Hydrocode Simulation of Flexilinear Shaped Charge Jet ...

106
ARMY RESEARCH LABORATORY Hydrocode Simulation of Flexilinear Shaped Charge Jet Penetration Into an Explosive Filled Cylinder George A. Gazonas Steven B. Segletes Carl V. Paxton Joseph W. Gardiner ARL-TR-976 March 1996 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED. 19960529 059 - a ( \

Transcript of Hydrocode Simulation of Flexilinear Shaped Charge Jet ...

ARMY RESEARCH LABORATORY

Hydrocode Simulation of Flexilinear Shaped Charge Jet Penetration Into

an Explosive Filled Cylinder

George A. Gazonas Steven B. Segletes

Carl V. Paxton Joseph W. Gardiner

ARL-TR-976 March 1996

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

19960529 059 -■a (\

NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway. Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE March 1996

3. REPORT TYPE AND DATES COVERED Final, April 1994-April 1995

4. TITLE AND SUBTITLE

Hydrocode Simulation of Flexilinear Shaped Charge Jet Penetration Into an Explosive Filled Cylinder

6. AUTHOR(S)

George A. Gazonas, Steven B. Segletes, Carl V. Paxton, and Joseph W. Gardiner

5. FUNDING NUMBERS

4G015413R6

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory ATTN: AMSRL-WT-PD Aberdeen Proving Ground, MD 21005-5066

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-976

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This report presents the results of a combined numerical and experimental investigation of the penetration of a flexilinear shaped demolition charge into an explosive-filled, thin-walled aluminum cylinder. Computations and experiments were conducted using both CompB and LX-14 as the explosive fill in the aluminum cylinder. The 225 grains per foot (gpf) flexilinear shaped charge (ELSC) was composed of CH-6 high explosive encased in a seamless lead sheath liner. The numerical computations were conducted before the experiments using the Eulerian hydrocode CTH. The explosives encased in the cylinder were expected to detonate near the surface of the cylinder due to either a jet tip impact mechanism, or a liner slap" mechanism. The hydrocode simulations show that neither of these mechanisms will initiate a detonation in the

explosives in the geometry considered. However, minor decomposition occurred in the CompB simulation on the cylinder's symmetry axis. The LX-14 simulation predicts complete detonation of the explosive after initiation on the axis of the cylinder. The detonation initiates by superposition of shock waves as they converge upon the cylinder's symmetry axis. Ibe simulations are qualitatively verified by experiments insofar as the CompB explosive did not detonate, whereas the LX-14 explosive did detonate.

14. SUBJECT TERMS

flexilinear shaped charge, CTH, hydrocode modeling, CompB, LX-14, detonation

15. NUMBER OF PAGES 93

16. PRICE CODE

17. SECURITY CLASSIFICATION OF REPORT

UNCLASSIFIED

18 SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

INTENTIONALLY LEFT BLANK.

11

ACKNOWLEDGMENTS

This work was supported by the Naval Explosive Ordnance Disposal (NAVEOD) Technology Center,

Indian Head, MD, under U.S. Army Research Laboratory (ARL) XO/WO/JO 4G015-413-R6. The authors

would like to acknowledge the overall assistance of Mr. Atul Patel and Mr. Richard Gold of NAVEOD

with regards to the flexilinear shaped charge demolition problem. Thanks also go to Mr. Todd Bjerke

(ARL) and Mr. Richard Gold for their constructive reviews.

in

INTENTIONALLY LEFT BLANK.

IV

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS iü

LIST OF FIGURES vii

1. INTRODUCTION 1

2. COMPUTATIONS 3

2.1 Computational Results 5

3. EXPERIMENTS 10

4. CONCLUSIONS 11

5. REFERENCES 13

APPENDIX A: COMPB SIMULATION INPUT DECK 15

APPENDIX B: COMPB COMPUTATIONAL RESULTS 25

APPENDIX C: LX-14 SIMULATION INPUT DECK 51

APPENDIX D: LX-14 COMPUTATIONAL RESULTS 61

DISTRIBUTION LIST 87

INTENTIONALLY LEFT BLANK.

VI

LIST OF FIGURES

Figure

1. Photograph of the flexilinear shaped charge 1

2. Critical dimensions of the FLSC 2

3. Axisymmetric problem geometry, a) FLSC centered 0.5 in (12.7 mm) above bare explosive (indirect impact configuration), and b) FLSC centered over encased explosive (direct impact configuration) 3

4. Axisymmetric geometry used in FLSC computations 4

5. Cross section through the FLSC 4

6. Adiabatic flow stress vs. equivalent plastic strain for aluminum (7075-T6), copper, and lead at ambient temperature and pressure 6

7. Hugoniot for copper, aluminum, and lead 6

8. Hypothetical leading edge of jet tip as it cuts through explosive cross section from 10 us through 35 us after initiation 7

9. Detonation scenarios by jet tip impact, and liner "slap" 8

10. Critical impact velocity as a function of projectile diameter 9

11. Photograph of test configuration (Figure 3a) showing FLSC surrounding aluminum cylinder 10

12. Photograph of crater on interior wall of RHA test fixture formed by impact from thin copper disk U

Vll

INTENTIONALLY LEFT BLANK.

Vlll

1. INTRODUCTION

Military demolition operations use a variety of shaped charge geometries (e.g., cylindrical, linear,

curvilinear, and flexilinear) for the clearance of obstacles and barriers, the destruction of facilities and

materiel, the construction of roads and trenches, and in land clearance and quarrying. The flexilinear

shaped charge (FLSQ is commonly used in explosive ordnance disposal (EOD) as a means to sever the

projectile from the body of an explosive-filled warhead. In this study, the Navy was interested in

determining if the CTH hydrocode predictions of possible "go" or "no-go" detonation scenarios are verified

by experiment. The FLSC used in this study consists of a continuous core, filled with CH-6 explosive,

that is encased in a seamless lead sheath. The FLSC is available in 4-ft lengths with a density designation

that ranges from 20 to 600 grains per foot (gpf). The density designation for the FLSC used in this study

is 225 gpf (see Figure 1).

Figure 1. Photograph of the flexilinear shaped charge.

The FLSC is typically wrapped around the warhead and detonated at a single point using a blasting

cap. The detonation wave travels around the circumference of the warhead and forms an inwardly directed

shaped charge jet which severs the warhead into two pieces. The nominal dimensions of the FLSC used

in this study (Figure 2) are: A = 90°, B = 0.240 in (6.1 mm), C = 0.480 in (12.2 mm), D = 0.450 in

(11.43 mm), and E = 48.00 in (1,219.2 mm) (see Department of the Navy EODB/Department of the Army

TM/U.S. Air Force TO 60A-2-1-51 1992).

Figure 2. Critical dimensions of the FLSC (Department of the Navv EODB/Department of the Army TM/U.S. Air Force TO 60A-2-1-51 1992).

The Eulerian hydrocode CTH (McGlaun et al. 1988) is used in this study to model the penetrative and

detonative performance of the FLSC as it collides into a thin-walled aluminum cylinder filled with either

CompB and LX-14 high explosive (HE). Numerical simulations were conducted first, followed by

experiments, in an attempt to evaluate the predictive capability of the hydrocode. Two different problem

geometries were considered and are illustrated in Figure 3. In the first problem (Figure 3a), we want to

determine if the explosive will detonate by impact from flying lead liner fragments. In the second

problem (Figure 3b), the FLSC axis is centered directly over the explosive, which is encased in a thin-

walled aluminum cylinder, and capped by thin copper discs (endcaps). In the second problem, we

expected the explosive to detonate due to, 1) impact by the small diameter, high-velocity shaped charge

jet tip, or 2) impact by the large-diameter, low-velocity liner. However, the hydrocode computations show

that the LX-14 explosive detonates through shock-wave superposition at a location on the center axis of

the model. This prediction is qualitatively supported by experiment. Neither the hydrocode nor the

experiment produced a detonation in the CompB model problem.

Al tube

y

«

a)

Pb liner

«

Cu endcaps

1 ..^^.^.^l^XS^A.

^\U^^KUU s

b)

Figure 3. Axisvmmetric problem geometry, a) FLSC centered at 0.5 in (12.7 mm) above bare explosive (indirect impact configuration), and b) FLSC centered over encased explosive (direct impact configuration).

2. COMPUTATIONS

Computations are performed using the Eulerian hydrocode, CTH (McGlaun et al. 1988), that has been

primarily used in the analysis of problems involving large material distortions. We employed a two-

dimensional, axisymmetric Eulerian description of the material body (Figure 4), wherein computational

cells are fixed in space and quantities such as mass, momentum, and energy flux across cell boundaries.

The Eulerian mesh density consisted of 200 and 182 cells in the x- and y-directions, respectively. The

aluminum cylinder that encases the explosive is 6 in (152 mm) long, 3% in (98.4 mm) in outer diameter,

and is 1/16 in (1.59 mm) thick. The HE fill consists of cast CompB or pressed LX-14, 1 in (25.4 mm)

thick, and 3% in (95.25 mm) in diameter. The copper endcaps are % in (9.5 mm) thick. Although the

nominal dimensions for the FLSC are given in the introduction, the actual dimensions used in the

simulation are obtained by digitizing an enlarged photograph of an FLSC (Figure 5). The input deck for

2DC Block 1 x (cm) 2d-cth-mmp simulation of NEOD Phase III ISC detonation AXNATN G 1/24/95 13:08:27 CTH 0 Time=0.

Figure 4. Axisymmetric geometry used in FLSC computations.

>***:

Figure 5. Cross section through the FLSC.

the CompB explosive-filled cylinder model appears in Appendix A, with corresponding computational

results in Appendix B. The input deck for the LX-14 explosive-filled cylinder model appears in

Appendix C, with corresponding computational results in Appendix D.

The distortional behavior of the aluminum cylinder (7075-T6), lead FLSC liner, and copper endcaps

is modeled using the rate-independent version of the Steinberg-Guinan-Lund viscoplastic constitutive

model (CTH material models 1, 4, and 5 respectively) (Steinberg and Lund 1989). The adiabatic yield

stress vs. plastic strain for the metals is illustrated in Figure 6. The dilatational behavior of the metals is

modeled with the Mie-Griineisen equation of state (EOS) (Figure 7). The CompB and LX-14 HE are

modeled using the Mie-Griineisen EOS for the undetonated explosive, while the explosive detonation

products are described with the SESAME EOS in conjunction with the history variable reactive bum

(HVRB) model (see Kerley 1995). The coefficients for the various material models can be found in

Appendix A and Appendix C input decks.

