history of vitaceae inferred from morphology-based phylogeny

326
1 HISTORY OF VITACEAE INFERRED FROM MORPHOLOGY-BASED PHYLOGENY AND THE FOSSIL RECORD OF SEEDS By IJU CHEN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2009

Transcript of history of vitaceae inferred from morphology-based phylogeny

1

HISTORY OF VITACEAE INFERRED FROM MORPHOLOGY-BASED PHYLOGENY AND THE FOSSIL RECORD OF SEEDS

By

IJU CHEN

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2009

2

© 2009 Iju Chen

3

To my parents and my sisters, 2-, 3-, 4-ju

4

ACKNOWLEDGMENTS

I thank Dr. Steven Manchester for providing the important fossil information, sharing the

beautiful images of the fossils, and reviewing the dissertation. I thank Dr. Walter Judd for

providing valuable discussion. I thank Dr. Hongshan Wang, Dr. Dario de Franceschi, Dr. Mary

Dettmann, and Dr. Peta Hayes for access to the paleobotanical specimens in museum collections,

Dr. Kent Perkins for arranging the herbarium loans, Dr. Suhua Shi for arranging the field trip in

China, and Dr. Betsy R. Jackes for lending extant Australian vitaceous seeds and arranging the

field trip in Australia. This research is partially supported by National Science Foundation

Doctoral Dissertation Improvement Grants award number 0608342.

5

TABLE OF CONTENTS page

ACKNOWLEDGMENTS ...............................................................................................................4

LIST OF TABLES...........................................................................................................................9

LIST OF FIGURES .......................................................................................................................11

ABSTRACT...................................................................................................................................14

CHAPTER

1 SEED MORPHOLOGY OF VITACEAE..............................................................................16

Introduction.............................................................................................................................16 Materials and Methods ...........................................................................................................17 Results.....................................................................................................................................18

Leea, Cissus, and Cyphostemma .....................................................................................20 Tetrastigma and Rhoicissus .............................................................................................22 Acareosperma and Cayratia............................................................................................24 Ampelocissus, Nothocissus, and Pterisanthes .................................................................26 Vitis, Ampelopsis, Clematicissus, Parthenocissus, and Yua............................................26

Discussion...............................................................................................................................28

2 MORPHOLOGY-BASED PHYLOGENY OF VITACEAE: COMPARING TWO DIFFERENT TREATMENTS FOR CODING CONTINUOUS CHARACTERS................75

Introduction.............................................................................................................................75 Materials and Methods ...........................................................................................................80

Taxon Sampling...............................................................................................................80 Terminology of Morphological Characters .....................................................................80 Character Measurement...................................................................................................82 Character Coding.............................................................................................................82 Phylogenetic Analyses.....................................................................................................84

Results.....................................................................................................................................85 Discussion...............................................................................................................................91

The Influences of Coding Methods .................................................................................91 Relationships Within the Family, Comparisons with the Molecular Data......................92 Morphology of Vitaceae and Character Evolution..........................................................99

Growth habit.............................................................................................................99 Phyllotaxy...............................................................................................................101 Tendrils...................................................................................................................103 Stipules ...................................................................................................................105 Leaves.....................................................................................................................106 Hairs .......................................................................................................................111 Sexuality.................................................................................................................112

6

Inflorescence-branch architecture ..........................................................................113 Inflorescences architecture .....................................................................................118 Floral morphology..................................................................................................121 Pollen morphology .................................................................................................125 Fruits.......................................................................................................................125 Seeds.......................................................................................................................126

Concluding Remarks ............................................................................................................127

3 THE BIOGEOGRAPHICAL HISTORY OF VITACEAE INFERRED FROM FOSSIL SEEDS ..................................................................................................................................159

Introduction...........................................................................................................................159 Materials and Methods .........................................................................................................162 Results and Discussion .........................................................................................................165

Classification of Fossil Vitaceaous Seeds .....................................................................165 1) st-Ampelocissus-wide infolds.............................................................................165 2) st-Ampelocissus-rugose......................................................................................165 3) st-Ampelopsis-smooth ........................................................................................166 4) st-Ampelopsis-rugose .........................................................................................167 5) st-Ampelopsis-xs ................................................................................................167 6) st-Vitis ................................................................................................................168 7) st-Vitis-Ampelopsis ............................................................................................168 8) st-Vitis rotundifolia ............................................................................................169 9) st-Parthenocissus ...............................................................................................169 10) st-Parthenocissus clarnensis............................................................................170 11) st-Cayratia .......................................................................................................171 12) st-Tetrastigma ..................................................................................................171 13) st-perichalaza ...................................................................................................171 14) uncertain specimens with affinity to Vitaceae .................................................172 Summary of seed type classification......................................................................173

Geographic Distribution of Fossil and Extant Vitaceous Seeds....................................175 Europe ....................................................................................................................176 Siberia.....................................................................................................................177 Asia.........................................................................................................................177 North America........................................................................................................178 Central and South America ....................................................................................180 Africa......................................................................................................................180 Australia .................................................................................................................181 Summary of seed type distribution.........................................................................181

Phylogeny of Vitaceae...................................................................................................182 Phylogenetic Signals of the Seed Types........................................................................183 Biogeographical History................................................................................................187

Vitis, Ampelocissus, Ampelopsis, and Parthenocissus ...........................................187 Clematicissus, "Austrocissus", and Rhoicissus ......................................................189 Perichalazal seeds: Cissus, Cyphostemma, and Leea .............................................189 Tetrastigma and Cayratia.......................................................................................190

7

Origin of the family: Timing? North? South? .......................................................191 Adaptation, ecology, and biogeography.................................................................193

Conclusion ............................................................................................................................195

4 FOSSIL SEEDS OF THE GRAPE FAMILY AND THEIR PHYLOGENETIC POSITIONS..........................................................................................................................224

Introduction...........................................................................................................................224 Materials and Methods .........................................................................................................224 Results...................................................................................................................................226 Discussion.............................................................................................................................231

Effects of Missing Data in the Phylogenetic Analyses .................................................231 Fossil Affinities .............................................................................................................232

APPENDIX

A SPECIMENS INFORMATION OF THE VITACEOUS SEEDS SAMPLED IN THIS STUDY. ................................................................................................................................261

B SPECIMENS EXAMINED FOR THE MORPHOLOGICAL ANALYSES.......................265

C MORPHOLOGICAL CHARACTERS AND CHARACTER STATES USED IN THE CLADISTIC ANALYSES OF VITACEAE ........................................................................268

D DATA MATRIX OF THE MORPHOLOGICAL CHARACTERS, CONTINUOUS CHARACTERS TREATED WITH DISCRETE CODING.................................................281

E DATA MATRIX OF THE MORPHOLOGICAL CHARACTERS, CONTINUOUS CHARACTERS TREATED WITH GW CODING.............................................................284

F DATA MATRIX USED IN THE ANALYSIS INCLUDING FOSSIL AMPELOPSIS ROOSEAE, CONTINUOUS CHARACTERS TREATED WITH GW CODING ..............287

G DATA MATRIX USED IN THE ANALYSIS INCLUDING FOSSIL VITIS TIFFNEYI, CONTINUOUS CHARACTERS TREATED WITH GW CODING..................................290

H DATA MATRIX USED IN THE ANALYSIS INCLUDING FOSSIL PALAEOVITIS PARADOXA, CONTINUOUS CHARACTERS TREATED WITH GW CODING............293

I DATA MATRIX USED IN THE ANALYSIS INCLUDING FOSSIL AMPELOCISSUS WILDEI, CONTINUOUS CHARACTERS TREATED WITH GW CODING ..................296

J DATA MATRIX USED IN THE ANALYSIS INCLUDING FOSSIL PARTHENOCISSUS CLARNENSIS, CONTINUOUS CHARACTERS TREATED WITH GW CODING............................................................................................................299

8

K DATA MATRIX USED IN THE ANALYSIS INCLUDING FOSSIL VITIS MAGNISPERMA, CONTINUOUS CHARACTERS TREATED WITH GW CODING ....302

L DATA MATRIX USED IN THE ANALYSIS INCLUDING SIX FOSSILS, CONTINUOUS CHARACTERS TREATED WITH GW CODING..................................305

M DATA MATRIX USED IN THE ANALYSIS INCLUDING SIX FOSSILS, CONTINUOUS CHARACTERS TREATED WITH DISCRETE CODING......................308

LIST OF REFERENCES.............................................................................................................311

BIOGRAPHICAL SKETCH .......................................................................................................326

9

LIST OF TABLES

Table page 1-1 Number of seeds sampled in the survey of vitaceous seeds. .............................................32

1-2 Description and the variation pattern of seed characters. ..................................................33

1-3 The loading values of the first two components of the PCA corresponding to the score plot shown in Figure 1-6 A.......................................................................................39

1-4 The loading values of the first two components of the PCA corresponding to the score plot shown in Figure 1-6 B.......................................................................................40

1-5 The loading values of the first two components of the PCA corresponding to the score plot shown in Figure 1-6 C.......................................................................................41

1-6 The loading values of the first two components of the PCA corresponding to the score plot shown in Figure 1-6 D.......................................................................................42

1-7 The loading values of the first two components of the PCA corresponding to the score plot shown in Figure 1-6 E .......................................................................................43

1-8 The loading values of the first two components of the PCA corresponding to the score plot shown in Figure 1-6 F .......................................................................................44

3-1 Fossils classified as seed type st-Ampelocissus-wide infolds ..........................................199

3-2 Fossils classified as seed type st-Ampelocissus-rugose ...................................................200

3-3 Fossils classified as seed type st-Ampelopsis-smooth .....................................................201

3-4 Fossils classified as seed type st-Ampelopsis-rugose.......................................................203

3-5 Fossils classified as seed type st-Ampelopsis-xs..............................................................203

3-6 Fossils classified as seed type st-Vitis..............................................................................204

3-7 Fossils classified as seed type st-Vitis-Ampelopsis ..........................................................206

3-8 Fossils classified as seed type st-Vitis rotundifolia..........................................................207

3-9 Fossils classified as seed type st-Parthenocissus.............................................................207

3-10 Fossils classified as seed type st-Parthenocissus clarnensis ...........................................208

3-11 Fossils classified as seed type st-Cayratia.......................................................................209

3-12 Fossils classified as seed type st-Tetrastigma..................................................................209

10

3-13 Fossils classified as seed type st-perichalaza...................................................................209

3-14 Fossil vitaceous seeds not classified in this study ...........................................................210

3-15 Groups of taxa sharing the same combinations of characters as the fossils listed in Tables 3-1 to 3-13 ............................................................................................................213

3-16 The stratigraphic distribution of the fossil vitaceous seed types from Europe ................215

3-17 The stratigraphic distribution of the fossil vitaceous seed types from Siberia and Japan ................................................................................................................................216

3-18 The stratigraphic distribution of the fossil vitaceous seed types from North America ...217

3-19 The stratigraphic distribution of the fossil vitaceous seed types from Central America, South America, Africa, and Australia ..............................................................218

3-20 Geographical distribution of extant genera of Vitaceae ..................................................219

4-1 Numbers from the phylogenetic analyses. .......................................................................237

4-2 Fossil affinities to extant species inferred from the analyses presented in this study......238

11

LIST OF FIGURES

Figure page 1-1. The surface features of a vitaceous seed after removing the sarcotesta ................................45

1-2. The measurements of the seed morphometric characters......................................................46

1-3. The seed coat anatomy of vitaceous seeds ............................................................................47

1-4. Some examples showing the variation of endotestal sclereids in vitaceous seeds................48

1-5. Graphs showing individual values of selected seed morphometric characters grouped by genera............................................................................................................................49

1-6. The score plot of the first two components from PCAs for 57 seed characters ....................54

1-7. Seeds of Leea.........................................................................................................................58

1-8. Seeds of Cissus ......................................................................................................................60

1-9. Seeds of Cyphostemma ..........................................................................................................62

1-10. Seeds of Tetrastigma ...........................................................................................................63

1-11. Seeds of Rhoicissus .............................................................................................................65

1-12. Seeds of "Austrocissus" indistinguishable from Tetrastigma by PCAs ..............................66

1-13. Seeds of Acareosperma spireanum .....................................................................................68

1-14. Seeds of Cayratia ................................................................................................................69

1- 15. Seeds of Cissus antarctica..................................................................................................70

1-16. Seeds of Vitis .......................................................................................................................70

1-17. Seeds of Ampelopsis ............................................................................................................71

1-18. Seeds of "Austrocissus" undifferentiable from Ampelopsis by PCA...................................72

1-19. Seeds of Clematicissus ........................................................................................................73

1-20. Seeds of Parthenocissus ......................................................................................................74

1-21. Seeds of Yua ........................................................................................................................74

2-1. Strict consensus of 516 shortest trees from the morphological dataset in which the continuous characters were treated with discrete coding.................................................129

12

2-2 The shortest tree from the morphological dataset in which the continuous characters were treated with GW coding ..........................................................................................130

2-3 Character changes over selected branches on one of the shortest trees obtained from the morphological dataset in which the continuous characters were treated with discrete coding .................................................................................................................131

2-4 Character changes over selected branches (labeled 1-4) on the shortest tree obtained from the morphological dataset in which the continuous characters were treated with GW coding .......................................................................................................................133

2-5 The shoot apex of Nothocissus spicifera .........................................................................135

2-6 The optimization of the character phyllotaxy (character 5).............................................136

2-7 The optimization of the character leaf form (character 14) .............................................138

2-8 The optimization of the character leaf teeth density (character 19).................................140

2-9 The inflorescence-branch of Cayratia japonica ..............................................................142

2-10 Inflorescences and tendrils...............................................................................................143

2-11 The optimization of the character inflorescence-tendril organization (character 43)......145

2-12 The optimization of the character floral merosity (character 54) ....................................147

2-13 The optimization of the character lenticel density on fruit surface (character 78) ..........149

2-14 The optimization of the character endotesta sclereid width/length ratio (character 126) ..................................................................................................................................151

2-15 The optimization of the character stomata on sarcotesta (character 130)........................153

2-16 The optimization of the character tracheidal cell diameter (character 131) ....................155

2-17 The optimization of the character chalaza circularity (character 98) ..............................157

3-1 The morphological phylogeny used for inferring the biogeography of Vitaceae............220

3-2 Geographic distribution of fossil and extant Vitaceae.....................................................222

4-1 The score plots of the first two principle components from the PCAs including extant and fossil vitaceous seeds ................................................................................................239

4-2 The affinities of fossil vitaceous seeds inferred from the morphological phylogenetic analyses in which the continuous characters were coded with GW method, and backbone constraint applied.............................................................................................242

13

4-3 The affinities of fossil vitaceous seeds inferred from the morphological phylogenetic analyses in which the continuous characters were coded with GW method ...................243

4-4 The affinities of fossil vitaceous seeds inferred from the morphological phylogenetic analyses in which the continuous characters were coded with discrete method, and backbone constraint applied.............................................................................................252

4-5 The affinities of fossil vitaceous seeds inferred from the morphological phylogenetic analyses in which the continuous characters were coded with discrete method..............254

14

Abstract of Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

HISTORY OF VITACEAE INFERRED FROM MORPHOLOY-BASED PHYLOGENY AND

THE FOSSIL RECORD OF SEEDS

By

Iju Chen

December 2009 Chair: Steven R. Manchester Major: Botany The Vitaceae, or grape family, contains around 900 species and 15 genera mainly having

the liana growth form. Extant members of the family exhibit interesting geographical

distribution patterns. Some genera are strictly regional; others display North America-Asia

disjunction pattern. The family have a rich fossil record, particularly of seeds, in the Tertiary.

Seeds of Vitaceae can be readily recognized by unique characters such as a dorsal chalaza and a

pair of ventral infolds, and fossil seeds frequently have been identified to extant genera. The

fossil seeds are potentially useful for inferring the past geographical distribution patterns of

Vitaceae.

To test whether seeds of Vitaceae can be identified to the generic level and used to

properly identify/assess fossil seeds, 252 seeds, representing all 15 extant genera including the

closest relatives Leea, were sampled for morphometric analyses. Seeds of genera mostly can be

distinguished by a set of characters, nevertheless, some genera have very similar seeds. Such

similar seeds may indicate closer phylogenetic relationships among these genera. Besides

similarity comparison, a phylogeny of the family is also needed to interpret fossil affinities.

Although intrafamilial relationships have been inferred previously from molecular work,

none of these studies sampled all of the genera. Phylogenetic analyses based on morphological

15

data have not been done previously. The morphological phylogeny presented here includes all

genera of the family using 80 non-seed characters, plus 57 seed characters from the

morphometric analyses. To test different theories of homology, the continuous characters are

treated using two different coding methods. The morphological phylogeny resolves the 4-

petaled genera as earlier branching lineages, sister to a clade containing primarily 5-petaled

genera.

Most fossil seeds from the Tertiary are indistinguishable from the extant seeds externally,

however, some show combinations of characters not present in the sampled modern seeds. The

affinities of six selected better preserved fossils were additionally tested by morphometric

analyses and cladistic methods. Fossil seeds with oval chalazas are much more abundant than

the ones with linear chalazas or perichalazas. The distribution of the fossils suggests that the

lineages bearing perichalazal seeds have been restricted to the tropical regions since the Eocene.

16

CHAPTER 1 SEED MORPHOLOGY OF VITACEAE

Introduction

The seeds of Vitaceae are characterized by a pair of ventral infolds and a dorsal chalaza

(Figure 1-1). The combination of these two characters is not found in seeds of other plant

families, hence the identification of vitaceous seeds is relatively reliable. Fossil vitaceous seeds

were abundant throughout the Tertiary, and they have frequently been identified to the generic-

level (for example, Tiffney and Barghoorn, 1976). However, those identifications were either 1)

based on comparisons to limited samples of extant seeds; or 2) the sample sources and herbarium

vouchers were not clearly indicated and the seed characters were not systematically documented

and compared (for example, Latiff, 1994).

The potential systematic value of seed characters in this family has been recognized

previously, although based on relatively limited sampling of extant species. Süssenguth (1953)

mentioned that the configuration of the seed, as viewed in cross section, varies among genera.

Corner (1976) emphasized the evolution of the perichalazal condition among vitaceous seeds.

Periasamy (1962) discovered the variation of the chalaza growth and the number of layers in the

seed coat mechanical tissues among some genera. A seed survey with more comprehensive

sampling can help us understand the variation of seed characters within the family and therefore

provide a better interpretation for the fossil vitaceous seeds; and only through comparison to a

broad sampling of extant seeds can one properly identify the extinct characters of the fossil

seeds. A broad investigation of all observable seed characters not only improves fossil

identification but also provides information for interpreting the intrafamilial phylogenetic

relationships.

17

A potential pitfall of trying to identify seeds to the generic level is that the

traditionally/currently defined genera may not be monophyletic. In this study all seeds were

sampled from the herbarium sheets with identifications verified according to floral and

vegetative morphology. Taxa considered to be paraphyletic based on molecular data, for

example the compound-leaved/multiple-seeded Australian or South American endemic Cissus

(Rossetto et al., 2002; Soejima and Wen, 2006; Rossetto, 2007; Wen et al., 2007), were

especially scrutinized. Leea, the closest relative of Vitaceae (Ridsdale, 1974; Ingrouille et al.,

2002), were also sampled for the seed survey. Leea was sometimes separated as a family

(Ridsdale, 1974); the growth forms of Leea are small trees or shrubs without tendrils. Shape

characters can be more objectively compared if measured mathematically; therefore, in this

study, morphometric methods were used to record the seed characters. This study presents a

broad, well documented survey of extant vitaceous seeds; seed characters were compared, and

principle component analysis (PCA) was applied to visualize the morphological variability of

seeds within the family.

Materials and Methods

The terminology of seed morphology used here largely follows that of Tiffney and

Barghoorn (1976) with slight modification (Figure 1-1). Here, the chalaza is defined as the part

of the vascular strand of the funicle buried under lignified tissues. The part of the vascular strand

not covered by lignified tissues, which is lying on top of the endotesta at the raphe region and

continuing to the dorsal side, could be easily removed with the soft tissues of sarcotesta. Rugae

are defined as the unevenness or infolds of the seed surface excluding those in chalaza and

ventral infolds (vi). The Ruga apex refers to the raised part of the ruga; ruga sinus refers to the

indentation. Terminology of testa anatomy follows that of Periasamy (1962) and Corner (1976).

18

Seeds were sampled from herbarium sheets and processed as in Chen and Manchester

(2007). Sources of sampled seeds, including those with pictures shown in this paper, are listed in

Appendix A. Cross sections of seeds were made by cutting through the center of chalaza at right

angles to the seed surface. Anatomical features of the testa were observed with a compound

light microscope (LM) under 200x or 400x magnification. Testa sclereids were examined by

transmitted light microscopy from thin median cross sections of seeds prepared by hand with a

razor blade. The cutting angle was adjusted to be parallel to the anticlinal sclereids in order to

get an accurate counting of sclereid layer numbers. Sarcotestal and tracheidal cells were peeled

or scratched off from the seeds. All slides were prepared with water. The measurements of all

numerical characters were obtained from pictures by using program Image J (Rasband, 1997-

2006). Anatomical characters usually vary within the same seed; the most frequently observed

condition was recorded. PCAs were performed with the software Minitab15 (Minitab Inc., US).

Results

A total of 252 seeds, representing 238 species, and 15 genera, or about one fourth of the

species of the family worldwide, were sampled (Table 1-1). At least one fourth of all species of

each genus were sampled except for the large genera Cissus and Cyphostemma. All species of

the smaller genera were sampled, when possible. The seed characters are described in Table 1-2

and illustrated in Figures1-2 and 1-3. The outer integument of the vitaceous seed is composed of

the soft outer sarcotesta and the lignified endotesta, i.e., the inner epidermis of the outer

integument (Periasamy, 1962; Corner, 1976). The surface features of the lignified part of the

seeds, including the pair of ventral infolds, the dorsal chalaza, and rugae (Figures 1-1 and 1-2;

Table 1-2), were revealed by removing the sarcotesta. Cross sections of the seeds show the

configuration of the ventral infold cavities, angle of chalaza depression, and the thickness of the

endotesta in various regions (Figure 1-2; Table 1-2). The sarcotesta contains several layers of

19

parenchyma cells; raphides, druses, and mucilage are typical cell contents in the parenchyma,

sometimes slightly lignified cells are present in the sarcotesta. In contrast with the condition in

vitaceous seeds, the sarcotesta of Leea is very thin, with little parenchyma tissue, and is devoid

of crystals (Ridsdale, 1974). The cells in the outer epidermis of the outer integuments are

polygonal. Although it has not been reported previously, stomata are present in the outer

epidermis of the outer integument in certain species (Figure 1-3 A). The lignified endotesta is 1

to several cells thick; the cell shape of the endotesta sclereids and the thickness of the cell wall

varies (Figure 1-3 B, Figure 1-4). The surface of the endotestal sclereids is pitted in all sampled

seeds, and sometimes a prismatic crystal is present in the cell lumen (Figure 1-4). The inner

integuments (tegmen) are usually 3- or 4-layered (Figure 1-3 C). The outer epidermis of the

inner integument is composed of tangentially elongate tracheidal cells with spiral to reticulate

thickenings (Figure 1-3 D, E) (Corner, 1976). The exotegmic tracheidal cells are usually one cell

thick; however, in some seeds the tracheidal cells are two cell thick, the outer layer has cells of

small diameter (Figure 1-3 D) and the inner layer has cells of much larger diameter (Figure 1-3

E). The mesophyll cells of the inner integuments are thin-walled without thickening patterns and

are usually crushed (Figure 1-3 C). Cells of the inner epidermis of the inner integuments are

usually polygonal and contain mucilage (Figure 1-3 F).

Among the 57 seed characters, seven are discrete, and the others are continuous. When

arranging all measured values of a continuous character to a scaled attribute axis, it is usually not

possible to define gaps that would objectively allow the differentiation of the character into a few

character states; only occasionally in certain characters extreme conditions present a large gap,

separating one to a few taxa from all others. Nevertheless, patterns do exist, allowing generic

differentiation. Those patterns are summarized in Table 1-2, and exemplified in Figure 1-5. Ten

20

seeds of sampled species of Cissus have a different morphology from other species of this genus;

they are labeled as "Austrocissus" (a term borrowed from Dr. Besty Jackes; personal

communication) thoughout this article. These seeds belong to species of Cissus that are endemic

in South America or Australia. The inflorescence and/or floral morphology of these species also

differ from those of other Cissus (Chapter 2). Some of these Cissus species have been shown to

be phylogenetically distinct from other Cissus (Rossetto et al., 2002; Soejima and Wen, 2006;

Rossetto, 2007; Wen et al., 2007). These ten seeds can be easily distinguished from other Cissus

by chalaza length (C21) (Figure 1-5 F). They were excluded from the character variation pattern

seeking process presented in Table 1-2 and Figure 1-5 because of the potential paraphyly of

Cissus.

PCAs were employed to test how well the genera can be distinguished by seed characters

(Figure 1-6, Tables 1-3 to 1-8). Since the seeds of all 15 genera cannot be well differentiated by

a single PCA, PCAs were performed several times, each time with different divergent genera

excluded. The variance explained in the first two principle components is low in all PCAs.

Frequently the characters with high loading value in PCAs correspond to the observed variation

patterns among genera (Table 1-2). Seeds of each genus were described according to the results

of the PCAs. The characters with high loading values in the first two components (Tablse 1-3 to

1-8) were assumed to be the diagnostic characters for distinguishing seeds of different genera.

The similarity of "Austrocissus" to other vitaceous seeds was interpreted according to the results

of the PCAs.

Leea, Cissus, and Cyphostemma

The score plot of a PCA with all 57 seed characters and all 252 sampled seeds is shown in

Figure 1-6 A, and the loading values from the analysis are shown in Table 1-3. Seeds of Leea,

Cissus and Cyphostemma can be distinguished clearly from the rest of the family in the analysis

21

(Figure 1-6 A). They all have seeds with long (C21, Figure 1-5 F) and linear chalaza (C18,

Figure 1-5 E) visible from the ventral side and terminated very near to the beak at the dorsal side

(C23), a condition termed perichalaza by Corner (1976). In addition, these seeds are mostly not

compressed or laterally compressed (C30), with short ventral infolds (C9, Figure 1-5 C), and

linear or irregular shaped ventral infold cavities (C33) (the high loading value in Table 1-3).

Leea usually has six-seeded fruits, and the seeds are laterally compressed (C30) (Figure 1-

7). Their ventral infolds (C53) and rugae are covered by sclereids on the surface, with faint

markings on the seed surface showing the outlines of the infolds and rugae (lateral views, Figure

1-7). The Y-shaped dorsal infold (cross sections, Figure 1-7) underneath the perichalaza (Figure

1-7 F), and a pair of longitudinally arranged rugae (C39) (lateral views, Figure 1-7) are unique

features of the genus. The longitudinal rugae of Leea can be unbranched (Figure 1-7 A, B),

branched (Figure 1-7 C), or highly branched (Figure 1-7 D, E, F), and the endotesta in the rugae

is not well developed (C44) (cross sections, Figure 1-7).

Cissus (Figure 1-8) and Cyphostemma (Figure 1-9) are usually one-seeded, and laterally

compressed seeds (C30) occur in some species of Cissus (Figure 1-8 B, E, F). Seeds of both

genera can be smooth or rugose (C24). When rugose the rugae usually form protruding ridges

on the seed surface and do not fold deep into the endosperm (C26) in Cissus (Figure 1-8 C, D, E)

and Cyphostemma (Figure 1-9); extremely rugose seeds (Figure 1-8 F) are rare in both genera.

The opening of the ventral infolds on the seed surface is usually linear in Cissus; but, wide

ventral infolds do exist in at least one species of Cissus (Figure 1-8 D). The endotesta sometimes

is extremely thickened along the chalaza (C43) and forms a sharp ridge (Figure 1-8 E) in some

species of Cissus.

22

Seeds of Cyphostemma and Cissus are not distinguished from each other in the PCA

(Figure 1-6 A); however, all seeds of Cyphostemma have extra layers of sclereids covering on

the surface of ventral infolds (C53), and the vascular strand on the raphe region is also wrapped

inside the endotesta (cross sections, Figure 1-9). The feature of ventral infolds covered by

endotesta (C53) is present in all Leea and Cyphostemma, but absent in all other vitaceous seeds

examined. The ventral infold cavities of Cyphostemma are linear to irregularly shaped in cross

section (Figure 1-9); the longitudinal section shows the unique ruminating pattern of the ventral

infolds (Figure 1-9 C).

The ten "Austrocissus" seeds do not possess a perichalaza and therefore were not grouped

with other Cissus in the PCA (Figure 1-6 A). These seeds are subsequently compared to other

vitaceous seeds.

Tetrastigma and Rhoicissus

A PCA was performed with non-perichalazal seeds, i.e., with all seeds except Leea, Cissus,

and Cyphostemma (Figure 1-6 B; Table 1-4). Tetrastigma and Rhoicissus can roughly be

separated from other non-perichalazal seeds by their linear chalaza (C18), which is located near

the apical notch (C22) and extends toward the beak (C23), long, narrow, sometimes divergent

ventral infolds (C8, 9, 11, 15), and rugose surface (C24, 26) (high loading value in Table 1-4).

Five species of "Austrocissus" belong to the group of Tetrastigma and Rhoicissus. Another PCA

including Tetrastigma, Rhoicissus, and the five "Austrocissus" shows that the five "Austrocissus"

are more similar to Tetrastigma, and that Rhoicissus still cannot be well separated from some

species of Tetrastigma (Figure 1-6 C).

The seed morphology of Tetrastigma is diverse (Figure 1-10). Many seeds have long (C9)

and divergent (C15) ventral infolds (Figure 1-10 A, B, C, G) and linear chalaza (C18) (Figure 1-

10 A, B, G). However, not all species of Tetrastigma have linear chalazas; oval chalazas (C18 >

23

0.5, Figure 1-5 E) occur in some species (Figure 1-10 C, D, E, F). Neither is long ventral infolds

(C9, Figure 1-5 C) a consistent character in Tetrastigma (notice the short ventral infolds Figure

1-10 E, F). These are the main reasons that seeds of some Tetrastigma were not well separated

from those of other genera in the analysis (Figure 1-6 B). Many species of Tetrastigma have

oblong seeds; the rugae dissect into the endosperm with sharp angle and the endotesta at the ruga

sinus is not well lignified and is similarly thin to that inside the ventral infold cavities (C26, 44,

Table 1-4; cross and longitudinal sections in Figure 1-10 A). On the seed surface, the rugae

appear as horizontal furrows flanking the elongate chalaza (Figure 1-10 A). Nevertheless, not all

Tetrastigma have this kind of rugae; the more typical rugae observed in other vitaceous seeds —

shallow ruga sinus angle and well developed endotesta at ruga sinus — also occur in Tetrastigma

(Figure 1-10 B, E, F). Most species of Tetrastigma do not have apical grooves (C28) and the

chalaza is not sunken (C36, 37; Table 1-5); nevertheless, a few species have the chalaza sunken

deep into the endosperm (Figure 1-10 G). Endotesta thickness ( C42, 43; Table 1-5) also varies

greatly among species of this genus. Some species, for example, T. hainanense, T. henryi, T.

erubescens, T. caudataum, do not possess well developed endotesta; the endotesta is one-cell

thick and not lignified. The lack of a lignified endotesta is a character observed only in

Tetrastigma. A unique character observed only in Tetrastigma and Acareosperma is the V-

shaped ventral infold cavities (C56); the endotesta at the notch part of the V-shaped ventral

infold cavity is thickened and lignified (Figure 1-10 F). The four Tetrastigma seeds near

Rhoicissus in the PCA score plot in Figure 1-4 C have the distinct V-shaped ventral infold

cavities; however, this discrete character was not well explained by the first two principle

components.

24

Seeds of Rhoicissus are rugose (C24), with a linear chalaza (C18), and divergent infolds

(C15) (Figure 1-11). The long (C21) and sunken chalaza (C36, 37) of R. rhomboidea is very

similar to those in some species of Tetrastigma (Figure 1-10 G). The ventral infolds of most

Rhoicissus are not as long as most Tetrastigma (C9, Figure 1-5 C). However, this character, and

most other characters of the two genera have overlapping ranges of variation. Diagnostic

characters that separated these two genera could not be unambiguously identified.

Among the five "Austrocissus" seeds that grouped with Tetrastigma in the PCA (Figure 1-

6 B, C; Figure 1-12), Cissus penninervis, C. hypoglauca, and C. sterculiifolia (Figure 1-12 A-C)

are Australian endemics. They have linear chalaza (C18), long ventral infolds (C9), and rugose

surface (C24); they are indistinguishable from the seeds of Tetrastigma. Cissus trianae and C.

granulosa (Figure 1-12 D, E) are South American endemics. Their chalazas are not as linear

(C18) as the Australian "Austrocissus", and the near apex-positioned pyriform chalaza of C.

gradulosa (Figure 1-12 E) is a feature present in some seeds of Ampelopsis (see description of

Ampelopsis). Nevertheless, rugae of these two species have undeveloped endotesta at the ruga

sinus (C44; Figure 1-12 D, E), a character present in seeds of Leea, some Tetrastigma, and some

Rhoicissus.

Acareosperma and Cayratia

Another PCA was conducted with all seeds except Leea, Cissus, Cyphostemma,

Tetrastigma, Rhoicissus, and the Tetrastigma-like "Austrocissus" (Figure 1-6 D, Table 1-6). The

resulting score plot shows the distinctness of Acareosperma, and Cayratia is well separated from

the rest (Figure 1-6 D). Seeds of Acareosperma and Cayratia usually have a narrow chalaza

(C19), polygonal endotestal sclereids (C46) (Figure 1-5 J), multiple layers of endotestal sclereids

(C48), sarcotestal stomata (C50), and two layers of different sized tegmic tracheidal cells (C52)

(high loading value in Table 1-6); these characters distinguish the seeds of these two genera from

25

those of Ampelocissus, Nothocissus, Pterisanthes, Vitis, Ampelopsis, Clematicissus,

Parthenocissus, and Yua (Figure 1-6 D).

Seeds of Acareosperma are relatively large (C1) and highly compressed dorsiventrally

(C30) (Table 1-6). The whorled spiny rugae (C54) are a distinct feature present in only this

monotypic genus (Figure 1-13). The seeds have V-shaped ventral infold cavities (C56) (cross

section, Figure 1-13) similar to those of some Tetrastigma (Figure 1-10 F). This species is

endemic to Laos; it has only been collected once and the flowering materials have never been

collected. The establishment of the genus is largely based on its visually distinct seeds

(Gagnepain, 1919).

Seeds of Cayratia have linear (Figure 1-14 A, B, D, E) to oval chalaza (Figure 1-14 C)

(C18, Figure 1-5 E) sometimes extending to the apical notch (Figure 1-14 A-D) (C22; Figure 1-5

G); their ventral infolds are either narrow (Figure 1-14 A, C, E) or wide (Figure 1-14 B, D) (C35,

Figure 1-5 H), usually not divergent (C15, Figure 1-5 D), and the surface is usually rugose

(C24), sometimes with very sharp ruga ridges (C27) (Figure 1-14 A, B). Nevertheless, smooth

seeds also exist in Cayratia (Figure 1-14 C). Some seeds of Cayratia have the lateral margin

folded inward forming a constricted rim (pore) on the ventral side (C57) (Figure 1-14 D, E), a

character not present in other genera. The endosperm is either present in the region of the

constricted rim (Figure 1-14 D) or absent (Figure 1-14 E). This is a visually distinct character;

however, it was not explained well in the PCA (Figure 1-6 D).

