Intelligent spacecraft modules. Employing user-centered architecture with adaptable technology for...

11
64 rd International Astronautical Congress, Beijing, China. Copyright ©2013 by the International Astronautical Federation. All rights reserved. IAC13,E5,2.1x18985 Page 1 of 11 IAC13,E5,2.1x18985 INTELLIGENT SPACECRAFT MODULES: EMPLOYING USERCENTERED ARCHITECTURE WITH ADAPTABLE TECHNOLOGY FOR THE DESIGN OF HABITABLE INTERIORS IN LONGTERM MISSIONS. KonstantinosAlketas Oungrinis Technical University of Crete, Greece, [email protected] Marianthi Liapi Aristotle University of Thessaloniki, Greece, [email protected] Elli Gkologkina Technical University of Crete, Greece, [email protected] Anna Kelesidi Technical University of Crete, Greece, [email protected] Despoina Linaraki Technical University of Crete, Greece, [email protected] Mariana Paschidi Technical University of Crete, Greece, [email protected] Leonidas Gargalis Technical University of Crete, Greece, [email protected] Aggelos Klothakis Technical University of Crete, Greece, [email protected] Dimitris Mairopoulos Massachusetts Institute of Technology, USA, [email protected] The paper presents the development of an ongoing research project that focuses on a humancentered design approach to habitable spacecraft modules. It focuses on the technical requirements and proposes approaches on how to achieve a spatial arrangement of the interior that addresses sufficiently the functional, physiological and psychosocial needs of the people living and working in such confined spaces that entail longterm environmental threats to human health and performance. Since the research perspective examines the issue from a qualitative point of view, it is based on establishing specific relationships between the built environment and its users, targeting people’s bodily and psychological comfort as a measure toward a successful mission. This research has two basic branches, one examining the context of the system’s operation and behavior and the other in the direction of identifying, experimenting and formulating the environment that successfully performs according to the desired context. The latter aspect is researched upon the construction of a scaledmodel on which we run series of tests to identify the materiality, the geometry and the electronic infrastructure required. Guided by the principles of sensponsive architecture the research explores the application of the necessary spatial arrangement and behavior for a usercentered, functional interior where the appropriate intelligent systems are based upon the existing mechanical and chemical support ones featured on space today, and especially on the ISS. The problem is set according to the characteristics presented at the Mars500 project, regarding the living quarters of six crewmembers, along with their hygiene, leisure and eating areas. Transformable design techniques introduce spatial economy, adjustable zoning and increased efficiency within the interior, securing at the same time precise spatial orientation and character at any given time. The sensponsive configuration is programmed to exhibit behavior in direct relation to human activity. It is based upon two active systems, the Activity Evaluation System (AES) and the Response System (RS), with combined action that is always open to the control of the user. The AES monitors the daily schedule of the astronauts in order to find patterns of activity, understand the context of actions and moreover to assess the psychological condition of the crewmembers. If it finds cause for intervention AES will give way to the RS which employs smart materials, controllers and actuators in order to perform required changes in the environmental factors, both spatial (volume, surface) and ambient (audio, visual, olfactory, haptic), and induce a desirable spatial and/or psychological condition that is beneficial for the astronauts’ comfort and well being.

Transcript of Intelligent spacecraft modules. Employing user-centered architecture with adaptable technology for...

64rd International Astronautical Congress, Beijing, China. Copyright ©2013 by the International Astronautical Federation. All rights reserved.

IAC-­‐13,E5,2.1x18985                                                                  Page  1  of  11  

IAC-­‐13,E5,2.1x18985      

INTELLIGENT  SPACECRAFT  MODULES:  EMPLOYING  USER-­‐CENTERED  ARCHITECTURE  WITH  ADAPTABLE  TECHNOLOGY  FOR  THE  DESIGN  OF  HABITABLE  INTERIORS  IN  LONG-­‐TERM  MISSIONS.  

   

Konstantinos-­‐Alketas  Oungrinis  Technical  University  of  Crete,  Greece,  [email protected]  

   

Marianthi  Liapi  Aristotle  University  of  Thessaloniki,  Greece,  [email protected]  

Elli  Gkologkina  Technical  University  of  Crete,  Greece,  [email protected]  

Anna  Kelesidi  Technical  University  of  Crete,  Greece,  [email protected]  

Despoina  Linaraki  Technical  University  of  Crete,  Greece,  [email protected]  

Mariana  Paschidi  Technical  University  of  Crete,  Greece,  [email protected]  

Leonidas  Gargalis  Technical  University  of  Crete,  Greece,  [email protected]  

Aggelos  Klothakis  Technical  University  of  Crete,  Greece,  [email protected]  

Dimitris  Mairopoulos  Massachusetts  Institute  of  Technology,  USA,  [email protected]  

 The  paper  presents   the  development   of   an  on-­‐going   research  project   that   focuses   on   a  human-­‐centered  

