HTLV-1 Tax: Senescence, Autophagy and the DNA damage response

61
HTLV-1 Tax: Senescence, Autophagy 1 and the DNA damage response 2 Torsten Wurm PhD 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Transcript of HTLV-1 Tax: Senescence, Autophagy and the DNA damage response

 

 

HTLV-1 Tax: Senescence, Autophagy 1  

and the DNA damage response 2  

Torsten Wurm PhD 3  

4  

5  

6  

7  

8  

9  

10  

11  

12  

13  

14  

15  

16  

17  

18  

 

 

Summary 19  

Human T-cell lymphotropic virus type 1 (HTLV-1) is the causative agent of ATL 20  

and the HTLV-1 encoded Tax protein has been shown to induce oncogene 21  

induced senescence (OIS), apoptosis, and to be sufficient to transform primary 22  

cells. Stabilization of Mcl-1 by HTLV-1 Tax might not only prevent OIS 23  

associated decrease in cell proliferation, but also apoptosis and the induction of 24  

mitophagy in accordance with observations that the expression of Tax inhibits the 25  

fusion of autophagosomes with the lysosome despite inducing the formation of 26  

autophagosomes via hyperactivation of NF-κB as well as the recruitment of 27  

Beclin-1 to lipid rafts. Inducing the expression and stabilization of cFLIP by Tax 28  

in a Ku70 dependent and independent manner not only inhibits apoptosis but 29  

also necrosis in addition to potentially inhibiting the formation of the necrosome. 30  

Inhibiting autophagic flux might also prevent the secretion of inflammatory 31  

cytokines, which is not only autophagy dependent but might also be dependent 32  

on the activation of caspase-3 and contributing to the proliferation of HTLV-1 33  

infected and Tax expressing cells by preventing senescence. Deacetylated 34  

Ku70 has also been demonstrated to localise to the nucleus where it binds sites 35  

of DNA damage by forming a complex with Ku80, increasing the amount of 36  

deacetylated Ku70 in the cytoplasm due to preventing p300/CBP dependent 37  

acetylation of Ku70 might the NHEJ pathway which is also induced by inhibiting 38  

autophagy. 39  

40  

 

 

Keywords 41  

HTLV-1 Tax, Senescence, Autophagy, DNA Damage response 42  

43  

44  

45  

46  

47  

48  

49  

50  

51  

52  

53  

54  

55  

56  

57  

58  

59  

60  

61  

62  

 

 

Introduction 63  

Human T-cell lymphotropic virus type 1 (HTLV-1) was first discovered in the early 64  

1980s independently by two groups in the US and in Japan (Poiesz et al., 1981; 65  

Yoshida et al., 1982). HTLV-1 is a complex deltaretrovirus, with four known 66  

types, HTLV-1 to 4, with HTLV-1 being the most pathogenic of the group and the 67  

first human retrovirus being associated with cancer, Adult T-Cell 68  

leukaemia/lymphoma (ATL/L or ATL) (Mahieux & Gessain, 2007), although ATL 69  

itself was first described in 1977 by Takasuki (Uchiyama et al., 1977). In general, 70  

HTLV-1 infects about 5-20 million people worldwide, predominantly in Japan, 71  

Africa, Latin America and the Caribbean, out of which about 3-5% of all infected 72  

people develop ATL in their lifetime, often decades following the initial infection 73  

(Gessain & Cassar, 2012; Ishitsuka & Tamura, 2014). 74  

During viral replication, Tax activates the transcription of viral proteins via 75  

recruiting the cellular transcription factors CREB and ATF to the LTR promoter 76  

(Semmes et al., 1996) and mediates the initial steps of cell transformation 77  

(Tanaka et al., 1990) in transgenic mice (Hasegawa et al., 2006; Ruddle et al., 78  

1993) and CD4+ T lymphocytes as well as human fibroblasts (Endo et al., 2002; 79  

Sieburg et al., 2004) in the absence of other viral proteins. 80  

In contrast to Tax-2 (derived from HTLV-2), Tax-1 localises predominantly to the 81  

nucleus (Avesani et al., 2010; Turci et al., 2006), and both Tax-1 and Tax-2 are 82  

acetylated, ubiqutinated, and SUMOylated (Zane & Jeang, 2012). In addition to 83  

CREB and ATF, Tax-1 interacts with a number of host factors including 84  

 

 

components of the PI3K, Akt, and NF-κB pathways (reviewed in (Romanelli et al., 85  

2013) (Fig.1), contributing to the oncogenic properties of Tax-1. 86  

87  

Cellular senescence is a stable cell cycle arrest characterised by an active 88  

metabolism caused by a variety of stressors, including activation of the DNA 89  

damage response, epigenetic changes, and senescence-associated secretion 90  

phenotype (Young et al., 2009). Senescent cells are however not necessarily 91  

arrested irreversible since in the case of replicative senescence cells can be 92  

proliferative in the presence of active telomerase and senescent tumour cells can 93  

proliferate following treatment with chemotherapeutic drugs or following radiation 94  

(reviewed in (Evan & d'Adda di Fagagna, 2009)). Oncogene-induced senescence 95  

(OIS) is induced in cells undergoing DNA hyper-replication and associated with 96  

the induction of the DNA damage response (DDR) as a result of increased DNA 97  

replication (Di Micco et al., 2008; Di Micco et al., 2006) (reviewed in (Sulli et al., 98  

2012)) as indicated by the presence of damaged DNA in cells undergoing OIS 99  

(Di Micco et al., 2006). 100  

The expression of Tax in HeLa cells induces OIS which is accompanied by an 101  

arrest in G1 phase of the cell cycle via hyperactivated NF-κB, mediated in part by 102  

two Cyclin Dependent Kinase (CDK) inhibitors, p21CIP1/WAF1 (p21) and p27Kip1 103  

(p27) thus modulating the activity of both Cdk4 and Cdk6 (Schmitt et al., 1998; 104  

Zhang et al., 2009), stimulating the G1 to S transition as well as inducing 105  

senescence in HTLV-1 infected HeLa and SupT1 cells (Yang et al., 2011). Both 106  

 

 

the induction of p21 and p27 expression as well as senescence can be inhibited 107  

by the expression of the viral HBZ protein as well as the expression of ΔN-IκBα, 108  

both of which inhibit NF-κB (Zhi et al., 2011). Further to the stimulating the G1 to 109  

S transition, Tax increases the expression of PCNA, thus increasing DNA 110  

replication (Lemoine et al., 2000; Ressler et al., 1997). Furthermore, ATL cells 111  

exhibit increased levels of H-RasV12 (Tanaka et al., 1999), suggesting that OIS 112  

in HTLV-1 infected cells is mediated in part by increased levels of H-RasV12 as a 113  

result of increased DNA damage due to DNA hyper-replication as well as the 114  

induction of ROS and RNS. Indeed the expression of Tax in normal human BJ 115  

fibroblasts, Jurkat cells, and primary human CD4+ T lymphocytes induces not 116  

ROS but also senescence that can be relieved by treating cells with a ROS 117  

scavenger (Kinjo et al., 2010). 118  

Paradoxically, the expression of Tax can prevent senescence and promote cell 119  

proliferation, suggesting that the expression of Tax can prevent senescence at 120  

least in subset of cells. One mechanism of antagonizing OIS is to inhibit 121  

autophagy (Gewirtz, 2013; Young et al., 2009). Indeed, the expression of Tax in 122  

various cell lines not only interferes with the DDR, but also with autophagy, thus 123  

counteracting senescence and promoting cell proliferation. 124  

In this review the interference of Tax with components of the autophagy pathway 125  

and the DNA damage response pathway induced by increased levels of ROS 126  

and RNS due to decreased mitophagy are discussed and a model is presented 127  

which proposes that the inhibition of autophagy contributes to the formation of 128  

 

 

micronuclei and thus to the accumulation of chromosomal aberrations. Also, the 129  

role of Tax mediated inhibition of necrosis via increased expression and 130  

stabilization of cFLIP is highlighted, leading to a model in which Tax mediated 131  

inhibition of autophagy not only contributes to oncogenesis by inducing 132  

chromosomal aberrations but also protecting cells from drug-induced necrosis. 133  

Mcl-1 stabilization: preventing oncogene associated senescence, 134  

apoptosis and mitophagy? 135  

The expression of Tax in Jurkat as well as in TLOM-1 and MT-2 cells stabilises 136  

the antiapoptotic Mcl-1 protein by inducing the (nondegradative) K63-linked 137  

polyubiquitination of Mcl-1 via IKKα/β/γ and TRAF-6 activation whilst decreasing 138  

the expression of the pro-apoptotic Bid and Bid proteins as well as inhibiting Bax, 139  

thus inhibiting Etoposide induced apoptosis in Tax positive HTLV-1 transformed 140  

but not Tax negative ATL cell lines (Choi & Harhaj, 2014; Muhleisen et al., 2014). 141  

Since both the induction of OIS and the deletion of Mcl-1 have been linked to the 142  

induction of autophagy-associated apoptosis (Germain & Slack, 2011; 143  

Wajapeyee et al., 2008), it might be possible that Tax mediated downregulation 144  

of p53 not only prevents the induction of OIS by inhibiting p21 induced 145  

senescence but possibly also by inhibiting p53 dependent induction of autophagy 146  

by downregulation the expression of genes associated with autophagy induction 147  

such as DRAM-1, AMPK, PTEN and Sestrins’ that activate autophagy mainly 148  

through inhibition of mTOR and/or promoting the formation of the phagophore 149  

(Rufini et al., 2013)). In this context it is interesting that the treatment of Tax 150  

 

 

positive MT-2 and Hut-102 with Everolimus, an inducer of autophagy, not only 151  

decreases Tax levels but also increases senescence similar to Everolimus 152  

treated Mantle Cell Lymphoma cells (Darwiche et al., 2011; Rosich et al., 2012), 153  

suggesting that the expression of Tax prevents senescence (promoting cell 154  

proliferation) as well as its degradation by inhibiting autophagic flux. In addition, 155  

by stabilising Mcl-1, Tax might prevent mitophagy but not ER and/or lipid raft 156  

associated autophagy since Mcl-1 predominantly degrades mitochondrial Beclin-157  

1 (Germain et al., 2011; Germain & Slack, 2011). Stabilization of Mcl-1 by Tax 158  

might therefore inhibit the induction of Bax dependent apoptosis by forming a 159  

complex with Bim and BH-3 mimetics (Lopez & Tait, 2015) in addition to 160  

destabilizing Beclin-1, preventing the induction of apoptosis as well as mitophagy 161  

similar to fludarabine resistant B cell leukemia cells (Sharma et al., 2013) by 162  

inducing the fusion of mitochondria (Perciavalle et al., 2012) and thus 163  

antagonizing mitophagy in addition to stabilising the respiratory complex 164  

(Andersen & Kornbluth, 2012; Elgendy et al., 2014; Perciavalle et al., 2012). If 165  

however Tax expressing cells exhibit an increase in mitochondrial mass due to 166  

mitochondrial fusion and thus an increase in respiratory rate remains to be seen. 167  

Alternatively, inhibition of mitophagy might lead to an increase in the production 168  

of ROS and RNS similar to yeast (Kurihara et al., 2012) due to the accumulation 169  

of defective mitochondria (Filomeni et al., 2015) contributing to the induction of 170  

DNA damage by an increase in ROS and RNS. 171  

172  

 

 

HTLV-1 Tax and autophagy: inhibition of autophagic flux a contributing 173  

factor to inhibition of the antiviral response and increased topoisomerase 174  

sensitivity? 175  

Autophagy is generally characterised as a mechanism by which substrates such 176  

as proteins, organelles, or pathogens are delivered to lysosomes for degradation, 177  

contributing to cellular homeostasis and clearance of pathogens. 178  

Three different types of autophagy are distinguished, chaperone-mediated 179  

autophagy (CMA) microautophagy and macroautophagy, the latter commonly 180  

refereed to as autophagy being the best characterised and most studied form of 181  

autophagy. The degradation of autophagic cargo involves the formation of 182  

double-membrane vesicles, sequestration of proteins or organelles, and the 183  

fusion of these vesicles with lysosomes in a highly regulated process. Defects in 184  

autophagy in knockout mice hetero-or homozygous for essential autophagy 185  

genes (ATG) have been associated with an increase in oncogenesis when 186  

compared with wt mice, suggesting that autophagy contributes to the 187  

suppression of genomic defects associated with the development of tumours 188  

(reviewed in (Galluzzi et al., 2015)), probably by degradation of dysfunctional 189  

mitochondria via mitophagy (Green et al., 2011; Takahashi et al., 2013b), the 190  

removal of protein aggregates (Komatsu et al., 2007; Mathew et al., 2009), and 191  

the removal of micronuclei (Rello-Varona et al., 2012; Vessoni et al., 2013). 192  

Physiologically, in mammalian cells autophagy is induced by inhibiting the 193  

mammalian target of Rapamycin (mTOR) complex -1 (mTORC1), which triggers 194  

 

 

a signal transduction cascade involving the phosphorylation of proteins that form 195  

the ULK-1/-2 complex (Jung et al., 2009) including phosphorylation of the 196  

catalytic subunit of phosphatidylinositol 3-kinase (PIK3C3/VPS34) and Beclin 1 197  

(reviewed in (Mah & Ryan, 2012) (Fig.2A). Following the recruitment of LC3-I, 198  

the phagophore is elongated, forming the nascent LC3-I autophagosome 199  

(omegasome), which matures into the LC3-II positive autophagosome. The 200  

mature autophagosome then either forms the amphisome by fusing with 201  

endosome prior fusing with the lysosome, or alternatively fuses directly with the 202  

lysosome, becoming the autolysosome, in a RabGTPase, Beclin1 and UVRAG 203  

dependent step prior to the degradation of the content (reviewed in (Mah & Ryan, 204  

2012; Parzych & Klionsky, 2014; Xie et al., 2015) (Fig. 2B). 205  

Tax and autophagy 206  

Jurkat cells which have been infected with HTLV-1 by co-culturing them with a 207  

HTLV-1 transformed cell line, MT-2, exhibit an increase in NF-κB activity as 208  

measured by the luciferase activity following the transfection with a pNF-κB-luc 209  

reporter plasmid, similar to a Tax-positive Jurkat-TaxP cell line stably expressing 210  

Tax (Wang et al., 2013). Upon examination of the changes in gene expression in 211  

the latter using Microarray analysis, approx. 48 genes exhibited a change in gene 212  

expression of at least twofold with 10 genes associated with oncogenesis, 213  

differentiation, proliferation, cell development being unregulated and 38 genes 214  

down regulated in the presence of Tax. Interestingly one of the genes, Bcl-3, 215  

was upregulated not only in Jurkat-TaxP cells but also significantly in MT-2 cells, 216  

 

 

accompanied by nuclear translocation of Bcl-3 in Jurkat-TaxP (Saito et al., 2010). 217  

These results indicate that Tax not only induces the translocation of NF-κB but 218  

also the expression and nuclear translocation of Bcl-3, which is a negative 219  

inhibitor of NF-κB as well as inhibiting p53 (Kashatus et al., 2006) thus potentially 220  

contributing to Tax induced resistance to p53 dependent apoptosis by preventing 221  

the expression of pro-apoptotic genes, inducing the expression of Bcl-xL via NF-222  

κB, as well as inducing cell proliferation (Saito et al., 2010; Tsukahara et al., 223  

1999). Binding of Bcl-3 however to both Tax and transducers of regulated CREB 224  

activity (TORC)-3 inhibits Tax induced gene expression from the HTLV-1 LTR by 225  

displacing p300 from the HTLV-1 LTR (Hishiki et al., 2007; Kim et al., 2008), thus 226  

downregulation the expression of viral genes. 227  

Regarding the induction of autophagy, the overexpression of Bcl-3 in HeLa cells 228  

co-transfected with Tax induces the formation of autophagosomes following 229  

Rapamycin or Pifithrin-α treatment as well as in mock treated cells whereas 230  

under starvation the formation of autophagosomes decreased (Wang et al., 231  

2013), indicating that the formation of autophagosomes is independent of p53 232  

and that starvation might induce apoptosis due to the inhibition of NF-κB by Bcl-3 233  

(Fabre et al., 2007). In the same study, the authors found that the formation of 234  

autophagosomes also increases in MT2 and MT4 cells following the treatment 235  

with an inhibitor of NF-κB, Bay 11-7082, that inhibits IκBα phosphorylation, 236  

suggesting that the inhibition of the NF-κB signalling pathway is sufficient to 237  

induce autophagosome formation (Wang et al., 2013). Additionally, the 238  

 

 

expression of a Tax mutant, TaxM22, incapable of inducing the activation of NF-239  

κB also fails to induce the formation of autophagosome, indicating that inducing 240  

the expression of Bcl-3 via NF-κB activation is necessary for the induction of 241  

autophagy, whereas the expression of TaxM47 not only activates NF-κB but also 242  

increases the formation of autophagosomes similar to wt Tax (Wang et al., 2013). 243  

Paradoxically, Bcl-3 might also antagonize NF-κB and thus NF-κB induced 244  

formation of the autophagosome and that additionally, Tax mediated activation of 245  

the IKKβ kinase complex activates autophagy by recruiting a complex containing 246  