Among the five seeds of "Austrocissus" involved in this level of comparison, Cissus

antarctica is not grouped with the other four (Figure 1-6 D). Cissus antarctica has a linear

chalaza (C18) and shallow ventral infolds (C34) (Figure 1-15); its endotesta at ventral infold

cavities (C42) and the ruga sinus region (C44) is thickened (Figure 1-15). All other sampled

26

vitaceous seeds have less well developed endotesta at ventral infold cavities and ruga sinus;

hence, the condition present in C. antarctica is unique. Cissus oblonga, a species endemic to

Australia with overall morphology similar to C. antarctica, has same kind of seeds as C.

antarctica (observed but not measured).

Ampelocissus, Nothocissus, and Pterisanthes

A PCA was performed excluding all of the above-mentioned genera, but including seeds of

Ampelocissus, Nothocissus, Pterisanthes, Vitis, Ampelopsis, Clematicissus, Parthenocissus, Yua

and four "Austrocissus" taxa (Figure 1-6 E, Table 1-7). Seeds of Ampelocissus, Nothocissus, and

Pterisanthes can more or less be separated from the rest by their larger size (C1), widest part of

the seeds mostly near center (C3), long ventral infolds (C9, Figure 1-5 C), relatively narrow

chalaza (C19) which is mostly center-positioned (C22, Figure 1-5 G), and greater degree of

dorsiventral compression (C30) (characters in the first component, Table 1-7). The two

Ampelocissus species are inseparable from Vitis (Figure 1-6 E); they are A. erdvendbergiana and

A. robinsonii, both endemic in Central America. The two species have smaller (C1) heart-

shaped seeds (C3) and resemble those of Vitis. Seeds of Nothocissus are similar to the extremely

rugose seeds of some species of Ampelocissus; Pterisanthes and A. pauciflora can be

differentiated from the rest of Ampelocissus by their round seeds and round ventral infolds (Chen

and Manchester, 2007). Detailed description and figures of seed of Ampelocissus, Nothocissus,

and Pterisanthes were published previously (Chen and Manchester, 2007) and not repeated here.

None of the four "Austrocissus" taxa has seeds similar to Ampelocissus (Figure 1-6 E).

Vitis, Ampelopsis, Clematicissus, Parthenocissus, and Yua

A PCA was conducted with Vitis, Ampelopsis, Clematicissus, Parthenocissus, Yua, and the

four remaining "Austrocissus" taxa (Figure 1-6 F, Table 1-8). Seeds of Vitis, Ampelopsis, and

Parthenocissus are well separated in the PCA by many characters (characters with high loading

27

values in Table 1-8); Clematicissus and the four "Austrocissus" have seeds more similar to those

of Ampelopsis; seeds of Yua are closer to Ampelopsis or Vitis (Figure 1-6 F). The seeds of these

five genera are typically small (3-7mm) (C1, Figure 1-5 A), and with an oval chalaza (C18,

Figure 1-5 E).

Seeds of Vitis (Figure 1-16) usually have short ventral infolds (C9, Figure 1-5 C) and an

oval chalaza not touching the chalaza notch (C22, Figure 1-5 G). Their apical and/or basal

grooves are sometimes prominent (Figure 1-16 B, C). The endotesta is relatively thick (C40,

Figure 1-5 I), and well developed inside the ventral infold cavities (C42) (cross section, Figure 1-

16 A, B). The seeds are usually smooth, however, species with rugose seeds (C24) also exist

(Figure 1-16 B). Vitis rotundifolia has larger seeds with faintly rugose surface; its ventral infolds

are longer compared to other species of Vitis, and the endotesta is thinner and less developed in

the ventral infolds than other Vitis (Figure 1-16 C).

Seeds of Ampelopsis (Figure 1-17) have short ventral infolds (C9, Figure 1-5 C) that are

sometimes divergent (C15, Figure 1-5 D). The ventral infolds (C35, Figure 1-5 H) can be

narrow (Figure 1-17 A, B) or wide (Figure 1-17 C), sometimes with the widest part near the

apices (C10) (Figure 1-17 A). Their apical notches are usually not prominent (C4), and the

chalaza is positioned close to the notch (C22, Figure 1-5 G; Figure 1-17). The chalaza is

sometimes more linear (C18, Figure 1-5 E; Figure 1-17 A), or pyriform (C20) (Figure 1-17 B).

The endotesta is well developed near the ventral infold opening but is much thinner inside the

ventral infold cavities (C32), and the ventral infold cavities are rounded (C33) (cross section,

Figure 1-17). The seed surface (C24) is either smooth (Figure 1-17 A, B) or rugose (Figure 1-17

C, D). The four seeds of "Austrocissus", including C. simsiana, C. tweedieana, and the two

subspecies of C. striata, have seeds with the features of Ampelopsis (Figure 1-18).

28

Clematicissus was originally monotypic, containing only C. angustissima (Jackes, 1989b).

The seeds of C. angustissima possess only one ventral infold (C55) (Figure 1-19 A), a feature not

observed in any other vitaceous seeds. Clematicissus opaca was later transferred from Cissus to

this genus (Jackes and Rossetto, 2006). Both species have an oval chalaza, and the ventral infold

cavities are similar to those of Ampelopsis in cross section (Figure 1-19); nevertheless, in ventral

view, their ventral infolds are longer than those of Ampelopsis (C9, Figure 1-5 C).

Parthenocissus seeds typically have long (C9, Figure 1-5 C) and divergent (C14, Figure 1-

5 D; C15) ventral infolds, a deep and sharp apical notch (C4; C5, Figure 1-5 B), and an oval

chalaza located immediately below the notch (C22, Figure 1-5 G). The endotesta is usually thin

(C40, Figure 1-5 I), with only one layer of sclereids (C48) (Figure 1-20 A). Parthenocissus

heptaphylla is the only sampled Parthenocissus seed with endotesta of regular thickness (Figure

1-20 B).

The seeds of the two sampled Yua species are not similar to each other (Figure 1-21). Yua

austro-orientalis has rugose seeds (C24) with narrow ventral infolds (C35) and center-positioned

chalaza (C22) (Figure 1-21 A). The seeds of Y. austro-orientalis resemble some Ampelocissus

externally (Chen and Manchester, 2007), however, the endotesta of Y. austro-orientalis is thicker

(C40) than that of Ampelocissus, and the thickness is comparable to that of Vitis (Figure 1-5 I).

Yua chinenses has smooth seeds (C24) with narrow ventral infolds (C35), a shallow apical notch

(C5), and an oval chalaza positioned near the apical notch (C22) (Figure 1-21 B). The seed

resembles Ampelopsis both externally, and in the configuration of the ventral infold cavities as

seen in cross section (C32, C33) (Figure 1-21 B).

Discussion

The intrageneric variation range of the seed morphometric characters frequently overlaps

among genera. Nevertheless, patterns of variation among genera can still be perceived (Figure 1-

29

5). By relative comparison of selected sets of characters, some of the vitaceous seeds can be

distinguished to the generic level, as demonstrated by the results of the PCAs (Figure 1-6);

however, similar seeds belonging to different genera do exist. The discrete characters were not

always depicted by the algorithm of PCA and have to be examined separately; seeds of

Cyphostemma in fact can be easily separated from Cissus by a single discrete character (C53).

Seeds of Pterisanthes and Nothocissus are similar to some Ampelocissus (Figure 1-6 E) (Chen

and Manchester, 2007). Two species of Ampelocissus have seeds that are not well separated

from those of Vitis (Figure 1-6 E). The molecular phylogeny suggested the monophyly of

Ampelocissus, Pterisanthes, and Nothocissus, with Vitis being sister to this clade (Soejima and

Wen, 2006; Wen et al., 2007). The similarity among seeds of certain Ampelocissus,

Pterisanthes, Nothocissus, and Vitis can be explained by the close phylogenetic relationships of

these genera. Seeds of Rhoicissus cannot be well distinguished from those of Tetrastigma

(Figure 1-6 B, C); however, current molecular data do not support a close relationship between

these two genera (Soejima and Wen, 2006; Wen et al., 2007). Nine species of "Austrocissus"

included in this seed survey have seeds either similar to Tetrastigma or Ampelopsis, and one of

them, C. antarctica, has unique features in its endotesta. Cissus striata and C. simsiana were

grouped with Rhoicissus, and Ampelopsis was sister to this monophyletic clade in the GAI1

phylogeny (Wen et al., 2007). Cissus striata and C. tweedieana were grouped with

Clematicissus based on trnL-trnF data (Rossetto, 2007). Cissus striata, C. simsiana, C.

tweedieana, and Clematicissus all have Ampelopsis-like seeds; hence, the seed morphology

seems to support their close relationship. Cissus antarctica, C. oblonga, and C. hypoglauca

formed a strongly supported clade separated from other non-Australian Cissus, but their

relationships within the family are uncertain (Rossetto, 2007). None of the published molecular

30

phylogenies has a complete sampling that includes every genus of the family. The within-family

relationship, especially the placement of Rhoicissus, Clematicissus, and "Austrocissus", remains

uncertain. Morphological phylogenetic analyses including all genera and eight species of

"Austrocissus", with 80 non-seed characters and the 57 seed characters presented in this study,

have been completed (Chapter 2) independently of molecular work to provide hypotheses of

relationships.

Some issues related to the identification of fossil vitaceous seeds can already be foreseen.

If fossil seeds possess a morphology identical to more than one extant genera, the affinities of the

fossils would be problematic, unless those genera with overlapping seed morphology are

monophyletic, as in the example of Ampelocissus, Nothocissus, and Pterisanthes. The

hypotheses of the within-family relationships certainly affect how the affinities of the fossils can

be interpreted. In addition, fossil identification unavoidably depends on the

availability/preservation of the characters. Some Tetrastigma may not be well separated from

seeds of other genera with rugose surface, oval chalaza and/or short ventral infolds (Figure 1-6

B; Figure 1-10 D, E, F) although detailed comparisons on additional characters may separate

them; and some seeds of Cayratia may have external morphology similar to oval chalazal seeds

from other genera (for example, Figure 1-14 C) although testa anatomy can distinguish them

(Figure 1-6 D; Table 1-6). Fossils often do not have every seed character well preserved;

without all seed characters, some fossils may not be unequivocally identified.

Based on the PCAs performed in this study, shape and position of ventral infolds and

chalaza, shape of ventral infold cavities, and testa anatomy are characters that can generically

differentiate vitaceous seeds. These characters are potentially informative for intrafamilial

relationships. Among these characters, the features of testal anatomy were generally not applied

31

prior to this study. In addition, prior studies employed subjective, qualitative comparisons,

rather than rigorous morphometric comparisons.

The association of oval chalaza (C18), columnar endotesta sclereids (C46), and smaller

diameter tegmic tracheidal cells (C51) to the taxa primarily possessing 5-merous flowers —

Ampelocissus, Vitis, Ampelopsis, Parthenocissus, and Yua (Table 1-2; Figure 1-5) can be

observed from this seed survey. The monophyly of the taxa with 5-merous flowers had been

suggested from the GAI1 sequence data (Wen et al., 2007); these seed characters can be

interpreted as synapomorphies of this clade.

Seed characters are not only valuable in dertermining intrafamilial relationships, they

may also be used for the assessment of interfamilial relationships. The paired ventral infolds,

constantly present in all vitaceous seeds except Clematicissus angustissima, are a unique feature

for this family. Ruminate seeds occur in a few plant families (Corner, 1976), however, their

ruminations do not have a fixed pattern like the ventral infolds of Vitaceae. Perichalazal seeds

occur in other plant families such as Annonaceae and Monimiaceae (Corner, 1976). Stomatal

exotesta is known in 19 other plant families (Corner, 1976). Tracheidal exotegmen also occurs

in at least Rutaceae, Dilleniaceae (Corner, 1976), Myristicaceae, Trochodendraceae, Oxalidales,

Peraceae (Stevens, 2001 onwards). Whether similar seed characters can improve/provide the

interpretation of the within-family relationship in these plant families, or at higher levels of

phylogeny, is worthy of further investigation. An affinity between Vitaceae and Dilleniaceae has

been suggested by some molecular data, and testal anatomy was considered one of the likely

synapomorphies (Nandi, Chase, and Endress, 1998; Hilu et al., 2003). The detailed

documentation of seed characters from this study provides a foundation for further comparison.

Genus number of seeds sampled

number of species sampled

estimated total species number

Acareosperma 1 1 1

Ampelocissus 35 32 94

Ampelopsis 12 12 25

Cayratia 17 15 63

Cissus 69 66 350

Clematicissus 2 2 2

Cyphostemma 22 22 250

Nothocissus 1 1 1

Parthenocissus 8 8 15

Pterisanthes 5 4 20

Rhoicissus 6 5 12

Tetrastigma 43 38 95

Vitis 15 15 60

Yua 2 2 3

Leea 14 13 32

total 252 236 1023

Table 1-1. Number of seeds sampled in the survey of vitaceous seeds.

32

Character Description Variation patterns among genera

C1 seed max length lateral view; Frete's diameter (calculated by Image J) of seed lateral perimeter (P1). 3-27 mm; Vitis, Ampelopsis, Parthenocissus, and Clematicissus have small seeds (< 7 mm);

species with largest seeds belongs to Cissus.

C2 seed width/length ratio ventral view; seed width (L1) divided by seed length (L2). most seeds have values > 0.6; some species of Cissus and Tetrastigma have more elongate

seeds (< 0.6).

C3 seed apex to widest part ventral view; distance from seed apex to seed widest part (L3) divided by seed length

(L2).

most seeds have their widest part above the center (< 0.5).

C4 apical notch depth ventral view; distance from seed apex to lowest point of apical notch (L4) divided by

seed max length.

deep in Parthenocissus (> 0.05); all sampled Cissus and Leea have no apical notch (= 0).

C5 apical notch angle ventral view; angle of apical notch (A1). all Parthenocissus have a sharp angle less than 60°.

C6 beak length ventral view; length of beak (L5) divided by seed max length; for Leea and Cissus if

raphe curved strongly measure from lateral view .

all Parthenocissus, Cyphostemma, and Leea have values less than 0.1.

C7 beak angle ventral view; angle of beak (A2); for Leea and Cissus if raphe curved strongly measure

from top view .

all Parthenocissus, Pterisanthes, Cyphostemma, and most Ampelopsis, Rhoicissus, and

Leea have beak angle more than 80°.

C8 vi circularity ventral view; circularity (calculated by Image J) of the perimeter of one ventral infold

(P2); for Leea and Cyphostemma measure the outline of the marking of the extra testa.

< 0.4 in all Clematicissus, Parthenocissus, Yua, Nothocissus, Acareosperma,

Tetrastigma, Rhoicissus, Cyphostemma, and Leea .

C9 vi length ventral view; Frete's diameter (calculated by Image J) of the ventral infold perimeter (P2)

divided by seed max length.

Clematicissus, Parthenocissus, Ampelocissus, Pterisanthes, Nothocissus, and

Tetrastigma mostly have long ventral infolds (> 0.6); other genera mostly have values less

than 0.6.

Table 1-2. Description and the variation pattern of seed characters. Refer to Figure 1-2 for the measurements of length (L), angle

(A), and perimeter (P). Characters measured under LM are shown in Figure 1-3. Images of the discrete characters can

be found in other figures in this article.

33

C10 vi apex to widest part ventral view; distance from the apex of the ventral infold to the widest part of the ventral

infold (L6) divided by the Frete's diameter of P2; ventral infold with equal width whole

length has widest part at the middle.

Clematicissus and most Ampelopsis have widest part near apex (< 0.4).

C11 vi space at the apex ventral view; distance between the apexes of the two ventral infolds (L7) divided by seed

width (L1). Clematicissus angustissima have only one vi therefore characters related to

vi space were measured as 0.

most Parthenocissus, Rhoicissus, and Tetrastigma have values more than 0.5.

C12 vi space at the middle ventral view; distance between the middle points of the two ventral infolds (L8) divided

by seed width (L1).

Rhoicissus and Parthenocissus have vi widely spaced at the middle (> 0.35); in most

Tetrastigma the ventral infolds are closely spaced at the middle.

C13 vi space at the base ventral view; distance between the bases of the two ventral infolds (L9) divided by seed

width (L1).

more than 0.15 in all Ampelopsis and most Vitis.

C14 vi space base to middle

ratio

ventral view; vi space at the base divided by vi space at the middle. in most Leea the ventral infolds are divergent toward the base (> 1).

C15 vi divergence angle ventral view; the angle made from the two straight lines along the inner side of the two

ventral infolds from apex to middle (A3) .

large (> 25°) in most Rhoicissus , Parthenocissus , Tetrastigma , and some Ampelopsis .

C16 vi curve angle ventral view; curve angle along the inner side of the ventral infold (A4); smaller than

180° means the convex side facing the center of the seed.

many Tetrastigma have curve angle less than 180°. Most seeds have straight ventral

infolds, or the ventral infolds are curve in the opposite direction.

C17 vi base to beak distance ventral view; distance from the base of one ventral infold to the tip of the beak (L10)

divided by seed max length.

all Ampelopsis and Vitis have values more than 0.2; most Leea, Clematicissus,

Parthenocissus, Ampelocissus, Nothocissus and Pterisanthes have values less than 0.2.

C18 chalaza circularity dorsal view; circularity of the perimeter of the chalaza (P3). most Clematicissus, Ampelopsis, Parthenocissus, Yua, Vitis, Ampelocissus,

Nothocissus, and Pterisanthes have an oval chalaza (> 0.5).

C19 chalaza width dorsal view; chalaza width at widest part (L11) to seed width (L1) ratio. most oval chalazal seeds (C18 > 0.5) have values more than 0.25 except some Vitis,

Ampelocissus, and Pterisanthes.

Character Description Variation pattern among genera

Table 1-2. Continued.

34

C20 chalaza apex to widest

part

dorsal view; distance from chalaza apex to chalaza widest part (L12) divided by chalaza

length in dorsal view (L13); linear chalaza have widest part in the middle .

some Ampelopsis has pyriform chalaza (> 0.6).

C21 chalaza length lateral view; length of chalaza (L14) divided by seed max length. distinctly long in Leea , Cissus , and Cyphostemma (> 1.4).

C22 chalaza to notch distance dorsal view; distance from chalaza apex to the lowest point of apical notch (L15) divided

by the length from apical notch to beak (L16).

> 0.1 in Vitis, most Ampelocissus, Nothocissus, and Acareosperma ; mostly < 0.1 in other

genera.

C23 chalaza to beak distance lateral view; distance between chalaza base and the tip of beak (L17) divided by seed

max length.

clear gap between Leea and others (< 0.1), all Cyphostemma and most Cissus have values

between 0.1-0.4, oval chalazal seeds usually have values more than 0.4.

C24 external rugosity lateral view; the difference of the seed lateral perimeter (P1) and the perimeter of the fit

ellipse of P1 (claculated by Image J) divided by the perimeter of the fit ellipse of P1.

< 0.2 corresponding to a visually smooth seed. The rugae of Leea are covered by lignified

endotesta and the seeds have smooth surface. All sampled Leea, Clematicissus,

Parthenocissus and Pterisanthes have smooth seeds; all sampled Rhoicissus and

Tetrastigma have rogose seeds.

C25 raphe curve angle lateral view; curve angle along the longitudinal raphe/ventral surface (A5). Many species of Cissus have concave raphe (< 180°).

C26 ruga sinus angle lateral view; angle of ruga sinus (A6). A smooth seed is measured as 180°. less than 50° in all Leea, Rhoicissus, and most Tetrastigma.

C27 ruga ridge angle lateral view; angle of ruga ridge (A7). some Cayratia have very sharp ridges (< 85°); rugose Ampelocissus have ruga ridge angle

between 85-155°; most Tetrastigma do not have a sharp ruga ridge (> 155°).

C28 apical groove angle top view; angle of apical groove (A8). < 150° corresponding to the obvious presence of the groove. Present in most

Parthenocissus, Ampelocissus, and Vitis.

C29 basal groove angle bottom view; angle of basal groove (A9). present in all Vitis (< 150°).

Character Description Variation pattern among genera

Table 1-2. Continued.

35

C30 cs high/width ratio cross section; cross section high (L18) divided by width (L19). most seeds have values < 0.9; > 0.9 in most Leea, Cyphostemma, and Cissus.

C31 vi rugosity cross section; difference of the perimeter of the ventral infold cavity (P4) and the

perimeter of the fit ellipse of P4 (calculated by Image J) divided by the perimeter of the

fit ellipse of P4.

< 0.26 in most Cayratia, Ampelopsis, and Vitis ; > 0.26 in all Rhoicissus, Parthenocissus,

and Yua.

C32 vi thin part ratio cross section; ratio of length of ventral infold cavity with adruptively thinner testa (L20)

to the whole length (L21); equal to one if the endotesta lining the cavity has consistant

thickness.

present in all Rhoicissus, most Ampelopsis, and some species from other genera (< 0.85).

C33 vi thin part circularity cross section; circularity of the perimeter of the ventral infold cavity with adruptively

thinner testa (P5); if vi thin to thick part ratio = 1 measure circularity of P4.

a circular vi cavity lining with thin endotesta is a distinct feature for Ampelopsis (> 0.72).

C34 vi depth cross section; depth of ventral infold (L22) divided by the high of seed cross section

(L18).

> 0.5 in all Cyphostemma , most Cissus , and most Parthenocissus ; < 0.5 in most

Ampelocissus, Pterisanthes, Vitis , and Austrocissus.

C35 vi width cross section; the width of the ventral infold opening (L23) divided by the width of seed

cross section (L19).

> 0.2 corresponding to wide vi. Wide vi are present in some species of Ampelopsis, Vitis,

Ampelocissus, Cayratia, Cissus, and all Pterisanthes. vi of Leea and Cyphostemma do

not have opening at surface (= 0).

C36 chalaza surface angle cross section; sunken angle of chalaza at seed surface (A10). < 150° corresponding to an obvious dentation. Chalaza sunken at the surface occurs

frequently in Ampelocissus.

C37 chalaza sunken angle cross section; sunken angle of chalaza at endosperm surface (A11). < 150° corresponding to obvious dentation. In all Leea seeds the chalaza folds deep into

endosperm (< 30°) and with a Y-shaped configuration.

C38 chalaza thickness cross section; thickness of chalaza from seed surface to endosperm (L24) divided by seed

max length.

> 0.15 in most Leea.

C39 ruga depth/width ratio cross section;ratio of the depth of the ruga (L25) to the width at widest part of the ruga

(L26).

< 1 corresponding to transversely arranged rugae; most seeds have this type of rugae.

Branched or longitudinually arranged rugae (> 1) are less common in Vitaceae but present in

all Leea.

Character Description Variation pattern among genera

Table 1-2. Continued.

36

C40 endotesta thickness cross section; endotesta thickness (L27) divided by seed max length. Thickness

measured from the dorsal region between chalaza and the lateral edge.

all Vitis have relatively thick endotesta (> 0.03); other genera mostly have values < 0.03.

C41 endotesta max thickness cross section; endotesta maximum thickness (L28) divided by seed max length. endotesta maximun thickness usually occurs in lateral edge, raphe, or near ventral infolds.

Acareosperma and some Cayratia have extremely thickened endotesta in certain parts of the

seeds (> 0.15).

C42 endotesta thickness at vi cross section; endotesta minimun thickness in ventral infold cavity (L29) divided by seed

max length.

usually endotesta is thin and not well lignified inside vi. However, endotesta is well lignified

and thick in most Vitis (> 0.015); very thick in Cissus antarctica and Cayratia

corniculata (> 0.03).

C43 endotesta thickness at

chalaza

cross section; endotesta thickness at chalaza (L30) to endotesta thickness (L27) ratio. mostly < 2.5. Some seeds, many Cissus and Tetrastigma have thick endotesta at chalaza

region (> 2.5).

C44 endotesta thickness at ruga

sinus

cross section; ratio of endo testa thickness at ruga sinus (L31) to endotesta thickness

(L27); in smooth seeds equal to 1.

endotesta at ruga sinus is usually thinner comparing to the endotesta in other region in rugose

seeds (0.45-1). Cissus anarctica seeds have thicker endotesta in ruga sinus (> 1); < 0.45 in

Leea, some Tetrastigma , and some Rhoicissus.

C45 endotesta thickness at ruga

apex

cross section; ratio of endotesta thickness at ruga ridge (L32) to endotesta thickness

(L27); equal to 1 for smooth seeds.

endotesta at ruga ridge is usually thicker (1-2), Acareosperma, some Cyphostemma ,

Cissus, Cayratia, and Ampelocissus have extremely thickened endotesta at ruga ridge

(> 2).

C46 endotesta sclereid

width/length ratio

LM, transverse section; endotesta sclereids width to length ratio. in oval chalazal seeds (C18 > 0.5) and Rhoicissus , endotesta sclereids are mostly elongate

(< 0.4); Cayratia, Cyphostemma, and Leea all have values > 0.4.

C47 endotesta sclereid wall

thickness

LM, transverse section; endotesta sclereids wall thickness. in most seeds > 6 µm; some Tetrastigma do not possess well lignified endotesta.

C48 number of endotesta

sclereid layers

LM, transverse section; number of endotesta sclereids layers. 1-4 layers in oval chalazal seeds; most Cyphostemma and Cayratia have more than 4 layers

of endotesta sclereids.

C49 endotesta sclereid crystals LM, transverse section; discrete character, 0=absent, 1=present. mostly present, usually one in each cell.

Table 1-2. Continued.

Character Description Variation pattern among genera

37

C50 stomata in sarcotesta LM, tangential view; discrete character, 0=absent, 1=present. present in some Cayratia, Cyphostemma, and Tetrastigma.

C51 tracheidal cell diameter LM, tangential view; the maximun diameter of the tagmetic tracheidal cells. < 10 µm in most oval chalazal (C18 > 0.5) seeds; > 10 µm in most Leea, Cyphostemma,

and Cayratia.

C52 number of tracheidal cell

layers

LM, tangential view; discrete character, 0 = tracheidal exotagmen 1 cell thick, 1 = 2

cells thick, the 2 layers of cells have different diameters.

C52 = 1 in Acareosperma , some Cyphostemma, Tetrastigma, Cayratia, Rhoicissus, and

Clematicissus .

C53 vi covered by endotesta ventral view; discrete character, 0=absent, 1=present. Ventral infolds are covered by

endotesta sclereids on the seed surface.

present in all Leea and Cyphostemma.

C54 rugae whorled ventral view; discrete character, 0=absent, 1=present. Rugae are spine like and arranged

as two whorls on the lateral margin.

present only in Acareosperma.

C55 one vi ventral view; discrete character, 0=absent, 1=present. Instead of the typcial pair of

ventral infolds, the seed has only one ventral infold.

present only in Clematicissus angustissima.

C56 vi cavity V-shaped cross section; discrete character, 0=absent, 1=present. Ventral infold cavities V-shaped,

and the endotesta at the notch of the V shape are lignified and thick.

present in three species of Tetrastigma, and Acareosperma.

C57 constricted rim on ventral

side

ventral view; discrete character, 0=absent, 1=present. The lateral margin of the seed is

folded up and forming a constricted rim on the ventral surface of the seed.

present in some Cayratia.

Table 1-2. Continued.

Character Description Variation pattern among genera

38

Variable PC1 PC2

C1 seed max length -0.113 -0.054

C2 seed width/length ratio 0.163 0.004

C3 seed apex to widest part -0.123 -0.112

C4 apical notch depth 0.163 -0.083

C5 apical notch angle -0.186 0.139

C6 beak length 0.127 0.138

C7 beak angle -0.028 -0.100

C8 vi circularity 0.146 0.192

C9 vi length 0.148 -0.261

C10 vi apex to widest part -0.111 -0.096

C11 vi space at the apex 0.065 -0.171

C12 vi space at the middle -0.003 0.044

C13 vi space at the base -0.123 0.155

C14 vi space base to middle ratio -0.109 -0.028

C15 vi divergence angle 0.089 -0.188

C16 vi curve angle -0.056 0.237

C17 vi base to beak distance 0.085 0.231

C18 chalaza circularity 0.274 0.022

C19 chalaza width 0.180 0.045

C20 chalaza apex to widest part 0.101 0.012

C21 chalaza length -0.287 0.088

C22 chalaza to notch distance 0.167 -0.052

C23 chalaza to beak distance 0.264 0.083

C24 external rugosity -0.016 -0.228

C25 raphe curve angle 0.124 -0.155

C26 ruga sinus angle 0.050 0.321

C27 ruga ridge angle 0.043 -0.112

C28 apical groove angle -0.188 0.096

C29 basal groove angle -0.188 0.072

C30 cs high/width ratio -0.240 0.101

C31 vi rugosity -0.095 -0.176

C32 vi thin part ratio 0.031 -0.070

C33 vi thin part circularity 0.241 0.052

C34 vi depth -0.177 0.023

C35 vi width 0.190 0.085

C36 chalaza surface angle -0.084 0.143

C37 chalaza sunken angle 0.033 0.230

C38 chalaza thickness -0.083 -0.035

C39 ruga depth/width ratio -0.100 -0.210

C40 endotesta thickness 0.038 0.205

C41 endotesta max thickness 0.029 0.149

C42 endotesta thickness at vi 0.173 0.089

C43 endotesta thickness at chalaza -0.100 -0.085

C44 endotesta thickness at ruga sinus 0.090 0.260

C45 endotesta thickness at ruga apex -0.024 0.019

C46 endotesta sclereid width/length ratio -0.182 0.035

C47 endotesta sclereid wall thickness 0.026 -0.009

C48 number of endotesta sclereid layers -0.174 0.155

C49 endotesta sclereid crystals -0.077 0.022

C50 stomata in sarcotesta -0.029 -0.075

C51 tracheidal cell diameter -0.058 -0.124

C52 number of tracheidal cell layers 0.023 -0.121

C53 vi covered by endotesta -0.170 -0.032

C54 rugae whorled 0.001 -0.012

C55 one vi 0.015 -0.002

C56 vi cavity V-shaped 0.029 -0.040

C57 constricted rim on ventral side 0.013 0.032

Cumulative variance explained 0.177 0.286

Table 1-3. The loading values of the first two components of the PCA corresponding to the

score plot shown in Figure 1-6 A.

39

Variable PC1 PC2

C1 seed max length 0.122 -0.236

C2 seed width/length ratio -0.094 0.187

C3 seed apex to widest part 0.131 -0.218

C4 apical notch depth -0.028 -0.008

C5 apical notch angle -0.008 0.053

C6 beak length -0.148 0.121

C7 beak angle 0.050 -0.026

C8 vi circularity -0.243 -0.080

C9 vi length 0.157 -0.254

C10 vi apex to widest part 0.080 -0.182

C11 vi space at the apex 0.170 0.247

C12 vi space at the middle 0.030 0.206

C13 vi space at the base -0.050 0.195

C14 vi space base to middle ratio 0.006 -0.083

C15 vi divergence angle 0.159 0.258

C16 vi curve angle -0.172 -0.053

C17 vi base to beak distance -0.178 0.215

C18 chalaza circularity -0.239 0.007

C19 chalaza width -0.144 0.128

C20 chalaza apex to widest part -0.037 0.186

C21 chalaza length 0.193 0.173

C22 chalaza to notch distance -0.087 -0.232

C23 chalaza to beak distance -0.230 0.057

C24 external rugosity 0.241 0.000

C25 raphe curve angle 0.055 0.009

C26 ruga sinus angle -0.256 0.021

C27 ruga ridge angle 0.051 0.030

C28 apical groove angle 0.053 0.063

C29 basal groove angle 0.060 -0.016

C30 cs high/width ratio 0.091 0.212

C31 vi rugosity 0.222 0.055

C32 vi thin part ratio -0.036 -0.227

C33 vi thin part circularity -0.201 0.094

C34 vi depth 0.152 0.125

C35 vi width -0.181 -0.217

C36 chalaza surface angle -0.051 0.095

C37 chalaza sunken angle -0.121 0.061

C38 chalaza thickness -0.034 0.233

C39 ruga depth/width ratio 0.162 0.024

C40 endotesta thickness -0.187 0.206

C41 endotesta max thickness -0.097 0.012

C42 endotesta thickness at vi -0.187 -0.075

C43 endotesta thickness at chalaza 0.168 0.081

C44 endotesta thickness at ruga sinus -0.224 -0.003

C45 endotesta thickness at ruga apex 0.007 -0.031

C46 endotesta sclereid width/length ratio 0.104 0.061

C47 endotesta sclereid wall thickness 0.031 0.085

C48 number of endotesta sclereid layers -0.051 0.101

C49 endotesta sclereid crystals 0.030 0.089

C50 stomata in sarcotesta 0.095 -0.010

C51 tracheidal cell diameter 0.132 0.028

C52 number of tracheidal cell layers 0.110 0.044

C53 vi covered by endotesta*

C54 rugae whorled 0.010 -0.026

C55 one vi -0.005 0.002

C56 vi cavity V-shaped 0.020 0.044

C57 constricted rim on ventral side -0.017 -0.052

Cumulative variance explained 0.173 0.278

Table 1-4. The loading values of the first two components of the PCA corresponding to the

score plot shown in Figure 1-6 B. Characters excluded in some of the PCAs due to

lack of variation are indicated by "*".

40

Variable PC1 PC2

C1 seed max length -0.113 -0.121

C2 seed width/length ratio 0.173 0.056

C3 seed apex to widest part -0.168 -0.075

C4 apical notch depth 0.137 -0.114

C5 apical notch angle -0.045 0.168

C6 beak length 0.173 -0.017

C7 beak angle -0.027 0.106

C8 vi circularity 0.225 0.080

C9 vi length -0.261 -0.016

C10 vi apex to widest part -0.132 0.104

C11 vi space at the apex 0.109 -0.151

C12 vi space at the middle 0.149 -0.085

C13 vi space at the base 0.025 0.042

C14 vi space base to middle ratio -0.139 0.031

C15 vi divergence angle 0.191 -0.113

C16 vi curve angle 0.074 0.070

C17 vi base to beak distance 0.239 0.064

C18 chalaza circularity 0.123 0.232

C19 chalaza width -0.007 0.133

C20 chalaza apex to widest part -0.028 0.032

C21 chalaza length -0.023 -0.236

C22 chalaza to notch distance -0.041 0.167

C23 chalaza to beak distance 0.127 0.215

C24 external rugosity -0.086 -0.242

C25 raphe curve angle -0.095 0.020

C26 ruga sinus angle 0.218 0.115

C27 ruga ridge angle -0.175 -0.083

C28 apical groove angle -0.102 0.262

C29 basal groove angle -0.149 0.177

C30 cs high/width ratio -0.069 -0.176

C31 vi rugosity -0.042 -0.194

C32 vi thin part ratio -0.103 -0.044

C33 vi thin part circularity 0.111 0.142

C34 vi depth -0.167 -0.071

C35 vi width 0.167 -0.024

C36 chalaza surface angle -0.007 0.266

C37 chalaza sunken angle 0.007 0.268

C38 chalaza thickness 0.157 -0.185

C39 ruga depth/width ratio -0.017 -0.184

C40 endotesta thickness 0.245 0.009

C41 endotesta max thickness 0.249 0.001

C42 endotesta thickness at vi 0.180 -0.070

C43 endotesta thickness at chalaza -0.040 -0.222

C44 endotesta thickness at ruga sinus 0.199 0.061

C45 endotesta thickness at ruga apex 0.155 -0.080

C46 endotesta sclereid width/length ratio 0.004 -0.083

C47 endotesta sclereid wall thickness 0.087 -0.162

C48 number of endotesta sclereid layers 0.206 -0.122

C49 endotesta sclereid crystals 0.017 -0.150

C50 stomata in sarcotesta -0.147 0.117

C51 tracheidal cell diameter 0.031 -0.067

C52 number of tracheidal cell layers 0.044 -0.096

C53 vi covered by endotesta*

C54 rugae whorled*

C55 one vi*

C56 vi cavity V-shaped 0.147 0.031

C57 constricted rim on ventral side*

Cumulative variance explained 0.202 0.335

Table 1-5. The loading values of the first two components of the PCA corresponding to the

score plot shown in Figure 1-6 C. Characters excluded in some of the PCAs due to

lack of variation are indicated by "*".

