 wt ofdiethyl carbonate (DEC) into diesel fuel can decrease theemissions by up to 50 due to its higher oxygen content of406 wt6 DEC is a nontoxic chemical that is degradable andable to be decomposed gradually into CO2 and ethanol whichare environmentally friendly78 Although methyl tert-butylether (MTBE) has been successfully applied in gasoline blendsas it is nonbiodegradable it has contributed to groundwater

contamination9 Thus DEC is a potential candidate to replaceMTBETo design the blend of gasoline + 2-butanoltert-butanol +

DEC the vapor pressure data of the binary system of 2-butanoltert-butanol + DEC are required Studies on the vaporpressure of mixtures including diethyl carbonate have beenconducted by many researchers Rodriguez et al10 examinedthe vapor pressure for the binary systems of diethyl carbonatewith five alcohols (methanol ethanol 1-propanol 1-butanoland 1-pentanol) at a pressure of 1013 kPa and temperatures of35173minus39602 K Octavian et al1 measured the vaporpressure of the ethanol + isooctane and 1-butanol + isooctanesystems using a new ebulliometer Ho et al11 examined thevapor pressure of binary mixtures containing diethyl carbonatephenyl acetate diphenyl carbonate or ethyl acetate at 3732minus4532 K Jeremy et al12 conducted experiments on the vaporliquid equilibrium of a binary mixture of 2-propanone + 2-butanol at 33315 and 35315 K and 2-propanone + propanoicacid at 33315 35315 and 37315 K Anugraha et al13

measured the vapor pressure of binary mixtures of diethylcarbonate + isooctanen-heptanetoluene To our knowledge

Received November 14 2019Accepted March 30 2020Published April 3 2020

Articlepubsacsorgjced

copy 2020 American Chemical Society2441

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

Dow

nloa

ded

via

UPP

SAL

A U

NIV

on

June

21

202

0 at

00

502

1 (U

TC

)Se

e ht

tps

pub

sac

sor

gsh

arin

ggui

delin

es f

or o

ptio

ns o

n ho

w to

legi

timat

ely

shar

e pu

blis

hed

artic

les

vaporminusliquid equilibrium (VLE) data of 2-butanoltert-butanol+ DEC at low temperatures are unavailable in the availableliterature Therefore the aim of this study is to determine theisothermal VLE of 2-butanoltert-butanol + DEC at 30315minus32315 K In addition the experimental data were correlatedwith the Wilson14 nonrandom two-liquid (NRTL)15 anduniversal quasi-chemical (UNIQUAC)16 models

2 EXPERIMENTAL SECTION21 Materials The chemicals used in this experiment were

2-butanol tert-butanol and DEC All chemicals were usedwithout any additional purification The compound details arelisted in Table 1

22 Apparatus and Procedures The apparatus used inthis study is a simple static ebulliometer The ebulliometerused was an apparatus developed by Oktavian et al1 andrevalidated by Wibawa et al17 Wiguno et al18 and Anugrahaet al13 to ensure that the initial composition has not changedsignificantly when the equilibrium condition is achieved Thedetailed apparatus was shown in our previous publication1

The equipmentrsquos main parts are the ebulliometer cellcondenser and some auxiliaries such as a vacuum pump(VALUE VG140) for eliminating the gas impurities from theebulliometer magnetic stirrer temperature controller andindicator (AUTONICS TC4S) RTD Pt 100 thermocouplewith an accuracy of plusmn01 K pressure gauge (AUTONICSPSAN) with an accuracy of plusmn01 kPa and ambient pressuregauge (Lutron MHB 382SD)The experimental procedure was described in detail in the

previous work19 Initially each pure componentrsquos vaporpressure was measured by charging the pure component intothe equilibrium cell and vacuum conditions were created byturning on the vacuum pump The pressure at each desiredtemperature was recorded as the vapor pressure The vaporpressure data for the two binary systems ie 2-butanol + DECand tert-butanol + DEC were obtained by the followingprocedure The experiment was begun by introducing 225 mLof a mixture having a known composition into the ebulliometercell Cooling water was circulated in the condenser and thenthe magnetic stirrer was switched on to stir the solution to mixevenly After that the vacuum pressure was created in theequilibrium cell by turning on the vacuum pump The heatingsystem was then lit to heat the solution according to thedesired temperature This heating causes some of the liquid toevaporate The temperature and pressure in the system areshown by temperature indicator and pressure gaugerespectively The pressure is recorded when the temperaturereaches a constant value The apparatus was validated bycomparing the measured pure vapor pressures of 2-butanoltert-butanol and DEC with literature data calculated using theWagner and Antoine equations with parameter constantsobtained from Poling et al20 and Luo et al21 respectively

Based on this experiment the data obtained are the molefractions of component i in the liquid phase (xi) theequilibrium pressure (P) and the temperature (T) Theexperimental data are correlated with 3 activity coefficientmodels ie the Wilson NRTL and UNIQUAC equationsand the binary interaction parameter pairs of each equationwere optimized using the experimental data obtained in thiswork

3 RESULTS AND DISCUSSION31 Reliability of Apparatus The validity of the

experimental apparatus was checked by comparing theexperimental pure vapor pressures of 2-butanol tert-butanoland DEC with the literature pure vapor pressures of 2-butanoland tert-butanol calculated from the Wagner equation(equation 1) and that of DEC calculated from the Antoineequation (equation 2) The parameter constants of the Wagnerand Antoine equations are listed in Tables 2 and 3respectively

Pa b c d

Tln (kPa)

15 25 5

r

τ τ τ τ= + + +(1)

P AB

T Clog (kPa)

(K)10 = minus+ (2)

where τ = 1 minus Tr and Tr = TTc

A comparison between the experimental data and literaturedata obtained from the Wagner or Antoine equations arepresented in Table 4 and the average absolute deviation

Table 1 Pure Chemicals Description and Properties

component supplier CAS reg noMWa

(gmol) purityb

2-butanol Merck Germany 78minus92minus2 7412 09900tert-butanol Merck Germany 75minus65minus0 7412 09950diethylcarbonate

Wuhan FortunaChemical Co China

105minus58minus8 11813 09992

aMW = molecular weight bPurity from supplier in mass fraction

Table 2 Wagner Parameter of 2-Butanol and tert-Butanol20

component a b c d

2-butanol minus80982 164406 minus749 minus52735tert-butanol minus84792 247845 minus9279 minus25399

Table 3 Antoine Parameter of DEC21

component A B C

DEC 5883 122377 minus84304

Table 4 Vapor Pressures of 2-Butanol tert-Butanol andDECa

2-butanol tert-butanol DEC

TK Pexp Plit Pexp Plit Pexp Plit

(kPa)30315 322 320 764 766 196 19530565 374 376 884 892 227 22630815 443 441 1032 1034 257 26131065 513 516 1182 1196 296 29931315 604 600 1371 1378 346 34331565 705 697 1571 1583 396 39231815 804 806 1803 1813 445 44632065 934 930 2055 2071 504 50732315 1081 1069 2356 2359 582 575AAD 06 06 08

aThe standard uncertainty of measurements are u(T) = 01 K andu(P) = 03 kPa where u(T) is the uncertainty in temperature andu(P) is the uncertainty in pressure

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2442

(AAD) between the experimental data and calculated vaporpressures were obtained by the following equation

n

P P

PAAD

1100

i

n

1

exp lit

litsum=

minustimes

= (3)

where Pexp is the vapor pressure obtained from the experimentPlit is the literature value and n is the number of data points Aspresented in Table 4 good agreement was shown by all purecomponents with a 06 AAD for 2-butanol 06 AAD fortert-butanol and 08 AAD for DEC The result indicates thatthe ebulliometer used in this experiment is reliable32 Vapor Pressure Data Measurement and Correla-

tion The vapor pressure data obtained in this work for the 2-butanol (1) + DEC (2) and tert-butanol (1) + DEC (2)systems are presented in Tables 5 and 6 respectively The

experimental equilibrium temperatures were set in the range of30315minus32315 K to accommodate common fuel storageconditions in tropical countries This is done in the absence of

changes in the pressure temperature and composition of thesystemIn vaporminusliquid equilibrium conditions the liquid-compo-

nent fugacity is equal to the vapor-component fugacity Due tolow vapor pressure of the mixture the ideal gas law is appliedConsidering the differences between the alcohol and DECmolecules the liquid becomes a nonideal mixture Thereforean activity coefficient of component i γi is used as a nonidealfactor for the liquid phase in solution Accordingly thecalculation of the vapor pressure of the mixture is based on thefollowing equation

P x Pi

m

i i1

isatsum γ=

= (4)

where m is the number of components in the mixture P is thevapor pressure in the equilibrium condition xi is thecomponent i mole fraction in the liquid phase γi is the activitycoefficient of component i and Pi

sat is the vapor pressure ofcomponent i Data correlation is carried out by using theWilson NRTL and UNIQUAC equations The binaryinteraction parameters are determined using Barkerrsquos method22

by minimizing the following objective function (OF)

OF (P P )i

n

i i1

cal exp2sum= minus

= (5)

where n is the number of data points and the subscripts cal andexp indicate the calculated and experimental valuesrespectively The values of the AAD are presented in Table 7

The experimental data were well-correlated with the WilsonNRTL and UNIQUAC activity coefficient models givingaverage absolute deviations in the range of 18minus19 Thecorrelation results were plotted in Figure 1 and Figure 2Figure 1 shows that the increasing temperature causes a rise

in the vapor pressure of the 2-butanol + DEC mixture Atconstant temperature increasing the content of 2-butanol (x1)leads to an increase of equilibrium pressure of the mixture tothe peak point and then a decrease in the 2-butanol vaporpressureFigure 2 shows that the increasing temperature causes a rise

in the vapor pressure of the mixture In addition at constanttemperature the vapor pressure of the mixture increases withthe increasing content of tert-butanol (x1) Therefore thepressure of the mixture is between the pure vapor pressures ofeach component

Table 5 Experimental VLE data for 2-Butanol (1) + DEC(2)a

PexpkPa

x1 30315 K 30815 K 31315 K 31815 K 32315 K

0 196 257 346 445 58201 272 373 474 616 78902 293 402 542 701 86203 298 428 578 749 94104 317 431 561 742 96105 323 452 593 792 99306 34 449 588 775 102207 305 444 601 8 106708 341 461 603 796 105609 327 467 626 807 10761 322 443 604 804 1081

aThe standard uncertainty of measurements are u(xi) = 00002 u(T)= 01 K and u(P) = 03 kPa where u(xi) is the uncertainty ofcomponent i of the liquid phase mole fractions u(T) is theuncertainty in temperature and u(P) is the uncertainty in pressure

Table 6 Experimental VLE Data for tert-Butanol (1) + DEC(2)a

PexpkPa

x1 30315 K 30815 K 31315 K 31815 K 32315 K

0 196 257 346 445 58201 362 461 571 76 99702 437 567 751 1005 127503 534 714 895 1138 145404 626 754 972 1312 166805 633 802 1055 142 179606 662 846 115 1526 195707 71 897 1202 1578 202108 74 94 1257 1635 210309 767 969 1291 1736 22061 764 1032 1371 1803 2356

aThe standard uncertainty of measurements are u(xi) = 00002 u(T)= 01 K and u(P) = 03 kPa where u(xi) is the uncertainty ofcomponent i of the liquid phase mole fractions u(T) is theuncertainty in temperature and u(P) is the uncertainty in pressure

Table 7 Parameter and AADs of Correlation Results

2-Butanol(1) + DEC(2) System

Wilson NRTL UNIQUAC

a12(Jmol)

a21(Jmol)

α(minus)

b12(Jmol)

b21(Jmol)

Δu12(Jmol)

Δu21(Jmol)

51428 minus9777 03 minus10506 49176 minus12239 25901AAD = 19 AAD = 18 AAD = 19

tert-butanol(1) + DEC(2) system

Wilson NRTL UNIQUAC

a12(Jmol)

a21(Jmol)

α(minus)

b12(Jmol)

b21(Jmol)

Δu12(Jmol)

Δu21(Jmol)

16342 9713 03 14669 9951 1081 4603AAD = 19 AAD = 19 AAD = 19

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2443

The composition of the vapor can be obtained based on theconcept of equilibrium by using the values of the activitycoefficients obtained from the Wilson NRTL and UNIQUACequations The result of calculated of y1 is then plotted inFigures 1 and 2According to Figure 1 the correlation results for 2-butanol +

DEC showing that at the point of x1 above 06 the x1 has samevalue of y1 where it could be suspected as azeotrope pointHowever due to the differences between the maximumequilibrium pressures and the vapor pressure of pure 2-butanolare smaller than the uncertainty of pressure measurement (03kPa) the azeotrope behavior still could not be justified for thissystem The small vapor pressure differences indicate that theeffect of DEC at the point of x1 above 06 is insignificant Thevapor pressure is greatly affected by 2-butanol

4 CONCLUSIONSAn experiment was successfully conducted to obtain accuratevaporminusliquid equilibrium data for binary systems of 2-butanol

(1) + DEC (2) and tert-butanol (1) + DEC (2) at 30315minus32315 K The experimental data for the 2-butanol (1) + DEC(2) system were well-correlated using the Wilson NRTL andUNIQUAC models with AADs in the vapor pressure of 1918 and 19 respectively For the tert-butanol (1) + DEC (2)system correlation using the Wilson NRTL and UNIQUACmodels gave the same AAD of 19 The systems studied showpositive deviations from Raoultrsquos law in the temperature rangestudied

AUTHOR INFORMATION

Corresponding AuthorGede Wibawa minus Department of Chemical Engineering Facultyof Industrial Technology Sepuluh Nopember Institute ofTechnology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia orcidorg0000-0002-1255-9210 Phone +62-31-5946240 Email gwibawachem-engitsacid Fax +62-31-5999282

AuthorsAnnas Wiguno minus Department of Chemical Engineering Facultyof Industrial Technology Sepuluh Nopember Institute ofTechnology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia

Rizky Tetrisyanda minus Department of Chemical EngineeringFaculty of Industrial Technology Sepuluh Nopember Instituteof Technology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia

Complete contact information is available athttpspubsacsorg101021acsjced9b01079

NotesThe authors declare no competing financial interest

ACKNOWLEDGMENTS

The author are grateful to Kementrian Riset Teknologi danPendidikan Tinggi Sepuluh Nopember Institute of Technol-ogy (ITS) for a research grant with the PUPT research schemaunder Contract 622PKSITS2017 The authors would liketo thank Andika Dwimasputra and Naomi Hurayah Aden forexperimental work

REFERENCES(1) Oktavian R Amidelsi V Rasmito A Wibawa G VaporPressure Measurements of Ethanolminusisooctane and 1-Butanolminusisooctane Systems Using a New Ebulliometer Fuel 2013 107 47minus51(2) Hull A Kronberg B van Stam J Golubkov I Kristensson JVaporminusLiquid Equilibrium of Binary Mixtures 1 Ethanol + 1-Butanol Ethanol + Octane 1-Butanol + Octane J Chem Eng Data2006 51 1996minus2001(3) Moxey B G Cairns A Zhao H A Comparison of Butanol andEthanol Flame Development in an Optical Spark Ignition Engine Fuel2016 170 27minus38(4) Varol Y Oner C Oztop H F Altun S Comparison ofMethanol Ethanol or n-Butanol Blending with Unleaded Gasoline onExhaust Emissions of an SI Engine Energy Sources Part A 2014 36938minus948(5) Procentese A Guida T Raganati F Olivieri G Salatino PMarzocchella A Process Simulation of Biobutanol Production fromLignocellulosic Feedstocks Chem Eng Trans 2014 38 343minus348(6) Dunn B C Guenneau C Hilton S A Pahnke J Eyring EM Dworzanski J Meuzelaar H L C Hu J Z Solum M SPugmire R J Production of Diethyl Carbonate from Ethanol and

Figure 1 Diagram of Pminusx1minusy1 for 2-butanol (1) + DEC (2) system atvarious temperatures

Figure 2 Diagram of Pminusx1minusy1 for tert-butanol (1) + DEC (2) systemat various temperatures

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2444

Carbon Monoxide over a Heterogeneous Catalyst Energy Fuels 200216 177minus181(7) Pacheco M A Marshall C L Review of Dimethyl Carbonate(DMC) Manufacture and Its Characteristics as a Fuel AdditiveEnergy Fuels 1997 11 2minus29(8) M Eyring E L C Meuzelaar H Pugmire R Synthesis andTesting of Diethyl Carbonate as a Possible Diesel Fuel Additive 2000(9) Moran M Zogorski J Squillace P MTBE and GasolineHydrocarbons in Ground Water of the United States 2005 Vol 43(10) Rodriacuteguez A Canosa J Domiacutenguez A Tojo J IsobaricPhase Equilibria of Diethyl Carbonate with Five Alcohols at 1013KPa J Chem Eng Data 2003 48 86minus91(11) Ho H-Y Shu S-S Wang S-J Lee M-J Isothermal(Vapour+liquid) Equilibrium (VLE) for Binary Mixtures ContainingDiethyl Carbonate Phenyl Acetate Diphenyl Carbonate or EthylAcetate J Chem Thermodyn 2015 91 35minus42(12) Pillay J Iwarere S A Raal J D Naidoo P RamjugernathD Isothermal Vapour-Liquid Equilibrium Data for the Binary Systems2-Propanone + (2-Butanol or Propanoic Acid) Fluid Phase Equilib2017 433 119minus125(13) Anugraha R P Altway A Wibawa G Measurement andCorrelation of Isothermal Binary VaporminusLiquid Equilibrium forDiethyl Carbonate + Isooctanen-HeptaneToluene Systems JChem Eng Data 2017 62 2362minus2366(14) Wilson G M Vapor-Liquid Equilibrium XI A NewExpression for the Excess Free Energy of Mixing J Am Chem Soc1964 86 127minus130(15) Renon H Prausnitz J M Local Composition Thermody-namic Excess Functions for Liquid Mixtures AIChE J 1968 14 135minus144(16) Prausnitz J M Abrams D S Statistical Thermodynamics ofLiquid Mixtures A New Expression for the Excess Gibbs Energy ofPartly or Completely Miscible Systems AIChE J 1975 21 116minus128(17) Wibawa G Mustain A Akbarina M F Ruslim R MIsothermal VaporminusLiquid Equilibrium of Ethanol + Glycerol and 2-Propanol + Glycerol at Different Temperatures J Chem Eng Data2015 60 955minus959(18) Wiguno A Mustain A Irwansyah W F E Wibawa GIsothermal Vapor-Liquid Equilibrium of Methanol + Glycerol and 1-Propanol + Glycerol Indones J Chem 2018 16 111minus116(19) Anugraha R P Wiguno A Altway A Wibawa G VaporPressures of Diethyl Carbonate + Ethanol Binary Mixture and DiethylCarbonate + Ethanol + IsooctaneToluene Ternary Mixtures atTemperatures Range of 303 15 minus 323 15 K J Mol Liq 2018 26432minus37(20) Poling B E Prausnitz J M OrsquoConnel J P The Properties ofGases and Liquids 5th ed McGraw-Hill New York 2001(21) Luo H-P Xiao W-D Zhu K-H Isobaric VaporminusliquidEquilibria of Alkyl Carbonates with Alcohols Fluid Phase Equilib2000 175 91minus105(22) Barker J A Determination of Activity Coefficients from TotalPressure Measurements Aust J Chem 1953 6 207minus210

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2445

Pengisian poin C sampai dengan poin H mengikuti template berikut dan tidak dibatasi jumlah kata atau halaman namun disarankan seringkas mungkin Dilarang menghapusmemodifikasi template ataupun menghapus penjelasan di setiap poin

Sumber energi berbasis fosil (minyak bumi gas alam dan batu bara) merupakan sumber

energi utama yang digunakan sebagian besar masyarakat Indonesia Dalam perkembangannya

konsumi sumber energi berbasis fosil akan semakin meningkat pada beberapa tahun kedepan

[1] Akan tetapi sumber daya energi berbasis fosil dikenal sebagai emitor karbon utama Hal

ini menunjukkan bahwa saat ini industri minyak bumi gas alam dan batu bara memiliki

tanggung jawab dan tantangan nyata dalam pemenuhan kebutuhan energi mendatang dengan

menghadapi dampak dan isu lingkungan

Alternatif yang dapat dilakukan adalah dengan memberikan nilai tambah pada karbon yaitu

dengan pemanfaatan karbon dioksida (CO2) sehingga industri energi berbasis fosil akan

menjadi lebih ramah lingkungan dan tetap memenuhi kebutuhan energi nasional Pemanfaatan

CO2 yang dihasilkan dari pembakaran atau pengolahan sumber energi berbasis fosil dapat

dilakukan dengan mengkonversi CO2 menjadi berbagai macam produk kimia yang bernilai

ekonomi Sebagai contoh adalah dry reforming CH4 dengan CO2 untuk memproduksi syngas

transformasi CO2 menjadi cyclic carbonates melalui cycloaddition oxidative carboxylation

olefin dengan CO2 sintesis metanol dari CO2 dan H2 serta masih banyak lainnya Dari berbagai

macam metode tersebut sintesa karbonat organik dari alkohol dan CO2 memiliki daya tarik

yang tinggi karena produk komersial yang dihasilkan bernilai tinggi dan banyak digunakan

pada berbagai industri

Organic carbonate merupakan salah satu bahan kimia alami yang sangat penting di abad ini

Karena karakteristiknya seperti polaritas ramah lingkungan dan tidak beracun organic

carbonate ini berpotensi untuk menggantikan bahan kimia yang berbahaya Selain ituSintesa

organic carbonate membantu dalam proses mitigasi dan penggunaan CO2 seperti senyawa

dialkyl carbonate khususnya Diethyl Carbonate dan Dimethyl Carbonate Senyawa DEC dan

DMC yang disintesis dalam eksperimen ini merupakan senyawa organic carbonate yang paling

penting DEC dan DMC ini merupakan zat aditif terbarukan yang dapat ditambahkan ke bahan

bakar untuk meningkatkan pembakaran dan mengurangi emisi gas buang [2]

Dari uraian diatas dapat diamati bahwa produksi DEC dan DMC dengan pemanfaatan CO2

menjadi produk yang bernilai ekonomi merupakan proses yang menarik CO2 merupakan salah

satu permasalahan yang timbul akibat peningkatan konsumsi energi Hal ini dikarenakan

peningkatannya yang sangat besar di bumi memiliki tanggung jawab atas fenomena gas rumah

kaca yang terjadi Namun berdasarkan beberapa penelitian CO2 dapat dimanfaatkan untuk

menghasilkan bahan kimia lainnya seperti DEC dan DMC dimana bahan ini biasa digunakan

sebagai zat aditif dalam bahan bakar yang lebih aman dan ramah lingkungan

Menurut berbagai penelitian yang pernah dilakukan DEC dan DMCdapat disintesa

dengan berbagai bahan baku serta metode Pertama DEC dapat disintesa dari urea[3ndash5]CO[6-

10] DMC[11] Ethyl Carbamate[12ndash15] ethylene carbonate[16] Selain itu DEC dan DMC

juga pernah dilaporkan dalam bebrapa penelitian bahwa senyawa ini dapat dihasilkan dari

bahan baku CO2[21ndash26]

Akan tetapi dalam sejarah penelitian yang telah ada dengan berbagai metode khususnya

untuk sintesa langsung kondisi operasi dan katalis yang digunakan tersebut masih belum

menunjukkan hasil yang maksimal Sehingga dalam penelitian ini telah dilakukan sintesis

C HASIL PELAKSANAAN PENELITIAN Tuliskan secara ringkas hasil pelaksanaan penelitian yang telah dicapai sesuai tahun pelaksanaan penelitian Penyajian dapat berupa data hasil analisis dan capaian luaran (wajib dan atau tambahan) Seluruh hasil atau capaian yang dilaporkan harus berkaitan dengan tahapan pelaksanaan penelitian sebagaimana direncanakan pada proposal Penyajian data dapat berupa gambar tabel grafik dan sejenisnya serta analisis didukung dengan sumber pustaka primer yang relevan dan terkini

DEC dan DMC dari CO2 menggunakan metode sintesa langsung dan katalis homogen dan

heterogen Sehingga hasil dari penelitian ini dapat dijadikan sebagai acuan dalam pemanfaatan

zat emisi karbon dioksida menjadi zat bernilai ekonomi DEC ataupun DMC melalui reaksi

langsung bersama etanol menggunakan katalis homogen dan heterogen

Setelah didapatkan hasil sebelumnya pada sintesis DEC pada eksperimen ini juga

dilakukan sintesis DMC dengan menggunakan metode kondisi operasi yang sama dan

bahan baku berupa CO2 agar dapat dibandingkan apakah metode dan kondisi operasi yang

sama yang diterapkan pada sintesis DEC sebelumnya juga dapat diaplikasikan untuk

sintesis DMC

Pada eksperimen sintesis dimethyl carbonate (DMC) didapatkan data yang diamati

secara langsung yaitu berupa waktu suhu dan tekanan Waktu suhu dan tekanan ini diamati

selama jalannya proses sintesis untuk memastikan adanya kebocoran pada reaktor serta

kestabilan suhu reaktor selama eksperimen Berikut ini pada Tabel 1 merupakan data waktu

suhu dan tekanan rata-rata yang didapatkan pada setiap eksperimen sintesis dimethyl

carbonate

Tabel 1 Data waktu suhu dan tekanan rata-rata pada setiap eksperimen sintesis dimethyl

carbonate

Waktu (menit) Suhu (oC) Tekanan (bar)

0 169 40

30 169 40

60 169 40

90 167 40

120 167 40

150 169 40

180 170 40

210 170 40

240 168 40

270 170 40

300 169 40

Kemudian setelah dilakukan eksperimen sintesis DMC ini produk yang dihasilkan

dianalisa secara kualitatif menggunakan GC-MS dan secara kuantitatif menggunakan GC

Hasil analisa kualitatif menggunakan GC-MS pada sintesis DMC dari CO2 menggunakan agen

pendehidrasi senyawa epoksida berupa propylene oxide menghasilkan beberapa senyawa yang

terkandung dalam produknya diantaranya yaitu DMC Propylene carbonate dan Propylene

Glycol Sedangkan hasil analisa kualitatif menggunakan GC-MS pada sintesis DMC dari CO2

menggunakan agen pendehidrasi senyawa epoksida berupa butylene oxide menghasilkan

beberapa senyawa yang terkandung dalam produknya diantaranya yaitu DMC Butylene

carbonate dan Butylene glycol Hal ini telah sesuai dengan reaksi kimia dari sintesis DMC

pada literature dimana DMC merupakan produk utama dari sintesis Propylene carbonate atau

Butylene carbonate yang merupakan produk tengahnya dan Propylene Glycol atau Butylene

glycol yang merupakan produk sampingnya[26]

Selain dilakukan analisa secara kualitatif Produk DMC ini juga dilakukan analisa

secara kuantitatif menggunakan GC Berikut ini pada Tabel 2 dipaparkan mengenai hasil

analisa kuantitatif dari sintesis DMC dari CO2 yang direaksikan dengan methanol epoksida

berupa propylene oxide atau butylene oxide serta katalis homogen dan katalis heterogen

Jenis

Epoksida

Waktu reaksi

(jam) Katalis

Yield

DMC

()

Konversi

Reaksi ()

Propylene

Oxide

1

KI-EtONa

1051 1051

2 1999 1999

3 2683 2683

4 2681 2681

5 2852 2852

1

KI-Zeolite

892 893

2 3471 3471

3 2338 2338

4 1586 1586

5 1419 1419

Butylene

Oxide

1

KI-EtONa

1377 1377

2 2206 2206

3 2426 2426

4 3684 3684

5 2159 2159

Dari hasil penelitian dapat diketahui bahwa penggunaan KI-Zeolite dalam sintesis

Dimethyl Carbonate menggunakan agen pendehidrasi propylene oxide dan katalis KIZeolite

menghasilkan yield DMC tertinggi yaitu sebesar 3471 dengan waktu reaksi selama 2 jam

Sedangkan untuk sintesis DMC menggunakan agen pendehidrasi butylene oxide dan katalis

KIEtONa menghasilkan yield DMC tertinggi sebesar 3684 dengan waktu reaksi sebesar 4

jam Berdasarkan hasil eksperimen sintesis DMC menggunakan katalis propylene oxide disini

Kemudian berdasarkan sintesis DEC dengan menggunakan epoksida propylene oxide pada

eksperimen sebelumnya juga dapat diketahui bahwa penggunaan zeolite juga memiliki hasil

yield DEC yang lebih tinggi Selain itu berdasarkan hasil eksperimen sintesis DMC

menggunakan agen pendehidrasi berupa butylene oxide dan katalis KIEtONa yield tertinggi

didapatkan dengan waktu reaksi yang lebih lama dibandingkan dengan hasil sintesis DMC

yang menggunakan katalis KIZeolite Sehingga penggunaan Zeolite membuktikan bahwa

bahan ini berpotensi untuk digunakan sebagai pengganti katalis EtONa karena harganya yang

jauh lebih murah

Berdasarkan dari hasil penelitian ini telah di dapatkan beberapa luaran wajib dan tambahan diantaranya

yaitu untuk luaran wajib yang telah dicapai adalah berupa jurnal internasional yang berjudul ldquoVapor

Pressure of 2-Butanol+Diethyl Carbonate and tert-Butanol + Diethyl Carbonate at The

Temperature 30315-32315Krdquo yang telah dipublikasikan di Journal of Chemical amp

Engineering Data pada tahun 2020 dan draft manuscript yang berjudul ldquoCatalytic Synthesis of

Diethyl Carbonate from Carbon dioxide and Ethanol as Raw Material using KISodium

Ethoxide and KIMolecular Sieve as Catalystrdquo dimana nantinya akan disubmit pada chemical

engineering journal Sedangkan untuk luaran tambahan yang telah dicapai adalah berupa Manuscript

dengan judul ldquoThe Effect of Temperature Reaction in Catalytic Synthesis of Diethyl Carbonate

via One Pot Reactionrdquo yang akan diseminarkan pada 4th International Conference on Chemical

amp Material Engineering (ICCME 2020) yang akan diselenggarakan pada 6-7 Oktober 2020

melalui Video Meeting via ZOOM

D STATUS LUARAN Tuliskan jenis identitas dan status ketercapaian setiap luaran wajib dan luaran tambahan (jika ada) yang dijanjikan pada tahun pelaksanaan penelitian Jenis luaran dapat berupa publikasi perolehan kekayaan intelektual hasil pengujian atau luaran lainnya yang telah dijanjikan pada proposal Uraian status luaran harus didukung dengan bukti kemajuan ketercapaian luaran sesuai dengan luaran yang dijanjikan Lengkapi isian jenis luaran yang dijanjikan serta mengunggah bukti dokumen ketercapaian luaran wajib dan luaran tambahan melalui Simlitabmas mengikuti format sebagaimana terlihat pada bagian isian luaran

Untuk luaran wajib ada dua yaitu

1 Jurnal internasional yang berjudul ldquoVapor Pressure of 2-Butanol + Diethyl Carbonate

and tert-Butanol + Diethyl Carbonate at The Temperature 30315-32315Krdquo yang telah

dipublikasikan di Journal of Chemical amp Engineering Data pada tahun 2020 (Status

Published)

2 Manuscript yang berjudul ldquoCatalytic Synthesis of Diethyl Carbonate from Carbon

dioxide and Ethanol as Raw Material using KISodium Ethoxide and KIMolecular

Sieve as Catalystrdquo dimana nantinya akan disubmit pada chemical engineering journal

(Status Draft)

Sedangkan untuk luaran tambahan yaitu

Manuscript dengan judul ldquoThe Effect of Temperature Reaction in Catalytic Synthesis of

Diethyl Carbonate via One Pot Reactionrdquo yang akan diseminarkan pada 4th International

Conference on Chemical amp Material Engineering (ICCME 2020) yang akan diselenggarakan

pada 6-7 Oktober 2020 melalui Video Meeting via ZOOM

E PERAN MITRA Tuliskan realisasi kerjasama dan kontribusi Mitra baik in-kind maupun in-cash (jika ada) Bukti pendukung realisasi kerjasama dan realisasi kontribusi mitra dilaporkan sesuai dengan kondisi yang sebenarnya Bukti dokumen realisasi kerjasama dengan Mitra diunggah melalui Simlitabmas mengikuti format sebagaimana terlihat pada bagian isian mitra

F KENDALA PELAKSANAAN PENELITIAN Tuliskan kesulitan atau hambatan yang dihadapi selama melakukan penelitian dan mencapai luaran yang dijanjikan termasuk penjelasan jika pelaksanaan penelitian dan luaran penelitian tidak sesuai dengan yang direncanakan atau dijanjikan

Kendala pada pelaksanaan penelitian ini berada pada sulitnya menjaga kondisi reaktan yang

ada pada reaktor karena adanya faktor kesalahan teknis dalam menutup reaktor sehingga ada

kebocoran sedikit pada reaktor yang menyebabkan prosedur eksperimen harus diulangi

kembali sedangkan hambatan yang dihadapi selama melakukan penelitian adalah supplay

listrik yang tidak menentu pada saat pelaksanaan eksperimen menghasilkan supplay panas pada

electrical heater yang berbeda-beda setiap waktunya sehingga suhu reaktor sangat sulit untuk

dikendalikan Selain itu pada masa pandemic ini juga ada hambatan pada waktu penelitian

yang sangat terbatas sehingga pengerjaan penelitian juga menjadi terhambat

G RENCANA TINDAK LANJUT PENELITIAN Tuliskan dan uraikan rencana tindaklanjut penelitian selanjutnya dengan melihat hasil penelitian yang telah diperoleh Jika ada target yang belum diselesaikan pada akhir tahun pelaksanaan penelitian pada bagian ini dapat dituliskan rencana penyelesaian target yang belum tercapai tersebut

Penelitian selanjutnya akan difokuskan untuk sintesis Dimethyl Carbonate dengan agen

pendehidrasi berupa butylene oxide dan jenis katalis yang berbeda dan eksperimen

kesetimbangan uap-cair antar komponennya yang ada di produk

H DAFTAR PUSTAKA Penyusunan Daftar Pustaka berdasarkan sistem nomor sesuai dengan urutan pengutipan Hanya pustaka yang disitasi pada laporan akhir yang dicantumkan dalam Daftar Pustaka

1 Hanpattanakit P Pimonsree L Jamnongchob A Boonpoke A 2018 CO2 Emission

and Reduction of Tourist Transportation at Kok Mak Island Thailand Chemical

Engineering Transactions 63 37-42

2 K Shukla and V C Srivastava ldquoRSC Advances Diethyl carbonate  critical review of

synthesis routes catalysts used and engineering aspectsrdquo RSC Adv vol 6 pp 32624ndash

32645 201

3 D Wang B Yang X Zhai L Zhou Synthesis of diethyl carbonate by catalytic alcoholysis of urea 88 (2007) 807ndash812 doi101016jfuproc200704003

4 S Xin L Wang H Li K Huang F Li Synthesis of diethyl carbonate from urea and ethanol over lanthanum oxide as a heterogeneous basic catalyst Fuel Process Technol 126 (2014) 453ndash459 doi101016jfuproc201405029

5 K Shukla VC Srivastava Diethyl carbonate synthesis by ethanolysis of urea using Ce-Zn oxide catalysts Fuel Process Technol 161 (2017) 116ndash124 doi101016jfuproc201703004

6 P Zhang S Wang S Chen Z Zhang X Ma The effects of promoters over PdCl 2 -CuCl 2 HMS catalysts for the synthesis of diethyl carbonate by oxidative carbonylation of ethanol 143 (2008) 220ndash224 doi101016jcej200804008

7 DN Briggs G Bong E Leong K Oei G Lestari AT Bell Effects of support composition and pretreatment on the activity and selectivity of carbon-supported PdCu n Cl x catalysts for the synthesis of diethyl carbonate J Catal 276 (2010) 215ndash228 doi101016jjcat201008004

8 P Zhang X Ma Catalytic synthesis of diethyl carbonate by oxidative carbonylation of ethanol over PdCl 2 Cu-HMS catalyst Chem Eng J 163 (2010) 93ndash97 doi101016jcej201007025

9 D Zhu F Mei L Chen W Mo T Li G Li An efficient catalyst Co ( salophen ) for synthesis of diethyl carbonate by oxidative carbonylation of ethanol Fuel 90 (2011) 2098ndash2102 doi101016jfuel201102023

10 P Zhang Y Zhou M Fan P Jiang Catalytic synthesis of diethyl carbonate with supported Pd ‐ Cu bimetallic nanoparticle catalysts  Cu ( I ) as the active species Chinese J Catal 36 (2015) 2036ndash2043 doi101016S1872-2067(15)60973-1

11 C Murugan HC Bajaj Synthesis of diethyl carbonate from dimethyl carbonate and ethanol using KF Al 2 O 3 as an ef fi cient solid base catalyst Fuel Process Technol 92 (2011) 77ndash82 doi101016jfuproc201008023

12 GUO Lian Z Xinqiang AN Hualiang W Yanji Catalysis by Lead Oxide for Diethyl Carbonate Synthesis from Ethyl Carbamate and Ethanol Chinese J Catal 33 (2012) 595ndash600 doi101016S1872-2067(11)60373-2

13 H An X Zhao L Guo C Jia B Yuan Y Wang Applied Catalysis A  General Synthesis of diethyl carbonate from ethyl carbamate and ethanol over ZnO-PbO catalyst Applied Catal A Gen 433ndash434 (2012) 229ndash235 doi101016japcata201205023

14 L Wang H Li S Xin F Li Generation of solid base catalyst from waste slag for the ef fi cient synthesis of diethyl carbonate from ethyl carbamate and ethanol CATCOM 50 (2014) 49ndash53 doi101016jcatcom201402028

15 L Zhao Z Hou C Liu Y Wang L Dai Original article A catalyst-free novel synthesis of diethyl carbonate from ethyl carbamate in supercritical ethanol Chinese Chem Lett 25 (2014) 1395ndash1398 doi101016jcclet201405012

16 H Iida R Kawaguchi K Okumura Production of diethyl carbonate from ethylene carbonate and ethanol over supported fl uoro-perovskite catalysts Intensity cps Catal Commun 108 (2018) 7ndash11 doi101016jcatcom201801019

17 F Gasc S Thiebaud-roux Z Mouloungui The Journal of Supercritical Fluids Methods for synthesizing diethyl carbonate from ethanol and supercritical carbon dioxide by one-pot or two-step reactions in the presence of potassium carbonate 50 (2009) 46ndash53 doi101016jsupflu200903008

18 E Leino P Maumlki-arvela K Eraumlnen M Tenho D Yu T Salmi J Mikkola Enhanced yields of diethyl carbonate via one-pot synthesis from ethanol carbon dioxide and butylene oxide over cerium ( IV ) oxide Chem Eng J 176ndash177 (2011) 124ndash133 doi101016jcej201107054

19 E Leino P Maumlki-arvela V Eta N Kumar F Demoisson A Samikannu A Leino A Shchukarev D Yu J Mikkola The influence of various synthesis methods on the catalytic activity of cerium oxide in one-pot synthesis of diethyl carbonate starting from CO 2 ethanol and butylene oxide Catal Today 210 (2013) 47ndash54 doi101016jcattod201302011

20 E Leino N Kumar P Maumlki-arvela A Aho K Kordaacutes In fl uence of the synthesis parameters on the physico-chemical and catalytic properties of cerium oxide for application in the synthesis of diethyl carbonate Mater Chem Phys 143 (2013) 65ndash75 doi101016jmatchemphys201308012

21 L Wang H Li S Xin P He Y Cao F Li X Hou Applied Catalysis A  General Highly efficient synthesis of diethyl carbonate via one-pot reaction from carbon dioxide epoxides and ethanol over KI-based binary catalyst system Applied Catal A Gen 471 (2014) 19ndash27 doi101016japcata201311031

22 E Leino N Kumar P Maumlki-arvela A Rautio J Dahl J Roine J-P Mikkola Synthesis and characterization of ceria-supported catalysts for carbon dioxide transformation to diethyl carbonate Catal Today (2017) 1ndash10 doi101016jcattod201701016

23 W Yanlou J Dongdong Z Zhen S Yongyue Synthesis of Diethyl Carbonate from Carbon Dioxide Catal MDPI (2016) doi103390catal6040052

24 L Wang M Ammar P He Y Li Y Cao F Li X Han H Li The efficient synthesis of diethyl carbonate via coupling reaction from propylene oxide CO 2 and ethanol over binary PVEImBr MgO catalyst Catal Today 281 (2017) 360ndash370 doi101016jcattod201602052

25 H Hattori HeterogeneousBasicCatalysispdf (1995)

26 Fan Bin Bo Qu Q Chen Y Wen L Cai R Zhang An improved one-pot synthesis of dimethyl carbonate from propylene oxide CO2 and methanol Journal of Chemical Research (2011) 654-656

Dokumen pendukung luaran Wajib 1

Luaran dijanjikan Publikasi Ilmiah Jurnal Internasional

Target acceptedpublished

Dicapai Published

Dokumen wajib diunggah

1 Artikel yang terbit

Dokumen sudah diunggah

1 Artikel yang terbit

Dokumen belum diunggah

- Sudah lengkap

Nama jurnal Journal of Chemical amp Engineering Data

Peran penulis corresponding author | EISSN 00219568 15205134

Nama Lembaga Pengindek scopus

URL jurnal httpspubsacsorgdoi101021acsjced9b01079

Judul artikel Vapor Pressure of 2-Butanol + Diethyl Carbonate and tert-Butanol +

Diethyl Carbonate at The Temperature 30315-32315K

Tahun 2020 | Volume 65 | Nomor 5

Halaman awal 2441 | akhir 2445

URL artikel httpspubsacsorgdoi101021acsjced9b01079

DOI httpsdoiorg101021acsjced9b01079

Vapor Pressure of 2‑Butanol + Diethyl Carbonate and tert-Butanol +Diethyl Carbonate at the Temperature of 30315minus32315 KAnnas Wiguno Rizky Tetrisyanda and Gede Wibawa

Cite This J Chem Eng Data 2020 65 2441minus2445 Read Online

ACCESS Metrics amp More Article Recommendations

ABSTRACT In this work the vapor pressure of binary mixtures of 2-butanol +diethyl carbonate and tert-butanol + diethyl carbonate was measured in thetemperature range from 30315 to 32315 K The experimental apparatus used inthis work was a simple quasi-static ebulliometer developed in our previous works Thereliability of this apparatus was verified by comparing the measured vapor pressures of2-butanveol tert-butanol and diethyl carbonate with literature data The comparisonsshowed that the vapor pressures of pure 2-butanol tert-butanol and diethyl carbonatewere in good agreement with the literature data with average absolute deviations of 0606 and 08 respectively The experimental results show that the vapor pressuresincreased with the alcohol mole fraction for all systems studied The experimental datawere well-correlated with the Wilson nonrandom two-liquid and universal quasi-chemical activity coefficient models giving an average absolute deviation of no morethan 19 The binary vaporminusliquid equilibrium data obtained in this work showed apositive deviation from Raoultrsquos law