design   approach   to   habitable   spacecraft   modules.   It   focuses   on   the   technical   requirements   and   proposes  approaches  on  how  to  achieve  a  spatial  arrangement  of  the  interior  that  addresses  sufficiently  the  functional,  physiological   and   psychosocial   needs   of   the   people   living   and  working   in   such   confined   spaces   that   entail  long-­‐term  environmental  threats  to  human  health  and  performance.  Since  the  research  perspective  examines  the  issue  from  a  qualitative  point  of  view,  it  is  based  on  establishing  specific  relationships  between  the  built  environment   and   its   users,   targeting   people’s   bodily   and   psychological   comfort   as   a   measure   toward   a  successful  mission.  This  research  has  two  basic  branches,  one  examining  the  context  of  the  system’s  operation  and  behavior  and   the  other   in   the  direction  of   identifying,   experimenting  and   formulating   the  environment  that   successfully   performs   according   to   the   desired   context.   The   latter   aspect   is   researched   upon   the  construction  of  a  scaled-­‐model  on  which  we  run  series  of  tests  to   identify  the  materiality,   the  geometry  and  the   electronic   infrastructure   required.   Guided   by   the   principles   of   sensponsive   architecture   the   research  explores   the   application   of   the   necessary   spatial   arrangement   and   behavior   for   a   user-­‐centered,   functional  interior   where   the   appropriate   intelligent   systems   are   based   upon   the   existing   mechanical   and   chemical  support   ones   featured   on   space   today,   and   especially   on   the   ISS.   The   problem   is   set   according   to   the  characteristics   presented   at   the  Mars500  project,   regarding   the   living   quarters   of   six   crew-­‐members,   along  with   their   hygiene,   leisure   and   eating   areas.   Transformable   design   techniques   introduce   spatial   economy,  adjustable   zoning   and   increased   efficiency   within   the   interior,   securing   at   the   same   time   precise   spatial  orientation  and  character  at  any  given  time.  The  sensponsive  configuration  is  programmed  to  exhibit  behavior  in  direct  relation  to  human  activity.  It  is  based  upon  two  active  systems,  the  Activity  Evaluation  System  (AES)  and  the  Response  System  (RS),  with  combined  action  that  is  always  open  to  the  control  of  the  user.  The  AES  monitors  the  daily  schedule  of  the  astronauts  in  order  to  find  patterns  of  activity,  understand  the  context  of  actions   and   moreover   to   assess   the   psychological   condition   of   the   crew-­‐members.   If   it   finds   cause   for  intervention  AES  will  give  way  to  the  RS  which  employs  smart  materials,  controllers  and  actuators  in  order  to  perform   required   changes   in   the   environmental   factors,   both   spatial   (volume,   surface)   and  ambient   (audio,  visual,  olfactory,  haptic),  and   induce  a  desirable  spatial  and/or  psychological   condition   that   is  beneficial   for  the  astronauts’  comfort  and  well  being.    

64rd International Astronautical Congress, Beijing, China. Copyright ©2013 by the International Astronautical Federation. All rights reserved.

IAC-­‐13,E5,2.1x18985                                                                  Page  2  of  11  

I.  INTRODUCTION  This  paper  presents  an  on-­‐going  research  project  

taking   place   at   the   Transformable   and   Intelligent  Environments   Laboratory   (TIE   Lab)   in   the  Department   of   Architecture   at   the   Technical  University   of   Crete   (TUC).  The  TIE  Lab   is   dedicated  to   the   creation   of   environments   that   exhibit  flexibility   and   adaptability   by   developing   a   human-­‐centered,   technology-­‐driven   architectural   approach  through   the   appropriate   design  methods   and   tools,  fabrication   techniques,   and   implementation  strategies.  Moreover,  all  research  projects  in  the  Lab  are   multi-­‐disciplinary,   based   in   the   field   of  architecture,   and   from   there   on   expanding   their  scope  within  the  domains  of  computer  and  electrical  engineering,  mechanical  engineering,  environmental  engineering,   psychology,   pedagogy,   neuroscience  and   endocrinology.   The   Intelligent   Habitable  Spacecraft   Module   project   researches   the  connections   between   the   interior   space   of   a  spacecraft   and   the   astronauts’   activity   and  specifically  the  ways  in  which  spatial  stimulants  can  positively  affect  the  human  senses  and  consequently  the   hormonal   changes   and   the   production   of   the  corresponding  emotions  and  actions.  

The   design   of   spaces   for   astronauts   is   purely  activity-­‐oriented,   as   Sandra   Häuplik-­‐Meusburger  points   out.1  There   should   be   a   distinction   though  between   spaces   for   short-­‐range   and   long-­‐range  missions,  as  the  crewmembers  in  the  latter  not  only  focus  on  their  designated  tasks  but  additionally  they  are   responsible   for   every   aspect   of   their   confined  spacecraft  environment.2  In  this  regard,  the  design  of  such   a   demanding   space   should   be   also   quality-­‐oriented,   exceeding   the   standards   of   a   functional  machine  or  piece  of  equipment.    

The  presented  project  studies  all  aspects  around  the   design   of   the   astronauts’   living   quarters.  Considering   the   critical   structural   issues   resolved,  we   focus   on   the   design   issues   that   address  functionality   and   quality,   by   targeting   on   the  transformation   of   a   neutral   artificial   "space"   to   a  personalized,  comfortable  for  the  body  and  the  mind,  "place".3  There   are   three   basic,   correlated   factors  involved  that  must  be  taken  into  account  during  the  design  process:  

1. The  spatial   factor:   It   involves  the  spatial   layout  and   infrastructure   that   facilitates   the   optimum  execution   of   the   astronauts’   daily   activity  schedule   despite   the   environmental  restrictions.  

2. The  physiological   factor:   It   involves   the   spatial  configurations  (add-­‐on  smart,  flexible  surfaces)  that   safeguard   bodily   comfort,   without  prohibiting  their  daily  activity  schedule.  

3. The  psychological   factor:   It   involves  the  spatial  stimulants   (add-­‐on   sensor-­‐actuator   assemblies  and   smart   materials)   that   safeguard   the  emotional   state   of   the   astronauts,   without  prohibiting  their  daily  activity  schedule.  

The   aforementioned   factors   are   influenced   by   a  sensponsive   system,   embedded   within   the  spacecraft’s   infrastructure,  which   is  programmed   to  exhibit   adaptability,   character   and   behavior.   The  system   itself   employs   both   low-­‐tech   and   high-­‐tech  features   and   is   always   controlled   by   the   user.   It  operates   in  two  ways  –  a  basic   functional  one  and  a  qualitative  fine-­‐tuning  one.  

Both   systems   operate   through   a   sensor-­‐logic-­‐actuator   process   but   have   different   output  perception-­‐wise.   They   are   equipped   with   specific  monitoring   devices,   smart  materials   and   a   network  of   sensor-­‐actuator   assemblies   with   a   palette   of  possible   combinations   of   programmed   re-­‐actions  (haptic,   olfactory,   chromatic   and   so   on)   in   order   to  assess   and   facilitate   and/or   mediate.   Functional    issues,   regarding   human   activities,   are   addressed  quite   straightforwardly,   employing   mainly   spatial  economy   and   big   scale   modifications.   Qualitative  issues,   as   emotional   discomfort,   lead   the   system   to  respond   discreetly   with   selected   ‘stimulants’   in   the  ambient   environment   to   alleviate   the   psychological  condition.   The   existing   high-­‐end   technological  infrastructure  in  space-­‐flight  environments  provides  a   fertile   ground   for   the   implementation   of   the  required  sensponsive  system.    