41

Variable PC1 PC2

C1 seed max length -0.222 0.102

C2 seed width/length ratio 0.129 -0.126

C3 seed apex to widest part -0.197 0.131

C4 apical notch depth -0.039 -0.025

C5 apical notch angle 0.012 -0.108

C6 beak length 0.091 -0.112

C7 beak angle 0.036 0.141

C8 vi circularity -0.028 -0.131

C9 vi length -0.153 0.233

C10 vi apex to widest part -0.146 0.150

C11 vi space at the apex 0.201 0.079

C12 vi space at the middle 0.134 0.092

C13 vi space at the base 0.149 -0.079

C14 vi space base to middle ratio -0.043 -0.179

C15 vi divergence angle 0.224 0.026

C16 vi curve angle -0.061 0.026

C17 vi base to beak distance 0.128 -0.214

C18 chalaza circularity 0.119 0.149

C19 chalaza width 0.246 0.128

C20 chalaza apex to widest part 0.193 -0.037

C21 chalaza length 0.132 -0.129

C22 chalaza to notch distance -0.178 0.163

C23 chalaza to beak distance 0.194 -0.012

C24 external rugosity -0.181 -0.018

C25 raphe curve angle 0.052 0.184

C26 ruga sinus angle 0.200 0.015

C27 ruga ridge angle 0.168 0.159

C28 apical groove angle 0.080 -0.165

C29 basal groove angle 0.024 -0.125

C30 cs high/width ratio 0.217 -0.079

C31 vi rugosity -0.051 -0.020

C32 vi thin part ratio -0.171 0.033

C33 vi thin part circularity 0.159 -0.015

C34 vi depth 0.207 0.102

C35 vi width -0.125 0.009

C36 chalaza surface angle 0.156 -0.134

C37 chalaza sunken angle 0.163 -0.119

C38 chalaza thickness 0.149 -0.039

C39 ruga depth/width ratio -0.144 0.086

C40 endotesta thickness 0.158 -0.124

C41 endotesta max thickness -0.079 -0.216

C42 endotesta thickness at vi -0.052 -0.078

C43 endotesta thickness at chalaza 0.022 0.021

C44 endotesta thickness at ruga sinus 0.039 -0.031

C45 endotesta thickness at ruga apex -0.126 -0.147

C46 endotesta sclereid width/length ratio -0.087 -0.253

C47 endotesta sclereid wall thickness 0.045 0.068

C48 number of endotesta sclereid layers -0.085 -0.295

C49 endotesta sclereid crystals 0.026 -0.073

C50 stomata in sarcotesta -0.073 -0.261

C51 tracheidal cell diameter -0.101 -0.214

C52 number of tracheidal cell layers -0.085 -0.239

C53 vi covered by endotesta*

C54 rugae whorled -0.105 -0.121

C55 one vi 0.008 -0.015

C56 vi cavity V-shaped -0.105 -0.121

C57 constricted rim on ventral side -0.082 -0.141

Cumulative variance explained 0.162 0.289

Table 1-6. The loading values of the first two components of the PCA corresponding to the

score plot shown in Figure 1-6 D. Characters excluded in some of the PCAs due to

lack of variation are indicated by "*".

42

Variable PC1 PC2

C1 seed max length -0.219 0.129

C2 seed width/length ratio 0.169 -0.026

C3 seed apex to widest part -0.212 -0.041

C4 apical notch depth -0.003 -0.074

C5 apical notch angle 0.045 0.070

C6 beak length 0.093 0.064

C7 beak angle -0.011 -0.014

C8 vi circularity 0.003 0.309

C9 vi length -0.212 -0.001

C10 vi apex to widest part -0.174 -0.033

C11 vi space at the apex 0.146 -0.270

C12 vi space at the middle 0.078 -0.318

C13 vi space at the base 0.136 -0.163

C14 vi space base to middle ratio 0.022 0.207

C15 vi divergence angle 0.199 -0.209

C16 vi curve angle -0.061 -0.011

C17 vi base to beak distance 0.167 -0.052

C18 chalaza circularity 0.069 -0.046

C19 chalaza width 0.220 -0.102

C20 chalaza apex to widest part 0.183 -0.045

C21 chalaza length 0.176 -0.004

C22 chalaza to notch distance -0.232 -0.025

C23 chalaza to beak distance 0.173 0.126

C24 external rugosity -0.194 -0.179

C25 raphe curve angle -0.058 -0.141

C26 ruga sinus angle 0.200 0.158

C27 ruga ridge angle 0.155 0.082

C28 apical groove angle 0.143 0.188

C29 basal groove angle 0.080 0.204

C30 cs high/width ratio 0.222 -0.106

C31 vi rugosity -0.002 -0.189

C32 vi thin part ratio -0.182 0.097

C33 vi thin part circularity 0.144 0.061

C34 vi depth 0.175 -0.120

C35 vi width -0.127 0.308

C36 chalaza surface angle 0.192 0.178

C37 chalaza sunken angle 0.188 0.169

C38 chalaza thickness 0.139 -0.064

C39 ruga depth/width ratio -0.169 -0.205

C40 endotesta thickness 0.160 0.009

C41 endotesta max thickness 0.101 0.193

C42 endotesta thickness at vi -0.047 0.188

C43 endotesta thickness at chalaza 0.054 -0.082

C44 endotesta thickness at ruga sinus 0.125 0.083

C45 endotesta thickness at ruga apex -0.101 0.002

C46 endotesta sclereid width/length ratio 0.017 -0.071

C47 endotesta sclereid wall thickness -0.003 0.021

C48 number of endotesta sclereid layers 0.043 0.051

C49 endotesta sclereid crystals 0.045 -0.115

C50 stomata in sarcotesta*

C51 tracheidal cell diameter 0.023 0.058

C52 number of tracheidal cell layers 0.014 0.034

C53 vi covered by endotesta*

C54 rugae whorled*

C55 one vi 0.014 0.034

C56 vi cavity V-shaped*

C57 constricted rim on ventral side*

Cumulative variance explained 0.203 0.332

Table 1-7. The loading values of the first two components of the PCA corresponding to the

score plot shown in Figure 1-6 E. Characters excluded in some of the PCAs due to

lack of variation are indicated by "*".

43

Variable PC1 PC2

C1 seed max length 0.012 -0.158

C2 seed width/length ratio 0.079 0.076

C3 seed apex to widest part 0.092 -0.079

C4 apical notch depth 0.213 -0.146

C5 apical notch angle -0.196 0.162

C6 beak length -0.188 -0.058

C7 beak angle 0.176 0.061

C8 vi circularity -0.213 0.071

C9 vi length 0.253 -0.099

C10 vi apex to widest part -0.028 -0.274

C11 vi space at the apex 0.199 -0.118

C12 vi space at the middle 0.130 -0.124

C13 vi space at the base -0.164 -0.038

C14 vi space base to middle ratio -0.231 -0.015

C15 vi divergence angle 0.204 0.011

C16 vi curve angle -0.053 0.037

C17 vi base to beak distance -0.255 0.040

C18 chalaza circularity -0.027 -0.283

C19 chalaza width 0.176 0.130

C20 chalaza apex to widest part 0.065 0.285

C21 chalaza length 0.061 0.252

C22 chalaza to notch distance -0.180 -0.183

C23 chalaza to beak distance 0.001 0.095

C24 external rugosity -0.101 0.128

C25 raphe curve angle 0.030 -0.080

C26 ruga sinus angle 0.054 -0.123

C27 ruga ridge angle 0.098 -0.106

C28 apical groove angle 0.017 0.279

C29 basal groove angle 0.086 0.062

C30 cs high/width ratio -0.020 0.132

C31 vi rugosity 0.137 -0.055

C32 vi thin part ratio -0.053 -0.223

C33 vi thin part circularity -0.070 0.258

C34 vi depth 0.188 -0.105

C35 vi width -0.121 0.000

C36 chalaza surface angle 0.121 0.120

C37 chalaza sunken angle 0.137 0.149

C38 chalaza thickness -0.051 0.030

C39 ruga depth/width ratio -0.090 0.120

C40 endotesta thickness -0.240 -0.046

C41 endotesta max thickness -0.197 0.104

C42 endotesta thickness at vi -0.202 -0.181

C43 endotesta thickness at chalaza 0.217 0.026

C44 endotesta thickness at ruga sinus 0.034 -0.204

C45 endotesta thickness at ruga apex -0.038 0.096

C46 endotesta sclereid width/length ratio 0.155 0.020

C47 endotesta sclereid wall thickness -0.007 0.054

C48 number of endotesta sclereid layers -0.178 -0.032

C49 endotesta sclereid crystals 0.077 0.060

C50 stomata in sarcotesta*

C51 tracheidal cell diameter 0.058 0.163

C52 number of tracheidal cell layers 0.039 0.139

C53 vi covered by endotesta*

C54 rugae whorled*

C55 one vi 0.039 0.139

C56 vi cavity V-shaped*

C57 constricted rim on ventral side*

Cumulative variance explained 0.209 0.362

Table 1-8. The loading values of the first two components of the PCA corresponding to the

score plot shown in Figure 1-6 F. Characters excluded in some of the PCAs due to

lack of variation are indicated by "*".

44

45

46

47

48

Lee

a

Cyp

hostem

ma

Ciss

us

Rho

iciss

us

Tetra

stigma

Aca

reos

perm

a

Cay

ratia

Pteris

anthes

Notho

cissu

s

Ampe

locis

sus

Vitis

Yua

Parth

enoc

issus

Ampe

lops

is

Clematici

ssus

30

25

20

15

10

5

0

C1

, se

ed

ma

x l

en

gth

(m

m)

7

C5

, a

pic

al

no

tch

an

gle

(°)

Lee

a

Cyp

hostem

ma

Ciss

us

Rho

icissus

Tetra

stigma

Acar

eosp

erma

Cayratia

Pter

isant

hes

Notho

cissu

s

Ampe

locis

sus

Vitis

Yua

Par

then

ociss

us

Ampe

lops

is

Clematici

ssus

200

150

100

50

0

60

Figure 1-5. Graphs showing individual values of selected seed morphometric characters grouped

by genera. "Austrocissus" referred to the 10 taxa of Cissus which are potentially

paraphyletic to other Cissus. The line in each graph indicates the pattern described

in Table 1-2. A) C1, seed max length; B) C5, apical notch angle; C) C9, vi length;

D) C15, vi divergence angle; E) C18, chalaza circularity; F) C21, chalaza length; G)

C22, chalaza to notch distance; H) C35, vi width; I) C40, endotesta thickness; J)

C46, endotesta sclereid width/length ratio.

A

B

" Aus

trocis

sus"

" Aus

trocis

sus"

49

Lee

a

Cyp

hostem

ma

Ciss

us

Rho

iciss

us

Tetra

stigma

Aca

reos

perm

a

Cay

ratia

Pteris

anth

es

Notho

cissu

s

Ampe

locis

sus

Vitis

Yua

Par

then

ociss

us

Ampe

lops

is

Clematici

ssus

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

C9

, vi

len

gth

0.6

C1

5,

vi

div

erg

en

ce

an

gle

(°)

Lee

a

Cyp

hostem

ma

Ciss

us

Rho

icissus

Tetra

stigma

Acar

eosp

erma

Cay

ratia

Pteris

anthes

Notho

cissu

s

Ampe

locis

sus

Vitis

Yua

Par

then

ociss

us

Ampe

lops

is

Clematici

ssus

100

75

50

25

0

25

Figure 1-5. Continued.

C

D

" Aus

trocis

sus"

" Aus

trocis

sus"

50

C1

8,

ch

ala

za

cir

cu

lari

ty

Lee

a

Cyp

hostem

ma

Ciss

us

Rho

iciss

us

Tetra

stigma

Aca

reos

perm

a

Cay

ratia

Pteris

anth

es

Notho

cissu

s

Ampe

locis

sus

Vitis

Yua

Par

then

ociss

us

Ampe

lops

is

Clematici

ssus

2.5

2.0

1.5

1.0

0.5

0.0

C2

1,

Ch

ala

za

le

ng

th

1.4

Lee

a

Cyp

hostem

ma

Ciss

us

Rho

iciss

us

Tetra

stigma

Aca

reos

perm

a

Cay

ratia

Pteris

anth

es

Notho

cissu

s

Ampe

locis

sus

Vitis

Yua

Parth

enoc

issus

Ampe

lops

is

Clematici

ssus

1.0

0.8

0.6

0.4

0.2

0.0

0.5

" Aus

trocis

sus"

" Aus

trocis

sus"

Figure 1-5. Continued.

E

F

51

C3

5,

vi

wid

thC

22

, C

ha

laza

to

no

tch

dis

tan

ce

Lee

a

Cyp

hostem

ma

Ciss

us

Rho

iciss

us

Tetra

stigma

Aca

reos

perm

a

Cay

ratia

Pteris

anth

es

Notho

cissu

s

Ampe

locis

sus

Vitis

Yua

Par

then

ociss

us

Ampe

lops

is

Clematici

ssus

0.4

0.3

0.2

0.1

0.0

0.1

Lee

a

Cyp

hostem

ma

Ciss

us

Rho

iciss

us

Tetra

stigma

Acar

eosp

erma

Cay

ratia

Pteris

anth

es

Notho

cissu

s

Ampe

locis

sus

Vitis

Yua

Parth

enoc

issus

Ampe

lops

is

Clematici

ssus

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.2

Figure 1-5. Continued.

G

H

" Aus

trocis

sus"

" Aus

trocis

sus"

52

Leea

Cyp

hostem

ma

Ciss

us

Rho

iciss

us

Tetrastigma

Aca

reos

perm

a

Cay

ratia

Pteris

anthes

Notho

cissu

s

Ampe

locis

sus

Vitis

Yua

Par

then

ociss

us

Ampe

lops

is

Clematici

ssus

" Aus

trocis

sus"

0.06

0.05

0.04

0.03

0.02

0.01

0.00

C4

0,

en

do

sta

th

ick

ne

ss

0.03

Lee

a

Cyp

hostem

ma

Ciss

us

Rho

iciss

us

Tetra

stigma

Aca

reos

perm

a

Cay

ratia

Pteris

anth

es

Notho

cissu

s

Ampe

locis

sus

Vitis

Yua

Par

then

ociss

us

Ampe

lops

is

Clematici

ssus

2.0

1.5

1.0

0.5

0.0

C4

6,

en

do

testa

scle

reid

wid

th/le

ng

th r

ati

o

0.4

I

J

Figure 1-5. Continued.

" Aus

trocis

sus"

53

5.02.50.0-2.5-5.0-7.5

5.0

2.5

0.0

-2.5

-5.0

-7.5

-10.0

First Component

Se

co

nd

Co

mp

on

en

t

Cayratia

Acareosperma

Tetrastigma

Rhoicissus

Cissus

Cyphostemma

Leea

"Austrocissus"

Clematicissus

Ampelopsis

Parthenocissus

Yua

Vitis

Ampelocissus

Nothocissus

Pterithanses

Figure 1-6. The score plot of the first two components from PCAs for 57 seed characters of: A)

all 252 sampled seeds; B) all seeds excluding Leea, Cissus, and Cyphostemma; C) all

sampled Tetrastigma, Rhoicissus, and Tetrastigma-like "Austrocissus"; D) all seeds

excluding Leea, Cissus, Cyphostemma, Tetrastigma, Rhoicissus, and Tetrastigma-

like "Austrocissus"; E) all seeds excluding those excluded in D, Acareosperma,

Cayratia, and Cissus antarctica; F) all seeds excluding those excluded in E,

Ampelocissus, Nothocissus, and Pterisanthes. D, the arrow indicates Cissus

antarctica; Cayratia with absence (C57 = 0) or presence (C57 = 1) of constricted rim

on ventral side are labeled differently.

A

54

7.55.02.50.0-2.5-5.0

5.0

2.5

0.0

-2.5

-5.0

-7.5

-10.0

First Component

Se

co

nd

Co

mp

on

en

t

10.07.55.02.50.0-2.5-5.0

5.0

2.5

0.0

-2.5

-5.0

First Component

Se

co

nd

Co

mp

on

en

t

Cayratia

Acareosperma

Tetrastigma

Rhoicissus

"Austrocissus"

Clematicissus

Ampelopsis

Parthenocissus

Yua

Vitis

Ampelocissus

Nothocissus

Pterithanses

Tetrastigma

Rhoicissus

"Austrocissus"

B

C

Figure 1-6. Continued.

55

5.02.50.0-2.5-5.0-7.5-10.0

5.0

2.5

0.0

-2.5

-5.0

-7.5

-10.0

First Component

Se

co

nd

Co

mp

on

en

t

7.55.02.50.0-2.5-5.0

5.0

2.5

0.0

-2.5

-5.0

-7.5

First Component

Se

co

nd

Co

mp

on

en

t

Cayratia, C57 = 0

Cayratia, C57 = 1

Acareosperma

"Austrocissus"

Clematicissus

Ampelopsis

Parthenocissus

Yua

Vitis

Ampelocissus

Nothocissus

Pterithanses

"Austrocissus"

Clematicissus

Ampelopsis

Parthenocissus

Yua

Vitis

Ampelocissus

Nothocissus

Pterithanses

D

E

Figure 1-6. Continued.

56

7.55.02.50.0-2.5-5.0

7.5

5.0

2.5

0.0

-2.5

-5.0

First Component

Se

co

nd

Co

mp

on

en

t"Austrocissus"

Clematicissus

Ampelopsis

Parthenocissus

Yua

Vitis

Figure 1-6. Continued.

F

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

CHAPTER 2 MORPHOLOGY-BASED PHYLOGENY OF VITACEAE: COMPARING TWO DIFFERENT

TREATMENTS FOR CODING CONTINUOUS CHARACTERS

Introduction

Vitaceae, the grape family, contain 700-900 species, distributed worldwide in tropical,

subtropical, and temperate regions. The members of this family are easily recognized as lianas

with leaf-opposed tendrils. Leea, a genus of 34 species of shrubs or small trees (Ridsdale, 1974),

is the closest relative of Vitaceae. This sister relationship has been suggested by the comparable

vegetative and seed morphology (Ridsdale, 1974) and also by molecular data (Ingrouille et al.,

2002). Leea was often treated as a family (e.g., Ridsdale, 1974; Wen, 2007a), although APG III

(2009) placed it within Vitaceae. Vitaceae have been placed in a position sister to all rosids

(Soltis et al., 2000; Soltis et al., 2003; Jansen et al., 2006) with uncertainty (Stevens, 2001

onwards; Kubitzki, 2007). The recent sequence data of Wang et al. (2009) reinforced this sister-

to-rosids position, however, one of the previously suggested close relatives, Dilleniaceae (Nandi,

Chase, and Endress, 1998; Hilu et al., 2003), was not included in their study. Genera of Vitaceae

exhibit a complex pattern of geographical distribution; some genera are strictly regional, some

distributed worldwide, and some display disjunctions between different continents, such as North

America-eastern Asia. This family has an ample fossil occurring throughout the Tertiary.

Fossils previously assigned to this family include leaves, wood, pollen, and seeds. The majority

of the fossil records are seeds, and this is partially due to the high confidence level of identifying

fossil seeds to this family — the seeds of this family are unique. In contrast with seeds,

unequivocal features for identifying other plant parts to Vitaceae have not been found (although

see Wheeler and LaPasha, 1994 regarding stem anatomy). Not only can they be safely identified

to family, the seeds of Vitaceae also exhibit morphological variability. An extensive seed survey

of this family has demonstrated that extant seeds may be identified to the genus (Chapter 1).

76

Historical biogeography within the family can be inferred from a well supported phylogeny; and

for Vitaceae, it can also be inferred from the abundant seed fossils, which may be properly

identified.

Early monographic treatments of Vitaceae include the works of Planchon (1887), Gilg

(1896), and Süssenguth (1953). Various important taxonomic studies of Vitaceae have been

produced, emphasizing the taxa of particular regions. These include the treatments of Gagnepain

(1911a; 1911b; 1919), Latiff (1981; 1982b; 1982a; 1982c; 1982d; 1982e; 1983; 1984; 1991;

1999; 2001b; 2001a), Backer and Bakhuizen van Den Brink (1965), and Mabberley (1995) on

species in southeast Asia/Malaysia; Jackes’s studies on Australian species (1984; 1987b; 1987a;

1988a; 1988b; 1989b; 1989a; Jackes and Rossetto, 2006); Wang's (1979), and Li's (1998)

treatments of Vitaceae in China; Shetty and Singh's (2000) study of Indian species;

Vassilczenko's (1970) treatment of Vitaceae in Iran; Gilg and Brandt's (1911), Dewit and

Willems's (1960), Wild and Drummond's (1966), Descoings's (1967; 1972), and Verdcourt's

(1993) treatments of species in Africa and Madagascar; Lombardi's (2000) of South American

species; Brizicky's (1965), Galet's (1967), and Moore's (1990) of the species of temperate North

America regions. Currently there are 14 commonly accepted genera: Acareosperma Gagnepain,

Ampelocissus Planch., Ampelopsis Michx., Cayratia Juss., Cissus L., Clematicissus Planch.,

Cyphostemma (Planch.) Alston, Nothocissus (Miq.) Latiff, Parthenocissus Planch., Pterisanthes

Blume, Rhoicissus Planch., Tetrastigma (Miq.) Planch., Vitis L., and Yua C. L. Li. Among these,

Acareosperma, and Nothocissus, are monotypic. The Australian endemic Clematicissus was

monotypic until the recent transfer of the Australian species, Cissus opaca, to this genus (Jackes

and Rossetto, 2006). Pterocissus mirabilis was transferred to Cissus (Lombardi, 1997) and this

genus is now considered within Cissus. In these taxonomic treatments, genera are mainly

77

differentiated by floral structures (for example, petal number is almost always used in keys to the

genera; Vitis has a calyptra; Tetrastigma has lobed styles; the floral nectariferous disc of

Cyphostemma is shaped like 4 free glands), inflorescence structures (Ampelocissus has tendril-

bearing inflorescence; Nothocissus has whip-like bifurcated spikes; Pterisanthes has an unusual

laminar inflorescence axis; inflorescences of Cayratia have an axillary or pseudo-axillary

position), and sometimes vegetative (Parthenocissus has suction pads on the tips of the tendrils),

fruit (berries of Cissus are mostly one-seeded), and seed morphology (Acareosperma has spiny

seeds; Clematicissus endosperm U-shaped in transverse section). Species are often distinguished

by variations in vegetative structures, mostly by different leaf forms and/or indument conditions.

Extensive works on comparative developmental morphology of floral and vegetative structures

of Vitaceae have been carried out by Gerrath and colleagues (Gerrath and Posluszny, 1986;

Posluszny and Gerrath, 1986; Gerrath and Posluszny, 1988a, 1988b, 1989a, 1989b, 1989c;

Lacroix and Posluszny, 1989b, 1989a; Gerrath, Lacroix, and Posluszny, 1990; Lacroix, Gerrath,

and Posluszny, 1990; Gerrath and Posluszny, 1994; Gerrath and Lacroix, 1997; Gerrath, Lacroix,

and Posluszny, 1998; Gerrath, Posluszny, and Dengler, 2001; Wilson and Posluszny, 2003a,

2003b; Gerrath, Wilson, and Posluszny, 2004; Wilson, Gerrath, and Posluszny, 2006; Gerrath

and Posluszny, 2007; Timmons, Posluszny, and Gerrath, 2007a, 2007b). The results sometimes

have been used as evidence to support or disagree with phylogenies hypothesized from sequence

data. Although genera are seemingly well defined by morphology, and there is growing

information from comparative developmental studies, morphological cladistic analysis has not

previously been used to hypothesize relationships within this family. Intergeneric relationships

were sometimes proposed in the above-mentioned taxonomic treatments; however, the only

78

known work that applied a consistent methodology to infer taxonomic relationships based on

morphology was a phenetic study of 36 Malaysian species (Latiff, 1983).

The phylogeny of Vitaceae has been reconstructed based on DNA sequences (Ingrouille

et al., 2002; Rossetto et al., 2002; Soejima and Wen, 2006; Rossetto, 2007; Wen et al., 2007).

The molecular studies have indicated that Cissus is not monophyletic. The majority of the

sampled species of Cissus were grouped together; however, the South American species, C.

simsiana and C. striata, together with the African genus Rhoicissus, were nested within

Ampelopsis (Soejima and Wen, 2006; Wen et al., 2007). Another study showed the five

Australian species of Cissus, i.e., C. antarctica, C. oblonga, C. hypoglauca, C. penninervis, and

C. sterculiifolia, did not form a clade with other Cissus, and the two species of Australian

Clematicissus formed a well supported clade with two South American Cissus, i.e., C. striata

and C. tweedieana (Rossetto, 2007). Results from the seed survey of Vitaceae (Chapter 1) show

that these species of Cissus from South America and Australia have seeds that are distinctly

different from other Cissus. Molecular evidence also suggested a close relationships among

genera with 5-petaled flowers, a clade that includes the four temperate genera, Vitis, Ampelopsis,

Parthenocissus, and Yua (Wen et al., 2007). It was observed that certain seed characters were

associated with taxa having 5-merous flowers (Chapter 1). Seed characters seem to support the

sequences-based phylogenies. The morphological cladistic analyses presented here provide an

assessment of phylogeny independent of the molecular data, and can provide a way to determine

fossil placements other than direct similarity comparison.

The seed survey (Chapter 1) recognized 57 seed characters, most of them morphometric

characters relating to shape. When coding for cladistic analysis, shape characters were

frequently treated as discrete, regardless of the continuous transformation between shapes.

79

Mathematical measurement transforms shape into numbers so the transition between shapes can

be objectively evaluated. Nevertheless, a precise numeral description does not help to alleviate

the uncertainty of character state delimitation. Assumption of homology has to be made when

coding morphological characters. This assumption is relatively straight forward when coding

discrete characters, especially the classic absence/presence characters. On the contrary, theories

of primary homology (de Pinna, 1991) cannot be so confidently established when coding

continuous characters (Stevens, 1991; Scotland, Olmstead, and Bennett, 2003). The general idea

shared by taxonomists is that similar measured values should be assigned to the same character

state. Disagreements have arisen regarding the concepts and methods used to define similarity.

Various coding methods had been proposed for coding continuous characters, with the aim of

achieving an objective set of character state delimitations. Most of the coding methods involved

the arrangement of all measured values of a character on a scaled attribute axis. Either the

discontinuities were sought out and used as the state delimitation (Mickevich and Johnson, 1976;

Almeida and Bisby, 1984); or, the range of the character was divided into segments and taxa

were coded according to the segments they occupied (Colless, 1980; Thorpe, 1984; Chappill,

1989); or, the ranges were compared by their size and overlapping boundaries, then similar

ranges were assigned with same character state (Baum, 1988). In some coding methods,

statistical tests were applied to determine the similarity or dissimilarity of the measured values,

and coding was based on the results of the tests (generalized gap-coding in Archie, 1985;

Guerrero, De Luna, and Sanchez-Hernandez, 2003). Among the coding methods, gap-weighting

(Thiele, 1993) and step-matrix gap-weighting (Wiens, 2001) do not involve the typical pre-

coding homology-searching procedure. Instead, coding strategy is set in a way that measured

values are compared during the trees searching process. In gap-weighting coding, the mean

80

value of each taxon is range-standardized into one state, and characters are Wagner optimized

(ordered and undirected). This is equivalent to applying differential weighting according to the

size of the gap between any two measured values. The variation of a character is preserved

precisely and objectively when coding with gap-weighting. Therefore, the gap-weighting

method was chosen to treat continuous characters in this study. The hypothesis of primary

homology embedded in gap-weighting coding is that the degree of homology is equivalent to the

relative distance between two measured values.

The discrete coding approach for continuous characters was also employed on the same

data matrix so that the effect of coding method on tree topology could be demonstrated.

Delimitation of the character states for the discrete coding was given based on the overall

variation pattern of the character in the family. This is to assume a lax boundary of primary

homology; the variation within the near terminal taxa is ignored. The resulting phylogenies are

compared to the published molecular phylogenies, and the morphology of Vitaceae and

evolution of selected characters are discussed.

Materials and Methods

Taxon Sampling

Eighty-two taxa were sampled from all genera of Vitaceae. Sampling was aimed at

representing morphological diversity within each genus. Two species of Leea were sampled as

outgroups. Observed herbarium specimens are listed in Appendix B.

Terminology of Morphological Characters

Terms used to describe the nature of a morphological character, such as discrete or

continuous, are well defined in Wiens (2001). Terminology for leaf architecture follows LAWG

(Leaf Architecture Working group, 1999). Nodes on a branch were labeled with sequential

numbers; the node closest to the main branch was labeled as node 1. In this study, an

81

inflorescence refers to the whole structure developing from one node, which is opposite to the

leaf in Vitaceae, with flowers on the terminal axes. A "inflorescence-branch" was used to infer

the branch bearing inflorescences at its nodes. A "vegetative-branch" infers a branch that does

not have inflorescences at any of its nodes, regardless whether the branches developed from its

axillary buds bear inflorescences or not. Inflorescences were considered homologous to tendrils

in Vitaceae (see discussions in this chapter); the basal part of the inflorescence sometimes retains

the architecture of the tendrils from the same plant. The term "inflorescence-tendril-axis"

indicates this part of inflorescence. If the inflorescence-tendril-axes do not have the same

branching pattern as that of the tendrils from the same plant, it is viewed as having a simple (not

branched) organization. "Inflorescence-axes" refer to the axes attached to the inflorescence-

tendril-axis. Inflorescence-axes are usually branched, each order of branching was labeled with

a sequential number; the inflorescence-axes nearest to the inflorescence-tendril-axes were

labeled with the smallest sequential number, 1. Terminology related to inflorescence-axis

architecture follows Weberling (1989). Raceme refers to an arrangement in a main continuous

elongate axis, contrary to cymoid, which does not have an elongate axis. Mono-/Di-/tri-/tetra-

chasium is 1/2/3/4 axes attached to the top of the lower axis, and a flower with floral pedicel is

located at the junction point of these axes. Axes attached to an end but lacking a terminal flower

were viewed as umbels. The double cincinus has a basic dichasial plan, but the secondary flower

is replaced by two or more flowers in a cincinus (zigzag pattern not in one plane). The last

order/terminal inflorescence-axes are floral pedicels. The floral pedicels are arranged in umbels,

dichasia, or double cincina. In the umbel arrangement, the pedicels attached to the same lower

axis do not vary in length. In the dichasium and double cincinus, the pedicels are unequal in

length. Primary flowers have the longest pedicels and open first, secondary flowers have shorter

82

pedicels and mature later. The secondary flowers of a double cincinus also show differences in

the timing of development.

Character Measurement

The external morphological characters of all plant parts except roots and seedlings were

included in the matrix. The anatomical features of seeds were also examined. All characters

(Appendix C) were scored from firsthand observation of living plants or the herbarium

specimens (cited in Appendix B), supplemented by data from the literature only when not

observable directly from the specimens examined (indicated in Appendix C).

Characters such as presence of pearl glands, and glaucescence on fruit surface were not

included because they do not preserve well on dry specimens. Presence of raphids and druses

was not included since all observed taxa possess these two types of crystals in the parenchyma of

most tissues. Leaf size and shape were considered to be correlated to leaf type and not included.

Flower size does not show variation among genera (2-3 mm) and therefore was not included;

although the outgroup, Leea, has much larger flowers (1-2 cm) than species of Vitaceae. Some

characters exhibit variation within terminal taxa; this was indicated for each character in

Appendix C, along with the conditions scored. For Acareosperma spireanum, the characters

related to inflorescence architecture were inferred from infructescences because floral materials

are not available. The 57 seed characters are described in detail in Chapter 1.

Character Coding

Two coding methods were applied to the continuous characters: discrete, and gap-

weighting. These are discussed, in turn, below:

1) Discrete coding. Patterns of variation for each continuous character were observed by

grouping individual data values by genera. Typically, the measured values of a character show a

range variation among genera. In certain genera particular characters are less variable; that is,

83

the values have smaller ranges for these genera. For other genera, the same characters could

have a wider range in measured values, and usually the wider ranges more or less overlap the

smaller ranges. The state delimitation was set to distinguish the less variable status (the smaller

ranges) in certain genera from others. The images were also compared to check the visual

distinctness of the character states. Some examples of character delimitation are shown in Figure

1-5, Chapter 1. Figure 1-5 E presents the circularity of chalaza, which was measured to indicate

the chalaza shape. The values of circularity are continuous with no obvious gap when arranged

by magnitude. However, when the values were grouped by genera, it is clearly shown that some

genera have large values in chalaza circularity, and others have wider distribution ranges. The

boundary to distinguish an oval chalaza from a linear chalaza was then set at the lower limit of

the range that contains the large values. Sometimes the ranges show a non-overlapping pattern;

for example, the chalaza length (Figure 1-5 F). Some characters were designed to measure

features specifically present in a genus; the measured values would have a small range for that

genus. In such case the character state delimitation was set to distinguish this generic feature

from others. For example, style width to length (68) distinguishes the very short and conical

style of Ampelocissus from that of other genera. Delimitation producing autapomorphy was

avoided except for one character, endotesta thickness at ruga sinus (124), in which Cissus

antarctica represents a distinct, unusual condition (C44, Table 1-2, Chapter 1). For seed

characters the patterns were sought from 252 sampled seeds. The variation patterns of seed

characters described in Table 1-2 of Chapter 1 were used as the criteria of character state

delimitation. For other continuous characters, the criteria of character state delimitation are

described in Appendix C. All characters were weighted equally and unordered.

84

2) Gap-weighting (GW) (Thiele, 1993). For characters describing shape, the raw value

of the ratio was directly range-standardized without natural logarithm transformation. Nine

characters (labeled in Appendix C) were measurements of length; these numbers were natural

logarithm transformed before range-standardization as originally proposed (Thiele, 1993). The

continuous characters were transformed into 26 states. In this study, only five meristic

characters were treated with the GW method, and they all have a large range (9-55). It was

proposed that meristic characters with a large range are better treated with between-character

scaling (Wiens and Etheridge, 2003). Therefore, all continuous characters were treated with

between-character scaling—the maximum weight of a morphometric character was treated as

equivalent to the maximum weight of a qualitative character. That is, continuous characters were

weighted 1 and ordered, all other characters were weighted 25 and unordered.

Phylogenetic Analyses

Parsimony analyses were conducted using the computer package PAUP* version 4.0b10

(Swofford, 2002). Inapplicable characters were treated as missing data. Searches for the most

parsimonious trees (MPTs) were conducted by tree-bisection-reconnection (TBR) over 1000

random-taxon-addition replicates. The starting tree was obtained via stepwise addition, holding

10 trees, with MulTree in effect. For the gap-weighting coding method, initial searches were

conducted via the same settings. Further searches were performed with KEEP in effect in

addition to the previous settings, retaining all trees 10 steps longer than the shortest steps

obtained from the previous run for swapping. Coding with GW usually found very few MPTs in

a short time; sometimes different starting seeds resulted in MPTs with different scores.

Therefore KEEP was used to ensure the finding of the shortest trees. Support was estimated with

500 bootstrap replicates. For the matrix with discrete coding method, searches for bootstrap

values were reduced to 10 random addition replicates with TBR, holding one tree, with no more

85

than 1000 MPTs saved in each replicate. For the matrix with GW coding method, searches for

bootstrap values were set the same as the searches for MPTs but KEEP was not in effect.

Characters were optimized onto one of the MPTs using MacClade 4.0 (Maddison and Maddison,

2001) or Mesquite 2.6 (Maddison and Maddison, 2009), with the homoplasy resolving option set

to show all most parsimonious reconstructions.