Beclin-1 and Bif-1 to lipid raft microdomains (Ren et al., 2015). In this model, Tax 247  

interacts with both complexes directly, thereby promoting the assembly of LC3-II 248  

positive autophagosomes (Fig.2B). As discussed below, it is however not clear if 249  

the formation of autophagosomes by forming a complex of Tax with lipid rafts and 250  

Beclin-1 also inhibits the fusion of autophagosomes with the lysosome (Fig.2B). 251  

In addition autophagosome formation is also induced by IKK induced 252  

phosphorylation of AMPK and the subsequent inactivation of mTOR induces the 253  

formation of autophagosomes independent of PI3-K and direct inhibition of 254  

mTOR (Baldwin, 2012; Chen & Debnath, 2013; Criollo et al., 2010), suggesting 255  

that the inability of TaxM22 to induce the formation of autophagosomes is due to 256  

the inability of TaxM22 to bind IKK and activate NF-κB. 257  

Increasing the formation of autophagosomes has been shown to increase the 258  

replication of HTLV-1 in HEK-293T cells transfected with a HTLV-1 molecular 259  

clone (K30) whilst the expression of Tax in HeLa and Jurkat cells as well as in 260  

 

 

other established T cell lines such as PTX4-1 or PL9-1 not only increases the 261  

formation of autophagosomes -as measured by the increase in LC3-II- but at the 262  

same time also inhibiting the fusion with the lysosome as indicated by the 263  

accumulation of Neutrophil Cytosolic Factor 4(NCF)/p40phox (Ren et al., 2015), 264  

with similar results reported in primary human CD4+ cells transduced with HTLV-265  

2 derived a Tax (Tax-2) (Ren et al., 2012; Ren et al., 2015). Accordingly, the 266  

fusion of the autophagosome with the lysosome is inhibited in HEK-293T cells 267  

transfected with the HTLV-1 molecular clone as well as in MT1, MT2, and 268  

HUT102 cells (Tang et al., 2013), suggesting that even in the context of the 269  

presence of other viral proteins autophagic flux is inhibited. It should be noted 270  

that in approx. 60% of ATL patients, HTLV-1 infected T lymphocytes do not 271  

express Tax as a result of the accumulation of mutations which render Tax 272  

inactive (Takeda et al., 2004) suggesting that in patients presenting themselves 273  

with ATL the inactivation of Tax might contribute to a restoration of autophagic 274  

flux. Autophagy however might be inhibited in these cases by the expression of 275  

the antisense HBZ protein, since HBZ has been reported to inhibit starvation 276  

induced autophagy via activation of the mTOR pathway by increased 277  

phosphorylation of the S6 Kinase and inhibition of GADD34, thus inhibiting 278  

GADD34 mediated dephosphorylation of TSC2 (Mukai & Ohshima, 2014). 279  

Although it is well established that Tax does induce the formation of 280  

autophagosomes whilst inhibiting the fusion of the autophagosomes with the 281  

lysosome (as evidenced by the accumulation of LC3-II), both the consequences 282  

 

 

of autophagy deregulation (in particular for mitophagy and apoptosis) and the 283  

mechanism of autophagy inhibition are less well characterised. Based on studies 284  

using either fusion inhibitors (Bafilomycin-A or Chloroquine) or transfecting cells 285  

with siLAMP2 the inhibition of autophagy increases the production of infectious 286  

HTLV-1 particles by approx. 3-fold as measured by p19Gag ELISA, suggesting 287  

that autophagy constitutes part of the antiviral response (Tang et al., 2013). 288  

Inhibiting autophagy by the application of PI3K class III inhibitors or transfection 289  

of siBeclin-1 as well as shTax indeed results in impaired proliferation of HTLV-1 290  

infected SLB1 and MT2 cells as well as a decrease in LC3-II levels, suggesting 291  

that the induction of autophagy is required for the proliferation of HTLV-1 infected 292  

cells (Tang et al., 2013). 293  

One mechanism of Tax induced blocking of the fusion of the autophagosome 294  

with the lysosome might be by sequestering Beclin-1 to lipid rafts thus inhibiting 295  

the formation of a complex containing UVRAG, VPS34 and Beclin-1, which is 296  

required for the fusion of the mature autophagosome with the lysosome, and 297  

stabilising the Rubicon/Vps34 complex thus inhibiting autophagy (Zhong et al., 298  

2009) similar to HEK 293T cells expressing the coronaviral PLP2 protein (Chen 299  

et al., 2014b). Sequestering Bif-1 might not only facilitate the formation of 300  

autophagosomes (Takahashi et al., 2007) and inhibit the fusion of the mature 301  

autophagosome with the lysosome but also prevent the induction of Bax/Bak 302  

mediated apoptosis (Takahashi et al., 2005), linking the induction of 303  

autophagosome formation to the prevention of apoptosis and thus promoting the 304  

 

 

survival of HTLV-1 infected or Tax expressing cells (Fig.2C). The expression of a 305  

Tax mutant not capable of binding Beclin-1, treatment with Tat-Beclin (Shoji-306  

Kawata et al., 2013), or overexpression of Beclin-1 therefore might allow the 307  

formation of the autolysosome as well as the disruption of the Tax/Beclin-1/Bif-1 308  

complex, decreasing the proliferation of HTLV-1 infected cells similar to the 309  

treatment with siBeclin-1. 310  

Because Tax induced autophagy has also been implicated in the degradation of 311  

phosphorylated IKKβ (Wada et al., 2009), it might be possible that the formation 312  

of autophagosomes via direct recruitment of Beclin-1 and Bif-1 is also necessary 313  

for the inhibition of NF-κB and inhibition of antiviral signalling via TRAF6 in 314  

general , whereas early in infection the activation of NF-κB mediated signalling is 315  

necessary for cell transformation and that inhibition of autophagy – or more 316  

precisely the fusion of the autophagosomes with the lysosome- counteracts Tax 317  

induced senescence. Unfortunately, so far it has not been shown if the induction 318  

of autophagy by Bcl-3 is accompanied by an increase in autophagic flux as 319  

measured by the degradation of p62/SQSTM-1 although the accumulation of 320  

NCF/p40phox in HeLa cells transfected with Tax strongly suggests that 321  

autophagic flux might be inhibited (Ren et al., 2015) despite increase in Bcl-3 322  

levels. It should be also be noted that cytosolic -but not nuclear- HTLV-1 Tax 323  

interacts with both HDAC-6 and USP10, preventing the formation of stress 324  

granules (Legros et al., 2011; Takahashi et al., 2013a). Since the deacetylation of 325  

microtubuli by HDAC-6 has been shown to be required for the fusion of 326  

 

 

autophagosomes with lysosomes (Seguin et al., 2014), the expression of Tax-1 327  

(at least the cytosolic form) might increase the clearance of stress granules by 328  

autophagy (Legros et al., 2011) induced via the recruitment of Beclin-1 to lipid 329  

rafts as well as facilitating the fusion of the autophagosome with the lysosome via 330  

interaction with HDAC-6. The application of HDAC-6 inhibitors such as 331  

Voronistat or Belinostat therefore might not only facilitate the formation of the 332  

autolysosome but also inhibit HTLV-1 replication via autophagy induction similar 333  

to HIV-1 (Campbell et al., 2015) as well as promoting the formation of stress 334  

granules via deregulating autophagy (Seguin et al., 2014) although further 335  

studies are needed. 336  

Interestingly in primary human primary human CD4+ cells transduced with Tax2-337  

GFP and treated with Chloroquine or 3-MA, caspase-3 is activated and apoptosis 338  

induced, suggesting that the inhibition of autophagy decreases the survival and 339  

immortalization of Tax2 expressing cells (Ren et al., 2012), similar to Pepstatin A 340  

or E-64D treated RD-A cells infected with Enterovirus-71 (Xi et al., 2013). Since 341  

in Tax2 expressing cells p53 is inhibited to a lesser degree compared to Tax1 342  

expressing cells (Mahieux et al., 2000) it might however be possible that the 343  

induction of p53 by Tax2, but not Tax1, induces both autophagy (via DRAM-1 344  

and Sestrin mediated formation of the phagophore) and apoptosis (by increasing 345  

the expression of pro-apoptotic genes such Bik); indeed although both the stable 346  

expression of both Tax1 and Tax2 in Jurkat cells induces resistance to Etoposide 347  

and Camptothecin, serum-starved Tax2 expressing Jurkat cells are less resistant 348  

 

 

to Etoposide or Camptothecin induced apoptosis (Sieburg et al., 2004) which 349  

might or might not be dependent on p53. Since both Etoposide and 350  

Camptothecin induced apoptosis increases following the inhibition of autophagy 351  

(Hollomon et al., 2013; Xie et al., 2011; Zhang et al., 2014), it might be possible 352  

that the failure to inhibit autophagy in addition to p53 mediated pro-apoptotic 353  

signalling by Tax2 contributes to decreased sensitivity of HTLV-2 infected cells to 354  

treatment with topoisomerase inhibitors. 355  

Tax and cFLIP 356  

HTLV-1 Tax also inhibits apoptosis induced by TRAIL and CD95L by increasing 357  

intracellular levels of cFLIP in a NF-κB and IKK dependent manner and pre-358  

treatment of Tax expressing U251 astroglioma cells with inhibitors preventing the 359  

formation of autophagosomes such as LY294002 (inhibiting PI3K) or with 3-MA 360  

sensitizes cells to death receptor mediated apoptosis (Jeong et al., 2008; 361  

Krueger et al., 2006; Wang et al., 2014) indicating that the induction of 362  

autophagosome assembly by Tax is a prerequisite for protecting cells against 363  

CD95L and TRAIL induced apoptosis in both U251 cells and Jurkat cells stably 364  

transfected with a estrogen receptor–Tax fusion protein as well as in HTLV-1 365  

infected cell lines (MT-2, SLB-1, and HuT-102) (Krueger et al., 2006). Generally, 366  

cFLIP inhibits DISC induced activation of caspase-8 by binding to pro-caspase-8 367  

thereby inhibiting apoptosis and RIP-1 induced necroptosis (He & He, 2013; Lee 368  

et al., 2009). Indeed, the expression of Tax in Jurkat cells induces the expression 369  

of not only cFLIPs but also cFLIPL (Krueger et al., 2006) preventing the cleavage 370  

 

 

of Bid into the active –truncated- form, tBid (Krueger et al., 2006). Since both Tax 371  

and cFLIP inhibit autophagic flux either by inhibiting the fusion of the 372  

autophagosome with the lysosome (Tax) or the formation of LC3-II positive 373  

autophagosomes by binding Atg3 (cFLIP) (Lee et al., 2009), both Tax and cFLIP 374  

might work synergistically to inhibit autophagic flux in activated CD3+ T 375  

lymphocytes (He & He, 2013) which in HTLV infected and Tax expressing Jurkat 376  

cells is dependent on the activation of the T cell receptor by anti-CD3 antibodies 377  

(Krueger et al., 2006). Additionally, as well as inducing the formation of 378  

autophagosomes, the ability of Tax to activate IKK and subsequently 379  

hyperactivation of NF-κB (Wang et al., 2014) by inducing the formation of 380  

autophagosomes, is required for NF-κB induced increase in cFLIP. Because 381  

autophagosomes are also providing a scaffold for the assembly of the necrosome 382  

(Basit et al., 2013), it might be possible that cFLIP not only inhibits the DISC 383  

complex but also the necrosome formation on autophagosomes induced by Tax 384  

by inhibiting the formation of LC3-II positive autophagosomes via binding to 385  

ATG3 (He & He, 2013) (Fig.2D). The importance of Tax induced expression of 386  

cFLIP is further highlighted that the treatment of HTLV-1 infected cells with 387  

Rocoglamide, a herbal inhibitor of eIF4E, inhibits not only the expression of 388  

cFLIP (by inhibiting the MEK-ERK-MNK1 pathway) but also sensitises Tax 389  

expressing cells to TRAIL and CD95L induced apoptosis (Bleumink et al., 2011). 390  

In a similar way, the expression of other viral proteins binding Atg3 –such as 391  

KSHV vFLIP (Lee et al., 2009)- or containing a LC3 binding motif – such as 392  

 

 

Influenza Virus M2 (Beale et al., 2014) – might prevent necroptosis and 393  

apoptosis in cFLIP deficient cells infected with HTLV-1 or expressing Tax. 394  

Inhibition of the necrosome by Tax also differs from MCMV vIRA, HSV-1 ICP6, 395  

and HSV-2 ICP10 proteins which prevent the formation of the active necrosome 396  

in necroptosis-sensitive human cells by forming complexes with caspase-8 via 397  

binding to the DED domain (Guo et al., 2015) (reviewed in (Mocarski et al., 398  

2015). 399  

Treatment of Tax expressing U231 astroglioma cells with either Chloroquine or a 400  

combination of Chloroquine and MG132 not only decreases cell viability following 401  

activation of the CD95L or TRAIL pathway but also decreases the amount of Tax 402  

as well as inducing the cleavage of caspase-3 even in the absence of TRAIL or 403  

CD95L activation of the DR pathway (Wang et al., 2014), suggesting that Tax 404  

expression does induce the activation of caspase-9 and -3 as well as preventing 405  

apoptosis. This leads to a model where Tax expression in absence of external 406  

stimuli does not completely inhibit neither autophagic flux nor the activation of 407  

caspase-3 and -9 but rather balances autophagy and caspase activation. 408  

Interestingly, caspase-9 has been postulated to activate the HTLV-1 LTR by 409  

forming an Sp1-p53 complex following treatment with stress inducing (Torgeman 410  

et al., 2001) as well as DNA damaging agents (Abou-Kandil et al., 2011). Taken 411  

together these results suggest that the expression of Tax might induce the 412  

activation of the cellular caspase-9 maybe via Bik whilst preventing the activation 413  

of caspase-8 mediated signalling pathways by inducing the degradation of 414  

 

 

caspase-8 by p62/SQSTM-1 dependent selective autophagy and by increasing 415  

the expression of cFLIP (Supplemental Fig. 1). Despite the activation of cellular 416  

caspases, apoptosis might be inhibited due to the stabilization of Mcl-1, thus 417  

preventing mitochondrial depolarization. If however the induction of cFLIP by Tax 418  

indeed prevents the formation of mature autophagosomes via competing with 419  

LC3 for binding ATG3 has not been demonstrated. 420  

Targeting the formation of the mature autophagosome in HTLV-1 infected or Tax 421  

expressing cells therefore might activate Bik and thus induce apoptosis via the 422  

intrinsic pathway by activating Bax as demonstrated by Chen et al. (Chen et al., 423  

2014a). Further to inhibiting RIP1 mediated induction of necroptosis, Tax has 424  

also been reported to inhibit RIP1 mediated induction of Interferon-β by inhibiting 425  

the phosphorylation of IRF-7, thus inhibiting RIG-1 dependent antiviral signalling 426  

induced by dsRNA or Poly (I:C) (Hyun et al., 2015). If however this solely 427  

dependent on binding of Tax directly to RIP1 or is also dependent on cFLIP has 428  

not been demonstrated. Additionally, Tax has been reported to inhibit antiviral 429  

signaling via the induction of SOCS1 in a NF-κB dependent manner 430  

(Charoenthongtrakul et al., 2011) (suggesting that Tax inhibits antiviral signaling 431  

via multiple mechanisms. 432  

In addition to Tax mediated increase in cFLIP gene expression, the 433  

deacetylation of cytoplasmic Ku70 by Tax via binding to of P/CAF (Jiang et al., 434  

1999) and/or p300/CBP (Ramirez & Nyborg, 2007) might stabilise a cytoplasmic 435  

complex consisting of cFLIP, pro-caspase-8 and FADD by inhibiting the 436  

 

 

polyubiquitination of cFLIP (Kerr et al., 2012) (Fig.2D). 437  

Lastly, apoptosis induced due to the inhibition of autophagy, might be inhibited by 438  

Tax induced accumulation of deacetylated Ku70 that counteracts Bik mediated 439  

induction of the intrinsic pathway by forming a stable complex with Bax. In any 440  

case, so far the role of Ku70 in preventing either extrinsically or intrinsically 441  

induced apoptotic pathways in Tax expressing cells and cells infected with HTLV-442  

1 has not been studied. 443  

Autophagy and the DNA damage response: a role for Tax? 444  

The DNA damage response is critical for the detection and repair of single 445  

stranded (ss) or double stranded (ds) DNA breaks as well as DNA lesions or 446  

mismatched bases. DNA breaks are recognized by the Mre11, NBS1 and Rad50 447  

(MRN) complex (reviewed in (Williams et al., 2010)) resulting in the 448  

phosphorylation of H2AX at Ser-139 by phosphatidylinositol-3-OH-kinase-like 449  

family of protein kinases (PIKKs), namely ATM, ATR and DNA-PK (Stiff et al., 450  

2004). Serine 139 phosphorylated H2AX (γH2AX) is important in the recruitment 451  

of downstream factors such as Rad51 and Brca1 to sites of DNA lesions (Celeste 452  

et al., 2002). In the past years, many different viruses have been shown to 453  

increase levels of γH2AX and modulate the DNA damage response (DDR) 454  

including both oncogenic and non-oncogenic viruses (reviewed in (Lilley et al., 455  