 

 Fig.   1:  A   schematic   visualization   of   the   surrounding  

environment  affects  the  human  senses.  

64rd International Astronautical Congress, Beijing, China. Copyright ©2013 by the International Astronautical Federation. All rights reserved.

IAC-­‐13,E5,2.1x18985                                                                  Page  3  of  11  

I.  OPERATIONAL  FRAMEWORK  The   Activity   Evaluation   System   (AES)   and   the  

Response   System   (RS)   are   based   on   the   findings   of  our  research  branch  that  examines  the  links  between  the   artificial   environment   that   architecture   creates  and   human   psychology.   In   particular,   we   are  mapping   the  way   in  which   the   spatial   features   and  qualities   affect   the   sensory   system   and   in   turn   the  endocrine   system   that   produces  hormones   carrying  emotional   and   physiological   information.   In  particular,   we   are   examining   the   way   people  perceive   colors   and   light,   noise,   sound   and   music,  smells  and  scents,  materiality  and  temperature.  

Apart  from  the  psychological  load  for  a  successful  mission,   the   personal   and   interpersonal   conditions  most   commonly   associated   with   long-­‐term   space  missions   are   related  with   seclusion   and   the   limited  options   regarding   activities   that   result   to   stresses  like  depression,  boredom,  and  isolation  anxiety.    

 

 Fig.   2:   A   diagrammatic   association   between   spatial  

qualities,  hormones  and  feelings.    

III.  SENSPONSIVE  LOGIC  The  development  of  Information  Technology  (IT)  

integrated   architecture   has   a   path   to   an   “empathic”  space4  where   the  whole  spectrum  of  human  activity  will   be   understood   in   the   appropriate   context   and  the   responses   to   it   will   be   the   analogue   of   any  communication   with   a   truly   intelligent   entity.  Towards  this  path,  sensponsive  architecture  aims  to  understand   specific   elements   in  human  activity   and  respond   to   them,   through   a  mediated   environment,  incorporating  a  portion  of  sense   to   the  response  and  creating   a   context   for   the   way   space   performs   and  the   way   it   learns   from   the   past.   We   are   targeting  communication,  connectivity  and  the  emergence  of  a  spatial,   assistive   'consciousness.'   Sensponsive  architecture   has   an   intermediate   role   that   fits   and  

follows,   similarly   to   a   simple   organism   that   lacks  complex  cognitive  abilities  and  yet  retains  a  relative  co-­‐existence   with   people   by   understanding   the   key  factors   that   affect   their   symbiotic   relationship   and  establishing  a  channel  of  meaningful  communication.  

A   sensponsive   space   is   an   assistive   space,  technologically   enhanced   so   as   to   be   capable   of  meaningful   communication   and   moreover   to  facilitate   the   users’   preferences,   goals   and  expectations.   In   the   case   of   habitable   spacecraft  modules,   the   sensponsive   system   allows   the  customization   of   the   astronauts’   living   quarters,  based   on   standard   allowances   for   personalized  environments,   aiming   in   the   creation   of   a   "cozy"  environment   that   safeguards   the   physiological   and  the  psychological   health   of   the   astronauts.   It   uses   a  combination   of   low-­‐tech   and   high-­‐tech   techniques  and   operates   manually   or   automatically   (with   fine-­‐tuning   mode   set   by   default   to   automation   unless  there   is   strong   opposition   stated).   It   is   basically   an  add-­‐on   layer   that   can   be   applied   to   any   existing  space.   It   operates   in   two   main   phases   employing  hardware   and   software:   the   first   phase   aims   to  'sense   and   understand'   while   the   second   decides  upon  the  best  possible  way  to  'respond'.  The  second  has  two  types  of  reaction,  basic  and  fine-­‐adjustment,  that  address  different  issues.  The  first  phase  employs  various   types   of   sensors   that  measure   and   quantify  human   and   environmental   related   information.   It  also   includes  precision  motion  tracking  devices   that  record   the   movement   patterns   of   the   individuals  within   space,   and   cameras   to   identify   facial  expression   through  analysis   software   that   is  able   to  identify  a  certain  number  of  emotional   states  of   the  individual  in  a  given  time.5    

The   ambiguous   conditions   in   microgravity   lead  us  to  identify  a  condition  only  through  a  verification  process  from  multiple  perspectives.  For  that  reason,  a   more   detailed   diagnosis   is   achieved   with   the  correlation   of   results   that   include   biomedical   data,  fine   kinetic   movements,   eye   tracking   and   other  information   gathered   from   the   immediate   and   the  surrounding  environment  of  the  astronauts.  Machine  learning  algorithms  express  the  grade  of  ‘confidence’  for   a   result,   recognizing   patterns   of   activity,  understanding   the   context   of   actions   and  moreover  assessing   the   psychological   condition   of   the   crew-­‐members.   If   it   finds   cause   for   intervention   it   will  perform  subtle  changes  in  the  environmental  factors,  namely   spatial   stimulants,   to   induce   a   desirable  psychological   state   that   is   beneficial   for   the  astronauts   and   their   mission.   The   manifestation   of  those  spatial  stimulants  is  directed  in  the  fine-­‐tuning  type  of  response,  operating  in  the  second  phase  and  includes   smart   materials,   and   actuators.   The  

64rd International Astronautical Congress, Beijing, China. Copyright ©2013 by the International Astronautical Federation. All rights reserved.

IAC-­‐13,E5,2.1x18985                                                                  Page  4  of  11  

response   targets   the   individual’s   senses   to   stably  help  the  person  feel  comfortable.  The  responses  can  be   related,   for   example,   to   changes   concerning  geometry,   light,   temperature,   texture,   sound,   color  and  smell.    