2.1 Computational Results. The axisymmetric nature of the model necessitates a simultaneous

detonation of the FLSC around the periphery of the cylinder. This feature of the model differs from how

the experiment is performed, since, in the experiment, the FLSC is detonated at one end, and the

detonation wave travels unidirectionally around the circumference of the cylinder (Figure 8). The

hypothetical location of the jet tip as it cuts through explosive cross section is determined by calculating

the radius, r, or distance of the jet tip from the cylinder's symmetry axis defined as,

r = ro-ve(t-td-roe/vf), (1)

in which t is time, td is the estimated delay time required for the liner to impact the aluminum casing

(approximately 5 ps), r0 is the radius of the cylinder (0.049174 m), 8 is the cylindrical coordinate (0 <

9 < 2%), and ve and vf are the jet tip cutting velocity (-1,700 m/s) and detonation wave velocity

(7,800 m/s) in the explosive respectively. The locus of points in the x,y-coordinate system plotted in

Figure 8 is obtained by substituting Equation 1 into the familiar equations for converting cylindrical

coordinates to Cartesian coordinates,

x = r cos (9) (2)

y - r sin (9) .

1000

0.5 1.0 1.5 Plastic Strain

Aluminum

2.0

Figure 6. Adiabatic flow stress vs. equivalent plastic strain for aluminum (7075-T6), copper, and lead at ambient temperature and pressure.

Figure 7. Hugoniot for copper, aluminum, and lead.

s

0.06

0.04

0.02

0.00

-0.02

-0.04 ■

-0.06

\ \ FLSC detonation wave

initiation pt.

T *• -l r

-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06

x(m) Figure 8. Hypothetical leading edge of jet tip as it cuts through explosive cross section from 10 us

through 35 us after initiation.

The spiral nature of the leading edge profile is a result of the fact that the detonation wave velocity in the

FLSC is much greater than the jet tip cutting velocity (i.e., vf = 7,800 m/s > ve = 1,700 m/s in Figure 8).

One can estimate the time, tc, it takes for the detonation wave to travel around the circumference of the

cylinder, by knowing the CH-6 detonation velocity, ve, and length, 1, of the FLSC. The travel time is

estimated at, tc = l/ve = 0.31 m/7,800 m/s = 40 us. The plot shows that the leading edge of the jet tip in

the experiment is not symmetrically disposed about the cylinder axis, and since the axisymmetric

computations indicate that the detonation wave reaches the center axis of the cylinder in only 17 ps

(Appendix A), only the very short time (t < 17 ps) results of the computational model should be compared

with experiment.

The hydrocode simulations predict that neither the CompB or LX-14 explosive will detonate in the

indirect impact model configuration (Figure 3a). Experiments conducted at Range 16 with this

configuration corroborate the hydrocode predictions. However, with the direct impact configuration

(Figure 3b), we believed the explosives would detonate by shock initiation either by 1) direct shaped

charge jet impact, or 2) a liner "slap" impact (Figure 9). The hydrocode computations show, however,

Jet Tip Impact Liner "Slap"

7

6

5

T

Pmsurt (d/cnr>)

-1 13 5 7

2DC Block 1 X (cm) 2d-cth-mmp simulation of NEOD Phase III LSC detonation AXNCTT 1/25/95 01:34:57 CTH 2900 Time=1.00036x10-5

Figure 9. Detonation scenarios by jet tip impact and liner "slap."

that CompB explosive does not detonate under these impact conditions. Furthermore, using the v2*d =

constant criterion for explosive detonation, we see that both the jet tip and liner "slap" impact scenarios

plot below the critical value necessary for detonation (see Figure 10 modified from Starkenberg et al.

1984). The empirical Jacobs-Roslund formula is plotted as the solid line in Figure 10, and all

combinations of projectile velocity and diameter that fall above this line should result in detonation for

CompB explosive. Points that fall below the Jacobs-Roslund line predict no detonation for CompB

explosive.

The CTH computational results for CompB and in Appendix B where quantities such as pressure,

density, and a history-dependent reaction variable (Kerley 1995) which tracks chemical decomposition

(detonation) of the explosive are plotted at 5 ps intervals for a total of 25 ps. The reaction variable is

normally scaled between 0 and 1; however, we increase this limit to 2, to provide for a better visual

presentation of the data. The CompB simulations do not reveal any chemical decomposition of the

explosive beneath the jet tip or impacting liner. However, some decomposition is visible along the center

axis of the model, as a result of the superposition of shock wave fronts at this location. The zone of

decomposition remains localized, however, and does not follow the expanding shock wave as it reflects

2-Or-

E1J5

O 1.0 UJ >

r 2^{NO^ e 0 0 ^^^"

JAOORS ROSLUND FORMULA — SLAM ANO DCWEY Q

" MOUlARD(lSL6S/33COMf-B}0

• ^^"^

■""O o .623bn/5

V," 3.26 mm3'2/«

vT

IATOIM3IM5 1 1 1 ! 1 1 1 1

a2 o.3 ai i/^7 [■»■")

Liner d= 11.23 mm

0L5

1.7km/s m

Jet Tip d= 1.875 mm

Figure 10. Critical impact velocity as a function of projectile diameter (modified from Figure 14~) (Starkenberg et al. 1984).

off the cylinder axis (see Appendix B plots at 25 us). We can infer then, that if a detonation were to

occur in such an experiment, it would probably initiate as a result of shock wave superposition at an

interior point of the body, and not as a result of impact by the jet tip or liner.

The CTH computational results for LX-14 are in Appendix D. A Jacobs-Roslund plot similar to that

found for CompB is not available for LX-14 explosive (Starkenberg 1995). However, since LX-14

explosive is considerably more sensitive to impact than CompB explosive (Montesi and Bauldler 1990),

we expected LX-14 to detonate by either the jet tip impact or liner "slap" mechanisms mentioned earlier.

The results are somewhat different than anticipated, however, since the LX-14 detonation initiates on the

center axis of the cylinder, and all the explosive detonates after 25 us. Recall that minor decomposition

of CompB explosive is predicted to occur along the cylinder's symmetry axis.

Based upon the results of the hydrocode simulations, we infer that neither the CompB or LX-14

explosives will detonate as a result of either jet tip or liner impact. We further infer that LX-14 will fully

detonate as a result of the superposition of shock waves at a point interior to the body, yet the CompB

will not

3. EXPERIMENTS

Both direct and indirect FLSC impact configurations were investigated and are illustrated in Figure 3.

The indirect impact configuration (Figure 3a) consists of the FLSC centered 0.5 in (12.7 mm) above the

bare explosive. The direct impact configuration (Figure 3b) consists of the FLSC centered over the

aluminum-covered explosive and capped with thin copper disks. The copper disks are inserted into both

ends of the aluminum cylinder and are manually press-fit onto the explosive surface. A small hole is

predrilled into each copper disk to allow entrained air to escape as the disk is pressed into position. The

FLSC is wrapped around the aluminum cylinder and is detonated at one end using a thin wafer of

Detasheet. The detonation wave travels unidirectionally around the cylinder forming an inwardly directed

jet which cuts into the explosive fill. The cylinder is horizontally positioned on a meter high styrofoam

stand within a rectangular "explosion-proof test fixture whose walls are constructed of 2-in (50.8 mm)-

thick plates of rolled-homogeneous armor (RHA). A photograph of the indirect impact test configuration

appears in Figure 11.

..••«It-

Figure 11. Photograph of test configuration (Figure 3a) showing FLSC surrounding aluminum cylinder.

10

Detonation did not occur with either explosive using the indirect impact test configuration. The direct

impact test on CompB also did not reveal any evidence of detonation. However, the direct impact test

on LX-14 produced a violent detonation that propelled the copper disks outward, forming a crater on the

interior wall of the RHA test fixture (Figure 12). It could not be ascertained where the detonation initiated

in the experiment since radiography was not used in the test series. However, based upon the hydrocode

results, we surmise that the detonation initiated as a result of the superposition of shock waves at a point

interior to the body.

Figure 12. Photograph of crater on interior wall of RHA test fixture formed by impact from thin copper disk.

4. CONCLUSIONS

CTH hydrocode simulations predict that detonation in both CompB and LX-14 explosives, encased

in thin-walled, aluminum cylinders, will not initiate as a result of either direct impact by a 225 gpf FLSC

jet tip, or by liner "slap" mechanisms. The CTH hydrocode predicts that detonation will initiate in the

LX-14 explosive by shock wave superposition along the symmetry axis of the HE-filled cylinder. Some

minor decomposition of CompB is also predicted to occur along the cylinder's symmetry axis, but

detonation does not occur. Experiments conducted on HE-filled, thin-walled cylinders qualitatively verify

the hydrocode predictions insofar as experiments that involve CompB did not detonate, whereas

11

experiments on LX-14 did detonate. The precise location of where the LX-14 detonation initiated could

not be detected, as radiography was not used in this test series. We surmise that the LX-14 detonation

initiated at a point interior to the body as a result of the superposition of shock waves. The actual

detonation most likely initiated at a point not on the cylinder axis, since the experiment is fundamentally

nonaxisymmetric. Radiography and a fully three-dimensioned CTH simulation could be used to verify this inference in future work.

12

5. REFERENCES

Department of the Navy EODB/Department of the Army TM/U.S. Air Force TO 60A-2-1-51, 1992.

Kerley, G. I. "BCAT User's Manual and Input Instructions, Version 1.05." Sandia National Laboratory, Albuquerque, NM, 1995.

McGlaun, J. M., F. J. Zeigler, S. L. Thompson, L. N. Kmetyk, and M. G. Elrick. "CTH-User's Manual and Input Instructions." Sandia National Laboratory Report SAND88-0523, Albuquerque, NM, April 1988.

Montesi, L. J., and B. A. Bauldler. "Qualification Test Results of LX-14 Explosive." Naval Surface Warfare Center, NAVSWC TR-88-296, Dahlgren, VA, 1990.

Starkenberg, J., Y. Huang, and A. Arbuckle. "Numerical Modeling of Projectile Impact Shock Initiation of Bare and Covered Composition-B." U.S. Army Ballistic Research Laboratory Report, ARBRL-TR- 02576, Aberdeen Proving Ground, MD, August 1984.

Starkenberg, J. Personal communication. U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, July 1995.

Steinberg, D. J., and C. M. Lund. "A Constitutive Model for Strain Rates From 10~4 to 106 s"1." Journal of Applied Physics, vol. 65, no. 4, 1989.

13

INTENTIONALLY LEFT BLANK.

14

APPENDIX A:

COMPB SIMULATION INPUT DECK

15

INTENTIONALLY LEFT BLANK.