2007; Luftig, 2014; Nikitin & Luftig, 2011). 456  

Inhibiting the DDR pathway however does not always induce cell death. As 457  

mentioned above, the induction of the DDR by increased DNA replication induces 458  

 

 

cellular senescence in a p21 dependent pathway. Inhibition of the DDR however 459  

also leads to the formation of micronuclei, which are cleared by autophagy if not 460  

resolved by NHEJ (see below). The induction of the DDR can also induce 461  

autophagy, which itself either might promote or inhibit apoptosis (Fig3A). 462  

Tax, DDR, and autophagy 463  

Induction of the DDR by viral oncoproteins can be achieved, among others, by 464  

two mechanisms; first by inducing DNA breaks directly or second by attenuating 465  

the DDR via sequestering proteins required for the execution of the repair 466  

pathway into “pseudo DNA repair foci”, sites where DNA repair factors are 467  

sequestered in the absence of DNA damage (Nikitin & Luftig, 2012; Soutoglou & 468  

Misteli, 2008). In the case of HTLV-1, Tax has been shown to employ both 469  

mechanisms (reviewed in (Boxus & Willems, 2012). HTLV-1 Tax induces dsDNA 470  

breaks by generating ROS (Kinjo et al., 2010) and RNS (Chaib-Mezrag et al., 471  

2014) as well as generating replication dependent dsDNA breaks by accelerating 472  

DNA replication (Boxus et al., 2012). In addition, HTLV-1 Tax attenuates the DNA 473  

damage response by sequestering ATM, DNA-PK, Chk-1/-2 and p53 into Tax 474  

containing nuclear speckles or “pseudo-foci” that are also positive for γH2AX 475  

(Belgnaoui et al., 2010; Durkin et al., 2008; Park et al., 2004; Park et al., 2006) as 476  

well as by repression of Ku80 gene expression (Ducu et al., 2011) (Fig.3B) thus 477  

inhibiting not only the DDR but also the segregation of chromosomes (reviewed 478  

in (Marriott et al., 2002)). In this model, the expression of Tax induces the 479  

formation of ROS by accelerating DNA replication via interacting with the MCM2-480  

 

 

7 helicase complex (Boxus et al., 2012), increasing the DNA replication and 481  

progression of S phase, as well as increasing the expression of PCNA (Gatza et 482  

al., 2003; Lemoine et al., 2000; Ressler et al., 1997). 483  

In contrast to ATM and DNA-PK, Tax does not affect the activation of the ATR 484  

dependent pathway (Haoudi et al., 2003), suggesting that the both the alternative 485  

(A)-NEHJ and ATR mediated HR pathway might be functionally intact, although 486  

both (nuclear) Ku70 (Rai et al., 2010) and Wild-type p53-induced phosphatase 1 487  

(Wip-1) (see below) might attenuate the ATR response (Lu et al., 2005; Lu et al., 488  

2008). Indeed, GFP-Tax expressing CHO xrs6 -/- cells (the equivalent of Ku80) 489  

display an increase in chromosome fusion (Majone & Jeang, 2012) suggesting 490  

that Ku70/Ku80 dependent pathways are induced. 491  

Inhibition of autophagy by Tax: attenuating the DDR? 492  

Although autophagy is process occurring in the cytoplasm of cells, nuclear 493  

proteins which are polyubiquitinylated can be recognised and degraded by 494  

autophagy by binding nuclear p62/SQSTM-1 prior of being exported to the 495  

cytoplasm (Pankiv et al., 2010) and Beclin-1 deficient immortalised mammary 496  

epithelial cells accumulate damaged DNA (Karantza-Wadsworth et al., 2007). 497  

Since the inhibition of autophagy has been associated with a higher incidence of 498  

ROS due to the accumulation of damaged proteins and organelles, autophagy 499  

deficiency has been linked to the induction of DNA lesions via an increase in 500  

ROS production (reviewed in (Filomeni et al., 2015)). 501  

In addition to induce the formation of ROS upon inhibition of autophagy 502  

 

 

(Kageyama & Komatsu, 2012; Lee et al., 2012), the deletion of Atg7 or Atg5 in 503  

primary mouse embryonic fibroblast cells also induces a defect in HR mediated 504  

pathway by promoting the degradation of phosphorylated Chk-1 via the 505  

proteasome without affecting the recruitment of ATR, ATM, or Rad51 to sites of 506  

DNA damage, favoring error-prone NHEJ which might contribute to the 507  

accumulation of DNA damage in autophagy deficient cells and knockdown of 508  

Beclin-1, UVRAG or Atg5 induces the formation of 53BP1 positive foci, indicating 509  

the activation of NHEJ (Park et al., 2014). The inhibition of DNA-PK in Atg5-/- or 510  

Atg7-/- MEF using chemical inhibitors not only inhibits NHEJ but also induces 511  

apoptosis following treatment with Etoposide or exposure to IR (Liu et al., 2015). 512  

In line with these results, deleting FIP200 in MEF impair the DDR and increases 513  

the sensitivity ionizing radiation induced ROS (Bae & Guan, 2011), suggesting 514  

that one of the main functions of autophagy is preventing the induction of DNA 515  

lesions by inhibiting the formation of ROS via regulation of mitophagy, thus 516  

decreasing DNA damage indirectly (reviewed in (Filomeni et al., 2015)). Once 517  

however DNA lesions are induced by ROS, sensor proteins such as PARP1 and 518  

ATM not only sense DNA damage but also activate the DDR and linking the DDR 519  

with autophagy. In the case of MEF treated with Doxorubicin, PARP1 is 520  

hyperactivated in MEF, thus leading to the depletion of ATP and NAD+, resulting 521  

in the activation of AMPK as well as increased expression of Bnip-3, Cathepsin-522  

B/-L, and Beclin-1 (Munoz-Gamez et al., 2009), similar to MEF treated with 523  

Methylnitronitrosoguanidine (MNNG) (Zhou et al., 2013). In the case of ATM, it 524  

 

 

has been demonstrated that following the treatment of MCF7 and HeLa S3 cells 525  

with H2O2, ATM translocates from the nucleus into the cytoplasm, where it 526  

induces autophagy by repressing mTORC1 via LKB dependent and independent 527  

pathways (depending on the concentration of H2O2) involving the activation of 528  

AMPK via ATM dependent phosphorylation of Tuberous sclerosis complex-2 529  

(TSC-2) (Alexander et al., 2010); treatment with Etoposide however did not 530  

initiate the induction of autophagy suggesting that ATM induced autophagy is 531  

selective. KU55933 treatment of HeLa cells however inhibits the induction of 532  

autophagy via the mTORC-1 pathway, MAPK14, and Beclin-1/PI3KIII pathway 533  

(Liang et al., 2013), suggesting that ATM activation can initiate autophagy via 534  

multiple pathways. In addition to TSC-2, the induction of both Sestrin-1/-2 and 535  

REDD via ATM inhibits Akt kinase mediated inhibition of AMPK (Cam et al., 536  

2014), thus counteracting the activation of Akt kinase by DNA-PK and Akt 537  

dependent inhibition of TSC-2 (Inoki et al., 2002) as well as AMPK in both 538  

Topotecan treated NHDF and MEF cells; however, although both mTORC-1 and 539  

the ribosomal p70 S6 Kinase are activated following Topotecan treatment, the 540  

induction of autophagy flux has not been demonstrated yet. 541  

Constitutive activation of ATM following the induction of DNA damage and 542  

treatment with HDAC inhibitors also results in an intranuclear activation of NEMO 543  

and translocation of the ATM/NEMO complex to the cytoplasm where in 544  

subsequent steps the IKK complex is degraded and the p65/p50 complex is 545  

activated, leading to NF-κB hyperactivation and apoptosis (Rosato et al., 2010; 546  

 

 

Wu & Miyamoto, 2008; Wu et al., 2006). Although it has not been demonstrated, 547  

inducing ATM and/or PARP1 by Tax may also promote the activation of NF-κB 548  

by translocation of the ATM/NEMO complex to the cytoplasm, potentiating the 549  

formation of autophagosomes similar to treatment with HDAC inhibitors whilst 550  

preventing apoptosis. 551  

In the case of Tax expressing or HTLV-1 infected cells a contribution of either 552  

PARP1 or ATM activation to induction of autophagy has not been demonstrated. 553  

Following UV irradiation of clonal rat embryo fibroblasts (CREFs), Tax expressing 554  

CREFs only exhibit an initial arrest in G1 phase followed by an acceleration of 555  

entry into S phase when compared with control cells expressing the backbone 556  

vector (Dayaram et al., 2013). Furthermore, CREF-tax cells also maintain a 557  

higher abundance of UV induced thymidine dimers and fail to induce the 558  

formation of γH2AX and phosphorylated Replication Protein (RPA) positive foci, 559  

a hallmark of DDR induction, indicating that the expression of Tax attenuates the 560  

ATM dependent HR pathway (Baydoun et al., 2012). Immunofluorescence 561  

analysis of gamma-irradiated cells expressing Tax further indicated that Tax 562  

indeed sequesters and/or inhibits various components of the DDR, including 563  

MDC-1, Chk-1/-2, as well as p53, leading to an inhibition of the DDR (Belgnaoui 564  

et al., 2010; Durkin et al., 2008; Ramadan et al., 2008). In addition to preventing 565  

the initiation of the DDR, Tax also induces the activation of Wip-1 thereby 566  

attenuating γH2AX dependent assembly of DNA damage repair foci by 567  

(premature) dephosphorylation of γH2AX and ATM (Cha et al., 2010). If the 568  

 

 

activation of Wip-1 by Tax also inhibits the induction of autophagy is not clear, 569  

but it has been demonstrated that Wip-1 does inhibit the formation of 570  

autophagosomes probably by dephosphorylatingAMPK in bone marrow derived 571  

macrophages (Le Guezennec et al., 2012), potentially inhibiting Tax induced 572  

formation of autophagosomes partially either by dephosphorylating ATM or 573  

AMPK (Fig.3B). 574  

PTEN (Phosphatase and Tensin homolog) is a tumor suppressor protein with 575  

various cytoplasmic and nuclear functions, including regulation of apoptosis in 576  

response to DNA damage and cytokine secretion (Furumoto et al., 2006; Gil et 577  

al., 2006), which in response to DNA damage induced by various treatments 578  

such as Etoposide, Topotecan, or Cisplatin, or following oxidative stress induced 579  

by H2O2 (Chen et al., 2015a; Shen et al., 2007) translocates to the nucleus in a 580  

ATM dependent manner (Chen et al., 2015a). The nuclear translocation of PTEN 581  

has been demonstrated to induce formation of autophagosomes and the 582  

degradation of p62/SQSTM-1 via phosphorylation of Jun that induces the 583  

expression of Sestrin-2 and the activation of AMPK in A549 and HeLa cells 584  

(Chen et al., 2015a). 585  

The expression of Tax in both CV-1 and Jurkat cells in contrast prevents the 586  

activation of PTEN by downregulating the expression of PTEN via 587  

hyperactivation of NF-κB and sequestering p300/CBP by p65 (Fukuda et al., 588  

2012). Since Tax however also induces the expression of Wip-1, it might be 589  

possible that in addition to downregulating the expression of PTEN, Tax might 590  

 

 

inhibit the activation of PTEN dependent autophagy by preventing PTEN 591  

phosphorylation of by ATM following the induction of DNA damage. 592  

Since the expression of Tax suppresses the HR mediated repair pathway, it has 593  

been speculated that Tax induces the error prone (conservative or C-) NHEJ 594  

pathway (Baydoun et al., 2012), which is not only dependent on DNA-PK but also 595  

on Ku80 and Ku70 (Guirouilh-Barbat et al., 2007). HTLV-1 Tax however has 596  

been proposed to inhibit the C-NHEJ pathway by downregulating the expression 597  

of Ku80 in CREF cells, suggesting that C-NHEJ is inhibited (Ducu et al., 2011; 598  

Majone & Jeang, 2012), although in Tax immortalised WT4, WT4B and WT4I and 599  

HTLV-1 infected cell lines HR is inhibited and NHEJ is induced (Baydoun et al., 600  

2012). Regarding Ku70, the expression of Tax might increase the nuclear levels 601  

of deacetylated Ku70. Nuclear, deacetylated but not acetylated, Ku70 has been 602  

shown to interact with nuclear matrix-associated protein scaffold/matrix-603  

associated region-binding protein 1 (SMAR1) (Chaudhary et al., 2014). 604  

Phosphorylation of the Ku70/SMAR1 at Ser-370 complex by ATM facilitates the 605  

recruitment of Ku70 to sites of DNA damage that might also recruit DNA-PK, 606  

leading to DNA repair (Chaudhary et al., 2014). Tax might therefore induce the 607  

formation of the Ku70/SMAR1 complex and recruit DNA-PK independent of Ku80 608  

despite the downregulation of Ku80 expression. Wip1 however might antagonise 609  

the formation of K70/SMAR1 by inhibiting ATM dependent phosphorylation of 610  

SMAR1 thus increasing Ku70 and subsequently promoting NHEJ (Fig.4A). 611  

Since the expression of Tax however does not interfere with the activation of 612  

 

 

ATR pathway and the induction of ATR by various agents including Cisplatin, 613  

Camptothecin, Hydroxyurea, and MMS induces the degradation of 614  

phosphorylated Chk-1 by chaperone mediated autophagy (Park et al., 2015), the 615  

failure of Tax to interfere with the ATR pathway might indicate that Tax interferes 616  

specifically with (macro-) autophagy (Supplemental Fig.2) 617  

Tax and Micronuclei 618  

One characteristic of cancer cells is the presence of abnormalities in the 619  

karyotype, both numerical and structural caused by erroneous DNA repair 620  

leading to deletions, duplications, inversions, and chromosome translocation. 621  

Two sequential mechanisms have been proposed to induce the rearrangement of 622  

chromosomal loci in a single event, chromothripsis (“chromosome shattering”) 623  

followed by chromoanasynthesis (“chromosome reconstitution”), which is 624  

preceded by the formation of micronuclei (reviewed in (Holland & Cleveland, 625  

2012)). Micronuclei are believed to be formed by mitotic errors in which lagging 626  

chromosomes fail to segregate properly and consequently contained in a 627  

micronucleus (MN) (Thompson & Compton, 2011). Owing to the decreased 628  

density of nuclear pore complexes within the MN membrane, DNA replication 629  

within the MN takes place in G2 phase of the cell cycle instead of S phase and is 630  

not completing at the beginning of M phase (Crasta et al., 2012). Consequently 631  

entry into M phase leads to chromothripsis –shattering or pulverization of 632  

chromosomes- and subsequent repair by NHEJ in the G1 phase succeeding M 633  

phase (chromoanasynthesis) with the MN not being disassembled during mitosis 634  

 

 

(reviewed in (Holland & Cleveland, 2012)). In the subsequent S phase, the highly 635  

rearranged chromosome then replicates and is distributed among the daughter 636  

cells. 637  

MEF derived from GFP-LC3 transgenic mice carrying a mutation of pH222P in 638  

the Lamin A gene (LmnaH222P-/H222P-) exhibit a higher frequency of MN that are 639  

positive for Lamin B, γH2AX, DNA, Rab7, LC3, Atg16L, Atg9, Atg7, or LAMP2, 640  

indicating that MN are autophagic substrates (Park et al., 2009). Treatment of 641  

LmnaH222P-/H222P- MEF with either Wortmannin or 3-MA not only decreased cell 642  

viability but also increased the frequency of MN (Germain et al., 2011) similar to 643  

U2OS cells treated with Hydroxyurea or Cytochalasin D followed by Bafilomycin-644  

A or NH4Cl treatment (Rello-Varona et al., 2012). Interestingly, only GFP-LC3+-645  

p62/SQSTM-1+ micronuclei exhibited signs of envelope degradation and γH2AX 646  

positive DNA damage foci, indicating that the induction of autophagic degradation 647  

of MN is associated with the presence of DNA damage (Rello-Varona et al., 648  

2012) and inhibition of the NHEJ with concomitant inhibition of autophagy has 649  

been associated with the accumulation of DNA lesions in Atg7-/- MEF (Liu et al., 650  

2015). 651  

The expression of HTLV-1 Tax in Cos, HeLa, and CREF cells has been shown to 652  

induce the formation of MN (Ducu et al., 2011; Majone et al., 1993; Semmes et 653  

al., 1996) and of nucleocytoplasmic bridges containing free DNA ends (Ducu et 654  

al., 2011), indicating that the MN indeed contain damaged DNA. Interestingly, 655  

Ku80 has been reported to localise to intranuclear bodies positive for Tax (Ducu 656  

 

 

et al., 2011), suggesting that these bodies might represent MN that are repaired 657  

via the NHEJ pathway. In this model, Tax would increase NHEJ despite the 658  

downregulation of Ku80 by relocalising both nuclear Ku70 and Ku80 to MN in an 659  

ATM dependent or independent pathway (Fig.4A and B) resulting in rearranged 660  

chromosomes that might be facilitated by an increase in nuclear –deacetylated- 661  