 Fig.   3:   A   diagrammatic   representation   of   how   the  

sensponsive  system  functions.    

Within   this   framework   and   in   order   to   employ  ambient   intelligence   to   achieve   a   sensible   spatial  configuration6  that   aims   to   cognitive   processes,   the  system  addresses  the  targeted  issues  at  three  spatial  zones,   presented   later   in   greater   detail.   Artificial  intelligence   algorithms   and   machine   learning  processes,  oriented  to  avoid  determinism,  govern  the  control  system.  Overall,  the  creation  of  a  sensponsive  system,   embedded  within   architectural   space,  must  take  the  following  five  factors  into  consideration:  

1. It   must   support   human   activities   spatially,  physically   and   psychologically   by   taking  informed  decisions  and  acting  on  them.    

2. It  must  maintain   a   relative   low  profile   in   its  operation   (regarding   programming   and    formal  patterns)  and  act  only  when  required.    

3. It   must   be   non-­‐invasive,   exhibiting   mild  reactions.   It   must   also   be   equipped   with  some  level  of  control,  like  a  log-­‐off  switch.  

4. It  must  form  a  seamless  connection  between  the   design   environment   and   its   smart  assemblies  that  operate  with  a  simple  control  interface.   Maintenance   should   also   be  reduced.  

5. Last,   but   most   important   of   all,   it   must   be  capable  of  meaningful   communication.   If   the  embedded  system  exhibits  sense  in  the  way  it  understands   and   reacts,   then   it   will   gain  people’s  trust  more  quickly.      

These  goals  can  only  be  achieved  through  a  human-­‐centered   approach   in  order   to   reduce   the   feeling  of  the   uncanny 7  and   to   provide   patterns   of   human  behavior  in  relation  to  space.  These  patterns  must  be  continuously  analyzed  to  provide  the  ad-­‐hoc  critical  parameters   that  must   be  monitored   and   addressed  in   a   timely   manner   to   achieve   comfort   and   spatial  efficiency.      

IV.  DESCRIPTION  OF  THE  OPERATION  OF  THE  SENSPONSIVE  SYSTEM  ON  AN  INTELLIGENT  

HABITABLE  MODULE  Our   sensponsive   design   proposal   focuses   on   a  

module   that   hosts   the   living   quarters   of   six  astronauts   along   with   their   hygiene,   leisure   and  eating   areas.   All   of   our   design   standards   and  measurements   are   based   on   the   Mars500   project  while  our   information  on  the  daily  activity  schedule  was   based   on   data   from   the   International   Space  Station  during  2011.  We  employ  the  cylindrical  3.6  ×  20   m   (12   ×   66   ft)   module   that   consists   of   six  individual   crew  compartments   sized  3  m2   (or  32  sq  ft),   a   kitchen-­‐dining   room,   a   living   room,   the   main  control  room,  and  a  toilet.8      

 Fig.  4:  A  3d  visual  representation  of  the  experimental  

isolation   facility   located   in   Moscow.   The   image  was   retrieved   on   29   December   of   2012   from  http://www.esa.int/esaMI/Mars500/SEMACUISDNG_mg_1.html.  

 Our   key   criteria   for   an   activity-­‐based,   quality-­‐

oriented,  human-­‐centered  design  approach  are:    -­‐   Spatial   economy,   meaning   the   acquisition   of   the  largest  space  possible  during  the  time  it  is  needed.  -­‐  Long   line  of  sight  and  sense  of  whole   from  certain  viewpoints  while  maintaining  a  constant  spatial  local  orientation  matrix.  -­‐  Provisions  for  private  space.    -­‐  Psychological  factors  stabilization.  -­‐  Psychological  factors  assistance.  

64rd International Astronautical Congress, Beijing, China. Copyright ©2013 by the International Astronautical Federation. All rights reserved.

IAC-­‐13,E5,2.1x18985                                                                  Page  5  of  11  

The   design   approach   initially   studied   the   daily  scheduled  and  independent  activities  of  the  six  crew-­‐members   to   create   the   architectural   equivalent   of   a  building   program   in   order   to   allocate   spaces   that  work   in   succession,   yet   complimentary   to   one  another.   By   employing   'spatial   economy'   and  'transformability   design'   practices 9  we   ended   up  with   the   following   working   spatial   arrangement  within   the   cylindrical   module:   The   two   installation  areas,   meaning   the   hygiene   compartment   with   the  toilet  and  the  shower/sauna  cabin  as  well  as  the  part  from   the   eating   area   that   includes   the   kitchen  compartment  with  the  food  storage  and  preparation  equipment,  are  located  at  the  two  ends  of  the  module.    

The   space   in-­‐between   is   divided   to   facilitate   the  sleeping,   leisure   and   dining   activities.   According   to  the   adopted   ISS   program,   none   of   those   activities  take  place  at  the  same  time  -­‐although  there  is  always  a  probability  that  they  will  do  in  a  small  amount.  The  most  unique  spatial  arrangement  was  the  creation  of  six   secluded   spaces   for   the   crewmembers’   private  compartments,   which   should   be   able   to   maintain   a  minimum  surface  and  volume  analogy  when  they  are  non-­‐operational.   According   to   this   scenario,   when  the   crewmembers   eat,   they   do   not   use   their   rooms  and   do   not   engage   in   exercises,   so   the   size   of   the  respective   areas   can   be   reduced   to   give   that   extra  space   to   the  busy  dining   area.  This  operation   is   the  basic  phase  of  the  system  that  acts  upon  recognizing  a   specific   activity   or   instigating   activity   instances  that   deems   beneficial:   it   proposes   major   spatial  changes  to  accommodate  better  a  condition.  