16

*eor*cgenin *

2d-cth-mmp simulation of NEOD Phase in LSC detonation *

control ep mmp

endcontrol *

mesh block geometry 2dc type e

x0=0.0 xl n=70 w=4.747 dxl=0.0055 x2 n=3 w=0.0155 rat=l x3 n=110w=1.252 dxf=0.0055 x4 n=17 w=1.5 dxf=0.021

endx y0=0.0 yl dyf0.15 dyl0.05 w2.54 y2 dyf0.05 dyl 0.0055 w 1.27 y3 dyf 0.0055 dyl 0.05 w 1.27 y4 dyf 0.05 dyl 0.15 w2.54

endy xact=4.76,5.95 yact=3.24,4.40

endblock endmesh *

insertion of material block 1

*

package 'AL Case -1' material 1 numsub 50 pressure 1.0e6 insert box xl 4.747 x2 4.76250 yl 0.000 y2 15.24000

endinsert endpackage

*

package 'HE Patty -1' material 2 numsub 50

17

pressure 1.0e6 insert box xl 0.000 x2 4.74700 yl 2.540 y2 5.08000

endinsert endpackage

*

package 'HE LSC - •1' material 3 nurasub 50

* G. Kerley told me (12/1/94) that RDX @o=1.70 g/cc detonates at * T=3560K=0.30678eV; Po=13.8GPa. This calculation was done with BCAT * or PANDA. Specifying the insert at this temp is equivalent to * detonating the whole mass at time=0.

temperature 0.30678 insert uds

point 5.24615 3.81328 point 5.24615 3.77718 point 5.24615 3.71811 point 5.23957 3.66561 point 5.21983 3.60982 point 5.20009 3.56716 point 5.16719 3.51465 point 5.14087 3.46543 point 5.13758 3.44902 point 5.14416 3.42933 point 5.15403 3.41948 point 5.17706 3.41292 point 5.20338 3.41620 point 5.25273 3.41620 point 5.30538 3.41620 point 5.35473 3.41620 point 5.39421 3.42276 point 5.42382 3.43589 point 5.44685 3.45230 point 5.48304 3.48183 point 5.52253 3.51465 point 5.56859 3.56388 point 5.63768 3.63607 point 5.69361 3.69186 point 5.73639 3.73452 point 5.75284 3.75749 point 5.75613 3.77390 point 5.75942 3.80344 point 5.75613 3.82969 point 5.75613 3.84938 point 5.72652 3.88548

18

point 5.67058 3.95111 point 5.61465 4.00362 point 5.51595 4.10535 point 5.45672 4.15457 point 5.43040 4.17755 point 5.40737 4.19395 point 5.37118 4.20052 point 5.29551 4.21364 point 5.20667 4.22021 point 5.16390 4.22021 point 5.13429 4.22021 point 5.12113 4.21036 point 5.11784 4.19724 point 5.12113 4.18411 point 5.13100 4.17098 point 5.14087 4.14473 point 5.15732 4.11191 point 5.18035 4.07253 point 5.20338 4.03643 point 5.22641 3.99377 point 5.23628 3.95439 point 5.23957 3.91173 point 5.24286 3.87563 point 5.24286 3.83625 point 5.24615 3.81656

endinsert endpackage package 'Lead LSC -1*

material 4 numsub 50 pressure 1.0e6 insert uds point 5.19022 3.81000 point 5.19351 3.79031 point 5.19351 3.76078 point 5.18693 3.74437 point 5.17706 3.73452 point 5.13100 3.68202 point 5.06519 3.60982 point 4.93359 3.47527 point 4.80527 3.34401 point 4.77895 3.31775 point 4.77237 3.31119 point 4.76579 3.29478 point 4.76579 3.27509 point 4.77237 3.25868 point 4.78553 3.24556

19

point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point

4.80198 4.82172 4.87437 5.12113 5.29880 5.33828 5.39092 5.43369 5.46659 5.52911 5.66071 5.79232 5.91405 5.93051 5.94038 5.94696 5.94696 5.94367 5.93380 5.92392 5.89760 5.83838 5.76600 5.70348 5.63439 5.55872 5.46988 5.45014 5.43369 5.41395 5.38763 5.30867 5.20009 5.03229 4.84804 4.80198 4.78224 4.77237 4.76908 4.76908 4.77237 4.78224 4.81843 4.88424 4.95991 5.05203 5.11126

3.24227 3.24227 3.24227 3.24556 3.24227 3.24556 3.25212 3.26196 3.28494 3.34072 3.47199 3.60326 3.72468 3.75093 3.77390 3.79359 3.81656 3.83625 3.85266 3.86579 3.89532 3.95767 4.02659 4.08894 4.15457 4.23333 4.33178 4.35147 4.36788 4.37444 4.37773 4.38101 4.38101 4.38429 4.38757 4.39085 4.38101 4.37116 4.35804 4.34819 4.33178 4.31537 4.27928 4.21036 4.12504 4.02987 3.96424

20

point 5.15403 3.92486 point 5.17377 3.89204 point 5.18693 3.86579 point 5.19022 3.83953 point 5.19022 3.81656

endinsert endpackage

*

package 'Cu Damper - Bottom" material 5 numsub 50 pressure 1.0e6 insert box xl 0.258 x2 4.747 yl 2.032 y2 2.540

endinsert endpackage

package 'Cu Damper - Top' material 5 numsub 50 pressure 1.0e6 insert box xl 0.258 x2 4.747 yl 5.080 y2 5.588

endinsert endpackage

*

endblock endinsertion *

eos *

* Aluminum Mie-Griineisen matl mgrun eos=7075-t6_al feos='/b/scheffle/cth/MGR_data'

ro=2.804 cs=0.5200E6 s=1.360 go=2.20 cv=1.07Ell

* Comp B Patty * Parameters estimated to be roughly halfway between RDX and TNT. * RP and R0 made identical per advice of G. Kerley, to avoid bug. MAT2 SESAME EOS=8311 FEOS=*/b/scheffle/cth/sesame'

RP=1.75 R0=1.75 CS=2.55E5 S=1.99 G0=1.0 CV=1.35E11 TYP=2.0 PR=9.0E10 ZR=3.00 MR=1.5 PI=0.5E10 RMAX=5.0 RMIN=0.01 TMAX=5.0 PT=1.0E13

** CEQ(I),I=1,40 ** 8.3110E+03 0.0000E+00 1.0000E+00 1.7500E+00 2.5680E-02

21

** O.OOOOE+00 -5.0519E+06 l.OOOOE+00 1.3500E+11 1.0000E-02 ** 5.0000E+00 6.6333E-01 3.2835E-01 1.9371E-01 1.8038E-01 ** 3.2767E+00-1.9307E+12 4.4248E+12 1.3500E+09 2.0000E+00 ** 5.0000E+00 1.5000E+00 3.0000E+00 9.0000E+10 7.0359E+10 ** 2.5500E+05 1.9900E+00 5.0000E+09 1.7200E+00 9.6333E+00 ** O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 ** O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 5.1220E+01 9.9985E+01

* CH-6 (RDX=HMX) HE as LSC charge mat3 SESAME EOS=8012 FEOS='/b/scheffle/cth/sesame'

RP=1.70 R0=1.70 *

* Lead (6% Antimony) Mie-Gru (modified from Library data) mat4 mgrun eos=lead_s feos='/b/scheffle/cth/MGR_data'

ro=10.9 cs=0.2006E6 s=1.429 go=2.74 cv=1.5512E10 * Copper Mie-gruneisen mat5 mgrun eos=copper feos='/b/scheffle/cth/MGR_data'

ro=8.930 cs=3.940E5 s=1.489 go=1.99 cv=4.56E10 endeos *

* heburn option not needed, with predetonated sesame option **heburn **endheburn epdata

vpsave * Library 7075-T6 Al. matep 1 steinberg-guinan='7075-T6_ALUMINUM' fvp=yb/scheffle/cth/VP_data'

poisson0.16 r0st=2.804 tm0st=0.105127 atmst=1.70 gm0st=2.20 ast=6.52E-12 bst=7.148680 nst=0.10 clst=0.00 c2st=0.00 g0st=0.267E+12 btst=965.0 eist=0.00 ypst=0.00 ukst=0.00 ysmst=0.00 yast=0.00 y0st=4.2E+09ymst=8.1E+09

* Library Lead matep 4 steinberg-guinan='LEAD' fvp='/b/scheffle/cth/VP_data'

poisson 0.43 r0st=l 1.34 tm0st=0.065489 atmst=2.20 gm0st=2.74 ast=11.63E-12bst=13.461800 nst=0.52 clst=0.00 c2st=0.00 g0st=8.6E+10 btst=l 10.0 eist=0.00 ypst=0.00 ukst=0.00 ysmst=0.00 yast=0.00 y0st=8.0E+O7 ymst=1.0E+09

*

matep 5 steinberg-guinan='COPPER' fvp=yb/scheffle/cth/VP_data' poisson 0.32

r0st=8.93 tm0st=0.154244 atmst=1.50 gm0st=2.02 ast=2.83E-12 bst=4.375085 nst=0.45 clst=0.00 c2st=0.00 g0st=0.477E+12 btst=36.0 eist=0.00 ypst=0.00 ukst=0.00 ysmst=*).00 yast=0.00 y0st=1.2E+09 ymst=6.4E+09

22

mix 3 endep *

*eor*cthin *

2d-cth-mmp NEOD Phase HI LSC detonation *

control tstop=40.e-6

* cpshift=900. * rdumpf=3600 * ntbad 1000000 endcontrol restart cycle=6832 file='rs04h' newfile=all

endrestart *

cellthermo mmp

endcell *

convct convect=l nofrag=2 interface=high

ende *

discard material 3 density-0.01 pressure 5.0e6 ton7.0e-6

endd *

edit shorn tim=0. dt=10000.

ends longt tim=0. dt=10000.

endl plott

time=0. dtfreq=5.0e-6 endp

endedit *

mindt

23

time=0. dtmin=1.0e-13 endm *

fracts stress pfracl=-8.1E9 pfrac3=-1.0E9 pfmix =-5.0E6 pfvoid=-5.0E6

endf *

boundary bhydro

block=l bxbot 0 bxtop 2 bybot 2 bytop 2

endb endh

endb

*eor*pltin *

units cgsev *

nlegend=off *

time,0.0e-6,rest color table 4 units cgsk limits x=-7.0/7.0,l y=0.0,14.0,1 flegend=d *2dplot,dots=density=2.,mirror,if

2dplot,materials,mirror limits x=3.0J.0,l y=1.0,5.0,l rbands, bl=le6, b2=lel0, cl=256, c2=236, skip=-2 flegend=b 2dplot,materials nlegend=on 2dplot bands=pressure, if rbands, bl=0.0, b2=0.1, cl=256, c2=236, skip=-2 2dplot bands=hvb2, if END OF FILE

24

APPENDIX B:

COMPB COMPUTATIONAL RESULTS

25

INTENTIONALLY LEFT BLANK.