1 INTRODUCTION

Ethanol is commonly used in gasoline blends because of itshigh octane number and oxygen number as well as itscapability to accelerate flame propagation However theaddition of ethanol to isooctane at a mole fraction of 01was found to elevate the vapor pressure12 A higher vaporpressure of gasoline mixtures causes increased emissions andthe potential for vapor lock in the engine On other handlonger-chain alcohols such as 2-butanol and tert-butanol havelower vapor pressures and higher heating values and theirproperties are closer to gasoline than to ethanol3 Butanol hasbeen used as a mixture in engines without any significantengine changes4 Butanol may be produced from renewableresources as well for example from lignocellulose the mostplentiful renewable material5 The combustion of a butanolminusgasoline mixture produces a high temperature because of itshigh heating value and low vaporization rate Therefore 2-butanoltert-butanol are expected to be able to be used asgasoline additives that are alternatives to ethanol The octanenumber of butanol is lower than that of ethanol and thus theaddition of an octane booster is required Diethyl carbonate(DEC) is such an octane booster The addition of 5 wt ofdiethyl carbonate (DEC) into diesel fuel can decrease theemissions by up to 50 due to its higher oxygen content of406 wt6 DEC is a nontoxic chemical that is degradable andable to be decomposed gradually into CO2 and ethanol whichare environmentally friendly78 Although methyl tert-butylether (MTBE) has been successfully applied in gasoline blendsas it is nonbiodegradable it has contributed to groundwater

contamination9 Thus DEC is a potential candidate to replaceMTBETo design the blend of gasoline + 2-butanoltert-butanol +

DEC the vapor pressure data of the binary system of 2-butanoltert-butanol + DEC are required Studies on the vaporpressure of mixtures including diethyl carbonate have beenconducted by many researchers Rodriguez et al10 examinedthe vapor pressure for the binary systems of diethyl carbonatewith five alcohols (methanol ethanol 1-propanol 1-butanoland 1-pentanol) at a pressure of 1013 kPa and temperatures of35173minus39602 K Octavian et al1 measured the vaporpressure of the ethanol + isooctane and 1-butanol + isooctanesystems using a new ebulliometer Ho et al11 examined thevapor pressure of binary mixtures containing diethyl carbonatephenyl acetate diphenyl carbonate or ethyl acetate at 3732minus4532 K Jeremy et al12 conducted experiments on the vaporliquid equilibrium of a binary mixture of 2-propanone + 2-butanol at 33315 and 35315 K and 2-propanone + propanoicacid at 33315 35315 and 37315 K Anugraha et al13

measured the vapor pressure of binary mixtures of diethylcarbonate + isooctanen-heptanetoluene To our knowledge

Received November 14 2019Accepted March 30 2020Published April 3 2020

Articlepubsacsorgjced

copy 2020 American Chemical Society2441

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

Dow

nloa

ded

via

UPP

SAL

A U

NIV

on

June

21

202

0 at

00

502

1 (U

TC

)Se

e ht

tps

pub

sac

sor

gsh

arin

ggui

delin

es f

or o

ptio

ns o

n ho

w to

legi

timat

ely

shar

e pu

blis

hed

artic

les

vaporminusliquid equilibrium (VLE) data of 2-butanoltert-butanol+ DEC at low temperatures are unavailable in the availableliterature Therefore the aim of this study is to determine theisothermal VLE of 2-butanoltert-butanol + DEC at 30315minus32315 K In addition the experimental data were correlatedwith the Wilson14 nonrandom two-liquid (NRTL)15 anduniversal quasi-chemical (UNIQUAC)16 models

2 EXPERIMENTAL SECTION21 Materials The chemicals used in this experiment were

2-butanol tert-butanol and DEC All chemicals were usedwithout any additional purification The compound details arelisted in Table 1

22 Apparatus and Procedures The apparatus used inthis study is a simple static ebulliometer The ebulliometerused was an apparatus developed by Oktavian et al1 andrevalidated by Wibawa et al17 Wiguno et al18 and Anugrahaet al13 to ensure that the initial composition has not changedsignificantly when the equilibrium condition is achieved Thedetailed apparatus was shown in our previous publication1

The equipmentrsquos main parts are the ebulliometer cellcondenser and some auxiliaries such as a vacuum pump(VALUE VG140) for eliminating the gas impurities from theebulliometer magnetic stirrer temperature controller andindicator (AUTONICS TC4S) RTD Pt 100 thermocouplewith an accuracy of plusmn01 K pressure gauge (AUTONICSPSAN) with an accuracy of plusmn01 kPa and ambient pressuregauge (Lutron MHB 382SD)The experimental procedure was described in detail in the

previous work19 Initially each pure componentrsquos vaporpressure was measured by charging the pure component intothe equilibrium cell and vacuum conditions were created byturning on the vacuum pump The pressure at each desiredtemperature was recorded as the vapor pressure The vaporpressure data for the two binary systems ie 2-butanol + DECand tert-butanol + DEC were obtained by the followingprocedure The experiment was begun by introducing 225 mLof a mixture having a known composition into the ebulliometercell Cooling water was circulated in the condenser and thenthe magnetic stirrer was switched on to stir the solution to mixevenly After that the vacuum pressure was created in theequilibrium cell by turning on the vacuum pump The heatingsystem was then lit to heat the solution according to thedesired temperature This heating causes some of the liquid toevaporate The temperature and pressure in the system areshown by temperature indicator and pressure gaugerespectively The pressure is recorded when the temperaturereaches a constant value The apparatus was validated bycomparing the measured pure vapor pressures of 2-butanoltert-butanol and DEC with literature data calculated using theWagner and Antoine equations with parameter constantsobtained from Poling et al20 and Luo et al21 respectively

Based on this experiment the data obtained are the molefractions of component i in the liquid phase (xi) theequilibrium pressure (P) and the temperature (T) Theexperimental data are correlated with 3 activity coefficientmodels ie the Wilson NRTL and UNIQUAC equationsand the binary interaction parameter pairs of each equationwere optimized using the experimental data obtained in thiswork

3 RESULTS AND DISCUSSION31 Reliability of Apparatus The validity of the

experimental apparatus was checked by comparing theexperimental pure vapor pressures of 2-butanol tert-butanoland DEC with the literature pure vapor pressures of 2-butanoland tert-butanol calculated from the Wagner equation(equation 1) and that of DEC calculated from the Antoineequation (equation 2) The parameter constants of the Wagnerand Antoine equations are listed in Tables 2 and 3respectively

Pa b c d

Tln (kPa)

15 25 5

r

τ τ τ τ= + + +(1)

P AB

T Clog (kPa)

(K)10 = minus+ (2)

where τ = 1 minus Tr and Tr = TTc

A comparison between the experimental data and literaturedata obtained from the Wagner or Antoine equations arepresented in Table 4 and the average absolute deviation

Table 1 Pure Chemicals Description and Properties

component supplier CAS reg noMWa

(gmol) purityb

2-butanol Merck Germany 78minus92minus2 7412 09900tert-butanol Merck Germany 75minus65minus0 7412 09950diethylcarbonate

Wuhan FortunaChemical Co China

105minus58minus8 11813 09992

aMW = molecular weight bPurity from supplier in mass fraction

Table 2 Wagner Parameter of 2-Butanol and tert-Butanol20

component a b c d

2-butanol minus80982 164406 minus749 minus52735tert-butanol minus84792 247845 minus9279 minus25399

Table 3 Antoine Parameter of DEC21

component A B C

DEC 5883 122377 minus84304

Table 4 Vapor Pressures of 2-Butanol tert-Butanol andDECa

2-butanol tert-butanol DEC

TK Pexp Plit Pexp Plit Pexp Plit

(kPa)30315 322 320 764 766 196 19530565 374 376 884 892 227 22630815 443 441 1032 1034 257 26131065 513 516 1182 1196 296 29931315 604 600 1371 1378 346 34331565 705 697 1571 1583 396 39231815 804 806 1803 1813 445 44632065 934 930 2055 2071 504 50732315 1081 1069 2356 2359 582 575AAD 06 06 08

aThe standard uncertainty of measurements are u(T) = 01 K andu(P) = 03 kPa where u(T) is the uncertainty in temperature andu(P) is the uncertainty in pressure

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2442

(AAD) between the experimental data and calculated vaporpressures were obtained by the following equation

n

P P

PAAD

1100

i

n

1

exp lit

litsum=

minustimes

= (3)

where Pexp is the vapor pressure obtained from the experimentPlit is the literature value and n is the number of data points Aspresented in Table 4 good agreement was shown by all purecomponents with a 06 AAD for 2-butanol 06 AAD fortert-butanol and 08 AAD for DEC The result indicates thatthe ebulliometer used in this experiment is reliable32 Vapor Pressure Data Measurement and Correla-

tion The vapor pressure data obtained in this work for the 2-butanol (1) + DEC (2) and tert-butanol (1) + DEC (2)systems are presented in Tables 5 and 6 respectively The

experimental equilibrium temperatures were set in the range of30315minus32315 K to accommodate common fuel storageconditions in tropical countries This is done in the absence of

changes in the pressure temperature and composition of thesystemIn vaporminusliquid equilibrium conditions the liquid-compo-

nent fugacity is equal to the vapor-component fugacity Due tolow vapor pressure of the mixture the ideal gas law is appliedConsidering the differences between the alcohol and DECmolecules the liquid becomes a nonideal mixture Thereforean activity coefficient of component i γi is used as a nonidealfactor for the liquid phase in solution Accordingly thecalculation of the vapor pressure of the mixture is based on thefollowing equation

P x Pi

m

i i1

isatsum γ=

= (4)

where m is the number of components in the mixture P is thevapor pressure in the equilibrium condition xi is thecomponent i mole fraction in the liquid phase γi is the activitycoefficient of component i and Pi

sat is the vapor pressure ofcomponent i Data correlation is carried out by using theWilson NRTL and UNIQUAC equations The binaryinteraction parameters are determined using Barkerrsquos method22

by minimizing the following objective function (OF)

OF (P P )i

n

i i1

cal exp2sum= minus

= (5)

where n is the number of data points and the subscripts cal andexp indicate the calculated and experimental valuesrespectively The values of the AAD are presented in Table 7

The experimental data were well-correlated with the WilsonNRTL and UNIQUAC activity coefficient models givingaverage absolute deviations in the range of 18minus19 Thecorrelation results were plotted in Figure 1 and Figure 2Figure 1 shows that the increasing temperature causes a rise

in the vapor pressure of the 2-butanol + DEC mixture Atconstant temperature increasing the content of 2-butanol (x1)leads to an increase of equilibrium pressure of the mixture tothe peak point and then a decrease in the 2-butanol vaporpressureFigure 2 shows that the increasing temperature causes a rise

in the vapor pressure of the mixture In addition at constanttemperature the vapor pressure of the mixture increases withthe increasing content of tert-butanol (x1) Therefore thepressure of the mixture is between the pure vapor pressures ofeach component

Table 5 Experimental VLE data for 2-Butanol (1) + DEC(2)a

PexpkPa

x1 30315 K 30815 K 31315 K 31815 K 32315 K

0 196 257 346 445 58201 272 373 474 616 78902 293 402 542 701 86203 298 428 578 749 94104 317 431 561 742 96105 323 452 593 792 99306 34 449 588 775 102207 305 444 601 8 106708 341 461 603 796 105609 327 467 626 807 10761 322 443 604 804 1081

aThe standard uncertainty of measurements are u(xi) = 00002 u(T)= 01 K and u(P) = 03 kPa where u(xi) is the uncertainty ofcomponent i of the liquid phase mole fractions u(T) is theuncertainty in temperature and u(P) is the uncertainty in pressure

Table 6 Experimental VLE Data for tert-Butanol (1) + DEC(2)a

PexpkPa

x1 30315 K 30815 K 31315 K 31815 K 32315 K

0 196 257 346 445 58201 362 461 571 76 99702 437 567 751 1005 127503 534 714 895 1138 145404 626 754 972 1312 166805 633 802 1055 142 179606 662 846 115 1526 195707 71 897 1202 1578 202108 74 94 1257 1635 210309 767 969 1291 1736 22061 764 1032 1371 1803 2356

aThe standard uncertainty of measurements are u(xi) = 00002 u(T)= 01 K and u(P) = 03 kPa where u(xi) is the uncertainty ofcomponent i of the liquid phase mole fractions u(T) is theuncertainty in temperature and u(P) is the uncertainty in pressure

Table 7 Parameter and AADs of Correlation Results

2-Butanol(1) + DEC(2) System

Wilson NRTL UNIQUAC

a12(Jmol)

a21(Jmol)

α(minus)

b12(Jmol)

b21(Jmol)

Δu12(Jmol)

Δu21(Jmol)

51428 minus9777 03 minus10506 49176 minus12239 25901AAD = 19 AAD = 18 AAD = 19

tert-butanol(1) + DEC(2) system

Wilson NRTL UNIQUAC

a12(Jmol)

a21(Jmol)

α(minus)

b12(Jmol)

b21(Jmol)

Δu12(Jmol)

Δu21(Jmol)

16342 9713 03 14669 9951 1081 4603AAD = 19 AAD = 19 AAD = 19

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2443

The composition of the vapor can be obtained based on theconcept of equilibrium by using the values of the activitycoefficients obtained from the Wilson NRTL and UNIQUACequations The result of calculated of y1 is then plotted inFigures 1 and 2According to Figure 1 the correlation results for 2-butanol +

DEC showing that at the point of x1 above 06 the x1 has samevalue of y1 where it could be suspected as azeotrope pointHowever due to the differences between the maximumequilibrium pressures and the vapor pressure of pure 2-butanolare smaller than the uncertainty of pressure measurement (03kPa) the azeotrope behavior still could not be justified for thissystem The small vapor pressure differences indicate that theeffect of DEC at the point of x1 above 06 is insignificant Thevapor pressure is greatly affected by 2-butanol

4 CONCLUSIONSAn experiment was successfully conducted to obtain accuratevaporminusliquid equilibrium data for binary systems of 2-butanol

(1) + DEC (2) and tert-butanol (1) + DEC (2) at 30315minus32315 K The experimental data for the 2-butanol (1) + DEC(2) system were well-correlated using the Wilson NRTL andUNIQUAC models with AADs in the vapor pressure of 1918 and 19 respectively For the tert-butanol (1) + DEC (2)system correlation using the Wilson NRTL and UNIQUACmodels gave the same AAD of 19 The systems studied showpositive deviations from Raoultrsquos law in the temperature rangestudied

AUTHOR INFORMATION

Corresponding AuthorGede Wibawa minus Department of Chemical Engineering Facultyof Industrial Technology Sepuluh Nopember Institute ofTechnology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia orcidorg0000-0002-1255-9210 Phone +62-31-5946240 Email gwibawachem-engitsacid Fax +62-31-5999282

AuthorsAnnas Wiguno minus Department of Chemical Engineering Facultyof Industrial Technology Sepuluh Nopember Institute ofTechnology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia

Rizky Tetrisyanda minus Department of Chemical EngineeringFaculty of Industrial Technology Sepuluh Nopember Instituteof Technology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia

Complete contact information is available athttpspubsacsorg101021acsjced9b01079

NotesThe authors declare no competing financial interest

ACKNOWLEDGMENTS

The author are grateful to Kementrian Riset Teknologi danPendidikan Tinggi Sepuluh Nopember Institute of Technol-ogy (ITS) for a research grant with the PUPT research schemaunder Contract 622PKSITS2017 The authors would liketo thank Andika Dwimasputra and Naomi Hurayah Aden forexperimental work

REFERENCES(1) Oktavian R Amidelsi V Rasmito A Wibawa G VaporPressure Measurements of Ethanolminusisooctane and 1-Butanolminusisooctane Systems Using a New Ebulliometer Fuel 2013 107 47minus51(2) Hull A Kronberg B van Stam J Golubkov I Kristensson JVaporminusLiquid Equilibrium of Binary Mixtures 1 Ethanol + 1-Butanol Ethanol + Octane 1-Butanol + Octane J Chem Eng Data2006 51 1996minus2001(3) Moxey B G Cairns A Zhao H A Comparison of Butanol andEthanol Flame Development in an Optical Spark Ignition Engine Fuel2016 170 27minus38(4) Varol Y Oner C Oztop H F Altun S Comparison ofMethanol Ethanol or n-Butanol Blending with Unleaded Gasoline onExhaust Emissions of an SI Engine Energy Sources Part A 2014 36938minus948(5) Procentese A Guida T Raganati F Olivieri G Salatino PMarzocchella A Process Simulation of Biobutanol Production fromLignocellulosic Feedstocks Chem Eng Trans 2014 38 343minus348(6) Dunn B C Guenneau C Hilton S A Pahnke J Eyring EM Dworzanski J Meuzelaar H L C Hu J Z Solum M SPugmire R J Production of Diethyl Carbonate from Ethanol and

Figure 1 Diagram of Pminusx1minusy1 for 2-butanol (1) + DEC (2) system atvarious temperatures

Figure 2 Diagram of Pminusx1minusy1 for tert-butanol (1) + DEC (2) systemat various temperatures

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2444

Carbon Monoxide over a Heterogeneous Catalyst Energy Fuels 200216 177minus181(7) Pacheco M A Marshall C L Review of Dimethyl Carbonate(DMC) Manufacture and Its Characteristics as a Fuel AdditiveEnergy Fuels 1997 11 2minus29(8) M Eyring E L C Meuzelaar H Pugmire R Synthesis andTesting of Diethyl Carbonate as a Possible Diesel Fuel Additive 2000(9) Moran M Zogorski J Squillace P MTBE and GasolineHydrocarbons in Ground Water of the United States 2005 Vol 43(10) Rodriacuteguez A Canosa J Domiacutenguez A Tojo J IsobaricPhase Equilibria of Diethyl Carbonate with Five Alcohols at 1013KPa J Chem Eng Data 2003 48 86minus91(11) Ho H-Y Shu S-S Wang S-J Lee M-J Isothermal(Vapour+liquid) Equilibrium (VLE) for Binary Mixtures ContainingDiethyl Carbonate Phenyl Acetate Diphenyl Carbonate or EthylAcetate J Chem Thermodyn 2015 91 35minus42(12) Pillay J Iwarere S A Raal J D Naidoo P RamjugernathD Isothermal Vapour-Liquid Equilibrium Data for the Binary Systems2-Propanone + (2-Butanol or Propanoic Acid) Fluid Phase Equilib2017 433 119minus125(13) Anugraha R P Altway A Wibawa G Measurement andCorrelation of Isothermal Binary VaporminusLiquid Equilibrium forDiethyl Carbonate + Isooctanen-HeptaneToluene Systems JChem Eng Data 2017 62 2362minus2366(14) Wilson G M Vapor-Liquid Equilibrium XI A NewExpression for the Excess Free Energy of Mixing J Am Chem Soc1964 86 127minus130(15) Renon H Prausnitz J M Local Composition Thermody-namic Excess Functions for Liquid Mixtures AIChE J 1968 14 135minus144(16) Prausnitz J M Abrams D S Statistical Thermodynamics ofLiquid Mixtures A New Expression for the Excess Gibbs Energy ofPartly or Completely Miscible Systems AIChE J 1975 21 116minus128(17) Wibawa G Mustain A Akbarina M F Ruslim R MIsothermal VaporminusLiquid Equilibrium of Ethanol + Glycerol and 2-Propanol + Glycerol at Different Temperatures J Chem Eng Data2015 60 955minus959(18) Wiguno A Mustain A Irwansyah W F E Wibawa GIsothermal Vapor-Liquid Equilibrium of Methanol + Glycerol and 1-Propanol + Glycerol Indones J Chem 2018 16 111minus116(19) Anugraha R P Wiguno A Altway A Wibawa G VaporPressures of Diethyl Carbonate + Ethanol Binary Mixture and DiethylCarbonate + Ethanol + IsooctaneToluene Ternary Mixtures atTemperatures Range of 303 15 minus 323 15 K J Mol Liq 2018 26432minus37(20) Poling B E Prausnitz J M OrsquoConnel J P The Properties ofGases and Liquids 5th ed McGraw-Hill New York 2001(21) Luo H-P Xiao W-D Zhu K-H Isobaric VaporminusliquidEquilibria of Alkyl Carbonates with Alcohols Fluid Phase Equilib2000 175 91minus105(22) Barker J A Determination of Activity Coefficients from TotalPressure Measurements Aust J Chem 1953 6 207minus210

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2445

DEC dan DMC dari CO2 menggunakan metode sintesa langsung dan katalis homogen dan

heterogen Sehingga hasil dari penelitian ini dapat dijadikan sebagai acuan dalam pemanfaatan

zat emisi karbon dioksida menjadi zat bernilai ekonomi DEC ataupun DMC melalui reaksi

langsung bersama etanol menggunakan katalis homogen dan heterogen

Setelah didapatkan hasil sebelumnya pada sintesis DEC pada eksperimen ini juga

dilakukan sintesis DMC dengan menggunakan metode kondisi operasi yang sama dan

bahan baku berupa CO2 agar dapat dibandingkan apakah metode dan kondisi operasi yang

sama yang diterapkan pada sintesis DEC sebelumnya juga dapat diaplikasikan untuk

sintesis DMC

Pada eksperimen sintesis dimethyl carbonate (DMC) didapatkan data yang diamati

secara langsung yaitu berupa waktu suhu dan tekanan Waktu suhu dan tekanan ini diamati

selama jalannya proses sintesis untuk memastikan adanya kebocoran pada reaktor serta

kestabilan suhu reaktor selama eksperimen Berikut ini pada Tabel 1 merupakan data waktu

suhu dan tekanan rata-rata yang didapatkan pada setiap eksperimen sintesis dimethyl

carbonate

Tabel 1 Data waktu suhu dan tekanan rata-rata pada setiap eksperimen sintesis dimethyl

carbonate

Waktu (menit) Suhu (oC) Tekanan (bar)

0 169 40

30 169 40

60 169 40

90 167 40

120 167 40

150 169 40

180 170 40

210 170 40

240 168 40

270 170 40

300 169 40

Kemudian setelah dilakukan eksperimen sintesis DMC ini produk yang dihasilkan

dianalisa secara kualitatif menggunakan GC-MS dan secara kuantitatif menggunakan GC

Hasil analisa kualitatif menggunakan GC-MS pada sintesis DMC dari CO2 menggunakan agen

pendehidrasi senyawa epoksida berupa propylene oxide menghasilkan beberapa senyawa yang

terkandung dalam produknya diantaranya yaitu DMC Propylene carbonate dan Propylene

Glycol Sedangkan hasil analisa kualitatif menggunakan GC-MS pada sintesis DMC dari CO2

menggunakan agen pendehidrasi senyawa epoksida berupa butylene oxide menghasilkan

beberapa senyawa yang terkandung dalam produknya diantaranya yaitu DMC Butylene

carbonate dan Butylene glycol Hal ini telah sesuai dengan reaksi kimia dari sintesis DMC

pada literature dimana DMC merupakan produk utama dari sintesis Propylene carbonate atau

Butylene carbonate yang merupakan produk tengahnya dan Propylene Glycol atau Butylene

glycol yang merupakan produk sampingnya[26]

Selain dilakukan analisa secara kualitatif Produk DMC ini juga dilakukan analisa

secara kuantitatif menggunakan GC Berikut ini pada Tabel 2 dipaparkan mengenai hasil

analisa kuantitatif dari sintesis DMC dari CO2 yang direaksikan dengan methanol epoksida

berupa propylene oxide atau butylene oxide serta katalis homogen dan katalis heterogen

Jenis

Epoksida

Waktu reaksi

(jam) Katalis

Yield

DMC

()

Konversi

Reaksi ()

Propylene

Oxide

1

KI-EtONa

1051 1051

2 1999 1999

3 2683 2683

4 2681 2681

5 2852 2852

1

KI-Zeolite

892 893

2 3471 3471

3 2338 2338

4 1586 1586

5 1419 1419

Butylene

Oxide

1

KI-EtONa

1377 1377

2 2206 2206

3 2426 2426

4 3684 3684

5 2159 2159

Dari hasil penelitian dapat diketahui bahwa penggunaan KI-Zeolite dalam sintesis

Dimethyl Carbonate menggunakan agen pendehidrasi propylene oxide dan katalis KIZeolite

menghasilkan yield DMC tertinggi yaitu sebesar 3471 dengan waktu reaksi selama 2 jam

Sedangkan untuk sintesis DMC menggunakan agen pendehidrasi butylene oxide dan katalis

KIEtONa menghasilkan yield DMC tertinggi sebesar 3684 dengan waktu reaksi sebesar 4

jam Berdasarkan hasil eksperimen sintesis DMC menggunakan katalis propylene oxide disini

Kemudian berdasarkan sintesis DEC dengan menggunakan epoksida propylene oxide pada

eksperimen sebelumnya juga dapat diketahui bahwa penggunaan zeolite juga memiliki hasil

yield DEC yang lebih tinggi Selain itu berdasarkan hasil eksperimen sintesis DMC

menggunakan agen pendehidrasi berupa butylene oxide dan katalis KIEtONa yield tertinggi

didapatkan dengan waktu reaksi yang lebih lama dibandingkan dengan hasil sintesis DMC

yang menggunakan katalis KIZeolite Sehingga penggunaan Zeolite membuktikan bahwa

bahan ini berpotensi untuk digunakan sebagai pengganti katalis EtONa karena harganya yang

jauh lebih murah

Berdasarkan dari hasil penelitian ini telah di dapatkan beberapa luaran wajib dan tambahan diantaranya

yaitu untuk luaran wajib yang telah dicapai adalah berupa jurnal internasional yang berjudul ldquoVapor

Pressure of 2-Butanol+Diethyl Carbonate and tert-Butanol + Diethyl Carbonate at The

Temperature 30315-32315Krdquo yang telah dipublikasikan di Journal of Chemical amp

Engineering Data pada tahun 2020 dan draft manuscript yang berjudul ldquoCatalytic Synthesis of

Diethyl Carbonate from Carbon dioxide and Ethanol as Raw Material using KISodium

Ethoxide and KIMolecular Sieve as Catalystrdquo dimana nantinya akan disubmit pada chemical

engineering journal Sedangkan untuk luaran tambahan yang telah dicapai adalah berupa Manuscript

dengan judul ldquoThe Effect of Temperature Reaction in Catalytic Synthesis of Diethyl Carbonate

via One Pot Reactionrdquo yang akan diseminarkan pada 4th International Conference on Chemical

amp Material Engineering (ICCME 2020) yang akan diselenggarakan pada 6-7 Oktober 2020

melalui Video Meeting via ZOOM

D STATUS LUARAN Tuliskan jenis identitas dan status ketercapaian setiap luaran wajib dan luaran tambahan (jika ada) yang dijanjikan pada tahun pelaksanaan penelitian Jenis luaran dapat berupa publikasi perolehan kekayaan intelektual hasil pengujian atau luaran lainnya yang telah dijanjikan pada proposal Uraian status luaran harus didukung dengan bukti kemajuan ketercapaian luaran sesuai dengan luaran yang dijanjikan Lengkapi isian jenis luaran yang dijanjikan serta mengunggah bukti dokumen ketercapaian luaran wajib dan luaran tambahan melalui Simlitabmas mengikuti format sebagaimana terlihat pada bagian isian luaran

Untuk luaran wajib ada dua yaitu

1 Jurnal internasional yang berjudul ldquoVapor Pressure of 2-Butanol + Diethyl Carbonate

and tert-Butanol + Diethyl Carbonate at The Temperature 30315-32315Krdquo yang telah

dipublikasikan di Journal of Chemical amp Engineering Data pada tahun 2020 (Status

Published)

2 Manuscript yang berjudul ldquoCatalytic Synthesis of Diethyl Carbonate from Carbon

dioxide and Ethanol as Raw Material using KISodium Ethoxide and KIMolecular

Sieve as Catalystrdquo dimana nantinya akan disubmit pada chemical engineering journal

(Status Draft)

Sedangkan untuk luaran tambahan yaitu

Manuscript dengan judul ldquoThe Effect of Temperature Reaction in Catalytic Synthesis of

Diethyl Carbonate via One Pot Reactionrdquo yang akan diseminarkan pada 4th International

Conference on Chemical amp Material Engineering (ICCME 2020) yang akan diselenggarakan

pada 6-7 Oktober 2020 melalui Video Meeting via ZOOM

E PERAN MITRA Tuliskan realisasi kerjasama dan kontribusi Mitra baik in-kind maupun in-cash (jika ada) Bukti pendukung realisasi kerjasama dan realisasi kontribusi mitra dilaporkan sesuai dengan kondisi yang sebenarnya Bukti dokumen realisasi kerjasama dengan Mitra diunggah melalui Simlitabmas mengikuti format sebagaimana terlihat pada bagian isian mitra

F KENDALA PELAKSANAAN PENELITIAN Tuliskan kesulitan atau hambatan yang dihadapi selama melakukan penelitian dan mencapai luaran yang dijanjikan termasuk penjelasan jika pelaksanaan penelitian dan luaran penelitian tidak sesuai dengan yang direncanakan atau dijanjikan

Kendala pada pelaksanaan penelitian ini berada pada sulitnya menjaga kondisi reaktan yang

ada pada reaktor karena adanya faktor kesalahan teknis dalam menutup reaktor sehingga ada

kebocoran sedikit pada reaktor yang menyebabkan prosedur eksperimen harus diulangi

kembali sedangkan hambatan yang dihadapi selama melakukan penelitian adalah supplay

listrik yang tidak menentu pada saat pelaksanaan eksperimen menghasilkan supplay panas pada

electrical heater yang berbeda-beda setiap waktunya sehingga suhu reaktor sangat sulit untuk

dikendalikan Selain itu pada masa pandemic ini juga ada hambatan pada waktu penelitian

yang sangat terbatas sehingga pengerjaan penelitian juga menjadi terhambat

G RENCANA TINDAK LANJUT PENELITIAN Tuliskan dan uraikan rencana tindaklanjut penelitian selanjutnya dengan melihat hasil penelitian yang telah diperoleh Jika ada target yang belum diselesaikan pada akhir tahun pelaksanaan penelitian pada bagian ini dapat dituliskan rencana penyelesaian target yang belum tercapai tersebut

Penelitian selanjutnya akan difokuskan untuk sintesis Dimethyl Carbonate dengan agen

pendehidrasi berupa butylene oxide dan jenis katalis yang berbeda dan eksperimen

kesetimbangan uap-cair antar komponennya yang ada di produk

H DAFTAR PUSTAKA Penyusunan Daftar Pustaka berdasarkan sistem nomor sesuai dengan urutan pengutipan Hanya pustaka yang disitasi pada laporan akhir yang dicantumkan dalam Daftar Pustaka

1 Hanpattanakit P Pimonsree L Jamnongchob A Boonpoke A 2018 CO2 Emission

and Reduction of Tourist Transportation at Kok Mak Island Thailand Chemical

Engineering Transactions 63 37-42

2 K Shukla and V C Srivastava ldquoRSC Advances Diethyl carbonate  critical review of

synthesis routes catalysts used and engineering aspectsrdquo RSC Adv vol 6 pp 32624ndash

32645 201

3 D Wang B Yang X Zhai L Zhou Synthesis of diethyl carbonate by catalytic alcoholysis of urea 88 (2007) 807ndash812 doi101016jfuproc200704003

4 S Xin L Wang H Li K Huang F Li Synthesis of diethyl carbonate from urea and ethanol over lanthanum oxide as a heterogeneous basic catalyst Fuel Process Technol 126 (2014) 453ndash459 doi101016jfuproc201405029

5 K Shukla VC Srivastava Diethyl carbonate synthesis by ethanolysis of urea using Ce-Zn oxide catalysts Fuel Process Technol 161 (2017) 116ndash124 doi101016jfuproc201703004

6 P Zhang S Wang S Chen Z Zhang X Ma The effects of promoters over PdCl 2 -CuCl 2 HMS catalysts for the synthesis of diethyl carbonate by oxidative carbonylation of ethanol 143 (2008) 220ndash224 doi101016jcej200804008

7 DN Briggs G Bong E Leong K Oei G Lestari AT Bell Effects of support composition and pretreatment on the activity and selectivity of carbon-supported PdCu n Cl x catalysts for the synthesis of diethyl carbonate J Catal 276 (2010) 215ndash228 doi101016jjcat201008004

8 P Zhang X Ma Catalytic synthesis of diethyl carbonate by oxidative carbonylation of ethanol over PdCl 2 Cu-HMS catalyst Chem Eng J 163 (2010) 93ndash97 doi101016jcej201007025

9 D Zhu F Mei L Chen W Mo T Li G Li An efficient catalyst Co ( salophen ) for synthesis of diethyl carbonate by oxidative carbonylation of ethanol Fuel 90 (2011) 2098ndash2102 doi101016jfuel201102023

10 P Zhang Y Zhou M Fan P Jiang Catalytic synthesis of diethyl carbonate with supported Pd ‐ Cu bimetallic nanoparticle catalysts  Cu ( I ) as the active species Chinese J Catal 36 (2015) 2036ndash2043 doi101016S1872-2067(15)60973-1

11 C Murugan HC Bajaj Synthesis of diethyl carbonate from dimethyl carbonate and ethanol using KF Al 2 O 3 as an ef fi cient solid base catalyst Fuel Process Technol 92 (2011) 77ndash82 doi101016jfuproc201008023

12 GUO Lian Z Xinqiang AN Hualiang W Yanji Catalysis by Lead Oxide for Diethyl Carbonate Synthesis from Ethyl Carbamate and Ethanol Chinese J Catal 33 (2012) 595ndash600 doi101016S1872-2067(11)60373-2

13 H An X Zhao L Guo C Jia B Yuan Y Wang Applied Catalysis A  General Synthesis of diethyl carbonate from ethyl carbamate and ethanol over ZnO-PbO catalyst Applied Catal A Gen 433ndash434 (2012) 229ndash235 doi101016japcata201205023

14 L Wang H Li S Xin F Li Generation of solid base catalyst from waste slag for the ef fi cient synthesis of diethyl carbonate from ethyl carbamate and ethanol CATCOM 50 (2014) 49ndash53 doi101016jcatcom201402028

15 L Zhao Z Hou C Liu Y Wang L Dai Original article A catalyst-free novel synthesis of diethyl carbonate from ethyl carbamate in supercritical ethanol Chinese Chem Lett 25 (2014) 1395ndash1398 doi101016jcclet201405012

16 H Iida R Kawaguchi K Okumura Production of diethyl carbonate from ethylene carbonate and ethanol over supported fl uoro-perovskite catalysts Intensity cps Catal Commun 108 (2018) 7ndash11 doi101016jcatcom201801019

17 F Gasc S Thiebaud-roux Z Mouloungui The Journal of Supercritical Fluids Methods for synthesizing diethyl carbonate from ethanol and supercritical carbon dioxide by one-pot or two-step reactions in the presence of potassium carbonate 50 (2009) 46ndash53 doi101016jsupflu200903008

18 E Leino P Maumlki-arvela K Eraumlnen M Tenho D Yu T Salmi J Mikkola Enhanced yields of diethyl carbonate via one-pot synthesis from ethanol carbon dioxide and butylene oxide over cerium ( IV ) oxide Chem Eng J 176ndash177 (2011) 124ndash133 doi101016jcej201107054

19 E Leino P Maumlki-arvela V Eta N Kumar F Demoisson A Samikannu A Leino A Shchukarev D Yu J Mikkola The influence of various synthesis methods on the catalytic activity of cerium oxide in one-pot synthesis of diethyl carbonate starting from CO 2 ethanol and butylene oxide Catal Today 210 (2013) 47ndash54 doi101016jcattod201302011

20 E Leino N Kumar P Maumlki-arvela A Aho K Kordaacutes In fl uence of the synthesis parameters on the physico-chemical and catalytic properties of cerium oxide for application in the synthesis of diethyl carbonate Mater Chem Phys 143 (2013) 65ndash75 doi101016jmatchemphys201308012

21 L Wang H Li S Xin P He Y Cao F Li X Hou Applied Catalysis A  General Highly efficient synthesis of diethyl carbonate via one-pot reaction from carbon dioxide epoxides and ethanol over KI-based binary catalyst system Applied Catal A Gen 471 (2014) 19ndash27 doi101016japcata201311031

22 E Leino N Kumar P Maumlki-arvela A Rautio J Dahl J Roine J-P Mikkola Synthesis and characterization of ceria-supported catalysts for carbon dioxide transformation to diethyl carbonate Catal Today (2017) 1ndash10 doi101016jcattod201701016

23 W Yanlou J Dongdong Z Zhen S Yongyue Synthesis of Diethyl Carbonate from Carbon Dioxide Catal MDPI (2016) doi103390catal6040052

24 L Wang M Ammar P He Y Li Y Cao F Li X Han H Li The efficient synthesis of diethyl carbonate via coupling reaction from propylene oxide CO 2 and ethanol over binary PVEImBr MgO catalyst Catal Today 281 (2017) 360ndash370 doi101016jcattod201602052

25 H Hattori HeterogeneousBasicCatalysispdf (1995)

26 Fan Bin Bo Qu Q Chen Y Wen L Cai R Zhang An improved one-pot synthesis of dimethyl carbonate from propylene oxide CO2 and methanol Journal of Chemical Research (2011) 654-656

Dokumen pendukung luaran Wajib 1

Luaran dijanjikan Publikasi Ilmiah Jurnal Internasional

Target acceptedpublished

Dicapai Published

Dokumen wajib diunggah

1 Artikel yang terbit

Dokumen sudah diunggah

1 Artikel yang terbit

Dokumen belum diunggah

- Sudah lengkap

Nama jurnal Journal of Chemical amp Engineering Data

Peran penulis corresponding author | EISSN 00219568 15205134

Nama Lembaga Pengindek scopus

URL jurnal httpspubsacsorgdoi101021acsjced9b01079

Judul artikel Vapor Pressure of 2-Butanol + Diethyl Carbonate and tert-Butanol +

Diethyl Carbonate at The Temperature 30315-32315K

Tahun 2020 | Volume 65 | Nomor 5

Halaman awal 2441 | akhir 2445

URL artikel httpspubsacsorgdoi101021acsjced9b01079

DOI httpsdoiorg101021acsjced9b01079

Vapor Pressure of 2‑Butanol + Diethyl Carbonate and tert-Butanol +Diethyl Carbonate at the Temperature of 30315minus32315 KAnnas Wiguno Rizky Tetrisyanda and Gede Wibawa

Cite This J Chem Eng Data 2020 65 2441minus2445 Read Online

ACCESS Metrics amp More Article Recommendations

ABSTRACT In this work the vapor pressure of binary mixtures of 2-butanol +diethyl carbonate and tert-butanol + diethyl carbonate was measured in thetemperature range from 30315 to 32315 K The experimental apparatus used inthis work was a simple quasi-static ebulliometer developed in our previous works Thereliability of this apparatus was verified by comparing the measured vapor pressures of2-butanveol tert-butanol and diethyl carbonate with literature data The comparisonsshowed that the vapor pressures of pure 2-butanol tert-butanol and diethyl carbonatewere in good agreement with the literature data with average absolute deviations of 0606 and 08 respectively The experimental results show that the vapor pressuresincreased with the alcohol mole fraction for all systems studied The experimental datawere well-correlated with the Wilson nonrandom two-liquid and universal quasi-chemical activity coefficient models giving an average absolute deviation of no morethan 19 The binary vaporminusliquid equilibrium data obtained in this work showed apositive deviation from Raoultrsquos law

1 INTRODUCTION

Ethanol is commonly used in gasoline blends because of itshigh octane number and oxygen number as well as itscapability to accelerate flame propagation However theaddition of ethanol to isooctane at a mole fraction of 01was found to elevate the vapor pressure12 A higher vaporpressure of gasoline mixtures causes increased emissions andthe potential for vapor lock in the engine On other handlonger-chain alcohols such as 2-butanol and tert-butanol havelower vapor pressures and higher heating values and theirproperties are closer to gasoline than to ethanol3 Butanol hasbeen used as a mixture in engines without any significantengine changes4 Butanol may be produced from renewableresources as well for example from lignocellulose the mostplentiful renewable material5 The combustion of a butanolminusgasoline mixture produces a high temperature because of itshigh heating value and low vaporization rate Therefore 2-butanoltert-butanol are expected to be able to be used asgasoline additives that are alternatives to ethanol The octanenumber of butanol is lower than that of ethanol and thus theaddition of an octane booster is required Diethyl carbonate(DEC) is such an octane booster The addition of 5 wt ofdiethyl carbonate (DEC) into diesel fuel can decrease theemissions by up to 50 due to its higher oxygen content of406 wt6 DEC is a nontoxic chemical that is degradable andable to be decomposed gradually into CO2 and ethanol whichare environmentally friendly78 Although methyl tert-butylether (MTBE) has been successfully applied in gasoline blendsas it is nonbiodegradable it has contributed to groundwater

contamination9 Thus DEC is a potential candidate to replaceMTBETo design the blend of gasoline + 2-butanoltert-butanol +

DEC the vapor pressure data of the binary system of 2-butanoltert-butanol + DEC are required Studies on the vaporpressure of mixtures including diethyl carbonate have beenconducted by many researchers Rodriguez et al10 examinedthe vapor pressure for the binary systems of diethyl carbonatewith five alcohols (methanol ethanol 1-propanol 1-butanoland 1-pentanol) at a pressure of 1013 kPa and temperatures of35173minus39602 K Octavian et al1 measured the vaporpressure of the ethanol + isooctane and 1-butanol + isooctanesystems using a new ebulliometer Ho et al11 examined thevapor pressure of binary mixtures containing diethyl carbonatephenyl acetate diphenyl carbonate or ethyl acetate at 3732minus4532 K Jeremy et al12 conducted experiments on the vaporliquid equilibrium of a binary mixture of 2-propanone + 2-butanol at 33315 and 35315 K and 2-propanone + propanoicacid at 33315 35315 and 37315 K Anugraha et al13

measured the vapor pressure of binary mixtures of diethylcarbonate + isooctanen-heptanetoluene To our knowledge

Received November 14 2019Accepted March 30 2020Published April 3 2020

Articlepubsacsorgjced

copy 2020 American Chemical Society2441

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

Dow

nloa

ded

via

UPP

SAL

A U

NIV

on

June

21

202

0 at

00

502

1 (U

TC

)Se

e ht

tps

pub

sac

sor

gsh

arin

ggui

delin

es f

or o

ptio

ns o

n ho

w to

legi

timat

ely

shar

e pu

blis

hed

artic

les

vaporminusliquid equilibrium (VLE) data of 2-butanoltert-butanol+ DEC at low temperatures are unavailable in the availableliterature Therefore the aim of this study is to determine theisothermal VLE of 2-butanoltert-butanol + DEC at 30315minus32315 K In addition the experimental data were correlatedwith the Wilson14 nonrandom two-liquid (NRTL)15 anduniversal quasi-chemical (UNIQUAC)16 models