Results

The morphological data matrix includes 137 characters (Appendix D and E); 68

characters are qualitative, meristic with distinct patterns, or continuous but could be easily

distinguished to discrete states visually; 69 characters are treated as continuous (6 meristic, 63

morphometric); 49 of the 57 seed characters are continuous. Two characters are parsimony-

uninformative: seed ruga whorled (134) is present only in Acareosperma spireanum; seed with

one ventral infold (vi) (135) occurs only in Clematicissus angustissima. Acareosperma

spireanum contains 20.4% missing data because the floral materials have not been collected.

The discrete coding method yielded 516 MPTs (1186 steps, consistency index (CI) = 0.142,

retention index (RI) = 0.611); the strict consensus tree of the 516 MPTs with the bootstrap values

is shown in Figure 2-1. The grouping of the two Yua species, and the grouping of Cayratia

cardiophylla and C. genitulata have bootstrap supports but the strict consensus tree does not

retain these groupings. The gap-weighting coding method retrieved 1 MPT (24094 steps, CI =

0.166, RI = 0.587). The tree with bootstrap values is shown in Figure 2-2. Characters in general

have low CI indices regardless of which of the two coding methods was applied (data not

shown).

The MPTs recovered from the two character coding methods have tree topologies similar

in some parts but different in others (Figure 2-1, Figure 2-2). Both coding methods place

Cyphostemma junceum, an African tendril-less erect herb producing terminal inflorescences, at a

86

position sister to all other Vitaceae. The genera with 4-merous flowers, Cyphostemma, Cayratia,

Tetrastigma, and Cissus, are sister to the rest of the family, which are taxa mostly with 5-merous

flowers. Nothocissus and Pterisanthes are nested within Ampelocissus; this clade forms a

monophyletic group with Vitis. Cissus simsiana and Ampelopsis are basal to the clade that

contains Vitis and Ampelocissus. The monophyly of Pterisanthes, Vitis, Parthenocissus,

Clematicissus, and Tetrastigma, respectively, is recovered, but Ampelocissus, Ampelopsis,

Cissus, Yua, Rhoicissus, Cayratia, and Cyphostemma are paraphyletic.

The major differences in the tree topology come from the positions of Rhoicissus,

Clematicissus, and the 4-petaled genera (Figure 2-1, Figure 2-2). The MPT obtained from the

GW method resolves Cissus hypoglauca as sister to the Parthenocissus-Yua clade, and C.

antarctica, C. sterculiifolia and Rhoicissus are grouped together. These two clades, together

with C. trianae C. granulosa, C. penninervis, and C. striata, form a monophyletic group sister to

the clade containing taxa primarily with 5-merous flowers (Figure 2-2). When continuous

characters were treated with discrete coding, the Parthenocissus-Yua clade is sister to the clade

containing Ampelopsis, Vitis and Ampelocissus; Clematicissus is sister to the 5-petaled taxa

except Rhoicissus; Cissus striata, C. granulosa, C. penninervis, C. sterculiifolia, C. hypoglauca,

Rhoicissus digitata, C. trianae, R. tridentata, and C. antarctica are in a sequential sister position

to the 5-petaled taxa (Figure 2-1). The rest of Cissus is monophyletic in the MPT of GW (Figure

2-2), but paraphyletic in the MPTs with discrete coding (Figure 2-1). Cayratia, Tetrastigma, and

most species of Cyphostemma form a clade when discrete coding was applied (Figure 2-1);

however, this group is not monophyletic in GW (Figure 2-2). Cyphostemma is not monophyletic

in either analysis; C. laza is sister to all taxa with 5-merous flowers and Cissus when discrete

87

coding was applied (Figure 2-1), but this position is not recovered when GW was used (Figure 2-

2).

Characters were optimized to one of the MPTs with discrete coding (Figure 2-3).

Unambiguous changes subtending the major clades are listed below. The monophyly of

Ampelocissus, Pterisanthes, and Nothocissus is supported by leaf teeth density two or more

between two secondary veins (19), floral disc margin with extra grooves (62), style width to

length ratio ≥ 0.8 (68), style to carpel length ratio < 0.43 (69), and seed apical notch depth ≥ 0.05

(84). The monophyly of Vitis is supported by plant dioecious (31), tendril present in

inflorescence-branch (32), inflorescence-branch first internode usually shorter (36), petals united,

forming a calyptra (59), fruit without dense lenticels (78), seed ventral infold thin part circularity

< 0.72 (113), thick endotesta (120), and thick endotesta at ventral infold (122). Vitis,

Ampelocissus, Pterisanthes, and Nothocissus are united by presence of arachnoid hairs (28),

inflorescence-first - and-second -axes racemose (46 and 48), inflorescence-terminal-axis

umbellate (49), inflorescence with only one order of cymoid organization (51), floral pedicel less

than 2 mm long (53), style base width to disc diameter ratio ≥ 0.3 (70), pollen less than 30 µm

(71), and seed chalaza apex to widest part < 0.6 (100). The Ampelopsis-Cissus simsiana-Vitis-

Ampelocissus clade is supported by pinnately compound leaves (14), leaf secondary veins ending

in teeth (17), presence of pocket-shape domatia (25), and seed ventral infold cavity rugosity <

0.26 (111). The monophyly of Parthenocissus and Yua is supported by inflorescence-branch

first internode usually shorter (36), 2 to 4 inflorescences in one inflorescence-branch (40),

inflorescence-second -axis an umbel (48), inflorescence-terminal-axis an umbel (49), anther to

petal length ratio ≥ 0.4 (61), disc height to diameter ratio ≥ 0.5 (67), style base width to disc

diameter ratio ≥ 0.3 (70), seed ventral infold space at the apex ≥ 0.5 (91), and chalaza apex to

88

widest part < 0.6 (100). The monophyly of Parthenocissus, Ampelopsis, Vitis, and Ampelocissus

is supported by seed ventral infolds space at the base ≥ 0.15 (93), ventral infold base to beak

distance ≥ 0.2 (97), and thick endotesta (120). The monophyly of Clematicissus is supported by

inflorescence-first-axis di-, tri-, or tetra-chasial (46), ventral infold length ≥ 0.6 (89), and ventral

infold apex to widest part < 0.4 (90). Clematicissus is grouped with Parthenocissus, Ampelopsis,

Vitis, and Ampelocissus by tendril interrupted (5), leaf secondary vein 6 pairs or less (16),

developing shoot apex remaining on inflorescence-branch at anthesis (33), inflorescence-branch

terminal node without two inflorescences and one leaf (41), and flower 5-merous (54). Cissus

striata, C. granulose, C. penninervis, C. sterculiifolia, C. hypoglauca, R. digitata, R. tridentata,

C. trianae, and C. antarctica are grouped with genera with 5-merous flowers by stipule apex

angular (11), inflorescence-tendril monochasial with 2-3 arms (43), fruit 1-4-seeded (75), fruit

globose (76), seed ventral infold length ≥ 0.6 (89), chalaza length < 1.4 (101), ruga sinus angle <

50° (106), seed cross section high to width ratio < 0.9 (110), and chalaza sunken angle 30-150°

(117).

The unambiguous changes along the branch that contains all species of Cissus and the

genera that produce 5-merous flowers include stipule apex round (11), leaf tooth shape straight

(20), inflorescences produced from any basal node (39), more than 4 inflorescences in one

inflorescence-branch (40), flower bud apex not lobed (56), petal not red (57), pollen maximum

lumen diameter < 0.7 µm (73), sarcotesta without stomata (130), and ventral infolds not covered

by endotesta on the surface (133). Within the rest of the family, the monophyly of Tetrastigma

is supported by leaf tertiary veins random reticulate (18), plant dioecious (31), inflorescence-

branch second internode not compressed (37), inflorescence-terminal-axis umbellate (49), stigma

4-lobed (65), floral disc to carpel high ratio < 0.25 (66), style width to length ratio ≥ 0.8 (68),

89

style to carpel length ratio < 0.43 (69), pollen size < 30 µm (71), pollen maximum lumen

diameter < 0.7 µm (73), and endotesta sclereid width to length ratio < 0.4 (126). Cayratia

geniculata and C. cardiophylla are united by stipule length < 2.2 mm (13), inflorescence-tendril

monochasial with 2-armed (43), seed raphe curve angle < 180° (105), ventral infold thin part

ratio ≥ 0.85 (112), and presence of a constricted rim on ventral side (137). Tetrastigma, C.

geniculata, and C. cardiophylla are united by stipules persistent when flowering (10), internodes

of inflorescence-branches short (35), and leaf frequently missing in the inflorescence-branch

(38). The rest of the Cayratia is characterized by more than 3 nodes produced in one

inflorescence-branch (34), seed beak length ≥ 0.1 (86), ventral infold circularity ≥ 0.4 (88),

chalaza to beak distance ≥ 0.4 (103), apical groove angle < 150° (108), ventral infold thin part

ratio ≥ 0.85 (112), and ventral infold width ≥ 0.2 (115). Acareosperma and the 5 species of

Cayratia are united by seed apical notch depth ≥ 0.05 (84), ruga ridge angle < 85° (107), and

chalaza sunken angle 30-150° (117). The monophyly of Tetrastigma, Cayratia, and

Acareosperma is supported by petal not red (57), seed beak angle < 80° (87), chalaza length <

1.4 (101), seed cross section height to width ratio < 0.9 (110), seed coat tracheidal cells two

layered (132), and ventral infolds not covered by endotesta (133). Eight species of

Cyphostemma, excluding C. junceum and C. laza, are united by the stipule persisting when

fruiting (10), multiseriate hair present (30), and ventral infold rugosity ≥ 0.26 (111). The eight

species of Cyphostemma, Acareosperma, Cayratia, and Tetrastigma are united by 2 or 3 nodes

produced in one inflorescence-branch (34), and inflorescence-branch second internode

compressed (37).

Characters were also mapped onto the MPT with GW coding (Figure 2-4). Unambiguous

changes along some of the branches with topology different from the MPTs obtained from

90

discrete coding are listed below: grouping of Cissus hypoglauca with Yua and Parthenocissus

(branch 1, Figure 2-4) is supported by tendril interrupted (5), stipule length increased (13), leaf

glaucous (24), 2 to 4 inflorescences in one branch (40), inflorescence-terminal-axis umbellate

(49), anther to petal length ratio increased (61), style base width to disc diameter ratio increased

(70), pollen maximum lumen diameter increased (73), seed ventral infold apex to widest part

decreased (90), endotesta sclereid width to length ratio decreased (126), and seed coat tracheidal

cell diameter decreased (131). The grouping of the seven species of Cissus with anomalous

seeds to Rhoicissus, Yua, and Parthenocissus (branch 2, Figure 2-4) is supported by tendril not

interrupted (5), secondary veins not ending in the teeth (17), style base to disc diameter ratio

increased (70), seed ventral infold apex to widest part ratio increased (90), ventral infold space at

apex ratio increased (91), ventral infold space base to middle ratio decreased (94), ventral infold

divergence angle increased (95), and ventral infold cross section rugosity increased (111). The

grouping of Cissus with anomalous seeds with genera with 5-merous flowers (branch 3, Figure

2-4) is supported by inflorescence-tendril monochasial with 2-3 armed (43), floral pedicel length

decreased (53), fruit lenticel density increased (78), seed chalaza width increased (99), chalaza

apex to widest part increased (100), chalaza to beak distance increased (103), ruga ridge angle

increased (107), ventral infold thin part circularity increased (113), chalaza thickness increased

(118), and seed coat tracheidal cell diameter decreased (131). The monophyly of the majority of

Cissus species (branch 4, Figure 2-4) is supported by leaf tooth straight (20), leaf tooth sinus

angle decreased (23), anther to petal length ratio increased (61), style to carpel length ratio

increased (69), pollen size increased (71), and 15 continuous seed characters (82, 89, 93, 95, 98,

99, 101, 103, 105, 106, 110, 113, 114, 120, 128).

91

Discussion

The Influences of Coding Methods

In Vitaceae, species of different genera frequently have similar vegetative structures; if

reproductive structures are unavailable, the specimens usually cannot be correctly identified.

Nevertheless, genera of Vitaceae have relatively consistent inflorescence-branch, inflorescence,

and floral structures; recognizing genera though flowering or fruiting materials is seldom a

problem. The discrete coding strategy employed in this study assumes each genus (except

Cissus) is a natural group and looks for the variation pattern among genera. Setting the character

state delimitation is inevitably subject to the observer's point of view. Contrary to discrete

coding, GW coding method preserves the patterns of variation objectively and precisely.

However, taxon-sampling, including the choice of the outgroup taxa, can have an effect on tree

topology when continuous characters are coded with the GW method.

The results showed the two different character-state-delimitation methods of the

continuous characters resulted in the generation of MPTs with different tree topology. The

differences are expected because the unit of change is different in the two coding methods. The

effect of the coding methods can be demonstrated by the characters with one extreme value. The

presence of the extreme value will decrease the differentiability of the similar values and hence

down-weight the possible phylogenetic signals that are otherwise discerned in the discrete

coding. Extreme value occurs in several characters, e.g., the stipule length of Leea tetramera ,

disc to carpel height ratio of L. tetramera, disc height to diameter ratio of L. tetramera , pollen

E/P ratio of L. guineensis, pollen pit diameter of L. tetramera, endotesta thickness at ruga sinus

of C. antarctica, and endotesta thickness at ruga ridge of Acareosperma. The discrete coding in

this study does not differentiate the extreme value as a character state and emphasizes the

variation pattern of the majority; compared to GW coding, the chosen variation pattern for

92

character delimitation is weighted more heavily. Log transformation on the length characters

decreases the size of the gap if the extreme value is at the large end and hence reduces the effect

of extreme value in GW coding; however, log transformation may not be reasonable for the ratio

morphometric characters.

Different coding strategies for qualitative morphological characters also can effect the

tree topology (Hawkins, Hughes, and Scotland, 1997; Scotland, Olmstead, and Bennett, 2003).

The two coding methods represent different interpretations of the change of continuous

characters. Comparative study showed that both discrete coding and GW coding methods

recover strong statistically significant phylogenetic signal (Garcia-Cruz and Sosa, 2006). In this

study, clades seldom received a strong bootstrap support for either coding method; therefore, all

MPTs were viewed as equally possible evolution scenarios.

Relationships Within the Family, Comparisons with the Molecular Data

A molecular phylogeny including all extant genera is not yet available. Recent molecular

studies with broader taxa sampling were either missing Clematicissus and the species of Cissus

endemic to Australia (Soejima and Wen, 2006; Wen et al., 2007) or Cyphostemma and Yua

(Rossetto, 2007). DNA data for Acareosperma is not available because the species has been

collected only once since 1903. The morphological phylogenies presented in this study (Figure

2-1, Figure 2-2) have a backbone structure similar to that of the GAI1 tree (Wen et al., 2007) and

the tree based on combined trnL-F, atpB-rbcL spacer, rps16 intron sequences data (Soejima and

Wen, 2006), albeit only some of the sampled taxa are the same as those in present study. In

these two molecular phylogenies, Cayratia, Tetrastigma, and Cyphostemma formed a clade sister

to other Vitaceae; genera with 5-merous flowers, i.e., Vitis, Ampelocissus, Ampelopsis,

Rhoicissus, and Parthenocissus, formed a clade; Nothocissus and Pterisanthes were nested

93

within Ampelocissus; the majority of the species of Cissus formed a clade sister to the clade that

contains genera with 5-merous flowers.

The monophyly of a clade containing Cayratia, Cyphostemma, and Tetrastigma was

strongly supported by sequence data (Soejima and Wen, 2006; Wen et al., 2007). This clade is

not recovered by morphology-based phylogenetic analysis with GW coding (Figure 2-2), but the

topology is present in the morphology trees with discrete coding (Figure 2-1), excluding the

paraphyletic C. junceum and C. laza. Stomata on seed sarcotesta and large-sized tracheidal cells

in the seed coat occur in most taxa of these three genera. Most of them can produce highly

reduced inflorescence-branches, and their floral buds have a lobed apex due to the strongly

hooked petals. Some characters are present in two of the three genera: Cayratia and

Cyphostemma have a compressed inflorescence-branch second internode so two pairs of stipules

are present at the position of the first node; Tetrastigma and Cyphostemma frequently have

persistent large stipules. Morphological data indicated that Cayratia is not monophyletic, and

this is congruent with most molecular data (Soejima and Wen, 2006; Rossetto, 2007; Wen et al.,

2007). The species fit to the delimitation of the section Koilosperma Süssenguth (sectional name

violates the international code), Cayratia geniculata and C. cardiophylla, do not form a clade

with the other species of Cayratia (Figure 2-1, Figure 2-2). These two species have a special

seed feature — a constricted rim on ventral side (Chapter 1), and their inflorescences have a

monochasial structure on the basal parts. Seeds of other Cayratia do not have the constricted

rim, and the basal parts of the inflorescences do not have monochasial structures. Tetrastigma

was resolved as monophyletic in both molecular and morphological phylogenies; dioecy and

presence of 4-lobed stigmas are the synapomorphies of this genus. The monophyly of

Cyphostemma is not recovered in the present study, despite the constant floral and seed

94

morphology of this genus. Flowers of Cyphostemma are easily recognized by the 4 large gland-

like nectary discs; the scars of the discs can be easily observed in fruits. Seeds of Cyphostemma

have ventral infolds covered by extra layers of sclereids and a perichalaza. These seed features

are also present in seeds of Leea, and they likely represent retained plesiomorphies.

Cyphostemma junceum has some characters not found in other sampled Vitaceae: the plant is

erect, tendril-less, and produces inflorescences only at the terminal node of a branch. This is the

growth pattern shared by all species of Leea, therefore the present analyses placed C. junceum

sister to all other Vitaceae. Cyphostemma laza, a succulent tendril-bearing tree 1 to 4 m tall, was

placed sister to Cissus and all 5-merous genera in the trees resulting from the analysis employing

discrete coding mainly because the character state of compressed inflorescence-branch second

internode (37) was coded unknown. When the character was coded as present for C. laza, it

grouped with the majority of Cyphostemma (data not shown). Cyphostemma laza and C.

microdiptera, together with C. junceum, are placed in a position sister to the rest of the family

when GW coding was applied (Figure 2-2) although they have tendrils and inflorescences

opposite to the leaves like other Vitaceae. These two species of Cyphostemma have pinnately

compound leaves, a character shared with Leea. Cyphostemma junceum was not included in the

molecular phylogeny. Cyphostemma bainesii and C. mappia, species with similar tendril-less

erect growth and terminal inflorescences, were shown to group with other tendril-bearing

Cyphostemma in trnL-F sequence data (Soejima and Wen, 2006). The monophyly of

Cyphostemma must await further testing.

The unique seed shape of Acareosperma spireanum has been used to support recognition

of this species as a monotypic genus (Gagnepain, 1919). Available vegetative, infructescence,

fruit, and seed characters indicate its close relationship to Cayratia or Cyphostemma (Figure 2-1,

95

Figure 2-2). The architecture of the infructescence-bearing branch of Acareosperma is similar to

that of Cayratia and Cyphostemma, in agreement with the observation of the author who

established the genus (Gagnepain, 1919). Fruits of Acareosperma are 1-seeded; the surface of

the fruit is covered with short 2- to 3-celled uniseriate hairs. One seeded-fruits with hair are

prevalent in Cyphostemma. Large diameter tracheidal cells in the seed coat are shared with

Cayratia, and the same kind of V-shaped ventral infold configuration (136) is observed in at

least 3 species of Tetrastigma (Chapter 1).

The majority of the species of Cissus formed a well supported clade in the molecular

phylogenies (Rossetto et al., 2002; Soejima and Wen, 2006; Rossetto, 2007; Wen et al., 2007);

Cissus simsiana, C. striata, C. tweedieana, C. antarctica, C. oblonga, C. hypoglauca, and C.

sterculiifolia were not included in this clade of Cissus species (Rossetto et al., 2002; Soejima and

Wen, 2006; Rossetto, 2007; Wen et al., 2007). The monophyly of the majority of the species of

Cissus is recovered by morphological data with GW coding, and the eight species of Cissus, i.e.,

C. simsiana, C. hypoglauca, C. antarctica, C. sterculiifolia, C. trianae, C. granulosa, C.

penninervis, and C. striata, are not included in this clade (Figure 2-2). Among those eight

species of Cissus, C. trianae and C. granulosa were not included in analyses based on sequence

data. The synapomorphies of the monophyletic group comprising the majority of the speceis of

Cissus include leaf with straight teeth (20), leaf teeth with small sinus angle (23), and seeds with

perichalaza (101). The majority of the species of Cissus does not form a clade, however, when

discrete coding was applied to the matrix (Figure 2-1). The sister position of Cissus to the clade

containing genera with 5-merous flowers was present in molecular phylogenies of Soejima and

Wen (2006) and Wen et al. (2007), and also the present morphological study. The

morphological changes along the branch leading to Cissus and the 5-merous genera are mostly

96

the loss of the characters generally present in Cyphostemma, Cayratia, and Tetrastigma, such as

the absence of highly reduced inflorescence-branch (34), absence of lobed flower bud (56), and

absence of stomata on sarcotesta (130).

The eight species of Cissus excluded from the clade containing the majority of species of

Cissus in the morphology-based phylogeny with GW coding are either Australian or South

American endemics. They do not possess the perichalazal seeds like those of the members of the

clade containing most species of Cissus. Those from Australia, C. antarctica, C. hypoglauca, C.

penninervis, and C. sterculiifolia, have rugose seeds with long divergent ventral infolds and an

elongate chalaza, similar to the seeds of Tetrastigma or Rhoicissus; those from South America,

C. granulose and C. trianae, have seeds that share features of Tetrastigma, and those of C.

simsiana and C. striata are very similar to the seeds of Ampelopsis (Chapter 1). Seeds provide

the most obvious characters distinguishing these species from the rest of Cissus, but the

inflorescence structure also distinguishes these species from the remaining species of Cissus. A

bifurcate structure is present in the basal part of inflorescence in these eight species of Cissus,

but this structure is absent in all other Cissus. A bract is present under one of the two arms,

therefore the structure is interpreted as monochasium with two arms (character 43). The genera

which produce 5-merous flowers mostly have this monochasial structure in the basal part of their

inflorescences. Floral structure can distinguish some of these eight species of Cissus from the

rest of Cissus: C. granulosa, C. trianae, and C. penninervis have larger disc height to diameter

ratio (67), C. hypoglauca and C. trianae have smaller style to carpel length ratio (69), and C.

hypoglauca has a larger style to disc diameter ratio (70). The remaining members of this group

cannot be distinguished from other Cissus by floral characters.

97

Rhoicissus and some species of Cissus without perichalazal seeds have inflorescence-

tendril structures (character 43) shared with the taxa with 5-merous flowers, however, their seeds

possess features of Tetrastigma. The mixture characters characterizing 5-petaled and 4-petaled

genera in these species place them in a position sister to the primarily 5-petaled clade when

discrete coding was applied (Figure 2-1). Hair type also supports the close relationship of these

species; 2-armed hairs, a feature characteristic of Cissus, is present in C. antarctica, C. trianae,

C. hypoglauca, C. sterculiifolia, and Rhoicissus. Cissus simsiana not only has the monochasial

structure in the basal part of its inflorescences, but also its overall morphology is very similar to

that of Ampelopsis. Therefore it is placed close to Ampelopsis by morphological data (Figure 2-

1, Figure 2-2). Rhoicissus and the seven species of Cissus with anomalous seeds are grouped

with Parthenocissus-Yua in the morphological phylogeny employing GW coding (Figure 2-2).

Seeds with long and divergent ventral infolds are one of the synapomorphies of this clade.

Palmate leaves with very few teeth on the leaf margin are present in R. digitata, C. hypoglauca,

C. penninervis, and C. sterculiifolia, supporting their close relationship. The glaucous leaves

contribute to the grouping of C. hypoglauca and Yua. The placement of Rhoicissus and the

species of Cissus without perichalaza was different from that in the molecular phylogenies.

Cissus striata and C. simsiana formed a well supported clade with Rhoicissus, which is nested

within Ampelopsis in trees based on GAI1 sequences (Wen et al., 2007). The grouping of

Rhoicissus with Ampelopsis is not present in the present study, however, C. simsiana is placed

close to Ampelopsis based on morphological data (Figure 2-1, Figure 2-2). In the analyses

emphasizing Australian species, C. antarctica, C. oblonga, C. hypoglauca, and C. sterculiifolia

formed a clade; nevertheless, the position of this clade within the family is uncertain (Rossetto et

al., 2002; Rossetto, 2007). The position of Rhoicissus and the species of Cissus lacking

98

perichalazal seeds cannot be confirmed with current data; their placement based on

morphological data does not have bootstrap support, and the molecular phylogenies have an

incomplete taxon sampling.

A large clade comprised of genera mostly with 5-merous flowers, including

Clematicissus, is seen in the morphology-based trees. The two species of Clematicissus form a

clade, although C. angustissima has unusual one-infolded seeds not seen in any other vitaceous

seed (Chapter 1). They are placed in the clade that contains Ampelocissus, Vitis, and Ampelopsis

(Figure 2-2), or the clade that contains Ampelocissus, Vitis, Ampelopsis, and Parthenocissus

(Figure 2-1). GAI1 sequence data strongly support a clade containing species with 5-merous

flowers (Wen et al., 2007); however, Clematicissus was not included in this molecular analysis.

In the trnL-F phylogeny, which included Australian endemic species, C. striata grouped with C.

tweedieana, a South American species morphologically similar to C. simsiana, and these two

species of Cissus formed a well supported clade with Clematicissus (Rossetto, 2007). Seeds of

Clematicissus, C. striata, and C. tweedieana are similar to those of Ampelopsis (Chapter 1);

floral and inflorescence structures also support the close phylogenetic placement of

Clematicissus and Ampelopsis. The precise placement of Clematicissus within the family awaits

further testing.

Parthenocissus and Yua form a clade in both molecular (Wen et al., 2007) and

morphological phylogenies. The monophyly of Yua is not recovered in this study. The genus

Yua from China and Parthenocissus vitacea from North America have floral morphology

characteristic of Parthenocissus—carpel wine-bottle-shaped and disc inconspicuous, but their

tendrils are 2- or 3-armed without suction pads, and thus differing from the suction-padded,

multiple-armed tendrils of other species of Parthenocissus. The seed morphology of Yua is also

99

different from that of Parthenocissus (Chapter 1). In spite of these differences, the present

morphology-based cladistic analyses indicate a clade containing Yua and Parthenocissus. Floral

structures are the major synapomorphies of this clade. Parthenocissus and Yua were placed

within the clade containing Ampelocissus, Vitis, and Ampelopsis in the molecular phylogenies of

Soejima and Wen (2006) and Wen et al. (2007). A similar grouping is present in the phylogeny

with discrete coding (Figure 2-1), with Ampelopsis paraphyletic.

In these molecular phylogenies, Vitis formed a clade with Ampelocissus, with

Nothocissus and Pterisanthes nesting within Ampelocissus. This clade received fair support in

the analyses based on three chloroplast sequences (Soejima and Wen, 2006) and received a

moderate Bootstrap support in the morphology-based phylogeny (Figure 2-1, Figure 2-2).

Racemose inflorescences and arachnoid hairs are the shared characters for this clade. In the

present study, Ampelopsis is paraphyletic and phylogenetically adjacent to the Ampelocissus-

Vitis clade. This relationship of Ampelopsis to the Ampelocissus-Vitis clade was not supported in

the molecular phylogenies of Soejima and Wen (2006) or Wen et al. (2007). The molecular data

indicated a paraphyletic Ampelopsis with a pinnately-compound leaved species forming a clade,

and the simple and palmately compound-leaved species grouped together, with the Rhoicissus-

"C. striata complex" positioned as sister to either of the two clades (Soejima and Wen, 2006;

Wen et al., 2007). The separation of Ampelopsis species by leaf form agrees with the

morphological data treated with GW coding (Figure 2-2) but not with the phylogeny employing

discrete coding (Figure 2-1).

Morphology of Vitaceae and Character Evolution

Growth habit

Most Vitaceae are climbing to procumbent lianas or vines. Tuberous rootstocks are

frequently observed in Australian and African taxa (Jackes, 1988b; Verdcourt, 1993). Old

100

branches are usually terete; however, flattened woody stems are frequently observed in

Tetrastigma. Four to six-angular stems occur in some succulent Cissus, and the young woody

stems of some species of Ampelopsis and Parthenocissus are squarish. Erect growth occurs in a

few species of Cissus, Cyphostemma, and Rhoicissus from Africa and Madagascar. Species

distributed outside the African region with erect growth include the Australian endemic

Ampelocissus frutescens, which grows in the coastal deciduous forests (Jackes, 1984), and

Ampelopsis vitifolia subsp. hazarganjiensis Nazim & Qaiser from Pakistan (Nazimuddin and

Qaiser, 1982). Those species with the erect growth habit are distributed in xerophytic habitat,

and they may be herbs, shrubs, or caudiform trees, with or without tendrils. Species of Leea do

not show the viny habit, and mostly occur in riverine forests but some grow in dry savannas.

The erect growth habit is possibly the ancestral condition of Vitaceae, since C. junceum, a

perennial herb with terminal inflorescences, was placed in a position sister to other Vitaceae by

the morphological data (Figure 2-1, Figure 2-2). An erect habit is often associated with

succulence; at least 20 species of Cyphostemma are caudiform trees (Hardy and Retief, 1981;

Verdcourt, 1993; Descoings, 2004). Succulent growth also occurs in a few viny species of

Cyphostemma, Cissus and Tetrastigma. Although all succulent species belong to the genera with

4-merous flowers, the present phylogeny does not indicate their common origin; the character

state reconstruction suggests succulence evolved independently several times (data not shown).

Crassulacean acid metabolism (CAM) has been reported in some species of Cissus and

Cyphostemma, and it was shown that succulence level is not causally related to CAM activity

(De Santo et al., 1983). CAM is possibly more common in Vitaceae than what would be

expected based on the frequency of succulence.

101

Considering that the stem anatomy of lianas is usually specialized and different from that

of trees or shrubs (Carlquist, 1991), and the non-liana habit seems to be restricted to certain

genera of Vitaceae, the wood anatomy of Vitaceae is potentially phylogenetically informative. A

preliminary survey indicated that Rhoicissus and Leea have similar wood anatomy; the wood of

Cayratia resembles that of Tetrastigma, and both share some characters of wood of Cissus; the

wood of Vitis appears more similar to that of Parthenocissus and Ampelopsis than that of

Ampelocissus (Wheeler and Lapasha, 1994). Wood anatomy seems to support the separation of

4-petaled and 5-petaled taxa, as indicated by the current morphological and molecular data. An

extensive survey of wood anatomy of Vitaceae should provide insight into the intrafamilial

relationships, especially the placement of Rhoicissus. The evolution of stem anatomy of liana

then can be inferred from mapping the characters to a phylogenetic tree.

Both deciduous and evergreen growth occur in Vitaceae. In the present study,

Parthenocissus quinquefolia, Vitis aestivalis, and V. vinifera were observed in the field to be

deciduous; Ampelocissus acapulcensis and Cyphostemma laza probably flower before new

leaves expand because mature leaves are absent and only young leaves are found on developing

shoots of flowering specimens. Previous investigations reported that Ampelopsis,

Parthenocissus, and Vitis are deciduous, or rarely evergreen (Brizicky, 1965). The Australian

species Cissus cardiophylla, C. reniformis, Clematicissus angustissima, C. opaca are deciduous.

Cissus cornifolia is "usually flowering before new leaves grow" (Verdcourt, 1993). Other

sampled species are either evergreen or lacking information on leaf persistence; therefore, this

character was not included in the cladistic analyses.

Phyllotaxy

The feature characteristic of Vitaceae, i.e., tendrils opposite the leaves, is quite unusual in

vascular plants. Besides leaf primodia, a uncommitted primodium (sometimes called a lateral

102

meristem) is regularly generated in the shoot apex, producing either tendrils or inflorescences

that opposed the leaves at a later stage of development (Gerrath, Lacroix, and Posluszny, 1998).

The homologous origin of inflorescences and tendrils has long been considered, based on their

occupying the same position on a branch, frequently observed intermediate forms, and the

experiments that show that the application of growth regulators can transform one to the other

(Srinivasan and Mullins, 1978, 1979, 1980). Recent molecular genetics studies provided

additional evidence. A defect in signal transduction of gibberellin causes young plants to

produce inflorescences instead of normal tendrils (Boss and Thomas, 2002); and the finding that

2 MADS-box genes are expressed in both inflorescences and tendrils of very young non-

flowering plants but not other vegetative organs (Calonje et al., 2004) implied a partially shared

morphogenetic pathway of inflorescences and tendrils. Leaves are alternate and spirally

arranged when plants are young and tendril-less, but after the first tendril is initiated, the leaves

are usually alternate and 2-rankedly arranged at every node. Tendrils and axillary buds are not

always present at every node.

Shoot architectures of Vitaceae have been classified into five patterns, related to the

presence or absence of axillary buds and tendrils/inflorescences at the adjacent nodes (Gerrath,

Lacroix, and Posluszny, 1998; Gerrath and Posluszny, 2007). Pattern 1 has a leaf and axillary

buds at every node, tendrils absent, and the inflorescence is terminal or axillary. Pattern 5 has a

leaf, an inflorescence/tendril, and axillary buds at every node. Patterns 2, 3, and 4 represent the

condition described as "tendril interrupted" in the literature. In these three patterns,

tendrils/inflorescences are absent in a 3-node modularity, and the axillary buds are present in

either one, two, or all three of the nodes in the 3-node modularity. The character survey in this

study shows that a terminal inflorescence is not restricted to phyllotaxis pattern 1, and in some

103

taxa the inflorescence-branch architecture is not the same as that of the vegetative-branch.

Therefore, the characters regarding to the inflorescence-branch architecture were treated

separately; the general phyllotaxy was inferred from the pattern of the tendril position on a

vegetative-branch in this study. Due to the difficulty in confirming the absence of axillary buds

in dried and pressed materials, only patterns of tendrils were scored (character 5). A new pattern

not belonging to the five patterns described above was also observe, i.e., the tendril is present

and interrupted, with two nodes as a repeat, and axillary buds are present at every node (Figure

2-5). This pattern occurs only in Nothocissus spicifera. Leea do not possess tendrils. Erect

growth is not related to lack of tendrils; some caudiform Cyphostemma produce young shoots

with tendrils near the top of the trunk during the growing season, and C. hereroense is

procumbent and tendril-less. Interrupted tendrils can occur in any genus. Character optimization

resolved tendril-less as the ancestral condition for Vitaceae, and the tendril interrupted condition

evolved from the tendril-less condition. The tendril not interrupted condition is derived several

times independently (Figure 2-6). Interestingly, Rhoicissus and most species of Cissus,

including those without perichalazal seeds, have uninterrupted tendrils (Figure 2-6).