26

O O r- »_ O © *© O O

2.5x

5.0x

1.0x

1

2.0x

4.0x

/«-^S

* E OT O

£ \ ■ *•.. Sr.PT? ** ^.°? «3 5£&

00

CO CM 00 CO CM

(wo) A

0

"**• "0 O E II O CD

"a> E T3 H-

0 I/O O _l

E = 0 o

<D

X to 0 -c :c o_ 1—

0 Q O r- LÜ CM Z 00

Tf M_ 0

I O £2 c 0 m

O) •*— D '"V.

-f -<t 0 E CM

0 CO ^ 00 m

Q. I 0 F 0

CM E O 1

0 1

-0 X CM <

27

W U Q <J l*J

to o

in es

X O ui

"it o

X o X o

^ ■•-iS 8^ 00

CO <N 00 CD CM

(wo) A

(O

O '* X in

c r^ .2 o "*~ o

^J- D • c m O ||

TJ E , V •— o to -1 ro

E = m o « -.—■

<D

X -E I Q- 1—

O Q O I-- UJ CM z in

1 T"-

C o m

sr o> ^r— o \

3 "* ü E^ o w *>

oo m Q.

I o E Q CM E it o O I z

X> X CM <

28

X ^—s IT)

>. tN

in u c a> a O)

Ü o x "x °. O

X o

X o

\M IM Wi

00

CO CN 00 CO CN

(wo) A

m

O T—

X CD NO

E O O O

m: o -"* O ,-:

c II O Q>

© E -o p o 13'o —J o

E o <->

— CD — CN

<D CO

X O -c n: o_ 1—

o O O 1^ LJ LO z ^

'«t M- ^ 1 o ^

o c O LO

^~ CD T— o \

3 co o E r1 o *to T—

CO m

Q_ 1 o E

CM E

kt. o o I z

-o x (N <

29

ü $£ O x x ^3

.-v m o o .»■"V c«4 10 ^--

IS

X o X o

N i i i i i 1 1 ■ -'

- ZL* ' )

:*.:

^ up«

."/ ». rV

■* ^!_

I*'*."-' ■—*

■• ■ -^

'• -

• • i

^ H ii... AT ., i

00

m

- "«*

- O

I

00

(£> CM 00 <£> CM

K) c O o O -+— LO () c o II

(0 a» E

■o f— O CO _i 00

in E ^s CM o

<D -*-

X CO O

zr. o

o o c o

Ü _o CD

m CD

m CM

JJ CO T-'

o o CM

a. E E

(wo) A o <

"D >- CM <

30

X ,»^x in >« E <N

CO u c n o>

w «—» Q U U

x ^; x ° o o m ^ CN

X o

CO

CO CN 00 CO CN

(wo) A

in

X -*- _ o

og -<t o 9

C CN O ||

- v •— O CO -J r-

E _ r^ = m © ^

X 10 o .c ü_ I

I— Q O O bj m z T:

*n "t y*- T.

l o oo ^— c o m

m CD ^— o \

3 m E^

o » -> oo m

Q. I o E

Q CN E i 5 o < l -^

-D >- CN <

31

o O

m

o O

o

o ^x o

in u CM m CM ■«*■

5"^ ■•••J iis 00

- ■**-

- o

I

00

CO CM 00 CD CM

C o "o c o

I o ^< ro r>« o oo '«t CM II tu

E ü

o (/> CM —' ro _ oo = CD

X O

O

1.1 fo

to o o o

o _o CD

O O CM

£

in

CD CM

J=> V) -r-

(wo) A o <

CM <

32

o o *- ,_ o o o o o •r— X X X q

X X

~ E in q

in q q c4 --<*

«0 ü

14 M ?*S$ £*2

- in

- ro

00 (O lO to CM

(wo) A

c: o

"o O c II o <D

~<» E T3 i—

O c/) o _l

E = o

<D

X V) O

JE ~i~

D_ i— o Q O r-- ÜJ CM Z co «••— o O K>

c o m

<j> T-— ö ^

~7 '"t ü E CM

o (0 ^> CD

QL o F o CM £ O

I JZ z

1—

ü 1

< z

TJ X CM <

33

5=; 5= o

* E CO Ü

X in

X o tri

F3

X o X o

CN

X o

1^ {0i Et?*

- m

hO

^

/T£

oo CO m m CM

c o

~o c o Q)

CO

I O ^< in r^ o o in* II CD E

x

o CO

^-J ro E = in ü *—

CD CO O .c Q_

Q O UJ CM

^ m ^_ • •

I o o CM

I— o

m

3 CM

O _2 CO ^

QL

E E I

(wo) A o o

■is CM <

34

(~> u Q t-J u

* E

X in

X o in

X q X o

X o

1^ ■?!:f

- LO

- to

c o

"o c o

o (/) _l

o a> 10 O

_C Q_

Q O

10 l O f—'

X to NO o o q

E

x

ü _o GO

O O CD CN

O

•S3 o c o

E

oo CO in m tN o Q CN

in CT>

m CM

_i> to -^

E E I

(wo) A O O I z -o x

tN <

35

<—I <—I Q U.> *-»

* E (0 u c \ Q

X in

X O X n

X o

X o CN LO ^ CM •*

.". ''£3''

m l O

- LO

c o -+— o c o

- ro

Ü _o m

ro o o in

E

CO _J CO

to E =r CN o

<D ^

X

o

"- to

o o c O lO ^ CD

5 m E ^

_u V) *-~

co CO iO to CN O Q CS

Q. E E I

(wo) A Ü <

CM <

36

© o ~^ O o

2.5x

5.0x

1.0x

1

4.0x

~ E w o E v*- .". :•••;' £■■.».■■:,

r^ » ■.'?'..•' ■tS:- £&

- m

- NO

in 1 O * X

"3- o c

o o o

D o

c CM o II

E O cn _J t^

E o

0>

m m

X D

D_ IE 1—

Q O O Ld m

M— *Z1 O oO

O

CO

c o

E

oo CO m tn CM O o CM

(wo) A

m

in CM

« (0 i-

E E

"o <

CM <

37

- in

- to

co CO m hO CN

(wo) A

m

O T—

X to r>* o

C 00 o ^- n CM c II o a> <D E TJ i—

O CO CM _J hO

E ÜU ^^ CO o

X n r _L Q_ 1— o O O ID LU N) Z o M— • • O o o c o m 1^ CD

T— o \ -f CO

Ü E CM o CO ,-> CD

CL O F Q CM E

i 2

o I <

T> >- CM <

38

O id id "* X X w « q ■^ ro 1^

o o CO

LO

N")

00 CO IT) K) CM

o

c o

% TJ

O CO _J

1? = o

x 3

I O o CM

c o

3

o II

E

Q_ I— O

o h«. Lü CN z do M- ° O r«o

m

CM

_2 OT T-~

Q.

Io I -r

(wo) A I z XJ x CM <

39

X CO

E -

*= fe: o id X X "C X m o ^ oo hO |< ^ cj

m

m

CO co m m CN

CO

Q O

O JO CD

X in

o o in II CD

E

c

"o c o (D

x> _

o '*- in

£ = 55

x S D- I—

O O CN

I— o

r-- CN in

o"

o m

JO

E jw 'to -^~

CN

Q. E E

(wo) A o O

■ig CN <

40

0) ^->

o o

on

o O *>< If)

o

o o *x X

00 K3 r~- CN|

<0 \ 0_ »—» ■••?;'

.•.;;; aas.

- m

c o D C o

m l O 1< CO i*0 O O O

II

o> E

- fO

CO CO IT) ro CN

£ = CD Ü — <N

-C IE

O Q o r-»

O c o m £: en

— o \

^ E ^ _o m o Q CN

to ■«—

Q. E E

(üJö) A

0 O 1 z TJ X CN <

41

3ress

ure

(d

/cm

2) oq

o in

o ^< o

:•:;•

o X

CO

■^ CN

- in

- ro

1 O ^^™

X T"

K) c O o O H— IT) n c o II

<D b TJ f— O CO _l 00

F ' eg o

(/I

->*

X D x: Q_ i

o

O o

oo lO in ro CN

Ja: o

_g GQ

O O CM

E

m

in CN

(wo) A

E E

is o <

■i? (N <

42

u X ä

w "? °. ^ hO t~»

O 5=2 o 00

- m

- fO

oo CD m hO CM

in

O »■—

X •«fr o

i_ o o o o o c CN o II

E O CO _l r^

E ^^ r^- ~" 0)

X O

Q. :r j—

Q o O Lü m

o 00

c o

3

_ü OT ^~ o

m

m

m CN

o Q CN

Q. E E

(wo) A o <

CN <

43

o S o

L_ CM

« 1

X 00

X in

X ©

© \ •' ■'. ."'.-• [;.;' n^ U-;

o ^x DO

in

- in

- t-n

oo CD m ro CN

(wo) A

44

Si a L- o > 1

o 1 o

i o o

O o O

c X CM

X in

X o X o

X o o f-2 CM m CM

o o ri- ^^ ~ S^T

o IT)

K)

00 to in to CM

c o

"5 c o CD

o CO _J

"E = o

^^ (D ^ CO X o

o II

E

o _o 0Q

O Q CM

Q_ I— O

Q O r-» LiJ CM Z CO

O |sQ

c Ä o lO

O \ 3 ^ E <N

to ^~

Q.

Io I ^

(wo) A I z XJ x CM <

45

<D -Q □ k-

> 'o b b % c <N « O O o .^ CN ir> -^ o D i ■ •

<D :■?■*,' OH

o

1 1"1 1— 1 1 1 ■ —1

1

-I

1 1

1

s t

' '

f

J • 1

- in

to

oo CO m K) CM

(wo) A

c o

"o c o

"cö -o

o to

(O I O

in

o o iri II <D E

£ = o ^^ CD

X ö

to in

Q_ I— :r t— o

Q O Ul CN z in M- 'S O CD

m

o _o CD

O O CN

CN E to

E it 0 O

1 z -o x CN <

46

-Q O

D > 1 o

1 o o o O

o o C

X X m

X o X o X o

o ^1 CN in «M

o o m m H H 1 "TT^n -JTT i —i

i

i 1

1 1

k

f

i i i

/

' i

- m

- to

oo CO m K) CN

m I O

CD K)

C O O O ^ O O --: £ l> O <D

© E ■o :-

O to _i

o ^~"' CD

X O _C G_

Q O

O _o CD

O O CM

O O

CM

O

m

o -— o E o

E

Q. E £ I

in cn

in CN

(WO) A ■iSS CM <

47

ffi -Q D k. • > o O o

c X CN

X X o

o CM m •*• Ü

I" \ O 0) Ui

o y ■"x x

o q

I O

- m

- ro

CO to LO K) CN

c o "5 c o

o CO

E = o

V— (D

X o

o

m

fO o o in

7T o E

GO in CN

z rn ■_ • • O o c o

E j=: "tO <r-

o Q CN

in en

m CN

a. E E

(wo) A o <

CN <

48

a O > c

#o

o o

en

7 ' ' o 9 £ ■"3 X X

o ^ x o

T"~ r^n i£T7

- m

m l O

o o o o CN II Q>

E

- hO

C O

~o c o

% ~o _ o *~ tn

^-> r-

X o

i— Q O O LJJ m z T:

o CO

o _o m

c

jo

E

CO CO in K) CN o Q CN

m

m CN

y w «-•

(wo) A

E E

is o <

CN <

49

- m

e o "o c o

%

m I O ^< ro 1^ O CO ^ CN II © E

o

- to E = o N~x CO

x S

o .o CD

00 CO

O

i. i fo

o o o E o -4— _g

E .Ü *OT *—

m O?