Ku70 in a Wip-1 dependent manner. Due to impaired nuclear import of repair 662  

factors into MN (Hoffelder et al., 2004), non-repaired DNA contained in MN 663  

and/or nucleocytoplasmic bridges induces the formation of MN that are 664  

subsequently degraded via autophagy. Prolonged Tax expression however might 665  

inhibit the degradation of MN via autophagy inhibition as discussed above, 666  

leading to apoptosis and/or chromosome aberrations. 667  

Conclusion 668  

In conclusion, Tax mediated stabilization of Mcl-1 might not only prevent OIS 669  

associated decrease in cell proliferation, but also apoptosis as well as the 670  

induction of mitophagy via decreasing mitochondrial localized Beclin-1, ER 671  

and/or lipid-raft based formation of the autophagosome however might be 672  

activated by Tax induced expression of Bcl-3 via hyperactivation of NF-κB as well 673  

as the recruitment of Beclin-1 to lipid rafts, downregulating p53 dependent 674  

apoptosis, increasing the degradation of caspase-8 via p62/SQSTM-1, as well as 675  

inducing the expression and stabilisation of cFLIP (inhibiting the DISC complex 676  

and/or inhibiting the necrosome) in addition to at least a partial inhibition of the 677  

autophagic flux by sequestering Beclin-1. Inhibiting autophagic flux might also 678  

 

 

prevent the secretion of inflammatory cytokines, which is not only autophagy 679  

dependent (Kraya et al., 2015) but might also be dependent on the activation of 680  

caspase-3 (Sirois et al., 2012), and contributing to the proliferation of HTLV-1 681  

infected and Tax expressing cells by preventing senescence. Deacetylation of 682  

Ku70 might contribute to preventing apoptosis by sequestering Bax in cytosolic 683  

Ku70/Bax complexes as well as stabilising cFLIP. 684  

Deacetylated Ku70 has also been demonstrated to localise to the nucleus where 685  

it binds sites of DNA damage by forming a complex with Ku80, thus recruiting 686  

DNA-PK (Chaudhary et al., 2014; Meng et al., 2015). Increasing the amount of 687  

deacetylated Ku70 in the cytoplasm might therefore also increase the nuclear 688  

import of Ku70 and interfering with the DNA damage response, in particular the 689  

NHEJ pathway (Fell & Schild-Poulter, 2012) which is also induced by inhibiting 690  

autophagy (Liu et al., 2015) concomitant with an inhibition of the homologous 691  

recombination pathway (HR) due to inhibiting the Rad6 dependent degradation of 692  

heterochromatin protein HP1 by inhibiting autophagy (Chen et al., 2015b). The 693  

NHEJ pathway however is also regulated by Protein Phosphatase (PP2A) via 694  

dephosphorylating DNA-PK, thus increasing the activity of DNA-PK (Chan & 695  

Lees-Miller, 1996), and Tax has been shown to form a complex with PP2A and 696  

IKKγ thereby inhibiting PP2A (Fu et al., 2003; Hong et al., 2007). It might 697  

therefore possible that the inhibition of PP2A might also inactivate DNA-PK 698  

despite the formation of Ku70/Ku80 heterodimers thus favoring a pathway that 699  

involves the formation of ATM dependent complex of Ku70 with SMAR1 who 700  

 

 

itself is subject to inhibition by Wip-1. If the expression of Tax also destabilizes 701  

NBS1 –and prevents the formation of the MRN complex- by decreased ATM 702  

dependent phosphorylation of NBS1 and/or decreased p300/CBP dependent 703  

acetylation (Jang et al., 2010) thus contributing to the attenuation of ATM, ATR, 704  

and PARP1 dependent DDR pathways (and impairment in DNA end-resection) 705  

also remains to be investigated. In addition, destabilizing NBS1 could also 706  

prevent MRE11 and ATM dependent phosphorylation of Bid (Stracker et al., 707  

2007), thus preventing Tax induced apoptosis. 708  

The expression of Tax might also induce the ubiquitination of Sirtuin-1 (SIRT1) by 709  

MDM2 and thus induce the relocalisation of SIRT1 to the cytoplasm as described 710  

for irradiated DU 145 and HeLa cells treated with Etoposide (Peng et al., 2015). 711  

Tax induced DNA damage therefore might prevent the deacetylation of NBS1 712  

and thus activating instead of attenuating the activation of ATM, ATR, and PARP-713  

1 (whilst attenuating the DDR by sequestering DNA repair factors into pseudo-714  

repair foci). Cytoplasmic SIRT1 has been hypothesized to facilitate the 715  

acetylation of pro-apoptotic substrates such as Bax and caspase and induce 716  

apoptosis (Jin et al., 2007). Tax might therefore induce both the acetylation and 717  

deacetylation of proapoptotic substrates thus explaining the ability of Tax to not 718  

only transform infected cells but also inducing apoptosis. 719  

Interaction of Tax with p300/CBP in the cytoplasm, in particular in the perinuclear 720  

region, might prevent the acetylation of cytoplasmic LC3-I and thus the 721  

translocation of LC3-I into the nucleus, similar to HEK-293T cells transfected with 722  

 

 

p300 RNAi (Huang et al., 2015), thus preventing the induction of autophagy as a 723  

result of amino-acid starvation (Fig.5A). The increase of cytoplasmic LC3-I might 724  

then facilitate the formation of autophagosomes at lipid rafts and the ER as well 725  

as facilitating microautophagy and mitophagy. The sequestration of p300/CBP by 726  

Tax inside the nucleus might contribute to the export of nuclear deacetylated LC3 727  

in a SIRT1 independent manner and thus the formation of autophagosomes at 728  

lipid rafts (Fig.5B), although a contribution of nuclear p300/CBP to the 729  

accumulation of deacetylated LC3 has not been demonstrated. However, in HeLa 730  

cells constitutively expressing Tax and transfected with GFP-LC3, GFP-LC3 is 731  

absent from the nucleus and located in the perinuclear region (Ren et al., 2015). 732  

Further research however is needed to analyze the interplay between Tax and 733  

the regulation of both autophagy and the DNA damage response. 734  

735  

736  

737  

738  

739  

740  

741  

742  

743  

744  

 

 

References 745  

Abou-­‐Kandil,  A.,  Chamias,  R.,  Huleihel,  M.,  Godbey,  W.  T.  &  Aboud,  M.  (2011).  746  Role  of  caspase  9  in  activation  of  HTLV-­‐1  LTR  expression  by  DNA  damaging  747  agents.  Cell  cycle  10,  3337-­‐3345.  748  

Alexander,  A.,  Cai,   S.  L.,  Kim,   J.,  Nanez,  A.,   Sahin,  M.,  MacLean,  K.  H.,   Inoki,  K.,  749  Guan,  K.  L.,  Shen,  J.,  Person,  M.  D.,  Kusewitt,  D.,  Mills,  G.  B.,  Kastan,  M.  B.  750  &  Walker,   C.   L.   (2010).  ATM  signals   to  TSC2   in   the   cytoplasm   to   regulate  751  mTORC1  in  response  to  ROS.  Proceedings  of  the  National  Academy  of  Sciences  752  of  the  United  States  of  America  107,  4153-­‐4158.  753  

Andersen,  J.  L.  &  Kornbluth,  S.  (2012).  Mcl-­‐1  rescues  a  glitch  in  the  matrix.  Nature  754  cell  biology  14,  563-­‐565.  755  

Avesani,  F.,  Romanelli,  M.  G.,  Turci,  M.,  Di  Gennaro,  G.,  Sampaio,  C.,  Bidoia,  C.,  756  Bertazzoni,   U.   &   Bex,   F.   (2010).   Association   of   HTLV   Tax   proteins   with  757  TAK1-­‐binding   protein   2   and   RelA   in   calreticulin-­‐containing   cytoplasmic  758  structures  participates  in  Tax-­‐mediated  NF-­‐kappaB  activation.  Virology  408,  759  39-­‐48.  760  

Bae,  H.  &  Guan,  J.  L.  (2011).  Suppression  of  autophagy  by  FIP200  deletion  impairs  761  DNA   damage   repair   and   increases   cell   death   upon   treatments   with  762  anticancer  agents.  Molecular  cancer  research  :  MCR  9,  1232-­‐1241.  763  

Baldwin,   A.   S.   (2012).   Regulation   of   cell   death   and   autophagy   by   IKK   and   NF-­‐764  kappaB:  critical  mechanisms  in  immune  function  and  cancer.  Immunological  765  reviews  246,  327-­‐345.  766  

Basit,   F.,   Cristofanon,   S.   &   Fulda,   S.   (2013).   Obatoclax   (GX15-­‐070)   triggers  767  necroptosis   by   promoting   the   assembly   of   the   necrosome   on  768  autophagosomal  membranes.  Cell  death  and  differentiation  20,  1161-­‐1173.  769  

Baydoun,   H.   H.,   Bai,   X.   T.,   Shelton,   S.   &   Nicot,   C.   (2012).  HTLV-­‐I   tax   increases  770  genetic   instability   by   inducing   DNA   double   strand   breaks   during   DNA  771  replication  and  switching  repair  to  NHEJ.  PloS  one  7,  e42226.  772  

Beale,  R.,  Wise,  H.,  Stuart,  A.,  Ravenhill,  B.  J.,  Digard,  P.  &  Randow,  F.  (2014).  A  773  LC3-­‐interacting   motif   in   the   influenza   A   virus   M2   protein   is   required   to  774  subvert  autophagy  and  maintain  virion  stability.  Cell  host  &  microbe  15,  239-­‐775  247.  776  

Belgnaoui,  S.  M.,  Fryrear,  K.  A.,  Nyalwidhe,  J.  O.,  Guo,  X.  &  Semmes,  O.  J.  (2010).  777  The   viral   oncoprotein   tax   sequesters   DNA   damage   response   factors   by  778  tethering  MDC1  to  chromatin.  The  Journal  of  biological  chemistry  285,  32897-­‐779  32905.  780  

Bleumink,  M.,  Kohler,  R.,  Giaisi,  M.,  Proksch,  P.,  Krammer,  P.  H.  &  Li-­‐Weber,  M.  781  (2011).  Rocaglamide  breaks  TRAIL  resistance  in  HTLV-­‐1-­‐associated  adult  T-­‐782  cell   leukemia/lymphoma  by   translational   suppression  of   c-­‐FLIP  expression.  783  Cell  death  and  differentiation  18,  362-­‐370.  784  

Boxus,   M.,   Twizere,   J.   C.,   Legros,   S.,   Kettmann,   R.   &   Willems,   L.   (2012).  785  Interaction   of   HTLV-­‐1   Tax   with   minichromosome   maintenance   proteins  786  accelerates  the  replication  timing  program.  Blood  119,  151-­‐160.  787  

Boxus,  M.  &  Willems,   L.   (2012).  How  the  DNA  damage  response  determines   the  788  fate  of  HTLV-­‐1  Tax-­‐expressing  cells.  Retrovirology  9,  2.  789  

 

 

Cam,  M.,  Bid,  H.  K.,  Xiao,  L.,  Zambetti,  G.  P.,  Houghton,  P.   J.  &  Cam,  H.   (2014).  790  p53/TAp63   and   AKT   regulate   mammalian   target   of   rapamycin   complex   1  791  (mTORC1)   signaling   through   two   independent   parallel   pathways   in   the  792  presence  of  DNA  damage.  The  Journal  of  biological  chemistry  289,  4083-­‐4094.  793  

Campbell,  G.  R.,  Bruckman,  R.   S.,  Chu,  Y.  L.  &  Spector,   S.  A.   (2015).  Autophagy  794  Induction  by  Histone  Deacetylase  Inhibitors  Inhibits  HIV  Type  1.  The  Journal  795  of  biological  chemistry  290,  5028-­‐5040.  796  

Celeste,  A.,  Petersen,  S.,  Romanienko,  P.  J.,  Fernandez-­‐Capetillo,  O.,  Chen,  H.  T.,  797  Sedelnikova,   O.   A.,   Reina-­‐San-­‐Martin,   B.,   Coppola,   V.,   Meffre,   E.,  798  Difilippantonio,   M.   J.,   Redon,   C.,   Pilch,   D.   R.,   Olaru,   A.,   Eckhaus,   M.,  799  Camerini-­‐Otero,  R.  D.,  Tessarollo,  L.,  Livak,  F.,  Manova,  K.,  Bonner,  W.  M.,  800  Nussenzweig,  M.  C.  &  Nussenzweig,  A.  (2002).  Genomic  instability  in  mice  801  lacking  histone  H2AX.  Science  296,  922-­‐927.  802  

Cha,  H.,  Lowe,  J.  M.,  Li,  H.,  Lee,  J.  S.,  Belova,  G.  I.,  Bulavin,  D.  V.  &  Fornace,  A.  J.,  Jr.  803  (2010).   Wip1   directly   dephosphorylates   gamma-­‐H2AX   and   attenuates   the  804  DNA  damage  response.  Cancer  research  70,  4112-­‐4122.  805  

Chaib-­‐Mezrag,   H.,   Lemacon,   D.,   Fontaine,   H.,   Bellon,   M.,   Bai,   X.   T.,   Drac,   M.,  806  Coquelle,   A.   &   Nicot,   C.   (2014).   Tax   impairs   DNA   replication   forks   and  807  increases  DNA  breaks  in  specific  oncogenic  genome  regions.  Molecular  cancer  808  13,  205.  809  

Chan,   D.   W.   &   Lees-­‐Miller,   S.   P.   (1996).   The   DNA-­‐dependent   protein   kinase   is  810  inactivated   by   autophosphorylation   of   the   catalytic   subunit.   The   Journal   of  811  biological  chemistry  271,  8936-­‐8941.  812  

Charoenthongtrakul,   S.,   Zhou,  Q.,   Shembade,  N.,  Harhaj,   N.   S.  &  Harhaj,   E.  W.  813  (2011).   Human   T   cell   leukemia   virus   type   1   Tax   inhibits   innate   antiviral  814  signaling   via   NF-­‐kappaB-­‐dependent   induction   of   SOCS1.   Journal   of   virology  815  85,  6955-­‐6962.  816  

Chaudhary,   N.,   Nakka,   K.   K.,   Chavali,   P.   L.,   Bhat,   J.,   Chatterjee,   S.   &  817  Chattopadhyay,   S.   (2014).   SMAR1   coordinates   HDAC6-­‐induced  818  deacetylation   of   Ku70   and   dictates   cell   fate   upon   irradiation.   Cell   death   &  819  disease  5,  e1447.  820  

Chen,  J.  H.,  Zhang,  P.,  Chen,  W.  D.,  Li,  D.  D.,  Wu,  X.  Q.,  Deng,  R.,  Jiao,  L.,  Li,  X.,  Ji,  J.,  821  Feng,   G.   K.,   Zeng,   Y.   X.,   Jiang,   J.  W.  &   Zhu,   X.   F.   (2015a).  ATM-­‐mediated  822  PTEN  phosphorylation  promotes  PTEN  nuclear  translocation  and  autophagy  823  in  response  to  DNA-­‐damaging  agents  in  cancer  cells.  Autophagy,  0.  824  

Chen,  N.  &  Debnath,  J.  (2013).  IkappaB  kinase  complex  (IKK)  triggers  detachment-­‐825  induced  autophagy   in  mammary  epithelial   cells   independently  of   the  PI3K-­‐826  AKT-­‐MTORC1  pathway.  Autophagy  9,  1214-­‐1227.  827  

Chen,  S.,  Wang,  C.,  Sun,  L.,  Wang,  D.  L.,  Chen,  L.,  Huang,  Z.,  Yang,  Q.,  Gao,  J.,  Yang,  828  X.   B.,   Chang,   J.   F.,   Chen,   P.,   Lan,   L.,   Mao,   Z.   &   Sun,   F.   L.   (2015b).  RAD6  829  promotes   homologous   recombination   repair   by   activating   the   autophagy-­‐830  mediated   degradation   of   heterochromatin   protein   HP1.   Molecular   and  831  cellular  biology  35,  406-­‐416.  832  

Chen,  S.,  Zhou,  L.,  Zhang,  Y.,  Leng,  Y.,  Pei,  X.  Y.,  Lin,  H.,  Jones,  R.,  Orlowski,  R.  Z.,  833  Dai,   Y.  &  Grant,   S.   (2014a).  Targeting  SQSTM1/p62  induces  cargo  loading  834  

 

 

failure   and   converts   autophagy   to   apoptosis   via   NBK/Bik.   Molecular   and  835  cellular  biology  34,  3435-­‐3449.  836  

Chen,  X.,  Wang,  K.,  Xing,  Y.,  Tu,   J.,  Yang,  X.,  Zhao,  Q.,  Li,  K.  &  Chen,  Z.  (2014b).  837  Coronavirus  membrane-­‐associated   papain-­‐like   proteases   induce   autophagy  838  through   interacting   with   Beclin1   to   negatively   regulate   antiviral   innate  839  immunity.  Protein  &  cell  5,  912-­‐927.  840  

Choi,   Y.   B.   &   Harhaj,   E.   W.   (2014).   HTLV-­‐1   tax   stabilizes   MCL-­‐1   via   TRAF6-­‐841  dependent   K63-­‐linked   polyubiquitination   to   promote   cell   survival   and  842  transformation.  PLoS  pathogens  10,  e1004458.  843  