Overall,   the   interior   spaces   are   dynamically  related  as  follows:  

-­‐  The  eating  area  is  connected  to  the  kitchen  and  the   leisure   area   and   can   be   separated   by  lightweight   materials.   It   has   an   adjustable   size  that   can   expand   in   its   maximum   deployment  along   the   whole   leisure   area   if   the   astronauts  require   it.   The   sitting   arrangements   can   be  inflatable,  secured  with  Velcro  or  magnets,  a  fact  that  can  provide  great  variety  in  its  location.  -­‐  The  leisure  area  is  located  between  the  sleeping  compartments   and   the   eating   area.   It   acts   as   a  regulator  between  the  two  spaces  and  its  size  can  be  expanded  to  a  maximum  of  half   the  habitable  volume   of   the  whole  module,   allowing   plenty   of  space  for  even  physical  games.  It  can  be  reduced  dramatically  when  the  crew  rests.  -­‐   Each   one   of   the   private   compartment   units   is  designed   to   expand   and   to   alter   its   volume  according  to  the  interior  activity.  In  its  expanded  version  it  can  even  host  two  crew-­‐members.  It  is  the   main   environment   where   the   fine-­‐tuning  operation  of   the  sensponsive  system  is  currently  

applied.  It   is  a  cylinder  placed  within  the  greater  cylindrical   module   that   can   work   either  individually   or   as   a   group   with   the   rest   of   the  compartments.   When   it   functions   in   the  individual   mode,   it   operates   as   a  microenvironment  designed   to   change  either   for  functional   reasons   (having   a   better   experience  while   watching   a   movie)   or   qualitative   aspects  that   target   fine   perception   (a   hybrid   function  between   projected   and   actuated   changes)   and  affect   the  sense  of  size  and  the  characteristics  of  the  prevailing  conditions.    

Changes   on   the   physical   level   can  micromanage   either   exact   or   customized  anthropometric   specifications   as   well   as   the  geometrical   features   and   the   semantics   of   the  perceived   surrounding   environment.   Lighting  and   projections   provide   visual   stimuli,   while  audio,   tactile   and   olfactory   characteristics   help  create   a   'believable'   experience   that   gives   the  impression  of  an  escape.  Another  function  that  is  extremely  beneficial   is   the  ability  of  each  unit   to  rotate   individually   creating   artificial   gravity   by  the  centrifuge  forces.  The  specific  function  will  be  operated   only   during   sleep   and/or   when   the  body   has   the   specific   lying   position,   thus  augmenting   the   sense   of   being   in   a   familiar  environment  and  helping   the  health  of   the  space  travellers   by   protecting   bone   integrity   and  muscle  mass.    

 

 Fig.   5:   Expansion   phases   of   the   private   living  

compartments.    The   embedded   automations   mediate   to   help   each  resident   to   be   efficient   in   her/his   tasks   while  maintaining   a   healthy   psychological   state.   This  works   best   by   combining   them   with   traditional  approaches   that   promote   the   feeling   of   a   more  

64rd International Astronautical Congress, Beijing, China. Copyright ©2013 by the International Astronautical Federation. All rights reserved.

IAC-­‐13,E5,2.1x18985                                                                  Page  6  of  11  

personal,   cozy   and   familiar   space.   These   practices  are   low-­‐tech   and   include   surfaces   to   put   pictures,  mementos,   and   other   small   artifacts   with   high  personal   value.   Sophisticated   techniques   can   be  employed  to  augment  the  value  of  these  approaches  by   reconfiguring   some   elements   such   as   chairs,   the  colors   of   the   walls   and   the   geometry   of   the   unit’s  interior   space,   or   even   by   projecting   a   specific  background   to   produce   a   more   immersive  experience.  If  more  intense  changes  are  desired,  the  astronauts  can  apply  them  manually.    

In   general   the   sensponsive   system   adds   another  layer   of   functionality   and   meaning   to   traditional  design   by   actively   addressing   distinctive   issues  related   to   psychological   deviant   behaviors.   It   is  specifically   designed   to   combat   the   variety   of  psychosocial   stresses   (stressful   parameters)  aboard.10  

The   system   operates   in   three   sensorial   spatial  zones,   as   stated   earlier,   around   each   individual  astronaut11:    

1.  The  personal-­‐immediate  "Space  of  the  Body"  (B  zone),  

2.   The   peri-­‐personal   "Space   around   the   Body"  (Env.  I  zone),  and  

3.   The   extended-­‐overall   "Space   of   Navigation"  that   can   be   viewed   from   afar   and   can   be   reached  physically  with  some  effort  (Env.  II  zone).    

Every   zone   affects   the   astronauts’   senses  differently.  In  terms  of  sight,  the  B  zone,  for  example,  has  an  exceptionally   limited  visual   input,  but  on  the  other   hand   it   is   replete   with   the   sensorial   stimuli  that   affect   the   senses   of   touch,   hearing   and   smell.  The   Env.   I   zone   is   the   first   one   with   a   geometrical  input   while   the   Env.   II   zone   offers   'anchoring'   and  'spatial   beacons'   by   providing   lines   of   sight,  landmarks   and   points   of   reference.   The   sense   of  smell   works   differently   around   the   zones   as   well.  The  B  zone  is  characterized  by  personal  odours,   the  Env.  I  zone  involves  general  smells  close  to  the  body  as   well   as   the   distinct   smell   of   ionization   of   the  atmosphere,   while   zone   Env.   II   is   only   reached   by  strong  odors  that  affect  all  crew-­‐members.  

The  number  of  astronauts  that  get  affected  by  the  spatial   stimulants   that   the   sensponsive   system  induces  is  also  related  to  the  cognitive  spatial  zoning.  Changes   in   the   Env.   II   zone,   for   example,   affect   the  entirety   of   the   crew   and   thus   it   is   instrumental   to  consider   its  size  when  planning  for  all   the  members  through  social  activities  or  group  behaviors.  Zone  B  on   the   other   hand   is   involved   exclusively   with   the  individual   and   it   has   more   to   do   with   personal  contemplation,   regrouping   and   meditation   for   a  balanced,  positive  behavior.  

 

 

 Fig.  6:  A  list  of  the  stimulants  that  are  recognized  by  the  system  in  each  spatial  cognitive  zone.    

64rd International Astronautical Congress, Beijing, China. Copyright ©2013 by the International Astronautical Federation. All rights reserved.