Tendrils

The tendrils of Vitaceae are always opposite the leaves, usually with a monochasial

organization; a bract is present opposite to each tendril arm. Tendril arm number varies from

one to nine. When the tendrils have only one arm, i.e., are unbranched, usually there is a bract-

like structure in the middle of the tendril (Figure 2-5); only the unbranched tendrils of Cissus

fuliginea and Tetrastigma bioritsense do not have any surface protrusion. A bract-like structure

was also observed in the middle of the outer tendril arm in some 2- or 3-armed-tendriled species,

such as Ampelopsis arborea and A. cordata. In these two species of Ampelopsis, the bract-like

scar is sometimes associated with a short reduced inflorescence-like structure. Therefore, a

104

bract-like structure on an unbranched tendril was viewed as a vestigial organ of a reduced

multiple-armed tendril with monochasial organization, and only the tendrils of C. fuliginea and

T. bioritsense were considered as having simple organization. Tendrils with umbellate

organization are present in Tetrastigma triphyllum (Gagnep.) W. T. Wang, T. yunnanense

Gagnep., and T. obtectum (sampled). Under character optimization, the relatively rare umbellate

tendril is a derived state. The umbel structure of the tendril can be hypothesized as a

modification of the monochasial structure, with axis length reduced so the tendril arms are

condensed to form an umbellate architecture. Tendrils with more than four arms and the tendril

tips specialized to suction pads are the characters frequently used to distinguish the genus

Parthenocissus from others. Observations on the organogenesis of the tendrils of Parthenocissus

revealed differences between 2-armed tendrils and multiple armed tendrils, with the deviance

mainly coming from the relative size differences of the tendril apex and tendril arm initials in the

early developmental stages. In later tendril bifurcation the multiple-armed tendril behaved

similar to the bifurcation in the 2-armed tendril; and this was speculated to be due to the reduced

meristematic activities of the tendril apex in the later stage (Wilson and Posluszny, 2003b).

There is possibly a gradient of variation of meristematic activities displayed in the tendril apex,

and the outcome of this variation is the diversity in the tendril arm number. Four- or more-armed

tendrils are not restricted to Parthenocissus; at least four species of Ampelocissus, Cayratia

trifolia, and the 3 species of Tetrastigma with umbellate tendrils also have tendrils with more

than four arms.

The young tendril tips are swollen in a few species. This enlargement is spherical in

Parthenocissus dalzielii, asymmetrical with an acute apex in P. laetevirens, or peg-shaped in

Cayratia trifolia and some species of Cissus, and different from the reduced floral-bud-like

105

structures that sometimes are present on the tendrils of Ampelopsis. The presence of an

enlargement in a young tendril tip is not associated with the formation of suction pads. This

swollen structure in young tendril tips has an unknown function, nevertheless, it was used to

distinguish species of Parthenocissus (Li, 1998). The formation of the suction pad starts when

the tendril tips contact solid substances; without this contact the young tendrils soon abscise.

The mature tendrils have a relatively shorter axis compared to the tendrils without suction pads.

Suction pads frequently occur in species of Parthenocissus, nevertheless, not all species of

Parthenocissus have them. Suction pads also occur in Cayratia trifolia, Cissus obovata, and the

three species of Tetrastigma with umbellate tendrils. Based on the phylogeny presented in this

study, the presence of suction pads on the tendril tips is a derived condition, and has evolved

several times.

Stipules

All observed species have a pair of intra-petiolar stipules at each node. The margin of the

stipules frequently have short uniseriate hairs. The stipules usually cover the shoot apex when

young, and typically fall off soon after the leaves expand. Sometimes, however, the stipules are

not deciduous; many species of Cyphostemma and Tetrastigma have persistent stipules, which

enlarge as the stem grows and remain on the nodes that produce inflorescences or

infructescences. Stipules of Vitaceae are round, oval, triangular, or linear in shape. Most species

of Vitis, Ampelopsis, and Cissus have round stipules; Cayratia and Parthenocissus have linear

triangular stipules; Cyphostemma frequently has large falcate stipules; and Tetrastigma tends to

have oval stipules with a pointed apex. The stipule base is usually straight, but a swollen and

cordate stipule base was occasionally observed in species of Cissus. The three Australian

species of Cissus, C. hypoglauca, C. antarctica, and C. oblonga, have large stipules, and a

unusual feature was observed for the stipules of C. hypoglauca and C. oblonga—the pair of

106

stipules are connected by a partition along the median longitudinal plane so the transverse

section of the stipules is H-shaped. This partition was not present in the other investigated

species (Lacroix and Posluszny, 1989b). In another study, C. antarctica was reported to have

interconnected stipules, and a more subtle form of connection was found in C. quadrangularis

(Timmons, Posluszny, and Gerrath, 2007b). Molecular data, albeit with incomplete sampling,

indicated the monophyly of C. hypoglauca, C. oblonga, and C. antarctica; the presence of the H-

shaped connected stipules could be a synapomorphy for these species (Rossetto et al., 2002;

Rossetto, 2007). A survey of this character in Vitaceae may provide more data to infer the

phylogenetic position of the species of Cissus endemic to Australia.

Leaves

Leaves of Vitaceae are simple or compound; the later condition may be palmate, pedate,

or pinnate (Figure 2-7). The simple leaf is common in Vitis, Ampelocissus, Ampelopsis,

Rhoicissus, and Cissus; it seldom occurs in Tetrastigma, Cayratia, and Cyphostemma. The

palmately compound leaf, with either three or five leaflets, occurs in all genera of Vitaceae, and

is common in Parthenocissus, Tetrastigma, Cayratia, and Cyphostemma. Nevertheless, the

palmately compound leaf with five leaflets is curiously missing in species of Cayratia. The

pedately compound leaf is common in Cayratia, Tetrastigma, Ampelocissus, and Pterisanthes.

Interestingly, the pedate-leaved species are mostly distributed in southeastern Asia, although the

African Cyphostemma adenocaule is an exception. The pedately compound leaves of

Acareosperma are different from other pedately compound leaves due to the monochasial

organization of the multiple lateral leaflets. Pinnately compound leaves are relatively

uncommon in Vitaceae; they are present in at least eight species of Ampelopsis, i.e., one North

American species and seven Asian species (Li, 1998), seven species of South American Cissus

(Lombardi, 2000), one Cayratia from Madagascar (Descoings, 1961) and seven species of

107

caudiform Cyphostemma from Madagascar (Descoings, 2004). Leaf form is variable in some

taxa; within the sampled taxa, leaves of Parthenocissus dalzielii are simple when small in size,

and large leaves are mostly trifoliate; sometimes two leaflets are partially fused. Leaves of

Rhoicissus tridentata also vary from simple to trifoliate, along with intermediate form. Leaflet

number varies in the same individual in some taxa. Leea mainly have pinnately compound

leaves. One-foliate or 3-foliate leaves are present in at least six species of Leea. As in Vitaceae,

the leaflet number is highly variable in some species but is consistent in others (Ridsdale, 1974,

1976).

Mapping the leaf form onto the MPTs in this study resolved the pinnately or palmately

compound leaf form as the ancestral condition of Vitaceae (Figure 2-7). There is a trend of

reduction in leaf-blade division, and simple leaves are derived independently in the Vitis-

Ampelocissus clade and the major Cissus clade. Based on the character optimization and the

observation of the transition forms between simple and compound leaves, a hypothesis is

suggested: the simple leaf form is derived from the compound leaf form by the loss of leaf blade

division ability. Leaf reduction was also suggested for Leea— leaves of L. crispa can vary from

simple, trifoliate, to uni- or bi-pinnate; in L. magnifolia, a pair of foliar-like outgrowths was

positioned below the simple leaf; rarely these outgrowths were developed into highly reduced

leaflets (Ridsdale, 1974). The palmate leaf form of Vitaceae possibly originated from the

reduction of the pinnate leaf form of the common ancestor of Vitaceae and Leeaceae, and

reduction of a palmate leaf may have resulted in a simple leaf. The presence of the pinnate leaf

form in some taxa of Vitaceae represents the regained ability for leaf division.

The shape of a simple leaf is typically broadly ovate, with an acute to acuminate apex and

a cuneate, convex, truncate, or lobate base. The lamina is unlobed, shallow to deeply 3-,5-, or 7-

108

palmately lobed. Within the 82 sampled ingroup taxa, the leaf blade shape varies from unlobed

to deeply lobed in Cissus campestris and C. reniformis within the same individual; this variation

also occurs among individuals in Ampelocissus abyssinica and A. robinsonii. Outside the taxa

sampled in this study, variation in leaf shape was reported at least in Cissus fuliginea and C.

verticillata (Lombardi, 2000).

The leaflets of a compound leaf are typically elliptic to ovate. The terminal leaflets of a

compound leaf are usually larger then the lateral leaflets, and the lateral leaflets frequently have

an oblique leaf base. The leaflets of Cissus mirabilis are deeply dissected along the secondary

veins, and the leaflets can be 20 cm long. Similar highly dissected palmate leaves were observed

in Ampelopsis japonica (Thunb.) Makino (not sampled); nevertheless, the leaf size of A. japonica

is much smaller. The distinct leaf shape of C. mirabilis contributed to the establishment of the

genus Pterocissus; however, the overall morphology of C. mirabilis is not much different from

that of Cissus, and it was transferred to Cissus (Lombardi, 2000). The phylogeny in this study

places C. mirabilis among Cissus with perichalazal seeds (Figure 2-2), supporting the sinking of

Pterocissus within the clade of Cissus with perichalazal seeds.

A typical simple leaf of Vitaceae has palmate venation with five primary veins;

occasionally three or seven primary veins were observed. The secondary veins attached to the

mid-primary veins are pinnately arranged. The secondary veins attached to lateral primary veins

are agrophic (have a ladder or comb-like pattern). The number of secondary veins branching

from the primary veins of the same leaf is roughly the same, typically three to six pairs. Each

secondary vein usually ends at a tooth apex. The tertiary veins attached to the basal-most outer

lateral primary vein are agrophic. Other tertiary veins usually show an alternate percurrent or

mixed opposite/alternate percurrent pattern, with tertiary veins roughly 90° to secondary veins.

109

In a lobed leaf, the lobe sinus is typically developed between a lateral primary vein and the basal-

most secondary vein, and the overall leaf architecture remains the same. The counterpart of the

agrophic veins could be observed when leaf is deeply lobed. The deeper the lobe the more

strongly developed is the counterpart of the agrophic veins, and the secondary veins in the lobes

appear to be pinnately arranged.

In Parthenocissus dalzielii and Rhoicissus tridentata in which the intermediate forms of

simple, lobed, to palmate leaves were observed, the venation pattern of the leaflets resembles

that of a simple leaf, and the mid lower part of the leaflet margin is entire; teeth are located on

the outer margin of the lateral leaflets. Leaves of Vitis piasezkii and Ampelocissus elegens

Gagnep. (not sampled, field observation) are compound in outline, nevertheless, they retain the

venation pattern of a simple leaf, as if a simple leaf has became deeply dissected forming a

compound leaf. The resemblance of the venation pattern between a lobed simple leaf and a

compound leaf strengthens the hypothesis that the simple leaf of Vitaceae has originated from

the loss of the leaf blade division ability. However, the venation patterns of other compound

leaves of Vitaceae do not show the strong resemblance to that of a simple leaf, due to the

relatively weak veins in the leaflets. Typically, the leaflets of a compound leaf have pinnate

venation, and the tertiary vein pattern can be alternate percurrent to a random polygonal.

The leaf margin is usually serrate; entire-margined leaves are rare in Vitaceae. Tooth

shape is convex, flexuous, or straight, and the tooth sinus is angular or rounded. The tooth apex

is usually pointed and swollen. The primary and secondary veins usually end in the tooth apex,

with a pair of weak marginal veins joining the secondary vein in the tooth apex. Rarely the

secondary vein loops and joins other secondary veins and does not directly end in the tooth. The

tooth size usually does not vary greatly in the same leaf, nevertheless, the teeth terminating the

110

primary veins tend to be larger, and the teeth located between the secondary veins are smaller.

The present data indicate that leaves of Ampelocissus are frequently densely serrate, and the

three palmate-leafed Australian species of Cissus, Yua austro-orientalis, and Rhoicissus digitata

have leaf margins almost without teeth (Figure 2-8). Another noticeable consistency is that the

simple leaves of Cissus mostly have small, straight teeth with a sharp sinus angle. The densely

serrate leaf margin of species of Ampelocissus was also noticed in another leaf survey of

Vitaceae (Patil, 2006).

Yua and the Australian Cissus hypoglauca have strongly glaucous leaf abaxial surface.

The similarity in the leaf characters, i.e., palmate, almost entire leaf margin, is one of the reasons

that Parthenocissus-Yua clade was grouped with Rhoicissus and the species of Cissus with

anomalous seeds in the analysis with GW-coding (Figure 2-2). Another feature sometimes

observed on grape leaves is domatia. The Australian species Cissus antarctica, C. oblonga, and

C. sterculiifolia have prominent pocket-shaped domatia. The vein tissues extend and connect at

the junction of major veins, forming a pocket-shape structure. Those on the leaves of C.

antarctica and C. oblonga can protrude prominently. The pocket-shaped domatia are also

present in some Ampelopsis, Rhoicissus, and the South American C. simsiana, although not as

prominent as those in the three Australian species of Cissus. The presence of the pocket-shaped

domatia seems to indicate a close relationship among some species of Cissus with anomalous

seeds, Ampelopsis, and Rhoicissus, a relationship supported by molecular phylogenies (Wen et

al., 2007). Instead of being overgrown with tissue, sometimes a tuft of uniseriate hairs is present

in the junction of major veins in leaves of other species. In species of Vitis, these tufts of hairs

are acarodomatia, which are frequently inhabited by predatory and mycophagous mites that bring

beneficial effects to the host plants (English-Loeb, Norton, and Walker, 2002).

111

Features of leaf epidermal cells and stomata pattern (Zubkova, 1966; Ren et al., 2003),

and petiole anatomy (Zubkova, 1975) may contain phylogenetic information, but were not

surveyed in this study.

Hairs

Trichomes of Vitaceae are uniseriate, arachnoid, unicellular 2-armed, multiseriate, or

multiseriate with a glandular head. Uniseriate hairs are most common; usually uniseriate hairs

and one other type of hairs are present on the same plant. Hairs can occur on any plant surface

except the stamens and the floral disc; those present on the petal outer surface are uniseriate,

multiseriate with glandular head, or 2-armed; those present on the carpel surface are always

uniseriate; those on the fruit surface are uniseriate, multiseriate, or multiseriate with glandular

heads. The length of the uniseriate haisr varies from 0.1 mm to 1mm; the length and the cell

numbers of the uniseriate hairs frequently varies within the same individual. The 2-armed hairs

are usually sessile with the arms more or less equal in length. The length of the arms ranges

from 0.1-1mm long. However, 2-armed hairs with a stalk of 0.1-0.2mm are present in Cissus

antarctica, C. hypoglauca, and Rhoicissus tridentata; and in C. antarctica some of the 2-armed

hairs have one arm much longer (1.5-2mm) than the other. Arachnoid hairs are usually longer

than 0.8mm. Size of the multiseriate hair varies greatly; in Ampelocissus barbata the

multiseriate hairs can be more than 1 cm long. Hair density can be highly variable on the same

plant, or, more commonly, varies greatly among individuals of the same species. However, the

occurrence of the hair types other than uniseriate seems to be phylogenetically informative.

Arachnoid hairs appear exclusively in all sampled species of Ampelocissus, Pterisanthes,

Nothocissus, and Vitis; such hairs are one of the synapomorphies for this clade. Glandular

multiseriate hairs frequently occur in Cyphostemma. Two-armed hairs are present in Cissus,

Rhoicissus, Ampelopsis glandulosa and A. delavayana; such hairs are likely another

112

synapomorphy for the Rhoicissus-Ampelopsis clade supported by the molecular data (Soejima

and Wen, 2006).

Sexuality

Sampled species of Tetrastigma and Vitis are all dioecious except V. vinifera, which has a

long history of cultivation and has hermaphroditic flowers. The unisexual flowers have all floral

organs developed, but the stamens or carpels are reduced. Developmental study has shown that

the staminate flowers of V. riparia have ovules that develop to at least the one integument stage,

and later development is aborted; and the pollen grains of pistillate flowers of V. riparia are

inaperturate (Gerrath and Posluszny, 1988a). The pistillate and staminate inflorescences have

the same structures, however in most observed Vitis the pistillate inflorescences are slightly less

branched than the staminate inflorescences. Ampelocissus and Pterisanthes were described as

polygamo-monoecious (Wen, 2007b); Ampelocissus was described as hermaphroditic or

polygamo-dioecious (Li, 1998); A. erdvendbergiana was described as andro-monoecious

(Lombardi, 2000); Cayratia was described as dioecious, polygamo-dioecious, or hermaphrodites

(Descoings, 1972). Distinct floral dimorphism was not observed in sampled Ampelocissus,

Pterisanthes, and Cayratia; field observation is needed to confirm the reported conditions. The

factors determing the sexuality of vitaceous flowers are largely unknown. It was reported that

cytokinins can convert the male plant of native Vitis vinifera to produce hermaphroditic flowers

(Negi and Olmo, 1972). The same authors proposed a model of a single locus with three alleles

controlling the production of male, hermaphrodite, and female flowers (Negi and Olmo, 1971).

In recent studies, a single locus responsible for the sex determination in a Vitis cultivar was

identified (Dalbo et al., 2000; Riaz et al., 2006; Marguerit et al., 2009), supporting the previously

proposed single locus model for sex determination.

113

Inflorescence-branch architecture

Characters related to inflorescence-branch architecture are useful in distinguishing

genera. As previously stated, inflorescences are homologous to tendrils, and the phyllotaxis of

inflorescence-branches is the same as that in vegetative-branch in all observed taxa with tendrils,

except for Nothocissus and species with highly reduced inflorescence-branches. Usually new

shoots develop from the axillary buds of the old branches during the growing season, and the

same shoot may produce only inflorescences, only tendrils, or both. The axillary buds that

develop into an inflorescence-branch may or may not be spatially specific. Deciduous species of

temperate regions, such as Vitis vinifera (Posluszny and Gerrath, 1986; Boss et al., 2003), have

latent buds that overwinter. More than one bud can be generated in a leaf axil; the latent buds

are the second order buds that form at the axil of first order axillary buds. Inside the latent buds,

the inflorescences have been initiated but remain immature and dormant during the winter. The

latent buds will develop into inflorescence-branches in next spring, and the first order axillary

buds, instead of overwintering, develop into sylleptic shoots that usually produce only tendrils.

The phenomena of sylleptic shoots producing only tendrils is also observed in other species of

Vitis, such as V. vulpina, V. kelungensis (field observations). The deciduous species,

Parthenocissus inserta, has latent buds bearing immature inflorescences; however, it differs from

Vitis in that its first order axillary buds can either become latent buds or develop into branches

(Gerrath and Posluszny, 1989c). Serial accessory buds are present in Ampelopsis

brevipedunculata as the overwintering buds, the regular axillary buds normally abscise at the end

of the growing season (Gerrath and Posluszny, 1989a). The serial accessory buds are hidden in

the petiole base and not externally visible; they have been seldom reported in Vitaceae, possibly

because of the difficulty in perceiving them. Supernumerary buds were reported in Cissus

quadrangularis, which differ from the serial accessory buds of A. brevipedunculata in the spatial

114

direction of their sequential development in the same leaf axil (Timmons, Posluszny, and

Gerrath, 2007b). It is unknown whether those buds specifically develop to vegetative- or

inflorescence-branches. The growth patterns of the above-mentioned deciduous species of Vitis,

Parthenocissus occuring in North temperate regions exhibit different strategies to synchronize

reproduction with the favored environmental condition. The development of axillary buds of

other taxa is not well known; typically, the fate of an axillary bud is not as predictable as that of

Vitis.

The inflorescence-branches of Vitis typically have two to four inflorescences born at the

basal nodes; the shoot apices remain when flowering and produce tendrils in the upper nodes.

The inflorescence-branches in most sampled Ampelocissus, Pterisanthes, Nothocissus,

Ampelopsis and Cissus, in contrast to those of Vitis, produce only inflorescences but not tendrils,

although the shoot apices of inflorescence-branches usually remain at anthesis and the

inflorescence-branches can get very long. In Parthenocissus, tendrils are not present on the

inflorescence-branches; the shoot apices of inflorescence-branches usually stop developing when

flowering, and the inflorescence-branches have shorter internodes comparing to vegetative-

branches. Some species of Parthenocissus have inflorescence-branches possessing only three to

four nodes.

The inflorescence-branches of Tetrastigma are usually highly reduced; in most species

they process only two nodes with one inflorescence at the upper node. Leaves are usually lost on

the inflorescence-branches of Tetrastigma, leaving only conspicuous and persistent stipules. The

inflorescence-branches of Cayratia and Cyphostemma have a distinct feature makes them very

easy to recognize. The second internodes are not elongate so that the second node overlaps the

first node (compressed inflorescence-branch second internode, Character 37). In species with

115

persistent stipules, two pairs of stipules are present at the first node. Leaves are usually present

on the inflorescence-branches, therefore the first node appears to have a pair of opposite leaves.

Sometimes, on the same plant, the second internode is uncompressed or incompletely-

compressed; in such inflorescence-branches, the inflorescence is present at the second node and

is opposite the leaf. The developing shoot is either persistent or abscised/aborted at the second

node. When a shoot is persistent, the inflorescence-branch appears to possess a pair of leaves,

with one inflorescence, and one developing shoot at the first node (Figure 2-9); if the shoot lost,

the whole inflorescence-branch appears to have one node with a pair of opposite leaves and one

inflorescence in the center. In either case, usually only one inflorescence is produced on one

inflorescence-branch, the shoot apex produces only tendrils at the rest of the nodes.

In Vitaceae, usually the inflorescence-branches start producing inflorescences at any

basal first to fourth nodes, following the three nodes per unit, interrupted or not interrupted

pattern. However, in most observed Cayratia, Cyphostemma, and Tetrastigma, inflorescences

start developing strictly from the second node. Some specimens show that species of these three

genera can produce vegetative-branches with only tendrils, and the highly reduced inflorescence-

branches were developed from the axillary buds of the vegetative-branches. Highly reduced

inflorescence-branches of Tetrastigma, Cayratia, or Cyphostemma have been frequently

interpreted as single inflorescences, hence in the literature they have been described as

"inflorescences axillary". Sometimes "terminal", "pseudo-axillary" or "pseudo-terminal" have

been used to describe the inflorescence of Cayratia or Cyphostemma. Besides Cayratia,

Cyphostemma, and Tetrastigma, several unsampled African species of Cissus, e.g., C. producta,

C. trothae, C. welwitschii, C. petiolata, C. ruspolii, were described as having axillary

inflorescences or terminal cymes (Verdcourt, 1993).

116

All observed species of Leea have terminal inflorescences and no inflorescence is

produced at any other node of the same branch. The leaves are spirally arranged along the

branch, a conspicuous axillary bud is present at every node, enclosed within the petiole base. The

terminal node usually has two inflorescences arranged in various angle to each other, and one

leaf without a visible axillary bud. A previous study on Leea reported the same growing pattern;

when two inflorescences are present at the shoot terminal, one of the inflorescences was

interpreted as terminal and the other as axillary (Gerrath, Lacroix, and Posluszny, 1990). What

may commonly happened is that shoot apical meristem (SAM) activity can be terminated by

some unknown regulatory process, and whatever organ nearest SAM will overgrown SAM and

become terminal. The condition frequently observed in Tetrastigma, Cayratia, and

Cyphostemma, i.e., that the terminal node of the reduced inflorescence-branch containing a

single inflorescence, is more likely due to the loss of the shoot apex, because frequently in the

same plant some inflorescence-branches still possess young developing shoots. The presence of

two inflorescences and a leaf at the terminal node of a shoot represents a condition different from

that observed in Tetrastigma, Cayratia, and Cyphostemma. The condition of having two-

inflorescences and one leaf at the terminal node was also observed in some Vitaceae, including

the tendril-bearing species such as Cissus granulosa, C. striata, C. penninervis, C. sterculiifolia,

and Nothocissus, and the tendril-less erect herbs Cyphostemma junceum. Unlike Leea, in these

four species of Cissus with anomalous seeds, the leaf-opposed inflorescences are still produced

in the non-terminal nodes. In Nothocissus, typically the node below the terminal node also

produces a leaf-opposed inflorescence, but no inflorescence is present in other lower nodes. In

C. junceum, the inflorescence occurs strictly in the terminal position; the terminal node of the

plant has a reduced leaf and one or two inflorescences. The growing pattern of C. junceum is

117

very similar to that of Leea, and this similarity contributed to C. junceum's basal position in the

present morphology-based cladistic analyses. Cyphostemma juttae and C. mappia, erect

succulent shrubs without tendrils, were also observed to have terminal inflorescences (Wilson,

Gerrath, and Posluszny, 2006). Observation with epi-illumination light microscopy showed that

the SAM bifurcates and then develops into an inflorescence in these two species. The authors

concluded that the general shoot development of C. juttae and C. mappia is similar to that of

Leea (Lacroix, Gerrath, and Posluszny, 1990), except that in the shoot apex of Leea the SAM is

much less prominent than the developing leaf base. The shoot apex of the inflorescence-

branches producing terminal inflorescences possibly all share the following features: a leaf

primodia is initiated first, then the SAM bifurcates and both parts of the bifurcation develop into

inflorescences. Whether the axillary bud of the uppermost leaf is initiated is unknown because

the later development of the leaf axil was not followed in the microscopic investigations. The

bifurcate inflorescence-first-axis was frequently observed in C. junceum. The conditions

observed in the terminal node of a branch of C. junceum included: one inflorescence with

bifurcate first-axis; one inflorescence with multi-chasial first-axis; two inflorescences both with

bifurcate first-axis, two inflorescences both with multi-chasial first-axis. All observed specimens

have a reduced leaf at terminal node. It was speculated that after the initial SAM bifurcation, the

internode between the leaf primodia and the bifurcation point elongates, resulting in a bifurcate

inflorescence. This elongation may or may not occur, or further bifurcation may occur, before

the formation of the multi-chasial organization. Although only obviously present in a few

sampled species, the presence of the two terminal inflorescences is possibly more common in the

tendril-bearing species than the survey conducted as part of this study indicated. Many species

retain a developing shoot when flowering, and the fate of the terminal node was not caught on

118

the herbarial materials. Whether the presence of two inflorescences at the terminal node results

from a distinct developmental process and is phylogenetically significant is unknown.

Based on the microscopic studies conducted by Gerrath and colleagues (cited in

Introduction), the formation of the phyllotaxis of Vitaceae can be summarized as: in tendril-less

plants producing only terminal inflorescences, the SAM bifurcation occurs only once in the same

shoot, at the terminal node, and both parts of the bifurcation develop into inflorescences. In

other members of Vitaceae, the SAM bifurcation is not restricted in the terminal node. The

bifurcation can occur right after a leaf initiation, with the center portion remaining as SAM and

the outer part developing into an inflorescence or tendril. A new leaf is initiated in the alternate

position, and the elongation of internodes between leaves places the inflorescence or tendril in a

leaf-opposed position. The SAM bifurcation can occur at every leaf initiation, producing one

tendril/inflorescence at every node. Alternatively, the SAM bifurcation may be missing every 2

or 3 leaf initiations, so the inflorescence/tendril is absent in every 2 or 3 nodes. An axillary bud

can be initiated at every leaf axil, or missing every 2 or 3 leaf axils, matching Patterns 2 to 4

(Gerrath and Posluszny, 2007). The continued SAM activity after its bifurcation is the key

innovation in Vitaceae; this condition is absent in Leea. It is possibly associated with viny habit,

a key familial adaptation. Many leaf-opposed inflorescences can be generated in one plant,

hence increasing the chance of propagation, and the modification of inflorescences into twining

tendrils provides a means for climbing toward the light source.

Inflorescences architecture

As mentioned earlier, inflorescences and tendrils are thought to have a homologous

origin; intermediate forms of tendrils and inflorescences were frequently observed. The present

study shows that the formation of the intermediate forms is phylogenetically informative. The

basal part of the inflorescence usually retains the monochasial organization like the tendrils from

119

the same plants in genera with 5-merous flowers (Figure 2-10 A-D). In Ampelocissus and

Pterisanthes, the inflorescences keep branching in the first tendril arm only, the other

inflorescence-tendril arms do not have further branching. Those inflorescence-tendril arms with

free ends are usually twining, like the tendril arms. Inflorescence-tendril arms with free ends

were sometimes observed in some species of Vitis, Cissus simsiana, Clematicissus angustissima,

Rhicissus tridentata, and Cissus trianae. Occasionally, the inflorescence-tendrils are twining

even though no free end is present, as observed in some Ampelopsis, Clematicissus, Rhoicissus,

and Cissus antarctica. On the contrary, the inflorescence-tendril of Cissus species with

perichalazal seeds, and in Tetrastigma, Cayratia, and Cyphostemma, usually does not have a

monochasial organization like their tendrils (Figure 2-10 E-F), and twining inflorescences do not

occur in those taxa. The properties of tendrils and inflorescences are more strongly

differentiated in these genera.

The inflorescence-axes of Vitaceae are either racemose or cymose. The racemose or

cymose organization repeats several times, and the terminal part of the inflorescence usually

consists of clustered flowers with either an umbellate, dichasial, or double cincinus organization.

Racemose inflorescence structure unites the Ampelocissus-Pterisanthes-Nothocissus-Vitis clade;

racemose inflorescences do not occur in other taxa. In Vitis, the racemose organization has one

or two orders; whereas Ampelocissus usually has more than four orders of racemose branching.

Racemose inflorescences are usually elongate; nevertheless, the inflorescences of Ampelocissus

can be compact or lax and not elongate, depending on the length of the inflorescence-axes. The

shape of the inflorescences sometimes has been used to recognize species of Ampelocissus. The

inflorescences of Ampelocissus robinsonii are elongate and have only one to two orders of

racemose organization, as in Vitis. The similarities of inflorescence and seed morphology with

120

Vitis resulted in the placement of A. robinsonii sister to all species of Ampelocissus (Figures 2-1

and 2-2). The Malesian endemic Ampelocissus, Pterisanthes, and Nothocissus have distinct

inflorescence structures. The inflorescences of Ampelocissus sect. Kalocissus (Miq.) Planch. are

racemes of spikes; there are 2-3 orders of racemose organization, the flowers are sessile and

spirally arranged on the last inflorescence-axes. The inflorescence-axes of Pterisanthes are

flattened, with sessile flowers scattered on both side of the lamina. In addition to the pedicel-less

flowers, some species of Pterisanthes have flowers with long pedicels on the margin of the

lamina. Nothocissus has long bifurcate whip-like inflorescences. The first inflorescence-axes of

Nothocissus are racemose, and the second order axes produce an umbellate cluster of three

flowers; the basic architecture is similar to that of Vitis. What makes the inflorescence of

Nothocissus unusual is that both inflorescence-tendril arms are equally developed so two

racemes are present in a single inflorescence.

Among the inflorescences without racemose organization, the inflorescence-first-axes of

Cayratia and Cyphostemma clearly have a tri- or tetra-chasial organization. The higher order

inflorescence-axes are dichasial. The side axes of the dichasium can have equal or unequal

length, and the two paraclades can have equal or unequal branching order numbers. In some

species the extremely unequal development of the two paraclades occurs in continuous seven to

eight branching orders, making the inflorescence appear lax with several long arms. All other

genera (Cissus, Tetrastigma, Ampelopsis, Rhoicissus, Parthenocissus and Yua) have an umbel

with three to five arms organization in the inflorescence-first-axes. Dichasia and double cincina

are common types of inflorescence-axes organization above the first-axes in Cissus, Ampelopsis,

Clematicissus, and Rhoicissus. Inflorescence-axes of Tetrastigma, Parthenocissus and Yua

usually can only be discerned as umbellate organization at all order levels. The umbellate units

121

of the mature inflorescence may have a dichasial origin: in the Vitis species that have been

observed (Posluszny and Gerrath, 1986), distal inflorescence-axes have a dichasial

developmental pattern. The umbellate organization is possibly the result of the fast developing

rate of the lateral flowers, or the short time interval between the generation of terminal and

lateral flowers.

The phylogeny of this study indicates a transition from distinct tendril and inflorescence

structures to tendril and inflorescence sharing the same basal monochasial structure in the same

plant (Figure 2-11). Cymoid inflorescences are prevalent in this family, possibly an ancestral

state, with racemose inflorescences derived later. Understanding the mechanism of the

formation of inflorescence and tendril architectures is undoubtedly the key to understand the

intrafamilial relationships of Vitaceae. A GAI1 mutant grape cultivar produced inflorescences

instead of tendrils at the nodes of the main shoot and the shoot from latent bud (Boss and

Thomas, 2002), a phenotype resembling Ampelopsis instead of Vitis. Gibberellins are very likely

involved in the formation of tendril/inflorescence structures.

Interestingly, the morphology-based phylogeny of this study shares the basic frame work

of the GAI1 phylogeny (Wen et al., 2007). Knowledge of the functional genetics of the

development of tendrils/inflorescences will provide an independent line of evidence on the

evolution of Vitaceae.

Floral morphology

The flowers of Vitaceae have cup-shaped calyces and 4-6 petals; the number of stamens

is equal to the number of petals, and the stamens are opposite the petals. The calyx margin is

entire, irregularly lobed, to symmetrically lobed with lobe number equal to petal numbers; this

variation is frequently observed in flowers from the same individual. The margin of the petals

has a fold-up overgrowth on the adaxial side; the anthers are introrse and tucked in the

122

compartment formed by the overgrowth of the petal when flowers are in buds. At anthesis the

petals flare outward, showing the boat-shaped apex on the adaxial surface. In most species of

Cayratia, Cyphostemma, and Tetrastigma, the apices of the petals are convex to hood-shaped;

when flowers open, the flared petals are spoon-like at the apices. In some species of Cayratia

and Tetrastigma the hood-shaped petals are pointed at the hooded apex so the flower buds appear

to have four horns. Petals of Vitis are connected to form a calyptra by interdigitation of the

epidermal cells (Gerrath and Posluszny, 1988a). Calyptras fall off at anthesis and the petals are

separated only at the base. The color of the petals range from greenish-white, yellowish-white,

to red. Red color in petals is frequently present in species of Ampelocissus and Cyphostemma.

Papillae were observed on the outer surface of most petals. Hairs on the abaxial surface of petals

mostly occurs in species of Cyphostemma.

Shape of nectary discs and carpels clearly distinguishes some genera of Vitaceae. Most

genera (Ampelopsis, Cayratia, Cissus, Rhoicissus) have a dish shaped nectary disc in which the

ovary is embedded; the linear style protrudes from the center of the disc. In some species the

edge of the disc is folded upward forming a rim to hold ample nectar. The outer margin of the

disc is always grooved and the filaments are pressed against the grooves; sometimes the grooves

are deep so the disc appears lobed. In Cyphostemma the discs are prominent and deeply

dissected so they look like four large glands sitting between the filaments. Vitis and Tetrastigma

are dioecious with functionally pistillate/staminate flowers; carpels are missing in staminate

flowers, but the disc remains. The stamens are present in the pistillate flowers and their size is

usually much smaller compared to those of staminate flowers. Their carpels are wine-bottle-

shaped; the disk is a ring of tissues at the base of the carpels. Parthenocissus has bottle-shaped

carpels, however, the nectary tissues are usually inconspicuous. In species with more prominent

123

nectaries the tissues are cup-shaped and cover most of the ovary. The carpels of Ampelocissus

are urn-shaped with a short conical style, and the disk is conspicuous, tall, and cup-shaped,

wrapping around the ovary. On the lateral surface of the disk an extra groove is present between

the grooves against the filaments, therefore the disc appears 10-folded when the stamens are

shed. The 10 folds are extended to the surface of the style. Flowers of Nothocissus are similar to

those of Ampelocissus, with extremely tall disk-ovary structures. Pterisanthes on the other hand

has a shallow disk which, along with the ovary, is embedded in the fleshy laminar inflorescence-

axes. Hairs are frequently present on the ovary surface of Cyphostemma. The stigma is usually

truncate or discoid in the family, however a deeply four-lobed stigma is present in all species of

Tetrastigma. Leea has larger flowers, distinct from those of Vitaceae. A prominent staminodial

tube is present in the position of the disk of a flower of Vitaceae; the staminodial tube is

comparable to the disk of Vitaceae in early development (Gerrath, Lacroix, and Posluszny,

1990), hence was treated as homologous to the disk in this study. In observed mature flowers,

the disk of Leea is adnate to the petals, the stamens appear adnate to the middle of the disk, and

anthers are hooked over the top margin of the disk. Anthers are connected to each other

laterally, and are usually still connected when filaments abscised from the disk.