Crasta,  K.,   Ganem,  N.   J.,   Dagher,  R.,   Lantermann,  A.   B.,   Ivanova,   E.   V.,   Pan,   Y.,  844  Nezi,  L.,  Protopopov,  A.,  Chowdhury,  D.  &  Pellman,  D.  (2012).  DNA  breaks  845  and  chromosome  pulverization  from  errors  in  mitosis.  Nature  482,  53-­‐58.  846  

Criollo,  A.,  Senovilla,  L.,  Authier,  H.,  Maiuri,  M.  C.,  Morselli,  E.,  Vitale,  I.,  Kepp,  O.,  847  Tasdemir,  E.,  Galluzzi,  L.,  Shen,  S.,  Tailler,  M.,  Delahaye,  N.,  Tesniere,  A.,  848  De   Stefano,   D.,   Younes,   A.   B.,   Harper,   F.,   Pierron,   G.,   Lavandero,   S.,  849  Zitvogel,   L.,   Israel,   A.,   Baud,   V.   &  Kroemer,   G.   (2010).  The   IKK  complex  850  contributes  to  the  induction  of  autophagy.  The  EMBO  journal  29,  619-­‐631.  851  

Darwiche,  N.,  Sinjab,  A.,  Abou-­‐Lteif,  G.,  Chedid,  M.  B.,  Hermine,  O.,  Dbaibo,  G.  &  852  Bazarbachi,   A.   (2011).   Inhibition   of   mammalian   target   of   rapamycin  853  signaling   by   everolimus   induces   senescence   in   adult   T-­‐cell  854  leukemia/lymphoma   and   apoptosis   in   peripheral   T-­‐cell   lymphomas.  855  International   journal   of   cancer   Journal   international   du   cancer   129,   993-­‐856  1004.  857  

Dayaram,  T.,  Lemoine,  F.  J.,  Donehower,  L.  A.  &  Marriott,  S.  J.  (2013).  Activation  858  of  WIP1  phosphatase  by  HTLV-­‐1  Tax  mitigates  the  cellular  response  to  DNA  859  damage.  PloS  one  8,  e55989.  860  

Di  Micco,  R.,  Cicalese,  A.,  Fumagalli,  M.,  Dobreva,  M.,  Verrecchia,  A.,  Pelicci,  P.  G.  861  &   di   Fagagna,   F.   (2008).   DNA   damage   response   activation   in   mouse  862  embryonic   fibroblasts   undergoing   replicative   senescence   and   following  863  spontaneous  immortalization.  Cell  cycle  7,  3601-­‐3606.  864  

Di   Micco,   R.,   Fumagalli,   M.,   Cicalese,   A.,   Piccinin,   S.,   Gasparini,   P.,   Luise,   C.,  865  Schurra,  C.,  Garre,  M.,  Nuciforo,  P.  G.,  Bensimon,  A.,  Maestro,  R.,  Pelicci,  866  P.   G.   &   d'Adda   di   Fagagna,   F.   (2006).   Oncogene-­‐induced   senescence   is   a  867  DNA  damage  response  triggered  by  DNA  hyper-­‐replication.  Nature  444,  638-­‐868  642.  869  

Ducu,   R.   I.,   Dayaram,   T.   &  Marriott,   S.   J.   (2011).   The  HTLV-­‐1  Tax   oncoprotein  870  represses  Ku80  gene  expression.  Virology  416,  1-­‐8.  871  

Durkin,  S.  S.,  Guo,  X.,  Fryrear,  K.  A.,  Mihaylova,  V.  T.,  Gupta,  S.  K.,  Belgnaoui,  S.  872  M.,   Haoudi,   A.,   Kupfer,   G.   M.   &   Semmes,   O.   J.   (2008).   HTLV-­‐1   Tax  873  oncoprotein  subverts  the  cellular  DNA  damage  response  via  binding  to  DNA-­‐874  dependent   protein   kinase.   The   Journal   of   biological   chemistry   283,   36311-­‐875  36320.  876  

Elgendy,  M.,  Ciro,  M.,  Abdel-­‐Aziz,  A.  K.,  Belmonte,  G.,  Dal  Zuffo,  R.,  Mercurio,  C.,  877  Miracco,   C.,   Lanfrancone,   L.,   Foiani,   M.   &   Minucci,   S.   (2014).   Beclin   1  878  restrains   tumorigenesis   through   Mcl-­‐1   destabilization   in   an   autophagy-­‐879  independent  reciprocal  manner.  Nature  communications  5,  5637.  880  

 

 

Endo,  K.,  Hirata,  A.,  Iwai,  K.,  Sakurai,  M.,  Fukushi,  M.,  Oie,  M.,  Higuchi,  M.,  Hall,  881  W.  W.,   Gejyo,   F.   &   Fujii,   M.   (2002).   Human   T-­‐cell   leukemia   virus   type   2  882  (HTLV-­‐2)  Tax  protein  transforms  a  rat  fibroblast  cell  line  but  less  efficiently  883  than  HTLV-­‐1  Tax.  Journal  of  virology  76,  2648-­‐2653.  884  

Evan,   G.   I.   &   d'Adda   di   Fagagna,   F.   (2009).   Cellular   senescence:   hot   or   what?  885  Current  opinion  in  genetics  &  development  19,  25-­‐31.  886  

Fabre,  C.,  Carvalho,  G.,  Tasdemir,  E.,  Braun,  T.,  Ades,  L.,  Grosjean,  J.,  Boehrer,  S.,  887  Metivier,  D.,  Souquere,  S.,  Pierron,  G.,  Fenaux,  P.  &  Kroemer,  G.  (2007).  888  NF-­‐kappaB  inhibition  sensitizes  to  starvation-­‐induced  cell  death  in  high-­‐risk  889  myelodysplastic  syndrome  and  acute  myeloid  leukemia.  Oncogene  26,  4071-­‐890  4083.  891  

Fell,   V.   L.   &   Schild-­‐Poulter,   C.   (2012).   Ku   regulates   signaling   to   DNA   damage  892  response   pathways   through   the  Ku70   von  Willebrand  A   domain.  Molecular  893  and  cellular  biology  32,  76-­‐87.  894  

Filomeni,  G.,  De  Zio,  D.  &  Cecconi,  F.  (2015).  Oxidative  stress  and  autophagy:  the  895  clash  between  damage  and  metabolic  needs.  Cell  death  and  differentiation  22,  896  377-­‐388.  897  

Fu,   D.   X.,   Kuo,   Y.   L.,   Liu,   B.   Y.,   Jeang,   K.   T.   &   Giam,   C.   Z.   (2003).   Human   T-­‐898  lymphotropic  virus  type  I  tax  activates  I-­‐kappa  B  kinase  by  inhibiting  I-­‐kappa  899  B  kinase-­‐associated  serine/threonine  protein  phosphatase  2A.  The  Journal  of  900  biological  chemistry  278,  1487-­‐1493.  901  

Fukuda,  R.  I.,  Tsuchiya,  K.,  Suzuki,  K.,  Itoh,  K.,  Fujita,  J.,  Utsunomiya,  A.  &  Tsuji,  902  T.  (2012).  HTLV-­‐I  Tax  regulates  the  cellular  proliferation  through  the  down-­‐903  regulation   of   PIP3-­‐phosphatase   expressions   via   the   NF-­‐kappaB   pathway.  904  International  journal  of  biochemistry  and  molecular  biology  3,  95-­‐104.  905  

Furumoto,  Y.,  Brooks,  S.,  Olivera,  A.,  Takagi,  Y.,  Miyagishi,  M.,  Taira,  K.,  Casellas,  906  R.,   Beaven,   M.   A.,   Gilfillan,   A.   M.   &   Rivera,   J.   (2006).   Cutting   Edge:  907  Lentiviral  short  hairpin  RNA  silencing  of  PTEN   in  human  mast  cells   reveals  908  constitutive  signals  that  promote  cytokine  secretion  and  cell  survival.  Journal  909  of  immunology  176,  5167-­‐5171.  910  

Galluzzi,  L.,  Pietrocola,  F.,  Bravo-­‐San  Pedro,  J.  M.,  Amaravadi,  R.  K.,  Baehrecke,  911  E.   H.,   Cecconi,   F.,   Codogno,   P.,   Debnath,   J.,   Gewirtz,   D.   A.,   Karantza,   V.,  912  Kimmelman,   A.,   Kumar,   S.,   Levine,   B.,   Maiuri,   M.   C.,   Martin,   S.   J.,  913  Penninger,   J.,  Piacentini,  M.,  Rubinsztein,  D.  C.,  Simon,  H.  U.,  Simonsen,  914  A.,   Thorburn,   A.   M.,   Velasco,   G.,   Ryan,   K.   M.   &   Kroemer,   G.   (2015).  915  Autophagy   in  malignant   transformation   and   cancer   progression.  The  EMBO  916  journal.  917  

Gatza,   M.   L.,  Watt,   J.   C.   &  Marriott,   S.   J.   (2003).   Cellular   transformation  by   the  918  HTLV-­‐I  Tax  protein,  a  jack-­‐of-­‐all-­‐trades.  Oncogene  22,  5141-­‐5149.  919  

Germain,  M.,  Nguyen,  A.  P.,  Le  Grand,  J.  N.,  Arbour,  N.,  Vanderluit,  J.  L.,  Park,  D.  920  S.,   Opferman,   J.   T.   &   Slack,   R.   S.   (2011).   MCL-­‐1   is   a   stress   sensor   that  921  regulates   autophagy   in   a   developmentally   regulated   manner.   The   EMBO  922  journal  30,  395-­‐407.  923  

Germain,  M.  &  Slack,  R.  S.  (2011).  MCL-­‐1  regulates  the  balance  between  autophagy  924  and  apoptosis.  Autophagy  7,  549-­‐551.  925  

 

 

Gessain,  A.  &  Cassar,  O.  (2012).  Epidemiological  Aspects  and  World  Distribution  of  926  HTLV-­‐1  Infection.  Frontiers  in  microbiology  3,  388.  927  

Gewirtz,   D.   A.   (2013).   Autophagy   and   senescence:   a   partnership   in   search   of  928  definition.  Autophagy  9,  808-­‐812.  929  

Gil,   A.,   Andres-­‐Pons,   A.,   Fernandez,   E.,   Valiente,   M.,   Torres,   J.,   Cervera,   J.   &  930  Pulido,   R.   (2006).   Nuclear   localization   of   PTEN   by   a   Ran-­‐dependent  931  mechanism   enhances   apoptosis:   Involvement   of   an   N-­‐terminal   nuclear  932  localization  domain  and  multiple  nuclear  exclusion  motifs.  Molecular  biology  933  of  the  cell  17,  4002-­‐4013.  934  

Green,  D.  R.,  Galluzzi,  L.  &  Kroemer,  G.  (2011).  Mitochondria  and  the  autophagy-­‐935  inflammation-­‐cell  death  axis  in  organismal  aging.  Science  333,  1109-­‐1112.  936  

Guirouilh-­‐Barbat,  J.,  Rass,  E.,  Plo,  I.,  Bertrand,  P.  &  Lopez,  B.  S.  (2007).  Defects  in  937  XRCC4   and   KU80   differentially   affect   the   joining   of   distal   nonhomologous  938  ends.  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  939  America  104,  20902-­‐20907.  940  

Guo,  H.,  Omoto,  S.,  Harris,  P.  A.,  Finger,  J.  N.,  Bertin,  J.,  Gough,  P.  J.,  Kaiser,  W.  J.  941  &  Mocarski,   E.   S.   (2015).  Herpes   simplex  virus   suppresses  necroptosis   in  942  human  cells.  Cell  host  &  microbe  17,  243-­‐251.  943  

Haoudi,  A.,  Daniels,  R.  C.,  Wong,  E.,  Kupfer,  G.  &  Semmes,  O.  J.  (2003).  Human  T-­‐944  cell   leukemia   virus-­‐I   tax   oncoprotein   functionally   targets   a   subnuclear  945  complex  involved  in  cellular  DNA  damage-­‐response.  The  Journal  of  biological  946  chemistry  278,  37736-­‐37744.  947  

Hasegawa,   H.,   Sawa,   H.,   Lewis,   M.   J.,   Orba,   Y.,   Sheehy,   N.,   Yamamoto,   Y.,  948  Ichinohe,  T.,  Tsunetsugu-­‐Yokota,  Y.,  Katano,  H.,  Takahashi,  H.,  Matsuda,  949  J.,   Sata,   T.,   Kurata,   T.,   Nagashima,   K.   &   Hall,   W.   W.   (2006).   Thymus-­‐950  derived  leukemia-­‐lymphoma  in  mice  transgenic  for  the  Tax  gene  of  human  T-­‐951  lymphotropic  virus  type  I.  Nature  medicine  12,  466-­‐472.  952  

He,  M.   X.  &  He,   Y.  W.   (2013).  A  role   for  c-­‐FLIP(L)   in   the  regulation  of  apoptosis,  953  autophagy,   and  necroptosis   in  T   lymphocytes.  Cell  death  and  differentiation  954  20,  188-­‐197.  955  

Hishiki,  T.,  Ohshima,  T.,  Ego,  T.  &  Shimotohno,  K.  (2007).  BCL3  acts  as  a  negative  956  regulator  of  transcription  from  the  human  T-­‐cell   leukemia  virus  type  1  long  957  terminal   repeat   through   interactions  with   TORC3.  The   Journal   of   biological  958  chemistry  282,  28335-­‐28343.  959  

Hoffelder,  D.  R.,  Luo,  L.,  Burke,  N.  A.,  Watkins,  S.  C.,  Gollin,  S.  M.  &  Saunders,  W.  960  S.   (2004).  Resolution  of  anaphase  bridges  in  cancer  cells.  Chromosoma  112,  961  389-­‐397.  962  

Holland,   A.   J.   &   Cleveland,   D.   W.   (2012).   Chromoanagenesis   and   cancer:  963  mechanisms   and   consequences   of   localized,   complex   chromosomal  964  rearrangements.  Nature  medicine  18,  1630-­‐1638.  965  

Hollomon,  M.  G.,  Gordon,  N.,  Santiago-­‐O'Farrill,  J.  M.  &  Kleinerman,  E.  S.  (2013).  966  Knockdown  of  autophagy-­‐related  protein  5,  ATG5,  decreases  oxidative  stress  967  and   has   an   opposing   effect   on   camptothecin-­‐induced   cytotoxicity   in  968  osteosarcoma  cells.  BMC  cancer  13,  500.  969  

Hong,  S.,  Wang,  L.  C.,  Gao,  X.,  Kuo,  Y.  L.,  Liu,  B.,  Merling,  R.,  Kung,  H.  J.,  Shih,  H.  M.  970  &   Giam,   C.   Z.   (2007).   Heptad   repeats   regulate   protein   phosphatase   2a  971  

 

 

recruitment  to  I-­‐kappaB  kinase  gamma/NF-­‐kappaB  essential  modulator  and  972  are   targeted   by   human   T-­‐lymphotropic   virus   type   1   tax.   The   Journal   of  973  biological  chemistry  282,  12119-­‐12126.  974  

Huang,  R.,  Xu,  Y.,  Wan,  W.,  Shou,  X.,  Qian,  J.,  You,  Z.,  Liu,  B.,  Chang,  C.,  Zhou,  T.,  975  Lippincott-­‐Schwartz,   J.   &   Liu,   W.   (2015).   Deacetylation   of   nuclear   LC3  976  drives  autophagy  initiation  under  starvation.  Molecular  cell  57,  456-­‐466.  977  

Hyun,   J.,  Ramos,   J.  C.,  Toomey,  N.,  Balachandran,  S.,  Lavorgna,  A.,  Harhaj,  E.  &  978  Barber,  G.  N.  (2015).  Oncogenic  human  T-­‐cell  lymphotropic  virus  type  1  tax  979  suppression   of   primary   innate   immune   signaling   pathways.   Journal   of  980  virology  89,  4880-­‐4893.  981  

Inoki,  K.,  Li,  Y.,  Zhu,  T.,  Wu,  J.  &  Guan,  K.  L.  (2002).  TSC2  is  phosphorylated  and  982  inhibited  by  Akt  and  suppresses  mTOR  signalling.  Nature  cell  biology  4,  648-­‐983  657.  984  

Ishitsuka,  K.  &  Tamura,  K.  (2014).  Human  T-­‐cell  leukaemia  virus  type  I  and  adult  985  T-­‐cell  leukaemia-­‐lymphoma.  The  Lancet  Oncology  15,  e517-­‐526.  986  

Jang,   E.   R.,   Choi,   J.  D.,   Jeong,  G.  &   Lee,   J.   S.   (2010).  Phosphorylation  of  p300  by  987  ATM   controls   the   stability   of   NBS1.   Biochemical   and   biophysical   research  988  communications  397,  637-­‐643.  989  

Jeong,  S.  J.,  Dasgupta,  A.,  Jung,  K.  J.,  Um,  J.  H.,  Burke,  A.,  Park,  H.  U.  &  Brady,  J.  N.  990  (2008).  PI3K/AKT  inhibition  induces  caspase-­‐dependent  apoptosis  in  HTLV-­‐991  1-­‐transformed  cells.  Virology  370,  264-­‐272.  992  