CO CN

CO CO in m CM o Q CM

Q_ E E

(wo) A o <

CM <

50

APPENDIX C:

LX-14 SIMULATION INPUT DECK

51

INTENTIONALLY LEFT BLANK.

52

*eor*cgenm *

2d-cth-mmp simulation of NEOD Phase in LSC detonation *

control ep mmp

endcontrol *

mesh block geometry 2dc typee x0=0.0 xl n=70 w=4.747 dxl=0.0055 x2 n=3 w=0.0155 rat=l x3 n=110w=1.252 dxf=0.0055 x4 n=17 w=1.5 dxf=0.021

endx y0=0.0 yl dyf0.15 dyl0.05 w2.54 y2 dyf0.05 dyl 0.0055 w 1.27 y3 dyf 0.0055 dyl 0.05 w 1.27 y4 dyf 0.05 dyl 0.15 w2.54

endy xact=4.76,5.95 yact=3.24,4.40

endblock endmesh *

insertion of material block 1

package 'AL Case -1' material 1 numsub 50 pressure 1.0e6 insert box xl 4.747 x2 4.76250 yl 0.000 y2 15.24000

endinsert endpackage

package 'HE Patty -1' material 2 numsub 50 pressure 1.0e6

53

insert box xl 0.000 x2 4.74700 yl 2.540 y2 5.08000

endinsert endpackage

package HE LSC - 1' material 3 numsub 50

* G. Kerley told me (12/1/94) that RDX @o=1.70 g/cc detonates at * T=3560K=0.30678eV; Po=13.8GPa. This calculation was done with BCAT * or PANDA. Specifying the insert at this temp is equivalent to * detonating the whole mass at time=0.

temperature 0.30678 insert uds

point 5.24615 3.81328 point 5.24615 3.77718 point 5.24615 3.71811 point 5.23957 3.66561 point 5.21983 3.60982 point 5.20009 3.56716 point 5.16719 3.51465 point 5.14087 3.46543 point 5.13758 3.44902 point 5.14416 3.42933 point 5.15403 3.41948 point 5.17706 3.41292 point 5.20338 3.41620 point 5.25273 3.41620 point 5.30538 3.41620 point 5.35473 3.41620 point 5.39421 3.42276 point 5.42382 3.43589 point 5.44685 3.45230 point 5.48304 3.48183 point 5.52253 3.51465 point 5.56859 3.56388 point 5.63768 3.63607 point 5.69361 3.69186 point 5.73639 3.73452 point 5.75284 3.75749 point 5.75613 3.77390 point 5.75942 3.80344 point 5.75613 3.82969 point 5.75613 3.84938 point 5.72652 3.88548 point 5.67058 3.95111

54

point 5.61465 point 5.51595 point 5.45672 point 5.43040 point 5.40737 point 5.37118 point 5.29551 point 5.20667 point 5.16390 point 5.13429 point 5.12113 point 5.11784 point 5.12113 point 5.13100 point 5.14087 point 5.15732 point 5.18035 point 5.20338 point 5.22641 point 5.23628 point 5.23957 point 5.24286 point 5.24286 point 5.24615

endinsert endpackage package 'Lead LSC material 4 numsub 50 pressure 1.0e6 insert uds

4.00362 4.10535 4.15457 4.17755 4.19395 4.20052 4.21364 4.22021 4.22021 4.22021 4.21036 4.19724 4.18411 4.17098 4.14473 4.11191 4.07253 4.03643 3.99377 3.95439 3.91173 3.87563 3.83625 3.81656

r

point point point point point point point point point point point point point point point point

5.19022 5.19351 5.19351 5.18693 5.17706 5.13100 5.06519 4.93359 4.80527 4.77895 4.77237 4.76579 4.76579 4.77237 4.78553 4.80198

3.81000 3.79031 3.76078 3.74437 3.73452 3.68202 3.60982 3.47527 3.34401 3.31775 3.31119 3.29478 3.27509 3.25868 3.24556 3.24227

55

point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point

4.82172 4.87437 5.12113 5.29880 5.33828 5.39092 5.43369 5.46659 5.52911 5.66071 5.79232 5.91405 5.93051 5.94038 5.94696 5.94696 5.94367 5.93380 5.92392 5.89760 5.83838 5.76600 5.70348 5.63439 5.55872 5.46988 5.45014 5.43369 5.41395 5.38763 5.30867 5.20009 5.03229 4.84804 4.80198 4.78224 4.77237 4.76908 4.76908 4.77237 4.78224 4.81843 4.88424 4.95991 5.05203 5.11126 5.15403

3.24227 3.24227 3.24556 3.24227 3.24556 3.25212 3.26196 3.28494 3.34072 3.47199 3.60326 3.72468 3.75093 3.77390 3.79359 3.81656 3.83625 3.85266 3.86579 3.89532 3.95767 4.02659 4.08894 4.15457 4.23333 4.33178 4.35147 4.36788 4.37444 4.37773 4.38101 4.38101 4.38429 4.38757 4.39085 4.38101 4.37116 4.35804 4.34819 4.33178 4.31537 4.27928 4.21036 4.12504 4.02987 3.96424 3.92486

56

point 5.17377 3.89204 point 5.18693 3.86579 point 5.19022 3.83953 point 5.19022 3.81656

endinsert endpackage

*

package 'Cu Damper - Bottom' material 5 numsub 50 pressure 1.0e6 insert box xl 0.258 x2 4.747 yl 2.032 y2 2.540

endinsert endpackage

*

package 'Cu Damper - Top' material 5 numsub 50 pressure 1.0e6 insert box xl 0.258 x2 4.747 yl 5.080 y2 5.588

endinsert endpackage

*

endblock endinsertion *

eos *

* Aluminum Mie-Griineisen matl mgrun eos^7075-t6_al feos='/b/scheffle/cth/MGR_data'

ro=2.804 cs=0.5200E6 s=1.360 go=2.20 cv=1.07Ell *

*LX-14 Patty * Parameters estimated to be roughly halfway between RDX and TNT. * RP and R0 made identical per advice of G. Kerley, to avoid bug. MAT2 SESAME EOS=8231 FEOS='/b/scheffle/cth/sesame'

RP=1.850 R0=1.850 CS=2.9E5 S=2.0 G0=1.0 CV=1.35E11 TYP=2.0 PR=8.8E10 ZR=2.36 MR=1.5 PI=0.5E10 RMAX=5.0 RMIN=0.01 TMAX=5.0 PT=1.0E13

** CEQa),I=l,40 ** 8.2310E+03 O.00OOE+00 1.0000E+00 1.8500E+00 2.5680E-02 ** 0.0000E+00 1.9166E+06 1.0000E+00 1.3500E+11 1.0000E-02 ** 5.0000E+00 6.6667E-01 3.3333E-01 2.0000E-01 1.8889E-01

57

** 3.4120E+00 -1.7943E+12 4.2272E+12 1.3500E+09 2.0000E+00 ** 5.0000E+00 1.5000E+00 2.3600E+00 8.8000E+10 6.8497E+10 ** 2.9000E+05 2.0000E+00 5.0000E+09 1.8500E+00 1.2459E+01 ** O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 ** O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 5.1450E+01 1.0004E+02 *

* CH-6 (RDX=HMX) HE as LSC charge mat3 SESAME EOS=8012 FEOS='/b/scheffle/cth/sesame'

RP=1.70 R0=1.70 *

* Lead (6% Antimony) Mie-Gru (modified from Library data) mat4 mgrun eos=lead_s feos='/b/scheffle/cth/MGR_data'

ro=10.9 cs=0.2006E6 s=1.429 go=2.74 cv=1.5512E10 * Copper Mie-Griineisen mat5 mgrun eos=copper feos='/b/scheffle/cth/MGR_data'

ro=8.930 cs=3.940E5 s=1.489 go=1.99 cv=4.56E10 endeos *

* heburn option not needed, with predetonated sesame option **heburn **endheburn epdata

vpsave * Library 7075-T6 Al. matep 1 steinberg-guinan='7075-T6_ALUMINUM' fvp=,/b/scheffle/cth/VP_data'

poisson0.16 r0st=2.804 tm0st=0.105127 atmst=1.70 gm0st=2.20 ast=6.52E-12 bst=7.148680 nst=0.10 clst=0.00 c2st=0.00 g0st=0.267E+12 btst=965.0 eist=0.00 ypst=0.00 ukst=0.00 ysmst=0.00 yast=0.00 y0st=4.2E+09 ymst=8.1E+09

* Library Lead matep 4 steinberg-guinan='LEAD' fvp='/b/scheffle/cth/VP_data'

poisson 0.43 r0st=l 1.34 tm0st=0.065489 atmst=2.20 gm0st=2.74 ast=11.63E-12bst=13.461800 nst=0.52 clst=0.00 c2st=0.00 g0st=8.6E+10 btst=110.0eist=0.00 ypst=0.00 ukst=0.00 ysmst=0.00 yast=0.00 y0st=8.0E+07 ymst=1.0E+09 *

matep 5 steinberg-guinan='COPPER' fvp=yb/scheffle/cth/VP_data' poisson 0.32

r0st=8.93 tm0st=0.154244 atmst= 1.50 gm0st=2.02 ast=2.83E-12 bst=4.375085 nst=0.45 clst=0.00 c2st=0.00 g0st=0.477E+12 btst=36.0 eist=0.00 ypst=0.00 ukst=0.00 ysmst=0.00 yast=0.00 y0st=1.2E+09 ymst=6.4E+09