The ontogenesis of the floral organs has been observed microscopically in some species

of Vitis, Parthenocissus, Ampelopsis, Cissus, and Cyphostemma (see cited works of Gerrath,

Posluszny, Timmons, and Wilson). Typically, the floral organs are initiated first in the outer

whorl. Sepals are either developed individually, or in a calyx ring preceeding the sepal primodia.

Petals and stamens may or may not share the initial primordia. The carpels are initiated from a

ring-shaped primodium; in some taxa five bumps were observed before the formation of the ring-

shaped primodium. Two septa divide the gynoecium to two compartments; septa are either

124

touching or not touching in later developmental stages. Usually two anatropous ovules are

formed in each locule, with the funiculus positioned at the junction of the septa and the base of

the carpel wall, with the micropyle initially facing the lateral carpel wall. The disk sometimes

can be discerned as separate bumps flanking the developing carpel ring. The outgroup Leea

guineensis develops six septa in the gynoecium instead of two. A set of three septa develop first,

carrying two ovules on the base of each septum; the other set of three septa develop later

between two ovules that are not separated by the first set of septa. Changes occured so septal

number and ovule number were reduced in Vitaceae, and spatial differentiation in cell

poliferation resulted in the shape differences in the floral organs.

Floral morphology is usually consistent within genera of Vitaceae, and is

phylogenetically informative: the floral disk morphology supports the monophyly of the

Ampelocissus-Nothocissus-Pterisanthes clade, the monophyly of Parthenocissus, and the

monophyly of Cyphostemma. The monopyly of Tetrastigma is supported by their four-lobed

stigma; and the monophyly of Vitis is supported by the presence of calyptras. Floral merosity is

resolved as important in the high-level relationships within Vitaceae by the morphology-based

phylogenetic analyses conducted as part of this study. The outgroup, Leea, have mostly 5 or 6-

petaled flowers; a few species produce 4-petaled flowers (Ridsdale, 1974). The 4-petaled

condition is primitive in Vitaceae, and the 5-petaled condition was derived three or four times

(Figure 2-12). Reversal to the 4-petaled condition occurs in the clade containing Ampelocissus,

and likely also in Ampelopsis: Cissus simsiana, a species that closely resembles Ampelopsis, has

4-merous flowers; Ampelopsis orientale (Lam.) Planchon (not sampled) from Turkey was

reported to have 4-merous flowers (Davis, 1967).

125

Pollen morphology

Pollen grains of Leea and Vitaceae are tricolporate with a pitted to reticulate surface;

when reticulate the brochi usually decrease in size and disappear toward the colpi. Variations

among taxa mainly come from pollen size, ratio between the polar axis and the equatorial

diameter (oblate to prolate in shape), and the maxium lumen (of pit or reticulum) diameter. The

two species of Leea included in the analyses here have relatively large and oblate pollen grains,

which can be easily distinguished from those of Vitaceae. A study of pollen of 31 taxa of Leea

(Tarnavschi and Petria, 1968) also concluded that Leea can be separated from Vitaceae based on

pollen morphology. Within Vitaceae, Cissus and Parthenocissus mostly have large, prolate

pollen grains. Pollen grains of Cissus are usually pitted, and those of Parthenocissus are

reticulate. Ampelocissus, Nothocissus, Pterisanthes, Vitis, and Tetrastigma have relatively small

and pitted pollen grains. The variation of pollen morphology among genera has been noticed in

previous palynological studies of Vitaceae (Reille, 1967; Patil, 1998), although these studies are

limited by their less than comprehensive sampling of genera.

Fruits

Fruits of Leea and Vitaceae are berries. The fruit pedicels become woody with lenticels

in some, when fruits mature. Fruits of Leea are either usually with four seeds or six to nine seeds

(Ridsdale, 1976). Fruits of Vitaceae are usually 1-4-seeded. In some taxa, 1-2-seeded fruits are

prevalent. Plants producing strictly 1-seeded fruits occur in all observed species of

Cyphostemma, Acareosperma, Tetrastigma obtectum and most species of Cissus. The eight

species of Cissus with anomalous seeds have 1-4-seeded or 1-2-seeded fruits. Cissus palmata is

the only species in the major monophyletic Cissus clade with 1-4-seeded berries.

Fruit shapes are either oval/fusiform or globose/compressed globose. The disk scars are

usually present in fruits as a thin ring near pedicels; in Cyphostemma the four gland-like disk

126

scars are very prominent in fruits. Fruit colors were described as dark black purple, bronze,

maroom, red, fuschia red, brown yellow, pink, pinkish white, translucent white, to green. Some

species of Ampelopsis have distinct iridescent hue of blue and purple fruits. Lenticels on the

fruit surface are prominent and dense in some taxa but not others. The character survey in the

present study showed that dense lenticels on the fruit occur in most taxa producing 5-merous

flowers except Vitis, and the species of Cissus with anomalous seeds (Figure 2-13). Fruits

without dense lenticels are resolved as the ancestral condition of Vitaceae.

The outer epidermis of the fruits are usually smooth, although fruits with hairs are

common in the genus Cyphostemma. The hairs on the fruit surface are uniseriate with two to ten

cells; hair length and density varies among taxa. Sometimes large multiseriate glandular hairs

are also present, in addition to the uniseriate hairs. Acareosperma is the only taxon with hairy

fruits other then Cyphostemma in this study, although some un-sampled African Cissus also

have hairy fruits (Verdcourt, 1993). The hairs on fruit surface of Acareosperma are moderately

dense, mostly 2-celled, around 100 µm long, and shorter then that on fruits of most

Cyphostemma (0.2-0.7 mm). Similar short uniseriate hairs are present in the fruits of

Cyphostemma laza, at a much lower density. Stomata are present on the fruit outer epidermis of

some species of Cayratia, Cyphostemma, and Tetrastigma. The mesocarp of grapes contains

several layers of parenchyma; mucilages, druses, raphids and sometimes granular prismatic

crystals are common cell contents. Inner layers of parenchyma are usually compressed;

sometimes fibers or elongate sclereids with reticulate thickening were observed in the inner

layers of the fruit wall.

Seeds

Seed characters were described in Chapter 1. Although seeds from certain genera can be

distinguished by combined diagnostic characters, most seed characters exhibit multiple parallel

127

or reversal evolution when optimized onto the morphological phylogenies presented in this

study. Compared to other seed characters, testa anatomical features are more informative

regarding high-level relationships within the family. Endotesta sclereid shape is rectangular or

polygonal in the basal 4-merous flowered groups and columnar in genera producing 5-merous

flowers (Figure 2-14). The presence of stomata on the outer epidermis of the seed is a character

restricted to the 4-merous flowered genera Cyphostemma, Cayratia, and Tetrastigma (Figure 2-

15). Large diameter tracheidal cells are present mainly in genera with 4-merous flowers (Figure

2-16). Among the characters of external seed morphological characters, chalaza shape is more or

less correlated to floral merosity. In general, 4-petaled genera have linear chalazal seeds,

although oval chalazal seeds can occur in Acareosperma, Cayratia and Tetrastigma; 5-petaled

genera generally have oval chalazal seeds — nevertheless Rhoicissus has seeds with a linear

chalaza (Figure 2-17). The perichalazal condition is present strictly in Cissus, Cyphostemma,

and Leea (Chapter 1), and there is a trend of chalaza length reduction within the 5-petal clade.

The basal position of Cyphostemma in Vitaceae is supported by the seed character ventral infolds

covered by endotesta (133), a feature also present in Leea.

Concluding Remarks

The morphology-based phylogeny of Vitaceae conducted as part of this study indicates

that the 4-petaled genera Cyphostemma, Tetrastigma, Cayratia, and Cissus are basal lineages

within the family, and the primarily 5-petaled genera Ampelocissus, Vitis, Ampelopsis,

Parthenocissus, and Yua form a clade. Inflorescence-branch, inflorescence, and seed

morphology support the intrafamilial division by petal number. Rhoicissus and some species of

Cissus without perichalazal seeds have inflorescences similar to those of the 5-petaled genera,

nevertheless they have seeds like those of Tetrastigma. The combination of characters from 4-

petaled and 5-petaled genera places them as successively sister to the 5-merous clade (Figure 2-

128

1) or to Parthenocissus (Figure 2-2). Nevertheless, most branches of the morphology-based

phylogeny do not have statistical support. A recent molecular phylogeny with detailed taxon

sampling (Wen et al., 2007) shared the basic structure as the morphology-based phylogeny — 4-

petaled genera are earlier divergent lineages and are sister to the 5-petaled genera. An analysis

of multiple sequences with extensive taxon sampling will better resolve the intrafamilial

relationships of Vitaceae.

The leaf-opposed tendrils or inflorescences are unique to Vitaceae. The inflorescences of

the 5-petaled genera retain the structure of tendrils, and those of the 4-petaled genera mostly do

not have a tendril-like structure. It is of interest to know the factors controling the fate of an

uncommitted primodium, and the mechanisum of the formation of the tendril/inflorescence

structure. GAI1 has been shown to be involved in determining the fate of the uncommitted

primodium (Boss and Thomas, 2002); and some floral and inflorescence morphological traits

were located in the same linkage group as the sex determination locus Sex (Marguerit et al.,

2009). Molecular genetic study of Vitis vinifera, an economical important crop, is accumulating

(Carmona et al., 2007; Carmona et al., 2008), and the draft genome sequence of V. vinifera is

available (Jaillon et al., 2007), which may provide new genome-derived tools for molecular

genetic study. New knowledge on the molecular genetics of the development of inflorescences

and tendrils may lead to new phylogenetic hypotheses relating to generic relationships.

Ampelocissus abyssinicaAmpelocissus africanaNothocissus spiciferaAmpelocissus acetosaAmpelocissus latifoliaPterisanthes cissioidesPterisanthes politaAmpelocissus ochraceaAmpelocissus botryostachysAmpelocissus barbataAmpelocissus javalensisAmpelocissus acapulcensisAmpelocissus erdvendbergianaAmpelocissus robinsoniiVitis aestivalisVitis rotundifoliaVitis flexuosaVitis piasezkiiVitis betulifoliaVitis viniferaVitis tsoiCissus simsianaAmpelopsis grossedentataAmpelopsis cantoniensisAmpelopsis delavayanaAmpelopsis glandulosaAmpelopsis cordataAmpelopsis arboreaParthenocissus dalzieliiParthenocissus laetevirensParthenocissus quinquefoliaParthenocissus vitaceaYua chinensisYua austro-orientalisClematicissus angustissimaClematicissus opacaCissus striata ssp. argentinaCissus granulosaCissus penninervisCissus sterculiifoliaCissus hypoglaucaRhoicissus digitataCissus trianaeRhoicissus tridentataCissus antarcticaCissus biformifoliaCissus paullinifoliaCissus alataCissus palmataCissus assamicaCissus cornifoliaCissus descoingsiiCissus fuligineaCissus mirabilisCissus obovataCissus quadrangularisCissus reniformisCissus verticillataCissus campestrisCyphostemma lazaCayratia japonicaCayratia trifoliaCayratia triternataCayratia maritimaCayratia oligocarpaTetrastigma bioritsenseTetrastigma planicauleTetrastigma obtectumTetrastigma rumicispermumTetrastigma serrulatumAcareosperma spireanumCayratia cardiophyllaCayratia geniculataCyphostemma adenocauleCyphostemma buchananiiCyphostemma paucidentatumCyphostemma setosumCyphostemma hereroenseCyphostemma lageniflorumCyphostemma odontadeniumCyphostemma microdipteraCyphostemma junceumLeea guineensisLeea tetramera

10062

92

66

60

86

79

7995

85

67

81

100

petal number: 54

Figure 2-1. Strict consensus of 516 shortest trees from the morphological dataset in which the

continuous characters were treated with discrete coding. Numbers above the

branches are bootstrap values > 50%. Character floral merosity (54) is mapped onto

the tree.

129

Pterisanthes cissioidesPterisanthes politaAmpelocissus botryostachysAmpelocissus ochraceaAmpelocissus barbataAmpelocissus africanaNothocissus spiciferaAmpelocissus abyssinicaAmpelocissus acetosaAmpelocissus latifoliaAmpelocissus acapulcensisAmpelocissus erdvendbergianaAmpelocissus javalensisAmpelocissus robinsoniiVitis flexuosaVitis tsoiVitis piasezkiiVitis betulifoliaVitis viniferaVitis aestivalisVitis rotundifoliaCissus simsianaAmpelopsis cordataAmpelopsis glandulosaAmpelopsis delavayanaAmpelopsis cantoniensisAmpelopsis grossedentataAmpelopsis arboreaClematicissus angustissimaClematicissus opacaParthenocissus dalzieliiParthenocissus laetevirensParthenocissus quinquefoliaParthenocissus vitaceaYua chinensisYua austro-orientalisCissus hypoglaucaCissus antarcticaRhoicissus tridentataRhoicissus digitataCissus sterculiifoliaCissus trianaeCissus granulosaCissus penninervisCissus striata ssp. argentinaCissus biformifoliaCissus paullinifoliaCissus descoingsiiCissus assamicaCissus cornifoliaCissus mirabilisCissus obovataCissus quadrangularisCissus reniformisCissus fuligineaCissus campestrisCissus verticillataCissus alataCissus palmataTetrastigma bioritsenseTetrastigma planicauleTetrastigma rumicispermumTetrastigma obtectumTetrastigma serrulatumCayratia cardiophyllaCayratia geniculataCayratia maritimaCayratia oligocarpaCayratia triternataCayratia trifoliaCayratia japonicaAcareosperma spireanumCyphostemma hereroenseCyphostemma odontadeniumCyphostemma lageniflorumCyphostemma setosumCyphostemma paucidentatumCyphostemma buchananiiCyphostemma adenocauleCyphostemma lazaCyphostemma microdipteraCyphostemma junceumLeea guineensisLeea tetramera

68

100

80

51

50

95

54

6651

88

62

58

74

52

8199

90

53

71

66

100

petal number: 54

Figure 2-2. The shortest tree from the morphological dataset in which the continuous characters

were treated with GW coding. Numbers above the branches are bootstrap values >

50%. Character floral merosity (54) is mapped onto the tree.

130

11: 0->1

25: 0->0/1

33: 0/1->1

43: 0->1

47: 1->0/1

57: 0/1->0

75: 0->2

76: 1->0

89: 0->1

101: 1->0

106: 1->0

109: 1->0/1

110: 1->0

117: 2->1

5: 1->0

16: 1->0

33: 0->1

41: 1->0

45: 0->0/1

54: 0->1

86: 0->0/1

114: 0->0/1

45: 0/1->1

46: 0->1

89: 0->1

90: 1->0

109: 0/1->1

114: 0/1->1

22: 1->0/1

74: 0->0/1

86: 0/1->1

93: 0->1

97: 0->1

109: 0/1->0

120: 0->1

11: 0->0/1

13: 0->0/1

24: 0->0/1

36: 0->1

40: 0->2

45: 0/1->0

48: 1->0

49: 2->0

61: 0->1

67: 0->1

70: 0->1

74: 0/1->1

91: 0->1

100: 1->0

113: 0/1->0

114: 0/1->1

14: 1->3

17: 1->0

22: 0/1->0

25: 0->1

45: 0/1->0/1

111: 1->0

113: 0/1->1

114: 0/1->0

14: 0/1/3->0

25: 0/1->0

28: 0->1

46: 0->2

48: 1->2

49: 2->0

51: 2->1

53: 2->1

60: 0->0/1

66: 1->0/1/2

70: 0->1

71: 1->0

74: 0/1->1

100: 1->0

102: 0->0/1

31: 0->1

32: 0->1

36: 0->1

40: 0/2->2

44: 0/1->0/1

45: 0/1->0

59: 0->1

60: 0/1->1

66: 0/1/2->0

78: 1->0

102: 0/1->1

113: 1->0

120: 0->1

122: 0->1

19: 1->2

40: 0/2->0

44: 0/1->1

45: 0/1->1

62: 0->2

66: 0/1/2->2

68: 0->1

69: 1->0

84: 0->1

Pte

risa

nth

es p

olit

a

Pte

risa

nth

es c

issio

ide

s

Am

pe

locis

su

s o

ch

race

a

Am

pe

locis

su

s b

otr

yo

sta

ch

ys

Am

pe

locis

su

s b

arb

ata

Am

pe

locis

su

s a

fric

an

a

Am

pe

locis

su

s a

byssin

ica

No

tho

cis

su

s s

pic

ife

ra

Am

pe

locis

su

s la

tifo

lia

Am

pe

locis

su

s a

ce

tosa

Am

pe

locis

su

s ja

va

len

sis

Am

pe

locis

su

s a

ca

pu

lce

nsis

Am

pe

locis

su

s e

rdve

nd

be

rgia

na

Am

pe

locis

su

s r

ob

inso

nii

Vitis

pia

se

zkii

Vitis

fle

xu

osa

Vitis

ro

tun

difo

lia

Vitis

ae

stiva

lis

Vitis

vin

ife

ra

Vitis

be

tulif

olia

Vitis

tso

i

Cis

su

s s

imsia

na

Am

pe

lop

sis

gro

sse

de

nta

ta

Am

pe

lop

sis

ca

nto

nie

nsis

Am

pe

lop

sis

gla

nd

ulo

sa

Am

pe

lop

sis

de

lava

ya

na

Am

pe

lop

sis

co

rda

ta

Am

pe

lop

sis

arb

ore

aP

art

he

no

cis

su

s la

ete

vire

ns

Pa

rth

en

ocis

su

s d

alz

ielii

Pa

rth

en

ocis

su

s q

uin

qu

efo

lia

Pa

rth

en

ocis

su

s v

ita

ce

a

Yu

a c

hin

en

sis

Yu

a a

ustr

o o

rie

nta

lis

Cle

ma

ticis

su

s o

pa

ca

Cle

ma

ticis

su

s a

ng

ustissim

a

Cis

su

s s

tria

ta s

sp

. a

rge

ntin

a

Cis

su

s g

ran

ulo

sa

Cis

su

s p

en

nin

erv

is

Cis

su

s s

terc

ulii

folia

Cis

su

s h

yp

og

lau

ca

Rh

oic

issu

s d

igita

ta

Rh

oic

issu

s trid

en

tata

Cis

su

s tria

na

e

Cis

su

s a

nta

rctica

unique, uniform above

unique, with change above

homoplasy above

homoplasy outside

homoplasy above and outside

ambigous change

Figure 2-3. Character changes over selected branches on one of the shortest trees obtained from

the morphological dataset in which the continuous characters were treated with

discrete coding. The tree is extended to the next page via the broken line.

131

11: 0/1->0

14: 1/3->3

18: 0/1->0

46: 0/1/3->0

48: 0/1->0

55: 0/1->1

56: 0/1->0

72: 0/1->1

74: 0/1->1

75: 0/3->3

76: 0/1->0

77: 0/1->1

80: 0/1->0

94: 0/1->1

103: 0/1->0

104: 0/1->0

106: 0/1->0

112: 0/1->1

117: 0/2->0

118: 0/1->1

119: 0/1->1

124: 0/1->0

130: 0/1->0

11: 0/1->1

14: 1/3->1/3

18: 0/1->1

46: 0/1/3->0/1/3

48: 0/1->1

55: 0/1->0

56: 0/1->1

72: 0/1->0

74: 0/1->0

75: 0/3->0

76: 0/1->1

77: 0/1->0

80: 0/1->0/1

94: 0/1->0

103: 0/1->1

104: 0/1->1

106: 0/1->1

112: 0/1->0

117: 0/2->2

118: 0/1->0

119: 0/1->0

124: 0/1->1

130: 0/1->1

1: 1->0/1

5: 2->0

16: 1->0

39: 2->1

40: 2->1

41: 1->0

42: 1->0

46: 0/1/3->0/1

66: 2->1

67: 1->0

1: 0/1->0

14: 1/3->1/3

34: 0->1

37: 0->1

46: 0/1->0/1

81: 1->0/1

10: 0->2

30: 0->1

46: 0/1->1

80: 0/1->0/1

81: 0/1->0

111: 0->1

14: 1/3->1/2/3

57: 1->0

75: 0->0/2

76: 1->0/1

80: 0/1->0

87: 1->0

93: 1->0/1

97: 0->0/1

101: 1->0

110: 1->0

114: 1->0/1

132: 0->1

133: 1->0

14: 1/2/3->2

32: 0->0/1

33: 0->0/1

84: 0->1

93: 0/1->0

107: 2->0

114: 0/1->0

117: 2->1

32: 0/1->1

33: 0/1->1

34: 1->0

46: 0/1->1

75: 0/2->2

76: 0/1->0

81: 0/1->0/1

86: 0->1

88: 0->1

97: 0/1->0/1

103: 1->2

108: 1->0

112: 0->1

115: 0->110: 0->1

14: 1/2/3->1/2

16: 0->0/1

35: 0->1

38: 1->0

75: 0/2->2

76: 0/1->0

77: 0->0/1

97: 0/1->0/1

128: 1->0/1

13: 1->0

14: 1/2->1

43: 0->1

46: 0/1->1

77: 0/1->1

97: 0/1->1

105: 1->0

112: 0->1

114: 0/1->0

137: 0->1

16: 0/1->0/1

18: 1->2

31: 0->1

37: 1->0

46: 0/1->0

48: 1->0/1

49: 1->0

63: 2->1/2

65: 0->1

66: 1->0

68: 0->1

69: 1->0

70: 0->0/1

71: 1->0

73: 1->0

95: 0->0/1

114: 0/1->0/1

126: 1->0

128: 0/1->0

129: 1->0/1

1: 0/1->0

5: 0->0/1

11: 1->0

14: 0/1/3->0

20: 0->1

39: 1->0

40: 1->0

46: 0/1->0

56: 1->0

57: 1->0

73: 1->0

80: 0/1->0

130: 1->0

133: 1->0

Cis

su

s b

ifo

rmifo

lia

Cis

su

s p

au

llin

ifo

lia

Cis

su

s p

alm

ata

Cis

su

s a

lata

Cis

su

s a

ssa

mic

a

Cis

su

s c

orn

ifo

lia

Cis

su

s f

ulig

ine

a

Cis

su

s d

esco

ing

sii

Cis

su

s o

bo

va

ta

Cis

su

s m

ira

bili

s

Cis

su

s q

ua

dra

ng

ula

ris

Cis

su

s r

en

ifo

rmis

Cis

su

s v

ert

icill

ata

Cis

su

s c

am

pe

str

is

Cyp

ho

ste

mm

a la

za

Te

tra

stig

ma

ru

mic

isp

erm

um

Te

tra

stig

ma

ob

tectu

m

Te

tra

stig

ma

se

rru

latu

m

Te

tra

stig

ma

pla

nic

au

le

Te

tra

stig

ma

bio

rits

en

se

Ca

yra

tia

ge

nic

ula

ta

Ca

yra

tia

ca

rdio

ph

ylla

Ca

yra

tia

trifo

lia

Ca

yra

tia

ja

po

nic

a

Ca

yra

tia

trite

rna

ta

Ca

yra

tia

olig

oca

rpa

Ca

yra

tia

ma

ritim

a

Aca

reo

sp

erm

a s

pire

an

um

Cyp

ho

ste

mm

a b

uch

an

an

ii

Cyp

ho

ste

mm

a a

de

no

ca

ule

Cyp

ho

ste

mm

a p

au

cid

en

tatu

m

Cyp

ho

ste

mm

a s

eto

su

m

Cyp

ho

ste

mm

a la

ge

niflo

rum

Cyp

ho

ste

mm

a h

ere

roe

nse

Cyp

ho

ste

mm

a o

do

nta

de

niu

m

Cyp

ho

ste

mm

a m

icro

dip

tera

Cyp

ho

ste

mm

a ju

nce

um

Le

ea

te

tra

me

ra

Le

ea

gu

ine

en

sis

Figure 2-3. Continued.

132

Pterisanthes cissioidesPterisanthes politaAmpelocissus botryostachysAmpelocissus ochraceaAmpelocissus barbataAmpelocissus africanaNothocissus spiciferaAmpelocissus abyssinicaAmpelocissus acetosaAmpelocissus latifoliaAmpelocissus acapulcensisAmpelocissus erdvendbergianaAmpelocissus javalensisAmpelocissus robinsoniiVitis flexuosaVitis tsoiVitis piasezkiiVitis betulifoliaVitis viniferaVitis aestivalisVitis rotundifoliaCissus simsianaAmpelopsis cordataAmpelopsis glandulosaAmpelopsis delavayanaAmpelopsis cantoniensisAmpelopsis grossedentataAmpelopsis arboreaClematicissus angustissimaClematicissus opacaParthenocissus dalzieliiParthenocissus laetevirensParthenocissus quinquefoliaParthenocissus vitaceaYua chinensisYua austro-orientalisCissus hypoglaucaCissus antarcticaRhoicissus tridentataRhoicissus digitataCissus sterculiifoliaCissus trianaeCissus granulosaCissus penninervisCissus striata ssp. argentinaCissus biformifoliaCissus paullinifoliaCissus descoingsiiCissus assamicaCissus cornifoliaCissus mirabilisCissus obovataCissus quadrangularisCissus reniformisCissus fuligineaCissus campestrisCissus verticillataCissus alataCissus palmataTetrastigma bioritsenseTetrastigma planicauleTetrastigma rumicispermumTetrastigma obtectumTetrastigma serrulatumCayratia cardiophyllaCayratia geniculataCayratia maritimaCayratia oligocarpaCayratia triternataCayratia trifoliaCayratia japonicaAcareosperma spireanumCyphostemma hereroenseCyphostemma odontadeniumCyphostemma lageniflorumCyphostemma setosumCyphostemma paucidentatumCyphostemma buchananiiCyphostemma adenocauleCyphostemma lazaCyphostemma microdipteraCyphostemma junceumLeea guineensisLeea tetramera

Figure 2-4. Character changes over selected branches (labeled 1-4) on the shortest tree obtained

from the morphological dataset in which the continuous characters were treated with

GW coding.

1

2

3

4

133

5: 1->0

13: 6->9/a

24: 0->1

40: 0->2

48: 0/1->0

49: 2->0

61: 7/8/9->d

68: 2/3->3

69: b/c/d/e/f/g->b/c

70: 7->a

71: f->f/g

73: 4->6/7

78: j/k/l/m/n->j

81: a/b->a/b

82: b/c->b

90: f->e

91: d/e/f/g/h->g/h

95: a/b->a/b

109: j/k/l/m/n/p/q/r->j

117: d/e/f/g/h/j/k/l->j/k/l

118: 7/8/9->7/8/9

119: 2/3->2

120: 7/8->8

122: 1/2->1/2

126: 2/3->1

127: g/h/j->g/h/j

131: 5/6->2

5: 0->1

7: 3/4/5/6->3/4/5/6

17: 0->1

22: 3/4/5->2/3/4/5

42: 8/9->8

67: 4->4/5

70: 6->7

72: 7->7/8/9

78: d/e->d/e/f/g/h/j

86: 5->2/3/4/5

87: d->d/e

88: 4/5/6/7->2/3/4/5/6

89: b/c/d->b/c/d

90: e->f

91: 9->a

93: b/c/d/e->b/c/d/e

94: 5/6->4

95: 7->a/b

97: a/b/c/d/e->a/b/c/d

101: 5/6->5/6

104: 2/3/4/5/6/7/8/9->2/3/4/5/6/7/8/9

106: e/f/g/h/j/k/l/m/n/p->

4/5/6/7/8/9/a/b/c/d/e/f/g/h/j/k/l/m/n/p

111: 2/3->4/5/6

112: d/e->a/b/c/d

114: b/c->b

117: q/r->q/r

118: 8->8/9

119: 0/1/2->0/1/2/3

121: 2/3->2

122: 1/2->1/2

124: a->7/8/9/a

127: g/h/j->g/h/j

7: 3->3/4/5/6

10: 0/2->0

13: 5/6->4/5/6

42: 8/9/a->8/9

43: 0->1

53: j->h

66: 4/5->5

67: 3/4->4

68: 1/2->1/2

70: 5/6->6

73: 3/4->4

78: 4/5/6/7->d/e

82: g/h->g/h

89: b/c/d->b/c/d

92: c/d->b/c/d

93: c/d/e->b/c/d/e

94: 5/6/7->5/6

95: 6/7->7

97: d/e->a/b/c/d/e

98: b/c->b/c/d/e/f/g/h

99: 5/6->d/e/f/g/h

100: 4/5->g

103: b/c->d/e/f/g/h/j

107: f/g/h/j/k/l->r

112: e->d/e

113: d->j

114: b/c->b/c

117: q/r->q/r

118: 5/6/7->8

121: 2/3/4->2/3

126: 3/4/5->2/3

128: 3/4/5/6/7/8->3

131: 7/8/9/a->6

10: 0/2->0/2

13: 5/6->5/6/7

20: 0->1

22: 3/4/5->3

23: c/d/e->5/6/7/8/9/a

61: 8/9->d

66: 4/5->4

67: 3/4->3/4

68: 1/2->1

69: g->l

70: 5/6->5

71: f->h/j

73: 3/4->3/4

81: 9->9/a/b

82: g/h->6/7/8/9/a/b/c/d

88: 4/5/6/7->7

89: b/c/d->8

91: 9->7/8/9

92: c/d->c/d

93: c/d/e->f/g/h/j

94: 5/6/7->7

95: 6/7->4

96: c->c/d/e/f

97: d/e->d/e

98: b/c->3/4

99: 5/6->3

101: 5/6->g

103: b/c->9

104: 2/3/4/5/6/7/8/9->2

105: l->h

106: e/f/g/h/j/k/l/m/n/p->r

110: 7->e

113: d->6

114: b/c->g/h

117: q/r->r

119: 0/1/2->0

120: 7/8->a

121: 2/3/4->4

122: 1/2->1

126: 3/4/5->5

127: g/h/j->j

128: 3/4/5/6/7/8->e

1 2 3 4

unique, with change above

homoplasy above

homoplasy outside

homoplasy above and outside

ambigous change

Character state:

a = 10, b = 11, c = 12, d = 13, e = 14, f = 15, g = 16, h = 17, j = 18, k = 19, l = 20,

m = 21, n = 22, p = 23, q = 24, r = 25

Figure 2-4. Continued.

134

135

Ampelocissus abyssinicaAmpelocissus africanaNothocissus spiciferaAmpelocissus acetosaAmpelocissus latifoliaPterisanthes cissioidesPterisanthes politaAmpelocissus ochraceaAmpelocissus botryostachysAmpelocissus barbataAmpelocissus javalensisAmpelocissus acapulcensisAmpelocissus erdvendbergianaAmpelocissus robinsoniiVitis aestivalisVitis rotundifoliaVitis flexuosaVitis piasezkiiVitis betulifoliaVitis viniferaVitis tsoiCissus simsianaAmpelopsis grossedentataAmpelopsis cantoniensisAmpelopsis delavayanaAmpelopsis glandulosaAmpelopsis cordataAmpelopsis arboreaParthenocissus dalzieliiParthenocissus laetevirensParthenocissus quinquefoliaParthenocissus vitaceaYua chinensisYua austro-orientalisClematicissus angustissimaClematicissus opacaCissus striata ssp. argentinaCissus granulosaCissus penninervisCissus sterculiifoliaCissus hypoglaucaRhoicissus digitataCissus trianaeRhoicissus tridentataCissus antarcticaCissus biformifoliaCissus paullinifoliaCissus alataCissus palmataCissus assamicaCissus cornifoliaCissus descoingsiiCissus fuligineaCissus mirabilisCissus obovataCissus quadrangularisCissus reniformisCissus verticillataCissus campestrisCyphostemma lazaTetrastigma bioritsenseTetrastigma planicauleTetrastigma obtectumTetrastigma rumicispermumTetrastigma serrulatumCayratia cardiophyllaCayratia geniculataCayratia japonicaCayratia trifoliaCayratia triternataCayratia oligocarpaCayratia maritimaAcareosperma spireanumCyphostemma adenocauleCyphostemma buchananiiCyphostemma paucidentatumCyphostemma setosumCyphostemma hereroenseCyphostemma lageniflorumCyphostemma odontadeniumCyphostemma microdipteraCyphostemma junceumLeea guineensisLeea tetramera

tendril interrupted in three-node modularitytendril not interruptedno tendriltendril interrupted in two-node modularityEquivocal

Figure 2-6. The optimization of the character phyllotaxy (character 5) on: A) one of the MPTs

from the morphological dataset with continuous characters treated with discrete

coding; B) the MPT obtained from the morphological dataset with continuous

characters treated with GW coding.

A

136

Pterisanthes cissioides

Pterisanthes polita

Ampelocissus botryostachys

Ampelocissus ochracea

Ampelocissus barbata

Ampelocissus africana

Nothocissus spicifera

Ampelocissus abyssinica

Ampelocissus acetosa

Ampelocissus latifolia

Ampelocissus acapulcensis

Ampelocissus erdvendbergiana

Ampelocissus javalensis

Ampelocissus robinsonii

Vitis flexuosa

Vitis tsoi

Vitis piasezkii

Vitis betulifolia

Vitis vinifera

Vitis aestivalis

Vitis rotundifolia

Cissus simsiana

Ampelopsis cordata

Ampelopsis glandulosa

Ampelopsis delavayana

Ampelopsis cantoniensis

Ampelopsis grossedentata

Ampelopsis arborea

Clematicissus angustissima

Clematicissus opaca

Parthenocissus dalzielii

Parthenocissus laetevirens

Parthenocissus quinquefolia

Parthenocissus vitacea

Yua chinensis

Yua austro-orientalis

Cissus hypoglauca

Cissus antarctica

Rhoicissus tridentata

Rhoicissus digitata

Cissus sterculiifolia

Cissus trianae

Cissus granulosa

Cissus penninervis

Cissus striata ssp. argentina

Cissus biformifolia

Cissus paullinifolia

Cissus descoingsii

Cissus assamica

Cissus cornifolia

Cissus mirabilis

Cissus obovata

Cissus quadrangularis

Cissus reniformis

Cissus fuliginea

Cissus campestris

Cissus verticillata

Cissus alata

Cissus palmata

Tetrastigma bioritsense

Tetrastigma planicaule

Tetrastigma rumicispermum

Tetrastigma obtectum

Tetrastigma serrulatum

Cayratia cardiophylla

Cayratia geniculata

Cayratia maritima

Cayratia oligocarpa

Cayratia triternata

Cayratia trifolia

Cayratia japonica

Acareosperma spireanum

Cyphostemma hereroense

Cyphostemma odontadenium

Cyphostemma lageniflorum

Cyphostemma setosum

Cyphostemma paucidentatum

Cyphostemma buchananii

Cyphostemma adenocaule

Cyphostemma laza

Cyphostemma microdiptera

Cyphostemma junceum

Leea guineensis

Leea tetramera

tendril interrupted in three-node modularitytendril not interruptedno tendriltendril interrupted in two-node modularityEquivocal

Figure 2-6. Continued.