Jiang,  H.,  Lu,  H.,  Schiltz,  R.  L.,  Pise-­‐Masison,  C.  A.,  Ogryzko,  V.  V.,  Nakatani,  Y.  &  993  Brady,   J.   N.   (1999).   PCAF   interacts   with   tax   and   stimulates   tax  994  transactivation   in   a   histone   acetyltransferase-­‐independent   manner.  995  Molecular  and  cellular  biology  19,  8136-­‐8145.  996  

Jin,  Q.,  Yan,  T.,  Ge,  X.,  Sun,  C.,  Shi,  X.  &  Zhai,  Q.  (2007).  Cytoplasm-­‐localized  SIRT1  997  enhances  apoptosis.  J  Cell  Physiol  213,  88-­‐97.  998  

Jung,  C.  H.,  Jun,  C.  B.,  Ro,  S.  H.,  Kim,  Y.  M.,  Otto,  N.  M.,  Cao,  J.,  Kundu,  M.  &  Kim,  D.  999  H.   (2009).   ULK-­‐Atg13-­‐FIP200   complexes   mediate   mTOR   signaling   to   the  1000  autophagy  machinery.  Molecular  biology  of  the  cell  20,  1992-­‐2003.  1001  

Kageyama,   S.   &   Komatsu,   M.   (2012).   Impaired   G1-­‐arrest,   autophagy,   and  1002  apoptosis  in  Atg7-­‐knockout  mice.  Circulation  research  111,  962-­‐964.  1003  

Karantza-­‐Wadsworth,  V.,  Patel,  S.,  Kravchuk,  O.,  Chen,  G.,  Mathew,  R.,   Jin,  S.  &  1004  White,  E.  (2007).  Autophagy  mitigates  metabolic  stress  and  genome  damage  1005  in  mammary  tumorigenesis.  Genes  &  development  21,  1621-­‐1635.  1006  

Kashatus,  D.,  Cogswell,  P.  &  Baldwin,  A.  S.  (2006).  Expression  of  the  Bcl-­‐3  proto-­‐1007  oncogene  suppresses  p53  activation.  Genes  &  development  20,  225-­‐235.  1008  

Kerr,  E.,  Holohan,  C.,  McLaughlin,  K.  M.,  Majkut,  J.,  Dolan,  S.,  Redmond,  K.,  Riley,  1009  J.,  McLaughlin,  K.,  Stasik,  I.,  Crudden,  M.,  Van  Schaeybroeck,  S.,  Fenning,  1010  C.,  O'Connor,  R.,  Kiely,  P.,  Sgobba,  M.,  Haigh,  D.,  Johnston,  P.  G.  &  Longley,  1011  D.  B.  (2012).  Identification  of  an  acetylation-­‐dependant  Ku70/FLIP  complex  1012  that   regulates   FLIP   expression   and   HDAC   inhibitor-­‐induced   apoptosis.   Cell  1013  death  and  differentiation  19,  1317-­‐1327.  1014  

Kim,  Y.  M.,  Sharma,  N.  &  Nyborg,  J.  K.  (2008).  The  proto-­‐oncogene  Bcl3,  induced  1015  by   Tax,   represses   Tax-­‐mediated   transcription   via   p300   displacement   from  1016  

 

 

the   human   T-­‐cell   leukemia   virus   type   1   promoter.   Journal   of   virology   82,  1017  11939-­‐11947.  1018  

Kinjo,  T.,  Ham-­‐Terhune,  J.,  Peloponese,  J.  M.,  Jr.  &  Jeang,  K.  T.  (2010).  Induction  1019  of   reactive   oxygen   species   by   human   T-­‐cell   leukemia   virus   type   1   tax  1020  correlates  with  DNA  damage  and  expression  of   cellular  senescence  marker.  1021  Journal  of  virology  84,  5431-­‐5437.  1022  

Komatsu,  M.,  Waguri,  S.,  Koike,  M.,  Sou,  Y.  S.,  Ueno,  T.,  Hara,  T.,  Mizushima,  N.,  1023  Iwata,   J.,   Ezaki,   J.,   Murata,   S.,   Hamazaki,   J.,   Nishito,   Y.,   Iemura,   S.,  1024  Natsume,  T.,  Yanagawa,  T.,  Uwayama,  J.,  Warabi,  E.,  Yoshida,  H.,  Ishii,  T.,  1025  Kobayashi,   A.,   Yamamoto,   M.,   Yue,   Z.,   Uchiyama,   Y.,   Kominami,   E.   &  1026  Tanaka,  K.  (2007).  Homeostatic  levels  of  p62  control  cytoplasmic  inclusion  1027  body  formation  in  autophagy-­‐deficient  mice.  Cell  131,  1149-­‐1163.  1028  

Kraya,   A.   A.,   Piao,   S.,   Xu,   X.,   Zhang,   G.,   Herlyn,   M.,   Gimotty,   P.,   Levine,   B.,  1029  Amaravadi,   R.   K.   &   Speicher,   D.   W.   (2015).   Identification   of   secreted  1030  proteins  that  reflect  autophagy  dynamics  within  tumor  cells.  Autophagy  11,  1031  60-­‐74.  1032  

Krueger,  A.,  Fas,  S.  C.,  Giaisi,  M.,  Bleumink,  M.,  Merling,  A.,  Stumpf,  C.,  Baumann,  1033  S.,  Holtkotte,  D.,  Bosch,  V.,  Krammer,  P.  H.  &  Li-­‐Weber,  M.  (2006).  HTLV-­‐1034  1  Tax  protects  against  CD95-­‐mediated  apoptosis  by  induction  of  the  cellular  1035  FLICE-­‐inhibitory  protein  (c-­‐FLIP).  Blood  107,  3933-­‐3939.  1036  

Kurihara,  Y.,  Kanki,  T.,  Aoki,  Y.,  Hirota,  Y.,   Saigusa,  T.,  Uchiumi,  T.  &  Kang,  D.  1037  (2012).   Mitophagy   plays   an   essential   role   in   reducing   mitochondrial  1038  production  of  reactive  oxygen  species  and  mutation  of  mitochondrial  DNA  by  1039  maintaining   mitochondrial   quantity   and   quality   in   yeast.   The   Journal   of  1040  biological  chemistry  287,  3265-­‐3272.  1041  

Le  Guezennec,  X.,  Brichkina,  A.,  Huang,  Y.  F.,  Kostromina,  E.,  Han,  W.  &  Bulavin,  1042  D.   V.   (2012).   Wip1-­‐dependent   regulation   of   autophagy,   obesity,   and  1043  atherosclerosis.  Cell  metabolism  16,  68-­‐80.  1044  

Lee,  I.  H.,  Kawai,  Y.,  Fergusson,  M.  M.,  Rovira,  II,  Bishop,  A.  J.,  Motoyama,  N.,  Cao,  1045  L.  &  Finkel,  T.  (2012).  Atg7  modulates  p53  activity  to  regulate  cell  cycle  and  1046  survival  during  metabolic  stress.  Science  336,  225-­‐228.  1047  

Lee,  J.  S.,  Li,  Q.,  Lee,  J.  Y.,  Lee,  S.  H.,  Jeong,  J.  H.,  Lee,  H.  R.,  Chang,  H.,  Zhou,  F.  C.,  1048  Gao,  S.  J.,  Liang,  C.  &  Jung,  J.  U.  (2009).  FLIP-­‐mediated  autophagy  regulation  1049  in  cell  death  control.  Nature  cell  biology  11,  1355-­‐1362.  1050  

Legros,  S.,  Boxus,  M.,  Gatot,  J.  S.,  Van  Lint,  C.,  Kruys,  V.,  Kettmann,  R.,  Twizere,  J.  1051  C.   &   Dequiedt,   F.   (2011).   The   HTLV-­‐1   Tax   protein   inhibits   formation   of  1052  stress   granules   by   interacting   with   histone   deacetylase   6.   Oncogene   30,  1053  4050-­‐4062.  1054  

Lemoine,   F.   J.,   Kao,   S.   Y.  &  Marriott,   S.   J.   (2000).  Suppression  of  DNA  repair  by  1055  HTLV   type   1   Tax   correlates   with   Tax   trans-­‐activation   of   proliferating   cell  1056  nuclear   antigen   gene   expression.  AIDS  research  and  human  retroviruses  16,  1057  1623-­‐1627.  1058  

Liang,  N.,  Jia,  L.,  Liu,  Y.,  Liang,  B.,  Kong,  D.,  Yan,  M.,  Ma,  S.  &  Liu,  X.  (2013).  ATM  1059  pathway   is   essential   for   ionizing   radiation-­‐induced   autophagy.   Cellular  1060  signalling  25,  2530-­‐2539.  1061  

 

 

Lilley,  C.  E.,  Schwartz,  R.  A.  &  Weitzman,  M.  D.  (2007).  Using  or  abusing:  viruses  1062  and  the  cellular  DNA  damage  response.  Trends  in  microbiology  15,  119-­‐126.  1063  

Liu,  E.  Y.,  Xu,  N.,  O'Prey,  J.,  Lao,  L.  Y.,  Joshi,  S.,  Long,  J.  S.,  O'Prey,  M.,  Croft,  D.  R.,  1064  Beaumatin,   F.,   Baudot,   A.   D.,   Mrschtik,   M.,   Rosenfeldt,   M.,   Zhang,   Y.,  1065  Gillespie,  D.  A.  &  Ryan,  K.  M.  (2015).  Loss  of  autophagy  causes  a  synthetic  1066  lethal   deficiency   in   DNA   repair.   Proceedings   of   the   National   Academy   of  1067  Sciences  of  the  United  States  of  America  112,  773-­‐778.  1068  

Lopez,   J.   &   Tait,   S.   W.   (2015).  Mitochondrial   apoptosis:   killing   cancer   using   the  1069  enemy  within.  British  journal  of  cancer.  1070  

Lu,   X.,   Nguyen,   T.   A.   &   Donehower,   L.   A.   (2005).   Reversal   of   the   ATM/ATR-­‐1071  mediated  DNA  damage  response  by  the  oncogenic  phosphatase  PPM1D.  Cell  1072  cycle  4,  1060-­‐1064.  1073  

Lu,  X.,  Nguyen,  T.  A.,  Moon,  S.  H.,  Darlington,  Y.,  Sommer,  M.  &  Donehower,  L.  A.  1074  (2008).   The   type   2C   phosphatase   Wip1:   an   oncogenic   regulator   of   tumor  1075  suppressor  and  DNA  damage  response  pathways.  Cancer  metastasis  reviews  1076  27,  123-­‐135.  1077  

Luftig,   M.   A.   (2014).   Viruses   and   the   DNA   Damage   Response:   Activation   and  1078  Antagonism.  Annual  Review  of  Virology  1,  605-­‐625.  1079  

Mah,   L.   Y.   &   Ryan,   K.   M.   (2012).   Autophagy   and   cancer.   Cold   Spring   Harbor  1080  perspectives  in  biology  4,  a008821.  1081  

Mahieux,  R.  &  Gessain,  A.   (2007).  Adult  T-­‐cell   leukemia/lymphoma  and  HTLV-­‐1.  1082  Current  hematologic  malignancy  reports  2,  257-­‐264.  1083  

Mahieux,  R.,  Pise-­‐Masison,  C.  A.,  Lambert,  P.  F.,  Nicot,  C.,  De  Marchis,  L.,  Gessain,  1084  A.,   Green,   P.,   Hall,  W.   &   Brady,   J.   N.   (2000).  Differences   in   the   ability   of  1085  human  T-­‐cell  lymphotropic  virus  type  1  (HTLV-­‐1)  and  HTLV-­‐2  tax  to  inhibit  1086  p53  function.  Journal  of  virology  74,  6866-­‐6874.  1087  

Majone,   F.   &   Jeang,   K.   T.   (2012).   Unstabilized   DNA   breaks   in   HTLV-­‐1   Tax  1088  expressing  cells  correlate  with  functional  targeting  of  Ku80,  not  PKcs,  XRCC4,  1089  or  H2AX.  Cell  &  bioscience  2,  15.  1090  

Majone,  F.,  Semmes,  O.  J.  &  Jeang,  K.  T.  (1993).  Induction  of  micronuclei  by  HTLV-­‐1091  I  Tax:  a  cellular  assay  for  function.  Virology  193,  456-­‐459.  1092  

Marriott,  S.  J.,  Lemoine,  F.  J.  &  Jeang,  K.  T.  (2002).  Damaged  DNA  and  miscounted  1093  chromosomes:   human   T   cell   leukemia   virus   type   I   tax   oncoprotein   and  1094  genetic  lesions  in  transformed  cells.  Journal  of  biomedical  science  9,  292-­‐298.  1095  

Mathew,  R.,  Karp,  C.  M.,  Beaudoin,  B.,  Vuong,  N.,  Chen,  G.,  Chen,  H.  Y.,  Bray,  K.,  1096  Reddy,  A.,  Bhanot,  G.,  Gelinas,  C.,  Dipaola,  R.  S.,  Karantza-­‐Wadsworth,  V.  1097  &   White,   E.   (2009).   Autophagy   suppresses   tumorigenesis   through  1098  elimination  of  p62.  Cell  137,  1062-­‐1075.  1099  

Meng,  J.,  Zhang,  F.,  Zhang,  X.  T.,  Zhang,  T.,  Li,  Y.  H.,  Fan,  L.,  Sun,  Y.,  Zhang,  H.  L.  &  1100  Mei,   Q.   B.   (2015).   Ku70   is   essential   for   histone   deacetylase   inhibitor  1101  trichostatin  A-­‐induced  apoptosis.  Molecular  medicine  reports.  1102  

Mocarski,  E.  S.,  Guo,  H.  &  Kaiser,  W.   J.   (2015).  Necroptosis:  The  Trojan  horse  in  1103  cell  autonomous  antiviral  host  defense.  Virology  479-­‐480C,  160-­‐166.  1104  

Muhleisen,  A.,  Giaisi,  M.,  Kohler,  R.,  Krammer,  P.  H.  &  Li-­‐Weber,  M.  (2014).  Tax  1105  contributes  apoptosis   resistance   to  HTLV-­‐1-­‐infected  T  cells  via  suppression  1106  of  Bid  and  Bim  expression.  Cell  death  &  disease  5,  e1575.  1107  

 

 

Mukai,   R.   &   Ohshima,   T.   (2014).   HTLV-­‐1   HBZ   positively   regulates   the   mTOR  1108  signaling   pathway   via   inhibition   of   GADD34   activity   in   the   cytoplasm.  1109  Oncogene  33,  2317-­‐2328.  1110  

Munoz-­‐Gamez,  J.  A.,  Rodriguez-­‐Vargas,  J.  M.,  Quiles-­‐Perez,  R.,  Aguilar-­‐Quesada,  1111  R.,  Martin-­‐Oliva,  D.,  de  Murcia,  G.,  Menissier  de  Murcia,  J.,  Almendros,  A.,  1112  Ruiz   de   Almodovar,   M.   &   Oliver,   F.   J.   (2009).   PARP-­‐1   is   involved   in  1113  autophagy  induced  by  DNA  damage.  Autophagy  5,  61-­‐74.  1114  

Nikitin,   P.   A.  &   Luftig,  M.  A.   (2011).  At  a  crossroads:  human  DNA  tumor  viruses  1115  and  the  host  DNA  damage  response.  Future  virology  6,  813-­‐830.  1116  

Nikitin,   P.   A.  &   Luftig,  M.  A.   (2012).  The  DNA  damage  response   in  viral-­‐induced  1117  cellular  transformation.  British  journal  of  cancer  106,  429-­‐435.  1118  

Pankiv,   S.,   Lamark,   T.,   Bruun,   J.   A.,   Overvatn,   A.,   Bjorkoy,   G.   &   Johansen,   T.  1119  (2010).   Nucleocytoplasmic   shuttling   of   p62/SQSTM1   and   its   role   in  1120  recruitment  of  nuclear  polyubiquitinated  proteins  to  promyelocytic  leukemia  1121  bodies.  The  Journal  of  biological  chemistry  285,  5941-­‐5953.  1122  

Park,   C.,   Suh,   Y.   &   Cuervo,   A.   M.   (2015).   Regulated   degradation   of   Chk1   by  1123  chaperone-­‐mediated   autophagy   in   response   to   DNA   damage.   Nature  1124  communications  6,  6823.  1125  

Park,  H.  U.,  Jeong,  J.  H.,  Chung,  J.  H.  &  Brady,  J.  N.  (2004).  Human  T-­‐cell  leukemia  1126  virus  type  1  Tax  interacts  with  Chk1  and  attenuates  DNA-­‐damage  induced  G2  1127  arrest  mediated  by  Chk1.  Oncogene  23,  4966-­‐4974.  1128  

Park,  H.  U.,  Jeong,  S.  J.,  Jeong,  J.  H.,  Chung,  J.  H.  &  Brady,  J.  N.  (2006).  Human  T-­‐1129  cell   leukemia   virus   type   1   Tax   attenuates   gamma-­‐irradiation-­‐induced  1130  apoptosis  through  physical  interaction  with  Chk2.  Oncogene  25,  438-­‐447.  1131  