IAC-­‐13,E5,2.1x18985                                                                  Page  7  of  11  

It   is   extremely   important   to   secure   through  design  (with  colors  or  materials)  the  stable  points  of  spatial   reference   for   all   three   zones   so   that   each  astronaut   can   maintain   with   ease   the   sense   of  orientation  (up-­‐and-­‐down).  

The   sensponsive   system   is   context-­‐oriented   and  works  only   in   the  direction  to  create  environmental  triggers   that   bring   a   desired   emotional   state   to   the  users   of   the   specific   environment.   It   operates   only  when   there   are   measurements   outside   a   comfort  zone   and   external   factors   are   necessitated   to  normalize   the   situation.   It   does   not   work  immediately   and   it   does   not   involve   radical   effects  but   gradually   and   discreetly   it   acts   to   avoid   raising  psychological  defences.    

The   system   monitors   the   astronauts’   activity  (movement   and   expressions)   and   by   measuring  some   critical   data   it   can   identify   emotional   states.  This   is   achieved   by   a   period   of   machine   learning  processes   (our   initial   findings   show   that   reinforced  learning  method   is   the  most   suitable)  during  which  the   astronauts   are   monitored   and   thereafter   fill-­‐in  specific   questionnaires   regarding   their   emotional  states  during  the  time  of  monitoring.    

When  the  system  is  ready  it  will  be  able  to  follow  patterns   as   well   as   to   identify   an   emotional   state  even  by  the  slightest  hints  or  even  before  it  reaches  an  'obvious'  manifestation.  The  system  will  continue  to   follow   the   activity   until   it   reaches   a   "high-­‐confidence"   phase   regarding   a   situation   in  which   it  must  respond.  After  this  decision,  another  process  of  decision-­‐making  begins.  This   time   there   is   a  variety  of   possible   remedies   to   be   considered,   usually  combinations  of   visual,   tactile   and  olfactory   stimuli,  which   can  directly,   yet   subtly   address   the   situation.  It   follows   a   probabilistic   method   that   guides  different  paths  to  avoid  over-­‐familiarity  that  leads  to  indifference   and   subsequently   it   is   rendered  ineffectual.    

The   first   actions   are   always   recon-­‐oriented   in  order  to  get   feedback   if   the  reaction   is  positive.  The  action   resumes   if   the   system   gets   the   desired  response  from  the  person  and  continues  to  manifest  gradually.  When   the   action  has   reached   the  desired  effect,  the  system  could  continue  to  exhibit  the  same  elements  but  it  is  programmed  to  initiate  some  kind  of   more   literal   of   an   action   so   that   the   person  becomes   more   engaged.   The   system   can   then  manage  inconspicuously  to  move  back  to  the  original  spatial  arrangement.    

   Fig.  7:  The  sensponsive  output  capabilities  of  the  unit.      

V.  IMPLEMENTATION  STRATEGY  The   interior   space   of   a   module   that   operates   in  

such   a   hostile   environment   is   better   arranged   in  layers.  The  outer  shell  is  the  most  critical  layer  since  it   provides   the   safe   conditions   for   any   life   to   exist  within  it  and  perform.  The  protection  from  radiation  and  micrometeroids   is  mounted  here,  as  well  as  the  structural   elements   and   the   main   insulation  techniques.   An   intermediate   layer   provides   the  electrical-­‐mechanical   equipment,   the   electronic  infrastructure  as  well  as  storage  space.   It  ends  with  the   inner   surface,   the   threshold   where   the   living  space   starts.   In   this   layer   most   of   the   monitoring,  communicating  and  actuating  devices  of  our  system  are  located.    

More   precisely,   the   system   is   programmed   to  affect   the   3   aforementioned   spatial   cognitive   zones  (zones   B,   Env.   I   and   Env.   II)   1)   by   implementing  specific   micromechanisms   on   the   clothes   and   on  specific   apparatuses   the   astronauts   use,   2)   by  affecting   the   immediate   surroundings   of   the   space  around   the   body   and   3)   by   affecting   overall  characteristics   of   the   ambient   atmosphere   of   the  space  of  navigation.  The  parts  of  the  systems  consist  of:     -­‐  Mechanical  systems  that  create  flexible,  transformable  surfaces.    

o They  affect  geometrical  and  perspective  characteristics.  They  employ  mechanical  actuators,  such  as  motors,  pistons,  air-­‐

64rd International Astronautical Congress, Beijing, China. Copyright ©2013 by the International Astronautical Federation. All rights reserved.

IAC-­‐13,E5,2.1x18985                                                                  Page  8  of  11  

valves,  springs,  magnets,  scissor-­‐frames,  and  other.  

o They  can  change  arrangement  configurations  and  can  act  as  movable  partitions/boundaries  

  -­‐  Visual  systems  o Ambient  systems  that  include  lighting/luminescence  systems,  color  changing  materials,  LED  configurations  that  act  as  visual  landmarks  or  orientation  beacons  

o Specific/literate  visual  equipment  that  comprise  mostly  from  flexible  OLED  screens  that  either  have  a  specific  use  such  as  communication,  movies,  news,etc,  or  project  a  surrounding  such  as  forests,  beaches  or  anything  that  can  create  the  sense  of  ‘open-­‐space’  and  let  the  eye-­‐view  ‘drift’  away.  

  -­‐  Audio  Systems  o Surround  effect  systems,  such  as  speakers  that  either  play  definite  sounds  in  a  specific  context  (music)  or  ambient  sounds,  working  in  conjunction  with  the  other  systems  for  a  more  immersive  environment.    

o Personal  sound  systems,  like  directional  speakers,  that  affect  individuals  and  target  personal  situations  All  these  systems  can  also  generate  high  or  low  frequency  sounds  to  achieve  their  purpose  in  creating  more  influential  conditions  

  -­‐  Olfactory  systems  o Personal  targeted  devices  spray  specific  essences  discreetly  to  be  perceived  only  by  the  specific  individual  

o Ambient  devices  affect  the  general  space  and  work  in  conjunction  with  the  other  systems  for  a  more  immersive  environment.  It  requires  spraying  and  special  devices  are  required  to  homogeneously  disperse  the  tiny  droplets  in  the  microgravity  environment.  