2 EXPERIMENTAL SECTION21 Materials The chemicals used in this experiment were

2-butanol tert-butanol and DEC All chemicals were usedwithout any additional purification The compound details arelisted in Table 1

22 Apparatus and Procedures The apparatus used inthis study is a simple static ebulliometer The ebulliometerused was an apparatus developed by Oktavian et al1 andrevalidated by Wibawa et al17 Wiguno et al18 and Anugrahaet al13 to ensure that the initial composition has not changedsignificantly when the equilibrium condition is achieved Thedetailed apparatus was shown in our previous publication1

The equipmentrsquos main parts are the ebulliometer cellcondenser and some auxiliaries such as a vacuum pump(VALUE VG140) for eliminating the gas impurities from theebulliometer magnetic stirrer temperature controller andindicator (AUTONICS TC4S) RTD Pt 100 thermocouplewith an accuracy of plusmn01 K pressure gauge (AUTONICSPSAN) with an accuracy of plusmn01 kPa and ambient pressuregauge (Lutron MHB 382SD)The experimental procedure was described in detail in the

previous work19 Initially each pure componentrsquos vaporpressure was measured by charging the pure component intothe equilibrium cell and vacuum conditions were created byturning on the vacuum pump The pressure at each desiredtemperature was recorded as the vapor pressure The vaporpressure data for the two binary systems ie 2-butanol + DECand tert-butanol + DEC were obtained by the followingprocedure The experiment was begun by introducing 225 mLof a mixture having a known composition into the ebulliometercell Cooling water was circulated in the condenser and thenthe magnetic stirrer was switched on to stir the solution to mixevenly After that the vacuum pressure was created in theequilibrium cell by turning on the vacuum pump The heatingsystem was then lit to heat the solution according to thedesired temperature This heating causes some of the liquid toevaporate The temperature and pressure in the system areshown by temperature indicator and pressure gaugerespectively The pressure is recorded when the temperaturereaches a constant value The apparatus was validated bycomparing the measured pure vapor pressures of 2-butanoltert-butanol and DEC with literature data calculated using theWagner and Antoine equations with parameter constantsobtained from Poling et al20 and Luo et al21 respectively

Based on this experiment the data obtained are the molefractions of component i in the liquid phase (xi) theequilibrium pressure (P) and the temperature (T) Theexperimental data are correlated with 3 activity coefficientmodels ie the Wilson NRTL and UNIQUAC equationsand the binary interaction parameter pairs of each equationwere optimized using the experimental data obtained in thiswork

3 RESULTS AND DISCUSSION31 Reliability of Apparatus The validity of the

experimental apparatus was checked by comparing theexperimental pure vapor pressures of 2-butanol tert-butanoland DEC with the literature pure vapor pressures of 2-butanoland tert-butanol calculated from the Wagner equation(equation 1) and that of DEC calculated from the Antoineequation (equation 2) The parameter constants of the Wagnerand Antoine equations are listed in Tables 2 and 3respectively

Pa b c d

Tln (kPa)

15 25 5

r

τ τ τ τ= + + +(1)

P AB

T Clog (kPa)

(K)10 = minus+ (2)

where τ = 1 minus Tr and Tr = TTc

A comparison between the experimental data and literaturedata obtained from the Wagner or Antoine equations arepresented in Table 4 and the average absolute deviation

Table 1 Pure Chemicals Description and Properties

component supplier CAS reg noMWa

(gmol) purityb

2-butanol Merck Germany 78minus92minus2 7412 09900tert-butanol Merck Germany 75minus65minus0 7412 09950diethylcarbonate

Wuhan FortunaChemical Co China

105minus58minus8 11813 09992

aMW = molecular weight bPurity from supplier in mass fraction

Table 2 Wagner Parameter of 2-Butanol and tert-Butanol20

component a b c d

2-butanol minus80982 164406 minus749 minus52735tert-butanol minus84792 247845 minus9279 minus25399

Table 3 Antoine Parameter of DEC21

component A B C

DEC 5883 122377 minus84304

Table 4 Vapor Pressures of 2-Butanol tert-Butanol andDECa

2-butanol tert-butanol DEC

TK Pexp Plit Pexp Plit Pexp Plit

(kPa)30315 322 320 764 766 196 19530565 374 376 884 892 227 22630815 443 441 1032 1034 257 26131065 513 516 1182 1196 296 29931315 604 600 1371 1378 346 34331565 705 697 1571 1583 396 39231815 804 806 1803 1813 445 44632065 934 930 2055 2071 504 50732315 1081 1069 2356 2359 582 575AAD 06 06 08

aThe standard uncertainty of measurements are u(T) = 01 K andu(P) = 03 kPa where u(T) is the uncertainty in temperature andu(P) is the uncertainty in pressure

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2442

(AAD) between the experimental data and calculated vaporpressures were obtained by the following equation

n

P P

PAAD

1100

i

n

1

exp lit

litsum=

minustimes

= (3)

where Pexp is the vapor pressure obtained from the experimentPlit is the literature value and n is the number of data points Aspresented in Table 4 good agreement was shown by all purecomponents with a 06 AAD for 2-butanol 06 AAD fortert-butanol and 08 AAD for DEC The result indicates thatthe ebulliometer used in this experiment is reliable32 Vapor Pressure Data Measurement and Correla-

tion The vapor pressure data obtained in this work for the 2-butanol (1) + DEC (2) and tert-butanol (1) + DEC (2)systems are presented in Tables 5 and 6 respectively The

experimental equilibrium temperatures were set in the range of30315minus32315 K to accommodate common fuel storageconditions in tropical countries This is done in the absence of

changes in the pressure temperature and composition of thesystemIn vaporminusliquid equilibrium conditions the liquid-compo-

nent fugacity is equal to the vapor-component fugacity Due tolow vapor pressure of the mixture the ideal gas law is appliedConsidering the differences between the alcohol and DECmolecules the liquid becomes a nonideal mixture Thereforean activity coefficient of component i γi is used as a nonidealfactor for the liquid phase in solution Accordingly thecalculation of the vapor pressure of the mixture is based on thefollowing equation

P x Pi

m

i i1

isatsum γ=

= (4)

where m is the number of components in the mixture P is thevapor pressure in the equilibrium condition xi is thecomponent i mole fraction in the liquid phase γi is the activitycoefficient of component i and Pi

sat is the vapor pressure ofcomponent i Data correlation is carried out by using theWilson NRTL and UNIQUAC equations The binaryinteraction parameters are determined using Barkerrsquos method22

by minimizing the following objective function (OF)

OF (P P )i

n

i i1

cal exp2sum= minus

= (5)

where n is the number of data points and the subscripts cal andexp indicate the calculated and experimental valuesrespectively The values of the AAD are presented in Table 7

The experimental data were well-correlated with the WilsonNRTL and UNIQUAC activity coefficient models givingaverage absolute deviations in the range of 18minus19 Thecorrelation results were plotted in Figure 1 and Figure 2Figure 1 shows that the increasing temperature causes a rise

in the vapor pressure of the 2-butanol + DEC mixture Atconstant temperature increasing the content of 2-butanol (x1)leads to an increase of equilibrium pressure of the mixture tothe peak point and then a decrease in the 2-butanol vaporpressureFigure 2 shows that the increasing temperature causes a rise

in the vapor pressure of the mixture In addition at constanttemperature the vapor pressure of the mixture increases withthe increasing content of tert-butanol (x1) Therefore thepressure of the mixture is between the pure vapor pressures ofeach component

Table 5 Experimental VLE data for 2-Butanol (1) + DEC(2)a

PexpkPa

x1 30315 K 30815 K 31315 K 31815 K 32315 K

0 196 257 346 445 58201 272 373 474 616 78902 293 402 542 701 86203 298 428 578 749 94104 317 431 561 742 96105 323 452 593 792 99306 34 449 588 775 102207 305 444 601 8 106708 341 461 603 796 105609 327 467 626 807 10761 322 443 604 804 1081

aThe standard uncertainty of measurements are u(xi) = 00002 u(T)= 01 K and u(P) = 03 kPa where u(xi) is the uncertainty ofcomponent i of the liquid phase mole fractions u(T) is theuncertainty in temperature and u(P) is the uncertainty in pressure

Table 6 Experimental VLE Data for tert-Butanol (1) + DEC(2)a

PexpkPa

x1 30315 K 30815 K 31315 K 31815 K 32315 K

0 196 257 346 445 58201 362 461 571 76 99702 437 567 751 1005 127503 534 714 895 1138 145404 626 754 972 1312 166805 633 802 1055 142 179606 662 846 115 1526 195707 71 897 1202 1578 202108 74 94 1257 1635 210309 767 969 1291 1736 22061 764 1032 1371 1803 2356

aThe standard uncertainty of measurements are u(xi) = 00002 u(T)= 01 K and u(P) = 03 kPa where u(xi) is the uncertainty ofcomponent i of the liquid phase mole fractions u(T) is theuncertainty in temperature and u(P) is the uncertainty in pressure

Table 7 Parameter and AADs of Correlation Results

2-Butanol(1) + DEC(2) System

Wilson NRTL UNIQUAC

a12(Jmol)

a21(Jmol)

α(minus)

b12(Jmol)

b21(Jmol)

Δu12(Jmol)

Δu21(Jmol)

51428 minus9777 03 minus10506 49176 minus12239 25901AAD = 19 AAD = 18 AAD = 19

tert-butanol(1) + DEC(2) system

Wilson NRTL UNIQUAC

a12(Jmol)

a21(Jmol)

α(minus)

b12(Jmol)

b21(Jmol)

Δu12(Jmol)

Δu21(Jmol)

16342 9713 03 14669 9951 1081 4603AAD = 19 AAD = 19 AAD = 19

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2443

The composition of the vapor can be obtained based on theconcept of equilibrium by using the values of the activitycoefficients obtained from the Wilson NRTL and UNIQUACequations The result of calculated of y1 is then plotted inFigures 1 and 2According to Figure 1 the correlation results for 2-butanol +

DEC showing that at the point of x1 above 06 the x1 has samevalue of y1 where it could be suspected as azeotrope pointHowever due to the differences between the maximumequilibrium pressures and the vapor pressure of pure 2-butanolare smaller than the uncertainty of pressure measurement (03kPa) the azeotrope behavior still could not be justified for thissystem The small vapor pressure differences indicate that theeffect of DEC at the point of x1 above 06 is insignificant Thevapor pressure is greatly affected by 2-butanol

4 CONCLUSIONSAn experiment was successfully conducted to obtain accuratevaporminusliquid equilibrium data for binary systems of 2-butanol

(1) + DEC (2) and tert-butanol (1) + DEC (2) at 30315minus32315 K The experimental data for the 2-butanol (1) + DEC(2) system were well-correlated using the Wilson NRTL andUNIQUAC models with AADs in the vapor pressure of 1918 and 19 respectively For the tert-butanol (1) + DEC (2)system correlation using the Wilson NRTL and UNIQUACmodels gave the same AAD of 19 The systems studied showpositive deviations from Raoultrsquos law in the temperature rangestudied

AUTHOR INFORMATION

Corresponding AuthorGede Wibawa minus Department of Chemical Engineering Facultyof Industrial Technology Sepuluh Nopember Institute ofTechnology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia orcidorg0000-0002-1255-9210 Phone +62-31-5946240 Email gwibawachem-engitsacid Fax +62-31-5999282

AuthorsAnnas Wiguno minus Department of Chemical Engineering Facultyof Industrial Technology Sepuluh Nopember Institute ofTechnology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia

Rizky Tetrisyanda minus Department of Chemical EngineeringFaculty of Industrial Technology Sepuluh Nopember Instituteof Technology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia

Complete contact information is available athttpspubsacsorg101021acsjced9b01079

NotesThe authors declare no competing financial interest

ACKNOWLEDGMENTS

The author are grateful to Kementrian Riset Teknologi danPendidikan Tinggi Sepuluh Nopember Institute of Technol-ogy (ITS) for a research grant with the PUPT research schemaunder Contract 622PKSITS2017 The authors would liketo thank Andika Dwimasputra and Naomi Hurayah Aden forexperimental work

REFERENCES(1) Oktavian R Amidelsi V Rasmito A Wibawa G VaporPressure Measurements of Ethanolminusisooctane and 1-Butanolminusisooctane Systems Using a New Ebulliometer Fuel 2013 107 47minus51(2) Hull A Kronberg B van Stam J Golubkov I Kristensson JVaporminusLiquid Equilibrium of Binary Mixtures 1 Ethanol + 1-Butanol Ethanol + Octane 1-Butanol + Octane J Chem Eng Data2006 51 1996minus2001(3) Moxey B G Cairns A Zhao H A Comparison of Butanol andEthanol Flame Development in an Optical Spark Ignition Engine Fuel2016 170 27minus38(4) Varol Y Oner C Oztop H F Altun S Comparison ofMethanol Ethanol or n-Butanol Blending with Unleaded Gasoline onExhaust Emissions of an SI Engine Energy Sources Part A 2014 36938minus948(5) Procentese A Guida T Raganati F Olivieri G Salatino PMarzocchella A Process Simulation of Biobutanol Production fromLignocellulosic Feedstocks Chem Eng Trans 2014 38 343minus348(6) Dunn B C Guenneau C Hilton S A Pahnke J Eyring EM Dworzanski J Meuzelaar H L C Hu J Z Solum M SPugmire R J Production of Diethyl Carbonate from Ethanol and

Figure 1 Diagram of Pminusx1minusy1 for 2-butanol (1) + DEC (2) system atvarious temperatures

Figure 2 Diagram of Pminusx1minusy1 for tert-butanol (1) + DEC (2) systemat various temperatures

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2444

Carbon Monoxide over a Heterogeneous Catalyst Energy Fuels 200216 177minus181(7) Pacheco M A Marshall C L Review of Dimethyl Carbonate(DMC) Manufacture and Its Characteristics as a Fuel AdditiveEnergy Fuels 1997 11 2minus29(8) M Eyring E L C Meuzelaar H Pugmire R Synthesis andTesting of Diethyl Carbonate as a Possible Diesel Fuel Additive 2000(9) Moran M Zogorski J Squillace P MTBE and GasolineHydrocarbons in Ground Water of the United States 2005 Vol 43(10) Rodriacuteguez A Canosa J Domiacutenguez A Tojo J IsobaricPhase Equilibria of Diethyl Carbonate with Five Alcohols at 1013KPa J Chem Eng Data 2003 48 86minus91(11) Ho H-Y Shu S-S Wang S-J Lee M-J Isothermal(Vapour+liquid) Equilibrium (VLE) for Binary Mixtures ContainingDiethyl Carbonate Phenyl Acetate Diphenyl Carbonate or EthylAcetate J Chem Thermodyn 2015 91 35minus42(12) Pillay J Iwarere S A Raal J D Naidoo P RamjugernathD Isothermal Vapour-Liquid Equilibrium Data for the Binary Systems2-Propanone + (2-Butanol or Propanoic Acid) Fluid Phase Equilib2017 433 119minus125(13) Anugraha R P Altway A Wibawa G Measurement andCorrelation of Isothermal Binary VaporminusLiquid Equilibrium forDiethyl Carbonate + Isooctanen-HeptaneToluene Systems JChem Eng Data 2017 62 2362minus2366(14) Wilson G M Vapor-Liquid Equilibrium XI A NewExpression for the Excess Free Energy of Mixing J Am Chem Soc1964 86 127minus130(15) Renon H Prausnitz J M Local Composition Thermody-namic Excess Functions for Liquid Mixtures AIChE J 1968 14 135minus144(16) Prausnitz J M Abrams D S Statistical Thermodynamics ofLiquid Mixtures A New Expression for the Excess Gibbs Energy ofPartly or Completely Miscible Systems AIChE J 1975 21 116minus128(17) Wibawa G Mustain A Akbarina M F Ruslim R MIsothermal VaporminusLiquid Equilibrium of Ethanol + Glycerol and 2-Propanol + Glycerol at Different Temperatures J Chem Eng Data2015 60 955minus959(18) Wiguno A Mustain A Irwansyah W F E Wibawa GIsothermal Vapor-Liquid Equilibrium of Methanol + Glycerol and 1-Propanol + Glycerol Indones J Chem 2018 16 111minus116(19) Anugraha R P Wiguno A Altway A Wibawa G VaporPressures of Diethyl Carbonate + Ethanol Binary Mixture and DiethylCarbonate + Ethanol + IsooctaneToluene Ternary Mixtures atTemperatures Range of 303 15 minus 323 15 K J Mol Liq 2018 26432minus37(20) Poling B E Prausnitz J M OrsquoConnel J P The Properties ofGases and Liquids 5th ed McGraw-Hill New York 2001(21) Luo H-P Xiao W-D Zhu K-H Isobaric VaporminusliquidEquilibria of Alkyl Carbonates with Alcohols Fluid Phase Equilib2000 175 91minus105(22) Barker J A Determination of Activity Coefficients from TotalPressure Measurements Aust J Chem 1953 6 207minus210

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2445

Jenis

Epoksida

Waktu reaksi

(jam) Katalis

Yield

DMC

()

Konversi

Reaksi ()

Propylene

Oxide

1

KI-EtONa

1051 1051

2 1999 1999

3 2683 2683

4 2681 2681

5 2852 2852

1

KI-Zeolite

892 893

2 3471 3471

3 2338 2338

4 1586 1586

5 1419 1419

Butylene

Oxide

1

KI-EtONa

1377 1377

2 2206 2206

3 2426 2426

4 3684 3684

5 2159 2159

Dari hasil penelitian dapat diketahui bahwa penggunaan KI-Zeolite dalam sintesis

Dimethyl Carbonate menggunakan agen pendehidrasi propylene oxide dan katalis KIZeolite

menghasilkan yield DMC tertinggi yaitu sebesar 3471 dengan waktu reaksi selama 2 jam

Sedangkan untuk sintesis DMC menggunakan agen pendehidrasi butylene oxide dan katalis

KIEtONa menghasilkan yield DMC tertinggi sebesar 3684 dengan waktu reaksi sebesar 4

jam Berdasarkan hasil eksperimen sintesis DMC menggunakan katalis propylene oxide disini

Kemudian berdasarkan sintesis DEC dengan menggunakan epoksida propylene oxide pada

eksperimen sebelumnya juga dapat diketahui bahwa penggunaan zeolite juga memiliki hasil

yield DEC yang lebih tinggi Selain itu berdasarkan hasil eksperimen sintesis DMC

menggunakan agen pendehidrasi berupa butylene oxide dan katalis KIEtONa yield tertinggi

didapatkan dengan waktu reaksi yang lebih lama dibandingkan dengan hasil sintesis DMC

yang menggunakan katalis KIZeolite Sehingga penggunaan Zeolite membuktikan bahwa

bahan ini berpotensi untuk digunakan sebagai pengganti katalis EtONa karena harganya yang

jauh lebih murah

Berdasarkan dari hasil penelitian ini telah di dapatkan beberapa luaran wajib dan tambahan diantaranya

yaitu untuk luaran wajib yang telah dicapai adalah berupa jurnal internasional yang berjudul ldquoVapor

Pressure of 2-Butanol+Diethyl Carbonate and tert-Butanol + Diethyl Carbonate at The

Temperature 30315-32315Krdquo yang telah dipublikasikan di Journal of Chemical amp

Engineering Data pada tahun 2020 dan draft manuscript yang berjudul ldquoCatalytic Synthesis of

Diethyl Carbonate from Carbon dioxide and Ethanol as Raw Material using KISodium

Ethoxide and KIMolecular Sieve as Catalystrdquo dimana nantinya akan disubmit pada chemical

engineering journal Sedangkan untuk luaran tambahan yang telah dicapai adalah berupa Manuscript

dengan judul ldquoThe Effect of Temperature Reaction in Catalytic Synthesis of Diethyl Carbonate

via One Pot Reactionrdquo yang akan diseminarkan pada 4th International Conference on Chemical

amp Material Engineering (ICCME 2020) yang akan diselenggarakan pada 6-7 Oktober 2020

melalui Video Meeting via ZOOM

D STATUS LUARAN Tuliskan jenis identitas dan status ketercapaian setiap luaran wajib dan luaran tambahan (jika ada) yang dijanjikan pada tahun pelaksanaan penelitian Jenis luaran dapat berupa publikasi perolehan kekayaan intelektual hasil pengujian atau luaran lainnya yang telah dijanjikan pada proposal Uraian status luaran harus didukung dengan bukti kemajuan ketercapaian luaran sesuai dengan luaran yang dijanjikan Lengkapi isian jenis luaran yang dijanjikan serta mengunggah bukti dokumen ketercapaian luaran wajib dan luaran tambahan melalui Simlitabmas mengikuti format sebagaimana terlihat pada bagian isian luaran

Untuk luaran wajib ada dua yaitu

1 Jurnal internasional yang berjudul ldquoVapor Pressure of 2-Butanol + Diethyl Carbonate

and tert-Butanol + Diethyl Carbonate at The Temperature 30315-32315Krdquo yang telah

dipublikasikan di Journal of Chemical amp Engineering Data pada tahun 2020 (Status

Published)

2 Manuscript yang berjudul ldquoCatalytic Synthesis of Diethyl Carbonate from Carbon

dioxide and Ethanol as Raw Material using KISodium Ethoxide and KIMolecular

Sieve as Catalystrdquo dimana nantinya akan disubmit pada chemical engineering journal

(Status Draft)

Sedangkan untuk luaran tambahan yaitu

Manuscript dengan judul ldquoThe Effect of Temperature Reaction in Catalytic Synthesis of

Diethyl Carbonate via One Pot Reactionrdquo yang akan diseminarkan pada 4th International

Conference on Chemical amp Material Engineering (ICCME 2020) yang akan diselenggarakan

pada 6-7 Oktober 2020 melalui Video Meeting via ZOOM

E PERAN MITRA Tuliskan realisasi kerjasama dan kontribusi Mitra baik in-kind maupun in-cash (jika ada) Bukti pendukung realisasi kerjasama dan realisasi kontribusi mitra dilaporkan sesuai dengan kondisi yang sebenarnya Bukti dokumen realisasi kerjasama dengan Mitra diunggah melalui Simlitabmas mengikuti format sebagaimana terlihat pada bagian isian mitra

F KENDALA PELAKSANAAN PENELITIAN Tuliskan kesulitan atau hambatan yang dihadapi selama melakukan penelitian dan mencapai luaran yang dijanjikan termasuk penjelasan jika pelaksanaan penelitian dan luaran penelitian tidak sesuai dengan yang direncanakan atau dijanjikan

Kendala pada pelaksanaan penelitian ini berada pada sulitnya menjaga kondisi reaktan yang

ada pada reaktor karena adanya faktor kesalahan teknis dalam menutup reaktor sehingga ada

kebocoran sedikit pada reaktor yang menyebabkan prosedur eksperimen harus diulangi

kembali sedangkan hambatan yang dihadapi selama melakukan penelitian adalah supplay

listrik yang tidak menentu pada saat pelaksanaan eksperimen menghasilkan supplay panas pada

electrical heater yang berbeda-beda setiap waktunya sehingga suhu reaktor sangat sulit untuk

dikendalikan Selain itu pada masa pandemic ini juga ada hambatan pada waktu penelitian

yang sangat terbatas sehingga pengerjaan penelitian juga menjadi terhambat

G RENCANA TINDAK LANJUT PENELITIAN Tuliskan dan uraikan rencana tindaklanjut penelitian selanjutnya dengan melihat hasil penelitian yang telah diperoleh Jika ada target yang belum diselesaikan pada akhir tahun pelaksanaan penelitian pada bagian ini dapat dituliskan rencana penyelesaian target yang belum tercapai tersebut

Penelitian selanjutnya akan difokuskan untuk sintesis Dimethyl Carbonate dengan agen

pendehidrasi berupa butylene oxide dan jenis katalis yang berbeda dan eksperimen

kesetimbangan uap-cair antar komponennya yang ada di produk

H DAFTAR PUSTAKA Penyusunan Daftar Pustaka berdasarkan sistem nomor sesuai dengan urutan pengutipan Hanya pustaka yang disitasi pada laporan akhir yang dicantumkan dalam Daftar Pustaka

1 Hanpattanakit P Pimonsree L Jamnongchob A Boonpoke A 2018 CO2 Emission

and Reduction of Tourist Transportation at Kok Mak Island Thailand Chemical

Engineering Transactions 63 37-42

2 K Shukla and V C Srivastava ldquoRSC Advances Diethyl carbonate  critical review of

synthesis routes catalysts used and engineering aspectsrdquo RSC Adv vol 6 pp 32624ndash

32645 201

3 D Wang B Yang X Zhai L Zhou Synthesis of diethyl carbonate by catalytic alcoholysis of urea 88 (2007) 807ndash812 doi101016jfuproc200704003

4 S Xin L Wang H Li K Huang F Li Synthesis of diethyl carbonate from urea and ethanol over lanthanum oxide as a heterogeneous basic catalyst Fuel Process Technol 126 (2014) 453ndash459 doi101016jfuproc201405029

5 K Shukla VC Srivastava Diethyl carbonate synthesis by ethanolysis of urea using Ce-Zn oxide catalysts Fuel Process Technol 161 (2017) 116ndash124 doi101016jfuproc201703004

6 P Zhang S Wang S Chen Z Zhang X Ma The effects of promoters over PdCl 2 -CuCl 2 HMS catalysts for the synthesis of diethyl carbonate by oxidative carbonylation of ethanol 143 (2008) 220ndash224 doi101016jcej200804008

7 DN Briggs G Bong E Leong K Oei G Lestari AT Bell Effects of support composition and pretreatment on the activity and selectivity of carbon-supported PdCu n Cl x catalysts for the synthesis of diethyl carbonate J Catal 276 (2010) 215ndash228 doi101016jjcat201008004

8 P Zhang X Ma Catalytic synthesis of diethyl carbonate by oxidative carbonylation of ethanol over PdCl 2 Cu-HMS catalyst Chem Eng J 163 (2010) 93ndash97 doi101016jcej201007025

9 D Zhu F Mei L Chen W Mo T Li G Li An efficient catalyst Co ( salophen ) for synthesis of diethyl carbonate by oxidative carbonylation of ethanol Fuel 90 (2011) 2098ndash2102 doi101016jfuel201102023

10 P Zhang Y Zhou M Fan P Jiang Catalytic synthesis of diethyl carbonate with supported Pd ‐ Cu bimetallic nanoparticle catalysts  Cu ( I ) as the active species Chinese J Catal 36 (2015) 2036ndash2043 doi101016S1872-2067(15)60973-1

11 C Murugan HC Bajaj Synthesis of diethyl carbonate from dimethyl carbonate and ethanol using KF Al 2 O 3 as an ef fi cient solid base catalyst Fuel Process Technol 92 (2011) 77ndash82 doi101016jfuproc201008023

12 GUO Lian Z Xinqiang AN Hualiang W Yanji Catalysis by Lead Oxide for Diethyl Carbonate Synthesis from Ethyl Carbamate and Ethanol Chinese J Catal 33 (2012) 595ndash600 doi101016S1872-2067(11)60373-2

13 H An X Zhao L Guo C Jia B Yuan Y Wang Applied Catalysis A  General Synthesis of diethyl carbonate from ethyl carbamate and ethanol over ZnO-PbO catalyst Applied Catal A Gen 433ndash434 (2012) 229ndash235 doi101016japcata201205023

14 L Wang H Li S Xin F Li Generation of solid base catalyst from waste slag for the ef fi cient synthesis of diethyl carbonate from ethyl carbamate and ethanol CATCOM 50 (2014) 49ndash53 doi101016jcatcom201402028

15 L Zhao Z Hou C Liu Y Wang L Dai Original article A catalyst-free novel synthesis of diethyl carbonate from ethyl carbamate in supercritical ethanol Chinese Chem Lett 25 (2014) 1395ndash1398 doi101016jcclet201405012

16 H Iida R Kawaguchi K Okumura Production of diethyl carbonate from ethylene carbonate and ethanol over supported fl uoro-perovskite catalysts Intensity cps Catal Commun 108 (2018) 7ndash11 doi101016jcatcom201801019

17 F Gasc S Thiebaud-roux Z Mouloungui The Journal of Supercritical Fluids Methods for synthesizing diethyl carbonate from ethanol and supercritical carbon dioxide by one-pot or two-step reactions in the presence of potassium carbonate 50 (2009) 46ndash53 doi101016jsupflu200903008

18 E Leino P Maumlki-arvela K Eraumlnen M Tenho D Yu T Salmi J Mikkola Enhanced yields of diethyl carbonate via one-pot synthesis from ethanol carbon dioxide and butylene oxide over cerium ( IV ) oxide Chem Eng J 176ndash177 (2011) 124ndash133 doi101016jcej201107054

19 E Leino P Maumlki-arvela V Eta N Kumar F Demoisson A Samikannu A Leino A Shchukarev D Yu J Mikkola The influence of various synthesis methods on the catalytic activity of cerium oxide in one-pot synthesis of diethyl carbonate starting from CO 2 ethanol and butylene oxide Catal Today 210 (2013) 47ndash54 doi101016jcattod201302011

20 E Leino N Kumar P Maumlki-arvela A Aho K Kordaacutes In fl uence of the synthesis parameters on the physico-chemical and catalytic properties of cerium oxide for application in the synthesis of diethyl carbonate Mater Chem Phys 143 (2013) 65ndash75 doi101016jmatchemphys201308012

21 L Wang H Li S Xin P He Y Cao F Li X Hou Applied Catalysis A  General Highly efficient synthesis of diethyl carbonate via one-pot reaction from carbon dioxide epoxides and ethanol over KI-based binary catalyst system Applied Catal A Gen 471 (2014) 19ndash27 doi101016japcata201311031

22 E Leino N Kumar P Maumlki-arvela A Rautio J Dahl J Roine J-P Mikkola Synthesis and characterization of ceria-supported catalysts for carbon dioxide transformation to diethyl carbonate Catal Today (2017) 1ndash10 doi101016jcattod201701016

23 W Yanlou J Dongdong Z Zhen S Yongyue Synthesis of Diethyl Carbonate from Carbon Dioxide Catal MDPI (2016) doi103390catal6040052

24 L Wang M Ammar P He Y Li Y Cao F Li X Han H Li The efficient synthesis of diethyl carbonate via coupling reaction from propylene oxide CO 2 and ethanol over binary PVEImBr MgO catalyst Catal Today 281 (2017) 360ndash370 doi101016jcattod201602052

25 H Hattori HeterogeneousBasicCatalysispdf (1995)

26 Fan Bin Bo Qu Q Chen Y Wen L Cai R Zhang An improved one-pot synthesis of dimethyl carbonate from propylene oxide CO2 and methanol Journal of Chemical Research (2011) 654-656

Dokumen pendukung luaran Wajib 1

Luaran dijanjikan Publikasi Ilmiah Jurnal Internasional

Target acceptedpublished

Dicapai Published

Dokumen wajib diunggah

1 Artikel yang terbit

Dokumen sudah diunggah

1 Artikel yang terbit

Dokumen belum diunggah

- Sudah lengkap

Nama jurnal Journal of Chemical amp Engineering Data

Peran penulis corresponding author | EISSN 00219568 15205134

Nama Lembaga Pengindek scopus

URL jurnal httpspubsacsorgdoi101021acsjced9b01079

Judul artikel Vapor Pressure of 2-Butanol + Diethyl Carbonate and tert-Butanol +

Diethyl Carbonate at The Temperature 30315-32315K

Tahun 2020 | Volume 65 | Nomor 5

Halaman awal 2441 | akhir 2445

URL artikel httpspubsacsorgdoi101021acsjced9b01079

DOI httpsdoiorg101021acsjced9b01079

Vapor Pressure of 2‑Butanol + Diethyl Carbonate and tert-Butanol +Diethyl Carbonate at the Temperature of 30315minus32315 KAnnas Wiguno Rizky Tetrisyanda and Gede Wibawa

Cite This J Chem Eng Data 2020 65 2441minus2445 Read Online

ACCESS Metrics amp More Article Recommendations

ABSTRACT In this work the vapor pressure of binary mixtures of 2-butanol +diethyl carbonate and tert-butanol + diethyl carbonate was measured in thetemperature range from 30315 to 32315 K The experimental apparatus used inthis work was a simple quasi-static ebulliometer developed in our previous works Thereliability of this apparatus was verified by comparing the measured vapor pressures of2-butanveol tert-butanol and diethyl carbonate with literature data The comparisonsshowed that the vapor pressures of pure 2-butanol tert-butanol and diethyl carbonatewere in good agreement with the literature data with average absolute deviations of 0606 and 08 respectively The experimental results show that the vapor pressuresincreased with the alcohol mole fraction for all systems studied The experimental datawere well-correlated with the Wilson nonrandom two-liquid and universal quasi-chemical activity coefficient models giving an average absolute deviation of no morethan 19 The binary vaporminusliquid equilibrium data obtained in this work showed apositive deviation from Raoultrsquos law

1 INTRODUCTION

Ethanol is commonly used in gasoline blends because of itshigh octane number and oxygen number as well as itscapability to accelerate flame propagation However theaddition of ethanol to isooctane at a mole fraction of 01was found to elevate the vapor pressure12 A higher vaporpressure of gasoline mixtures causes increased emissions andthe potential for vapor lock in the engine On other handlonger-chain alcohols such as 2-butanol and tert-butanol havelower vapor pressures and higher heating values and theirproperties are closer to gasoline than to ethanol3 Butanol hasbeen used as a mixture in engines without any significantengine changes4 Butanol may be produced from renewableresources as well for example from lignocellulose the mostplentiful renewable material5 The combustion of a butanolminusgasoline mixture produces a high temperature because of itshigh heating value and low vaporization rate Therefore 2-butanoltert-butanol are expected to be able to be used asgasoline additives that are alternatives to ethanol The octanenumber of butanol is lower than that of ethanol and thus theaddition of an octane booster is required Diethyl carbonate(DEC) is such an octane booster The addition of 5 wt ofdiethyl carbonate (DEC) into diesel fuel can decrease theemissions by up to 50 due to its higher oxygen content of406 wt6 DEC is a nontoxic chemical that is degradable andable to be decomposed gradually into CO2 and ethanol whichare environmentally friendly78 Although methyl tert-butylether (MTBE) has been successfully applied in gasoline blendsas it is nonbiodegradable it has contributed to groundwater

contamination9 Thus DEC is a potential candidate to replaceMTBETo design the blend of gasoline + 2-butanoltert-butanol +

DEC the vapor pressure data of the binary system of 2-butanoltert-butanol + DEC are required Studies on the vaporpressure of mixtures including diethyl carbonate have beenconducted by many researchers Rodriguez et al10 examinedthe vapor pressure for the binary systems of diethyl carbonatewith five alcohols (methanol ethanol 1-propanol 1-butanoland 1-pentanol) at a pressure of 1013 kPa and temperatures of35173minus39602 K Octavian et al1 measured the vaporpressure of the ethanol + isooctane and 1-butanol + isooctanesystems using a new ebulliometer Ho et al11 examined thevapor pressure of binary mixtures containing diethyl carbonatephenyl acetate diphenyl carbonate or ethyl acetate at 3732minus4532 K Jeremy et al12 conducted experiments on the vaporliquid equilibrium of a binary mixture of 2-propanone + 2-butanol at 33315 and 35315 K and 2-propanone + propanoicacid at 33315 35315 and 37315 K Anugraha et al13

measured the vapor pressure of binary mixtures of diethylcarbonate + isooctanen-heptanetoluene To our knowledge

Received November 14 2019Accepted March 30 2020Published April 3 2020

Articlepubsacsorgjced

copy 2020 American Chemical Society2441

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

Dow

nloa

ded

via

UPP

SAL

A U

NIV

on

June

21

202

0 at

00

502

1 (U

TC

)Se

e ht

tps

pub

sac

sor

gsh

arin

ggui

delin

es f

or o

ptio

ns o

n ho

w to

legi

timat

ely

shar

e pu

blis

hed

artic

les

vaporminusliquid equilibrium (VLE) data of 2-butanoltert-butanol+ DEC at low temperatures are unavailable in the availableliterature Therefore the aim of this study is to determine theisothermal VLE of 2-butanoltert-butanol + DEC at 30315minus32315 K In addition the experimental data were correlatedwith the Wilson14 nonrandom two-liquid (NRTL)15 anduniversal quasi-chemical (UNIQUAC)16 models

2 EXPERIMENTAL SECTION21 Materials The chemicals used in this experiment were

2-butanol tert-butanol and DEC All chemicals were usedwithout any additional purification The compound details arelisted in Table 1

22 Apparatus and Procedures The apparatus used inthis study is a simple static ebulliometer The ebulliometerused was an apparatus developed by Oktavian et al1 andrevalidated by Wibawa et al17 Wiguno et al18 and Anugrahaet al13 to ensure that the initial composition has not changedsignificantly when the equilibrium condition is achieved Thedetailed apparatus was shown in our previous publication1

The equipmentrsquos main parts are the ebulliometer cellcondenser and some auxiliaries such as a vacuum pump(VALUE VG140) for eliminating the gas impurities from theebulliometer magnetic stirrer temperature controller andindicator (AUTONICS TC4S) RTD Pt 100 thermocouplewith an accuracy of plusmn01 K pressure gauge (AUTONICSPSAN) with an accuracy of plusmn01 kPa and ambient pressuregauge (Lutron MHB 382SD)The experimental procedure was described in detail in the

previous work19 Initially each pure componentrsquos vaporpressure was measured by charging the pure component intothe equilibrium cell and vacuum conditions were created byturning on the vacuum pump The pressure at each desiredtemperature was recorded as the vapor pressure The vaporpressure data for the two binary systems ie 2-butanol + DECand tert-butanol + DEC were obtained by the followingprocedure The experiment was begun by introducing 225 mLof a mixture having a known composition into the ebulliometercell Cooling water was circulated in the condenser and thenthe magnetic stirrer was switched on to stir the solution to mixevenly After that the vacuum pressure was created in theequilibrium cell by turning on the vacuum pump The heatingsystem was then lit to heat the solution according to thedesired temperature This heating causes some of the liquid toevaporate The temperature and pressure in the system areshown by temperature indicator and pressure gaugerespectively The pressure is recorded when the temperaturereaches a constant value The apparatus was validated bycomparing the measured pure vapor pressures of 2-butanoltert-butanol and DEC with literature data calculated using theWagner and Antoine equations with parameter constantsobtained from Poling et al20 and Luo et al21 respectively

Based on this experiment the data obtained are the molefractions of component i in the liquid phase (xi) theequilibrium pressure (P) and the temperature (T) Theexperimental data are correlated with 3 activity coefficientmodels ie the Wilson NRTL and UNIQUAC equationsand the binary interaction parameter pairs of each equationwere optimized using the experimental data obtained in thiswork

3 RESULTS AND DISCUSSION31 Reliability of Apparatus The validity of the

experimental apparatus was checked by comparing theexperimental pure vapor pressures of 2-butanol tert-butanoland DEC with the literature pure vapor pressures of 2-butanoland tert-butanol calculated from the Wagner equation(equation 1) and that of DEC calculated from the Antoineequation (equation 2) The parameter constants of the Wagnerand Antoine equations are listed in Tables 2 and 3respectively

Pa b c d

Tln (kPa)

15 25 5

r

τ τ τ τ= + + +(1)

P AB

T Clog (kPa)

(K)10 = minus+ (2)

where τ = 1 minus Tr and Tr = TTc

A comparison between the experimental data and literaturedata obtained from the Wagner or Antoine equations arepresented in Table 4 and the average absolute deviation

Table 1 Pure Chemicals Description and Properties

component supplier CAS reg noMWa

(gmol) purityb

2-butanol Merck Germany 78minus92minus2 7412 09900tert-butanol Merck Germany 75minus65minus0 7412 09950diethylcarbonate

Wuhan FortunaChemical Co China

105minus58minus8 11813 09992

aMW = molecular weight bPurity from supplier in mass fraction

Table 2 Wagner Parameter of 2-Butanol and tert-Butanol20

component a b c d

2-butanol minus80982 164406 minus749 minus52735tert-butanol minus84792 247845 minus9279 minus25399

Table 3 Antoine Parameter of DEC21

component A B C

DEC 5883 122377 minus84304

Table 4 Vapor Pressures of 2-Butanol tert-Butanol andDECa

2-butanol tert-butanol DEC

TK Pexp Plit Pexp Plit Pexp Plit

(kPa)30315 322 320 764 766 196 19530565 374 376 884 892 227 22630815 443 441 1032 1034 257 26131065 513 516 1182 1196 296 29931315 604 600 1371 1378 346 34331565 705 697 1571 1583 396 39231815 804 806 1803 1813 445 44632065 934 930 2055 2071 504 50732315 1081 1069 2356 2359 582 575AAD 06 06 08

aThe standard uncertainty of measurements are u(T) = 01 K andu(P) = 03 kPa where u(T) is the uncertainty in temperature andu(P) is the uncertainty in pressure

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2442

(AAD) between the experimental data and calculated vaporpressures were obtained by the following equation

n

P P

PAAD

1100

i

n

1

exp lit

litsum=

minustimes

= (3)

where Pexp is the vapor pressure obtained from the experimentPlit is the literature value and n is the number of data points Aspresented in Table 4 good agreement was shown by all purecomponents with a 06 AAD for 2-butanol 06 AAD fortert-butanol and 08 AAD for DEC The result indicates thatthe ebulliometer used in this experiment is reliable32 Vapor Pressure Data Measurement and Correla-

tion The vapor pressure data obtained in this work for the 2-butanol (1) + DEC (2) and tert-butanol (1) + DEC (2)systems are presented in Tables 5 and 6 respectively The

experimental equilibrium temperatures were set in the range of30315minus32315 K to accommodate common fuel storageconditions in tropical countries This is done in the absence of

changes in the pressure temperature and composition of thesystemIn vaporminusliquid equilibrium conditions the liquid-compo-

nent fugacity is equal to the vapor-component fugacity Due tolow vapor pressure of the mixture the ideal gas law is appliedConsidering the differences between the alcohol and DECmolecules the liquid becomes a nonideal mixture Thereforean activity coefficient of component i γi is used as a nonidealfactor for the liquid phase in solution Accordingly thecalculation of the vapor pressure of the mixture is based on thefollowing equation

P x Pi

m

i i1

isatsum γ=

= (4)

where m is the number of components in the mixture P is thevapor pressure in the equilibrium condition xi is thecomponent i mole fraction in the liquid phase γi is the activitycoefficient of component i and Pi

sat is the vapor pressure ofcomponent i Data correlation is carried out by using theWilson NRTL and UNIQUAC equations The binaryinteraction parameters are determined using Barkerrsquos method22

by minimizing the following objective function (OF)

OF (P P )i

n

i i1

cal exp2sum= minus

= (5)

where n is the number of data points and the subscripts cal andexp indicate the calculated and experimental valuesrespectively The values of the AAD are presented in Table 7