Park,  J.  M.,  Tougeron,  D.,  Huang,  S.,  Okamoto,  K.  &  Sinicrope,  F.  A.  (2014).  Beclin  1132  1   and   UVRAG   confer   protection   from   radiation-­‐induced   DNA   damage   and  1133  maintain  centrosome  stability  in  colorectal  cancer  cells.  PloS  one  9,  e100819.  1134  

Park,   Y.   E.,   Hayashi,   Y.   K.,   Bonne,   G.,   Arimura,   T.,   Noguchi,   S.,   Nonaka,   I.   &  1135  Nishino,   I.   (2009).   Autophagic   degradation   of   nuclear   components   in  1136  mammalian  cells.  Autophagy  5,  795-­‐804.  1137  

Parzych,  K.  R.  &  Klionsky,  D.   J.   (2014).  An  overview  of  autophagy:  morphology,  1138  mechanism,  and  regulation.  Antioxidants  &  redox  signaling  20,  460-­‐473.  1139  

Peng,  L.,  Yuan,  Z.,  Li,  Y.,  Ling,  H.,   Izumi,  V.,  Fang,  B.,  Fukasawa,  K.,  Koomen,   J.,  1140  Chen,   J.   &   Seto,   E.   (2015).   Ubiquitinated   Sirtuin   1   (SIRT1)   Function   Is  1141  Modulated  during  DNA  Damage-­‐induced  Cell  Death  and  Survival.  The  Journal  1142  of  biological  chemistry  290,  8904-­‐8912.  1143  

Perciavalle,   R.   M.,   Stewart,   D.   P.,   Koss,   B.,   Lynch,   J.,   Milasta,   S.,   Bathina,   M.,  1144  Temirov,  J.,  Cleland,  M.  M.,  Pelletier,  S.,  Schuetz,  J.  D.,  Youle,  R.  J.,  Green,  1145  D.   R.   &   Opferman,   J.   T.   (2012).   Anti-­‐apoptotic   MCL-­‐1   localizes   to   the  1146  mitochondrial   matrix   and   couples   mitochondrial   fusion   to   respiration.  1147  Nature  cell  biology  14,  575-­‐583.  1148  

Poiesz,   B.   J.,   Ruscetti,   F.   W.,   Reitz,   M.   S.,   Kalyanaraman,   V.   S.   &   Gallo,   R.   C.  1149  (1981).   Isolation  of  a  new  type  C  retrovirus   (HTLV)   in  primary  uncultured  1150  cells  of  a  patient  with  Sezary  T-­‐cell  leukaemia.  Nature  294,  268-­‐271.  1151  

Rai,  R.,  Zheng,  H.,  He,  H.,  Luo,  Y.,  Multani,  A.,  Carpenter,  P.  B.  &  Chang,  S.  (2010).  1152  The   function   of   classical   and   alternative   non-­‐homologous   end-­‐joining  1153  

 

 

pathways   in   the   fusion   of   dysfunctional   telomeres.   The   EMBO   journal   29,  1154  2598-­‐2610.  1155  

Ramadan,  E.,  Ward,  M.,  Guo,  X.,  Durkin,  S.  S.,  Sawyer,  A.,  Vilela,  M.,  Osgood,  C.,  1156  Pothen,   A.   &   Semmes,   O.   J.   (2008).   Physical   and   in   silico   approaches  1157  identify  DNA-­‐PK   in  a  Tax  DNA-­‐damage  response   interactome.  Retrovirology  1158  5,  92.  1159  

Ramirez,   J.   A.  &  Nyborg,   J.   K.   (2007).  Molecular  characterization  of  HTLV-­‐1  Tax  1160  interaction  with   the   KIX   domain   of   CBP/p300.   Journal  of  molecular  biology  1161  372,  958-­‐969.  1162  

Rello-­‐Varona,   S.,   Lissa,  D.,   Shen,   S.,  Niso-­‐Santano,  M.,   Senovilla,   L.,  Marino,  G.,  1163  Vitale,   I.,   Jemaa,  M.,   Harper,   F.,   Pierron,   G.,   Castedo,  M.  &  Kroemer,   G.  1164  (2012).  Autophagic  removal  of  micronuclei.  Cell  cycle  11,  170-­‐176.  1165  

Ren,  T.,  Dong,  W.,  Takahashi,  Y.,  Xiang,  D.,  Yuan,  Y.,  Liu,  X.,  Loughran,  T.  P.,  Jr.,  1166  Sun,  S.  C.,  Wang,  H.  G.  &  Cheng,  H.  (2012).  HTLV-­‐2  Tax  immortalizes  human  1167  CD4+  memory  T   lymphocytes  by  oncogenic   activation  and  dysregulation  of  1168  autophagy.  The  Journal  of  biological  chemistry  287,  34683-­‐34693.  1169  

Ren,  T.,  Takahashi,  Y.,  Liu,  X.,  Loughran,  T.  P.,  Sun,  S.  C.,  Wang,  H.  G.  &  Cheng,  H.  1170  (2015).   HTLV-­‐1   Tax   deregulates   autophagy   by   recruiting   autophagic  1171  molecules  into  lipid  raft  microdomains.  Oncogene  34,  334-­‐345.  1172  

Ressler,  S.,  Morris,  G.  F.  &  Marriott,  S.  J.  (1997).  Human  T-­‐cell  leukemia  virus  type  1173  1  Tax  transactivates   the  human  proliferating  cell  nuclear  antigen  promoter.  1174  Journal  of  virology  71,  1181-­‐1190.  1175  

Romanelli,   M.   G.,   Diani,   E.,   Bergamo,   E.,   Casoli,   C.,   Ciminale,   V.,   Bex,   F.   &  1176  Bertazzoni,   U.   (2013).   Highlights   on   distinctive   structural   and   functional  1177  properties  of  HTLV  Tax  proteins.  Frontiers  in  microbiology  4,  271.  1178  

Rosato,  R.  R.,  Kolla,  S.  S.,  Hock,  S.  K.,  Almenara,  J.  A.,  Patel,  A.,  Amin,  S.,  Atadja,  1179  P.,  Fisher,  P.  B.,  Dent,  P.  &  Grant,  S.  (2010).  Histone  deacetylase  inhibitors  1180  activate  NF-­‐kappaB  in  human  leukemia  cells  through  an  ATM/NEMO-­‐related  1181  pathway.  The  Journal  of  biological  chemistry  285,  10064-­‐10077.  1182  

Rosich,  L.,  Xargay-­‐Torrent,  S.,  Lopez-­‐Guerra,  M.,  Campo,  E.,  Colomer,  D.  &  Roue,  1183  G.   (2012).  Counteracting  autophagy  overcomes  resistance   to  everolimus   in  1184  mantle   cell   lymphoma.   Clinical   cancer   research   :   an   official   journal   of   the  1185  American  Association  for  Cancer  Research  18,  5278-­‐5289.  1186  

Ruddle,  N.  H.,  Li,  C.  B.,  Horne,  W.  C.,  Santiago,  P.,  Troiano,  N.,  Jay,  G.,  Horowitz,  1187  M.   &   Baron,   R.   (1993).   Mice   transgenic   for   HTLV-­‐I   LTR-­‐tax   exhibit   tax  1188  expression   in   bone,   skeletal   alterations,   and   high   bone   turnover.   Virology  1189  197,  196-­‐204.  1190  

Rufini,   A.,   Tucci,   P.,   Celardo,   I.   &  Melino,   G.   (2013).   Senescence  and  aging:   the  1191  critical  roles  of  p53.  Oncogene  32,  5129-­‐5143.  1192  

Saito,  K.,  Saito,  M.,  Taniura,  N.,  Okuwa,  T.  &  Ohara,  Y.   (2010).  Activation  of  the  1193  PI3K-­‐Akt   pathway   by   human   T   cell   leukemia   virus   type   1   (HTLV-­‐1)  1194  oncoprotein   Tax   increases   Bcl3   expression,   which   is   associated   with  1195  enhanced  growth  of  HTLV-­‐1-­‐infected  T  cells.  Virology  403,  173-­‐180.  1196  

Schmitt,   I.,   Rosin,   O.,   Rohwer,   P.,   Gossen,   M.   &   Grassmann,   R.   (1998).  1197  Stimulation  of  cyclin-­‐dependent  kinase  activity  and  G1-­‐  to  S-­‐phase  transition  1198  

 

 

in   human   lymphocytes   by   the   human   T-­‐cell   leukemia/lymphotropic   virus  1199  type  1  Tax  protein.  Journal  of  virology  72,  633-­‐640.  1200  

Seguin,   S.   J.,   Morelli,   F.   F.,   Vinet,   J.,   Amore,   D.,   De   Biasi,   S.,   Poletti,   A.,  1201  Rubinsztein,   D.   C.   &   Carra,   S.   (2014).   Inhibition   of   autophagy,   lysosome  1202  and   VCP   function   impairs   stress   granule   assembly.   Cell   death   and  1203  differentiation  21,  1838-­‐1851.  1204  

Semmes,  O.   J.,  Majone,   F.,   Cantemir,   C.,   Turchetto,   L.,  Hjelle,   B.  &   Jeang,  K.   T.  1205  (1996).  HTLV-­‐I  and  HTLV-­‐II  Tax:  differences   in   induction  of  micronuclei   in  1206  cells  and  transcriptional  activation  of  viral  LTRs.  Virology  217,  373-­‐379.  1207  

Sharma,   A.,   Singh,   K.,   Mazumder,   S.,   Hill,   B.   T.,   Kalaycio,   M.   &   Almasan,   A.  1208  (2013).   BECN1   and   BIM   interactions   with   MCL-­‐1   determine   fludarabine  1209  resistance  in  leukemic  B  cells.  Cell  death  &  disease  4,  e628.  1210  

Shen,  W.   H.,   Balajee,   A.   S.,   Wang,   J.,   Wu,   H.,   Eng,   C.,   Pandolfi,   P.   P.   &   Yin,   Y.  1211  (2007).   Essential   role   for   nuclear   PTEN   in   maintaining   chromosomal  1212  integrity.  Cell  128,  157-­‐170.  1213  

Shoji-­‐Kawata,   S.,   Sumpter,   R.,   Leveno,   M.,   Campbell,   G.   R.,   Zou,   Z.,   Kinch,   L.,  1214  Wilkins,  A.  D.,  Sun,  Q.,  Pallauf,  K.,  MacDuff,  D.,  Huerta,  C.,  Virgin,  H.  W.,  1215  Helms,   J.   B.,   Eerland,   R.,   Tooze,   S.   A.,   Xavier,   R.,   Lenschow,   D.   J.,  1216  Yamamoto,   A.,   King,   D.,   Lichtarge,   O.,   Grishin,   N.   V.,   Spector,   S.   A.,  1217  Kaloyanova,   D.   V.   &   Levine,   B.   (2013).   Identification   of   a   candidate  1218  therapeutic  autophagy-­‐inducing  peptide.  Nature  494,  201-­‐206.  1219  

Sieburg,  M.,  Tripp,  A.,  Ma,  J.  W.  &  Feuer,  G.  (2004).  Human  T-­‐cell  leukemia  virus  1220  type   1   (HTLV-­‐1)   and   HTLV-­‐2   tax   oncoproteins   modulate   cell   cycle  1221  progression  and  apoptosis.  Journal  of  virology  78,  10399-­‐10409.  1222  

Sirois,   I.,   Groleau,   J.,   Pallet,   N.,   Brassard,   N.,   Hamelin,   K.,   Londono,   I.,  1223  Pshezhetsky,   A.   V.,   Bendayan,   M.   &   Hebert,   M.   J.   (2012).   Caspase  1224  activation   regulates   the   extracellular   export   of   autophagic   vacuoles.  1225  Autophagy  8,  927-­‐937.  1226  

Soutoglou,  E.  &  Misteli,  T.  (2008).  Activation  of  the  cellular  DNA  damage  response  1227  in  the  absence  of  DNA  lesions.  Science  320,  1507-­‐1510.  1228  

Stiff,  T.,  O'Driscoll,  M.,  Rief,  N.,   Iwabuchi,  K.,  Lobrich,  M.  &  Jeggo,  P.  A.  (2004).  1229  ATM   and   DNA-­‐PK   function   redundantly   to   phosphorylate   H2AX   after  1230  exposure  to  ionizing  radiation.  Cancer  research  64,  2390-­‐2396.  1231  

Stracker,  T.  H.,  Morales,  M.,  Couto,  S.  S.,  Hussein,  H.  &  Petrini,  J.  H.  (2007).  The  1232  carboxy   terminus   of   NBS1   is   required   for   induction   of   apoptosis   by   the  1233  MRE11  complex.  Nature  447,  218-­‐221.  1234  

Sulli,   G.,   Di   Micco,   R.   &   d'Adda   di   Fagagna,   F.   (2012).   Crosstalk   between  1235  chromatin  state  and  DNA  damage  response  in  cellular  senescence  and  cancer.  1236  Nature  reviews  Cancer  12,  709-­‐720.  1237  

Takahashi,  M.,  Higuchi,  M.,  Makokha,  G.  N.,  Matsuki,  H.,  Yoshita,  M.,  Tanaka,  Y.  1238  &  Fujii,  M.  (2013a).  HTLV-­‐1  Tax  oncoprotein  stimulates  ROS  production  and  1239  apoptosis  in  T  cells  by  interacting  with  USP10.  Blood  122,  715-­‐725.  1240  

Takahashi,  Y.,  Coppola,  D.,  Matsushita,  N.,  Cualing,  H.  D.,  Sun,  M.,  Sato,  Y.,  Liang,  1241  C.,  Jung,  J.  U.,  Cheng,  J.  Q.,  Mule,  J.  J.,  Pledger,  W.  J.  &  Wang,  H.  G.  (2007).  1242  Bif-­‐1   interacts  with   Beclin   1   through   UVRAG   and   regulates   autophagy   and  1243  tumorigenesis.  Nature  cell  biology  9,  1142-­‐1151.  1244  

 

 

Takahashi,  Y.,  Hori,  T.,  Cooper,  T.  K.,  Liao,  J.,  Desai,  N.,  Serfass,  J.  M.,  Young,  M.  1245  M.,   Park,   S.,   Izu,   Y.   &   Wang,   H.   G.   (2013b).   Bif-­‐1   haploinsufficiency  1246  promotes   chromosomal   instability   and   accelerates   Myc-­‐driven  1247  lymphomagenesis  via  suppression  of  mitophagy.  Blood  121,  1622-­‐1632.  1248  

Takahashi,  Y.,  Karbowski,  M.,  Yamaguchi,  H.,  Kazi,  A.,  Wu,  J.,  Sebti,  S.  M.,  Youle,  1249  R.  J.  &  Wang,  H.  G.  (2005).  Loss  of  Bif-­‐1  suppresses  Bax/Bak  conformational  1250  change  and  mitochondrial  apoptosis.  Molecular  and  cellular  biology  25,  9369-­‐1251  9382.  1252  

Takeda,   S.,   Maeda,   M.,   Morikawa,   S.,   Taniguchi,   Y.,   Yasunaga,   J.,   Nosaka,   K.,  1253  Tanaka,   Y.  &  Matsuoka,  M.   (2004).  Genetic  and  epigenetic   inactivation  of  1254  tax  gene  in  adult  T-­‐cell  leukemia  cells.  International  journal  of  cancer  Journal  1255  international  du  cancer  109,  559-­‐567.  1256  

Tanaka,   A.,   Takahashi,   C.,   Yamaoka,   S.,   Nosaka,   T.,   Maki,   M.   &   Hatanaka,   M.  1257  (1990).  Oncogenic  transformation  by  the  tax  gene  of  human  T-­‐cell  leukemia  1258  virus   type   I   in   vitro.  Proceedings  of   the  National  Academy  of  Sciences  of   the  1259  United  States  of  America  87,  1071-­‐1075.  1260  

Tanaka,   Y.,   Minami,   Y.,   Mine,   S.,   Hirano,   H.,   Hu,   C.   D.,   Fujimoto,   H.,   Fujii,   K.,  1261  Saito,  K.,   Tsukada,   J.,   van  Kooyk,   Y.,   Figdor,   C.   G.,   Kataoka,   T.  &   Eto,   S.  1262  (1999).   H-­‐Ras   signals   to   cytoskeletal   machinery   in   induction   of   integrin-­‐1263  mediated  adhesion  of  T  cells.  Journal  of  immunology  163,  6209-­‐6216.  1264  

Tang,   S.  W.,   Chen,   C.   Y.,   Klase,   Z.,   Zane,   L.   &   Jeang,   K.   T.   (2013).   The   cellular  1265  autophagy   pathway   modulates   human   T-­‐cell   leukemia   virus   type   1  1266  replication.  Journal  of  virology  87,  1699-­‐1707.  1267  

Thompson,  S.  L.  &  Compton,  D.  A.  (2011).  Chromosome  missegregation  in  human  1268  cells   arises   through   specific   types   of   kinetochore-­‐microtubule   attachment  1269  errors.  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  1270  America  108,  17974-­‐17978.  1271  