-­‐  Haptic  Systems  o They  are  directed  mostly  to  personal  experiences  although  they  can  be  used  in  common  settings  to  produce  a  collective  experience.  Tactile  changes  are  performed  through  smart  materials  that  change  texture  like  shape  memory  polymers  or  electro-­‐restrictive.  

o Adjusted  frequency  vibrators  can  be  placed  on  cloths  or  on  surfaces  providing  precision  massage  and  muscle-­‐relaxing    

o A  possibility  for  a  type  of  acupuncture  through  small  electrical  discharges  has  been  raised  that  could  act  beneficially  in  a  

number  of  situations  and  can  affect  hormonal  balance  effectively.  

o Thermal  adjustments  are  the  one  effect  that  can  be  either  personal  or  regional.  Personal  actuators  are  installed  on  clothes  or  surfaces  used  by  a  single  person.  Regional  affect  a  whole  area  and  work  in  conjunction  with  the  other  systems  for  a  more  immersive  environment.  

 VI.  COMPATIBILITY  STUDY  

The   project   aims   to   enter   an   evaluation   phase   by  being  included  in  a  series  of  experiments  fostered  by  space   agencies.   In   order   to   tackle   more  comprehensively   the   issues   examined   and   describe  in  detail   the  requirements  necessary  to  perform  the  tests,   a  mock-­‐up   is   built,   upon  which   the   proposed  systems   for   the   materialization   of   the   sensponsive  module  are  tested.  This  is  an  operating  model  where  we  integrate  individual  systems,  aiming  to  accurately  specify   and   form   the   whole   operational   system.   At  this   stage   it   is   an   emulation   as   we   employ   market  electronics   to   define   the   logic,   circuitry   and  sensor/actuator  specifications.    

Hardware  and  software  is  explored  to  achieve  the  most  efficient  way  to  produce  the  designed  results.  The   research   upon   the   development   of   the   system  follows  a  schedule  of  experiments  to  test  the  various  aspects   of   our   proposal,   especially   in   using   similar  equipment   with   the   ones   already   operating   on   the  ISS.  We   test   different   settings   individually,   in   order  to   handle   complexity,   and   assemble   virtually   the  whole  system  piece  by  piece.  The  issues  aimed  at  the  experiment  at  this  point  have  to  do  with  the  qualities  of   personal   space,   and   specifically   comfort,  spaciousness  and  familiarity.    

Technically  the  AES  is  based  on  a  cloud  of  sensors  and  the  combination  of  many  data  results.  It  does  not  find  conclusive  results  but  possibilities  with  various  degrees   of   confidence.   AES   is   based   on   a   platform  that   is   customized   upon   each   crew-­‐member   even  before   take-­‐off  and   it   is   continuously   re-­‐adjusted  as  time  passes   and  new  hormonal  balances  occur.  The  data  identified  to  be  of  importance  in  order  to  assess  the  state  of  the  astronauts,  handled  by  the  AES  are:  

-­‐ Perspiration  -­‐ Breathing  -­‐ Eye  tracking  -­‐ Facial  expression  -­‐ Movement  patterns  -­‐ Fine  motion  tracking  -­‐ Voice  patterns  (tone)  -­‐ EEG  patterns  

 

64rd International Astronautical Congress, Beijing, China. Copyright ©2013 by the International Astronautical Federation. All rights reserved.

IAC-­‐13,E5,2.1x18985                                                                  Page  9  of  11  

 Fig.   8:   Diagrams   and   description   of   the   system  

installed.    

The   AES   may   be   heavily   dependent   upon  existing   Life   Support   Systems   (LSS)   to   gather   data.  The   LSS   features   that   are   cooperative  with   the  AES  operation  are:  

-­‐ the  monitoring  of  air   flow  characteristics  to  detect   ambient   temperature   and   pressure  levels  connected  with  activity,  

-­‐ the   air   consistency   to   detect   type   and  intensity  of  breathing,  

-­‐ the  odor  detection  that  help  identify  certain  hormonal  changes  through  perspiration,  

-­‐ the   precise   temperature   and   pressure  sensors   that   can   indicate   tension   features  and  movement,  

-­‐ the   sleep-­‐EEG   recording   that   can   present  abnormal  patterns  from  anxiety,  

-­‐ the   continuous   recording   of   activity   data  that  can  capture  the  deviations  from  normal  kinetic  patterns,  including  fine  sensor-­‐motor  characteristics,  

-­‐ the   continuous   recording   of   body  temperature   that   can   detect   unusual  instances    

-­‐ the  visual  monitoring  system  that  can  detect  eye   tracking,   movement   and   facial  expression  patterns  

-­‐ the   microphone   system   to   detect   deviation  from  normal  voice  patterns.    

   Fig.  9:  Regenerative  Environmental  Control  and  Life  Support   System   Diagram.   The   image   was   retrieved  on  27  August  of  2013  from  www.nasa.gov/marshall    

The   RS   has   two   phases,   one   functional   with  radical   movement   and   one   fine-­‐tuning   with   small  unperceivable   ambient   alterations.   There   are   some  pieces   of   equipment   that   can   be   employed   for  parallel   use   from   the   RS   systems,   such   as   those  related   to   oxygen   provision,   to   affect   slightly  metabolic   conditions,   lighting   and   temperature  control,  but  there  are  not  kinetic  elements  to  address  spatial  issues.  

The   actuation   assemblies   must   be   developed  through   experimentation   on   scaled   prototypes   and  be   tested   for   the   types   of   response   deemed  appropriate   for   the   given   conditions.   The  complimentary   action   of   the   two   types   of   the   RS  operation  must  also  be  explored  adequately  as   they  perform   better   when   a   spatial   arrangement  augments   a   condition   by   type   1   actions   (basic)   and    ‘momentum’   is   maintained   by   employing   type   2  (fine-­‐tuning)  ambient  adjustments.  