The experimental data were well-correlated with the WilsonNRTL and UNIQUAC activity coefficient models givingaverage absolute deviations in the range of 18minus19 Thecorrelation results were plotted in Figure 1 and Figure 2Figure 1 shows that the increasing temperature causes a rise

in the vapor pressure of the 2-butanol + DEC mixture Atconstant temperature increasing the content of 2-butanol (x1)leads to an increase of equilibrium pressure of the mixture tothe peak point and then a decrease in the 2-butanol vaporpressureFigure 2 shows that the increasing temperature causes a rise

in the vapor pressure of the mixture In addition at constanttemperature the vapor pressure of the mixture increases withthe increasing content of tert-butanol (x1) Therefore thepressure of the mixture is between the pure vapor pressures ofeach component

Table 5 Experimental VLE data for 2-Butanol (1) + DEC(2)a

PexpkPa

x1 30315 K 30815 K 31315 K 31815 K 32315 K

0 196 257 346 445 58201 272 373 474 616 78902 293 402 542 701 86203 298 428 578 749 94104 317 431 561 742 96105 323 452 593 792 99306 34 449 588 775 102207 305 444 601 8 106708 341 461 603 796 105609 327 467 626 807 10761 322 443 604 804 1081

aThe standard uncertainty of measurements are u(xi) = 00002 u(T)= 01 K and u(P) = 03 kPa where u(xi) is the uncertainty ofcomponent i of the liquid phase mole fractions u(T) is theuncertainty in temperature and u(P) is the uncertainty in pressure

Table 6 Experimental VLE Data for tert-Butanol (1) + DEC(2)a

PexpkPa

x1 30315 K 30815 K 31315 K 31815 K 32315 K

0 196 257 346 445 58201 362 461 571 76 99702 437 567 751 1005 127503 534 714 895 1138 145404 626 754 972 1312 166805 633 802 1055 142 179606 662 846 115 1526 195707 71 897 1202 1578 202108 74 94 1257 1635 210309 767 969 1291 1736 22061 764 1032 1371 1803 2356

aThe standard uncertainty of measurements are u(xi) = 00002 u(T)= 01 K and u(P) = 03 kPa where u(xi) is the uncertainty ofcomponent i of the liquid phase mole fractions u(T) is theuncertainty in temperature and u(P) is the uncertainty in pressure

Table 7 Parameter and AADs of Correlation Results

2-Butanol(1) + DEC(2) System

Wilson NRTL UNIQUAC

a12(Jmol)

a21(Jmol)

α(minus)

b12(Jmol)

b21(Jmol)

Δu12(Jmol)

Δu21(Jmol)

51428 minus9777 03 minus10506 49176 minus12239 25901AAD = 19 AAD = 18 AAD = 19

tert-butanol(1) + DEC(2) system

Wilson NRTL UNIQUAC

a12(Jmol)

a21(Jmol)

α(minus)

b12(Jmol)

b21(Jmol)

Δu12(Jmol)

Δu21(Jmol)

16342 9713 03 14669 9951 1081 4603AAD = 19 AAD = 19 AAD = 19

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2443

The composition of the vapor can be obtained based on theconcept of equilibrium by using the values of the activitycoefficients obtained from the Wilson NRTL and UNIQUACequations The result of calculated of y1 is then plotted inFigures 1 and 2According to Figure 1 the correlation results for 2-butanol +

DEC showing that at the point of x1 above 06 the x1 has samevalue of y1 where it could be suspected as azeotrope pointHowever due to the differences between the maximumequilibrium pressures and the vapor pressure of pure 2-butanolare smaller than the uncertainty of pressure measurement (03kPa) the azeotrope behavior still could not be justified for thissystem The small vapor pressure differences indicate that theeffect of DEC at the point of x1 above 06 is insignificant Thevapor pressure is greatly affected by 2-butanol

4 CONCLUSIONSAn experiment was successfully conducted to obtain accuratevaporminusliquid equilibrium data for binary systems of 2-butanol

(1) + DEC (2) and tert-butanol (1) + DEC (2) at 30315minus32315 K The experimental data for the 2-butanol (1) + DEC(2) system were well-correlated using the Wilson NRTL andUNIQUAC models with AADs in the vapor pressure of 1918 and 19 respectively For the tert-butanol (1) + DEC (2)system correlation using the Wilson NRTL and UNIQUACmodels gave the same AAD of 19 The systems studied showpositive deviations from Raoultrsquos law in the temperature rangestudied

AUTHOR INFORMATION

Corresponding AuthorGede Wibawa minus Department of Chemical Engineering Facultyof Industrial Technology Sepuluh Nopember Institute ofTechnology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia orcidorg0000-0002-1255-9210 Phone +62-31-5946240 Email gwibawachem-engitsacid Fax +62-31-5999282

AuthorsAnnas Wiguno minus Department of Chemical Engineering Facultyof Industrial Technology Sepuluh Nopember Institute ofTechnology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia

Rizky Tetrisyanda minus Department of Chemical EngineeringFaculty of Industrial Technology Sepuluh Nopember Instituteof Technology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia

Complete contact information is available athttpspubsacsorg101021acsjced9b01079

NotesThe authors declare no competing financial interest

ACKNOWLEDGMENTS

The author are grateful to Kementrian Riset Teknologi danPendidikan Tinggi Sepuluh Nopember Institute of Technol-ogy (ITS) for a research grant with the PUPT research schemaunder Contract 622PKSITS2017 The authors would liketo thank Andika Dwimasputra and Naomi Hurayah Aden forexperimental work

REFERENCES(1) Oktavian R Amidelsi V Rasmito A Wibawa G VaporPressure Measurements of Ethanolminusisooctane and 1-Butanolminusisooctane Systems Using a New Ebulliometer Fuel 2013 107 47minus51(2) Hull A Kronberg B van Stam J Golubkov I Kristensson JVaporminusLiquid Equilibrium of Binary Mixtures 1 Ethanol + 1-Butanol Ethanol + Octane 1-Butanol + Octane J Chem Eng Data2006 51 1996minus2001(3) Moxey B G Cairns A Zhao H A Comparison of Butanol andEthanol Flame Development in an Optical Spark Ignition Engine Fuel2016 170 27minus38(4) Varol Y Oner C Oztop H F Altun S Comparison ofMethanol Ethanol or n-Butanol Blending with Unleaded Gasoline onExhaust Emissions of an SI Engine Energy Sources Part A 2014 36938minus948(5) Procentese A Guida T Raganati F Olivieri G Salatino PMarzocchella A Process Simulation of Biobutanol Production fromLignocellulosic Feedstocks Chem Eng Trans 2014 38 343minus348(6) Dunn B C Guenneau C Hilton S A Pahnke J Eyring EM Dworzanski J Meuzelaar H L C Hu J Z Solum M SPugmire R J Production of Diethyl Carbonate from Ethanol and

Figure 1 Diagram of Pminusx1minusy1 for 2-butanol (1) + DEC (2) system atvarious temperatures

Figure 2 Diagram of Pminusx1minusy1 for tert-butanol (1) + DEC (2) systemat various temperatures

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2444

Carbon Monoxide over a Heterogeneous Catalyst Energy Fuels 200216 177minus181(7) Pacheco M A Marshall C L Review of Dimethyl Carbonate(DMC) Manufacture and Its Characteristics as a Fuel AdditiveEnergy Fuels 1997 11 2minus29(8) M Eyring E L C Meuzelaar H Pugmire R Synthesis andTesting of Diethyl Carbonate as a Possible Diesel Fuel Additive 2000(9) Moran M Zogorski J Squillace P MTBE and GasolineHydrocarbons in Ground Water of the United States 2005 Vol 43(10) Rodriacuteguez A Canosa J Domiacutenguez A Tojo J IsobaricPhase Equilibria of Diethyl Carbonate with Five Alcohols at 1013KPa J Chem Eng Data 2003 48 86minus91(11) Ho H-Y Shu S-S Wang S-J Lee M-J Isothermal(Vapour+liquid) Equilibrium (VLE) for Binary Mixtures ContainingDiethyl Carbonate Phenyl Acetate Diphenyl Carbonate or EthylAcetate J Chem Thermodyn 2015 91 35minus42(12) Pillay J Iwarere S A Raal J D Naidoo P RamjugernathD Isothermal Vapour-Liquid Equilibrium Data for the Binary Systems2-Propanone + (2-Butanol or Propanoic Acid) Fluid Phase Equilib2017 433 119minus125(13) Anugraha R P Altway A Wibawa G Measurement andCorrelation of Isothermal Binary VaporminusLiquid Equilibrium forDiethyl Carbonate + Isooctanen-HeptaneToluene Systems JChem Eng Data 2017 62 2362minus2366(14) Wilson G M Vapor-Liquid Equilibrium XI A NewExpression for the Excess Free Energy of Mixing J Am Chem Soc1964 86 127minus130(15) Renon H Prausnitz J M Local Composition Thermody-namic Excess Functions for Liquid Mixtures AIChE J 1968 14 135minus144(16) Prausnitz J M Abrams D S Statistical Thermodynamics ofLiquid Mixtures A New Expression for the Excess Gibbs Energy ofPartly or Completely Miscible Systems AIChE J 1975 21 116minus128(17) Wibawa G Mustain A Akbarina M F Ruslim R MIsothermal VaporminusLiquid Equilibrium of Ethanol + Glycerol and 2-Propanol + Glycerol at Different Temperatures J Chem Eng Data2015 60 955minus959(18) Wiguno A Mustain A Irwansyah W F E Wibawa GIsothermal Vapor-Liquid Equilibrium of Methanol + Glycerol and 1-Propanol + Glycerol Indones J Chem 2018 16 111minus116(19) Anugraha R P Wiguno A Altway A Wibawa G VaporPressures of Diethyl Carbonate + Ethanol Binary Mixture and DiethylCarbonate + Ethanol + IsooctaneToluene Ternary Mixtures atTemperatures Range of 303 15 minus 323 15 K J Mol Liq 2018 26432minus37(20) Poling B E Prausnitz J M OrsquoConnel J P The Properties ofGases and Liquids 5th ed McGraw-Hill New York 2001(21) Luo H-P Xiao W-D Zhu K-H Isobaric VaporminusliquidEquilibria of Alkyl Carbonates with Alcohols Fluid Phase Equilib2000 175 91minus105(22) Barker J A Determination of Activity Coefficients from TotalPressure Measurements Aust J Chem 1953 6 207minus210

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2445

Berdasarkan dari hasil penelitian ini telah di dapatkan beberapa luaran wajib dan tambahan diantaranya

yaitu untuk luaran wajib yang telah dicapai adalah berupa jurnal internasional yang berjudul ldquoVapor

Pressure of 2-Butanol+Diethyl Carbonate and tert-Butanol + Diethyl Carbonate at The

Temperature 30315-32315Krdquo yang telah dipublikasikan di Journal of Chemical amp

Engineering Data pada tahun 2020 dan draft manuscript yang berjudul ldquoCatalytic Synthesis of

Diethyl Carbonate from Carbon dioxide and Ethanol as Raw Material using KISodium

Ethoxide and KIMolecular Sieve as Catalystrdquo dimana nantinya akan disubmit pada chemical

engineering journal Sedangkan untuk luaran tambahan yang telah dicapai adalah berupa Manuscript

dengan judul ldquoThe Effect of Temperature Reaction in Catalytic Synthesis of Diethyl Carbonate

via One Pot Reactionrdquo yang akan diseminarkan pada 4th International Conference on Chemical

amp Material Engineering (ICCME 2020) yang akan diselenggarakan pada 6-7 Oktober 2020

melalui Video Meeting via ZOOM

D STATUS LUARAN Tuliskan jenis identitas dan status ketercapaian setiap luaran wajib dan luaran tambahan (jika ada) yang dijanjikan pada tahun pelaksanaan penelitian Jenis luaran dapat berupa publikasi perolehan kekayaan intelektual hasil pengujian atau luaran lainnya yang telah dijanjikan pada proposal Uraian status luaran harus didukung dengan bukti kemajuan ketercapaian luaran sesuai dengan luaran yang dijanjikan Lengkapi isian jenis luaran yang dijanjikan serta mengunggah bukti dokumen ketercapaian luaran wajib dan luaran tambahan melalui Simlitabmas mengikuti format sebagaimana terlihat pada bagian isian luaran

Untuk luaran wajib ada dua yaitu

1 Jurnal internasional yang berjudul ldquoVapor Pressure of 2-Butanol + Diethyl Carbonate

and tert-Butanol + Diethyl Carbonate at The Temperature 30315-32315Krdquo yang telah

dipublikasikan di Journal of Chemical amp Engineering Data pada tahun 2020 (Status

Published)

2 Manuscript yang berjudul ldquoCatalytic Synthesis of Diethyl Carbonate from Carbon

dioxide and Ethanol as Raw Material using KISodium Ethoxide and KIMolecular

Sieve as Catalystrdquo dimana nantinya akan disubmit pada chemical engineering journal

(Status Draft)

Sedangkan untuk luaran tambahan yaitu

Manuscript dengan judul ldquoThe Effect of Temperature Reaction in Catalytic Synthesis of

Diethyl Carbonate via One Pot Reactionrdquo yang akan diseminarkan pada 4th International

Conference on Chemical amp Material Engineering (ICCME 2020) yang akan diselenggarakan

pada 6-7 Oktober 2020 melalui Video Meeting via ZOOM

E PERAN MITRA Tuliskan realisasi kerjasama dan kontribusi Mitra baik in-kind maupun in-cash (jika ada) Bukti pendukung realisasi kerjasama dan realisasi kontribusi mitra dilaporkan sesuai dengan kondisi yang sebenarnya Bukti dokumen realisasi kerjasama dengan Mitra diunggah melalui Simlitabmas mengikuti format sebagaimana terlihat pada bagian isian mitra

F KENDALA PELAKSANAAN PENELITIAN Tuliskan kesulitan atau hambatan yang dihadapi selama melakukan penelitian dan mencapai luaran yang dijanjikan termasuk penjelasan jika pelaksanaan penelitian dan luaran penelitian tidak sesuai dengan yang direncanakan atau dijanjikan

Kendala pada pelaksanaan penelitian ini berada pada sulitnya menjaga kondisi reaktan yang

ada pada reaktor karena adanya faktor kesalahan teknis dalam menutup reaktor sehingga ada

kebocoran sedikit pada reaktor yang menyebabkan prosedur eksperimen harus diulangi

kembali sedangkan hambatan yang dihadapi selama melakukan penelitian adalah supplay

listrik yang tidak menentu pada saat pelaksanaan eksperimen menghasilkan supplay panas pada

electrical heater yang berbeda-beda setiap waktunya sehingga suhu reaktor sangat sulit untuk

dikendalikan Selain itu pada masa pandemic ini juga ada hambatan pada waktu penelitian

yang sangat terbatas sehingga pengerjaan penelitian juga menjadi terhambat

G RENCANA TINDAK LANJUT PENELITIAN Tuliskan dan uraikan rencana tindaklanjut penelitian selanjutnya dengan melihat hasil penelitian yang telah diperoleh Jika ada target yang belum diselesaikan pada akhir tahun pelaksanaan penelitian pada bagian ini dapat dituliskan rencana penyelesaian target yang belum tercapai tersebut

Penelitian selanjutnya akan difokuskan untuk sintesis Dimethyl Carbonate dengan agen

pendehidrasi berupa butylene oxide dan jenis katalis yang berbeda dan eksperimen

kesetimbangan uap-cair antar komponennya yang ada di produk

H DAFTAR PUSTAKA Penyusunan Daftar Pustaka berdasarkan sistem nomor sesuai dengan urutan pengutipan Hanya pustaka yang disitasi pada laporan akhir yang dicantumkan dalam Daftar Pustaka

1 Hanpattanakit P Pimonsree L Jamnongchob A Boonpoke A 2018 CO2 Emission

and Reduction of Tourist Transportation at Kok Mak Island Thailand Chemical

Engineering Transactions 63 37-42

2 K Shukla and V C Srivastava ldquoRSC Advances Diethyl carbonate  critical review of

synthesis routes catalysts used and engineering aspectsrdquo RSC Adv vol 6 pp 32624ndash

32645 201

3 D Wang B Yang X Zhai L Zhou Synthesis of diethyl carbonate by catalytic alcoholysis of urea 88 (2007) 807ndash812 doi101016jfuproc200704003

4 S Xin L Wang H Li K Huang F Li Synthesis of diethyl carbonate from urea and ethanol over lanthanum oxide as a heterogeneous basic catalyst Fuel Process Technol 126 (2014) 453ndash459 doi101016jfuproc201405029

5 K Shukla VC Srivastava Diethyl carbonate synthesis by ethanolysis of urea using Ce-Zn oxide catalysts Fuel Process Technol 161 (2017) 116ndash124 doi101016jfuproc201703004

6 P Zhang S Wang S Chen Z Zhang X Ma The effects of promoters over PdCl 2 -CuCl 2 HMS catalysts for the synthesis of diethyl carbonate by oxidative carbonylation of ethanol 143 (2008) 220ndash224 doi101016jcej200804008

7 DN Briggs G Bong E Leong K Oei G Lestari AT Bell Effects of support composition and pretreatment on the activity and selectivity of carbon-supported PdCu n Cl x catalysts for the synthesis of diethyl carbonate J Catal 276 (2010) 215ndash228 doi101016jjcat201008004

8 P Zhang X Ma Catalytic synthesis of diethyl carbonate by oxidative carbonylation of ethanol over PdCl 2 Cu-HMS catalyst Chem Eng J 163 (2010) 93ndash97 doi101016jcej201007025

9 D Zhu F Mei L Chen W Mo T Li G Li An efficient catalyst Co ( salophen ) for synthesis of diethyl carbonate by oxidative carbonylation of ethanol Fuel 90 (2011) 2098ndash2102 doi101016jfuel201102023

10 P Zhang Y Zhou M Fan P Jiang Catalytic synthesis of diethyl carbonate with supported Pd ‐ Cu bimetallic nanoparticle catalysts  Cu ( I ) as the active species Chinese J Catal 36 (2015) 2036ndash2043 doi101016S1872-2067(15)60973-1

11 C Murugan HC Bajaj Synthesis of diethyl carbonate from dimethyl carbonate and ethanol using KF Al 2 O 3 as an ef fi cient solid base catalyst Fuel Process Technol 92 (2011) 77ndash82 doi101016jfuproc201008023

12 GUO Lian Z Xinqiang AN Hualiang W Yanji Catalysis by Lead Oxide for Diethyl Carbonate Synthesis from Ethyl Carbamate and Ethanol Chinese J Catal 33 (2012) 595ndash600 doi101016S1872-2067(11)60373-2

13 H An X Zhao L Guo C Jia B Yuan Y Wang Applied Catalysis A  General Synthesis of diethyl carbonate from ethyl carbamate and ethanol over ZnO-PbO catalyst Applied Catal A Gen 433ndash434 (2012) 229ndash235 doi101016japcata201205023

14 L Wang H Li S Xin F Li Generation of solid base catalyst from waste slag for the ef fi cient synthesis of diethyl carbonate from ethyl carbamate and ethanol CATCOM 50 (2014) 49ndash53 doi101016jcatcom201402028

15 L Zhao Z Hou C Liu Y Wang L Dai Original article A catalyst-free novel synthesis of diethyl carbonate from ethyl carbamate in supercritical ethanol Chinese Chem Lett 25 (2014) 1395ndash1398 doi101016jcclet201405012

16 H Iida R Kawaguchi K Okumura Production of diethyl carbonate from ethylene carbonate and ethanol over supported fl uoro-perovskite catalysts Intensity cps Catal Commun 108 (2018) 7ndash11 doi101016jcatcom201801019

17 F Gasc S Thiebaud-roux Z Mouloungui The Journal of Supercritical Fluids Methods for synthesizing diethyl carbonate from ethanol and supercritical carbon dioxide by one-pot or two-step reactions in the presence of potassium carbonate 50 (2009) 46ndash53 doi101016jsupflu200903008

18 E Leino P Maumlki-arvela K Eraumlnen M Tenho D Yu T Salmi J Mikkola Enhanced yields of diethyl carbonate via one-pot synthesis from ethanol carbon dioxide and butylene oxide over cerium ( IV ) oxide Chem Eng J 176ndash177 (2011) 124ndash133 doi101016jcej201107054

19 E Leino P Maumlki-arvela V Eta N Kumar F Demoisson A Samikannu A Leino A Shchukarev D Yu J Mikkola The influence of various synthesis methods on the catalytic activity of cerium oxide in one-pot synthesis of diethyl carbonate starting from CO 2 ethanol and butylene oxide Catal Today 210 (2013) 47ndash54 doi101016jcattod201302011

20 E Leino N Kumar P Maumlki-arvela A Aho K Kordaacutes In fl uence of the synthesis parameters on the physico-chemical and catalytic properties of cerium oxide for application in the synthesis of diethyl carbonate Mater Chem Phys 143 (2013) 65ndash75 doi101016jmatchemphys201308012

21 L Wang H Li S Xin P He Y Cao F Li X Hou Applied Catalysis A  General Highly efficient synthesis of diethyl carbonate via one-pot reaction from carbon dioxide epoxides and ethanol over KI-based binary catalyst system Applied Catal A Gen 471 (2014) 19ndash27 doi101016japcata201311031

22 E Leino N Kumar P Maumlki-arvela A Rautio J Dahl J Roine J-P Mikkola Synthesis and characterization of ceria-supported catalysts for carbon dioxide transformation to diethyl carbonate Catal Today (2017) 1ndash10 doi101016jcattod201701016

23 W Yanlou J Dongdong Z Zhen S Yongyue Synthesis of Diethyl Carbonate from Carbon Dioxide Catal MDPI (2016) doi103390catal6040052

24 L Wang M Ammar P He Y Li Y Cao F Li X Han H Li The efficient synthesis of diethyl carbonate via coupling reaction from propylene oxide CO 2 and ethanol over binary PVEImBr MgO catalyst Catal Today 281 (2017) 360ndash370 doi101016jcattod201602052

25 H Hattori HeterogeneousBasicCatalysispdf (1995)

26 Fan Bin Bo Qu Q Chen Y Wen L Cai R Zhang An improved one-pot synthesis of dimethyl carbonate from propylene oxide CO2 and methanol Journal of Chemical Research (2011) 654-656

Dokumen pendukung luaran Wajib 1

Luaran dijanjikan Publikasi Ilmiah Jurnal Internasional

Target acceptedpublished

Dicapai Published

Dokumen wajib diunggah

1 Artikel yang terbit

Dokumen sudah diunggah

1 Artikel yang terbit

Dokumen belum diunggah

- Sudah lengkap

Nama jurnal Journal of Chemical amp Engineering Data

Peran penulis corresponding author | EISSN 00219568 15205134

Nama Lembaga Pengindek scopus

URL jurnal httpspubsacsorgdoi101021acsjced9b01079

Judul artikel Vapor Pressure of 2-Butanol + Diethyl Carbonate and tert-Butanol +

Diethyl Carbonate at The Temperature 30315-32315K

Tahun 2020 | Volume 65 | Nomor 5

Halaman awal 2441 | akhir 2445

URL artikel httpspubsacsorgdoi101021acsjced9b01079

DOI httpsdoiorg101021acsjced9b01079

Vapor Pressure of 2‑Butanol + Diethyl Carbonate and tert-Butanol +Diethyl Carbonate at the Temperature of 30315minus32315 KAnnas Wiguno Rizky Tetrisyanda and Gede Wibawa

Cite This J Chem Eng Data 2020 65 2441minus2445 Read Online

ACCESS Metrics amp More Article Recommendations

ABSTRACT In this work the vapor pressure of binary mixtures of 2-butanol +diethyl carbonate and tert-butanol + diethyl carbonate was measured in thetemperature range from 30315 to 32315 K The experimental apparatus used inthis work was a simple quasi-static ebulliometer developed in our previous works Thereliability of this apparatus was verified by comparing the measured vapor pressures of2-butanveol tert-butanol and diethyl carbonate with literature data The comparisonsshowed that the vapor pressures of pure 2-butanol tert-butanol and diethyl carbonatewere in good agreement with the literature data with average absolute deviations of 0606 and 08 respectively The experimental results show that the vapor pressuresincreased with the alcohol mole fraction for all systems studied The experimental datawere well-correlated with the Wilson nonrandom two-liquid and universal quasi-chemical activity coefficient models giving an average absolute deviation of no morethan 19 The binary vaporminusliquid equilibrium data obtained in this work showed apositive deviation from Raoultrsquos law

1 INTRODUCTION

Ethanol is commonly used in gasoline blends because of itshigh octane number and oxygen number as well as itscapability to accelerate flame propagation However theaddition of ethanol to isooctane at a mole fraction of 01was found to elevate the vapor pressure12 A higher vaporpressure of gasoline mixtures causes increased emissions andthe potential for vapor lock in the engine On other handlonger-chain alcohols such as 2-butanol and tert-butanol havelower vapor pressures and higher heating values and theirproperties are closer to gasoline than to ethanol3 Butanol hasbeen used as a mixture in engines without any significantengine changes4 Butanol may be produced from renewableresources as well for example from lignocellulose the mostplentiful renewable material5 The combustion of a butanolminusgasoline mixture produces a high temperature because of itshigh heating value and low vaporization rate Therefore 2-butanoltert-butanol are expected to be able to be used asgasoline additives that are alternatives to ethanol The octanenumber of butanol is lower than that of ethanol and thus theaddition of an octane booster is required Diethyl carbonate(DEC) is such an octane booster The addition of 5 wt ofdiethyl carbonate (DEC) into diesel fuel can decrease theemissions by up to 50 due to its higher oxygen content of406 wt6 DEC is a nontoxic chemical that is degradable andable to be decomposed gradually into CO2 and ethanol whichare environmentally friendly78 Although methyl tert-butylether (MTBE) has been successfully applied in gasoline blendsas it is nonbiodegradable it has contributed to groundwater

contamination9 Thus DEC is a potential candidate to replaceMTBETo design the blend of gasoline + 2-butanoltert-butanol +

DEC the vapor pressure data of the binary system of 2-butanoltert-butanol + DEC are required Studies on the vaporpressure of mixtures including diethyl carbonate have beenconducted by many researchers Rodriguez et al10 examinedthe vapor pressure for the binary systems of diethyl carbonatewith five alcohols (methanol ethanol 1-propanol 1-butanoland 1-pentanol) at a pressure of 1013 kPa and temperatures of35173minus39602 K Octavian et al1 measured the vaporpressure of the ethanol + isooctane and 1-butanol + isooctanesystems using a new ebulliometer Ho et al11 examined thevapor pressure of binary mixtures containing diethyl carbonatephenyl acetate diphenyl carbonate or ethyl acetate at 3732minus4532 K Jeremy et al12 conducted experiments on the vaporliquid equilibrium of a binary mixture of 2-propanone + 2-butanol at 33315 and 35315 K and 2-propanone + propanoicacid at 33315 35315 and 37315 K Anugraha et al13

measured the vapor pressure of binary mixtures of diethylcarbonate + isooctanen-heptanetoluene To our knowledge

Received November 14 2019Accepted March 30 2020Published April 3 2020

Articlepubsacsorgjced

copy 2020 American Chemical Society2441

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

Dow

nloa

ded

via

UPP

SAL

A U

NIV

on

June

21

202

0 at

00

502

1 (U

TC

)Se

e ht

tps

pub

sac

sor

gsh

arin

ggui

delin

es f

or o

ptio

ns o

n ho

w to

legi

timat

ely

shar

e pu

blis

hed

artic

les

vaporminusliquid equilibrium (VLE) data of 2-butanoltert-butanol+ DEC at low temperatures are unavailable in the availableliterature Therefore the aim of this study is to determine theisothermal VLE of 2-butanoltert-butanol + DEC at 30315minus32315 K In addition the experimental data were correlatedwith the Wilson14 nonrandom two-liquid (NRTL)15 anduniversal quasi-chemical (UNIQUAC)16 models

2 EXPERIMENTAL SECTION21 Materials The chemicals used in this experiment were

2-butanol tert-butanol and DEC All chemicals were usedwithout any additional purification The compound details arelisted in Table 1

22 Apparatus and Procedures The apparatus used inthis study is a simple static ebulliometer The ebulliometerused was an apparatus developed by Oktavian et al1 andrevalidated by Wibawa et al17 Wiguno et al18 and Anugrahaet al13 to ensure that the initial composition has not changedsignificantly when the equilibrium condition is achieved Thedetailed apparatus was shown in our previous publication1

The equipmentrsquos main parts are the ebulliometer cellcondenser and some auxiliaries such as a vacuum pump(VALUE VG140) for eliminating the gas impurities from theebulliometer magnetic stirrer temperature controller andindicator (AUTONICS TC4S) RTD Pt 100 thermocouplewith an accuracy of plusmn01 K pressure gauge (AUTONICSPSAN) with an accuracy of plusmn01 kPa and ambient pressuregauge (Lutron MHB 382SD)The experimental procedure was described in detail in the

previous work19 Initially each pure componentrsquos vaporpressure was measured by charging the pure component intothe equilibrium cell and vacuum conditions were created byturning on the vacuum pump The pressure at each desiredtemperature was recorded as the vapor pressure The vaporpressure data for the two binary systems ie 2-butanol + DECand tert-butanol + DEC were obtained by the followingprocedure The experiment was begun by introducing 225 mLof a mixture having a known composition into the ebulliometercell Cooling water was circulated in the condenser and thenthe magnetic stirrer was switched on to stir the solution to mixevenly After that the vacuum pressure was created in theequilibrium cell by turning on the vacuum pump The heatingsystem was then lit to heat the solution according to thedesired temperature This heating causes some of the liquid toevaporate The temperature and pressure in the system areshown by temperature indicator and pressure gaugerespectively The pressure is recorded when the temperaturereaches a constant value The apparatus was validated bycomparing the measured pure vapor pressures of 2-butanoltert-butanol and DEC with literature data calculated using theWagner and Antoine equations with parameter constantsobtained from Poling et al20 and Luo et al21 respectively

Based on this experiment the data obtained are the molefractions of component i in the liquid phase (xi) theequilibrium pressure (P) and the temperature (T) Theexperimental data are correlated with 3 activity coefficientmodels ie the Wilson NRTL and UNIQUAC equationsand the binary interaction parameter pairs of each equationwere optimized using the experimental data obtained in thiswork

3 RESULTS AND DISCUSSION31 Reliability of Apparatus The validity of the

experimental apparatus was checked by comparing theexperimental pure vapor pressures of 2-butanol tert-butanoland DEC with the literature pure vapor pressures of 2-butanoland tert-butanol calculated from the Wagner equation(equation 1) and that of DEC calculated from the Antoineequation (equation 2) The parameter constants of the Wagnerand Antoine equations are listed in Tables 2 and 3respectively

Pa b c d

Tln (kPa)

15 25 5

r

τ τ τ τ= + + +(1)

P AB

T Clog (kPa)

(K)10 = minus+ (2)

where τ = 1 minus Tr and Tr = TTc

A comparison between the experimental data and literaturedata obtained from the Wagner or Antoine equations arepresented in Table 4 and the average absolute deviation

Table 1 Pure Chemicals Description and Properties

component supplier CAS reg noMWa

(gmol) purityb

2-butanol Merck Germany 78minus92minus2 7412 09900tert-butanol Merck Germany 75minus65minus0 7412 09950diethylcarbonate

Wuhan FortunaChemical Co China

105minus58minus8 11813 09992

aMW = molecular weight bPurity from supplier in mass fraction

Table 2 Wagner Parameter of 2-Butanol and tert-Butanol20

component a b c d

2-butanol minus80982 164406 minus749 minus52735tert-butanol minus84792 247845 minus9279 minus25399

Table 3 Antoine Parameter of DEC21

component A B C

DEC 5883 122377 minus84304

Table 4 Vapor Pressures of 2-Butanol tert-Butanol andDECa

2-butanol tert-butanol DEC

TK Pexp Plit Pexp Plit Pexp Plit

(kPa)30315 322 320 764 766 196 19530565 374 376 884 892 227 22630815 443 441 1032 1034 257 26131065 513 516 1182 1196 296 29931315 604 600 1371 1378 346 34331565 705 697 1571 1583 396 39231815 804 806 1803 1813 445 44632065 934 930 2055 2071 504 50732315 1081 1069 2356 2359 582 575AAD 06 06 08

aThe standard uncertainty of measurements are u(T) = 01 K andu(P) = 03 kPa where u(T) is the uncertainty in temperature andu(P) is the uncertainty in pressure

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2442

(AAD) between the experimental data and calculated vaporpressures were obtained by the following equation

n

P P

PAAD

1100

i

n

1

exp lit

litsum=

minustimes

= (3)

where Pexp is the vapor pressure obtained from the experimentPlit is the literature value and n is the number of data points Aspresented in Table 4 good agreement was shown by all purecomponents with a 06 AAD for 2-butanol 06 AAD fortert-butanol and 08 AAD for DEC The result indicates thatthe ebulliometer used in this experiment is reliable32 Vapor Pressure Data Measurement and Correla-

tion The vapor pressure data obtained in this work for the 2-butanol (1) + DEC (2) and tert-butanol (1) + DEC (2)systems are presented in Tables 5 and 6 respectively The

experimental equilibrium temperatures were set in the range of30315minus32315 K to accommodate common fuel storageconditions in tropical countries This is done in the absence of

changes in the pressure temperature and composition of thesystemIn vaporminusliquid equilibrium conditions the liquid-compo-

nent fugacity is equal to the vapor-component fugacity Due tolow vapor pressure of the mixture the ideal gas law is appliedConsidering the differences between the alcohol and DECmolecules the liquid becomes a nonideal mixture Thereforean activity coefficient of component i γi is used as a nonidealfactor for the liquid phase in solution Accordingly thecalculation of the vapor pressure of the mixture is based on thefollowing equation

P x Pi

m

i i1

isatsum γ=

= (4)

where m is the number of components in the mixture P is thevapor pressure in the equilibrium condition xi is thecomponent i mole fraction in the liquid phase γi is the activitycoefficient of component i and Pi

sat is the vapor pressure ofcomponent i Data correlation is carried out by using theWilson NRTL and UNIQUAC equations The binaryinteraction parameters are determined using Barkerrsquos method22

by minimizing the following objective function (OF)

OF (P P )i

n

i i1

cal exp2sum= minus

= (5)

where n is the number of data points and the subscripts cal andexp indicate the calculated and experimental valuesrespectively The values of the AAD are presented in Table 7

The experimental data were well-correlated with the WilsonNRTL and UNIQUAC activity coefficient models givingaverage absolute deviations in the range of 18minus19 Thecorrelation results were plotted in Figure 1 and Figure 2Figure 1 shows that the increasing temperature causes a rise

in the vapor pressure of the 2-butanol + DEC mixture Atconstant temperature increasing the content of 2-butanol (x1)leads to an increase of equilibrium pressure of the mixture tothe peak point and then a decrease in the 2-butanol vaporpressureFigure 2 shows that the increasing temperature causes a rise

in the vapor pressure of the mixture In addition at constanttemperature the vapor pressure of the mixture increases withthe increasing content of tert-butanol (x1) Therefore thepressure of the mixture is between the pure vapor pressures ofeach component

Table 5 Experimental VLE data for 2-Butanol (1) + DEC(2)a

PexpkPa

x1 30315 K 30815 K 31315 K 31815 K 32315 K

0 196 257 346 445 58201 272 373 474 616 78902 293 402 542 701 86203 298 428 578 749 94104 317 431 561 742 96105 323 452 593 792 99306 34 449 588 775 102207 305 444 601 8 106708 341 461 603 796 105609 327 467 626 807 10761 322 443 604 804 1081

aThe standard uncertainty of measurements are u(xi) = 00002 u(T)= 01 K and u(P) = 03 kPa where u(xi) is the uncertainty ofcomponent i of the liquid phase mole fractions u(T) is theuncertainty in temperature and u(P) is the uncertainty in pressure

Table 6 Experimental VLE Data for tert-Butanol (1) + DEC(2)a

PexpkPa

x1 30315 K 30815 K 31315 K 31815 K 32315 K

0 196 257 346 445 58201 362 461 571 76 99702 437 567 751 1005 127503 534 714 895 1138 145404 626 754 972 1312 166805 633 802 1055 142 179606 662 846 115 1526 195707 71 897 1202 1578 202108 74 94 1257 1635 210309 767 969 1291 1736 22061 764 1032 1371 1803 2356

aThe standard uncertainty of measurements are u(xi) = 00002 u(T)= 01 K and u(P) = 03 kPa where u(xi) is the uncertainty ofcomponent i of the liquid phase mole fractions u(T) is theuncertainty in temperature and u(P) is the uncertainty in pressure

Table 7 Parameter and AADs of Correlation Results

2-Butanol(1) + DEC(2) System

Wilson NRTL UNIQUAC

a12(Jmol)

a21(Jmol)

α(minus)

b12(Jmol)

b21(Jmol)

Δu12(Jmol)

Δu21(Jmol)

51428 minus9777 03 minus10506 49176 minus12239 25901AAD = 19 AAD = 18 AAD = 19

tert-butanol(1) + DEC(2) system

Wilson NRTL UNIQUAC

a12(Jmol)

a21(Jmol)

α(minus)

b12(Jmol)

b21(Jmol)

Δu12(Jmol)

Δu21(Jmol)

16342 9713 03 14669 9951 1081 4603AAD = 19 AAD = 19 AAD = 19

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2443

The composition of the vapor can be obtained based on theconcept of equilibrium by using the values of the activitycoefficients obtained from the Wilson NRTL and UNIQUACequations The result of calculated of y1 is then plotted inFigures 1 and 2According to Figure 1 the correlation results for 2-butanol +

DEC showing that at the point of x1 above 06 the x1 has samevalue of y1 where it could be suspected as azeotrope pointHowever due to the differences between the maximumequilibrium pressures and the vapor pressure of pure 2-butanolare smaller than the uncertainty of pressure measurement (03kPa) the azeotrope behavior still could not be justified for thissystem The small vapor pressure differences indicate that theeffect of DEC at the point of x1 above 06 is insignificant Thevapor pressure is greatly affected by 2-butanol

4 CONCLUSIONSAn experiment was successfully conducted to obtain accuratevaporminusliquid equilibrium data for binary systems of 2-butanol

(1) + DEC (2) and tert-butanol (1) + DEC (2) at 30315minus32315 K The experimental data for the 2-butanol (1) + DEC(2) system were well-correlated using the Wilson NRTL andUNIQUAC models with AADs in the vapor pressure of 1918 and 19 respectively For the tert-butanol (1) + DEC (2)system correlation using the Wilson NRTL and UNIQUACmodels gave the same AAD of 19 The systems studied showpositive deviations from Raoultrsquos law in the temperature rangestudied

AUTHOR INFORMATION

Corresponding AuthorGede Wibawa minus Department of Chemical Engineering Facultyof Industrial Technology Sepuluh Nopember Institute ofTechnology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia orcidorg0000-0002-1255-9210 Phone +62-31-5946240 Email gwibawachem-engitsacid Fax +62-31-5999282

AuthorsAnnas Wiguno minus Department of Chemical Engineering Facultyof Industrial Technology Sepuluh Nopember Institute ofTechnology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia

Rizky Tetrisyanda minus Department of Chemical EngineeringFaculty of Industrial Technology Sepuluh Nopember Instituteof Technology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia

Complete contact information is available athttpspubsacsorg101021acsjced9b01079

NotesThe authors declare no competing financial interest

ACKNOWLEDGMENTS

The author are grateful to Kementrian Riset Teknologi danPendidikan Tinggi Sepuluh Nopember Institute of Technol-ogy (ITS) for a research grant with the PUPT research schemaunder Contract 622PKSITS2017 The authors would liketo thank Andika Dwimasputra and Naomi Hurayah Aden forexperimental work

REFERENCES(1) Oktavian R Amidelsi V Rasmito A Wibawa G VaporPressure Measurements of Ethanolminusisooctane and 1-Butanolminusisooctane Systems Using a New Ebulliometer Fuel 2013 107 47minus51(2) Hull A Kronberg B van Stam J Golubkov I Kristensson JVaporminusLiquid Equilibrium of Binary Mixtures 1 Ethanol + 1-Butanol Ethanol + Octane 1-Butanol + Octane J Chem Eng Data2006 51 1996minus2001(3) Moxey B G Cairns A Zhao H A Comparison of Butanol andEthanol Flame Development in an Optical Spark Ignition Engine Fuel2016 170 27minus38(4) Varol Y Oner C Oztop H F Altun S Comparison ofMethanol Ethanol or n-Butanol Blending with Unleaded Gasoline onExhaust Emissions of an SI Engine Energy Sources Part A 2014 36938minus948(5) Procentese A Guida T Raganati F Olivieri G Salatino PMarzocchella A Process Simulation of Biobutanol Production fromLignocellulosic Feedstocks Chem Eng Trans 2014 38 343minus348(6) Dunn B C Guenneau C Hilton S A Pahnke J Eyring EM Dworzanski J Meuzelaar H L C Hu J Z Solum M SPugmire R J Production of Diethyl Carbonate from Ethanol and

Figure 1 Diagram of Pminusx1minusy1 for 2-butanol (1) + DEC (2) system atvarious temperatures

Figure 2 Diagram of Pminusx1minusy1 for tert-butanol (1) + DEC (2) systemat various temperatures

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2444

Carbon Monoxide over a Heterogeneous Catalyst Energy Fuels 200216 177minus181(7) Pacheco M A Marshall C L Review of Dimethyl Carbonate(DMC) Manufacture and Its Characteristics as a Fuel AdditiveEnergy Fuels 1997 11 2minus29(8) M Eyring E L C Meuzelaar H Pugmire R Synthesis andTesting of Diethyl Carbonate as a Possible Diesel Fuel Additive 2000(9) Moran M Zogorski J Squillace P MTBE and GasolineHydrocarbons in Ground Water of the United States 2005 Vol 43(10) Rodriacuteguez A Canosa J Domiacutenguez A Tojo J IsobaricPhase Equilibria of Diethyl Carbonate with Five Alcohols at 1013KPa J Chem Eng Data 2003 48 86minus91(11) Ho H-Y Shu S-S Wang S-J Lee M-J Isothermal(Vapour+liquid) Equilibrium (VLE) for Binary Mixtures ContainingDiethyl Carbonate Phenyl Acetate Diphenyl Carbonate or EthylAcetate J Chem Thermodyn 2015 91 35minus42(12) Pillay J Iwarere S A Raal J D Naidoo P RamjugernathD Isothermal Vapour-Liquid Equilibrium Data for the Binary Systems2-Propanone + (2-Butanol or Propanoic Acid) Fluid Phase Equilib2017 433 119minus125(13) Anugraha R P Altway A Wibawa G Measurement andCorrelation of Isothermal Binary VaporminusLiquid Equilibrium forDiethyl Carbonate + Isooctanen-HeptaneToluene Systems JChem Eng Data 2017 62 2362minus2366(14) Wilson G M Vapor-Liquid Equilibrium XI A NewExpression for the Excess Free Energy of Mixing J Am Chem Soc1964 86 127minus130(15) Renon H Prausnitz J M Local Composition Thermody-namic Excess Functions for Liquid Mixtures AIChE J 1968 14 135minus144(16) Prausnitz J M Abrams D S Statistical Thermodynamics ofLiquid Mixtures A New Expression for the Excess Gibbs Energy ofPartly or Completely Miscible Systems AIChE J 1975 21 116minus128(17) Wibawa G Mustain A Akbarina M F Ruslim R MIsothermal VaporminusLiquid Equilibrium of Ethanol + Glycerol and 2-Propanol + Glycerol at Different Temperatures J Chem Eng Data2015 60 955minus959(18) Wiguno A Mustain A Irwansyah W F E Wibawa GIsothermal Vapor-Liquid Equilibrium of Methanol + Glycerol and 1-Propanol + Glycerol Indones J Chem 2018 16 111minus116(19) Anugraha R P Wiguno A Altway A Wibawa G VaporPressures of Diethyl Carbonate + Ethanol Binary Mixture and DiethylCarbonate + Ethanol + IsooctaneToluene Ternary Mixtures atTemperatures Range of 303 15 minus 323 15 K J Mol Liq 2018 26432minus37(20) Poling B E Prausnitz J M OrsquoConnel J P The Properties ofGases and Liquids 5th ed McGraw-Hill New York 2001(21) Luo H-P Xiao W-D Zhu K-H Isobaric VaporminusliquidEquilibria of Alkyl Carbonates with Alcohols Fluid Phase Equilib2000 175 91minus105(22) Barker J A Determination of Activity Coefficients from TotalPressure Measurements Aust J Chem 1953 6 207minus210