Torgeman,   A.,   Ben-­‐Aroya,   Z.,   Grunspan,   A.,   Zelin,   E.,   Butovsky,   E.,   Hallak,  M.,  1272  Lochelt,  M.,  Flugel,  R.  M.,  Livneh,  E.,  Wolfson,  M.,  Kedar,   I.  &  Aboud,  M.  1273  (2001).  Activation  of  HTLV-­‐I  long  terminal  repeat  by  stress-­‐inducing  agents  1274  and   protection   of   HTLV-­‐I-­‐infected   T-­‐cells   from   apoptosis   by   the   viral   tax  1275  protein.  Experimental  cell  research  271,  169-­‐179.  1276  

Tsukahara,  T.,  Kannagi,  M.,  Ohashi,  T.,  Kato,  H.,  Arai,  M.,  Nunez,  G.,  Iwanaga,  Y.,  1277  Yamamoto,  N.,  Ohtani,  K.,  Nakamura,  M.  &  Fujii,  M.   (1999).  Induction  of  1278  Bcl-­‐x(L)  expression  by  human  T-­‐cell   leukemia  virus  type  1  Tax  through  NF-­‐1279  kappaB   in   apoptosis-­‐resistant   T-­‐cell   transfectants   with   Tax.   Journal   of  1280  virology  73,  7981-­‐7987.  1281  

Turci,   M.,   Romanelli,   M.   G.,   Lorenzi,   P.,   Righi,   P.   &   Bertazzoni,   U.   (2006).  1282  Localization   of   human   T-­‐cell   lymphotropic   virus   type   II   Tax   protein   is  1283  dependent  upon  a  nuclear  localization  determinant  in  the  N-­‐terminal  region.  1284  Gene  365,  119-­‐124.  1285  

Uchiyama,  T.,  Yodoi,   J.,  Sagawa,  K.,  Takatsuki,  K.  &  Uchino,  H.  (1977).  Adult  T-­‐1286  cell   leukemia:   clinical   and  hematologic   features  of  16   cases.  Blood  50,   481-­‐1287  492.  1288  

Vessoni,  A.  T.,  Filippi-­‐Chiela,  E.  C.,  Menck,  C.  F.  &  Lenz,  G.  (2013).  Autophagy  and  1289  genomic  integrity.  Cell  death  and  differentiation  20,  1444-­‐1454.  1290  

 

 

Wada,   K.,   Niida,   M.,   Tanaka,   M.   &   Kamitani,   T.   (2009).   Ro52-­‐mediated  1291  monoubiquitination   of   IKK{beta}   down-­‐regulates   NF-­‐{kappa}B   signalling.  1292  Journal  of  biochemistry  146,  821-­‐832.  1293  

Wajapeyee,   N.,   Serra,   R.   W.,   Zhu,   X.,   Mahalingam,   M.   &   Green,   M.   R.   (2008).  1294  Oncogenic   BRAF   induces   senescence   and   apoptosis   through   pathways  1295  mediated  by  the  secreted  protein  IGFBP7.  Cell  132,  363-­‐374.  1296  

Wang,   J.,   Li,   J.,   Huang,   Y.,   Song,   X.,   Niu,   Z.,   Gao,   Z.   &   Wang,   H.   (2013).   Bcl-­‐3  1297  suppresses   Tax-­‐induced   NF-­‐kappaB   activation   through   p65   nuclear  1298  translocation   blockage   in   HTLV-­‐1-­‐infected   cells.   International   journal   of  1299  oncology  42,  269-­‐276.  1300  

Wang,  W.,  Zhou,  J.,  Shi,  J.,  Zhang,  Y.,  Liu,  S.,  Liu,  Y.  &  Zheng,  D.  (2014).  Human  T-­‐1301  cell   leukemia   virus   type   1   Tax-­‐deregulated   autophagy   pathway   and   c-­‐FLIP  1302  expression   contribute   to   resistance   against   death   receptor-­‐mediated  1303  apoptosis.  Journal  of  virology  88,  2786-­‐2798.  1304  

Williams,   G.   J.,   Lees-­‐Miller,   S.   P.   &   Tainer,   J.   A.   (2010).   Mre11-­‐Rad50-­‐Nbs1  1305  conformations  and  the  control  of  sensing,  signaling,  and  effector  responses  at  1306  DNA  double-­‐strand  breaks.  DNA  repair  9,  1299-­‐1306.  1307  

Wu,   Z.   H.   &   Miyamoto,   S.   (2008).   Induction   of   a   pro-­‐apoptotic   ATM-­‐NF-­‐kappaB  1308  pathway   and   its   repression   by   ATR   in   response   to   replication   stress.   The  1309  EMBO  journal  27,  1963-­‐1973.  1310  

Wu,   Z.   H.,   Shi,   Y.,   Tibbetts,   R.   S.   &   Miyamoto,   S.   (2006).   Molecular   linkage  1311  between  the  kinase  ATM  and  NF-­‐kappaB  signaling   in  response  to  genotoxic  1312  stimuli.  Science  311,  1141-­‐1146.  1313  

Xi,  X.,  Zhang,  X.,  Wang,  B.,  Wang,  T.,  Wang,  J.,  Huang,  H.,  Wang,  J.,  Jin,  Q.  &  Zhao,  1314  Z.   (2013).   The   interplays   between   autophagy   and   apoptosis   induced   by  1315  enterovirus  71.  PloS  one  8,  e56966.  1316  

Xie,  B.  S.,  Zhao,  H.  C.,  Yao,  S.  K.,  Zhuo,  D.  X.,  Jin,  B.,  Lv,  D.  C.,  Wu,  C.  L.,  Ma,  D.  L.,  1317  Gao,   C.,   Shu,   X.   M.   &   Ai,   Z.   L.   (2011).   Autophagy   inhibition   enhances  1318  etoposide-­‐induced   cell   death   in   human   hepatoma   G2   cells.   International  1319  journal  of  molecular  medicine  27,  599-­‐606.  1320  

Xie,  Y.,  Kang,  R.,  Sun,  X.,  Zhong,  M.,  Huang,  J.,  Klionsky,  D.  J.  &  Tang,  D.  (2015).  1321  Posttranslational   modification   of   autophagy-­‐related   proteins   in  1322  macroautophagy.  Autophagy  11,  28-­‐45.  1323  

Yang,   L.,   Kotomura,   N.,   Ho,   Y.   K.,   Zhi,   H.,   Bixler,   S.,   Schell,  M.   J.   &   Giam,   C.   Z.  1324  (2011).  Complex  cell  cycle  abnormalities  caused  by  human  T-­‐lymphotropic  1325  virus  type  1  Tax.  Journal  of  virology  85,  3001-­‐3009.  1326  

Yoshida,   M.,   Miyoshi,   I.   &   Hinuma,   Y.   (1982).   Isolation   and   characterization   of  1327  retrovirus  from  cell  lines  of  human  adult  T-­‐cell  leukemia  and  its  implication  1328  in   the  disease.  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  1329  States  of  America  79,  2031-­‐2035.  1330  

Young,   A.   R.,   Narita,   M.,   Ferreira,   M.,   Kirschner,   K.,   Sadaie,   M.,   Darot,   J.   F.,  1331  Tavare,   S.,   Arakawa,   S.,   Shimizu,   S.,   Watt,   F.   M.   &   Narita,   M.   (2009).  1332  Autophagy  mediates  the  mitotic  senescence  transition.  Genes  &  development  1333  23,  798-­‐803.  1334  

Zane,  L.  &  Jeang,  K.  T.  (2012).  The  importance  of  ubiquitination  and  sumoylation  1335  on  the  transforming  activity  of  HTLV  Tax-­‐1  and  Tax-­‐2.  Retrovirology  9,  103.  1336  

 

 

Zhang,  J.  W.,  Zhang,  S.  S.,  Song,  J.  R.,  Sun,  K.,  Zong,  C.,  Zhao,  Q.  D.,  Liu,  W.  T.,  Li,  R.,  1337  Wu,   M.   C.   &   Wei,   L.   X.   (2014).   Autophagy   inhibition   switches   low-­‐dose  1338  camptothecin-­‐induced   premature   senescence   to   apoptosis   in   human  1339  colorectal  cancer  cells.  Biochemical  pharmacology  90,  265-­‐275.  1340  

Zhang,   L.,   Zhi,   H.,   Liu,   M.,   Kuo,   Y.   L.   &   Giam,   C.   Z.   (2009).   Induction   of  1341  p21(CIP1/WAF1)   expression   by   human   T-­‐lymphotropic   virus   type   1   Tax  1342  requires   transcriptional   activation  and  mRNA  stabilization.  Retrovirology  6,  1343  35.  1344  

Zhi,  H.,  Yang,  L.,  Kuo,  Y.  L.,  Ho,  Y.  K.,  Shih,  H.  M.  &  Giam,  C.  Z.  (2011).  NF-­‐kappaB  1345  hyper-­‐activation   by   HTLV-­‐1   tax   induces   cellular   senescence,   but   can   be  1346  alleviated  by  the  viral  anti-­‐sense  protein  HBZ.  PLoS  pathogens  7,  e1002025.  1347  

Zhong,  Y.,  Wang,  Q.  J.,  Li,  X.,  Yan,  Y.,  Backer,  J.  M.,  Chait,  B.  T.,  Heintz,  N.  &  Yue,  Z.  1348  (2009).   Distinct   regulation   of   autophagic   activity   by   Atg14L   and   Rubicon  1349  associated  with  Beclin  1-­‐phosphatidylinositol-­‐3-­‐kinase   complex.  Nature  cell  1350  biology  11,  468-­‐476.  1351  

Zhou,  J.,  Ng,  S.,  Huang,  Q.,  Wu,  Y.  T.,  Li,  Z.,  Yao,  S.  Q.  &  Shen,  H.  M.  (2013).  AMPK  1352  mediates   a   pro-­‐survival   autophagy   downstream   of   PARP-­‐1   activation   in  1353  response  to  DNA  alkylating  agents.  FEBS  letters  587,  170-­‐177.  1354  

1355  

1356  

1357  

1358  

1359  

1360  

1361  

1362  

1363  

1364  

1365  

1366  

1367  

1368  

 

 

Figure legends 1369  

Figure 1: Domains of HTLV-1 Tax. 1370   1371  Figure 2: 1372   1373  

(A) Induction of autophagosomes. The formation of autophagosomes is 1374  

induced by drugs such as Rapamycin, starvation, or by endogenous 1375  

factors such as AMPK that inhibit mTORC1 leading to the activation of 1376  

the ULK1/2 complex. Subsequent binding and phosphorylation of FIP22, 1377  

ATG 13 and ATG101 leads to the recruitment of Beclin-1 and VPS34, 1378  

forming complexes with ATG14L, AMBRA1 or UVRAG. These complexes 1379  

recruit ATG9 and WIPI among other proteins inducing the formation of the 1380  

nascent autophagosome. 1381  

(B) The formation of autophagosomes is induced by drugs such as Rapa-1382  

mycin, starvation, or by endogenous factors such as AMPK that inhibit 1383  

mTORC1 leading to the activation of the ULK1/2 complex. Subsequent 1384  

binding and phosphorylation of FIP220, ATG 13 and ATG101 leads to the 1385  

recruitment of Beclin-1 and VPS34, forming complexes with ATG14L, 1386  

AMBRA1 or UVRAG. These complexes recruit ATG9 and WIPI among 1387  

other proteins inducing the formation of the nascent autophagosome. 1388  

(C) Tax induces the formation of autophagosomes by forming a complex with 1389  

Beclin-1, Bif-1 and the IKK complex on lipid rafts. Alternatively, ATM 1390  

mediated activation of AMPK and/ Bcl-3 might bypass this requirement. 1391  

The recruitment of Beclin-1 and Bif-1 to lipid rafts by Tax might also inhibit 1392  

 

 

the fusion of the mature autophagosome with the lysosome and activate a 1393  

complex consisting of Rubicon and VPS34, inhibiting the fusion of the 1394  

autophagosome with the lysosome. 1395  

(D) HTLV-1 Tax increases the expression of cFLIP, thus inhibiting TRAIL/ 1396  

CD95L induced signalling pathways by inhibiting the activation of caspase- 1397  

8. cFLIP might also be stabilised by Tax via the accumulation of deace- 1398  

tylated Ku70 by inhibiting p300/CBP and/or P/CAF dependent acetylation 1399  

of Ku70. 1400  

1401  Figure 3: 1402  

(A) The DNA damage response is initiated by binding of sensor proteins to 1403  

sites of DNA damage and transduced via ATR/ATM/DNA-PK mediated 1404  

signalling. Potential outcomes are the activation of checkpoints, DNA 1405  

repair, or senescence. Cells with unrepaired DNA lesions might either 1406  

undergo apoptosis, necrosis, and autophagy related apoptosis/autosis. 1407  

Alternatively, cells might survive by PARP-1 and TSC-2 induced 1408  

autophagy. 1409  

(B) HTLV-1 Tax and the DNA damage response and the induction of 1410  

autophagosome formation. DNA damage is induced by the induction of 1411  

ROS and hyperreplication of cellular DNA due to increased expression of 1412  

PCNA. The DNA damage response is attenuated by Tax at various 1413  

stages, mainly by the increased expression of Wip-1 but also by 1414  

downregulating Ku70. Autophagosome formation however might be 1415  

 

 

induced due to activation of ATM and AMPK, whereas autophagic flux is 1416  

inhibited. 1417  

(C) In addition to HR mediated repair, tax might also interfere with both A- and 1418  

C-NHEJ mediated repair of DNA damage 1419  

Figure 4: 1420  

(A) Deacetylated Ku70 might translocate into the nucleus where it binds 1421  

SMAR-1 which following binding Ku70 is phosphorylated by ATM, thus 1422  

inducing the recruitment of downstream repair factors. The induced 1423  

expression of WIP-1 however might prevent the phosphorylation of 1424  

SMAR-1, thus dissociating the Ku70/SMAR-1 complex and inhibiting DNA 1425  

repair. 1426  

(B) Nuclear Ku70 might also associate with Ku80 in micronuclei, inducing C-1427  

NHEJ, which might be inhibited by Wip-1, and leading to the accumulation 1428  

of micronuclei. 1429  

(C) Summary of the pathways governing the induction of autophagosomes in 1430  

response to the induction of DNA damage by Tax and potential points of 1431  

attenuation by Tax. 1432  

Figure 5: 1433  

Interaction of HTLV-1 with cytoplasmic and/or nuclear p300/CBP might prevent 1434  

the acetylation of LC3-I and facilitating the localization of LC3-I in the cytoplasm, 1435  

inducing the formation of autophagosomes. 1436  

 

 

(A) Acetylated LC3-I is imported into the nucleus and upon starvation 1437  

deacetylated by SIRT1. Deacetylated LC3-I is exported from the nucleus 1438  

in a DOR dependent manner and binds ATG7 (modified from (Huang et 1439  

al., 2015). 1440  

(B) HTLV-1 might sequester p300/CBP in the perinuclear region and thus 1441  

prevent nuclear import of LC3-I, facilitating the formation of 1442  

autophagosomes independent of external stimuli, whereas sequestration 1443  

of nuclear p300 facilitates the export of deacetylated LC3-I independent of 1444  

SIRT1 1445  

1446  

1447  

1448  

1449  

1450  

1451  

1452  

1453  

1454  

1455  

1456  

1457  

1458  

 

 

1459  

1460  

1461  

1462  

1463  

1464  

1465  

1466  

1467  

1468  

1469  

1470  

1471  

1472  

1473  

Figure 1 1474  

1475  

 

 

1476  

1477  

1478  

Figure 2 1479  

 

 

1480  

1481  

1482  

Figure 3 1483  

1484  

 

 

1485  

1486  

1487  

1488  

Figure 4 1489  

1490  

 

 

1491  

1492  

1493  

1494  

1495  

1496  

1497  

1498  

1499  

1500  

1501  

Figure 5 1502  

 

 

Supplemental Figure legends 1503  

Figure 1: 1504  

Inhibition of autophagy and the regulation of apoptosis 1505  

(A) Inhibition of autophagy upregulates Bik, inducing caspase 1506  

dependent apoptosis. 1507  

(B) and (C) Inhibition of autophagic flux by HTLV-1 Tax might 1508  

upregulate Bik and thus activating caspase-3/-9 and thus HTLV-1 1509  

LTR dependent expression of viral genes whilst apoptosis is 1510  

inhibited due to the stabilization of mitochondrial Mcl-1. Increasing 1511  

the expression of cFLIP and subsequent inhibition of autophago- 1512  

some maturation might favor apoptosis by excessive expression of 1513  

Bik. 1514  

Figure 2: 1515  

HTLV-1 Tax and degradation of phosphorylated Chk-1 1516  

The induction of ROS by HTLV-1 Tax due to hyperreplication of DNA 1517  

induces the ATR pathway of the DDR and might promote the degra- 1518  

dation of phosphorylated Chk-1 via chaperone mediated autophagy (II) 1519  

but not macroautophagy (I). 1520  

1521  

1522  

1523  

1524  

 

 

1525  

1526  

1527  

1528  

A

B

 

 

1529  

1530  

1531  

1532  

1533  

1534  

Supplemental Figure 1 1535  

1536  

1537  

C  

 

 

1538  

1539  

1540  

1541  

Supplemental Figure 2 1542  

1543  

1544