B

137

Ampelocissus abyssinicaAmpelocissus africanaNothocissus spiciferaAmpelocissus acetosaAmpelocissus latifoliaPterisanthes cissioidesPterisanthes politaAmpelocissus ochraceaAmpelocissus botryostachysAmpelocissus barbataAmpelocissus javalensisAmpelocissus acapulcensisAmpelocissus erdvendbergianaAmpelocissus robinsoniiVitis aestivalisVitis rotundifoliaVitis flexuosaVitis piasezkiiVitis betulifoliaVitis viniferaVitis tsoiCissus simsianaAmpelopsis grossedentataAmpelopsis cantoniensisAmpelopsis delavayanaAmpelopsis glandulosaAmpelopsis cordataAmpelopsis arboreaParthenocissus dalzieliiParthenocissus laetevirensParthenocissus quinquefoliaParthenocissus vitaceaYua chinensisYua austro-orientalisClematicissus angustissimaClematicissus opacaCissus striata ssp. argentinaCissus granulosaCissus penninervisCissus sterculiifoliaCissus hypoglaucaRhoicissus digitataCissus trianaeRhoicissus tridentataCissus antarcticaCissus biformifoliaCissus paullinifoliaCissus alataCissus palmataCissus assamicaCissus cornifoliaCissus descoingsiiCissus fuligineaCissus mirabilisCissus obovataCissus quadrangularisCissus reniformisCissus verticillataCissus campestrisCyphostemma lazaTetrastigma bioritsenseTetrastigma planicauleTetrastigma obtectumTetrastigma rumicispermumTetrastigma serrulatumCayratia cardiophyllaCayratia geniculataCayratia japonicaCayratia trifoliaCayratia triternataCayratia oligocarpaCayratia maritimaAcareosperma spireanumCyphostemma adenocauleCyphostemma buchananiiCyphostemma paucidentatumCyphostemma setosumCyphostemma hereroenseCyphostemma lageniflorumCyphostemma odontadeniumCyphostemma microdipteraCyphostemma junceumLeea guineensisLeea tetramera

simplepalmatepedatepinnateEquivocal

A

Figure 2-7. The optimization of the character leaf form (character 14) on: A) one of the MPTs

from the morphological dataset with continuous characters treated with discrete

coding; B) the MPT obtained from the morphological dataset with continuous

characters treated with GW coding.

138

Pterisanthes cissioides

Pterisanthes polita

Ampelocissus botryostachys

Ampelocissus ochracea

Ampelocissus barbata

Ampelocissus africana

Nothocissus spicifera

Ampelocissus abyssinica

Ampelocissus acetosa

Ampelocissus latifolia

Ampelocissus acapulcensis

Ampelocissus erdvendbergiana

Ampelocissus javalensis

Ampelocissus robinsonii

Vitis flexuosa

Vitis tsoi

Vitis piasezkii

Vitis betulifolia

Vitis vinifera

Vitis aestivalis

Vitis rotundifolia

Cissus simsiana

Ampelopsis cordata

Ampelopsis glandulosa

Ampelopsis delavayana

Ampelopsis cantoniensis

Ampelopsis grossedentata

Ampelopsis arborea

Clematicissus angustissima

Clematicissus opaca

Parthenocissus dalzielii

Parthenocissus laetevirens

Parthenocissus quinquefolia

Parthenocissus vitacea

Yua chinensis

Yua austro-orientalis

Cissus hypoglauca

Cissus antarctica

Rhoicissus tridentata

Rhoicissus digitata

Cissus sterculiifolia

Cissus trianae

Cissus granulosa

Cissus penninervis

Cissus striata ssp. argentina

Cissus biformifolia

Cissus paullinifolia

Cissus descoingsii

Cissus assamica

Cissus cornifolia

Cissus mirabilis

Cissus obovata

Cissus quadrangularis

Cissus reniformis

Cissus fuliginea

Cissus campestris

Cissus verticillata

Cissus alata

Cissus palmata

Tetrastigma bioritsense

Tetrastigma planicaule

Tetrastigma rumicispermum

Tetrastigma obtectum

Tetrastigma serrulatum

Cayratia cardiophylla

Cayratia geniculata

Cayratia maritima

Cayratia oligocarpa

Cayratia triternata

Cayratia trifolia

Cayratia japonica

Acareosperma spireanum

Cyphostemma hereroense

Cyphostemma odontadenium

Cyphostemma lageniflorum

Cyphostemma setosum

Cyphostemma paucidentatum

Cyphostemma buchananii

Cyphostemma adenocaule

Cyphostemma laza

Cyphostemma microdiptera

Cyphostemma junceum

Leea guineensis

Leea tetramera

simplepalmatepedatepinnate

B

Figure 2-7. Continued.

Equivocal

139

Ampelocissus abyssinicaAmpelocissus africanaNothocissus spiciferaAmpelocissus acetosaAmpelocissus latifoliaPterisanthes cissioidesPterisanthes politaAmpelocissus ochraceaAmpelocissus botryostachysAmpelocissus barbataAmpelocissus javalensisAmpelocissus acapulcensisAmpelocissus erdvendbergianaAmpelocissus robinsoniiVitis aestivalisVitis rotundifoliaVitis flexuosaVitis piasezkiiVitis betulifoliaVitis viniferaVitis tsoiCissus simsianaAmpelopsis grossedentataAmpelopsis cantoniensisAmpelopsis delavayanaAmpelopsis glandulosaAmpelopsis cordataAmpelopsis arboreaParthenocissus dalzieliiParthenocissus laetevirensParthenocissus quinquefoliaParthenocissus vitaceaYua chinensisYua austro-orientalisClematicissus angustissimaClematicissus opacaCissus striata ssp. argentinaCissus granulosaCissus penninervisCissus sterculiifoliaCissus hypoglaucaRhoicissus digitataCissus trianaeRhoicissus tridentataCissus antarcticaCissus biformifoliaCissus paullinifoliaCissus alataCissus palmataCissus assamicaCissus cornifoliaCissus descoingsiiCissus fuligineaCissus mirabilisCissus obovataCissus quadrangularisCissus reniformisCissus verticillataCissus campestrisCyphostemma lazaTetrastigma bioritsenseTetrastigma planicauleTetrastigma obtectumTetrastigma rumicispermumTetrastigma serrulatumCayratia cardiophyllaCayratia geniculataCayratia japonicaCayratia trifoliaCayratia triternataCayratia oligocarpaCayratia maritimaAcareosperma spireanumCyphostemma adenocauleCyphostemma buchananiiCyphostemma paucidentatumCyphostemma setosumCyphostemma hereroenseCyphostemma lageniflorumCyphostemma odontadeniumCyphostemma microdipteraCyphostemma junceumLeea guineensisLeea tetramera

absent or rarely 1 or 2 teeth present in the whole leaf0-2 tooth between two secondary veins2 or more between two secondary veinsEquivocal

A

Figure 2-8. The optimization of the character leaf teeth density (character 19) on: A) one of the

MPTs from the morphological dataset with continuous characters treated with

discrete coding; B) the MPT obtained from the morphological dataset with

continuous characters treated with GW coding.

140

Pterisanthes cissioides

Pterisanthes polita

Ampelocissus botryostachys

Ampelocissus ochracea

Ampelocissus barbata

Ampelocissus africana

Nothocissus spicifera

Ampelocissus abyssinica

Ampelocissus acetosa

Ampelocissus latifolia

Ampelocissus acapulcensis

Ampelocissus erdvendbergiana

Ampelocissus javalensis

Ampelocissus robinsonii

Vitis flexuosa

Vitis tsoi

Vitis piasezkii

Vitis betulifolia

Vitis vinifera

Vitis aestivalis

Vitis rotundifolia

Cissus simsiana

Ampelopsis cordata

Ampelopsis glandulosa

Ampelopsis delavayana

Ampelopsis cantoniensis

Ampelopsis grossedentata

Ampelopsis arborea

Clematicissus angustissima

Clematicissus opaca

Parthenocissus dalzielii

Parthenocissus laetevirens

Parthenocissus quinquefolia

Parthenocissus vitacea

Yua chinensis

Yua austro-orientalis

Cissus hypoglauca

Cissus antarctica

Rhoicissus tridentata

Rhoicissus digitata

Cissus sterculiifolia

Cissus trianae

Cissus granulosa

Cissus penninervis

Cissus striata ssp. argentina

Cissus biformifolia

Cissus paullinifolia

Cissus descoingsii

Cissus assamica

Cissus cornifolia

Cissus mirabilis

Cissus obovata

Cissus quadrangularis

Cissus reniformis

Cissus fuliginea

Cissus campestris

Cissus verticillata

Cissus alata

Cissus palmata

Tetrastigma bioritsense

Tetrastigma planicaule

Tetrastigma rumicispermum

Tetrastigma obtectum

Tetrastigma serrulatum

Cayratia cardiophylla

Cayratia geniculata

Cayratia maritima

Cayratia oligocarpa

Cayratia triternata

Cayratia trifolia

Cayratia japonica

Acareosperma spireanum

Cyphostemma hereroense

Cyphostemma odontadenium

Cyphostemma lageniflorum

Cyphostemma setosum

Cyphostemma paucidentatum

Cyphostemma buchananii

Cyphostemma adenocaule

Cyphostemma laza

Cyphostemma microdiptera

Cyphostemma junceum

Leea guineensis

Leea tetramera

01234678910121316182125Equivocal

B

Figure 2-8. Continued.

141

142

143

144

Ampelocissus abyssinicaAmpelocissus africanaNothocissus spiciferaAmpelocissus acetosaAmpelocissus latifoliaPterisanthes cissioidesPterisanthes politaAmpelocissus ochraceaAmpelocissus botryostachysAmpelocissus barbataAmpelocissus javalensisAmpelocissus acapulcensisAmpelocissus erdvendbergianaAmpelocissus robinsoniiVitis aestivalisVitis rotundifoliaVitis flexuosaVitis piasezkiiVitis betulifoliaVitis viniferaVitis tsoiCissus simsianaAmpelopsis grossedentataAmpelopsis cantoniensisAmpelopsis delavayanaAmpelopsis glandulosaAmpelopsis cordataAmpelopsis arboreaParthenocissus dalzieliiParthenocissus laetevirensParthenocissus quinquefoliaParthenocissus vitaceaYua chinensisYua austro-orientalisClematicissus angustissimaClematicissus opacaCissus striata ssp. argentinaCissus granulosaCissus penninervisCissus sterculiifoliaCissus hypoglaucaRhoicissus digitataCissus trianaeRhoicissus tridentataCissus antarcticaCissus biformifoliaCissus paullinifoliaCissus alataCissus palmataCissus assamicaCissus cornifoliaCissus descoingsiiCissus fuligineaCissus mirabilisCissus obovataCissus quadrangularisCissus reniformisCissus verticillataCissus campestrisCyphostemma lazaTetrastigma bioritsenseTetrastigma planicauleTetrastigma obtectumTetrastigma rumicispermumTetrastigma serrulatumCayratia cardiophyllaCayratia geniculataCayratia japonicaCayratia trifoliaCayratia triternataCayratia oligocarpaCayratia maritimaAcareosperma spireanumCyphostemma adenocauleCyphostemma buchananiiCyphostemma paucidentatumCyphostemma setosumCyphostemma hereroenseCyphostemma lageniflorumCyphostemma odontadeniumCyphostemma microdipteraCyphostemma junceumLeea guineensisLeea tetramera

different from tendril organizationmonochasial with 2-3 armsmonochasial with 4 or more armsumbelEquivocal

A

Figure 2-11. The optimization of the character inflorescence-tendril organization (character 43)

on: A) one of the MPTs from the morphological dataset with continuous characters

treated with discrete coding; B) the MPT obtained from the morphological dataset

with continuous characters treated with GW coding.

145

Pterisanthes polita

Pterisanthes cissioides

Ampelocissus botryostachys

Ampelocissus ochracea

Ampelocissus barbata

Nothocissus spicifera

Ampelocissus africana

Ampelocissus abyssinica

Ampelocissus acetosa

Ampelocissus latifolia

Ampelocissus acapulcensis

Ampelocissus erdvendbergiana

Ampelocissus javalensis

Ampelocissus robinsonii

Vitis tsoi

Vitis flexuosa

Vitis piasezkii

Vitis betulifolia

Vitis vinifera

Vitis rotundifolia

Vitis aestivalis

Cissus simsiana

Ampelopsis cordata

Ampelopsis glandulosa

Ampelopsis delavayana

Ampelopsis arborea

Ampelopsis cantoniensis

Ampelopsis grossedentata

Clematicissus angustissima

Clematicissus opaca

Parthenocissus laetevirens

Parthenocissus dalzielii

Parthenocissus quinquefolia

Parthenocissus vitacea

Yua chinensis

Yua austro-orientalis

Cissus hypoglauca

Rhoicissus tridentata

Cissus antarctica

Rhoicissus digitata

Cissus sterculiifolia

Cissus trianae

Cissus granulosa

Cissus penninervis

Cissus striata ssp. argentina

Cissus paullinifolia

Cissus biformifolia

Cissus descoingsii

Cissus assamica

Cissus cornifolia

Cissus reniformis

Cissus quadrangularis

Cissus obovata

Cissus mirabilis

Cissus fuliginea

Cissus verticillata

Cissus campestris

Cissus alata

Cissus palmata

Tetrastigma planicaule

Tetrastigma bioritsense

Tetrastigma rumicispermum

Tetrastigma obtectum

Tetrastigma serrulatum

Cayratia cardiophylla

Cayratia geniculata

Cayratia oligocarpa

Cayratia maritima

Cayratia triternata

Cayratia trifolia

Cayratia japonica

Acareosperma spireanum

Cyphostemma odontadenium

Cyphostemma hereroense

Cyphostemma lageniflorum

Cyphostemma setosum

Cyphostemma paucidentatum

Cyphostemma buchananii

Cyphostemma adenocaule

Cyphostemma laza

Cyphostemma microdiptera

Cyphostemma junceum

Leea guineensis

Leea tetramera

different from tendril organizationmonochasial with 2-3 armsmonochasial with 4 or more armsumbelEquivocal

B

Figure 2-11. Continued.

146

Ampelocissus abyssinicaAmpelocissus africanaNothocissus spiciferaAmpelocissus acetosaAmpelocissus latifoliaPterisanthes cissioidesPterisanthes politaAmpelocissus ochraceaAmpelocissus botryostachysAmpelocissus barbataAmpelocissus javalensisAmpelocissus acapulcensisAmpelocissus erdvendbergianaAmpelocissus robinsoniiVitis aestivalisVitis rotundifoliaVitis flexuosaVitis piasezkiiVitis betulifoliaVitis viniferaVitis tsoiCissus simsianaAmpelopsis grossedentataAmpelopsis cantoniensisAmpelopsis delavayanaAmpelopsis glandulosaAmpelopsis cordataAmpelopsis arboreaParthenocissus dalzieliiParthenocissus laetevirensParthenocissus quinquefoliaParthenocissus vitaceaYua chinensisYua austro-orientalisClematicissus angustissimaClematicissus opacaCissus striata ssp. argentinaCissus granulosaCissus penninervisCissus sterculiifoliaCissus hypoglaucaRhoicissus digitataCissus trianaeRhoicissus tridentataCissus antarcticaCissus biformifoliaCissus paullinifoliaCissus alataCissus palmataCissus assamicaCissus cornifoliaCissus descoingsiiCissus fuligineaCissus mirabilisCissus obovataCissus quadrangularisCissus reniformisCissus verticillataCissus campestrisCyphostemma lazaTetrastigma bioritsenseTetrastigma planicauleTetrastigma obtectumTetrastigma rumicispermumTetrastigma serrulatumCayratia cardiophyllaCayratia geniculataCayratia japonicaCayratia trifoliaCayratia triternataCayratia oligocarpaCayratia maritimaAcareosperma spireanumCyphostemma adenocauleCyphostemma buchananiiCyphostemma paucidentatumCyphostemma setosumCyphostemma hereroenseCyphostemma lageniflorumCyphostemma odontadeniumCyphostemma microdipteraCyphostemma junceumLeea guineensisLeea tetramera

mostly fourmostly five, six or sevenEquivocal

Figure 2-12. The optimization of the character floral merosity (character 54) on: A) one of the

MPTs from the morphological dataset with continuous characters treated with discrete

coding; B) the MPT obtained from the morphological dataset with continuous

characters treated with GW coding.

A

147

Pterisanthes polita

Pterisanthes cissioides

Ampelocissus botryostachys

Ampelocissus ochracea

Ampelocissus barbata

Nothocissus spicifera

Ampelocissus africana

Ampelocissus abyssinica

Ampelocissus acetosa

Ampelocissus latifolia

Ampelocissus acapulcensis

Ampelocissus erdvendbergiana

Ampelocissus javalensis

Ampelocissus robinsonii

Vitis tsoi

Vitis flexuosa

Vitis piasezkii

Vitis betulifolia

Vitis vinifera

Vitis rotundifolia

Vitis aestivalis

Cissus simsiana

Ampelopsis cordata

Ampelopsis glandulosa

Ampelopsis delavayana

Ampelopsis arborea

Ampelopsis cantoniensis

Ampelopsis grossedentata

Clematicissus angustissima

Clematicissus opaca

Parthenocissus laetevirens

Parthenocissus dalzielii

Parthenocissus quinquefolia

Parthenocissus vitacea

Yua chinensis

Yua austro-orientalis

Cissus hypoglauca

Rhoicissus tridentata

Cissus antarctica

Rhoicissus digitata

Cissus sterculiifolia

Cissus trianae

Cissus granulosa

Cissus penninervis

Cissus striata ssp. argentina

Cissus paullinifolia

Cissus biformifolia

Cissus descoingsii

Cissus assamica

Cissus cornifolia

Cissus reniformis

Cissus quadrangularis

Cissus obovata

Cissus mirabilis

Cissus fuliginea

Cissus verticillata

Cissus campestris

Cissus alata

Cissus palmata

Tetrastigma planicaule

Tetrastigma bioritsense

Tetrastigma rumicispermum

Tetrastigma obtectum

Tetrastigma serrulatum

Cayratia cardiophylla

Cayratia geniculata

Cayratia oligocarpa

Cayratia maritima

Cayratia triternata

Cayratia trifolia

Cayratia japonica

Acareosperma spireanum

Cyphostemma odontadenium

Cyphostemma hereroense

Cyphostemma lageniflorum

Cyphostemma setosum

Cyphostemma paucidentatum

Cyphostemma buchananii

Cyphostemma adenocaule

Cyphostemma laza

Cyphostemma microdiptera

Cyphostemma junceum

Leea guineensis

Leea tetramera

mostly fourmostly five, six or sevenEquivocal

Figure 2-12. Continued.

B

148

Ampelocissus abyssinicaAmpelocissus africanaNothocissus spiciferaAmpelocissus acetosaAmpelocissus latifoliaPterisanthes cissioidesPterisanthes politaAmpelocissus ochraceaAmpelocissus botryostachysAmpelocissus barbataAmpelocissus javalensisAmpelocissus acapulcensisAmpelocissus erdvendbergianaAmpelocissus robinsoniiVitis aestivalisVitis rotundifoliaVitis flexuosaVitis piasezkiiVitis betulifoliaVitis viniferaVitis tsoiCissus simsianaAmpelopsis grossedentataAmpelopsis cantoniensisAmpelopsis delavayanaAmpelopsis glandulosaAmpelopsis cordataAmpelopsis arboreaParthenocissus dalzieliiParthenocissus laetevirensParthenocissus quinquefoliaParthenocissus vitaceaYua chinensisYua austro-orientalisClematicissus angustissimaClematicissus opacaCissus striata ssp. argentinaCissus granulosaCissus penninervisCissus sterculiifoliaCissus hypoglaucaRhoicissus digitataCissus trianaeRhoicissus tridentataCissus antarcticaCissus biformifoliaCissus paullinifoliaCissus alataCissus palmataCissus assamicaCissus cornifoliaCissus descoingsiiCissus fuligineaCissus mirabilisCissus obovataCissus quadrangularisCissus reniformisCissus verticillataCissus campestrisCyphostemma lazaTetrastigma bioritsenseTetrastigma planicauleTetrastigma obtectumTetrastigma rumicispermumTetrastigma serrulatumCayratia cardiophyllaCayratia geniculataCayratia japonicaCayratia trifoliaCayratia triternataCayratia oligocarpaCayratia maritimaAcareosperma spireanumCyphostemma adenocauleCyphostemma buchananiiCyphostemma paucidentatumCyphostemma setosumCyphostemma hereroenseCyphostemma lageniflorumCyphostemma odontadeniumCyphostemma microdipteraCyphostemma junceumLeea guineensisLeea tetramera

not dense (< 25)

dense (> 25)

Equivocal

Figure 2-13. The optimization of the character lenticel density on fruit surface (character 78) on:

A) one of the MPTs from the morphological dataset with continuous characters

treated with discrete coding; B) the MPT obtained from the morphological dataset

with continuous characters treated with GW coding.

A

149

Pterisanthes cissioides

Pterisanthes polita

Ampelocissus botryostachys

Ampelocissus ochracea

Ampelocissus barbata

Ampelocissus africana

Nothocissus spicifera

Ampelocissus abyssinica

Ampelocissus acetosa

Ampelocissus latifolia

Ampelocissus acapulcensis

Ampelocissus erdvendbergiana

Ampelocissus javalensis

Ampelocissus robinsonii

Vitis flexuosa

Vitis tsoi

Vitis piasezkii

Vitis betulifolia

Vitis vinifera

Vitis aestivalis

Vitis rotundifolia

Cissus simsiana

Ampelopsis cordata

Ampelopsis glandulosa

Ampelopsis delavayana

Ampelopsis cantoniensis

Ampelopsis grossedentata

Ampelopsis arborea

Clematicissus angustissima

Clematicissus opaca

Parthenocissus dalzielii

Parthenocissus laetevirens

Parthenocissus quinquefolia

Parthenocissus vitacea

Yua chinensis

Yua austro-orientalis

Cissus hypoglauca

Cissus antarctica

Rhoicissus tridentata

Rhoicissus digitata

Cissus sterculiifolia

Cissus trianae

Cissus granulosa

Cissus penninervis

Cissus striata ssp. argentina

Cissus biformifolia

Cissus paullinifolia

Cissus descoingsii

Cissus assamica

Cissus cornifolia

Cissus mirabilis

Cissus obovata

Cissus quadrangularis

Cissus reniformis

Cissus fuliginea

Cissus campestris

Cissus verticillata

Cissus alata

Cissus palmata

Tetrastigma bioritsense

Tetrastigma planicaule

Tetrastigma rumicispermum

Tetrastigma obtectum

Tetrastigma serrulatum

Cayratia cardiophylla

Cayratia geniculata

Cayratia maritima

Cayratia oligocarpa

Cayratia triternata

Cayratia trifolia

Cayratia japonica

Acareosperma spireanum

Cyphostemma hereroense

Cyphostemma odontadenium

Cyphostemma lageniflorum

Cyphostemma setosum

Cyphostemma paucidentatum

Cyphostemma buchananii

Cyphostemma adenocaule

Cyphostemma laza

Cyphostemma microdiptera

Cyphostemma junceum

Leea guineensis

Leea tetramera

0

1

2

3

4

7

8

9

11

12

13

14

15

16

17

18

20

21

22

24

25

Equivocal

B

Figure 2-13. Continued.

150

Ampelocissus abyssinicaAmpelocissus africanaNothocissus spiciferaAmpelocissus acetosaAmpelocissus latifoliaPterisanthes cissioidesPterisanthes politaAmpelocissus ochraceaAmpelocissus botryostachysAmpelocissus barbataAmpelocissus javalensisAmpelocissus acapulcensisAmpelocissus erdvendbergianaAmpelocissus robinsoniiVitis aestivalisVitis rotundifoliaVitis flexuosaVitis piasezkiiVitis betulifoliaVitis viniferaVitis tsoiCissus simsianaAmpelopsis grossedentataAmpelopsis cantoniensisAmpelopsis delavayanaAmpelopsis glandulosaAmpelopsis cordataAmpelopsis arboreaParthenocissus dalzieliiParthenocissus laetevirensParthenocissus quinquefoliaParthenocissus vitaceaYua chinensisYua austro-orientalisClematicissus angustissimaClematicissus opacaCissus striata ssp. argentinaCissus granulosaCissus penninervisCissus sterculiifoliaCissus hypoglaucaRhoicissus digitataCissus trianaeRhoicissus tridentataCissus antarcticaCissus biformifoliaCissus paullinifoliaCissus alataCissus palmataCissus assamicaCissus cornifoliaCissus descoingsiiCissus fuligineaCissus mirabilisCissus obovataCissus quadrangularisCissus reniformisCissus verticillataCissus campestrisCyphostemma lazaTetrastigma bioritsenseTetrastigma planicauleTetrastigma obtectumTetrastigma rumicispermumTetrastigma serrulatumCayratia cardiophyllaCayratia geniculataCayratia japonicaCayratia trifoliaCayratia triternataCayratia oligocarpaCayratia maritimaAcareosperma spireanumCyphostemma adenocauleCyphostemma buchananiiCyphostemma paucidentatumCyphostemma setosumCyphostemma hereroenseCyphostemma lageniflorumCyphostemma odontadeniumCyphostemma microdipteraCyphostemma junceumLeea guineensisLeea tetramera

< 0.4

> 0.4

Equivocal

A

Figure 2-14. The optimization of the character endotesta sclereid width/length ratio (character

126) on: A) one of the MPTs from the morphological dataset with continuous

characters treated with discrete coding; B) the MPT obtained from the

morphological dataset with continuous characters treated with GW coding.

151

Pterisanthes cissioides

Pterisanthes polita

Ampelocissus botryostachys

Ampelocissus ochracea

Ampelocissus barbata

Ampelocissus africana

Nothocissus spicifera

Ampelocissus abyssinica

Ampelocissus acetosa

Ampelocissus latifolia

Ampelocissus acapulcensis

Ampelocissus erdvendbergiana

Ampelocissus javalensis

Ampelocissus robinsonii

Vitis flexuosa

Vitis tsoi

Vitis piasezkii

Vitis betulifolia

Vitis vinifera

Vitis aestivalis

Vitis rotundifolia

Cissus simsiana

Ampelopsis cordata

Ampelopsis glandulosa

Ampelopsis delavayana

Ampelopsis cantoniensis

Ampelopsis grossedentata

Ampelopsis arborea

Clematicissus angustissima

Clematicissus opaca

Parthenocissus dalzielii

Parthenocissus laetevirens

Parthenocissus quinquefolia

Parthenocissus vitacea

Yua chinensis

Yua austro-orientalis

Cissus hypoglauca

Cissus antarctica

Rhoicissus tridentata

Rhoicissus digitata

Cissus sterculiifolia

Cissus trianae

Cissus granulosa

Cissus penninervis

Cissus striata ssp. argentina

Cissus biformifolia

Cissus paullinifolia

Cissus descoingsii

Cissus assamica

Cissus cornifolia

Cissus mirabilis

Cissus obovata

Cissus quadrangularis

Cissus reniformis

Cissus fuliginea

Cissus campestris

Cissus verticillata

Cissus alata

Cissus palmata

Tetrastigma bioritsense

Tetrastigma planicaule

Tetrastigma rumicispermum

Tetrastigma obtectum

Tetrastigma serrulatum

Cayratia cardiophylla

Cayratia geniculata

Cayratia maritima

Cayratia oligocarpa

Cayratia triternata

Cayratia trifolia

Cayratia japonica

Acareosperma spireanum

Cyphostemma hereroense

Cyphostemma odontadenium

Cyphostemma lageniflorum

Cyphostemma setosum

Cyphostemma paucidentatum

Cyphostemma buchananii

Cyphostemma adenocaule

Cyphostemma laza

Cyphostemma microdiptera

Cyphostemma junceum

Leea guineensis

Leea tetramera

2345678910111225

01

Equivocal

B

Figure 2-14. Continued.

152

Ampelocissus abyssinicaAmpelocissus africanaNothocissus spiciferaAmpelocissus acetosaAmpelocissus latifoliaPterisanthes cissioidesPterisanthes politaAmpelocissus ochraceaAmpelocissus botryostachysAmpelocissus barbataAmpelocissus javalensisAmpelocissus acapulcensisAmpelocissus erdvendbergianaAmpelocissus robinsoniiVitis aestivalisVitis rotundifoliaVitis flexuosaVitis piasezkiiVitis betulifoliaVitis viniferaVitis tsoiCissus simsianaAmpelopsis grossedentataAmpelopsis cantoniensisAmpelopsis delavayanaAmpelopsis glandulosaAmpelopsis cordataAmpelopsis arboreaParthenocissus dalzieliiParthenocissus laetevirensParthenocissus quinquefoliaParthenocissus vitaceaYua chinensisYua austro-orientalisClematicissus angustissimaClematicissus opacaCissus striata ssp. argentinaCissus granulosaCissus penninervisCissus sterculiifoliaCissus hypoglaucaRhoicissus digitataCissus trianaeRhoicissus tridentataCissus antarcticaCissus biformifoliaCissus paullinifoliaCissus alataCissus palmataCissus assamicaCissus cornifoliaCissus descoingsiiCissus fuligineaCissus mirabilisCissus obovataCissus quadrangularisCissus reniformisCissus verticillataCissus campestrisCyphostemma lazaTetrastigma bioritsenseTetrastigma planicauleTetrastigma obtectumTetrastigma rumicispermumTetrastigma serrulatumCayratia cardiophyllaCayratia geniculataCayratia japonicaCayratia trifoliaCayratia triternataCayratia oligocarpaCayratia maritimaAcareosperma spireanumCyphostemma adenocauleCyphostemma buchananiiCyphostemma paucidentatumCyphostemma setosumCyphostemma hereroenseCyphostemma lageniflorumCyphostemma odontadeniumCyphostemma microdipteraCyphostemma junceumLeea guineensisLeea tetramera

absentpresentEquivocal

A

Figure 2-15. The optimization of the character stomata on sarcotesta (character 130) on: A) one

of the MPTs from the morphological dataset with continuous characters treated

with discrete coding; B) the MPT obtained from the morphological dataset with

continuous characters treated with GW coding.

153

Pterisanthes polita

Pterisanthes cissioides

Ampelocissus botryostachys

Ampelocissus ochracea

Ampelocissus barbata

Nothocissus spicifera

Ampelocissus africana

Ampelocissus abyssinica

Ampelocissus acetosa

Ampelocissus latifolia

Ampelocissus acapulcensis

Ampelocissus erdvendbergiana

Ampelocissus javalensis

Ampelocissus robinsonii

Vitis tsoi

Vitis flexuosa

Vitis piasezkii

Vitis betulifolia

Vitis vinifera

Vitis rotundifolia

Vitis aestivalis

Cissus simsiana

Ampelopsis cordata

Ampelopsis glandulosa

Ampelopsis delavayana

Ampelopsis arborea

Ampelopsis cantoniensis

Ampelopsis grossedentata

Clematicissus angustissima

Clematicissus opaca

Parthenocissus laetevirens

Parthenocissus dalzielii

Parthenocissus quinquefolia

Parthenocissus vitacea

Yua chinensis

Yua austro-orientalis

Cissus hypoglauca

Rhoicissus tridentata

Cissus antarctica

Rhoicissus digitata

Cissus sterculiifolia

Cissus trianae

Cissus granulosa

Cissus penninervis

Cissus striata ssp. argentina

Cissus paullinifolia

Cissus biformifolia

Cissus descoingsii

Cissus assamica

Cissus cornifolia

Cissus reniformis

Cissus quadrangularis

Cissus obovata

Cissus mirabilis

Cissus fuliginea

Cissus verticillata

Cissus campestris

Cissus alata

Cissus palmata

Tetrastigma planicaule

Tetrastigma bioritsense

Tetrastigma rumicispermum

Tetrastigma obtectum

Tetrastigma serrulatum

Cayratia cardiophylla

Cayratia geniculata

Cayratia oligocarpa

Cayratia maritima

Cayratia triternata

Cayratia trifolia

Cayratia japonica

Acareosperma spireanum

Cyphostemma odontadenium

Cyphostemma hereroense

Cyphostemma lageniflorum

Cyphostemma setosum

Cyphostemma paucidentatum

Cyphostemma buchananii

Cyphostemma adenocaule

Cyphostemma laza

Cyphostemma microdiptera

Cyphostemma junceum

Leea guineensis

Leea tetramera

absentpresentEquivocal

B

Figure 2-15. Continued.

154

Ampelocissus abyssinicaAmpelocissus africanaNothocissus spiciferaAmpelocissus acetosaAmpelocissus latifoliaPterisanthes cissioidesPterisanthes politaAmpelocissus ochraceaAmpelocissus botryostachysAmpelocissus barbataAmpelocissus javalensisAmpelocissus acapulcensisAmpelocissus erdvendbergianaAmpelocissus robinsoniiVitis aestivalisVitis rotundifoliaVitis flexuosaVitis piasezkiiVitis betulifoliaVitis viniferaVitis tsoiCissus simsianaAmpelopsis grossedentataAmpelopsis cantoniensisAmpelopsis delavayanaAmpelopsis glandulosaAmpelopsis cordataAmpelopsis arboreaParthenocissus dalzieliiParthenocissus laetevirensParthenocissus quinquefoliaParthenocissus vitaceaYua chinensisYua austro-orientalisClematicissus angustissimaClematicissus opacaCissus striata ssp. argentinaCissus granulosaCissus penninervisCissus sterculiifoliaCissus hypoglaucaRhoicissus digitataCissus trianaeRhoicissus tridentataCissus antarcticaCissus biformifoliaCissus paullinifoliaCissus alataCissus palmataCissus assamicaCissus cornifoliaCissus descoingsiiCissus fuligineaCissus mirabilisCissus obovataCissus quadrangularisCissus reniformisCissus verticillataCissus campestrisCyphostemma lazaTetrastigma bioritsenseTetrastigma planicauleTetrastigma obtectumTetrastigma rumicispermumTetrastigma serrulatumCayratia cardiophyllaCayratia geniculataCayratia japonicaCayratia trifoliaCayratia triternataCayratia oligocarpaCayratia maritimaAcareosperma spireanumCyphostemma adenocauleCyphostemma buchananiiCyphostemma paucidentatumCyphostemma setosumCyphostemma hereroenseCyphostemma lageniflorumCyphostemma odontadeniumCyphostemma microdipteraCyphostemma junceumLeea guineensisLeea tetramera

< 10 µm

> 10 µm

Equivocal

A

Figure 2-16. The optimization of the character tracheidal cell diameter (character 131) on: A)

one of the MPTs from the morphological dataset with continuous characters treated

with discrete coding; B) the MPT obtained from the morphological dataset with

continuous characters treated with GW coding.

155

Pterisanthes cissioides

Pterisanthes polita

Ampelocissus botryostachys

Ampelocissus ochracea

Ampelocissus barbata

Ampelocissus africana

Nothocissus spicifera

Ampelocissus abyssinica

Ampelocissus acetosa

Ampelocissus latifolia

Ampelocissus acapulcensis

Ampelocissus erdvendbergiana

Ampelocissus javalensis

Ampelocissus robinsonii

Vitis flexuosa

Vitis tsoi

Vitis piasezkii

Vitis betulifolia

Vitis vinifera

Vitis aestivalis

Vitis rotundifolia

Cissus simsiana

Ampelopsis cordata

Ampelopsis glandulosa

Ampelopsis delavayana

Ampelopsis cantoniensis

Ampelopsis grossedentata

Ampelopsis arborea

Clematicissus angustissima

Clematicissus opaca

Parthenocissus dalzielii

Parthenocissus laetevirens

Parthenocissus quinquefolia

Parthenocissus vitacea

Yua chinensis

Yua austro-orientalis

Cissus hypoglauca

Cissus antarctica

Rhoicissus tridentata

Rhoicissus digitata

Cissus sterculiifolia

Cissus trianae

Cissus granulosa

Cissus penninervis

Cissus striata ssp. argentina

Cissus biformifolia

Cissus paullinifolia

Cissus descoingsii

Cissus assamica

Cissus cornifolia

Cissus mirabilis

Cissus obovata

Cissus quadrangularis

Cissus reniformis

Cissus fuliginea

Cissus campestris

Cissus verticillata

Cissus alata

Cissus palmata

Tetrastigma bioritsense

Tetrastigma planicaule

Tetrastigma rumicispermum

Tetrastigma obtectum

Tetrastigma serrulatum

Cayratia cardiophylla

Cayratia geniculata

Cayratia maritima

Cayratia oligocarpa

Cayratia triternata

Cayratia trifolia

Cayratia japonica

Acareosperma spireanum

Cyphostemma hereroense

Cyphostemma odontadenium

Cyphostemma lageniflorum

Cyphostemma setosum

Cyphostemma paucidentatum

Cyphostemma buchananii

Cyphostemma adenocaule

Cyphostemma laza

Cyphostemma microdiptera

Cyphostemma junceum

Leea guineensis

Leea tetramera

2

3

4

5

6

7

8

9

10

11

13

14

15

16

17

19

21

22

24

25

0

1

Equivocal

B

Figure 2-16. Continued.