*

mix 3 endep

58

* *

*eor*cthin *

2d-cth-mmp NEOD Phase HI LSC detonation *

control tstop=40.e-6

* cpshift=900. * rdumpf=3600 * ntbad 1000000 endcontrol restart

cycle=0 * file='rs04h' newfile=all

endrestart

cellthermo mmp

endcell

convct convect=l nofrag=2 interface=high

ende

liscard material 3 density -0.01 pressure 5.0e6 ton 7.0e-6 :ndd

edit shortt

tim=0. dt=10000. ends longt

tim=0. dt=10000. endl plott

time=0. dtfreq=5.0e-6 endp

endedit *

mindt time=0. dtmin=1.0e-13

endm

59

fracts stress pfracl=-8.1E9 pfrac3=-1.0E9 pfmix =-5.0E6 pfvoid=-5.0E6

endf *

boundary bhydro block=l

bxbot 0 bxtop 2 bybot 2 bytop 2

endb endh

endb *

*eor*pltin *

units cgsev *

nlegend=off

time,0.0e-6,rest color table 4 units cgsk limits x=-8.0,8.0,l y=0.0,16.0,l *flegend=b flegend=d *2dplot,materials,mirror 2dplot,dots=density= 10.,mirror,if limits x=-1.0,7.0,l y=0.0,8.0,l *rbands, bl=le9, b2=lell, cl=236, c2=256, skip=2 *2dplot,materials 2dplot,dots=density= 10.,mirror,if nlegend=on *2dplot bands=pressure, mirror, if bands=le9,5e9, lelO, 2el0,4el0,5el0,6el0, 8el0, lell 2dplot dots=pressure=7el0 mirror if *rbands, bl=0.0, b2=0.1, cl=236, c2=256, skip=2 *2dplot bands=hvb2, mirror if bands=0.0,0.01,0.02, 0.03,0.04,0.05,0.06,0.07,0.08, 0.09,0.10 2dplot dots=hvb2=.50 mirror if

60

APPENDIX D:

LX-14 COMPUTATIONAL RESULTS

61

INTENTIONALLY LEFT BLANK.

62

ä E in o

IS

o o ^ wm O O o o o X X X o

X X in o o o CM m CM "*

U m in 00

o

lO ^ CM O 00 CD CM

(wo) A

-*- o -**

-2 I © r-

TJ •—

to o _i

E i=

o o <D

X

NEO

D Ph

as

3:46

CTH

1

to

._ CT) T~~ ■s ° Ü is: o OT to

00 CO Q.

1 o F o CM

2d

-cth

-m

CTK

CZY

G

63

*-' *-' o ^

* E

X m © in

5^- ■ •,;:.

X o x o

X o

■*'ä Sä«:

00

(O

CO CN 00 CD CN

(wo) A

X CO ^"~

c m o o -«— O

'«• Ö r in o II

4» CO CO E

»— o to _i cn

E — m o o

,*—

<D

X CO n r _L

o_ O

o o K) LxJ K) z CO

^- M— "t

1 o cn o

c o in • ^— cn

T— D ^v

o 13 E CN

o CO ro oo m

Q. 1 o F o

CN E i

o 1

T3 1— CN O

64

o o ^ _ O 2 o o O X X "C X X

* E CO o

If) CN

m o If)

o O CN

o

'■ v:- ■;•;■;•: as®

00

- xf

- o

- ■*!-

m

O ^™~

X CN

c O o O !«_ O D ,_: C II o <l> <D E

T3 h-

O to _l

O h — CD Ü

CD <N

X CO D

SZ n: Q_ i—

o Q O o LU '■3- Z

tö V^_ • • o K>

— Ol

oo CD CN 00 CD CN

O J2 GO

O Q CN

(wo) A

n >> 3 E

m CN

CO to Q. £ E l

JZ Z5

o Q 1 v:

T3 i— CN o

65

o o ^ ,_ O O o o o x x X o

X X

* E lO o <N iri

o o

n ü _a s\ PW Q —- '.*■■ m m Sät

00

m l O

•^ in

to CM CO CO CM

(wo) A

^t- ° n o 2 ■5 t ■o H-

o io i^ -" xj-

E CM = "fr o ü

<D

X

NEO

D P

has

19:2

8 C

TH

"fr 1 °3

't—

o lS o V) tO 00 m

a. 1 o F o

CM

2d

-cth

-m

CTK

DU

K

66

:t E w O

X lO

X © in

X q X o

04

X q

!> '*•*•• j;j. iw^y.

CO

- ■<*

I

m 1 O V

X in 0

c 0

0 0 0 ^—

0 CN c II 0 a) CO E

TJ 1—

O C/0 _J

F — m o

CD m

X O sz n: D_ 1—

0 Q O m Ld CN Z

10 CN CO to CN

00 I

o .0 CQ

O Q CN

O ^

oS

1\ to ro

a. E E

(wo) A ü o I ^

TJ h- CN O

67

*—» *—» Q t—> *~J

X in

X O

ä E CO u £\

X o o

CN

X o

00

- ■<*

- o

I

1 o MM

X o> m

r 00 o h»

CM o CM c o II

<D V I-

"O t— o <r> _J to

in h ^ to o

(D CM

X to o r X

D_ 1— o

O O o LiJ N) Z

00

Ü

m

o £

1° CO CM 00 CO CM o o

CM

_2 v) "t Q. £ E l

(wo) A 0 o

1 ^ TJ I— CM O

68

o o _ ^ O O o o o X X X

o X X

^~N 10 O o o >- E <N m CM "* v> u

r .":| F&] c ;■•■.«■■: C5^7 0) O o> r ^ L2J ,tfr; Eft-*

m

c o ^ Ö Ö c o ~©

E

CO o

co E = o

X o

o o

h- o ID

ro Ö

O £ .— CD

00 CO m K} tN

o _o

^- CD

I O Q CN

tn ro

Q. E E I o

(wo) A o I TJ CM O

>- M O

69

£ E to u

IS

o o ^_ O O o £ o X X ^; x x

o P P in o es in

I' ":| ~ CM *«*

£'.*.■;'

bJ 'f..'- •'CS:- sM

- m

i>o

E

"o c o

XJ

O CO _J

ü """^ <ü

X o

I o ^< CD

K5 o o in II

E

Q O

c o

n: h- o NO

• • CO

öS o in

00 CD in to CM

o _o GQ

O Q CN

CM 3 E

Q. E E l

(wo) A 0 Q 1 M

TJ J— CM O

70

in o

X m

X o in

*> [,:■

X o in —•

o es

x o

Xl± ■^J

in

K")

m

O ^™"

X CN

c O o O ^ O D v-! c II o <S) <D E

-o j—

O to _J o

F — O) ü

<D CN

X V) O

.C :r Q_ i—

o Q O o LU '^f Z

rö M— • • O to

CO CD m r-O CN

ü .o CD

o Q CN

O £

■i ^

Q. E E

(wo) A 0 Q 1 ^ •O I— CN O

71

o o o O O X X X

q X X

in o c4 in

o o

CO u

P--5-1 £\ .". • o> [••■■; 1 »•H Q «i>

■:j>il ^^K^^

-.- ,•';

;->';-< '.:^W3p«-v &*': '

- V;,i'*

y\'^>v

-

- .*•:!,- *•*•'•

-

-

.'*'" !■ *Y

■ .. • ":•"

,-■''';;!

-

• " ■ H

h^. :'=?.-;.-.'?

"vC'«C r -..:•.'■-,'

• ■. .-**-«'•

1 ' .1,-.. . -i- ...l. ■■ " 1

m

- r>o

m 1 O ^__ X

-«■ V""

c o

o o m ^^—

n ■«

c II o a> <D b

TJ \—

O to r^ _J "*

E = CM

u <D

X V) n r _L

a_ I— O

o o 00 ÜJ CM z a>

to

in .— a>

o _o m

CO CO m ■o CM o Q CM

(wo) A

IS! _2 m ro

Q. E E

is 0 Q

1 ^ T3 t— CM O

72

5= 5= o

.-* E in o

X m

X O in

X o

X o X o

5^- a —

:;S %&

- LO

ro

m

O '« X m o

c o o o o

1

o <N c II o <D a> E

TJ i— o CO

E — m o m

s— <D

x 8 JZ T Q_ Y—

O Q O m LxJ CM Z ö w— -<* O •f^

00 ID m K> CM

*- o

Ü

m o o CM

(wo) A

m CT>

oo

CL E E

is 0 Q 1 M TJ h— CM O

73

V-» *—' Q i-J **-*

ä E (0 u

X o If)

[=•■":

X o

X o X o

'■h £*? £?1 if*-*

- m

c

"o c o

If) I o 'x <J> m oo <N

ll a? E

- ro

O

_i to

E = to ü — fN

o

I . I **! 55? • *

^ -5 ">

00 ID m r«0 CM

(wo) A

- p£ o t \ £ 'v> *<t m

Q.

0 Q 1 ^

TJ I— <N O

74

S E

o ^ ^ o ° ^ X ?s w X ^ in o 4f oo ,-: fO r>. ^

- lO

- rO

00 CD lO ro CN

(wo) A

c o

H— O o || c o Q>

"O i—

O to o _J

E — o

CD

X CO O

sz Q_

in i— o

O Ld 2 CO

o o

o S

75

o (-> o o « ^-s

x x 00 "1

X © X

3 F ■^ fO r»» '- vt °

|.":!;i| <» \ ;v.. '/.■>*

n1"^ LaiJ £ti&

o ^< CO

- m

- to

00 CO m to CN

(wo) A

CO

i O *X CD

to O O in

II CD

£

c o

"5 c o

■o j—

o GO

*~^—' o» E = £ o

*~"^ <D

O K> Ld NO z CO

N- M— o CD

O c o m

1^1 o> t— D \

o 3 E CN

o to to CO

Q_ o F o CN E

1 x: M

3 o

1 ■D 1— CN o

76

X CO

o

L. c 3 i " i- -a :■ ■

j= i= o jd x m CO

X o X X 00

r» ^

■}x\

- in

ro

m

O f"-

X CM

c O o O

L£I O o ,_: c II o a> <D E

■o i— O

_J o f- — a> o

(D

CM

X O -C zn D_

o Q O o Lü '■fr Z

tö M— • • O to

o £

00 ID m to CM

(wo) A

T— n

o 3 E CM

o to to m

Q. o F Q CM E

i x: ZD o

1 -o 1— CM O

77

o

r * E *- o

X in

O ^» X O

o o X 00 CN

'"'•■■'■ >!£$

I O

•^ IT)

- if)

- K-) O

X

o ,|—

c II o a>

"a> b "O h-

o (/) 1^ _l ^t"

CN = "*

a> to o I

n i— O

o O 00

CM

-- O

00 CO lO K) CM

o _o CO

o Q CN

m en

CN E *CO K)

I

(wo) A ü o I ^

■u I— CN O

78

L. N

» I i3

o ü 5=2 o bo « P X

o ^< oq c-3

- in

oo CO in to CM

(wo) A

- to

in

X m o

c o o o o

1

D CN c II Ü a> 03 E

TJ f— O

m F — m o

CD tf>

X to O

-C n: Q_ i—

o Q O m ÜJ CN Z ö «*- ^> o •*—

-= CO -* 1 CN Ü C \

m Q.