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2445

kebocoran sedikit pada reaktor yang menyebabkan prosedur eksperimen harus diulangi

kembali sedangkan hambatan yang dihadapi selama melakukan penelitian adalah supplay

listrik yang tidak menentu pada saat pelaksanaan eksperimen menghasilkan supplay panas pada

electrical heater yang berbeda-beda setiap waktunya sehingga suhu reaktor sangat sulit untuk

dikendalikan Selain itu pada masa pandemic ini juga ada hambatan pada waktu penelitian

yang sangat terbatas sehingga pengerjaan penelitian juga menjadi terhambat

G RENCANA TINDAK LANJUT PENELITIAN Tuliskan dan uraikan rencana tindaklanjut penelitian selanjutnya dengan melihat hasil penelitian yang telah diperoleh Jika ada target yang belum diselesaikan pada akhir tahun pelaksanaan penelitian pada bagian ini dapat dituliskan rencana penyelesaian target yang belum tercapai tersebut

Penelitian selanjutnya akan difokuskan untuk sintesis Dimethyl Carbonate dengan agen

pendehidrasi berupa butylene oxide dan jenis katalis yang berbeda dan eksperimen

kesetimbangan uap-cair antar komponennya yang ada di produk

H DAFTAR PUSTAKA Penyusunan Daftar Pustaka berdasarkan sistem nomor sesuai dengan urutan pengutipan Hanya pustaka yang disitasi pada laporan akhir yang dicantumkan dalam Daftar Pustaka

1 Hanpattanakit P Pimonsree L Jamnongchob A Boonpoke A 2018 CO2 Emission

and Reduction of Tourist Transportation at Kok Mak Island Thailand Chemical

Engineering Transactions 63 37-42

2 K Shukla and V C Srivastava ldquoRSC Advances Diethyl carbonate  critical review of

synthesis routes catalysts used and engineering aspectsrdquo RSC Adv vol 6 pp 32624ndash

32645 201

3 D Wang B Yang X Zhai L Zhou Synthesis of diethyl carbonate by catalytic alcoholysis of urea 88 (2007) 807ndash812 doi101016jfuproc200704003

4 S Xin L Wang H Li K Huang F Li Synthesis of diethyl carbonate from urea and ethanol over lanthanum oxide as a heterogeneous basic catalyst Fuel Process Technol 126 (2014) 453ndash459 doi101016jfuproc201405029

5 K Shukla VC Srivastava Diethyl carbonate synthesis by ethanolysis of urea using Ce-Zn oxide catalysts Fuel Process Technol 161 (2017) 116ndash124 doi101016jfuproc201703004

6 P Zhang S Wang S Chen Z Zhang X Ma The effects of promoters over PdCl 2 -CuCl 2 HMS catalysts for the synthesis of diethyl carbonate by oxidative carbonylation of ethanol 143 (2008) 220ndash224 doi101016jcej200804008

7 DN Briggs G Bong E Leong K Oei G Lestari AT Bell Effects of support composition and pretreatment on the activity and selectivity of carbon-supported PdCu n Cl x catalysts for the synthesis of diethyl carbonate J Catal 276 (2010) 215ndash228 doi101016jjcat201008004

8 P Zhang X Ma Catalytic synthesis of diethyl carbonate by oxidative carbonylation of ethanol over PdCl 2 Cu-HMS catalyst Chem Eng J 163 (2010) 93ndash97 doi101016jcej201007025

9 D Zhu F Mei L Chen W Mo T Li G Li An efficient catalyst Co ( salophen ) for synthesis of diethyl carbonate by oxidative carbonylation of ethanol Fuel 90 (2011) 2098ndash2102 doi101016jfuel201102023

10 P Zhang Y Zhou M Fan P Jiang Catalytic synthesis of diethyl carbonate with supported Pd ‐ Cu bimetallic nanoparticle catalysts  Cu ( I ) as the active species Chinese J Catal 36 (2015) 2036ndash2043 doi101016S1872-2067(15)60973-1

11 C Murugan HC Bajaj Synthesis of diethyl carbonate from dimethyl carbonate and ethanol using KF Al 2 O 3 as an ef fi cient solid base catalyst Fuel Process Technol 92 (2011) 77ndash82 doi101016jfuproc201008023

12 GUO Lian Z Xinqiang AN Hualiang W Yanji Catalysis by Lead Oxide for Diethyl Carbonate Synthesis from Ethyl Carbamate and Ethanol Chinese J Catal 33 (2012) 595ndash600 doi101016S1872-2067(11)60373-2

13 H An X Zhao L Guo C Jia B Yuan Y Wang Applied Catalysis A  General Synthesis of diethyl carbonate from ethyl carbamate and ethanol over ZnO-PbO catalyst Applied Catal A Gen 433ndash434 (2012) 229ndash235 doi101016japcata201205023

14 L Wang H Li S Xin F Li Generation of solid base catalyst from waste slag for the ef fi cient synthesis of diethyl carbonate from ethyl carbamate and ethanol CATCOM 50 (2014) 49ndash53 doi101016jcatcom201402028

15 L Zhao Z Hou C Liu Y Wang L Dai Original article A catalyst-free novel synthesis of diethyl carbonate from ethyl carbamate in supercritical ethanol Chinese Chem Lett 25 (2014) 1395ndash1398 doi101016jcclet201405012

16 H Iida R Kawaguchi K Okumura Production of diethyl carbonate from ethylene carbonate and ethanol over supported fl uoro-perovskite catalysts Intensity cps Catal Commun 108 (2018) 7ndash11 doi101016jcatcom201801019

17 F Gasc S Thiebaud-roux Z Mouloungui The Journal of Supercritical Fluids Methods for synthesizing diethyl carbonate from ethanol and supercritical carbon dioxide by one-pot or two-step reactions in the presence of potassium carbonate 50 (2009) 46ndash53 doi101016jsupflu200903008

18 E Leino P Maumlki-arvela K Eraumlnen M Tenho D Yu T Salmi J Mikkola Enhanced yields of diethyl carbonate via one-pot synthesis from ethanol carbon dioxide and butylene oxide over cerium ( IV ) oxide Chem Eng J 176ndash177 (2011) 124ndash133 doi101016jcej201107054

19 E Leino P Maumlki-arvela V Eta N Kumar F Demoisson A Samikannu A Leino A Shchukarev D Yu J Mikkola The influence of various synthesis methods on the catalytic activity of cerium oxide in one-pot synthesis of diethyl carbonate starting from CO 2 ethanol and butylene oxide Catal Today 210 (2013) 47ndash54 doi101016jcattod201302011

20 E Leino N Kumar P Maumlki-arvela A Aho K Kordaacutes In fl uence of the synthesis parameters on the physico-chemical and catalytic properties of cerium oxide for application in the synthesis of diethyl carbonate Mater Chem Phys 143 (2013) 65ndash75 doi101016jmatchemphys201308012

21 L Wang H Li S Xin P He Y Cao F Li X Hou Applied Catalysis A  General Highly efficient synthesis of diethyl carbonate via one-pot reaction from carbon dioxide epoxides and ethanol over KI-based binary catalyst system Applied Catal A Gen 471 (2014) 19ndash27 doi101016japcata201311031

22 E Leino N Kumar P Maumlki-arvela A Rautio J Dahl J Roine J-P Mikkola Synthesis and characterization of ceria-supported catalysts for carbon dioxide transformation to diethyl carbonate Catal Today (2017) 1ndash10 doi101016jcattod201701016

23 W Yanlou J Dongdong Z Zhen S Yongyue Synthesis of Diethyl Carbonate from Carbon Dioxide Catal MDPI (2016) doi103390catal6040052

24 L Wang M Ammar P He Y Li Y Cao F Li X Han H Li The efficient synthesis of diethyl carbonate via coupling reaction from propylene oxide CO 2 and ethanol over binary PVEImBr MgO catalyst Catal Today 281 (2017) 360ndash370 doi101016jcattod201602052

25 H Hattori HeterogeneousBasicCatalysispdf (1995)

26 Fan Bin Bo Qu Q Chen Y Wen L Cai R Zhang An improved one-pot synthesis of dimethyl carbonate from propylene oxide CO2 and methanol Journal of Chemical Research (2011) 654-656

Dokumen pendukung luaran Wajib 1

Luaran dijanjikan Publikasi Ilmiah Jurnal Internasional

Target acceptedpublished

Dicapai Published

Dokumen wajib diunggah

1 Artikel yang terbit

Dokumen sudah diunggah

1 Artikel yang terbit

Dokumen belum diunggah

- Sudah lengkap

Nama jurnal Journal of Chemical amp Engineering Data

Peran penulis corresponding author | EISSN 00219568 15205134

Nama Lembaga Pengindek scopus

URL jurnal httpspubsacsorgdoi101021acsjced9b01079

Judul artikel Vapor Pressure of 2-Butanol + Diethyl Carbonate and tert-Butanol +

Diethyl Carbonate at The Temperature 30315-32315K

Tahun 2020 | Volume 65 | Nomor 5

Halaman awal 2441 | akhir 2445

URL artikel httpspubsacsorgdoi101021acsjced9b01079

DOI httpsdoiorg101021acsjced9b01079

Vapor Pressure of 2‑Butanol + Diethyl Carbonate and tert-Butanol +Diethyl Carbonate at the Temperature of 30315minus32315 KAnnas Wiguno Rizky Tetrisyanda and Gede Wibawa

Cite This J Chem Eng Data 2020 65 2441minus2445 Read Online

ACCESS Metrics amp More Article Recommendations

ABSTRACT In this work the vapor pressure of binary mixtures of 2-butanol +diethyl carbonate and tert-butanol + diethyl carbonate was measured in thetemperature range from 30315 to 32315 K The experimental apparatus used inthis work was a simple quasi-static ebulliometer developed in our previous works Thereliability of this apparatus was verified by comparing the measured vapor pressures of2-butanveol tert-butanol and diethyl carbonate with literature data The comparisonsshowed that the vapor pressures of pure 2-butanol tert-butanol and diethyl carbonatewere in good agreement with the literature data with average absolute deviations of 0606 and 08 respectively The experimental results show that the vapor pressuresincreased with the alcohol mole fraction for all systems studied The experimental datawere well-correlated with the Wilson nonrandom two-liquid and universal quasi-chemical activity coefficient models giving an average absolute deviation of no morethan 19 The binary vaporminusliquid equilibrium data obtained in this work showed apositive deviation from Raoultrsquos law

1 INTRODUCTION

Ethanol is commonly used in gasoline blends because of itshigh octane number and oxygen number as well as itscapability to accelerate flame propagation However theaddition of ethanol to isooctane at a mole fraction of 01was found to elevate the vapor pressure12 A higher vaporpressure of gasoline mixtures causes increased emissions andthe potential for vapor lock in the engine On other handlonger-chain alcohols such as 2-butanol and tert-butanol havelower vapor pressures and higher heating values and theirproperties are closer to gasoline than to ethanol3 Butanol hasbeen used as a mixture in engines without any significantengine changes4 Butanol may be produced from renewableresources as well for example from lignocellulose the mostplentiful renewable material5 The combustion of a butanolminusgasoline mixture produces a high temperature because of itshigh heating value and low vaporization rate Therefore 2-butanoltert-butanol are expected to be able to be used asgasoline additives that are alternatives to ethanol The octanenumber of butanol is lower than that of ethanol and thus theaddition of an octane booster is required Diethyl carbonate(DEC) is such an octane booster The addition of 5 wt ofdiethyl carbonate (DEC) into diesel fuel can decrease theemissions by up to 50 due to its higher oxygen content of406 wt6 DEC is a nontoxic chemical that is degradable andable to be decomposed gradually into CO2 and ethanol whichare environmentally friendly78 Although methyl tert-butylether (MTBE) has been successfully applied in gasoline blendsas it is nonbiodegradable it has contributed to groundwater

contamination9 Thus DEC is a potential candidate to replaceMTBETo design the blend of gasoline + 2-butanoltert-butanol +

DEC the vapor pressure data of the binary system of 2-butanoltert-butanol + DEC are required Studies on the vaporpressure of mixtures including diethyl carbonate have beenconducted by many researchers Rodriguez et al10 examinedthe vapor pressure for the binary systems of diethyl carbonatewith five alcohols (methanol ethanol 1-propanol 1-butanoland 1-pentanol) at a pressure of 1013 kPa and temperatures of35173minus39602 K Octavian et al1 measured the vaporpressure of the ethanol + isooctane and 1-butanol + isooctanesystems using a new ebulliometer Ho et al11 examined thevapor pressure of binary mixtures containing diethyl carbonatephenyl acetate diphenyl carbonate or ethyl acetate at 3732minus4532 K Jeremy et al12 conducted experiments on the vaporliquid equilibrium of a binary mixture of 2-propanone + 2-butanol at 33315 and 35315 K and 2-propanone + propanoicacid at 33315 35315 and 37315 K Anugraha et al13

measured the vapor pressure of binary mixtures of diethylcarbonate + isooctanen-heptanetoluene To our knowledge

Received November 14 2019Accepted March 30 2020Published April 3 2020

Articlepubsacsorgjced

copy 2020 American Chemical Society2441

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

Dow

nloa

ded

via

UPP

SAL

A U

NIV

on

June

21

202

0 at

00

502

1 (U

TC

)Se

e ht

tps

pub

sac

sor

gsh

arin

ggui

delin

es f

or o

ptio

ns o

n ho

w to

legi

timat

ely

shar

e pu

blis

hed

artic

les

vaporminusliquid equilibrium (VLE) data of 2-butanoltert-butanol+ DEC at low temperatures are unavailable in the availableliterature Therefore the aim of this study is to determine theisothermal VLE of 2-butanoltert-butanol + DEC at 30315minus32315 K In addition the experimental data were correlatedwith the Wilson14 nonrandom two-liquid (NRTL)15 anduniversal quasi-chemical (UNIQUAC)16 models

2 EXPERIMENTAL SECTION21 Materials The chemicals used in this experiment were

2-butanol tert-butanol and DEC All chemicals were usedwithout any additional purification The compound details arelisted in Table 1

22 Apparatus and Procedures The apparatus used inthis study is a simple static ebulliometer The ebulliometerused was an apparatus developed by Oktavian et al1 andrevalidated by Wibawa et al17 Wiguno et al18 and Anugrahaet al13 to ensure that the initial composition has not changedsignificantly when the equilibrium condition is achieved Thedetailed apparatus was shown in our previous publication1

The equipmentrsquos main parts are the ebulliometer cellcondenser and some auxiliaries such as a vacuum pump(VALUE VG140) for eliminating the gas impurities from theebulliometer magnetic stirrer temperature controller andindicator (AUTONICS TC4S) RTD Pt 100 thermocouplewith an accuracy of plusmn01 K pressure gauge (AUTONICSPSAN) with an accuracy of plusmn01 kPa and ambient pressuregauge (Lutron MHB 382SD)The experimental procedure was described in detail in the

previous work19 Initially each pure componentrsquos vaporpressure was measured by charging the pure component intothe equilibrium cell and vacuum conditions were created byturning on the vacuum pump The pressure at each desiredtemperature was recorded as the vapor pressure The vaporpressure data for the two binary systems ie 2-butanol + DECand tert-butanol + DEC were obtained by the followingprocedure The experiment was begun by introducing 225 mLof a mixture having a known composition into the ebulliometercell Cooling water was circulated in the condenser and thenthe magnetic stirrer was switched on to stir the solution to mixevenly After that the vacuum pressure was created in theequilibrium cell by turning on the vacuum pump The heatingsystem was then lit to heat the solution according to thedesired temperature This heating causes some of the liquid toevaporate The temperature and pressure in the system areshown by temperature indicator and pressure gaugerespectively The pressure is recorded when the temperaturereaches a constant value The apparatus was validated bycomparing the measured pure vapor pressures of 2-butanoltert-butanol and DEC with literature data calculated using theWagner and Antoine equations with parameter constantsobtained from Poling et al20 and Luo et al21 respectively

Based on this experiment the data obtained are the molefractions of component i in the liquid phase (xi) theequilibrium pressure (P) and the temperature (T) Theexperimental data are correlated with 3 activity coefficientmodels ie the Wilson NRTL and UNIQUAC equationsand the binary interaction parameter pairs of each equationwere optimized using the experimental data obtained in thiswork

3 RESULTS AND DISCUSSION31 Reliability of Apparatus The validity of the

experimental apparatus was checked by comparing theexperimental pure vapor pressures of 2-butanol tert-butanoland DEC with the literature pure vapor pressures of 2-butanoland tert-butanol calculated from the Wagner equation(equation 1) and that of DEC calculated from the Antoineequation (equation 2) The parameter constants of the Wagnerand Antoine equations are listed in Tables 2 and 3respectively

Pa b c d

Tln (kPa)

15 25 5

r

τ τ τ τ= + + +(1)

P AB

T Clog (kPa)

(K)10 = minus+ (2)

where τ = 1 minus Tr and Tr = TTc

A comparison between the experimental data and literaturedata obtained from the Wagner or Antoine equations arepresented in Table 4 and the average absolute deviation

Table 1 Pure Chemicals Description and Properties

component supplier CAS reg noMWa

(gmol) purityb

2-butanol Merck Germany 78minus92minus2 7412 09900tert-butanol Merck Germany 75minus65minus0 7412 09950diethylcarbonate

Wuhan FortunaChemical Co China

105minus58minus8 11813 09992

aMW = molecular weight bPurity from supplier in mass fraction

Table 2 Wagner Parameter of 2-Butanol and tert-Butanol20

component a b c d

2-butanol minus80982 164406 minus749 minus52735tert-butanol minus84792 247845 minus9279 minus25399

Table 3 Antoine Parameter of DEC21

component A B C

DEC 5883 122377 minus84304

Table 4 Vapor Pressures of 2-Butanol tert-Butanol andDECa

2-butanol tert-butanol DEC

TK Pexp Plit Pexp Plit Pexp Plit

(kPa)30315 322 320 764 766 196 19530565 374 376 884 892 227 22630815 443 441 1032 1034 257 26131065 513 516 1182 1196 296 29931315 604 600 1371 1378 346 34331565 705 697 1571 1583 396 39231815 804 806 1803 1813 445 44632065 934 930 2055 2071 504 50732315 1081 1069 2356 2359 582 575AAD 06 06 08

aThe standard uncertainty of measurements are u(T) = 01 K andu(P) = 03 kPa where u(T) is the uncertainty in temperature andu(P) is the uncertainty in pressure

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2442

(AAD) between the experimental data and calculated vaporpressures were obtained by the following equation

n

P P

PAAD

1100

i

n

1

exp lit

litsum=

minustimes

= (3)

where Pexp is the vapor pressure obtained from the experimentPlit is the literature value and n is the number of data points Aspresented in Table 4 good agreement was shown by all purecomponents with a 06 AAD for 2-butanol 06 AAD fortert-butanol and 08 AAD for DEC The result indicates thatthe ebulliometer used in this experiment is reliable32 Vapor Pressure Data Measurement and Correla-

tion The vapor pressure data obtained in this work for the 2-butanol (1) + DEC (2) and tert-butanol (1) + DEC (2)systems are presented in Tables 5 and 6 respectively The

experimental equilibrium temperatures were set in the range of30315minus32315 K to accommodate common fuel storageconditions in tropical countries This is done in the absence of

changes in the pressure temperature and composition of thesystemIn vaporminusliquid equilibrium conditions the liquid-compo-

nent fugacity is equal to the vapor-component fugacity Due tolow vapor pressure of the mixture the ideal gas law is appliedConsidering the differences between the alcohol and DECmolecules the liquid becomes a nonideal mixture Thereforean activity coefficient of component i γi is used as a nonidealfactor for the liquid phase in solution Accordingly thecalculation of the vapor pressure of the mixture is based on thefollowing equation

P x Pi

m

i i1

isatsum γ=

= (4)

where m is the number of components in the mixture P is thevapor pressure in the equilibrium condition xi is thecomponent i mole fraction in the liquid phase γi is the activitycoefficient of component i and Pi

sat is the vapor pressure ofcomponent i Data correlation is carried out by using theWilson NRTL and UNIQUAC equations The binaryinteraction parameters are determined using Barkerrsquos method22

by minimizing the following objective function (OF)

OF (P P )i

n

i i1

cal exp2sum= minus

= (5)

where n is the number of data points and the subscripts cal andexp indicate the calculated and experimental valuesrespectively The values of the AAD are presented in Table 7

The experimental data were well-correlated with the WilsonNRTL and UNIQUAC activity coefficient models givingaverage absolute deviations in the range of 18minus19 Thecorrelation results were plotted in Figure 1 and Figure 2Figure 1 shows that the increasing temperature causes a rise

in the vapor pressure of the 2-butanol + DEC mixture Atconstant temperature increasing the content of 2-butanol (x1)leads to an increase of equilibrium pressure of the mixture tothe peak point and then a decrease in the 2-butanol vaporpressureFigure 2 shows that the increasing temperature causes a rise

in the vapor pressure of the mixture In addition at constanttemperature the vapor pressure of the mixture increases withthe increasing content of tert-butanol (x1) Therefore thepressure of the mixture is between the pure vapor pressures ofeach component

Table 5 Experimental VLE data for 2-Butanol (1) + DEC(2)a

PexpkPa

x1 30315 K 30815 K 31315 K 31815 K 32315 K

0 196 257 346 445 58201 272 373 474 616 78902 293 402 542 701 86203 298 428 578 749 94104 317 431 561 742 96105 323 452 593 792 99306 34 449 588 775 102207 305 444 601 8 106708 341 461 603 796 105609 327 467 626 807 10761 322 443 604 804 1081

aThe standard uncertainty of measurements are u(xi) = 00002 u(T)= 01 K and u(P) = 03 kPa where u(xi) is the uncertainty ofcomponent i of the liquid phase mole fractions u(T) is theuncertainty in temperature and u(P) is the uncertainty in pressure

Table 6 Experimental VLE Data for tert-Butanol (1) + DEC(2)a

PexpkPa

x1 30315 K 30815 K 31315 K 31815 K 32315 K

0 196 257 346 445 58201 362 461 571 76 99702 437 567 751 1005 127503 534 714 895 1138 145404 626 754 972 1312 166805 633 802 1055 142 179606 662 846 115 1526 195707 71 897 1202 1578 202108 74 94 1257 1635 210309 767 969 1291 1736 22061 764 1032 1371 1803 2356

aThe standard uncertainty of measurements are u(xi) = 00002 u(T)= 01 K and u(P) = 03 kPa where u(xi) is the uncertainty ofcomponent i of the liquid phase mole fractions u(T) is theuncertainty in temperature and u(P) is the uncertainty in pressure

Table 7 Parameter and AADs of Correlation Results

2-Butanol(1) + DEC(2) System

Wilson NRTL UNIQUAC

a12(Jmol)

a21(Jmol)

α(minus)

b12(Jmol)

b21(Jmol)

Δu12(Jmol)

Δu21(Jmol)

51428 minus9777 03 minus10506 49176 minus12239 25901AAD = 19 AAD = 18 AAD = 19

tert-butanol(1) + DEC(2) system

Wilson NRTL UNIQUAC

a12(Jmol)

a21(Jmol)

α(minus)

b12(Jmol)

b21(Jmol)

Δu12(Jmol)

Δu21(Jmol)

16342 9713 03 14669 9951 1081 4603AAD = 19 AAD = 19 AAD = 19

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2443

The composition of the vapor can be obtained based on theconcept of equilibrium by using the values of the activitycoefficients obtained from the Wilson NRTL and UNIQUACequations The result of calculated of y1 is then plotted inFigures 1 and 2According to Figure 1 the correlation results for 2-butanol +

DEC showing that at the point of x1 above 06 the x1 has samevalue of y1 where it could be suspected as azeotrope pointHowever due to the differences between the maximumequilibrium pressures and the vapor pressure of pure 2-butanolare smaller than the uncertainty of pressure measurement (03kPa) the azeotrope behavior still could not be justified for thissystem The small vapor pressure differences indicate that theeffect of DEC at the point of x1 above 06 is insignificant Thevapor pressure is greatly affected by 2-butanol

4 CONCLUSIONSAn experiment was successfully conducted to obtain accuratevaporminusliquid equilibrium data for binary systems of 2-butanol

(1) + DEC (2) and tert-butanol (1) + DEC (2) at 30315minus32315 K The experimental data for the 2-butanol (1) + DEC(2) system were well-correlated using the Wilson NRTL andUNIQUAC models with AADs in the vapor pressure of 1918 and 19 respectively For the tert-butanol (1) + DEC (2)system correlation using the Wilson NRTL and UNIQUACmodels gave the same AAD of 19 The systems studied showpositive deviations from Raoultrsquos law in the temperature rangestudied

AUTHOR INFORMATION

Corresponding AuthorGede Wibawa minus Department of Chemical Engineering Facultyof Industrial Technology Sepuluh Nopember Institute ofTechnology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia orcidorg0000-0002-1255-9210 Phone +62-31-5946240 Email gwibawachem-engitsacid Fax +62-31-5999282

AuthorsAnnas Wiguno minus Department of Chemical Engineering Facultyof Industrial Technology Sepuluh Nopember Institute ofTechnology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia

Rizky Tetrisyanda minus Department of Chemical EngineeringFaculty of Industrial Technology Sepuluh Nopember Instituteof Technology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia

Complete contact information is available athttpspubsacsorg101021acsjced9b01079

NotesThe authors declare no competing financial interest

ACKNOWLEDGMENTS

The author are grateful to Kementrian Riset Teknologi danPendidikan Tinggi Sepuluh Nopember Institute of Technol-ogy (ITS) for a research grant with the PUPT research schemaunder Contract 622PKSITS2017 The authors would liketo thank Andika Dwimasputra and Naomi Hurayah Aden forexperimental work

REFERENCES(1) Oktavian R Amidelsi V Rasmito A Wibawa G VaporPressure Measurements of Ethanolminusisooctane and 1-Butanolminusisooctane Systems Using a New Ebulliometer Fuel 2013 107 47minus51(2) Hull A Kronberg B van Stam J Golubkov I Kristensson JVaporminusLiquid Equilibrium of Binary Mixtures 1 Ethanol + 1-Butanol Ethanol + Octane 1-Butanol + Octane J Chem Eng Data2006 51 1996minus2001(3) Moxey B G Cairns A Zhao H A Comparison of Butanol andEthanol Flame Development in an Optical Spark Ignition Engine Fuel2016 170 27minus38(4) Varol Y Oner C Oztop H F Altun S Comparison ofMethanol Ethanol or n-Butanol Blending with Unleaded Gasoline onExhaust Emissions of an SI Engine Energy Sources Part A 2014 36938minus948(5) Procentese A Guida T Raganati F Olivieri G Salatino PMarzocchella A Process Simulation of Biobutanol Production fromLignocellulosic Feedstocks Chem Eng Trans 2014 38 343minus348(6) Dunn B C Guenneau C Hilton S A Pahnke J Eyring EM Dworzanski J Meuzelaar H L C Hu J Z Solum M SPugmire R J Production of Diethyl Carbonate from Ethanol and

Figure 1 Diagram of Pminusx1minusy1 for 2-butanol (1) + DEC (2) system atvarious temperatures

Figure 2 Diagram of Pminusx1minusy1 for tert-butanol (1) + DEC (2) systemat various temperatures

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2444

Carbon Monoxide over a Heterogeneous Catalyst Energy Fuels 200216 177minus181(7) Pacheco M A Marshall C L Review of Dimethyl Carbonate(DMC) Manufacture and Its Characteristics as a Fuel AdditiveEnergy Fuels 1997 11 2minus29(8) M Eyring E L C Meuzelaar H Pugmire R Synthesis andTesting of Diethyl Carbonate as a Possible Diesel Fuel Additive 2000(9) Moran M Zogorski J Squillace P MTBE and GasolineHydrocarbons in Ground Water of the United States 2005 Vol 43(10) Rodriacuteguez A Canosa J Domiacutenguez A Tojo J IsobaricPhase Equilibria of Diethyl Carbonate with Five Alcohols at 1013KPa J Chem Eng Data 2003 48 86minus91(11) Ho H-Y Shu S-S Wang S-J Lee M-J Isothermal(Vapour+liquid) Equilibrium (VLE) for Binary Mixtures ContainingDiethyl Carbonate Phenyl Acetate Diphenyl Carbonate or EthylAcetate J Chem Thermodyn 2015 91 35minus42(12) Pillay J Iwarere S A Raal J D Naidoo P RamjugernathD Isothermal Vapour-Liquid Equilibrium Data for the Binary Systems2-Propanone + (2-Butanol or Propanoic Acid) Fluid Phase Equilib2017 433 119minus125(13) Anugraha R P Altway A Wibawa G Measurement andCorrelation of Isothermal Binary VaporminusLiquid Equilibrium forDiethyl Carbonate + Isooctanen-HeptaneToluene Systems JChem Eng Data 2017 62 2362minus2366(14) Wilson G M Vapor-Liquid Equilibrium XI A NewExpression for the Excess Free Energy of Mixing J Am Chem Soc1964 86 127minus130(15) Renon H Prausnitz J M Local Composition Thermody-namic Excess Functions for Liquid Mixtures AIChE J 1968 14 135minus144(16) Prausnitz J M Abrams D S Statistical Thermodynamics ofLiquid Mixtures A New Expression for the Excess Gibbs Energy ofPartly or Completely Miscible Systems AIChE J 1975 21 116minus128(17) Wibawa G Mustain A Akbarina M F Ruslim R MIsothermal VaporminusLiquid Equilibrium of Ethanol + Glycerol and 2-Propanol + Glycerol at Different Temperatures J Chem Eng Data2015 60 955minus959(18) Wiguno A Mustain A Irwansyah W F E Wibawa GIsothermal Vapor-Liquid Equilibrium of Methanol + Glycerol and 1-Propanol + Glycerol Indones J Chem 2018 16 111minus116(19) Anugraha R P Wiguno A Altway A Wibawa G VaporPressures of Diethyl Carbonate + Ethanol Binary Mixture and DiethylCarbonate + Ethanol + IsooctaneToluene Ternary Mixtures atTemperatures Range of 303 15 minus 323 15 K J Mol Liq 2018 26432minus37(20) Poling B E Prausnitz J M OrsquoConnel J P The Properties ofGases and Liquids 5th ed McGraw-Hill New York 2001(21) Luo H-P Xiao W-D Zhu K-H Isobaric VaporminusliquidEquilibria of Alkyl Carbonates with Alcohols Fluid Phase Equilib2000 175 91minus105(22) Barker J A Determination of Activity Coefficients from TotalPressure Measurements Aust J Chem 1953 6 207minus210

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2445

G RENCANA TINDAK LANJUT PENELITIAN Tuliskan dan uraikan rencana tindaklanjut penelitian selanjutnya dengan melihat hasil penelitian yang telah diperoleh Jika ada target yang belum diselesaikan pada akhir tahun pelaksanaan penelitian pada bagian ini dapat dituliskan rencana penyelesaian target yang belum tercapai tersebut

Penelitian selanjutnya akan difokuskan untuk sintesis Dimethyl Carbonate dengan agen

pendehidrasi berupa butylene oxide dan jenis katalis yang berbeda dan eksperimen

kesetimbangan uap-cair antar komponennya yang ada di produk

H DAFTAR PUSTAKA Penyusunan Daftar Pustaka berdasarkan sistem nomor sesuai dengan urutan pengutipan Hanya pustaka yang disitasi pada laporan akhir yang dicantumkan dalam Daftar Pustaka

1 Hanpattanakit P Pimonsree L Jamnongchob A Boonpoke A 2018 CO2 Emission

and Reduction of Tourist Transportation at Kok Mak Island Thailand Chemical

Engineering Transactions 63 37-42

2 K Shukla and V C Srivastava ldquoRSC Advances Diethyl carbonate  critical review of

synthesis routes catalysts used and engineering aspectsrdquo RSC Adv vol 6 pp 32624ndash

32645 201

3 D Wang B Yang X Zhai L Zhou Synthesis of diethyl carbonate by catalytic alcoholysis of urea 88 (2007) 807ndash812 doi101016jfuproc200704003

4 S Xin L Wang H Li K Huang F Li Synthesis of diethyl carbonate from urea and ethanol over lanthanum oxide as a heterogeneous basic catalyst Fuel Process Technol 126 (2014) 453ndash459 doi101016jfuproc201405029

5 K Shukla VC Srivastava Diethyl carbonate synthesis by ethanolysis of urea using Ce-Zn oxide catalysts Fuel Process Technol 161 (2017) 116ndash124 doi101016jfuproc201703004

6 P Zhang S Wang S Chen Z Zhang X Ma The effects of promoters over PdCl 2 -CuCl 2 HMS catalysts for the synthesis of diethyl carbonate by oxidative carbonylation of ethanol 143 (2008) 220ndash224 doi101016jcej200804008

7 DN Briggs G Bong E Leong K Oei G Lestari AT Bell Effects of support composition and pretreatment on the activity and selectivity of carbon-supported PdCu n Cl x catalysts for the synthesis of diethyl carbonate J Catal 276 (2010) 215ndash228 doi101016jjcat201008004

8 P Zhang X Ma Catalytic synthesis of diethyl carbonate by oxidative carbonylation of ethanol over PdCl 2 Cu-HMS catalyst Chem Eng J 163 (2010) 93ndash97 doi101016jcej201007025

9 D Zhu F Mei L Chen W Mo T Li G Li An efficient catalyst Co ( salophen ) for synthesis of diethyl carbonate by oxidative carbonylation of ethanol Fuel 90 (2011) 2098ndash2102 doi101016jfuel201102023

10 P Zhang Y Zhou M Fan P Jiang Catalytic synthesis of diethyl carbonate with supported Pd ‐ Cu bimetallic nanoparticle catalysts  Cu ( I ) as the active species Chinese J Catal 36 (2015) 2036ndash2043 doi101016S1872-2067(15)60973-1

11 C Murugan HC Bajaj Synthesis of diethyl carbonate from dimethyl carbonate and ethanol using KF Al 2 O 3 as an ef fi cient solid base catalyst Fuel Process Technol 92 (2011) 77ndash82 doi101016jfuproc201008023

12 GUO Lian Z Xinqiang AN Hualiang W Yanji Catalysis by Lead Oxide for Diethyl Carbonate Synthesis from Ethyl Carbamate and Ethanol Chinese J Catal 33 (2012) 595ndash600 doi101016S1872-2067(11)60373-2

13 H An X Zhao L Guo C Jia B Yuan Y Wang Applied Catalysis A  General Synthesis of diethyl carbonate from ethyl carbamate and ethanol over ZnO-PbO catalyst Applied Catal A Gen 433ndash434 (2012) 229ndash235 doi101016japcata201205023

14 L Wang H Li S Xin F Li Generation of solid base catalyst from waste slag for the ef fi cient synthesis of diethyl carbonate from ethyl carbamate and ethanol CATCOM 50 (2014) 49ndash53 doi101016jcatcom201402028

15 L Zhao Z Hou C Liu Y Wang L Dai Original article A catalyst-free novel synthesis of diethyl carbonate from ethyl carbamate in supercritical ethanol Chinese Chem Lett 25 (2014) 1395ndash1398 doi101016jcclet201405012

16 H Iida R Kawaguchi K Okumura Production of diethyl carbonate from ethylene carbonate and ethanol over supported fl uoro-perovskite catalysts Intensity cps Catal Commun 108 (2018) 7ndash11 doi101016jcatcom201801019

17 F Gasc S Thiebaud-roux Z Mouloungui The Journal of Supercritical Fluids Methods for synthesizing diethyl carbonate from ethanol and supercritical carbon dioxide by one-pot or two-step reactions in the presence of potassium carbonate 50 (2009) 46ndash53 doi101016jsupflu200903008

18 E Leino P Maumlki-arvela K Eraumlnen M Tenho D Yu T Salmi J Mikkola Enhanced yields of diethyl carbonate via one-pot synthesis from ethanol carbon dioxide and butylene oxide over cerium ( IV ) oxide Chem Eng J 176ndash177 (2011) 124ndash133 doi101016jcej201107054

19 E Leino P Maumlki-arvela V Eta N Kumar F Demoisson A Samikannu A Leino A Shchukarev D Yu J Mikkola The influence of various synthesis methods on the catalytic activity of cerium oxide in one-pot synthesis of diethyl carbonate starting from CO 2 ethanol and butylene oxide Catal Today 210 (2013) 47ndash54 doi101016jcattod201302011

20 E Leino N Kumar P Maumlki-arvela A Aho K Kordaacutes In fl uence of the synthesis parameters on the physico-chemical and catalytic properties of cerium oxide for application in the synthesis of diethyl carbonate Mater Chem Phys 143 (2013) 65ndash75 doi101016jmatchemphys201308012

21 L Wang H Li S Xin P He Y Cao F Li X Hou Applied Catalysis A  General Highly efficient synthesis of diethyl carbonate via one-pot reaction from carbon dioxide epoxides and ethanol over KI-based binary catalyst system Applied Catal A Gen 471 (2014) 19ndash27 doi101016japcata201311031

22 E Leino N Kumar P Maumlki-arvela A Rautio J Dahl J Roine J-P Mikkola Synthesis and characterization of ceria-supported catalysts for carbon dioxide transformation to diethyl carbonate Catal Today (2017) 1ndash10 doi101016jcattod201701016

23 W Yanlou J Dongdong Z Zhen S Yongyue Synthesis of Diethyl Carbonate from Carbon Dioxide Catal MDPI (2016) doi103390catal6040052

24 L Wang M Ammar P He Y Li Y Cao F Li X Han H Li The efficient synthesis of diethyl carbonate via coupling reaction from propylene oxide CO 2 and ethanol over binary PVEImBr MgO catalyst Catal Today 281 (2017) 360ndash370 doi101016jcattod201602052

25 H Hattori HeterogeneousBasicCatalysispdf (1995)

26 Fan Bin Bo Qu Q Chen Y Wen L Cai R Zhang An improved one-pot synthesis of dimethyl carbonate from propylene oxide CO2 and methanol Journal of Chemical Research (2011) 654-656

Dokumen pendukung luaran Wajib 1

Luaran dijanjikan Publikasi Ilmiah Jurnal Internasional

Target acceptedpublished

Dicapai Published

Dokumen wajib diunggah

1 Artikel yang terbit

Dokumen sudah diunggah

1 Artikel yang terbit

Dokumen belum diunggah

- Sudah lengkap

Nama jurnal Journal of Chemical amp Engineering Data

Peran penulis corresponding author | EISSN 00219568 15205134

Nama Lembaga Pengindek scopus

URL jurnal httpspubsacsorgdoi101021acsjced9b01079

Judul artikel Vapor Pressure of 2-Butanol + Diethyl Carbonate and tert-Butanol +

Diethyl Carbonate at The Temperature 30315-32315K

Tahun 2020 | Volume 65 | Nomor 5

Halaman awal 2441 | akhir 2445

URL artikel httpspubsacsorgdoi101021acsjced9b01079

DOI httpsdoiorg101021acsjced9b01079

Vapor Pressure of 2‑Butanol + Diethyl Carbonate and tert-Butanol +Diethyl Carbonate at the Temperature of 30315minus32315 KAnnas Wiguno Rizky Tetrisyanda and Gede Wibawa

Cite This J Chem Eng Data 2020 65 2441minus2445 Read Online

ACCESS Metrics amp More Article Recommendations

ABSTRACT In this work the vapor pressure of binary mixtures of 2-butanol +diethyl carbonate and tert-butanol + diethyl carbonate was measured in thetemperature range from 30315 to 32315 K The experimental apparatus used inthis work was a simple quasi-static ebulliometer developed in our previous works Thereliability of this apparatus was verified by comparing the measured vapor pressures of2-butanveol tert-butanol and diethyl carbonate with literature data The comparisonsshowed that the vapor pressures of pure 2-butanol tert-butanol and diethyl carbonatewere in good agreement with the literature data with average absolute deviations of 0606 and 08 respectively The experimental results show that the vapor pressuresincreased with the alcohol mole fraction for all systems studied The experimental datawere well-correlated with the Wilson nonrandom two-liquid and universal quasi-chemical activity coefficient models giving an average absolute deviation of no morethan 19 The binary vaporminusliquid equilibrium data obtained in this work showed apositive deviation from Raoultrsquos law

1 INTRODUCTION

Ethanol is commonly used in gasoline blends because of itshigh octane number and oxygen number as well as itscapability to accelerate flame propagation However theaddition of ethanol to isooctane at a mole fraction of 01was found to elevate the vapor pressure12 A higher vaporpressure of gasoline mixtures causes increased emissions andthe potential for vapor lock in the engine On other handlonger-chain alcohols such as 2-butanol and tert-butanol havelower vapor pressures and higher heating values and theirproperties are closer to gasoline than to ethanol3 Butanol hasbeen used as a mixture in engines without any significantengine changes4 Butanol may be produced from renewableresources as well for example from lignocellulose the mostplentiful renewable material5 The combustion of a butanolminusgasoline mixture produces a high temperature because of itshigh heating value and low vaporization rate Therefore 2-butanoltert-butanol are expected to be able to be used asgasoline additives that are alternatives to ethanol The octanenumber of butanol is lower than that of ethanol and thus theaddition of an octane booster is required Diethyl carbonate(DEC) is such an octane booster The addition of 5 wt ofdiethyl carbonate (DEC) into diesel fuel can decrease theemissions by up to 50 due to its higher oxygen content of406 wt6 DEC is a nontoxic chemical that is degradable andable to be decomposed gradually into CO2 and ethanol whichare environmentally friendly78 Although methyl tert-butylether (MTBE) has been successfully applied in gasoline blendsas it is nonbiodegradable it has contributed to groundwater

contamination9 Thus DEC is a potential candidate to replaceMTBETo design the blend of gasoline + 2-butanoltert-butanol +