 

64rd International Astronautical Congress, Beijing, China. Copyright ©2013 by the International Astronautical Federation. All rights reserved.

IAC-­‐13,E5,2.1x18985                                                                  Page  10  of  11  

 

 Fig.   10:   Experiments   on   a   working   model   in   scale  

regarding   basic   spatial   arrangements   at   the   TIE  Lab.  

 VII.  CONCLUSIONS  AND  FUTURE  STEPS  

Overall   this   paper   demonstrates   the  advancements  of  a  research  project  on  the  approach  for   designing   intelligent   habitable   modules   on  spacecrafts,   focusing   especially   on   long-­‐range  missions,   to   address   the   critical   issues   of   efficiency  and   psychological   discomfort   produced   by   the  isolated,   enclosed   environment.   A   human-­‐centered  design  approach,  titled  sensponsive,  aims  to  combine  traditional   design   techniques,   which   focus   on   an  activity-­‐based   approach,   with   intelligent   systems  that  can  recognize  and  understand  the  context  of  the  activities  taking  place  as  well  as  the  emotional  state  of  the  people  involved.  As  a  case  study,  it  focuses  on  the   habitable   module   of   the   Project   Mars500,   and  uses   the   same   habitable   volume   to   create   a   space  that  exhibits  the  aforementioned  characteristics.  

As   design   novelties,   spatial   economy   and   spatial  zoning  are  introduced  and  transformable  techniques  are  used.  The  proposal  blurs  the  boundaries  of  space  as   a   whole,   while   it   manages   to   have   precise   and  obvious   spatial   orientation   and   character   at   any  given   time.   Using   the   layers   of   the   structural   logic  and  expanding   them   to  private   spaces   that   can  also  provide   small   artificial   gravity   areas,   distinct  personal   spaces   are   created.   These   spaces   are   the  main   target   of   this   proposal,   aiming   to   create   an  environment  that  can  act  as  comfortable  for  the  body  and  the  mind  ‘place’  and  provide  the  astronauts  with  surroundings   for   contemplation,   relaxation,  imagination,  rest,  belief,  even  escape  (vicariously).  It  also   provides   the   controlled   environment   for   a  special  procedure   to   take  place   in  order   to   stabilize  and   improve   the   crew’s  psychological   state,  making  

its   members   feel   better   and   consequently   perform  better  on  their  mission  tasks.  

The   project   has   reached   the   phase   where   the  feasibility   of   its   application   must   be   facilitated   by  implementing   the   existing   infrastructure   on   the   ISS  to   its   design.   The   goal   is   to   use   the   advanced  monitoring   system   integrated   and   to   operate   the  actuation   through   the   devices   already   fitted.   This  means   that   the   tested   technology   can   be   employed  and   reduces   the   requirements   for   development   of  totally   new   equipment.   Furthermore,   the   working  scaled   model   provides   a   platform   for   individual  system  testing  and  better  visualization  of  the  project  as   a   sum   of   parts.   Testing   this   approach   in   small  segments  is  feasible  and  produces  a  crude  overview.  However,   a   complete   module   design   in   a   large  experiment   is   required,   equal   to   the   Mars   500  project.   We   are   quite   confident   that   such   a   design  approach   is   an   effective,   and   even   mandatory,  solution   for   providing   habitable   and   desirable  environments   for   astronauts   in   future   missions,   as  well   as   acting   as   a   testing   ground   to   facilitate   the  wide   application   to   terrestrial   architecture  addressing  spatially  the  psychological  issues  relating  to   the   hectic   and   stressful   living   in   a   non-­‐pharmaceutical  way.  

                                                                                                                 

1  Häuplik-­‐Meusburger,   S.   (2011).   Architecture   for   Astronauts.   An   activity   based   Approach.   Wien:   Springer  Verlag.  

2  Kitmatcher,   G.   (2002).   Design   of   the   space   station   habitable   modules.   Houston,   Texas,   USA:   53rd  International  Astronautical  Congress/The  World  Space  Congress,  2002.  pp.    8-­‐9.  IAC-­‐02-­‐IAA.8.2.04.  

3  Lawson,  Bryan.  (1999).  The  Language  of  Space.  Oxford,  UK:  Architectural  Press.  4  Addington,  M,   and  Schodek,  D.   (2005).  Smart  Materials  and  Technologies   for  the  Architecture  and  Design  

Professions.  Oxford:  Architectural  Press  5  Cohn,   J.,   &     Kanade,   T.   (2006).   Use   of   automated   facial   image   analysis   for   measurement   of   emotion  

expression.  In  J.  A.  Coan  &  J.  B.  Allen  (Eds.),  Handbook  of  emotion  elicitation  and  assessment  (222-­‐238).  Oxford:  Oxford  University  Press.  

6  Augusto,   J.C.   (2007).   Ambient   Intelligence:   the   confluence   of   ubiquitous/pervasive   computing   and  artificial  intelligence.  In  Intelligent  Computing  Everywhere,  pp.  213-­‐234,  London:  Springer  

7  Freud,  S.  (1955).  The  'Uncanny'.  In  J.  Strachey,  J.  (Ed.  And  Trans.).    The  Standard  Edition  of  the  Complete  Psychological  Works  of  Sigmund  Freud.  (vol.  17,  pp.  217-­‐56).  London:  Hogarth.  (Original  work  published  in  1917).  

8  The  Mars500   isolation   facility.   In:  http://www.esa.int/esaMI/Mars500/SEM64OBDNRF_0.html   (Retrieved  15.  

9  Oungrinis,  K.A.,   (2006).  Transformations:  Paradigms  for  Designing  Transformable  Spaces.  Cambridge,  MA,  USA:  Harvard  GSD  Design  and  Technologies  Report  Series.  

10  Häuplik-­‐Meusburger,   S.   (2011).  Architecture   for  Astronauts.  An  activity  based  Approach.  Wien:   Springer  Verlag.  

11  Space.  In:  http://www-­‐psych.stanford.edu/~bt/space/index.html  (retrieved  28.08.2012)