£ E

CN t

"o Q I ^

"O t— CM O

79

o fe; fe; o fei O ^ 00 r>- ^ oj 3 f>

00

• '•''. \:j.X '. ■•-•*;

m

ro

to to m m CM

(wo) A

I O ^X

m c £ o r^ ^ CM D CM

o "

o _J co

E = to O — CM

Vw^ 0) -,—

°- o

o Ä •— CD

j* i o ° *= \ _2 "w <«* m

£ E

CM c

ü Q I ^

TJ t— CM O

80

01 J3 O

o > 1 o o O o o o O

c X CM

X lO

X o X

o X o

o 1-! CM m CM

u a a

en mmm

o 10

ro

00 CO in ro CM

(wo) A

c o

Iff 11 -g P

to o

E = Ü

^^ a)

x S

o

o o CM

o o <g

.1$

II to ro

a. E E I

o

Ü I

■D CM O

>- M o

81

-Q o i_ D > L k I

O a O

o O

c X O X o

X O

o T-: CM m CN

Ü

M D ■ ■ ■ .';■•;'*.

© h- f!/fu CC 1 ■-■ •■*

- m

- ro

oo CO m to CN

(wo) A

c o

o c o "a! T3

to I o CO to o o in II CO E

o to

E = £ Ü

°- o o fo LJ tO -5? * * Z CO

CD o to

Ü _o CD

o o CN

c o

E 'co ro

CN

E E

0 Q 1 ^ -o I— CN O

82

a D >

I O

I o o o o 5^ S£ o 5=2

v " " s> X <N "> <=>. o o ^ CM in »-: CM

- m

- r-O

00 CO lO to CM

(wo) A

m

O ^^™

X CM

C O o O zz O Ö ,_: c II o <D CD E

-o t— o to _l o

F — CD o

CD

CM

X CO O

JZ 3Z Q_

O Q O O LÜ "* Z

K) M— • • o jo

o m CD

1 ^^ i— n V

m 3 E CM

o CO K> QQ

Q. O F O CM E

i JZ

ID o

1 T3 h- CM O

83

-O D l~ •■■

> o O o

CM X X

c m o o <N If)

o |:.'.J o F;.--; <u -1 f '- cc 1 ■-1 bu

o O

o o CM

- lO

- to

lO

o *r— X -* ^^""

c o o o LO

■4' ii

o "■

r II o CD

% b "D 1—

O lO 1^ _J N-

E o

CD

CN

X CO o r X a. o o o 00 Ld CM z a>

to

io .- o>

00 to LO to CN

O jO

o o CN

CO N")

E E I w

(wo) A 0 o 1 ^ T3 I— CN O

84

_Q O

O > o b o a O

c X o X

o -^ <N m

Ü r;-;,] o ■ ■■

© a: ..■'■ ■" m #:

q CN4

- in

- ro

IT) 1 o T—

X in o

c o o o o 1

o (N c II o Q) a> E

TJ i—

O

i r-- U)

F = m o U)

'*-' CD

x S x: n: Q. i—

o Q O m Ld <N Z ö M— ^<t o ■^

00 CD m m CM

o _o m o O CM

-5 »

co ro

Q. E E l

(wo) A o I

-o CM O

ID O

85

<D -O O k_ D >

1 o 1 o i o © o

O

C X X

in X o X o

X o o ^-2 CM UO CN

o m m 577 o IS

- in

- NO

m

O V™

X o> in

c 00 o i^.

CN o CN

o II CD

CD b TJ f— O (/) _l CD

m h — CD Ü

CD CN

X CO o r ü

Q_ i— o O O o Ld N) 2 en

o £ ._ en t- o

i>o

Ü _o m o o CM

(wo) A

CO -»t

Q. E E

0 Q 1 ^

TJ I— CM O

86

NO. OF COPIES ORGANIZATION

DEFENSE TECHNICAL INFO CTR ATTN DTIC DDA 8725 JOHN J KINGMAN RD STE0944 FT BELVOIR VA 22060-6218

DIRECTOR US ARMY RESEARCH LAB ATTN AMSRL OP SD TA 2800 POWDER MILL RD ADELPHI MD 20783-1145

DIRECTOR US ARMY RESEARCH LAB ATTN AMSRL OP SD TL 2800 POWDER MILL RD ADELPHI MD 20783-1145

DIRECTOR US ARMY RESEARCH LAB ATTN AMSRL OP SD TP 2800 POWDER MILL RD ADELPHI MD 20783-1145

ABERDEEN PROVING GROUND

DIRUSARL ATTN AMSRL OP AP L (305)

87

NO. OF COPIES ORGANIZATION

NO. OF COPIES ORGANIZATION

1 HEADQUARTERS ATTN SARD TT DR F MILTON PENTAGON WASHINGTON DC 20310-0103

1 HEADQUARTERS ATTN SARD TT MR J APPEL PENTAGON WASHINGTON DC 20310-0103

1 HEADQUARTERS ATTN SARD TT MS C NASH PENTAGON WASHINGTON DC 20310-0103

1 HEADQUARTERS ATTN SARD TR DRRCHAIT PENTAGON WASHINGTON DC 20310-0103

1 HEADQUARTERS ATTN SARD TR MS K KOMMOS PENTAGON WASHINGTON DC 20310-0103

1 DIRECTOR US ARMY RSRCH LAB ATTN AMSRL CP CA D SNIDER 2800 POWDER MILL RD ADELPHI MD 20783-1145

4 COMMANDER USA ARDEC ATTN SMCAR FSE TGORA E ANDRICOPOULOS BKNUTELSKY A GRAF PICATINNY ARSENAL NJ 07806-5000

COMMANDER USA ARDEC ATTN SMCAR TD R PRICE V UNDER T DAVIDSON PICATINNY ARSENAL NJ 07806-5000

COMMANDER USA ARDEC ATTN F MCLAUGHLIN PICATINNY ARSENAL NJ 07806-5000

COMMANDER USA ARDEC ATTN SMCAR CCH T SMUSALLI P CHRISTIAN KFEHSAL N KRASNOW RCARR PICATINNY ARSENAL NJ 07806-5000

COMMANDER USA ARDEC ATTN SMCAR CCH V EFENNELL PICATINNY ARSENAL NJ 07806-5000

COMMANDER USA ARDEC ATTN SMCAR CCH J DELORENZO PICATINNY ARSENAL NJ 07806-5000

COMMANDER USA ARDEC ATTN SMCAR CC J HEDDERICH COL SINCLAIR PICATINNY ARSENAL NJ 07806-5000

COMMANDER USA ARDEC ATTN SMCAR CCH P JLUTZ PICATINNY ARSENAL NJ 07806-5000

88

NO. OF COPIES ORGANIZATION

NO. OF COPIES ORGANIZATION

2 COMMANDER USA ARDEC ATTN SMCAR FSA M DDEMELLA F DIORIO PICATINNY ARSENAL NJ 07806-5000

1 COMMANDER USA ARDEC ATTN SMCAR FSA CSPINELLI PICATINNY ARSENAL NJ 07806-5000

11 DIRECTOR BENET LABORATORIES ATTN SMCAR CCB C KITCHENS JKEANE JSANTINI J VASILAKIS GFRIAR RFISCELLA V MONTVORI J WRZOCHALSKI J BATTAGLIA R HASENBEIN SMCAR CCB R S SOPOK WATERVLIET NY 12189^050