DEC the vapor pressure data of the binary system of 2-butanoltert-butanol + DEC are required Studies on the vaporpressure of mixtures including diethyl carbonate have beenconducted by many researchers Rodriguez et al10 examinedthe vapor pressure for the binary systems of diethyl carbonatewith five alcohols (methanol ethanol 1-propanol 1-butanoland 1-pentanol) at a pressure of 1013 kPa and temperatures of35173minus39602 K Octavian et al1 measured the vaporpressure of the ethanol + isooctane and 1-butanol + isooctanesystems using a new ebulliometer Ho et al11 examined thevapor pressure of binary mixtures containing diethyl carbonatephenyl acetate diphenyl carbonate or ethyl acetate at 3732minus4532 K Jeremy et al12 conducted experiments on the vaporliquid equilibrium of a binary mixture of 2-propanone + 2-butanol at 33315 and 35315 K and 2-propanone + propanoicacid at 33315 35315 and 37315 K Anugraha et al13

measured the vapor pressure of binary mixtures of diethylcarbonate + isooctanen-heptanetoluene To our knowledge

Received November 14 2019Accepted March 30 2020Published April 3 2020

Articlepubsacsorgjced

copy 2020 American Chemical Society2441

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

Dow

nloa

ded

via

UPP

SAL

A U

NIV

on

June

21

202

0 at

00

502

1 (U

TC

)Se

e ht

tps

pub

sac

sor

gsh

arin

ggui

delin

es f

or o

ptio

ns o

n ho

w to

legi

timat

ely

shar

e pu

blis

hed

artic

les

vaporminusliquid equilibrium (VLE) data of 2-butanoltert-butanol+ DEC at low temperatures are unavailable in the availableliterature Therefore the aim of this study is to determine theisothermal VLE of 2-butanoltert-butanol + DEC at 30315minus32315 K In addition the experimental data were correlatedwith the Wilson14 nonrandom two-liquid (NRTL)15 anduniversal quasi-chemical (UNIQUAC)16 models

2 EXPERIMENTAL SECTION21 Materials The chemicals used in this experiment were

2-butanol tert-butanol and DEC All chemicals were usedwithout any additional purification The compound details arelisted in Table 1

22 Apparatus and Procedures The apparatus used inthis study is a simple static ebulliometer The ebulliometerused was an apparatus developed by Oktavian et al1 andrevalidated by Wibawa et al17 Wiguno et al18 and Anugrahaet al13 to ensure that the initial composition has not changedsignificantly when the equilibrium condition is achieved Thedetailed apparatus was shown in our previous publication1

The equipmentrsquos main parts are the ebulliometer cellcondenser and some auxiliaries such as a vacuum pump(VALUE VG140) for eliminating the gas impurities from theebulliometer magnetic stirrer temperature controller andindicator (AUTONICS TC4S) RTD Pt 100 thermocouplewith an accuracy of plusmn01 K pressure gauge (AUTONICSPSAN) with an accuracy of plusmn01 kPa and ambient pressuregauge (Lutron MHB 382SD)The experimental procedure was described in detail in the

previous work19 Initially each pure componentrsquos vaporpressure was measured by charging the pure component intothe equilibrium cell and vacuum conditions were created byturning on the vacuum pump The pressure at each desiredtemperature was recorded as the vapor pressure The vaporpressure data for the two binary systems ie 2-butanol + DECand tert-butanol + DEC were obtained by the followingprocedure The experiment was begun by introducing 225 mLof a mixture having a known composition into the ebulliometercell Cooling water was circulated in the condenser and thenthe magnetic stirrer was switched on to stir the solution to mixevenly After that the vacuum pressure was created in theequilibrium cell by turning on the vacuum pump The heatingsystem was then lit to heat the solution according to thedesired temperature This heating causes some of the liquid toevaporate The temperature and pressure in the system areshown by temperature indicator and pressure gaugerespectively The pressure is recorded when the temperaturereaches a constant value The apparatus was validated bycomparing the measured pure vapor pressures of 2-butanoltert-butanol and DEC with literature data calculated using theWagner and Antoine equations with parameter constantsobtained from Poling et al20 and Luo et al21 respectively

Based on this experiment the data obtained are the molefractions of component i in the liquid phase (xi) theequilibrium pressure (P) and the temperature (T) Theexperimental data are correlated with 3 activity coefficientmodels ie the Wilson NRTL and UNIQUAC equationsand the binary interaction parameter pairs of each equationwere optimized using the experimental data obtained in thiswork

3 RESULTS AND DISCUSSION31 Reliability of Apparatus The validity of the

experimental apparatus was checked by comparing theexperimental pure vapor pressures of 2-butanol tert-butanoland DEC with the literature pure vapor pressures of 2-butanoland tert-butanol calculated from the Wagner equation(equation 1) and that of DEC calculated from the Antoineequation (equation 2) The parameter constants of the Wagnerand Antoine equations are listed in Tables 2 and 3respectively

Pa b c d

Tln (kPa)

15 25 5

r

τ τ τ τ= + + +(1)

P AB

T Clog (kPa)

(K)10 = minus+ (2)

where τ = 1 minus Tr and Tr = TTc

A comparison between the experimental data and literaturedata obtained from the Wagner or Antoine equations arepresented in Table 4 and the average absolute deviation

Table 1 Pure Chemicals Description and Properties

component supplier CAS reg noMWa

(gmol) purityb

2-butanol Merck Germany 78minus92minus2 7412 09900tert-butanol Merck Germany 75minus65minus0 7412 09950diethylcarbonate

Wuhan FortunaChemical Co China

105minus58minus8 11813 09992

aMW = molecular weight bPurity from supplier in mass fraction

Table 2 Wagner Parameter of 2-Butanol and tert-Butanol20

component a b c d

2-butanol minus80982 164406 minus749 minus52735tert-butanol minus84792 247845 minus9279 minus25399

Table 3 Antoine Parameter of DEC21

component A B C

DEC 5883 122377 minus84304

Table 4 Vapor Pressures of 2-Butanol tert-Butanol andDECa

2-butanol tert-butanol DEC

TK Pexp Plit Pexp Plit Pexp Plit

(kPa)30315 322 320 764 766 196 19530565 374 376 884 892 227 22630815 443 441 1032 1034 257 26131065 513 516 1182 1196 296 29931315 604 600 1371 1378 346 34331565 705 697 1571 1583 396 39231815 804 806 1803 1813 445 44632065 934 930 2055 2071 504 50732315 1081 1069 2356 2359 582 575AAD 06 06 08

aThe standard uncertainty of measurements are u(T) = 01 K andu(P) = 03 kPa where u(T) is the uncertainty in temperature andu(P) is the uncertainty in pressure

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2442

(AAD) between the experimental data and calculated vaporpressures were obtained by the following equation

n

P P

PAAD

1100

i

n

1

exp lit

litsum=

minustimes

= (3)

where Pexp is the vapor pressure obtained from the experimentPlit is the literature value and n is the number of data points Aspresented in Table 4 good agreement was shown by all purecomponents with a 06 AAD for 2-butanol 06 AAD fortert-butanol and 08 AAD for DEC The result indicates thatthe ebulliometer used in this experiment is reliable32 Vapor Pressure Data Measurement and Correla-

tion The vapor pressure data obtained in this work for the 2-butanol (1) + DEC (2) and tert-butanol (1) + DEC (2)systems are presented in Tables 5 and 6 respectively The

experimental equilibrium temperatures were set in the range of30315minus32315 K to accommodate common fuel storageconditions in tropical countries This is done in the absence of

changes in the pressure temperature and composition of thesystemIn vaporminusliquid equilibrium conditions the liquid-compo-

nent fugacity is equal to the vapor-component fugacity Due tolow vapor pressure of the mixture the ideal gas law is appliedConsidering the differences between the alcohol and DECmolecules the liquid becomes a nonideal mixture Thereforean activity coefficient of component i γi is used as a nonidealfactor for the liquid phase in solution Accordingly thecalculation of the vapor pressure of the mixture is based on thefollowing equation

P x Pi

m

i i1

isatsum γ=

= (4)

where m is the number of components in the mixture P is thevapor pressure in the equilibrium condition xi is thecomponent i mole fraction in the liquid phase γi is the activitycoefficient of component i and Pi

sat is the vapor pressure ofcomponent i Data correlation is carried out by using theWilson NRTL and UNIQUAC equations The binaryinteraction parameters are determined using Barkerrsquos method22

by minimizing the following objective function (OF)

OF (P P )i

n

i i1

cal exp2sum= minus

= (5)

where n is the number of data points and the subscripts cal andexp indicate the calculated and experimental valuesrespectively The values of the AAD are presented in Table 7

The experimental data were well-correlated with the WilsonNRTL and UNIQUAC activity coefficient models givingaverage absolute deviations in the range of 18minus19 Thecorrelation results were plotted in Figure 1 and Figure 2Figure 1 shows that the increasing temperature causes a rise

in the vapor pressure of the 2-butanol + DEC mixture Atconstant temperature increasing the content of 2-butanol (x1)leads to an increase of equilibrium pressure of the mixture tothe peak point and then a decrease in the 2-butanol vaporpressureFigure 2 shows that the increasing temperature causes a rise

in the vapor pressure of the mixture In addition at constanttemperature the vapor pressure of the mixture increases withthe increasing content of tert-butanol (x1) Therefore thepressure of the mixture is between the pure vapor pressures ofeach component

Table 5 Experimental VLE data for 2-Butanol (1) + DEC(2)a

PexpkPa

x1 30315 K 30815 K 31315 K 31815 K 32315 K

0 196 257 346 445 58201 272 373 474 616 78902 293 402 542 701 86203 298 428 578 749 94104 317 431 561 742 96105 323 452 593 792 99306 34 449 588 775 102207 305 444 601 8 106708 341 461 603 796 105609 327 467 626 807 10761 322 443 604 804 1081

aThe standard uncertainty of measurements are u(xi) = 00002 u(T)= 01 K and u(P) = 03 kPa where u(xi) is the uncertainty ofcomponent i of the liquid phase mole fractions u(T) is theuncertainty in temperature and u(P) is the uncertainty in pressure

Table 6 Experimental VLE Data for tert-Butanol (1) + DEC(2)a

PexpkPa

x1 30315 K 30815 K 31315 K 31815 K 32315 K

0 196 257 346 445 58201 362 461 571 76 99702 437 567 751 1005 127503 534 714 895 1138 145404 626 754 972 1312 166805 633 802 1055 142 179606 662 846 115 1526 195707 71 897 1202 1578 202108 74 94 1257 1635 210309 767 969 1291 1736 22061 764 1032 1371 1803 2356

aThe standard uncertainty of measurements are u(xi) = 00002 u(T)= 01 K and u(P) = 03 kPa where u(xi) is the uncertainty ofcomponent i of the liquid phase mole fractions u(T) is theuncertainty in temperature and u(P) is the uncertainty in pressure

Table 7 Parameter and AADs of Correlation Results

2-Butanol(1) + DEC(2) System

Wilson NRTL UNIQUAC

a12(Jmol)

a21(Jmol)

α(minus)

b12(Jmol)

b21(Jmol)

Δu12(Jmol)

Δu21(Jmol)

51428 minus9777 03 minus10506 49176 minus12239 25901AAD = 19 AAD = 18 AAD = 19

tert-butanol(1) + DEC(2) system

Wilson NRTL UNIQUAC

a12(Jmol)

a21(Jmol)

α(minus)

b12(Jmol)

b21(Jmol)

Δu12(Jmol)

Δu21(Jmol)

16342 9713 03 14669 9951 1081 4603AAD = 19 AAD = 19 AAD = 19

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2443

The composition of the vapor can be obtained based on theconcept of equilibrium by using the values of the activitycoefficients obtained from the Wilson NRTL and UNIQUACequations The result of calculated of y1 is then plotted inFigures 1 and 2According to Figure 1 the correlation results for 2-butanol +

DEC showing that at the point of x1 above 06 the x1 has samevalue of y1 where it could be suspected as azeotrope pointHowever due to the differences between the maximumequilibrium pressures and the vapor pressure of pure 2-butanolare smaller than the uncertainty of pressure measurement (03kPa) the azeotrope behavior still could not be justified for thissystem The small vapor pressure differences indicate that theeffect of DEC at the point of x1 above 06 is insignificant Thevapor pressure is greatly affected by 2-butanol

4 CONCLUSIONSAn experiment was successfully conducted to obtain accuratevaporminusliquid equilibrium data for binary systems of 2-butanol

(1) + DEC (2) and tert-butanol (1) + DEC (2) at 30315minus32315 K The experimental data for the 2-butanol (1) + DEC(2) system were well-correlated using the Wilson NRTL andUNIQUAC models with AADs in the vapor pressure of 1918 and 19 respectively For the tert-butanol (1) + DEC (2)system correlation using the Wilson NRTL and UNIQUACmodels gave the same AAD of 19 The systems studied showpositive deviations from Raoultrsquos law in the temperature rangestudied

AUTHOR INFORMATION

Corresponding AuthorGede Wibawa minus Department of Chemical Engineering Facultyof Industrial Technology Sepuluh Nopember Institute ofTechnology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia orcidorg0000-0002-1255-9210 Phone +62-31-5946240 Email gwibawachem-engitsacid Fax +62-31-5999282

AuthorsAnnas Wiguno minus Department of Chemical Engineering Facultyof Industrial Technology Sepuluh Nopember Institute ofTechnology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia

Rizky Tetrisyanda minus Department of Chemical EngineeringFaculty of Industrial Technology Sepuluh Nopember Instituteof Technology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia

Complete contact information is available athttpspubsacsorg101021acsjced9b01079

NotesThe authors declare no competing financial interest

ACKNOWLEDGMENTS

The author are grateful to Kementrian Riset Teknologi danPendidikan Tinggi Sepuluh Nopember Institute of Technol-ogy (ITS) for a research grant with the PUPT research schemaunder Contract 622PKSITS2017 The authors would liketo thank Andika Dwimasputra and Naomi Hurayah Aden forexperimental work

REFERENCES(1) Oktavian R Amidelsi V Rasmito A Wibawa G VaporPressure Measurements of Ethanolminusisooctane and 1-Butanolminusisooctane Systems Using a New Ebulliometer Fuel 2013 107 47minus51(2) Hull A Kronberg B van Stam J Golubkov I Kristensson JVaporminusLiquid Equilibrium of Binary Mixtures 1 Ethanol + 1-Butanol Ethanol + Octane 1-Butanol + Octane J Chem Eng Data2006 51 1996minus2001(3) Moxey B G Cairns A Zhao H A Comparison of Butanol andEthanol Flame Development in an Optical Spark Ignition Engine Fuel2016 170 27minus38(4) Varol Y Oner C Oztop H F Altun S Comparison ofMethanol Ethanol or n-Butanol Blending with Unleaded Gasoline onExhaust Emissions of an SI Engine Energy Sources Part A 2014 36938minus948(5) Procentese A Guida T Raganati F Olivieri G Salatino PMarzocchella A Process Simulation of Biobutanol Production fromLignocellulosic Feedstocks Chem Eng Trans 2014 38 343minus348(6) Dunn B C Guenneau C Hilton S A Pahnke J Eyring EM Dworzanski J Meuzelaar H L C Hu J Z Solum M SPugmire R J Production of Diethyl Carbonate from Ethanol and

Figure 1 Diagram of Pminusx1minusy1 for 2-butanol (1) + DEC (2) system atvarious temperatures

Figure 2 Diagram of Pminusx1minusy1 for tert-butanol (1) + DEC (2) systemat various temperatures

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2444

Carbon Monoxide over a Heterogeneous Catalyst Energy Fuels 200216 177minus181(7) Pacheco M A Marshall C L Review of Dimethyl Carbonate(DMC) Manufacture and Its Characteristics as a Fuel AdditiveEnergy Fuels 1997 11 2minus29(8) M Eyring E L C Meuzelaar H Pugmire R Synthesis andTesting of Diethyl Carbonate as a Possible Diesel Fuel Additive 2000(9) Moran M Zogorski J Squillace P MTBE and GasolineHydrocarbons in Ground Water of the United States 2005 Vol 43(10) Rodriacuteguez A Canosa J Domiacutenguez A Tojo J IsobaricPhase Equilibria of Diethyl Carbonate with Five Alcohols at 1013KPa J Chem Eng Data 2003 48 86minus91(11) Ho H-Y Shu S-S Wang S-J Lee M-J Isothermal(Vapour+liquid) Equilibrium (VLE) for Binary Mixtures ContainingDiethyl Carbonate Phenyl Acetate Diphenyl Carbonate or EthylAcetate J Chem Thermodyn 2015 91 35minus42(12) Pillay J Iwarere S A Raal J D Naidoo P RamjugernathD Isothermal Vapour-Liquid Equilibrium Data for the Binary Systems2-Propanone + (2-Butanol or Propanoic Acid) Fluid Phase Equilib2017 433 119minus125(13) Anugraha R P Altway A Wibawa G Measurement andCorrelation of Isothermal Binary VaporminusLiquid Equilibrium forDiethyl Carbonate + Isooctanen-HeptaneToluene Systems JChem Eng Data 2017 62 2362minus2366(14) Wilson G M Vapor-Liquid Equilibrium XI A NewExpression for the Excess Free Energy of Mixing J Am Chem Soc1964 86 127minus130(15) Renon H Prausnitz J M Local Composition Thermody-namic Excess Functions for Liquid Mixtures AIChE J 1968 14 135minus144(16) Prausnitz J M Abrams D S Statistical Thermodynamics ofLiquid Mixtures A New Expression for the Excess Gibbs Energy ofPartly or Completely Miscible Systems AIChE J 1975 21 116minus128(17) Wibawa G Mustain A Akbarina M F Ruslim R MIsothermal VaporminusLiquid Equilibrium of Ethanol + Glycerol and 2-Propanol + Glycerol at Different Temperatures J Chem Eng Data2015 60 955minus959(18) Wiguno A Mustain A Irwansyah W F E Wibawa GIsothermal Vapor-Liquid Equilibrium of Methanol + Glycerol and 1-Propanol + Glycerol Indones J Chem 2018 16 111minus116(19) Anugraha R P Wiguno A Altway A Wibawa G VaporPressures of Diethyl Carbonate + Ethanol Binary Mixture and DiethylCarbonate + Ethanol + IsooctaneToluene Ternary Mixtures atTemperatures Range of 303 15 minus 323 15 K J Mol Liq 2018 26432minus37(20) Poling B E Prausnitz J M OrsquoConnel J P The Properties ofGases and Liquids 5th ed McGraw-Hill New York 2001(21) Luo H-P Xiao W-D Zhu K-H Isobaric VaporminusliquidEquilibria of Alkyl Carbonates with Alcohols Fluid Phase Equilib2000 175 91minus105(22) Barker J A Determination of Activity Coefficients from TotalPressure Measurements Aust J Chem 1953 6 207minus210

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2445

15 L Zhao Z Hou C Liu Y Wang L Dai Original article A catalyst-free novel synthesis of diethyl carbonate from ethyl carbamate in supercritical ethanol Chinese Chem Lett 25 (2014) 1395ndash1398 doi101016jcclet201405012

16 H Iida R Kawaguchi K Okumura Production of diethyl carbonate from ethylene carbonate and ethanol over supported fl uoro-perovskite catalysts Intensity cps Catal Commun 108 (2018) 7ndash11 doi101016jcatcom201801019

17 F Gasc S Thiebaud-roux Z Mouloungui The Journal of Supercritical Fluids Methods for synthesizing diethyl carbonate from ethanol and supercritical carbon dioxide by one-pot or two-step reactions in the presence of potassium carbonate 50 (2009) 46ndash53 doi101016jsupflu200903008

18 E Leino P Maumlki-arvela K Eraumlnen M Tenho D Yu T Salmi J Mikkola Enhanced yields of diethyl carbonate via one-pot synthesis from ethanol carbon dioxide and butylene oxide over cerium ( IV ) oxide Chem Eng J 176ndash177 (2011) 124ndash133 doi101016jcej201107054

19 E Leino P Maumlki-arvela V Eta N Kumar F Demoisson A Samikannu A Leino A Shchukarev D Yu J Mikkola The influence of various synthesis methods on the catalytic activity of cerium oxide in one-pot synthesis of diethyl carbonate starting from CO 2 ethanol and butylene oxide Catal Today 210 (2013) 47ndash54 doi101016jcattod201302011

20 E Leino N Kumar P Maumlki-arvela A Aho K Kordaacutes In fl uence of the synthesis parameters on the physico-chemical and catalytic properties of cerium oxide for application in the synthesis of diethyl carbonate Mater Chem Phys 143 (2013) 65ndash75 doi101016jmatchemphys201308012

21 L Wang H Li S Xin P He Y Cao F Li X Hou Applied Catalysis A  General Highly efficient synthesis of diethyl carbonate via one-pot reaction from carbon dioxide epoxides and ethanol over KI-based binary catalyst system Applied Catal A Gen 471 (2014) 19ndash27 doi101016japcata201311031

22 E Leino N Kumar P Maumlki-arvela A Rautio J Dahl J Roine J-P Mikkola Synthesis and characterization of ceria-supported catalysts for carbon dioxide transformation to diethyl carbonate Catal Today (2017) 1ndash10 doi101016jcattod201701016

23 W Yanlou J Dongdong Z Zhen S Yongyue Synthesis of Diethyl Carbonate from Carbon Dioxide Catal MDPI (2016) doi103390catal6040052

24 L Wang M Ammar P He Y Li Y Cao F Li X Han H Li The efficient synthesis of diethyl carbonate via coupling reaction from propylene oxide CO 2 and ethanol over binary PVEImBr MgO catalyst Catal Today 281 (2017) 360ndash370 doi101016jcattod201602052

25 H Hattori HeterogeneousBasicCatalysispdf (1995)

26 Fan Bin Bo Qu Q Chen Y Wen L Cai R Zhang An improved one-pot synthesis of dimethyl carbonate from propylene oxide CO2 and methanol Journal of Chemical Research (2011) 654-656

Dokumen pendukung luaran Wajib 1

Luaran dijanjikan Publikasi Ilmiah Jurnal Internasional

Target acceptedpublished

Dicapai Published

Dokumen wajib diunggah

1 Artikel yang terbit

Dokumen sudah diunggah

1 Artikel yang terbit

Dokumen belum diunggah

- Sudah lengkap

Nama jurnal Journal of Chemical amp Engineering Data

Peran penulis corresponding author | EISSN 00219568 15205134

Nama Lembaga Pengindek scopus

URL jurnal httpspubsacsorgdoi101021acsjced9b01079

Judul artikel Vapor Pressure of 2-Butanol + Diethyl Carbonate and tert-Butanol +

Diethyl Carbonate at The Temperature 30315-32315K

Tahun 2020 | Volume 65 | Nomor 5

Halaman awal 2441 | akhir 2445

URL artikel httpspubsacsorgdoi101021acsjced9b01079

DOI httpsdoiorg101021acsjced9b01079

Vapor Pressure of 2‑Butanol + Diethyl Carbonate and tert-Butanol +Diethyl Carbonate at the Temperature of 30315minus32315 KAnnas Wiguno Rizky Tetrisyanda and Gede Wibawa

Cite This J Chem Eng Data 2020 65 2441minus2445 Read Online

ACCESS Metrics amp More Article Recommendations

ABSTRACT In this work the vapor pressure of binary mixtures of 2-butanol +diethyl carbonate and tert-butanol + diethyl carbonate was measured in thetemperature range from 30315 to 32315 K The experimental apparatus used inthis work was a simple quasi-static ebulliometer developed in our previous works Thereliability of this apparatus was verified by comparing the measured vapor pressures of2-butanveol tert-butanol and diethyl carbonate with literature data The comparisonsshowed that the vapor pressures of pure 2-butanol tert-butanol and diethyl carbonatewere in good agreement with the literature data with average absolute deviations of 0606 and 08 respectively The experimental results show that the vapor pressuresincreased with the alcohol mole fraction for all systems studied The experimental datawere well-correlated with the Wilson nonrandom two-liquid and universal quasi-chemical activity coefficient models giving an average absolute deviation of no morethan 19 The binary vaporminusliquid equilibrium data obtained in this work showed apositive deviation from Raoultrsquos law

1 INTRODUCTION

Ethanol is commonly used in gasoline blends because of itshigh octane number and oxygen number as well as itscapability to accelerate flame propagation However theaddition of ethanol to isooctane at a mole fraction of 01was found to elevate the vapor pressure12 A higher vaporpressure of gasoline mixtures causes increased emissions andthe potential for vapor lock in the engine On other handlonger-chain alcohols such as 2-butanol and tert-butanol havelower vapor pressures and higher heating values and theirproperties are closer to gasoline than to ethanol3 Butanol hasbeen used as a mixture in engines without any significantengine changes4 Butanol may be produced from renewableresources as well for example from lignocellulose the mostplentiful renewable material5 The combustion of a butanolminusgasoline mixture produces a high temperature because of itshigh heating value and low vaporization rate Therefore 2-butanoltert-butanol are expected to be able to be used asgasoline additives that are alternatives to ethanol The octanenumber of butanol is lower than that of ethanol and thus theaddition of an octane booster is required Diethyl carbonate(DEC) is such an octane booster The addition of 5 wt ofdiethyl carbonate (DEC) into diesel fuel can decrease theemissions by up to 50 due to its higher oxygen content of406 wt6 DEC is a nontoxic chemical that is degradable andable to be decomposed gradually into CO2 and ethanol whichare environmentally friendly78 Although methyl tert-butylether (MTBE) has been successfully applied in gasoline blendsas it is nonbiodegradable it has contributed to groundwater

contamination9 Thus DEC is a potential candidate to replaceMTBETo design the blend of gasoline + 2-butanoltert-butanol +

DEC the vapor pressure data of the binary system of 2-butanoltert-butanol + DEC are required Studies on the vaporpressure of mixtures including diethyl carbonate have beenconducted by many researchers Rodriguez et al10 examinedthe vapor pressure for the binary systems of diethyl carbonatewith five alcohols (methanol ethanol 1-propanol 1-butanoland 1-pentanol) at a pressure of 1013 kPa and temperatures of35173minus39602 K Octavian et al1 measured the vaporpressure of the ethanol + isooctane and 1-butanol + isooctanesystems using a new ebulliometer Ho et al11 examined thevapor pressure of binary mixtures containing diethyl carbonatephenyl acetate diphenyl carbonate or ethyl acetate at 3732minus4532 K Jeremy et al12 conducted experiments on the vaporliquid equilibrium of a binary mixture of 2-propanone + 2-butanol at 33315 and 35315 K and 2-propanone + propanoicacid at 33315 35315 and 37315 K Anugraha et al13

measured the vapor pressure of binary mixtures of diethylcarbonate + isooctanen-heptanetoluene To our knowledge

Received November 14 2019Accepted March 30 2020Published April 3 2020

Articlepubsacsorgjced

copy 2020 American Chemical Society2441

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

Dow

nloa

ded

via

UPP

SAL

A U

NIV

on

June

21

202

0 at

00

502

1 (U

TC

)Se

e ht

tps

pub

sac

sor

gsh

arin

ggui

delin

es f

or o

ptio

ns o

n ho

w to

legi

timat

ely

shar

e pu

blis

hed

artic

les

vaporminusliquid equilibrium (VLE) data of 2-butanoltert-butanol+ DEC at low temperatures are unavailable in the availableliterature Therefore the aim of this study is to determine theisothermal VLE of 2-butanoltert-butanol + DEC at 30315minus32315 K In addition the experimental data were correlatedwith the Wilson14 nonrandom two-liquid (NRTL)15 anduniversal quasi-chemical (UNIQUAC)16 models

2 EXPERIMENTAL SECTION21 Materials The chemicals used in this experiment were

2-butanol tert-butanol and DEC All chemicals were usedwithout any additional purification The compound details arelisted in Table 1

22 Apparatus and Procedures The apparatus used inthis study is a simple static ebulliometer The ebulliometerused was an apparatus developed by Oktavian et al1 andrevalidated by Wibawa et al17 Wiguno et al18 and Anugrahaet al13 to ensure that the initial composition has not changedsignificantly when the equilibrium condition is achieved Thedetailed apparatus was shown in our previous publication1

The equipmentrsquos main parts are the ebulliometer cellcondenser and some auxiliaries such as a vacuum pump(VALUE VG140) for eliminating the gas impurities from theebulliometer magnetic stirrer temperature controller andindicator (AUTONICS TC4S) RTD Pt 100 thermocouplewith an accuracy of plusmn01 K pressure gauge (AUTONICSPSAN) with an accuracy of plusmn01 kPa and ambient pressuregauge (Lutron MHB 382SD)The experimental procedure was described in detail in the

previous work19 Initially each pure componentrsquos vaporpressure was measured by charging the pure component intothe equilibrium cell and vacuum conditions were created byturning on the vacuum pump The pressure at each desiredtemperature was recorded as the vapor pressure The vaporpressure data for the two binary systems ie 2-butanol + DECand tert-butanol + DEC were obtained by the followingprocedure The experiment was begun by introducing 225 mLof a mixture having a known composition into the ebulliometercell Cooling water was circulated in the condenser and thenthe magnetic stirrer was switched on to stir the solution to mixevenly After that the vacuum pressure was created in theequilibrium cell by turning on the vacuum pump The heatingsystem was then lit to heat the solution according to thedesired temperature This heating causes some of the liquid toevaporate The temperature and pressure in the system areshown by temperature indicator and pressure gaugerespectively The pressure is recorded when the temperaturereaches a constant value The apparatus was validated bycomparing the measured pure vapor pressures of 2-butanoltert-butanol and DEC with literature data calculated using theWagner and Antoine equations with parameter constantsobtained from Poling et al20 and Luo et al21 respectively

Based on this experiment the data obtained are the molefractions of component i in the liquid phase (xi) theequilibrium pressure (P) and the temperature (T) Theexperimental data are correlated with 3 activity coefficientmodels ie the Wilson NRTL and UNIQUAC equationsand the binary interaction parameter pairs of each equationwere optimized using the experimental data obtained in thiswork

3 RESULTS AND DISCUSSION31 Reliability of Apparatus The validity of the

experimental apparatus was checked by comparing theexperimental pure vapor pressures of 2-butanol tert-butanoland DEC with the literature pure vapor pressures of 2-butanoland tert-butanol calculated from the Wagner equation(equation 1) and that of DEC calculated from the Antoineequation (equation 2) The parameter constants of the Wagnerand Antoine equations are listed in Tables 2 and 3respectively

Pa b c d

Tln (kPa)

15 25 5

r

τ τ τ τ= + + +(1)

P AB

T Clog (kPa)

(K)10 = minus+ (2)

where τ = 1 minus Tr and Tr = TTc

A comparison between the experimental data and literaturedata obtained from the Wagner or Antoine equations arepresented in Table 4 and the average absolute deviation

Table 1 Pure Chemicals Description and Properties

component supplier CAS reg noMWa

(gmol) purityb

2-butanol Merck Germany 78minus92minus2 7412 09900tert-butanol Merck Germany 75minus65minus0 7412 09950diethylcarbonate

Wuhan FortunaChemical Co China

105minus58minus8 11813 09992

aMW = molecular weight bPurity from supplier in mass fraction

Table 2 Wagner Parameter of 2-Butanol and tert-Butanol20

component a b c d

2-butanol minus80982 164406 minus749 minus52735tert-butanol minus84792 247845 minus9279 minus25399

Table 3 Antoine Parameter of DEC21

component A B C

DEC 5883 122377 minus84304

Table 4 Vapor Pressures of 2-Butanol tert-Butanol andDECa

2-butanol tert-butanol DEC

TK Pexp Plit Pexp Plit Pexp Plit

(kPa)30315 322 320 764 766 196 19530565 374 376 884 892 227 22630815 443 441 1032 1034 257 26131065 513 516 1182 1196 296 29931315 604 600 1371 1378 346 34331565 705 697 1571 1583 396 39231815 804 806 1803 1813 445 44632065 934 930 2055 2071 504 50732315 1081 1069 2356 2359 582 575AAD 06 06 08

aThe standard uncertainty of measurements are u(T) = 01 K andu(P) = 03 kPa where u(T) is the uncertainty in temperature andu(P) is the uncertainty in pressure

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2442

(AAD) between the experimental data and calculated vaporpressures were obtained by the following equation

n

P P

PAAD

1100

i

n

1

exp lit

litsum=

minustimes

= (3)

where Pexp is the vapor pressure obtained from the experimentPlit is the literature value and n is the number of data points Aspresented in Table 4 good agreement was shown by all purecomponents with a 06 AAD for 2-butanol 06 AAD fortert-butanol and 08 AAD for DEC The result indicates thatthe ebulliometer used in this experiment is reliable32 Vapor Pressure Data Measurement and Correla-

tion The vapor pressure data obtained in this work for the 2-butanol (1) + DEC (2) and tert-butanol (1) + DEC (2)systems are presented in Tables 5 and 6 respectively The

experimental equilibrium temperatures were set in the range of30315minus32315 K to accommodate common fuel storageconditions in tropical countries This is done in the absence of

changes in the pressure temperature and composition of thesystemIn vaporminusliquid equilibrium conditions the liquid-compo-

nent fugacity is equal to the vapor-component fugacity Due tolow vapor pressure of the mixture the ideal gas law is appliedConsidering the differences between the alcohol and DECmolecules the liquid becomes a nonideal mixture Thereforean activity coefficient of component i γi is used as a nonidealfactor for the liquid phase in solution Accordingly thecalculation of the vapor pressure of the mixture is based on thefollowing equation

P x Pi

m

i i1

isatsum γ=

= (4)

where m is the number of components in the mixture P is thevapor pressure in the equilibrium condition xi is thecomponent i mole fraction in the liquid phase γi is the activitycoefficient of component i and Pi

sat is the vapor pressure ofcomponent i Data correlation is carried out by using theWilson NRTL and UNIQUAC equations The binaryinteraction parameters are determined using Barkerrsquos method22

by minimizing the following objective function (OF)

OF (P P )i

n

i i1

cal exp2sum= minus

= (5)

where n is the number of data points and the subscripts cal andexp indicate the calculated and experimental valuesrespectively The values of the AAD are presented in Table 7

The experimental data were well-correlated with the WilsonNRTL and UNIQUAC activity coefficient models givingaverage absolute deviations in the range of 18minus19 Thecorrelation results were plotted in Figure 1 and Figure 2Figure 1 shows that the increasing temperature causes a rise

in the vapor pressure of the 2-butanol + DEC mixture Atconstant temperature increasing the content of 2-butanol (x1)leads to an increase of equilibrium pressure of the mixture tothe peak point and then a decrease in the 2-butanol vaporpressureFigure 2 shows that the increasing temperature causes a rise

in the vapor pressure of the mixture In addition at constanttemperature the vapor pressure of the mixture increases withthe increasing content of tert-butanol (x1) Therefore thepressure of the mixture is between the pure vapor pressures ofeach component

Table 5 Experimental VLE data for 2-Butanol (1) + DEC(2)a

PexpkPa

x1 30315 K 30815 K 31315 K 31815 K 32315 K

0 196 257 346 445 58201 272 373 474 616 78902 293 402 542 701 86203 298 428 578 749 94104 317 431 561 742 96105 323 452 593 792 99306 34 449 588 775 102207 305 444 601 8 106708 341 461 603 796 105609 327 467 626 807 10761 322 443 604 804 1081

aThe standard uncertainty of measurements are u(xi) = 00002 u(T)= 01 K and u(P) = 03 kPa where u(xi) is the uncertainty ofcomponent i of the liquid phase mole fractions u(T) is theuncertainty in temperature and u(P) is the uncertainty in pressure

Table 6 Experimental VLE Data for tert-Butanol (1) + DEC(2)a

PexpkPa

x1 30315 K 30815 K 31315 K 31815 K 32315 K

0 196 257 346 445 58201 362 461 571 76 99702 437 567 751 1005 127503 534 714 895 1138 145404 626 754 972 1312 166805 633 802 1055 142 179606 662 846 115 1526 195707 71 897 1202 1578 202108 74 94 1257 1635 210309 767 969 1291 1736 22061 764 1032 1371 1803 2356

aThe standard uncertainty of measurements are u(xi) = 00002 u(T)= 01 K and u(P) = 03 kPa where u(xi) is the uncertainty ofcomponent i of the liquid phase mole fractions u(T) is theuncertainty in temperature and u(P) is the uncertainty in pressure

Table 7 Parameter and AADs of Correlation Results

2-Butanol(1) + DEC(2) System

Wilson NRTL UNIQUAC

a12(Jmol)

a21(Jmol)

α(minus)

b12(Jmol)

b21(Jmol)

Δu12(Jmol)

Δu21(Jmol)

51428 minus9777 03 minus10506 49176 minus12239 25901AAD = 19 AAD = 18 AAD = 19

tert-butanol(1) + DEC(2) system

Wilson NRTL UNIQUAC

a12(Jmol)

a21(Jmol)

α(minus)

b12(Jmol)

b21(Jmol)

Δu12(Jmol)

Δu21(Jmol)

16342 9713 03 14669 9951 1081 4603AAD = 19 AAD = 19 AAD = 19

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2443

The composition of the vapor can be obtained based on theconcept of equilibrium by using the values of the activitycoefficients obtained from the Wilson NRTL and UNIQUACequations The result of calculated of y1 is then plotted inFigures 1 and 2According to Figure 1 the correlation results for 2-butanol +

DEC showing that at the point of x1 above 06 the x1 has samevalue of y1 where it could be suspected as azeotrope pointHowever due to the differences between the maximumequilibrium pressures and the vapor pressure of pure 2-butanolare smaller than the uncertainty of pressure measurement (03kPa) the azeotrope behavior still could not be justified for thissystem The small vapor pressure differences indicate that theeffect of DEC at the point of x1 above 06 is insignificant Thevapor pressure is greatly affected by 2-butanol

4 CONCLUSIONSAn experiment was successfully conducted to obtain accuratevaporminusliquid equilibrium data for binary systems of 2-butanol

(1) + DEC (2) and tert-butanol (1) + DEC (2) at 30315minus32315 K The experimental data for the 2-butanol (1) + DEC(2) system were well-correlated using the Wilson NRTL andUNIQUAC models with AADs in the vapor pressure of 1918 and 19 respectively For the tert-butanol (1) + DEC (2)system correlation using the Wilson NRTL and UNIQUACmodels gave the same AAD of 19 The systems studied showpositive deviations from Raoultrsquos law in the temperature rangestudied

AUTHOR INFORMATION

Corresponding AuthorGede Wibawa minus Department of Chemical Engineering Facultyof Industrial Technology Sepuluh Nopember Institute ofTechnology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia orcidorg0000-0002-1255-9210 Phone +62-31-5946240 Email gwibawachem-engitsacid Fax +62-31-5999282

AuthorsAnnas Wiguno minus Department of Chemical Engineering Facultyof Industrial Technology Sepuluh Nopember Institute ofTechnology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia

Rizky Tetrisyanda minus Department of Chemical EngineeringFaculty of Industrial Technology Sepuluh Nopember Instituteof Technology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia

Complete contact information is available athttpspubsacsorg101021acsjced9b01079

NotesThe authors declare no competing financial interest

ACKNOWLEDGMENTS

The author are grateful to Kementrian Riset Teknologi danPendidikan Tinggi Sepuluh Nopember Institute of Technol-ogy (ITS) for a research grant with the PUPT research schemaunder Contract 622PKSITS2017 The authors would liketo thank Andika Dwimasputra and Naomi Hurayah Aden forexperimental work

REFERENCES(1) Oktavian R Amidelsi V Rasmito A Wibawa G VaporPressure Measurements of Ethanolminusisooctane and 1-Butanolminusisooctane Systems Using a New Ebulliometer Fuel 2013 107 47minus51(2) Hull A Kronberg B van Stam J Golubkov I Kristensson JVaporminusLiquid Equilibrium of Binary Mixtures 1 Ethanol + 1-Butanol Ethanol + Octane 1-Butanol + Octane J Chem Eng Data2006 51 1996minus2001(3) Moxey B G Cairns A Zhao H A Comparison of Butanol andEthanol Flame Development in an Optical Spark Ignition Engine Fuel2016 170 27minus38(4) Varol Y Oner C Oztop H F Altun S Comparison ofMethanol Ethanol or n-Butanol Blending with Unleaded Gasoline onExhaust Emissions of an SI Engine Energy Sources Part A 2014 36938minus948(5) Procentese A Guida T Raganati F Olivieri G Salatino PMarzocchella A Process Simulation of Biobutanol Production fromLignocellulosic Feedstocks Chem Eng Trans 2014 38 343minus348(6) Dunn B C Guenneau C Hilton S A Pahnke J Eyring EM Dworzanski J Meuzelaar H L C Hu J Z Solum M SPugmire R J Production of Diethyl Carbonate from Ethanol and

Figure 1 Diagram of Pminusx1minusy1 for 2-butanol (1) + DEC (2) system atvarious temperatures

Figure 2 Diagram of Pminusx1minusy1 for tert-butanol (1) + DEC (2) systemat various temperatures

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2444

Carbon Monoxide over a Heterogeneous Catalyst Energy Fuels 200216 177minus181(7) Pacheco M A Marshall C L Review of Dimethyl Carbonate(DMC) Manufacture and Its Characteristics as a Fuel AdditiveEnergy Fuels 1997 11 2minus29(8) M Eyring E L C Meuzelaar H Pugmire R Synthesis andTesting of Diethyl Carbonate as a Possible Diesel Fuel Additive 2000(9) Moran M Zogorski J Squillace P MTBE and GasolineHydrocarbons in Ground Water of the United States 2005 Vol 43(10) Rodriacuteguez A Canosa J Domiacutenguez A Tojo J IsobaricPhase Equilibria of Diethyl Carbonate with Five Alcohols at 1013KPa J Chem Eng Data 2003 48 86minus91(11) Ho H-Y Shu S-S Wang S-J Lee M-J Isothermal(Vapour+liquid) Equilibrium (VLE) for Binary Mixtures ContainingDiethyl Carbonate Phenyl Acetate Diphenyl Carbonate or EthylAcetate J Chem Thermodyn 2015 91 35minus42(12) Pillay J Iwarere S A Raal J D Naidoo P RamjugernathD Isothermal Vapour-Liquid Equilibrium Data for the Binary Systems2-Propanone + (2-Butanol or Propanoic Acid) Fluid Phase Equilib2017 433 119minus125(13) Anugraha R P Altway A Wibawa G Measurement andCorrelation of Isothermal Binary VaporminusLiquid Equilibrium forDiethyl Carbonate + Isooctanen-HeptaneToluene Systems JChem Eng Data 2017 62 2362minus2366(14) Wilson G M Vapor-Liquid Equilibrium XI A NewExpression for the Excess Free Energy of Mixing J Am Chem Soc1964 86 127minus130(15) Renon H Prausnitz J M Local Composition Thermody-namic Excess Functions for Liquid Mixtures AIChE J 1968 14 135minus144(16) Prausnitz J M Abrams D S Statistical Thermodynamics ofLiquid Mixtures A New Expression for the Excess Gibbs Energy ofPartly or Completely Miscible Systems AIChE J 1975 21 116minus128(17) Wibawa G Mustain A Akbarina M F Ruslim R MIsothermal VaporminusLiquid Equilibrium of Ethanol + Glycerol and 2-Propanol + Glycerol at Different Temperatures J Chem Eng Data2015 60 955minus959(18) Wiguno A Mustain A Irwansyah W F E Wibawa GIsothermal Vapor-Liquid Equilibrium of Methanol + Glycerol and 1-Propanol + Glycerol Indones J Chem 2018 16 111minus116(19) Anugraha R P Wiguno A Altway A Wibawa G VaporPressures of Diethyl Carbonate + Ethanol Binary Mixture and DiethylCarbonate + Ethanol + IsooctaneToluene Ternary Mixtures atTemperatures Range of 303 15 minus 323 15 K J Mol Liq 2018 26432minus37(20) Poling B E Prausnitz J M OrsquoConnel J P The Properties ofGases and Liquids 5th ed McGraw-Hill New York 2001(21) Luo H-P Xiao W-D Zhu K-H Isobaric VaporminusliquidEquilibria of Alkyl Carbonates with Alcohols Fluid Phase Equilib2000 175 91minus105(22) Barker J A Determination of Activity Coefficients from TotalPressure Measurements Aust J Chem 1953 6 207minus210