1 COMMANDER WATERVLIET ARSENAL ATTN SMCWV QAE Q C HOWD BLDG 44 WATERVLIET NY 12189-4050

1 COMMANDER WATERVLIET ARSENAL ATTN SMCWV SPM T MCCLOSKEY BLDG 25 3 WATERVLIET NY 12189-4050

1 COMMANDER WATERVLIET ARSENAL ATTN SMCWV QA QS KINSCO WATERVLIET NY 12189-4050

1 COMMANDER USA ARDEC ATTN AMSMC PBM K PICATINNY ARSENAL NJ 07806-5000

1 DIRECTOR USACRREL ATTN P DUTTA 72 LYME RD HANOVER NH 03755

1 DIRECTOR US ARMY RSRCH LAB ATTN AMSRL WT L D WOODBURY 2800 POWDER MILL RD ADELPHI MD 20783-1145

1 COMMANDER USA MICOM ATTNAMSMIRD W MCCORKLE REDSTONE ARSENAL AL 35898-5427

1 COMMANDER USA MICOM AMSMI RD ST P DOYLE REDSTONE ARSENAL AL 35898-5427

1 COMMANDER USA MICOM AMSMI RD ST CN TVANDIVER REDSTONE ARSENAL AL 35898-5427

1 COMMANDER USA MICOM AMSMI RD ST WF MCOLE REDSTONE ARSENAL AL 35898-5427

2 DIRECTOR USARO MATH & COMP SCI DIV ATTN A CROWSON JCHANDRA PO BOX 12211 RESEARCH TRIANGLE PK NC 27709-2211

2 DIRECTOR USARO ENGRNG SCI DIV ATTN G ANDERSON R SINGLETON PO BOX 12211 RESEARCH TRIANGLE PK NC 27709-2211

89

NO. OF COPIES ORGANIZATION

NO. OF COPIES ORGANIZATION

PROJECT MANAGER SADARM PICATJNNY ARSENAL NJ 07806-5000

PMTMAS ATTN SFAE AR TMA COL BREGARD CKIMKER PICATINNY ARSENAL NJ 07806-5000

PMTMAS ATTN SFAE AR TMA MD HYUEN J MCGREEN R KOWALSKI PICATINNY ARSENAL NJ 07806-5000

PMTMAS ATTN SFAE AR TMA MS R JOINSON DGUZIEWICZ PICATINNY ARSENAL NJ 07806-5000

PMTMAS ATTN SFAE AR TMA MOP WLANG PICATINNY ARSENAL NJ 07806-5000

PEO ARMAMENTS ATTN SFAE AR PM D ADAMS TMCWILLIAMS PICATINNY ARSENAL NJ 07806-5000

PEO FIELD ARTILLERY SYSTEMS ATTN SFAE FAS PM H GOLDMAN PICATINNY ARSENAL NJ 07806-5000

PMAFAS ATTN LTC D ELLIS GDELCOCO J SHIELDS BMACHAK PICATINNY ARSENAL NJ 07806-5000

COMMANDER ATTN WLHVA MAYER WL MLBM S DONALDSON WRIGHT PATTERSON AFB DAYTON OH 45433

10

NASA LANGLEY RSRCH CTR ATTN AMSRL VS W ELBER AMSRL VS S F BARTLETT JR MAJL STOP 266 HAMPTON VA 23681-0001

NSWC CODE G33 DAHLGREN VA 22448

OFC OF NAVAL RSRCH ATTN YAPA RAJAPAKSE MECH DIV CODE 1132SM ARLINGTON VA 22217

NAVAL ORDNANCE STATION ADV SYS TECH BR ATTN D HOLMES CODE 2011 LOUISVILLE KY 40214-5245

DAVID TAYLOR RSRCH CTR SHIP STRUCTURES & PROT DEPT ATTN J CORRADO CODE 1702 BETHESDA MD 20054-5000

DAVID TAYLOR RSRCH CTR ATTN R ROCKWELL W PHYJLLAJJER BETHESDA MD 20054-5000

DIRECTOR LLNL ATTN R CHRISTENSEN S DETERESA WFENG F MAGNESS M FINGER PO BOX 808 LTVERMORE CA 94550

DIRECTOR LANL ATTN D RABERN MEE 13 MAJL STOP J 576 PO BOX 1633 LOS ALAMOS NM 87545

NAVAL EOD TECH CTR ATTN CODE 6012A A PATEL (5 CPS) R GOLD (5 CPS) INDIAN HEAD MD 20640-5070

90

NO. OF COPIES

1

ORGANIZATION

OAK RIDGE NATL LAB ATTN R M DAVIS PO BOX 2008 OAK RIDGE TN 37831-6195

BATTELLEPNL ATTN M SMITH MCC BAMPTON PO BOX 999 RICHLAND WA 99352

DIRECTOR SANDIA NATL LABS ATTN C ROBINSON G BENEDETTI W KAWAHARA K PERANO D DAWSON PNIELAN PO BOX 969 LTVERMORE CA 94550-0096

PENNSYLVANIA STATE UNTV ATTNRMCNnT 227 HAMMOND BLDG UNIVERSITY PK PA 16802

SOUTHWEST RSRCH INSTITUTE ATTN C ANDERSON 6220 CULEBRA RD SAN ANTONIO TX 78284

UCLA MAND DEPT ENGRNG IV ATTN H THOMAS HAHN LOS ANGELES CA 90024-1597

UNTV OF DAYTON RSRCH INST ATTN RAN Y KIM AJTTKROY 300 COLLEGE PARK AVE DAYTON OH 45469-0168

UNTV OF DELAWARE CTR FOR COMPOSITE MAILS ATTN J GILLESPE MSANTARE 201 SPENCER LABORATORY NEWARK DE 19716

NO. OF COPIES

1

ORGANIZATION

UNTV OF TEXAS AT AUSTIN CTR FOR ELECTROMECHANICS ATTN J PRICE 10100 BURNET RD AUSTIN TX 78758-4497

AAI CORPORATION ATTN TECH LIBRARY PO BOX 126 HUNT VALLEY MD 21030-0126

ARMTEC DEFENSE PRODUCTS ATTN S DYER PO BOX 848 COACHELLA CA 92236

ALLIANT TECHSYSTEMS INC ATTN J BODE CCANDLAND KWARD 5901 LINCOLN DR MINNEAPOLIS MN 55346-1674

ALLIANT TECHSYSTEMS INC ATTN T HOLMQUIST G R JOHNSON 600 SECOND ST NE HOPKINS MN 55343

BALLISTIC IMPACT DYNAMICS ATTN R RECHT 3650 S CHEROKEE 2 ENGLEWOOD CO 80110

CALIFORNIA RSRCH & TECH ATTN D ORPHAL 5117 JOHNSON DR PLEASANTON CA 94566

CHAMBERLAIN MFG CORP R&DDIV ATTN M TOWNSEND PO BOX 2545 WATERLOO IA 50704

COMPUTNL MECH ASSOC ATTNJAZUKAS PO BOX 11314 BALTIMORE MD 21239-0314

91

NO. OF COPIES ORGANIZATION

NO. OF COPIES ORGANIZATION

1 CUSTOM ANALYTICAL ENGRNG SYS INC ATTN A ALEXANDER STAR RTE BOX 4A FLINTSTONE MD 21530

1 GDLS DIV ATTN D BARTLE PO BOX 1901 WARREN MI 48090

1 IAP RSRCH INC ATTN A CHALLITA 2763 CULVER AVE DAYTON OH 45429

5 INSTITUTE FOR ADV TECH ATTNTKIEHNE HFAIR P SULLIVAN SBLESS RSUBRAMANIAN 4030 2 W BRAKER LN AUSTIN TX 78759

1 INTERFEROMETRICS INC ATTN R LARRIVA VP 8150 LEESBURG PK VIENNA VA 22100

1 LORAL VOUGHT SYS CORP ATTN K HAVENS MS EM 36 PO BOX 650003 DALLAS TX 75265-0003

2 MARTIN MARIETTA CORP ATTN P DEWAR LSPONAR 230 E GODDARD BLVD KING OF PRUSSIA PA 19406

2 OLIN CORP FLINCHBAUGH DIV ATTN E STEINER B STEWART PO BOX 127 RED LION PA 17356

1 OLIN CORP ATTN L WHITMORE 10101 9TH ST N ST PETERSBURG FL 33702

2 UNIV OF MINNESOTA AHPCRC ATTN G SELL D AUSTIN 1100 WASHINGTON AVE S MINNEAPOLIS MN 55415

KAMAN SCI CORP ATTN D ELDER THAYDEN NARI PO BOX 7463 COLORADO SPRINGS CO 80933

DR KENNEDY & ASSOC INC ATTN D KENNEDY PO BOX 4003 MOUNTAIN VIEW CA 94040

LTVERMORE SOFTWARE TECH CORP ATTN J O HALLQUIST 2876 WAVERLY WAY LIVERMORE CA 94550

LORAL VOUGHT SYS CORP ATTN G JACKSON KCOOK 1701 W MARSHALL DR GRAND PRAIRIE TX 75051

92

NO. OF COPIES

45

ORGANIZATION

ABERDEEN PROVING GROUND .

DIR, USARL ATTN: AMSRL-CI,

C. MERMAGEN (394) W. STUREK (1121)

AMSRL-CI-CB, R. KASTE (394) AMSRL-CI-S, A. MARK (309) AMSRL-SL-B, P. DIETZ (328) AMSRL-SL-BA, J. WALBERT (1068) AMSRL-SL-BL, D. BELY (328) AMSRL-SL-I, D. HASKILL (1065) AMSRL-WT-P, A. HORST (390A) AMSRL-WT-PA,

T. MINOR (390) C. LEVERTTT (390) D. KOOKER (390A)

AMSRL-WT-PB, E. SCHMIDT (120) P. PLOSITNS (120)

AMSRL-WT-PC, R. FIFER (390A) AMSRL-WT-PD,

B. BURNS (390) W. DRYSDALE (390) T. BOGETTI (390) J. BENDER (390) R. MURRAY (390)

AMSRL-WT-PD, R. KIRKENDALL (390) T. ERLINE (390) D. HOPKINS (390) S. WILKERSON (390) D.HENRY (390) R. KASTE (390) L. BURTON (390) J.TZENG(390) R. LIEB (390) G. GAZONAS (390) (5 CPS) M LEADORE (390)

AMSRL-WT-PD-ALC, A. ABRAHAMIAN K. BARNES MBERMAN H. DAVISON A. FRYDMAN T.LI W. MCINTOSH E. SZYMANSKI

AMSRL-WT-T, W. MORRISON (309) T. WRIGHT (309)

NO. OF COPIES

52

ORGANIZATION

DIR, USARL ATTN: AMSRL-WT-TA,

W. GHUCH (390) W. BRUCHEY (390) J. DEHN (390)

AMSRL-WT-TB, K. BENJAMIN (309) T. DORSEY (309) R. FREY (309) F. GREGORY (309) W. HILLSTROM (309) W. LAWRENCE (309) O. LYMAN (1185) J. STARKENBERG (309) L. VANDE KIEFT (309) J. WATSON (309) V. BOYLE (309) S. STEGALL (1185)

AMSRL-WT-TC, K. KIMSEY (309) R. COATES (309) W. DE ROSSET (309) F. GRACE (309) M. LAMPSON (309) D. SCHEFFLER (309)

AMSRL-WT-TC, B. SORENSEN (309) R. SUMMERS (309) E. WALKER (309) W. WALTERS (309)

AMSRL-WT-TD, D. DIETRICH (309) G. RANDERS-PEHRSON (309) J. HUFFINGTON (309) A. DAS GUPTA (309) J. SANTIAGO (309) K. FRANK J. HARRISON M. SCHEIDLER S. SEGLETES (5 CPS) J. WALTER C. PAXTON (5 CPS) J. GARDINER

AMSRL-WT-NC, R. LOTTERO (309) R. PEARSON (309) S. SCHRAML (309)

AMSRL-WT-W, C. MURPHY (120) AMSRL-WT-WA,

H. ROGERS (394) B. MOORE (394) A. BARAN (394)

93

NO. OF COPIES ORGANIZATION

8 DIR, USARL ATTN: AMSRL-WT-WB,

F. BRANDON (120) W. D'AMICO (120)

AMSRL-WT-WC, J. ROCCfflO (120) AMSRL-WT-WD,

A. ZIELINSKI (120) J. POWELL (120) A. PRAKASH (120)

AMSRL-WT-WE, J. TEMPERLEY (120) J. THOMAS (394)

7 DIR, USARL ATTN: AMSRL-MA-P

L. JOHNSON T. CHOU C. WHITE J. MCLAUGHLIN

AMSRL-MA-PA D. GRANVILLE W.HASKELL

AMSRL-MA-MA, G. HAGNAUER

94

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to the items/questions below will aid us in our efforts.

1. ARL Report Number ARL-TR-976 Date of Report March 1996

2. Date Report Received

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will be used.)

n 4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.)

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs avoided, or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization, technical content, format, etc.)

Organization

CURRENT Name ADDRESS

Street or RO. Box No.

City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the Old or Incorrect address below.

Organization

OLD Name ADDRESS

Street or RO. Box No.

City, State, Zip Code

(Remove this sheet, fold as indicated, tape closed, and mail.) (DO NOT STAPLE)

DEPARTMENT OF THE ARMY

OFFICIAL BUSINESS

BUSINESS REPLY MAIL FIRST CLASS PERMIT NO 0001 ,APG,MD

POSTAGE WILL BE PAID BY ADDRESSEE

NO POSTAGE NECESSARY

IF MAILED IN THE

UNITED STATES

DIRECTOR U.S. ARMY RESEARCH LABORATORY ATTN: AMSRL-WT-PD ABERDEEN PROVING GROUND, MD 21005-5066