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2445

Dokumen pendukung luaran Wajib 1

Luaran dijanjikan Publikasi Ilmiah Jurnal Internasional

Target acceptedpublished

Dicapai Published

Dokumen wajib diunggah

1 Artikel yang terbit

Dokumen sudah diunggah

1 Artikel yang terbit

Dokumen belum diunggah

- Sudah lengkap

Nama jurnal Journal of Chemical amp Engineering Data

Peran penulis corresponding author | EISSN 00219568 15205134

Nama Lembaga Pengindek scopus

URL jurnal httpspubsacsorgdoi101021acsjced9b01079

Judul artikel Vapor Pressure of 2-Butanol + Diethyl Carbonate and tert-Butanol +

Diethyl Carbonate at The Temperature 30315-32315K

Tahun 2020 | Volume 65 | Nomor 5

Halaman awal 2441 | akhir 2445

URL artikel httpspubsacsorgdoi101021acsjced9b01079

DOI httpsdoiorg101021acsjced9b01079

Vapor Pressure of 2‑Butanol + Diethyl Carbonate and tert-Butanol +Diethyl Carbonate at the Temperature of 30315minus32315 KAnnas Wiguno Rizky Tetrisyanda and Gede Wibawa

Cite This J Chem Eng Data 2020 65 2441minus2445 Read Online

ACCESS Metrics amp More Article Recommendations

ABSTRACT In this work the vapor pressure of binary mixtures of 2-butanol +diethyl carbonate and tert-butanol + diethyl carbonate was measured in thetemperature range from 30315 to 32315 K The experimental apparatus used inthis work was a simple quasi-static ebulliometer developed in our previous works Thereliability of this apparatus was verified by comparing the measured vapor pressures of2-butanveol tert-butanol and diethyl carbonate with literature data The comparisonsshowed that the vapor pressures of pure 2-butanol tert-butanol and diethyl carbonatewere in good agreement with the literature data with average absolute deviations of 0606 and 08 respectively The experimental results show that the vapor pressuresincreased with the alcohol mole fraction for all systems studied The experimental datawere well-correlated with the Wilson nonrandom two-liquid and universal quasi-chemical activity coefficient models giving an average absolute deviation of no morethan 19 The binary vaporminusliquid equilibrium data obtained in this work showed apositive deviation from Raoultrsquos law

1 INTRODUCTION

Ethanol is commonly used in gasoline blends because of itshigh octane number and oxygen number as well as itscapability to accelerate flame propagation However theaddition of ethanol to isooctane at a mole fraction of 01was found to elevate the vapor pressure12 A higher vaporpressure of gasoline mixtures causes increased emissions andthe potential for vapor lock in the engine On other handlonger-chain alcohols such as 2-butanol and tert-butanol havelower vapor pressures and higher heating values and theirproperties are closer to gasoline than to ethanol3 Butanol hasbeen used as a mixture in engines without any significantengine changes4 Butanol may be produced from renewableresources as well for example from lignocellulose the mostplentiful renewable material5 The combustion of a butanolminusgasoline mixture produces a high temperature because of itshigh heating value and low vaporization rate Therefore 2-butanoltert-butanol are expected to be able to be used asgasoline additives that are alternatives to ethanol The octanenumber of butanol is lower than that of ethanol and thus theaddition of an octane booster is required Diethyl carbonate(DEC) is such an octane booster The addition of 5 wt ofdiethyl carbonate (DEC) into diesel fuel can decrease theemissions by up to 50 due to its higher oxygen content of406 wt6 DEC is a nontoxic chemical that is degradable andable to be decomposed gradually into CO2 and ethanol whichare environmentally friendly78 Although methyl tert-butylether (MTBE) has been successfully applied in gasoline blendsas it is nonbiodegradable it has contributed to groundwater

contamination9 Thus DEC is a potential candidate to replaceMTBETo design the blend of gasoline + 2-butanoltert-butanol +

DEC the vapor pressure data of the binary system of 2-butanoltert-butanol + DEC are required Studies on the vaporpressure of mixtures including diethyl carbonate have beenconducted by many researchers Rodriguez et al10 examinedthe vapor pressure for the binary systems of diethyl carbonatewith five alcohols (methanol ethanol 1-propanol 1-butanoland 1-pentanol) at a pressure of 1013 kPa and temperatures of35173minus39602 K Octavian et al1 measured the vaporpressure of the ethanol + isooctane and 1-butanol + isooctanesystems using a new ebulliometer Ho et al11 examined thevapor pressure of binary mixtures containing diethyl carbonatephenyl acetate diphenyl carbonate or ethyl acetate at 3732minus4532 K Jeremy et al12 conducted experiments on the vaporliquid equilibrium of a binary mixture of 2-propanone + 2-butanol at 33315 and 35315 K and 2-propanone + propanoicacid at 33315 35315 and 37315 K Anugraha et al13

measured the vapor pressure of binary mixtures of diethylcarbonate + isooctanen-heptanetoluene To our knowledge

Received November 14 2019Accepted March 30 2020Published April 3 2020

Articlepubsacsorgjced

copy 2020 American Chemical Society2441

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

Dow

nloa

ded

via

UPP

SAL

A U

NIV

on

June

21

202

0 at

00

502

1 (U

TC

)Se

e ht

tps

pub

sac

sor

gsh

arin

ggui

delin

es f

or o

ptio

ns o

n ho

w to

legi

timat

ely

shar

e pu

blis

hed

artic

les

vaporminusliquid equilibrium (VLE) data of 2-butanoltert-butanol+ DEC at low temperatures are unavailable in the availableliterature Therefore the aim of this study is to determine theisothermal VLE of 2-butanoltert-butanol + DEC at 30315minus32315 K In addition the experimental data were correlatedwith the Wilson14 nonrandom two-liquid (NRTL)15 anduniversal quasi-chemical (UNIQUAC)16 models

2 EXPERIMENTAL SECTION21 Materials The chemicals used in this experiment were

2-butanol tert-butanol and DEC All chemicals were usedwithout any additional purification The compound details arelisted in Table 1

22 Apparatus and Procedures The apparatus used inthis study is a simple static ebulliometer The ebulliometerused was an apparatus developed by Oktavian et al1 andrevalidated by Wibawa et al17 Wiguno et al18 and Anugrahaet al13 to ensure that the initial composition has not changedsignificantly when the equilibrium condition is achieved Thedetailed apparatus was shown in our previous publication1

The equipmentrsquos main parts are the ebulliometer cellcondenser and some auxiliaries such as a vacuum pump(VALUE VG140) for eliminating the gas impurities from theebulliometer magnetic stirrer temperature controller andindicator (AUTONICS TC4S) RTD Pt 100 thermocouplewith an accuracy of plusmn01 K pressure gauge (AUTONICSPSAN) with an accuracy of plusmn01 kPa and ambient pressuregauge (Lutron MHB 382SD)The experimental procedure was described in detail in the

previous work19 Initially each pure componentrsquos vaporpressure was measured by charging the pure component intothe equilibrium cell and vacuum conditions were created byturning on the vacuum pump The pressure at each desiredtemperature was recorded as the vapor pressure The vaporpressure data for the two binary systems ie 2-butanol + DECand tert-butanol + DEC were obtained by the followingprocedure The experiment was begun by introducing 225 mLof a mixture having a known composition into the ebulliometercell Cooling water was circulated in the condenser and thenthe magnetic stirrer was switched on to stir the solution to mixevenly After that the vacuum pressure was created in theequilibrium cell by turning on the vacuum pump The heatingsystem was then lit to heat the solution according to thedesired temperature This heating causes some of the liquid toevaporate The temperature and pressure in the system areshown by temperature indicator and pressure gaugerespectively The pressure is recorded when the temperaturereaches a constant value The apparatus was validated bycomparing the measured pure vapor pressures of 2-butanoltert-butanol and DEC with literature data calculated using theWagner and Antoine equations with parameter constantsobtained from Poling et al20 and Luo et al21 respectively

Based on this experiment the data obtained are the molefractions of component i in the liquid phase (xi) theequilibrium pressure (P) and the temperature (T) Theexperimental data are correlated with 3 activity coefficientmodels ie the Wilson NRTL and UNIQUAC equationsand the binary interaction parameter pairs of each equationwere optimized using the experimental data obtained in thiswork

3 RESULTS AND DISCUSSION31 Reliability of Apparatus The validity of the

experimental apparatus was checked by comparing theexperimental pure vapor pressures of 2-butanol tert-butanoland DEC with the literature pure vapor pressures of 2-butanoland tert-butanol calculated from the Wagner equation(equation 1) and that of DEC calculated from the Antoineequation (equation 2) The parameter constants of the Wagnerand Antoine equations are listed in Tables 2 and 3respectively

Pa b c d

Tln (kPa)

15 25 5

r

τ τ τ τ= + + +(1)

P AB

T Clog (kPa)

(K)10 = minus+ (2)

where τ = 1 minus Tr and Tr = TTc

A comparison between the experimental data and literaturedata obtained from the Wagner or Antoine equations arepresented in Table 4 and the average absolute deviation

Table 1 Pure Chemicals Description and Properties

component supplier CAS reg noMWa

(gmol) purityb

2-butanol Merck Germany 78minus92minus2 7412 09900tert-butanol Merck Germany 75minus65minus0 7412 09950diethylcarbonate

Wuhan FortunaChemical Co China

105minus58minus8 11813 09992

aMW = molecular weight bPurity from supplier in mass fraction

Table 2 Wagner Parameter of 2-Butanol and tert-Butanol20

component a b c d

2-butanol minus80982 164406 minus749 minus52735tert-butanol minus84792 247845 minus9279 minus25399

Table 3 Antoine Parameter of DEC21

component A B C

DEC 5883 122377 minus84304

Table 4 Vapor Pressures of 2-Butanol tert-Butanol andDECa

2-butanol tert-butanol DEC

TK Pexp Plit Pexp Plit Pexp Plit

(kPa)30315 322 320 764 766 196 19530565 374 376 884 892 227 22630815 443 441 1032 1034 257 26131065 513 516 1182 1196 296 29931315 604 600 1371 1378 346 34331565 705 697 1571 1583 396 39231815 804 806 1803 1813 445 44632065 934 930 2055 2071 504 50732315 1081 1069 2356 2359 582 575AAD 06 06 08

aThe standard uncertainty of measurements are u(T) = 01 K andu(P) = 03 kPa where u(T) is the uncertainty in temperature andu(P) is the uncertainty in pressure

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2442

(AAD) between the experimental data and calculated vaporpressures were obtained by the following equation

n

P P

PAAD

1100

i

n

1

exp lit

litsum=

minustimes

= (3)

where Pexp is the vapor pressure obtained from the experimentPlit is the literature value and n is the number of data points Aspresented in Table 4 good agreement was shown by all purecomponents with a 06 AAD for 2-butanol 06 AAD fortert-butanol and 08 AAD for DEC The result indicates thatthe ebulliometer used in this experiment is reliable32 Vapor Pressure Data Measurement and Correla-

tion The vapor pressure data obtained in this work for the 2-butanol (1) + DEC (2) and tert-butanol (1) + DEC (2)systems are presented in Tables 5 and 6 respectively The

experimental equilibrium temperatures were set in the range of30315minus32315 K to accommodate common fuel storageconditions in tropical countries This is done in the absence of

changes in the pressure temperature and composition of thesystemIn vaporminusliquid equilibrium conditions the liquid-compo-

nent fugacity is equal to the vapor-component fugacity Due tolow vapor pressure of the mixture the ideal gas law is appliedConsidering the differences between the alcohol and DECmolecules the liquid becomes a nonideal mixture Thereforean activity coefficient of component i γi is used as a nonidealfactor for the liquid phase in solution Accordingly thecalculation of the vapor pressure of the mixture is based on thefollowing equation

P x Pi

m

i i1

isatsum γ=

= (4)

where m is the number of components in the mixture P is thevapor pressure in the equilibrium condition xi is thecomponent i mole fraction in the liquid phase γi is the activitycoefficient of component i and Pi

sat is the vapor pressure ofcomponent i Data correlation is carried out by using theWilson NRTL and UNIQUAC equations The binaryinteraction parameters are determined using Barkerrsquos method22

by minimizing the following objective function (OF)

OF (P P )i

n

i i1

cal exp2sum= minus

= (5)

where n is the number of data points and the subscripts cal andexp indicate the calculated and experimental valuesrespectively The values of the AAD are presented in Table 7

The experimental data were well-correlated with the WilsonNRTL and UNIQUAC activity coefficient models givingaverage absolute deviations in the range of 18minus19 Thecorrelation results were plotted in Figure 1 and Figure 2Figure 1 shows that the increasing temperature causes a rise

in the vapor pressure of the 2-butanol + DEC mixture Atconstant temperature increasing the content of 2-butanol (x1)leads to an increase of equilibrium pressure of the mixture tothe peak point and then a decrease in the 2-butanol vaporpressureFigure 2 shows that the increasing temperature causes a rise

in the vapor pressure of the mixture In addition at constanttemperature the vapor pressure of the mixture increases withthe increasing content of tert-butanol (x1) Therefore thepressure of the mixture is between the pure vapor pressures ofeach component

Table 5 Experimental VLE data for 2-Butanol (1) + DEC(2)a

PexpkPa

x1 30315 K 30815 K 31315 K 31815 K 32315 K

0 196 257 346 445 58201 272 373 474 616 78902 293 402 542 701 86203 298 428 578 749 94104 317 431 561 742 96105 323 452 593 792 99306 34 449 588 775 102207 305 444 601 8 106708 341 461 603 796 105609 327 467 626 807 10761 322 443 604 804 1081

aThe standard uncertainty of measurements are u(xi) = 00002 u(T)= 01 K and u(P) = 03 kPa where u(xi) is the uncertainty ofcomponent i of the liquid phase mole fractions u(T) is theuncertainty in temperature and u(P) is the uncertainty in pressure

Table 6 Experimental VLE Data for tert-Butanol (1) + DEC(2)a

PexpkPa

x1 30315 K 30815 K 31315 K 31815 K 32315 K

0 196 257 346 445 58201 362 461 571 76 99702 437 567 751 1005 127503 534 714 895 1138 145404 626 754 972 1312 166805 633 802 1055 142 179606 662 846 115 1526 195707 71 897 1202 1578 202108 74 94 1257 1635 210309 767 969 1291 1736 22061 764 1032 1371 1803 2356

aThe standard uncertainty of measurements are u(xi) = 00002 u(T)= 01 K and u(P) = 03 kPa where u(xi) is the uncertainty ofcomponent i of the liquid phase mole fractions u(T) is theuncertainty in temperature and u(P) is the uncertainty in pressure

Table 7 Parameter and AADs of Correlation Results

2-Butanol(1) + DEC(2) System

Wilson NRTL UNIQUAC

a12(Jmol)

a21(Jmol)

α(minus)

b12(Jmol)

b21(Jmol)

Δu12(Jmol)

Δu21(Jmol)

51428 minus9777 03 minus10506 49176 minus12239 25901AAD = 19 AAD = 18 AAD = 19

tert-butanol(1) + DEC(2) system

Wilson NRTL UNIQUAC

a12(Jmol)

a21(Jmol)

α(minus)

b12(Jmol)

b21(Jmol)

Δu12(Jmol)

Δu21(Jmol)

16342 9713 03 14669 9951 1081 4603AAD = 19 AAD = 19 AAD = 19

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2443

The composition of the vapor can be obtained based on theconcept of equilibrium by using the values of the activitycoefficients obtained from the Wilson NRTL and UNIQUACequations The result of calculated of y1 is then plotted inFigures 1 and 2According to Figure 1 the correlation results for 2-butanol +

DEC showing that at the point of x1 above 06 the x1 has samevalue of y1 where it could be suspected as azeotrope pointHowever due to the differences between the maximumequilibrium pressures and the vapor pressure of pure 2-butanolare smaller than the uncertainty of pressure measurement (03kPa) the azeotrope behavior still could not be justified for thissystem The small vapor pressure differences indicate that theeffect of DEC at the point of x1 above 06 is insignificant Thevapor pressure is greatly affected by 2-butanol

4 CONCLUSIONSAn experiment was successfully conducted to obtain accuratevaporminusliquid equilibrium data for binary systems of 2-butanol

(1) + DEC (2) and tert-butanol (1) + DEC (2) at 30315minus32315 K The experimental data for the 2-butanol (1) + DEC(2) system were well-correlated using the Wilson NRTL andUNIQUAC models with AADs in the vapor pressure of 1918 and 19 respectively For the tert-butanol (1) + DEC (2)system correlation using the Wilson NRTL and UNIQUACmodels gave the same AAD of 19 The systems studied showpositive deviations from Raoultrsquos law in the temperature rangestudied

AUTHOR INFORMATION

Corresponding AuthorGede Wibawa minus Department of Chemical Engineering Facultyof Industrial Technology Sepuluh Nopember Institute ofTechnology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia orcidorg0000-0002-1255-9210 Phone +62-31-5946240 Email gwibawachem-engitsacid Fax +62-31-5999282

AuthorsAnnas Wiguno minus Department of Chemical Engineering Facultyof Industrial Technology Sepuluh Nopember Institute ofTechnology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia

Rizky Tetrisyanda minus Department of Chemical EngineeringFaculty of Industrial Technology Sepuluh Nopember Instituteof Technology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia

Complete contact information is available athttpspubsacsorg101021acsjced9b01079

NotesThe authors declare no competing financial interest

ACKNOWLEDGMENTS

The author are grateful to Kementrian Riset Teknologi danPendidikan Tinggi Sepuluh Nopember Institute of Technol-ogy (ITS) for a research grant with the PUPT research schemaunder Contract 622PKSITS2017 The authors would liketo thank Andika Dwimasputra and Naomi Hurayah Aden forexperimental work

REFERENCES(1) Oktavian R Amidelsi V Rasmito A Wibawa G VaporPressure Measurements of Ethanolminusisooctane and 1-Butanolminusisooctane Systems Using a New Ebulliometer Fuel 2013 107 47minus51(2) Hull A Kronberg B van Stam J Golubkov I Kristensson JVaporminusLiquid Equilibrium of Binary Mixtures 1 Ethanol + 1-Butanol Ethanol + Octane 1-Butanol + Octane J Chem Eng Data2006 51 1996minus2001(3) Moxey B G Cairns A Zhao H A Comparison of Butanol andEthanol Flame Development in an Optical Spark Ignition Engine Fuel2016 170 27minus38(4) Varol Y Oner C Oztop H F Altun S Comparison ofMethanol Ethanol or n-Butanol Blending with Unleaded Gasoline onExhaust Emissions of an SI Engine Energy Sources Part A 2014 36938minus948(5) Procentese A Guida T Raganati F Olivieri G Salatino PMarzocchella A Process Simulation of Biobutanol Production fromLignocellulosic Feedstocks Chem Eng Trans 2014 38 343minus348(6) Dunn B C Guenneau C Hilton S A Pahnke J Eyring EM Dworzanski J Meuzelaar H L C Hu J Z Solum M SPugmire R J Production of Diethyl Carbonate from Ethanol and

Figure 1 Diagram of Pminusx1minusy1 for 2-butanol (1) + DEC (2) system atvarious temperatures

Figure 2 Diagram of Pminusx1minusy1 for tert-butanol (1) + DEC (2) systemat various temperatures

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2444

Carbon Monoxide over a Heterogeneous Catalyst Energy Fuels 200216 177minus181(7) Pacheco M A Marshall C L Review of Dimethyl Carbonate(DMC) Manufacture and Its Characteristics as a Fuel AdditiveEnergy Fuels 1997 11 2minus29(8) M Eyring E L C Meuzelaar H Pugmire R Synthesis andTesting of Diethyl Carbonate as a Possible Diesel Fuel Additive 2000(9) Moran M Zogorski J Squillace P MTBE and GasolineHydrocarbons in Ground Water of the United States 2005 Vol 43(10) Rodriacuteguez A Canosa J Domiacutenguez A Tojo J IsobaricPhase Equilibria of Diethyl Carbonate with Five Alcohols at 1013KPa J Chem Eng Data 2003 48 86minus91(11) Ho H-Y Shu S-S Wang S-J Lee M-J Isothermal(Vapour+liquid) Equilibrium (VLE) for Binary Mixtures ContainingDiethyl Carbonate Phenyl Acetate Diphenyl Carbonate or EthylAcetate J Chem Thermodyn 2015 91 35minus42(12) Pillay J Iwarere S A Raal J D Naidoo P RamjugernathD Isothermal Vapour-Liquid Equilibrium Data for the Binary Systems2-Propanone + (2-Butanol or Propanoic Acid) Fluid Phase Equilib2017 433 119minus125(13) Anugraha R P Altway A Wibawa G Measurement andCorrelation of Isothermal Binary VaporminusLiquid Equilibrium forDiethyl Carbonate + Isooctanen-HeptaneToluene Systems JChem Eng Data 2017 62 2362minus2366(14) Wilson G M Vapor-Liquid Equilibrium XI A NewExpression for the Excess Free Energy of Mixing J Am Chem Soc1964 86 127minus130(15) Renon H Prausnitz J M Local Composition Thermody-namic Excess Functions for Liquid Mixtures AIChE J 1968 14 135minus144(16) Prausnitz J M Abrams D S Statistical Thermodynamics ofLiquid Mixtures A New Expression for the Excess Gibbs Energy ofPartly or Completely Miscible Systems AIChE J 1975 21 116minus128(17) Wibawa G Mustain A Akbarina M F Ruslim R MIsothermal VaporminusLiquid Equilibrium of Ethanol + Glycerol and 2-Propanol + Glycerol at Different Temperatures J Chem Eng Data2015 60 955minus959(18) Wiguno A Mustain A Irwansyah W F E Wibawa GIsothermal Vapor-Liquid Equilibrium of Methanol + Glycerol and 1-Propanol + Glycerol Indones J Chem 2018 16 111minus116(19) Anugraha R P Wiguno A Altway A Wibawa G VaporPressures of Diethyl Carbonate + Ethanol Binary Mixture and DiethylCarbonate + Ethanol + IsooctaneToluene Ternary Mixtures atTemperatures Range of 303 15 minus 323 15 K J Mol Liq 2018 26432minus37(20) Poling B E Prausnitz J M OrsquoConnel J P The Properties ofGases and Liquids 5th ed McGraw-Hill New York 2001(21) Luo H-P Xiao W-D Zhu K-H Isobaric VaporminusliquidEquilibria of Alkyl Carbonates with Alcohols Fluid Phase Equilib2000 175 91minus105(22) Barker J A Determination of Activity Coefficients from TotalPressure Measurements Aust J Chem 1953 6 207minus210

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2445

Vapor Pressure of 2‑Butanol + Diethyl Carbonate and tert-Butanol +Diethyl Carbonate at the Temperature of 30315minus32315 KAnnas Wiguno Rizky Tetrisyanda and Gede Wibawa

Cite This J Chem Eng Data 2020 65 2441minus2445 Read Online

ACCESS Metrics amp More Article Recommendations

ABSTRACT In this work the vapor pressure of binary mixtures of 2-butanol +diethyl carbonate and tert-butanol + diethyl carbonate was measured in thetemperature range from 30315 to 32315 K The experimental apparatus used inthis work was a simple quasi-static ebulliometer developed in our previous works Thereliability of this apparatus was verified by comparing the measured vapor pressures of2-butanveol tert-butanol and diethyl carbonate with literature data The comparisonsshowed that the vapor pressures of pure 2-butanol tert-butanol and diethyl carbonatewere in good agreement with the literature data with average absolute deviations of 0606 and 08 respectively The experimental results show that the vapor pressuresincreased with the alcohol mole fraction for all systems studied The experimental datawere well-correlated with the Wilson nonrandom two-liquid and universal quasi-chemical activity coefficient models giving an average absolute deviation of no morethan 19 The binary vaporminusliquid equilibrium data obtained in this work showed apositive deviation from Raoultrsquos law

1 INTRODUCTION

Ethanol is commonly used in gasoline blends because of itshigh octane number and oxygen number as well as itscapability to accelerate flame propagation However theaddition of ethanol to isooctane at a mole fraction of 01was found to elevate the vapor pressure12 A higher vaporpressure of gasoline mixtures causes increased emissions andthe potential for vapor lock in the engine On other handlonger-chain alcohols such as 2-butanol and tert-butanol havelower vapor pressures and higher heating values and theirproperties are closer to gasoline than to ethanol3 Butanol hasbeen used as a mixture in engines without any significantengine changes4 Butanol may be produced from renewableresources as well for example from lignocellulose the mostplentiful renewable material5 The combustion of a butanolminusgasoline mixture produces a high temperature because of itshigh heating value and low vaporization rate Therefore 2-butanoltert-butanol are expected to be able to be used asgasoline additives that are alternatives to ethanol The octanenumber of butanol is lower than that of ethanol and thus theaddition of an octane booster is required Diethyl carbonate(DEC) is such an octane booster The addition of 5 wt ofdiethyl carbonate (DEC) into diesel fuel can decrease theemissions by up to 50 due to its higher oxygen content of406 wt6 DEC is a nontoxic chemical that is degradable andable to be decomposed gradually into CO2 and ethanol whichare environmentally friendly78 Although methyl tert-butylether (MTBE) has been successfully applied in gasoline blendsas it is nonbiodegradable it has contributed to groundwater

contamination9 Thus DEC is a potential candidate to replaceMTBETo design the blend of gasoline + 2-butanoltert-butanol +

DEC the vapor pressure data of the binary system of 2-butanoltert-butanol + DEC are required Studies on the vaporpressure of mixtures including diethyl carbonate have beenconducted by many researchers Rodriguez et al10 examinedthe vapor pressure for the binary systems of diethyl carbonatewith five alcohols (methanol ethanol 1-propanol 1-butanoland 1-pentanol) at a pressure of 1013 kPa and temperatures of35173minus39602 K Octavian et al1 measured the vaporpressure of the ethanol + isooctane and 1-butanol + isooctanesystems using a new ebulliometer Ho et al11 examined thevapor pressure of binary mixtures containing diethyl carbonatephenyl acetate diphenyl carbonate or ethyl acetate at 3732minus4532 K Jeremy et al12 conducted experiments on the vaporliquid equilibrium of a binary mixture of 2-propanone + 2-butanol at 33315 and 35315 K and 2-propanone + propanoicacid at 33315 35315 and 37315 K Anugraha et al13

measured the vapor pressure of binary mixtures of diethylcarbonate + isooctanen-heptanetoluene To our knowledge

Received November 14 2019Accepted March 30 2020Published April 3 2020

Articlepubsacsorgjced

copy 2020 American Chemical Society2441

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

Dow

nloa

ded

via

UPP

SAL

A U

NIV

on

June

21

202

0 at

00

502

1 (U

TC

)Se

e ht

tps

pub

sac

sor

gsh

arin

ggui

delin

es f

or o

ptio

ns o

n ho

w to

legi

timat

ely

shar

e pu

blis

hed

artic

les

vaporminusliquid equilibrium (VLE) data of 2-butanoltert-butanol+ DEC at low temperatures are unavailable in the availableliterature Therefore the aim of this study is to determine theisothermal VLE of 2-butanoltert-butanol + DEC at 30315minus32315 K In addition the experimental data were correlatedwith the Wilson14 nonrandom two-liquid (NRTL)15 anduniversal quasi-chemical (UNIQUAC)16 models

2 EXPERIMENTAL SECTION21 Materials The chemicals used in this experiment were

2-butanol tert-butanol and DEC All chemicals were usedwithout any additional purification The compound details arelisted in Table 1

22 Apparatus and Procedures The apparatus used inthis study is a simple static ebulliometer The ebulliometerused was an apparatus developed by Oktavian et al1 andrevalidated by Wibawa et al17 Wiguno et al18 and Anugrahaet al13 to ensure that the initial composition has not changedsignificantly when the equilibrium condition is achieved Thedetailed apparatus was shown in our previous publication1

The equipmentrsquos main parts are the ebulliometer cellcondenser and some auxiliaries such as a vacuum pump(VALUE VG140) for eliminating the gas impurities from theebulliometer magnetic stirrer temperature controller andindicator (AUTONICS TC4S) RTD Pt 100 thermocouplewith an accuracy of plusmn01 K pressure gauge (AUTONICSPSAN) with an accuracy of plusmn01 kPa and ambient pressuregauge (Lutron MHB 382SD)The experimental procedure was described in detail in the

previous work19 Initially each pure componentrsquos vaporpressure was measured by charging the pure component intothe equilibrium cell and vacuum conditions were created byturning on the vacuum pump The pressure at each desiredtemperature was recorded as the vapor pressure The vaporpressure data for the two binary systems ie 2-butanol + DECand tert-butanol + DEC were obtained by the followingprocedure The experiment was begun by introducing 225 mLof a mixture having a known composition into the ebulliometercell Cooling water was circulated in the condenser and thenthe magnetic stirrer was switched on to stir the solution to mixevenly After that the vacuum pressure was created in theequilibrium cell by turning on the vacuum pump The heatingsystem was then lit to heat the solution according to thedesired temperature This heating causes some of the liquid toevaporate The temperature and pressure in the system areshown by temperature indicator and pressure gaugerespectively The pressure is recorded when the temperaturereaches a constant value The apparatus was validated bycomparing the measured pure vapor pressures of 2-butanoltert-butanol and DEC with literature data calculated using theWagner and Antoine equations with parameter constantsobtained from Poling et al20 and Luo et al21 respectively

Based on this experiment the data obtained are the molefractions of component i in the liquid phase (xi) theequilibrium pressure (P) and the temperature (T) Theexperimental data are correlated with 3 activity coefficientmodels ie the Wilson NRTL and UNIQUAC equationsand the binary interaction parameter pairs of each equationwere optimized using the experimental data obtained in thiswork

3 RESULTS AND DISCUSSION31 Reliability of Apparatus The validity of the

experimental apparatus was checked by comparing theexperimental pure vapor pressures of 2-butanol tert-butanoland DEC with the literature pure vapor pressures of 2-butanoland tert-butanol calculated from the Wagner equation(equation 1) and that of DEC calculated from the Antoineequation (equation 2) The parameter constants of the Wagnerand Antoine equations are listed in Tables 2 and 3respectively

Pa b c d

Tln (kPa)

15 25 5

r

τ τ τ τ= + + +(1)

P AB

T Clog (kPa)

(K)10 = minus+ (2)

where τ = 1 minus Tr and Tr = TTc

A comparison between the experimental data and literaturedata obtained from the Wagner or Antoine equations arepresented in Table 4 and the average absolute deviation

Table 1 Pure Chemicals Description and Properties

component supplier CAS reg noMWa

(gmol) purityb

2-butanol Merck Germany 78minus92minus2 7412 09900tert-butanol Merck Germany 75minus65minus0 7412 09950diethylcarbonate

Wuhan FortunaChemical Co China

105minus58minus8 11813 09992

aMW = molecular weight bPurity from supplier in mass fraction

Table 2 Wagner Parameter of 2-Butanol and tert-Butanol20

component a b c d

2-butanol minus80982 164406 minus749 minus52735tert-butanol minus84792 247845 minus9279 minus25399

Table 3 Antoine Parameter of DEC21

component A B C

DEC 5883 122377 minus84304

Table 4 Vapor Pressures of 2-Butanol tert-Butanol andDECa

2-butanol tert-butanol DEC

TK Pexp Plit Pexp Plit Pexp Plit

(kPa)30315 322 320 764 766 196 19530565 374 376 884 892 227 22630815 443 441 1032 1034 257 26131065 513 516 1182 1196 296 29931315 604 600 1371 1378 346 34331565 705 697 1571 1583 396 39231815 804 806 1803 1813 445 44632065 934 930 2055 2071 504 50732315 1081 1069 2356 2359 582 575AAD 06 06 08

aThe standard uncertainty of measurements are u(T) = 01 K andu(P) = 03 kPa where u(T) is the uncertainty in temperature andu(P) is the uncertainty in pressure

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2442

(AAD) between the experimental data and calculated vaporpressures were obtained by the following equation

n

P P

PAAD

1100

i

n

1

exp lit

litsum=

minustimes

= (3)

where Pexp is the vapor pressure obtained from the experimentPlit is the literature value and n is the number of data points Aspresented in Table 4 good agreement was shown by all purecomponents with a 06 AAD for 2-butanol 06 AAD fortert-butanol and 08 AAD for DEC The result indicates thatthe ebulliometer used in this experiment is reliable32 Vapor Pressure Data Measurement and Correla-

tion The vapor pressure data obtained in this work for the 2-butanol (1) + DEC (2) and tert-butanol (1) + DEC (2)systems are presented in Tables 5 and 6 respectively The

experimental equilibrium temperatures were set in the range of30315minus32315 K to accommodate common fuel storageconditions in tropical countries This is done in the absence of

changes in the pressure temperature and composition of thesystemIn vaporminusliquid equilibrium conditions the liquid-compo-

nent fugacity is equal to the vapor-component fugacity Due tolow vapor pressure of the mixture the ideal gas law is appliedConsidering the differences between the alcohol and DECmolecules the liquid becomes a nonideal mixture Thereforean activity coefficient of component i γi is used as a nonidealfactor for the liquid phase in solution Accordingly thecalculation of the vapor pressure of the mixture is based on thefollowing equation

P x Pi

m

i i1

isatsum γ=

= (4)

where m is the number of components in the mixture P is thevapor pressure in the equilibrium condition xi is thecomponent i mole fraction in the liquid phase γi is the activitycoefficient of component i and Pi

sat is the vapor pressure ofcomponent i Data correlation is carried out by using theWilson NRTL and UNIQUAC equations The binaryinteraction parameters are determined using Barkerrsquos method22

by minimizing the following objective function (OF)

OF (P P )i

n

i i1

cal exp2sum= minus

= (5)

where n is the number of data points and the subscripts cal andexp indicate the calculated and experimental valuesrespectively The values of the AAD are presented in Table 7

The experimental data were well-correlated with the WilsonNRTL and UNIQUAC activity coefficient models givingaverage absolute deviations in the range of 18minus19 Thecorrelation results were plotted in Figure 1 and Figure 2Figure 1 shows that the increasing temperature causes a rise

in the vapor pressure of the 2-butanol + DEC mixture Atconstant temperature increasing the content of 2-butanol (x1)leads to an increase of equilibrium pressure of the mixture tothe peak point and then a decrease in the 2-butanol vaporpressureFigure 2 shows that the increasing temperature causes a rise

in the vapor pressure of the mixture In addition at constanttemperature the vapor pressure of the mixture increases withthe increasing content of tert-butanol (x1) Therefore thepressure of the mixture is between the pure vapor pressures ofeach component

Table 5 Experimental VLE data for 2-Butanol (1) + DEC(2)a

PexpkPa

x1 30315 K 30815 K 31315 K 31815 K 32315 K

0 196 257 346 445 58201 272 373 474 616 78902 293 402 542 701 86203 298 428 578 749 94104 317 431 561 742 96105 323 452 593 792 99306 34 449 588 775 102207 305 444 601 8 106708 341 461 603 796 105609 327 467 626 807 10761 322 443 604 804 1081

aThe standard uncertainty of measurements are u(xi) = 00002 u(T)= 01 K and u(P) = 03 kPa where u(xi) is the uncertainty ofcomponent i of the liquid phase mole fractions u(T) is theuncertainty in temperature and u(P) is the uncertainty in pressure

Table 6 Experimental VLE Data for tert-Butanol (1) + DEC(2)a

PexpkPa

x1 30315 K 30815 K 31315 K 31815 K 32315 K

0 196 257 346 445 58201 362 461 571 76 99702 437 567 751 1005 127503 534 714 895 1138 145404 626 754 972 1312 166805 633 802 1055 142 179606 662 846 115 1526 195707 71 897 1202 1578 202108 74 94 1257 1635 210309 767 969 1291 1736 22061 764 1032 1371 1803 2356

aThe standard uncertainty of measurements are u(xi) = 00002 u(T)= 01 K and u(P) = 03 kPa where u(xi) is the uncertainty ofcomponent i of the liquid phase mole fractions u(T) is theuncertainty in temperature and u(P) is the uncertainty in pressure

Table 7 Parameter and AADs of Correlation Results

2-Butanol(1) + DEC(2) System

Wilson NRTL UNIQUAC

a12(Jmol)

a21(Jmol)

α(minus)

b12(Jmol)

b21(Jmol)

Δu12(Jmol)

Δu21(Jmol)

51428 minus9777 03 minus10506 49176 minus12239 25901AAD = 19 AAD = 18 AAD = 19

tert-butanol(1) + DEC(2) system

Wilson NRTL UNIQUAC

a12(Jmol)

a21(Jmol)

α(minus)

b12(Jmol)

b21(Jmol)

Δu12(Jmol)

Δu21(Jmol)

16342 9713 03 14669 9951 1081 4603AAD = 19 AAD = 19 AAD = 19

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2443

The composition of the vapor can be obtained based on theconcept of equilibrium by using the values of the activitycoefficients obtained from the Wilson NRTL and UNIQUACequations The result of calculated of y1 is then plotted inFigures 1 and 2According to Figure 1 the correlation results for 2-butanol +

DEC showing that at the point of x1 above 06 the x1 has samevalue of y1 where it could be suspected as azeotrope pointHowever due to the differences between the maximumequilibrium pressures and the vapor pressure of pure 2-butanolare smaller than the uncertainty of pressure measurement (03kPa) the azeotrope behavior still could not be justified for thissystem The small vapor pressure differences indicate that theeffect of DEC at the point of x1 above 06 is insignificant Thevapor pressure is greatly affected by 2-butanol

4 CONCLUSIONSAn experiment was successfully conducted to obtain accuratevaporminusliquid equilibrium data for binary systems of 2-butanol

(1) + DEC (2) and tert-butanol (1) + DEC (2) at 30315minus32315 K The experimental data for the 2-butanol (1) + DEC(2) system were well-correlated using the Wilson NRTL andUNIQUAC models with AADs in the vapor pressure of 1918 and 19 respectively For the tert-butanol (1) + DEC (2)system correlation using the Wilson NRTL and UNIQUACmodels gave the same AAD of 19 The systems studied showpositive deviations from Raoultrsquos law in the temperature rangestudied

AUTHOR INFORMATION

Corresponding AuthorGede Wibawa minus Department of Chemical Engineering Facultyof Industrial Technology Sepuluh Nopember Institute ofTechnology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia orcidorg0000-0002-1255-9210 Phone +62-31-5946240 Email gwibawachem-engitsacid Fax +62-31-5999282

AuthorsAnnas Wiguno minus Department of Chemical Engineering Facultyof Industrial Technology Sepuluh Nopember Institute ofTechnology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia

Rizky Tetrisyanda minus Department of Chemical EngineeringFaculty of Industrial Technology Sepuluh Nopember Instituteof Technology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia

Complete contact information is available athttpspubsacsorg101021acsjced9b01079

NotesThe authors declare no competing financial interest

ACKNOWLEDGMENTS

The author are grateful to Kementrian Riset Teknologi danPendidikan Tinggi Sepuluh Nopember Institute of Technol-ogy (ITS) for a research grant with the PUPT research schemaunder Contract 622PKSITS2017 The authors would liketo thank Andika Dwimasputra and Naomi Hurayah Aden forexperimental work

REFERENCES(1) Oktavian R Amidelsi V Rasmito A Wibawa G VaporPressure Measurements of Ethanolminusisooctane and 1-Butanolminusisooctane Systems Using a New Ebulliometer Fuel 2013 107 47minus51(2) Hull A Kronberg B van Stam J Golubkov I Kristensson JVaporminusLiquid Equilibrium of Binary Mixtures 1 Ethanol + 1-Butanol Ethanol + Octane 1-Butanol + Octane J Chem Eng Data2006 51 1996minus2001(3) Moxey B G Cairns A Zhao H A Comparison of Butanol andEthanol Flame Development in an Optical Spark Ignition Engine Fuel2016 170 27minus38(4) Varol Y Oner C Oztop H F Altun S Comparison ofMethanol Ethanol or n-Butanol Blending with Unleaded Gasoline onExhaust Emissions of an SI Engine Energy Sources Part A 2014 36938minus948(5) Procentese A Guida T Raganati F Olivieri G Salatino PMarzocchella A Process Simulation of Biobutanol Production fromLignocellulosic Feedstocks Chem Eng Trans 2014 38 343minus348(6) Dunn B C Guenneau C Hilton S A Pahnke J Eyring EM Dworzanski J Meuzelaar H L C Hu J Z Solum M SPugmire R J Production of Diethyl Carbonate from Ethanol and

Figure 1 Diagram of Pminusx1minusy1 for 2-butanol (1) + DEC (2) system atvarious temperatures

Figure 2 Diagram of Pminusx1minusy1 for tert-butanol (1) + DEC (2) systemat various temperatures

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2444

Carbon Monoxide over a Heterogeneous Catalyst Energy Fuels 200216 177minus181(7) Pacheco M A Marshall C L Review of Dimethyl Carbonate(DMC) Manufacture and Its Characteristics as a Fuel AdditiveEnergy Fuels 1997 11 2minus29(8) M Eyring E L C Meuzelaar H Pugmire R Synthesis andTesting of Diethyl Carbonate as a Possible Diesel Fuel Additive 2000(9) Moran M Zogorski J Squillace P MTBE and GasolineHydrocarbons in Ground Water of the United States 2005 Vol 43(10) Rodriacuteguez A Canosa J Domiacutenguez A Tojo J IsobaricPhase Equilibria of Diethyl Carbonate with Five Alcohols at 1013KPa J Chem Eng Data 2003 48 86minus91(11) Ho H-Y Shu S-S Wang S-J Lee M-J Isothermal(Vapour+liquid) Equilibrium (VLE) for Binary Mixtures ContainingDiethyl Carbonate Phenyl Acetate Diphenyl Carbonate or EthylAcetate J Chem Thermodyn 2015 91 35minus42(12) Pillay J Iwarere S A Raal J D Naidoo P RamjugernathD Isothermal Vapour-Liquid Equilibrium Data for the Binary Systems2-Propanone + (2-Butanol or Propanoic Acid) Fluid Phase Equilib2017 433 119minus125(13) Anugraha R P Altway A Wibawa G Measurement andCorrelation of Isothermal Binary VaporminusLiquid Equilibrium forDiethyl Carbonate + Isooctanen-HeptaneToluene Systems JChem Eng Data 2017 62 2362minus2366(14) Wilson G M Vapor-Liquid Equilibrium XI A NewExpression for the Excess Free Energy of Mixing J Am Chem Soc1964 86 127minus130(15) Renon H Prausnitz J M Local Composition Thermody-namic Excess Functions for Liquid Mixtures AIChE J 1968 14 135minus144(16) Prausnitz J M Abrams D S Statistical Thermodynamics ofLiquid Mixtures A New Expression for the Excess Gibbs Energy ofPartly or Completely Miscible Systems AIChE J 1975 21 116minus128(17) Wibawa G Mustain A Akbarina M F Ruslim R MIsothermal VaporminusLiquid Equilibrium of Ethanol + Glycerol and 2-Propanol + Glycerol at Different Temperatures J Chem Eng Data2015 60 955minus959(18) Wiguno A Mustain A Irwansyah W F E Wibawa GIsothermal Vapor-Liquid Equilibrium of Methanol + Glycerol and 1-Propanol + Glycerol Indones J Chem 2018 16 111minus116(19) Anugraha R P Wiguno A Altway A Wibawa G VaporPressures of Diethyl Carbonate + Ethanol Binary Mixture and DiethylCarbonate + Ethanol + IsooctaneToluene Ternary Mixtures atTemperatures Range of 303 15 minus 323 15 K J Mol Liq 2018 26432minus37(20) Poling B E Prausnitz J M OrsquoConnel J P The Properties ofGases and Liquids 5th ed McGraw-Hill New York 2001(21) Luo H-P Xiao W-D Zhu K-H Isobaric VaporminusliquidEquilibria of Alkyl Carbonates with Alcohols Fluid Phase Equilib2000 175 91minus105(22) Barker J A Determination of Activity Coefficients from TotalPressure Measurements Aust J Chem 1953 6 207minus210

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2445

vaporminusliquid equilibrium (VLE) data of 2-butanoltert-butanol+ DEC at low temperatures are unavailable in the availableliterature Therefore the aim of this study is to determine theisothermal VLE of 2-butanoltert-butanol + DEC at 30315minus32315 K In addition the experimental data were correlatedwith the Wilson14 nonrandom two-liquid (NRTL)15 anduniversal quasi-chemical (UNIQUAC)16 models

2 EXPERIMENTAL SECTION21 Materials The chemicals used in this experiment were

2-butanol tert-butanol and DEC All chemicals were usedwithout any additional purification The compound details arelisted in Table 1

22 Apparatus and Procedures The apparatus used inthis study is a simple static ebulliometer The ebulliometerused was an apparatus developed by Oktavian et al1 andrevalidated by Wibawa et al17 Wiguno et al18 and Anugrahaet al13 to ensure that the initial composition has not changedsignificantly when the equilibrium condition is achieved Thedetailed apparatus was shown in our previous publication1

The equipmentrsquos main parts are the ebulliometer cellcondenser and some auxiliaries such as a vacuum pump(VALUE VG140) for eliminating the gas impurities from theebulliometer magnetic stirrer temperature controller andindicator (AUTONICS TC4S) RTD Pt 100 thermocouplewith an accuracy of plusmn01 K pressure gauge (AUTONICSPSAN) with an accuracy of plusmn01 kPa and ambient pressuregauge (Lutron MHB 382SD)The experimental procedure was described in detail in the

previous work19 Initially each pure componentrsquos vaporpressure was measured by charging the pure component intothe equilibrium cell and vacuum conditions were created byturning on the vacuum pump The pressure at each desiredtemperature was recorded as the vapor pressure The vaporpressure data for the two binary systems ie 2-butanol + DECand tert-butanol + DEC were obtained by the followingprocedure The experiment was begun by introducing 225 mLof a mixture having a known composition into the ebulliometercell Cooling water was circulated in the condenser and thenthe magnetic stirrer was switched on to stir the solution to mixevenly After that the vacuum pressure was created in theequilibrium cell by turning on the vacuum pump The heatingsystem was then lit to heat the solution according to thedesired temperature This heating causes some of the liquid toevaporate The temperature and pressure in the system areshown by temperature indicator and pressure gaugerespectively The pressure is recorded when the temperaturereaches a constant value The apparatus was validated bycomparing the measured pure vapor pressures of 2-butanoltert-butanol and DEC with literature data calculated using theWagner and Antoine equations with parameter constantsobtained from Poling et al20 and Luo et al21 respectively

Based on this experiment the data obtained are the molefractions of component i in the liquid phase (xi) theequilibrium pressure (P) and the temperature (T) Theexperimental data are correlated with 3 activity coefficientmodels ie the Wilson NRTL and UNIQUAC equationsand the binary interaction parameter pairs of each equationwere optimized using the experimental data obtained in thiswork

3 RESULTS AND DISCUSSION31 Reliability of Apparatus The validity of the

experimental apparatus was checked by comparing theexperimental pure vapor pressures of 2-butanol tert-butanoland DEC with the literature pure vapor pressures of 2-butanoland tert-butanol calculated from the Wagner equation(equation 1) and that of DEC calculated from the Antoineequation (equation 2) The parameter constants of the Wagnerand Antoine equations are listed in Tables 2 and 3respectively

Pa b c d

Tln (kPa)

15 25 5

r

τ τ τ τ= + + +(1)

P AB

T Clog (kPa)

(K)10 = minus+ (2)

where τ = 1 minus Tr and Tr = TTc

A comparison between the experimental data and literaturedata obtained from the Wagner or Antoine equations arepresented in Table 4 and the average absolute deviation

Table 1 Pure Chemicals Description and Properties

component supplier CAS reg noMWa

(gmol) purityb

2-butanol Merck Germany 78minus92minus2 7412 09900tert-butanol Merck Germany 75minus65minus0 7412 09950diethylcarbonate

Wuhan FortunaChemical Co China

105minus58minus8 11813 09992

aMW = molecular weight bPurity from supplier in mass fraction

Table 2 Wagner Parameter of 2-Butanol and tert-Butanol20

component a b c d

2-butanol minus80982 164406 minus749 minus52735tert-butanol minus84792 247845 minus9279 minus25399

Table 3 Antoine Parameter of DEC21

component A B C

DEC 5883 122377 minus84304

Table 4 Vapor Pressures of 2-Butanol tert-Butanol andDECa

2-butanol tert-butanol DEC

TK Pexp Plit Pexp Plit Pexp Plit

(kPa)30315 322 320 764 766 196 19530565 374 376 884 892 227 22630815 443 441 1032 1034 257 26131065 513 516 1182 1196 296 29931315 604 600 1371 1378 346 34331565 705 697 1571 1583 396 39231815 804 806 1803 1813 445 44632065 934 930 2055 2071 504 50732315 1081 1069 2356 2359 582 575AAD 06 06 08

aThe standard uncertainty of measurements are u(T) = 01 K andu(P) = 03 kPa where u(T) is the uncertainty in temperature andu(P) is the uncertainty in pressure

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2442

(AAD) between the experimental data and calculated vaporpressures were obtained by the following equation

n

P P

PAAD

1100

i

n

1

exp lit

litsum=

minustimes

= (3)

where Pexp is the vapor pressure obtained from the experimentPlit is the literature value and n is the number of data points Aspresented in Table 4 good agreement was shown by all purecomponents with a 06 AAD for 2-butanol 06 AAD fortert-butanol and 08 AAD for DEC The result indicates thatthe ebulliometer used in this experiment is reliable32 Vapor Pressure Data Measurement and Correla-

tion The vapor pressure data obtained in this work for the 2-butanol (1) + DEC (2) and tert-butanol (1) + DEC (2)systems are presented in Tables 5 and 6 respectively The

experimental equilibrium temperatures were set in the range of30315minus32315 K to accommodate common fuel storageconditions in tropical countries This is done in the absence of

changes in the pressure temperature and composition of thesystemIn vaporminusliquid equilibrium conditions the liquid-compo-

nent fugacity is equal to the vapor-component fugacity Due tolow vapor pressure of the mixture the ideal gas law is appliedConsidering the differences between the alcohol and DECmolecules the liquid becomes a nonideal mixture Thereforean activity coefficient of component i γi is used as a nonidealfactor for the liquid phase in solution Accordingly thecalculation of the vapor pressure of the mixture is based on thefollowing equation

P x Pi

m

i i1

isatsum γ=

= (4)

where m is the number of components in the mixture P is thevapor pressure in the equilibrium condition xi is thecomponent i mole fraction in the liquid phase γi is the activitycoefficient of component i and Pi

sat is the vapor pressure ofcomponent i Data correlation is carried out by using theWilson NRTL and UNIQUAC equations The binaryinteraction parameters are determined using Barkerrsquos method22

by minimizing the following objective function (OF)

OF (P P )i

n

i i1

cal exp2sum= minus

= (5)

where n is the number of data points and the subscripts cal andexp indicate the calculated and experimental valuesrespectively The values of the AAD are presented in Table 7

The experimental data were well-correlated with the WilsonNRTL and UNIQUAC activity coefficient models givingaverage absolute deviations in the range of 18minus19 Thecorrelation results were plotted in Figure 1 and Figure 2Figure 1 shows that the increasing temperature causes a rise

in the vapor pressure of the 2-butanol + DEC mixture Atconstant temperature increasing the content of 2-butanol (x1)leads to an increase of equilibrium pressure of the mixture tothe peak point and then a decrease in the 2-butanol vaporpressureFigure 2 shows that the increasing temperature causes a rise

in the vapor pressure of the mixture In addition at constanttemperature the vapor pressure of the mixture increases withthe increasing content of tert-butanol (x1) Therefore thepressure of the mixture is between the pure vapor pressures ofeach component

Table 5 Experimental VLE data for 2-Butanol (1) + DEC(2)a

PexpkPa

x1 30315 K 30815 K 31315 K 31815 K 32315 K

0 196 257 346 445 58201 272 373 474 616 78902 293 402 542 701 86203 298 428 578 749 94104 317 431 561 742 96105 323 452 593 792 99306 34 449 588 775 102207 305 444 601 8 106708 341 461 603 796 105609 327 467 626 807 10761 322 443 604 804 1081

aThe standard uncertainty of measurements are u(xi) = 00002 u(T)= 01 K and u(P) = 03 kPa where u(xi) is the uncertainty ofcomponent i of the liquid phase mole fractions u(T) is theuncertainty in temperature and u(P) is the uncertainty in pressure

Table 6 Experimental VLE Data for tert-Butanol (1) + DEC(2)a

PexpkPa

x1 30315 K 30815 K 31315 K 31815 K 32315 K

0 196 257 346 445 58201 362 461 571 76 99702 437 567 751 1005 127503 534 714 895 1138 145404 626 754 972 1312 166805 633 802 1055 142 179606 662 846 115 1526 195707 71 897 1202 1578 202108 74 94 1257 1635 210309 767 969 1291 1736 22061 764 1032 1371 1803 2356

aThe standard uncertainty of measurements are u(xi) = 00002 u(T)= 01 K and u(P) = 03 kPa where u(xi) is the uncertainty ofcomponent i of the liquid phase mole fractions u(T) is theuncertainty in temperature and u(P) is the uncertainty in pressure

Table 7 Parameter and AADs of Correlation Results

2-Butanol(1) + DEC(2) System

Wilson NRTL UNIQUAC

a12(Jmol)

a21(Jmol)

α(minus)

b12(Jmol)

b21(Jmol)

Δu12(Jmol)

Δu21(Jmol)

51428 minus9777 03 minus10506 49176 minus12239 25901AAD = 19 AAD = 18 AAD = 19

tert-butanol(1) + DEC(2) system

Wilson NRTL UNIQUAC

a12(Jmol)

a21(Jmol)

α(minus)

b12(Jmol)

b21(Jmol)

Δu12(Jmol)

Δu21(Jmol)

16342 9713 03 14669 9951 1081 4603AAD = 19 AAD = 19 AAD = 19

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2443

The composition of the vapor can be obtained based on theconcept of equilibrium by using the values of the activitycoefficients obtained from the Wilson NRTL and UNIQUACequations The result of calculated of y1 is then plotted inFigures 1 and 2According to Figure 1 the correlation results for 2-butanol +

DEC showing that at the point of x1 above 06 the x1 has samevalue of y1 where it could be suspected as azeotrope pointHowever due to the differences between the maximumequilibrium pressures and the vapor pressure of pure 2-butanolare smaller than the uncertainty of pressure measurement (03kPa) the azeotrope behavior still could not be justified for thissystem The small vapor pressure differences indicate that theeffect of DEC at the point of x1 above 06 is insignificant Thevapor pressure is greatly affected by 2-butanol

4 CONCLUSIONSAn experiment was successfully conducted to obtain accuratevaporminusliquid equilibrium data for binary systems of 2-butanol

(1) + DEC (2) and tert-butanol (1) + DEC (2) at 30315minus32315 K The experimental data for the 2-butanol (1) + DEC(2) system were well-correlated using the Wilson NRTL andUNIQUAC models with AADs in the vapor pressure of 1918 and 19 respectively For the tert-butanol (1) + DEC (2)system correlation using the Wilson NRTL and UNIQUACmodels gave the same AAD of 19 The systems studied showpositive deviations from Raoultrsquos law in the temperature rangestudied

AUTHOR INFORMATION

Corresponding AuthorGede Wibawa minus Department of Chemical Engineering Facultyof Industrial Technology Sepuluh Nopember Institute ofTechnology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia orcidorg0000-0002-1255-9210 Phone +62-31-5946240 Email gwibawachem-engitsacid Fax +62-31-5999282

AuthorsAnnas Wiguno minus Department of Chemical Engineering Facultyof Industrial Technology Sepuluh Nopember Institute ofTechnology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia

Rizky Tetrisyanda minus Department of Chemical EngineeringFaculty of Industrial Technology Sepuluh Nopember Instituteof Technology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia

Complete contact information is available athttpspubsacsorg101021acsjced9b01079

NotesThe authors declare no competing financial interest

ACKNOWLEDGMENTS

The author are grateful to Kementrian Riset Teknologi danPendidikan Tinggi Sepuluh Nopember Institute of Technol-ogy (ITS) for a research grant with the PUPT research schemaunder Contract 622PKSITS2017 The authors would liketo thank Andika Dwimasputra and Naomi Hurayah Aden forexperimental work

REFERENCES(1) Oktavian R Amidelsi V Rasmito A Wibawa G VaporPressure Measurements of Ethanolminusisooctane and 1-Butanolminusisooctane Systems Using a New Ebulliometer Fuel 2013 107 47minus51(2) Hull A Kronberg B van Stam J Golubkov I Kristensson JVaporminusLiquid Equilibrium of Binary Mixtures 1 Ethanol + 1-Butanol Ethanol + Octane 1-Butanol + Octane J Chem Eng Data2006 51 1996minus2001(3) Moxey B G Cairns A Zhao H A Comparison of Butanol andEthanol Flame Development in an Optical Spark Ignition Engine Fuel2016 170 27minus38(4) Varol Y Oner C Oztop H F Altun S Comparison ofMethanol Ethanol or n-Butanol Blending with Unleaded Gasoline onExhaust Emissions of an SI Engine Energy Sources Part A 2014 36938minus948(5) Procentese A Guida T Raganati F Olivieri G Salatino PMarzocchella A Process Simulation of Biobutanol Production fromLignocellulosic Feedstocks Chem Eng Trans 2014 38 343minus348(6) Dunn B C Guenneau C Hilton S A Pahnke J Eyring EM Dworzanski J Meuzelaar H L C Hu J Z Solum M SPugmire R J Production of Diethyl Carbonate from Ethanol and

Figure 1 Diagram of Pminusx1minusy1 for 2-butanol (1) + DEC (2) system atvarious temperatures

Figure 2 Diagram of Pminusx1minusy1 for tert-butanol (1) + DEC (2) systemat various temperatures

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2444

Carbon Monoxide over a Heterogeneous Catalyst Energy Fuels 200216 177minus181(7) Pacheco M A Marshall C L Review of Dimethyl Carbonate(DMC) Manufacture and Its Characteristics as a Fuel AdditiveEnergy Fuels 1997 11 2minus29(8) M Eyring E L C Meuzelaar H Pugmire R Synthesis andTesting of Diethyl Carbonate as a Possible Diesel Fuel Additive 2000(9) Moran M Zogorski J Squillace P MTBE and GasolineHydrocarbons in Ground Water of the United States 2005 Vol 43(10) Rodriacuteguez A Canosa J Domiacutenguez A Tojo J IsobaricPhase Equilibria of Diethyl Carbonate with Five Alcohols at 1013KPa J Chem Eng Data 2003 48 86minus91(11) Ho H-Y Shu S-S Wang S-J Lee M-J Isothermal(Vapour+liquid) Equilibrium (VLE) for Binary Mixtures ContainingDiethyl Carbonate Phenyl Acetate Diphenyl Carbonate or EthylAcetate J Chem Thermodyn 2015 91 35minus42(12) Pillay J Iwarere S A Raal J D Naidoo P RamjugernathD Isothermal Vapour-Liquid Equilibrium Data for the Binary Systems2-Propanone + (2-Butanol or Propanoic Acid) Fluid Phase Equilib2017 433 119minus125(13) Anugraha R P Altway A Wibawa G Measurement andCorrelation of Isothermal Binary VaporminusLiquid Equilibrium forDiethyl Carbonate + Isooctanen-HeptaneToluene Systems JChem Eng Data 2017 62 2362minus2366(14) Wilson G M Vapor-Liquid Equilibrium XI A NewExpression for the Excess Free Energy of Mixing J Am Chem Soc1964 86 127minus130(15) Renon H Prausnitz J M Local Composition Thermody-namic Excess Functions for Liquid Mixtures AIChE J 1968 14 135minus144(16) Prausnitz J M Abrams D S Statistical Thermodynamics ofLiquid Mixtures A New Expression for the Excess Gibbs Energy ofPartly or Completely Miscible Systems AIChE J 1975 21 116minus128(17) Wibawa G Mustain A Akbarina M F Ruslim R MIsothermal VaporminusLiquid Equilibrium of Ethanol + Glycerol and 2-Propanol + Glycerol at Different Temperatures J Chem Eng Data2015 60 955minus959(18) Wiguno A Mustain A Irwansyah W F E Wibawa GIsothermal Vapor-Liquid Equilibrium of Methanol + Glycerol and 1-Propanol + Glycerol Indones J Chem 2018 16 111minus116(19) Anugraha R P Wiguno A Altway A Wibawa G VaporPressures of Diethyl Carbonate + Ethanol Binary Mixture and DiethylCarbonate + Ethanol + IsooctaneToluene Ternary Mixtures atTemperatures Range of 303 15 minus 323 15 K J Mol Liq 2018 26432minus37(20) Poling B E Prausnitz J M OrsquoConnel J P The Properties ofGases and Liquids 5th ed McGraw-Hill New York 2001(21) Luo H-P Xiao W-D Zhu K-H Isobaric VaporminusliquidEquilibria of Alkyl Carbonates with Alcohols Fluid Phase Equilib2000 175 91minus105(22) Barker J A Determination of Activity Coefficients from TotalPressure Measurements Aust J Chem 1953 6 207minus210

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2445

(AAD) between the experimental data and calculated vaporpressures were obtained by the following equation

n

P P

PAAD

1100

i

n

1

exp lit

litsum=

minustimes

= (3)

where Pexp is the vapor pressure obtained from the experimentPlit is the literature value and n is the number of data points Aspresented in Table 4 good agreement was shown by all purecomponents with a 06 AAD for 2-butanol 06 AAD fortert-butanol and 08 AAD for DEC The result indicates thatthe ebulliometer used in this experiment is reliable32 Vapor Pressure Data Measurement and Correla-

tion The vapor pressure data obtained in this work for the 2-butanol (1) + DEC (2) and tert-butanol (1) + DEC (2)systems are presented in Tables 5 and 6 respectively The

experimental equilibrium temperatures were set in the range of30315minus32315 K to accommodate common fuel storageconditions in tropical countries This is done in the absence of

changes in the pressure temperature and composition of thesystemIn vaporminusliquid equilibrium conditions the liquid-compo-

nent fugacity is equal to the vapor-component fugacity Due tolow vapor pressure of the mixture the ideal gas law is appliedConsidering the differences between the alcohol and DECmolecules the liquid becomes a nonideal mixture Thereforean activity coefficient of component i γi is used as a nonidealfactor for the liquid phase in solution Accordingly thecalculation of the vapor pressure of the mixture is based on thefollowing equation

P x Pi

m

i i1

isatsum γ=

= (4)

where m is the number of components in the mixture P is thevapor pressure in the equilibrium condition xi is thecomponent i mole fraction in the liquid phase γi is the activitycoefficient of component i and Pi

sat is the vapor pressure ofcomponent i Data correlation is carried out by using theWilson NRTL and UNIQUAC equations The binaryinteraction parameters are determined using Barkerrsquos method22

by minimizing the following objective function (OF)

OF (P P )i

n

i i1

cal exp2sum= minus

= (5)

where n is the number of data points and the subscripts cal andexp indicate the calculated and experimental valuesrespectively The values of the AAD are presented in Table 7

The experimental data were well-correlated with the WilsonNRTL and UNIQUAC activity coefficient models givingaverage absolute deviations in the range of 18minus19 Thecorrelation results were plotted in Figure 1 and Figure 2Figure 1 shows that the increasing temperature causes a rise

in the vapor pressure of the 2-butanol + DEC mixture Atconstant temperature increasing the content of 2-butanol (x1)leads to an increase of equilibrium pressure of the mixture tothe peak point and then a decrease in the 2-butanol vaporpressureFigure 2 shows that the increasing temperature causes a rise

in the vapor pressure of the mixture In addition at constanttemperature the vapor pressure of the mixture increases withthe increasing content of tert-butanol (x1) Therefore thepressure of the mixture is between the pure vapor pressures ofeach component

Table 5 Experimental VLE data for 2-Butanol (1) + DEC(2)a

PexpkPa

x1 30315 K 30815 K 31315 K 31815 K 32315 K

0 196 257 346 445 58201 272 373 474 616 78902 293 402 542 701 86203 298 428 578 749 94104 317 431 561 742 96105 323 452 593 792 99306 34 449 588 775 102207 305 444 601 8 106708 341 461 603 796 105609 327 467 626 807 10761 322 443 604 804 1081

aThe standard uncertainty of measurements are u(xi) = 00002 u(T)= 01 K and u(P) = 03 kPa where u(xi) is the uncertainty ofcomponent i of the liquid phase mole fractions u(T) is theuncertainty in temperature and u(P) is the uncertainty in pressure

Table 6 Experimental VLE Data for tert-Butanol (1) + DEC(2)a

PexpkPa

x1 30315 K 30815 K 31315 K 31815 K 32315 K

0 196 257 346 445 58201 362 461 571 76 99702 437 567 751 1005 127503 534 714 895 1138 145404 626 754 972 1312 166805 633 802 1055 142 179606 662 846 115 1526 195707 71 897 1202 1578 202108 74 94 1257 1635 210309 767 969 1291 1736 22061 764 1032 1371 1803 2356

aThe standard uncertainty of measurements are u(xi) = 00002 u(T)= 01 K and u(P) = 03 kPa where u(xi) is the uncertainty ofcomponent i of the liquid phase mole fractions u(T) is theuncertainty in temperature and u(P) is the uncertainty in pressure

Table 7 Parameter and AADs of Correlation Results

2-Butanol(1) + DEC(2) System

Wilson NRTL UNIQUAC

a12(Jmol)

a21(Jmol)

α(minus)

b12(Jmol)

b21(Jmol)

Δu12(Jmol)

Δu21(Jmol)

51428 minus9777 03 minus10506 49176 minus12239 25901AAD = 19 AAD = 18 AAD = 19

tert-butanol(1) + DEC(2) system

Wilson NRTL UNIQUAC

a12(Jmol)

a21(Jmol)

α(minus)

b12(Jmol)

b21(Jmol)

Δu12(Jmol)

Δu21(Jmol)

16342 9713 03 14669 9951 1081 4603AAD = 19 AAD = 19 AAD = 19

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2443

The composition of the vapor can be obtained based on theconcept of equilibrium by using the values of the activitycoefficients obtained from the Wilson NRTL and UNIQUACequations The result of calculated of y1 is then plotted inFigures 1 and 2According to Figure 1 the correlation results for 2-butanol +

DEC showing that at the point of x1 above 06 the x1 has samevalue of y1 where it could be suspected as azeotrope pointHowever due to the differences between the maximumequilibrium pressures and the vapor pressure of pure 2-butanolare smaller than the uncertainty of pressure measurement (03kPa) the azeotrope behavior still could not be justified for thissystem The small vapor pressure differences indicate that theeffect of DEC at the point of x1 above 06 is insignificant Thevapor pressure is greatly affected by 2-butanol

4 CONCLUSIONSAn experiment was successfully conducted to obtain accuratevaporminusliquid equilibrium data for binary systems of 2-butanol

(1) + DEC (2) and tert-butanol (1) + DEC (2) at 30315minus32315 K The experimental data for the 2-butanol (1) + DEC(2) system were well-correlated using the Wilson NRTL andUNIQUAC models with AADs in the vapor pressure of 1918 and 19 respectively For the tert-butanol (1) + DEC (2)system correlation using the Wilson NRTL and UNIQUACmodels gave the same AAD of 19 The systems studied showpositive deviations from Raoultrsquos law in the temperature rangestudied

AUTHOR INFORMATION

Corresponding AuthorGede Wibawa minus Department of Chemical Engineering Facultyof Industrial Technology Sepuluh Nopember Institute ofTechnology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia orcidorg0000-0002-1255-9210 Phone +62-31-5946240 Email gwibawachem-engitsacid Fax +62-31-5999282

AuthorsAnnas Wiguno minus Department of Chemical Engineering Facultyof Industrial Technology Sepuluh Nopember Institute ofTechnology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia

Rizky Tetrisyanda minus Department of Chemical EngineeringFaculty of Industrial Technology Sepuluh Nopember Instituteof Technology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia

Complete contact information is available athttpspubsacsorg101021acsjced9b01079

NotesThe authors declare no competing financial interest

ACKNOWLEDGMENTS

The author are grateful to Kementrian Riset Teknologi danPendidikan Tinggi Sepuluh Nopember Institute of Technol-ogy (ITS) for a research grant with the PUPT research schemaunder Contract 622PKSITS2017 The authors would liketo thank Andika Dwimasputra and Naomi Hurayah Aden forexperimental work

REFERENCES(1) Oktavian R Amidelsi V Rasmito A Wibawa G VaporPressure Measurements of Ethanolminusisooctane and 1-Butanolminusisooctane Systems Using a New Ebulliometer Fuel 2013 107 47minus51(2) Hull A Kronberg B van Stam J Golubkov I Kristensson JVaporminusLiquid Equilibrium of Binary Mixtures 1 Ethanol + 1-Butanol Ethanol + Octane 1-Butanol + Octane J Chem Eng Data2006 51 1996minus2001(3) Moxey B G Cairns A Zhao H A Comparison of Butanol andEthanol Flame Development in an Optical Spark Ignition Engine Fuel2016 170 27minus38(4) Varol Y Oner C Oztop H F Altun S Comparison ofMethanol Ethanol or n-Butanol Blending with Unleaded Gasoline onExhaust Emissions of an SI Engine Energy Sources Part A 2014 36938minus948(5) Procentese A Guida T Raganati F Olivieri G Salatino PMarzocchella A Process Simulation of Biobutanol Production fromLignocellulosic Feedstocks Chem Eng Trans 2014 38 343minus348(6) Dunn B C Guenneau C Hilton S A Pahnke J Eyring EM Dworzanski J Meuzelaar H L C Hu J Z Solum M SPugmire R J Production of Diethyl Carbonate from Ethanol and

Figure 1 Diagram of Pminusx1minusy1 for 2-butanol (1) + DEC (2) system atvarious temperatures

Figure 2 Diagram of Pminusx1minusy1 for tert-butanol (1) + DEC (2) systemat various temperatures

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2444

Carbon Monoxide over a Heterogeneous Catalyst Energy Fuels 200216 177minus181(7) Pacheco M A Marshall C L Review of Dimethyl Carbonate(DMC) Manufacture and Its Characteristics as a Fuel AdditiveEnergy Fuels 1997 11 2minus29(8) M Eyring E L C Meuzelaar H Pugmire R Synthesis andTesting of Diethyl Carbonate as a Possible Diesel Fuel Additive 2000(9) Moran M Zogorski J Squillace P MTBE and GasolineHydrocarbons in Ground Water of the United States 2005 Vol 43(10) Rodriacuteguez A Canosa J Domiacutenguez A Tojo J IsobaricPhase Equilibria of Diethyl Carbonate with Five Alcohols at 1013KPa J Chem Eng Data 2003 48 86minus91(11) Ho H-Y Shu S-S Wang S-J Lee M-J Isothermal(Vapour+liquid) Equilibrium (VLE) for Binary Mixtures ContainingDiethyl Carbonate Phenyl Acetate Diphenyl Carbonate or EthylAcetate J Chem Thermodyn 2015 91 35minus42(12) Pillay J Iwarere S A Raal J D Naidoo P RamjugernathD Isothermal Vapour-Liquid Equilibrium Data for the Binary Systems2-Propanone + (2-Butanol or Propanoic Acid) Fluid Phase Equilib2017 433 119minus125(13) Anugraha R P Altway A Wibawa G Measurement andCorrelation of Isothermal Binary VaporminusLiquid Equilibrium forDiethyl Carbonate + Isooctanen-HeptaneToluene Systems JChem Eng Data 2017 62 2362minus2366(14) Wilson G M Vapor-Liquid Equilibrium XI A NewExpression for the Excess Free Energy of Mixing J Am Chem Soc1964 86 127minus130(15) Renon H Prausnitz J M Local Composition Thermody-namic Excess Functions for Liquid Mixtures AIChE J 1968 14 135minus144(16) Prausnitz J M Abrams D S Statistical Thermodynamics ofLiquid Mixtures A New Expression for the Excess Gibbs Energy ofPartly or Completely Miscible Systems AIChE J 1975 21 116minus128(17) Wibawa G Mustain A Akbarina M F Ruslim R MIsothermal VaporminusLiquid Equilibrium of Ethanol + Glycerol and 2-Propanol + Glycerol at Different Temperatures J Chem Eng Data2015 60 955minus959(18) Wiguno A Mustain A Irwansyah W F E Wibawa GIsothermal Vapor-Liquid Equilibrium of Methanol + Glycerol and 1-Propanol + Glycerol Indones J Chem 2018 16 111minus116(19) Anugraha R P Wiguno A Altway A Wibawa G VaporPressures of Diethyl Carbonate + Ethanol Binary Mixture and DiethylCarbonate + Ethanol + IsooctaneToluene Ternary Mixtures atTemperatures Range of 303 15 minus 323 15 K J Mol Liq 2018 26432minus37(20) Poling B E Prausnitz J M OrsquoConnel J P The Properties ofGases and Liquids 5th ed McGraw-Hill New York 2001(21) Luo H-P Xiao W-D Zhu K-H Isobaric VaporminusliquidEquilibria of Alkyl Carbonates with Alcohols Fluid Phase Equilib2000 175 91minus105(22) Barker J A Determination of Activity Coefficients from TotalPressure Measurements Aust J Chem 1953 6 207minus210

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2445

The composition of the vapor can be obtained based on theconcept of equilibrium by using the values of the activitycoefficients obtained from the Wilson NRTL and UNIQUACequations The result of calculated of y1 is then plotted inFigures 1 and 2According to Figure 1 the correlation results for 2-butanol +

DEC showing that at the point of x1 above 06 the x1 has samevalue of y1 where it could be suspected as azeotrope pointHowever due to the differences between the maximumequilibrium pressures and the vapor pressure of pure 2-butanolare smaller than the uncertainty of pressure measurement (03kPa) the azeotrope behavior still could not be justified for thissystem The small vapor pressure differences indicate that theeffect of DEC at the point of x1 above 06 is insignificant Thevapor pressure is greatly affected by 2-butanol

4 CONCLUSIONSAn experiment was successfully conducted to obtain accuratevaporminusliquid equilibrium data for binary systems of 2-butanol

(1) + DEC (2) and tert-butanol (1) + DEC (2) at 30315minus32315 K The experimental data for the 2-butanol (1) + DEC(2) system were well-correlated using the Wilson NRTL andUNIQUAC models with AADs in the vapor pressure of 1918 and 19 respectively For the tert-butanol (1) + DEC (2)system correlation using the Wilson NRTL and UNIQUACmodels gave the same AAD of 19 The systems studied showpositive deviations from Raoultrsquos law in the temperature rangestudied

AUTHOR INFORMATION

Corresponding AuthorGede Wibawa minus Department of Chemical Engineering Facultyof Industrial Technology Sepuluh Nopember Institute ofTechnology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia orcidorg0000-0002-1255-9210 Phone +62-31-5946240 Email gwibawachem-engitsacid Fax +62-31-5999282

AuthorsAnnas Wiguno minus Department of Chemical Engineering Facultyof Industrial Technology Sepuluh Nopember Institute ofTechnology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia

Rizky Tetrisyanda minus Department of Chemical EngineeringFaculty of Industrial Technology Sepuluh Nopember Instituteof Technology (ITS) Kampus ITS Sukolilo Surabaya 60111Indonesia

Complete contact information is available athttpspubsacsorg101021acsjced9b01079

NotesThe authors declare no competing financial interest

ACKNOWLEDGMENTS

The author are grateful to Kementrian Riset Teknologi danPendidikan Tinggi Sepuluh Nopember Institute of Technol-ogy (ITS) for a research grant with the PUPT research schemaunder Contract 622PKSITS2017 The authors would liketo thank Andika Dwimasputra and Naomi Hurayah Aden forexperimental work

REFERENCES(1) Oktavian R Amidelsi V Rasmito A Wibawa G VaporPressure Measurements of Ethanolminusisooctane and 1-Butanolminusisooctane Systems Using a New Ebulliometer Fuel 2013 107 47minus51(2) Hull A Kronberg B van Stam J Golubkov I Kristensson JVaporminusLiquid Equilibrium of Binary Mixtures 1 Ethanol + 1-Butanol Ethanol + Octane 1-Butanol + Octane J Chem Eng Data2006 51 1996minus2001(3) Moxey B G Cairns A Zhao H A Comparison of Butanol andEthanol Flame Development in an Optical Spark Ignition Engine Fuel2016 170 27minus38(4) Varol Y Oner C Oztop H F Altun S Comparison ofMethanol Ethanol or n-Butanol Blending with Unleaded Gasoline onExhaust Emissions of an SI Engine Energy Sources Part A 2014 36938minus948(5) Procentese A Guida T Raganati F Olivieri G Salatino PMarzocchella A Process Simulation of Biobutanol Production fromLignocellulosic Feedstocks Chem Eng Trans 2014 38 343minus348(6) Dunn B C Guenneau C Hilton S A Pahnke J Eyring EM Dworzanski J Meuzelaar H L C Hu J Z Solum M SPugmire R J Production of Diethyl Carbonate from Ethanol and

Figure 1 Diagram of Pminusx1minusy1 for 2-butanol (1) + DEC (2) system atvarious temperatures

Figure 2 Diagram of Pminusx1minusy1 for tert-butanol (1) + DEC (2) systemat various temperatures

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2444

Carbon Monoxide over a Heterogeneous Catalyst Energy Fuels 200216 177minus181(7) Pacheco M A Marshall C L Review of Dimethyl Carbonate(DMC) Manufacture and Its Characteristics as a Fuel AdditiveEnergy Fuels 1997 11 2minus29(8) M Eyring E L C Meuzelaar H Pugmire R Synthesis andTesting of Diethyl Carbonate as a Possible Diesel Fuel Additive 2000(9) Moran M Zogorski J Squillace P MTBE and GasolineHydrocarbons in Ground Water of the United States 2005 Vol 43(10) Rodriacuteguez A Canosa J Domiacutenguez A Tojo J IsobaricPhase Equilibria of Diethyl Carbonate with Five Alcohols at 1013KPa J Chem Eng Data 2003 48 86minus91(11) Ho H-Y Shu S-S Wang S-J Lee M-J Isothermal(Vapour+liquid) Equilibrium (VLE) for Binary Mixtures ContainingDiethyl Carbonate Phenyl Acetate Diphenyl Carbonate or EthylAcetate J Chem Thermodyn 2015 91 35minus42(12) Pillay J Iwarere S A Raal J D Naidoo P RamjugernathD Isothermal Vapour-Liquid Equilibrium Data for the Binary Systems2-Propanone + (2-Butanol or Propanoic Acid) Fluid Phase Equilib2017 433 119minus125(13) Anugraha R P Altway A Wibawa G Measurement andCorrelation of Isothermal Binary VaporminusLiquid Equilibrium forDiethyl Carbonate + Isooctanen-HeptaneToluene Systems JChem Eng Data 2017 62 2362minus2366(14) Wilson G M Vapor-Liquid Equilibrium XI A NewExpression for the Excess Free Energy of Mixing J Am Chem Soc1964 86 127minus130(15) Renon H Prausnitz J M Local Composition Thermody-namic Excess Functions for Liquid Mixtures AIChE J 1968 14 135minus144(16) Prausnitz J M Abrams D S Statistical Thermodynamics ofLiquid Mixtures A New Expression for the Excess Gibbs Energy ofPartly or Completely Miscible Systems AIChE J 1975 21 116minus128(17) Wibawa G Mustain A Akbarina M F Ruslim R MIsothermal VaporminusLiquid Equilibrium of Ethanol + Glycerol and 2-Propanol + Glycerol at Different Temperatures J Chem Eng Data2015 60 955minus959(18) Wiguno A Mustain A Irwansyah W F E Wibawa GIsothermal Vapor-Liquid Equilibrium of Methanol + Glycerol and 1-Propanol + Glycerol Indones J Chem 2018 16 111minus116(19) Anugraha R P Wiguno A Altway A Wibawa G VaporPressures of Diethyl Carbonate + Ethanol Binary Mixture and DiethylCarbonate + Ethanol + IsooctaneToluene Ternary Mixtures atTemperatures Range of 303 15 minus 323 15 K J Mol Liq 2018 26432minus37(20) Poling B E Prausnitz J M OrsquoConnel J P The Properties ofGases and Liquids 5th ed McGraw-Hill New York 2001(21) Luo H-P Xiao W-D Zhu K-H Isobaric VaporminusliquidEquilibria of Alkyl Carbonates with Alcohols Fluid Phase Equilib2000 175 91minus105(22) Barker J A Determination of Activity Coefficients from TotalPressure Measurements Aust J Chem 1953 6 207minus210

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2445

Carbon Monoxide over a Heterogeneous Catalyst Energy Fuels 200216 177minus181(7) Pacheco M A Marshall C L Review of Dimethyl Carbonate(DMC) Manufacture and Its Characteristics as a Fuel AdditiveEnergy Fuels 1997 11 2minus29(8) M Eyring E L C Meuzelaar H Pugmire R Synthesis andTesting of Diethyl Carbonate as a Possible Diesel Fuel Additive 2000(9) Moran M Zogorski J Squillace P MTBE and GasolineHydrocarbons in Ground Water of the United States 2005 Vol 43(10) Rodriacuteguez A Canosa J Domiacutenguez A Tojo J IsobaricPhase Equilibria of Diethyl Carbonate with Five Alcohols at 1013KPa J Chem Eng Data 2003 48 86minus91(11) Ho H-Y Shu S-S Wang S-J Lee M-J Isothermal(Vapour+liquid) Equilibrium (VLE) for Binary Mixtures ContainingDiethyl Carbonate Phenyl Acetate Diphenyl Carbonate or EthylAcetate J Chem Thermodyn 2015 91 35minus42(12) Pillay J Iwarere S A Raal J D Naidoo P RamjugernathD Isothermal Vapour-Liquid Equilibrium Data for the Binary Systems2-Propanone + (2-Butanol or Propanoic Acid) Fluid Phase Equilib2017 433 119minus125(13) Anugraha R P Altway A Wibawa G Measurement andCorrelation of Isothermal Binary VaporminusLiquid Equilibrium forDiethyl Carbonate + Isooctanen-HeptaneToluene Systems JChem Eng Data 2017 62 2362minus2366(14) Wilson G M Vapor-Liquid Equilibrium XI A NewExpression for the Excess Free Energy of Mixing J Am Chem Soc1964 86 127minus130(15) Renon H Prausnitz J M Local Composition Thermody-namic Excess Functions for Liquid Mixtures AIChE J 1968 14 135minus144(16) Prausnitz J M Abrams D S Statistical Thermodynamics ofLiquid Mixtures A New Expression for the Excess Gibbs Energy ofPartly or Completely Miscible Systems AIChE J 1975 21 116minus128(17) Wibawa G Mustain A Akbarina M F Ruslim R MIsothermal VaporminusLiquid Equilibrium of Ethanol + Glycerol and 2-Propanol + Glycerol at Different Temperatures J Chem Eng Data2015 60 955minus959(18) Wiguno A Mustain A Irwansyah W F E Wibawa GIsothermal Vapor-Liquid Equilibrium of Methanol + Glycerol and 1-Propanol + Glycerol Indones J Chem 2018 16 111minus116(19) Anugraha R P Wiguno A Altway A Wibawa G VaporPressures of Diethyl Carbonate + Ethanol Binary Mixture and DiethylCarbonate + Ethanol + IsooctaneToluene Ternary Mixtures atTemperatures Range of 303 15 minus 323 15 K J Mol Liq 2018 26432minus37(20) Poling B E Prausnitz J M OrsquoConnel J P The Properties ofGases and Liquids 5th ed McGraw-Hill New York 2001(21) Luo H-P Xiao W-D Zhu K-H Isobaric VaporminusliquidEquilibria of Alkyl Carbonates with Alcohols Fluid Phase Equilib2000 175 91minus105(22) Barker J A Determination of Activity Coefficients from TotalPressure Measurements Aust J Chem 1953 6 207minus210

Journal of Chemical amp Engineering Data pubsacsorgjced Article

httpsdxdoiorg101021acsjced9b01079J Chem Eng Data 2020 65 2441minus2445

2445