156

Ampelocissus abyssinicaAmpelocissus africanaNothocissus spiciferaAmpelocissus acetosaAmpelocissus latifoliaPterisanthes cissioidesPterisanthes politaAmpelocissus ochraceaAmpelocissus botryostachysAmpelocissus barbataAmpelocissus javalensisAmpelocissus acapulcensisAmpelocissus erdvendbergianaAmpelocissus robinsoniiVitis aestivalisVitis rotundifoliaVitis flexuosaVitis piasezkiiVitis betulifoliaVitis viniferaVitis tsoiCissus simsianaAmpelopsis grossedentataAmpelopsis cantoniensisAmpelopsis delavayanaAmpelopsis glandulosaAmpelopsis cordataAmpelopsis arboreaParthenocissus dalzieliiParthenocissus laetevirensParthenocissus quinquefoliaParthenocissus vitaceaYua chinensisYua austro-orientalisClematicissus angustissimaClematicissus opacaCissus striata ssp. argentinaCissus granulosaCissus penninervisCissus sterculiifoliaCissus hypoglaucaRhoicissus digitataCissus trianaeRhoicissus tridentataCissus antarcticaCissus biformifoliaCissus paullinifoliaCissus alataCissus palmataCissus assamicaCissus cornifoliaCissus descoingsiiCissus fuligineaCissus mirabilisCissus obovataCissus quadrangularisCissus reniformisCissus verticillataCissus campestrisCyphostemma lazaTetrastigma bioritsenseTetrastigma planicauleTetrastigma obtectumTetrastigma rumicispermumTetrastigma serrulatumCayratia cardiophyllaCayratia geniculataCayratia japonicaCayratia trifoliaCayratia triternataCayratia oligocarpaCayratia maritimaAcareosperma spireanumCyphostemma adenocauleCyphostemma buchananiiCyphostemma paucidentatumCyphostemma setosumCyphostemma hereroenseCyphostemma lageniflorumCyphostemma odontadeniumCyphostemma microdipteraCyphostemma junceumLeea guineensisLeea tetramera

< 0.5

> 0.5

Equivocal

A

Figure 2-17. The optimization of the character chalaza circularity (character 98) on: A) one of

the MPTs from the morphological dataset with continuous characters treated with

discrete coding; B) the MPT obtained from the morphological dataset with

continuous characters treated with GW coding.

157

Pterisanthes cissioides

Pterisanthes polita

Ampelocissus botryostachys

Ampelocissus ochracea

Ampelocissus barbata

Ampelocissus africana

Nothocissus spicifera

Ampelocissus abyssinica

Ampelocissus acetosa

Ampelocissus latifolia

Ampelocissus acapulcensis

Ampelocissus erdvendbergiana

Ampelocissus javalensis

Ampelocissus robinsonii

Vitis flexuosa

Vitis tsoi

Vitis piasezkii

Vitis betulifolia

Vitis vinifera

Vitis aestivalis

Vitis rotundifolia

Cissus simsiana

Ampelopsis cordata

Ampelopsis glandulosa

Ampelopsis delavayana

Ampelopsis cantoniensis

Ampelopsis grossedentata

Ampelopsis arborea

Clematicissus angustissima

Clematicissus opaca

Parthenocissus dalzielii

Parthenocissus laetevirens

Parthenocissus quinquefolia

Parthenocissus vitacea

Yua chinensis

Yua austro-orientalis

Cissus hypoglauca

Cissus antarctica

Rhoicissus tridentata

Rhoicissus digitata

Cissus sterculiifolia

Cissus trianae

Cissus granulosa

Cissus penninervis

Cissus striata ssp. argentina

Cissus biformifolia

Cissus paullinifolia

Cissus descoingsii

Cissus assamica

Cissus cornifolia

Cissus mirabilis

Cissus obovata

Cissus quadrangularis

Cissus reniformis

Cissus fuliginea

Cissus campestris

Cissus verticillata

Cissus alata

Cissus palmata

Tetrastigma bioritsense

Tetrastigma planicaule

Tetrastigma rumicispermum

Tetrastigma obtectum

Tetrastigma serrulatum

Cayratia cardiophylla

Cayratia geniculata

Cayratia maritima

Cayratia oligocarpa

Cayratia triternata

Cayratia trifolia

Cayratia japonica

Acareosperma spireanum

Cyphostemma hereroense

Cyphostemma odontadenium

Cyphostemma lageniflorum

Cyphostemma setosum

Cyphostemma paucidentatum

Cyphostemma buchananii

Cyphostemma adenocaule

Cyphostemma laza

Cyphostemma microdiptera

Cyphostemma junceum

Leea guineensis

Leea tetramera

02345678910111213141516171819202122232425

B

Figure 2-17. Continued.

Equivocal

158

159

CHAPTER 3 THE BIOGEOGRAPHICAL HISTORY OF VITACEAE INFERRED FROM FOSSIL SEEDS

Introduction

Vitaceae (the grape family) are mostly lianas with leaf-opposed tendrils and contain

around 900 species, 15 genera, with a worldwide distribution. Their fruits are berries, principally

dispersed by fruit-eating birds, bats, or mammals (Tiffney and Barghoorn, 1976; Moran,

Catterall, and Kanowski, 2009). Some seeds can float and have the potential to be water-

dispersed (Tiffney and Barghoorn, 1976). Vitaceae are sister to Leeaceae, which contains only

Leea, a genus of 34 species (Ridsdale, 1974). Species of Leea are shrubs or small trees,

contrasting with the viny habitat of Vitaceae. In some treatments, for example, APG III (2009),

Leea was placed in Vitaceae. The monophyly of Leea and its close relationship to Vitaceae is

well supported by molecular data (Ingrouille et al., 2002) and morphology (Ridsdale, 1974). The

currently accepted placement of these two families is sister to the other rosids (Wang et al.,

2009). Several DNA-based phylogenies of Vitaceae have been published (Ingrouille et al., 2002;

Rossetto et al., 2002; Soejima and Wen, 2006; Rossetto, 2007; Wen et al., 2007); however, a

molecular phylogeny including all genera is not yet available. Morphology-based phylogenies

including all genera of Vitaceae have been provided (Chapter 2). The taxon sampling was

designed to covered the distributional range of each genus; the resulting phylogeny has a basic

framework similar to those of the phylogenies compiled from three chloroplast sequences

(Soejima and Wen, 2006) and GAI1 sequences (Wen et al., 2007). In this chapter, this

phylogenetic framework is applied in order to infer biogeographic history of the extant genera.

Vitaceae exhibit an intriguing pattern of geographic distribution. The family includes

both tropical and temperate elements, and some of the temperate elements show the famous

Asian-North American disjunction pattern. This geographic disjunction is shared by many

160

temperate plant species, and has long been a subject of interest (Wen, 1999; Donoghue, Bell, and

Li, 2001; Wen, 2001; Xiang and Soltis, 2001; Donoghue and Smith, 2004). Vitaceae are special

because the majority of the family are lianas, contrasting with most studied families with an

Asian-North American disjunction pattern — deciduous trees or perennial herbs (Wen, 1999). A

biogeographic theory of Vitaceae will contribute to our understanding of this shared temperate

disjunct pattern. Biogeographic history can be inferred from a well supported phylogeny. In

addition, fossils provide direct evidence of the past distributional area of lineages. Vitaceae have

an extensive fossil record from the Tertiary. The majority of the fossils reported to belong to this

family are seeds. Seeds of extant Vitaceae can be recognized to generic level (Chapter 1), and

some seed characters are important in interpreting infrafamilial relationships (Chapter 2). Fossil

vitaceous seeds therefore are potentially reliable for inferring the past intra-family geographical

distributions. Hence, Vitaceae provide a rare opportunity to infer the biogeography of a major

clade from both phylogeny and fossil records.

Proper identifications are essential for making inference of the ancestral distribution of

lineages from fossils. Seeds of Vitaceae have distinct characters, including a pair of ventral

infolds and a dorsal chalaza, which distinguish them from seeds of other plant families (Chapter

1). Fossil vitaceous seeds were usually assigned to extant genera, indicating their similarity (e.

g., Reid and Chandler, 1933; Kirchheimer, 1938; Dorofeev, 1963; Manchester, 1994).

Occasionally an extinct genus was established for fossils with unusual characters not observed in

extant seeds; for example, Palaeovitis (Reid and Chandler, 1933) and Palaeocayratia (Gregor,

1977). The number of extant seeds observed by the workers influenced greatly how the fossils

were interpreted. A fossil might be assigned to one modern genus when identical seeds might

occur in other genera; features thought to be unique and defining an extinct genus might be

161

present among extant species not studied by the investigators. The generic-delimitation of

vitaceous seeds may vary among different workers, depending on which extant seeds were

sampled, how the seed characters were perceived, and what characters were thought to be

diagnostic by the observers. Identifications in previous works were mostly based on

comparisons to a limited number of extant seeds, therefore the affinities of some fossil seeds may

not be properly assigned. In order to better identifying fossil seeds, an extensive survey of extant

seeds of Vitaceae, covering a quarter of species in the family, was completed (Chapter 1). Fifty

seven characters were recorded from seeds sampled from properly identified herbarium

specimens. The continuous characters were measured and analyzed for objective comparisons;

characters for distinguishing each genus were recognized. The fossil vitaceous seeds were re-

evaluated and classified into several seed types based on the results of the extant seed survey.

Missing data in the fossils sometimes can be an impediment for an unequivocal

assignment of fossil affinity. The proper way to identify fossils is to carefully investigate all

available characters of the fossils and compare them to those of the modern close relatives.

Nevertheless, the diagnostic characters needed for an accurate identification are not always

available in every fossil. A great number of fossil vitaceous seeds do not have well preserved

internal structures, and the identification can only rely on the external characters. The affinities

of these fossils may still be estimated properly, because some external characters are diagnostic

at the generic level (Chapter 1). To accommodate the condition of most fossil vitaceous seeds,

for which internal structure is not available, the classification of the fossil vitaceous seeds in this

study was heavily based on the external characters.

In this study, past history within Vitaceae is inferred based on the affinities, geographic

distribution, and age of the fossil seeds, with reference to the morphology-based phylogeny of

162

the family. Other fossil organs of Vitaceae frequently exhibit inter- and intrafamilial

convergence (pollen and leaves) and therefore are not used here for inferring biogeography.

Wood anatomy of Vitaceae is potentially phylogenetically informative, and a few fossil woods

with Leeaceae or Vitaceae affinities have been reported (Wheeler and Lapasha, 1994). However,

a broader survey is needed to identify the characters shared by closely related groups.

Materials and Methods

Fossil vitaceous seeds from the Tertiary worldwide were compared to the extant seeds of

Vitaceae. Diagnostic characters that distinguish vitaceous seeds to generic-level were observed

from published images showing both ventral and dorsal sides of the fossils. Some specimens

were observed physically in the museum (Florida museum of Natural History, Natural History

Museum, London, Smithsonian, Paris Museum) or though specimen loans (Smithsonian, fossils

from Belen, Peru; Senckenberg Museum, fossils from Messel, Germany).

Based on the observation of the 252 extant seeds (Chapter 1), available diagnostic

characters from ventral and dorsal view of the seeds included chalaza length (C21), chalaza

circularity (C18), chalaza to notch distance (C22), apical notch angle (C5), ventral infold width

(C35), ventral infold length (C9), ventral infold divergence angle (C15), external rugosity (C24),

and constricted rim on ventral side (C57). Ventral infolds covered by endotesta (C53) was

additionally used for differentiation within one of the seed types. These characters are defined as

in Chapter 1. Ventral infold width (C35) was originally measured from cross sections of extent

seeds (Chapter 1). In this study, ventral infold width (C35) of fossils was measured from the

ventral view instead of in cross section; the value measured from the two views should be the

same. External rugosity (C24) was estimated by comparing images of fossils to those of extant

seeds. Fossils preserved as internal casts of the seed coat were assessed as intact seeds, assuming

an even thickness of the seed coat thoughout the external surface. Fossils known only from

163

transverse sections (e.g., Cevallos-Ferriz and Stockey, 1990) were evaluated with diagnostic

characters such as ventral infold thin part ratio (C32), ventral infold thin part circularity (C33),

and number of endotesta sclereid layers (C48). Constricted rim on the ventral side (C57) is a

presence/absence character; other diagnostic characters are continuous. The continuous

characters of the fossil seeds were compared to the critical values that distinguish extant seeds to

groups of genera (Table 1-2, Chapter 1), except endotesta sclereid layers (C48), for which the

critical value was changed to accommodate the fossil conditions. Continuous characters were

scored as three conditions: larger than (>), smaller than (<) or similar to (ambiguous) the critical

values; when similar to the critical value, the character was treated as either larger, equal, or

smaller than the critical value. The extant seeds from the seed survey (Chapter 1) sharing the

same combination of character conditions as those of the fossils were selected; six fossil seeds

with the measurement of all available characters, Parthenocissus clarnensis (UF 6539, UF 6540,

UF 9583), Vitis magnisperma (v. 30257), Palaeovitis paradoxa (v. 62712), Ampelopsis rooseae

(UF 6536, UF 9575), Vitis tiffneyi (UF 6533, UF 9573), Ampelocissus wildei (Me 5730, Me

8786), were also included in the selection of shared combination of character conditions, to

accommodate the possibility that the fossils may possess combinations of characters observed

only in other fossils but not in the extant seeds. Acareosperma spireanum and Clematicissus

angustissima were excluded from the comparison because they possess unique characters not

seen in observed fossils, i.e., rugae whorled (C54), and one ventral infold (C55), respectively

(Chapter 1). Fossils resulted the selection with the same composition of extant taxa were placed

in the same "Seed Group"; seed groups containing similar composition of extant taxa were

placed in the same "Seed Type" (st) (see Tables 3-1 to 3-15 for clarification).

164

The seed type classification in this study was based on limited characters, therefore

taxonomic revision was not performed; the original name attached to the published fossil images

is retained. Each named and described specimen was treated as one "Seed Form", the smallest

unit of this classification. Similar seed forms were grouped under the same "Seed Group"(equal

to the column Group in Tables 3-1 to 3-13, and 3-15), and similar seed groups were placed in the

same "Seed Type"(see Table 3-15). However, if variation of diagnostic characters was discerned

among seeds from the same locality published under the same name, they were evaluated as

different seed forms. Age of the localities follows that from recent data (age of the Brandon

Lignite followed Tiffney, 1994; for localities in England, see Collinson and Cleal, 2001a; 2001b;

for localities in Siberia, see Nikitin, 2006; others see Materials and Methods in Chen and

Manchester, 2007); if no age revision was known, the original published assignment for age was

followed.

Five species of Cissus from South America, C. granulosa, C. simsiana, C. striata, C.

trianae, C. tweedieana, and five species of Cissus from Australia, C. antarctica, C. oblonga, C.

hypoglauca, C. penninervis, C. sterculiifolia, have seeds dramatically different from other

Cissus; some of them are not closely related to other Cissus in the morphology-based phylogeny

(Chapter 2). These ten species of Cissus are referred informally as "Austrocissus" (a name

borrowed from Dr. Jackes; personal communication) in the text to avoid confusion when

discussing seed types.

The original literature to which the following text refers is cited in the accompanying

tables.

165

Results and Discussion

Classification of Fossil Vitaceaous Seeds

Vitaceous seeds from more than 62 Tertiary localities worldwide were evaluated. Fossil

seeds are categorized into 13 seed types, named with the prefix "st-", listed in Tables 3-1 to 3-13

and described in the following paragraphs. Fossil seeds lacking enough of information to be

classified into the 13 defined seed types are listed in Table 3-14. Taxa sharing the same

combination of characters with fossils are presented in Table 3-15.

1) st-Ampelocissus-wide infolds

This seed type has wide ventral infolds in the form of prominent concavities occupying

most of the ventral surface; the dorsal side has an oval to round chalaza located in the center or

near the apical notch. This combination of characters is present in extant species of

Ampelocissus and Pterisanthes (Table 3-1; Groups 1-4, Table 3-15). This seed type is present in

four localities from the Paleocene and Eocene of North America, the Eocene of South America,

and the Early Eocene of southern England (Table 3-1). Ampelocissus bravoi from Belen, Peru

(Chen and Manchester, 2007) and Vitis excavata from England (Chandler, 1962) are represented

by single specimens; however, Ampelocissus parvisemina and Ampelocissus auriforma are

common fossil seeds in Clarno Formation (Chen and Manchester, 2007).

2) st-Ampelocissus-rugose

The seed surface is rugose, with narrow, moderate to long ventral infolds and an oval

chalaza positioned in the center of the dorsal side. This combination of characters is present in

extant species of Ampelocissus, Nothocissus spicifera, Cayratia triternata, Tetrastigma, Yua

austro-orientalis; Groups 5 and 8 also correspond to extant Vitis seeds because fossils are less

rugose (Table 3-2; Groups 5-10, Table 3-15). The specimens identified as Paleovitis paradoxa

from Paris Basin (Blanc-Louvel, 1986) are preserved as the internal casts of the seed coat. The

166

type material of Palaeovitis paradoxa from the London Clay (Reid and Chandler, 1933) has a

very thick endotesta and smooth seed surface; some specimens have part of the endotesta

abraded away, showing the slightly rugose surface of the internal cast. Aside from the distinct

thick endotesta, the fossil seed casts resemble rugose Ampelocissus seeds. Some fossil seeds

classified here have an apical notch around 60° (see Comment in Table 3-2); however, apical

notches of sampled extant rugose Ampelocissus or Tetrastigma usually do not have sharp angles.

Ampelocissus wildei from Messel belongs to this seed type; however, the cross section showed

that the endotesta of this fossil is unusually thick.

Seed type st-Ampelocissus-rugose is present in at least 13 localities in Europe and Asia,

some of them Eocene and others Miocene or Pliocene (Table 3-2). Most fossils with this seed

type were named Tetrastigma by Chandler (see Table 3-2). I examined specimens from the

London Clay; most of these pyritic fossils had decayed, so the seed surface characters are not as

clear as the images from the original publication. Therefore the characters of the Tetrastigma

from London Clay were scored from the original photos.

3) st-Ampelopsis-smooth

Seeds of this category have smooth surface, linear ventral infolds, and an oval chalaza

near the shallow apical notch. This seed type includes the extant Ampelopsis, "Austrocissus"

striata, Cayratia sp. (Peng 6346), Clematicissus opaca, and Yua chinensis (Table 3-3; Groups

11-15, Table 3-15). Groups 12 and 15 contain Cayratia sp. (Peng 6346) and Clematicissus

opaca, which have long ventral infolds compared to others. Fossil seeds belonging to these two

groups have longer ventral infolds. The fossil seeds classified here greatly resemble the extant

representatives, with the exception of Ampelopsis macrosperma (see Comment in Table 3-3)

from the Miocene of Siberia (Dorofeev, 1963), which possesses features unusual in extant

Ampelopsis: large seed size (5.3-7.2 mm vs. 3.2-5.7 mm), and large chalaza (chalaza width to

167

seed width ratio 0.5 vs. 0.26-0.4). Fossils of st-Ampelopsis-smooth occur in more than 24

Tertiary beds in Europe, Siberia, Japan, and North America, including the oldest known

occurrence of a vitaceous seed in Europe from the Paleocene of Germany (Table 3-3).

4) st-Ampelopsis-rugose

This seed type is characterized by a rugose surface, narrow ventral infolds, and an oval

chalaza near the shallow apical notch. Extant seeds meeting these criteria include species of

Ampelocissus, Ampelopsis, "Austrocissus", Cayratia, Rhoicissus, and Tetrastigma (Table 3-4;

Groups 16-23, Table 3-15). Fossil seeds belonging to Group 19 have wider ventral infolds and

hence also resemble extant Ampelocissus robinsonii. When seeds are less rugose, smooth-seeded

Ampelopsis and Yua chinensis would also be included among the corresponding extant seeds

(Table 3-4; Groups 18, 21-23, Table 3-15). Cross section configuration and seed coat anatomy

can distinguish extant Ampelopsis seeds from other genera despite their similar external

appearance (Chapter 1); however, fossil seeds are not always well enough preserved to provide

informative cross sections. This fossil seed type was found in at least 12 localities of Eocene,

Miocene, or Pliocene age in Europe and Japan (Table 3-4).

5) st-Ampelopsis-xs

Fossils from the Princeton Chert of British Columbia were permineralized with cellular

details but not free from the matrix (Cevallos-Ferriz and Stockey, 1990). The transverse section

of two of the described seed forms have the typical configuration of extant Ampelopsis— the

ventral infold cavity is lined with thick endotesta near the ventral infold openings, but inside the

ventral infold cavities, the endotesta is less well developed. The part of ventral infold cavities

lined with thinner endotesta is round in outline. Ampelocissus similkameenensis shows well

preserved, 1- 2 layered elongate endotesta sclereids (Fig. 5, Cevallos-Ferriz and Stockey, 1990);

the endotesta sclereids of type 1 seed were not well preserved but can be discerned as more than

168

two layers (Fig. 16, Cevallos-Ferriz and Stockey, 1990). The combination of these three

characters is present in some species of extant Ampelopsis and "Austrocissus" (Table 3-5; Group

24, Table 3-15).

6) st-Vitis

This seed type has an oval chalaza positioned at the center of the dorsal side and

moderate to short ventral infolds, the seed surface is smooth to slightly rugose. Most extant Vitis

species have seeds belonging to this seed type (Table 3-6; Groups 25-29, Table 3-15). Extant

seeds of Cayratia triternata and Yua austro-orientalis also correspond to Seed Group 25, which

represents the seeds with general features of Vitis but with a slightly rugose surface.

Ampelocissus scottii (Manchester, 1994) of the Clarno Formation is placed in this seed type;

however, it has a dorsiventrally compressed lens-like seed shape, which has not been observed in

any sampled extant seed (see Comment in Table 3-6). The Vitis seed type occurs in at least 25

localities thoughout the Tertiary of Europe, North America, and Siberia.

7) st-Vitis-Ampelopsis

This seed type has a smooth surface; the ventral infolds are short to moderate in length,

and the oval chalaza is located at the upper part of the dorsal side. Among the sampled extant

seeds, Ampelopsis and Vitis correspond in these characters (Table 3-7; Groups 30-34, Table 3-

15). Group 30 includes fossils with longer ventral infolds hence also resemble Cayratia sp.

(Peng 6346) and Clematicissus opaca. Most Ampelopsis have the chalaza positioned near the

notch, whereas Vitis typically has a centered chalaza. The ambiguous position of the chalaza on

the fossil seeds make them appear similar to both Vitis and Ampelopsis. The extant seeds of Vitis

and Ampelopsis can be easily distinguished by several characters in the cross section view

(Chapter 1); however, the cross section of fossils were not observed. This seed type has been

identified from 14 localities of the Tertiary in North Hemisphere. Palaeovitis paradoxa from

169

London Clay, fossil seeds with an unusually thick endotesta, is also classified here (see

Comment in Table 3-7).

8) st-Vitis rotundifolia

This seed type includes seeds with a smooth to faintly rugose surface, a shallow apical

notch, ventral infolds that are long, narrow and parallel, and a centrally positioned oval chalaza.

This seed type differs from st-Ampelocissus-rugose by the less well developed rugosity, and it

differs from st-Vitis by having longer ventral infolds. Extant Vitis rotundifolia has this type of

seed (Table 3-8; Group 35, Table 3-15). This seed type occurs in the Eocene and the Miocene of

Europe and the Miocene of North America. Extant V. rotundifolia belongs to Vitis subgenus

Muscadinia, which differs from subgenus Vitis in the simple tendrils, short infructescences, and

rugose oblong seeds (Brizicky, 1965). Seeds of the native species V. rotundifolia do not have a

strongly rugose surface; however, cultivars such as Scuppernong have a relatively rugose surface

and long, parallel ventral infolds, thus being very similar in overall morphology to a rugose

Ampelocissus seed (observed but not sampled in database). The concept of a “Muscadine” seed

type used by some paleobotanists (for example, Mai, 2000) may differ from the concept of st-

Vitis rotundifolia as delimited in this study by degree of rugosity.

9) st-Parthenocissus

This seed type is characterized by a sharp apical notch, an oval chalaza near the notch,

and long, divergent linear ventral infolds. The sampled extant Parthenocissus seeds all belongs

to this seed type (Table 3-9; Group 36, Table 3-15). The fossils Tetrastigma sheppeyensis

(Chandler, 1978) and Vitis ludwigi (Czeczott and Skirgiełło, 1959) are classified as this seed

type, however, the surface of the seeds is more rugose compared to the sampled extant

Parthenocissus seeds (see Comment in Table 3-9). Ampelocissus parachandleri (Chen and

Manchester, 2007) seeds are preserved as the internal cast of the seed coat. The long and

170

divergent ventral infolds and deep apical notch resemble those of Parthenocissus seeds;

however, the deeply sunken chalaza of the fossil seeds are not present in sampled extant

Parthenocissus seeds. The previous assignment of this fossil to Ampelocissus (Chen and

Manchester, 2007) based partly on the deeply sunken chalaza is now considered questionable

because the combination of linear long divergent infolds and deep apical notch is not present in

sampled extant Ampelocissus seeds. This fossil seed type occurs in four European Tertiary beds

and in the Clarno Formation of North America (Table 3-9).

10) st-Parthenocissus clarnensis

This seed type is smooth, with a shallow apical notch, an oval chalaza centered or near

apical notch, and long, linear ventral infolds, which are more or less divergent (Table 3-10;

Groups 37-39, Table 3-15). The seed type is distinguished from st-Vitis rotundifolia by its more

divergent infolds, and from st-Parthenocissus because it lacks a sharp apical notch. When the

ventral infolds are strongly divergent, the combination of the characters are not present in extant

seeds but they do occur in fossil seeds, such as Parthenocissus clarnensis of the Clarno

Formation (Group 38). When the divergence angle of the ventral infolds is not strong, the fossil

seeds also resemble extant Cayratia sp. (Peng 6346), Clematicissus opaca, and Vitis rotundifolia

(Groups 37, 39). Cayratia sp. (Peng 6346) and Clematicissus opaca have the chalaza positioned

near the apical notch, whereas Vitis rotundifolia seeds have a centered chalaza. Many fossil

seeds named Parthenocissus have long and divergent ventral infolds without a sharp apical

notch; those fossils are classified here. Vitis magnisperma from London Clay and Clarno

Formation (see Comment in Table 3-10) is categorized here although it is larger than sampled

extant smooth seeds (7-10.3 mm vs. 6.3 mm), and the long narrow ventral infolds are unusually

closely spaced, a feature found in Clematicissus opaca and Tetrastigma (vi space mid <0.15, vi

171

w<0.2, vi l >0.6). Fossil seeds of this type were found in 14 localities in the Tertiary of Europe,

Siberia, and North America.

11) st-Cayratia

The seed type is concave on the ventral side; the lateral edge of the seed is constricted

and forms a continuous rim so the seed appears to have a hole, small to large, occupying the

central part of the ventral surface. This character is present in some species of Cayratia, which

Sussenguth (1953) recognized as Section Koilosperma based on this distinctive seed character.

Fossil seeds with this character have wide ventral infolds, resembling extant species of Cayratia

from Malesia and Australia (Table 3-11; Group 40, Table 3-15). The fossils were found in two

Miocene localities in Europe and in the Late Oligocene/ Early Miocene of Siberia (Table 3-11).

12) st-Tetrastigma

Seeds of this category are rugose, with a linear chalaza near the shallow apical notch, and

long narrow ventral infolds. Extant species of Tetrastigma and the Australian "Austrocissus"

have this type of seed (Table 3-12; Group 41, Table 3-15). Fossil seeds of this type occur in

Oligocene of Australia. Similar seeds were collected from Early Eocene of Australia (Carpenter

et al., 2004); however, the ventral side of the specimens was not exposed (classified in Table 3-

14).

13) st-perichalaza

This seed type is characterized by having a long, narrow chalaza extending from the

dorsal to the ventral side; in lateral view length of the chalaza is 1.4 time longer than the

maximum length of the seed (character defined in Chapter 1) (Table 3-13; Groups 42-43, Table

3-15). The perichalazal condition is present exclusively in all sampled seeds of Leea,

Cyphostemma, and Cissus (except "Austrocissus"). Extant Leea and Cyphostemma can be

distinguished from Cissus by the presence of extra sclereid layers covering the opening of the

172

ventral infolds on the seed surface (C53, Table 3-13). Fossil seeds with perichalaza were found

in the Eocene of Belen, Peru and the Miocene of Panama. Carpolithus olssoni (Berry, 1927;

image from Manchester) from Belen was preserved as an internal cast, therefore the condition of

its testa is unknown. A pair of elongate grooves is present on each lateral side of Carpolithus

olssoni. The lateral scars can be interpreted as the unbranched lateral infolds present in some

species of Leea. Cissus willardi (Berry, 1929) from Belen does not have lateral infolds; its round

seeds conform closely to some extant species of Cissus (specimens observed). Cissus sp. from

Miocene of Panama (Carvalho et al., unpublished) resembles extant Cissus seeds in many

aspects. Fossil vitaceous seeds with perichalaza were also present in the Miocene Rusinga flora

of Lake Victoria, Kenya (Collinson, unpublished data; specimens not observed therefore

classified in Table 3-14). ? Vitis excavata (Chandler, 1978), a single seed from London Clay,

shows a long and narrow chalaza resembling the perichalazal condition. However, the surface of

the fossil seed is badly abraded and its affinity is uncertain (Table 3-14).

14) uncertain specimens with affinity to Vitaceae

This category accommodates incompletely known specimens, those with surface

obscured by abrasion, those with only one side of the seed exposed, or those for which

identifications were published without images (Table 3-14). These fossil seeds may be

recognized as Vitaceae; however, more characters are needed for seed type classification. A

special seed form was recognized in this category. Vitis platysperma from the Dorset Pipe Clays

of England is laterally compressed, with a straight and sharp raphe ridge. The seed form

resembles that of Leea with 12-seeded fruits, such as Leea papuana. The chalaza of the fossils is

elongate oval, sunken in the medium of the dorsal side, differing from the perichalaza of Leea.

The lateral facets of the fossils have an obscure linear mark, which Chandler interpreted as the

ventral infolds. The position of the mark on the fossil seed conforms to that of lateral infolds on

173

a Leea seed. The ventral infolds of the Leea seeds are linear and closely spaced in the region of

the sharp raphe, the surface of the infolds is covered up by sclereids and sometimes may not be

easily discerned externally. A close examination is needed to confirm the affinity of this fossil

seed; it is also possible that the seed does not even belong to Vitaceae.

Summary of seed type classification

The object of this study is to infer the past distribution of genera with fossils, and provide

a seed type classification accommodating most fossil seeds. The internal characters are not well

preserved for most of the fossils; therefore only external characters were evaluated (except for st-

Ampelopsis-xs) in this survey. Seed types such as st-Ampelopsis-rugose and st-Vitis-Ampelopsis

showed that without the characters from the cross section, the external morphology of a fossil

seed can resemble seeds from more than one extant genus.

The preservational condition of the fossil seeds can also affect the interpretation of the

available characters. The compressed fossil seeds may have ventral infolds that appear shorter

then the actual length, or a misplaced/distorted chalaza. For fossils preserved as an internal cast

of the seed coat (indicated in the tables), the real extent of surface rugosity is unknown, so the

estimates of rugosity in these instances may not be accurate. The cross section of an extant

rugose vitaceous seed shows that typically the endotesta is thicker at the ruga apex and thinner at

the ruga sinus; very rarely the endotesta may be thicker at the ruga sinus (C44 and C45, Chapter

1). A rugose seed presumably would have a rugose seed coat internal cast although the degree of

rugosity may not be the same. Palaeovitis paradoxa represents a case where the seed surface is

smooth but the seed cast surface is rugose, a condition not noticed in the extant vitaceous seed

survey (Chapter 1). A cross section does not show the surface rugosity well if the degree of the

rugosity is low, and the best way to observe the surface rugosity of a seed coat internal cast is to

174

remove the seed coat, which has not been done in the investigation of extant vitaceous seeds

(Chapter 1).

In addition to the limitations due to preservational condition of the fossils, classification

of vitaceous seeds is complicated by the continuous nature of most diagnostic characters.

Because most characters show continuous variation, the boundary between seed types is not

always distinct. One of the more obvious examples from this seed type classification is degree

of rugosity. Some seed forms are positioned in the transition between st-Ampelocissus-rugose

and st-Vitis; others are ambiguous between st-Ampelopsis-smooth and st-Ampelopsis-rugose.

With the method applied here for seed type classification, these slightly rugose fossil seeds

would match extant seeds from multiple genera.

The diagnostic criteria were based on the measured extant seeds, in order to identifying

fossil seeds to extant genera. Sample size of the extant seeds is therefore a factor effecting the

criteria for grouping. st-Parthenocissus is an example showing the effect of sampling on the

delimitation of a seed type. In the extant seed survey (Chapter 1), all sampled Parthenocissus

seeds have a pair of long, divergent infolds and an oval chalaza near a sharp apical notch.

Chalaza positioned near a sharp apical notch was not considered when paleobotanists identified

fossils as Parthenocissus; hence their concept of a Parthenocissus seed includes only long and

divergent infolds and oval chalaza (see the references cited for the fossils named Parthenocissus

in Table 3-10). Fossil seeds with long divergent infolds but without a sharp apical notch are here

classified under seed type st-Parthenocissus clarnensis (Table 3-10) in this study. The sharp

apical notch was overlooked as a diagnostic character possibly because the sarcotesta usually

obscures this character in extant seeds. Eight species of the total 16 extant species of

Parthenocissus were sampled in the seed survey. It remains possible that the un-sampled

175

Parthenocissus may include seeds that do not have a sharp apical notch. Further study including

all extant species of Parthenocissus to the seed comparison can better delimit st-Parthenocissus

and st-Parthenocissus clarnensis.

Some examined fossil seed forms have special features not found in the extant

representatives of the same seed types (see Comment in Tables 3-1 to 3-14). Since only one

fourth of the species of extant Vitaceae was sampled, the possibility of non-sampled extant seeds

with characters found in these fossils still exists. Increased sampling, with proper assessment of

within taxon variation, and carefully examination of all characters of the fossil seeds, may help

determine whether those fossil seeds with special features actually conform to extant forms.

Geographic Distribution of Fossil and Extant Vitaceous Seeds

The distribution of the fossil and extant vitaceous seed types is listed in Tables 3-16 to 3-

19. Detailed fossil information under each seed type can be found in Tables 3-1 to 3-14. Fossil

species (seed forms) may not be well delimited because the delimitation of seed forms may

varies greatly among the observers. Some authors, like Chandler (1925-1926; 1957; 1961a;

1961b; 1962, 1963, 1964; 1978), defined seed form strictly, so that seeds with minor variation

were set apart as different species. This is among the reasons why the number of fossil vitaceous

seed forms from the London Clay is unusually high (Table 3-16) compared to other fossil floras.

Extant species can be defined by other plant parts and the intra-specific variation of the seeds can

be examined. On the contrary, there is no objective way to relate fossil seed forms to a single

extinct species. After all, the organ itself is the only reference for species delimitation. One

should bear in mind that the number of seed forms in each seed type (number in each cell of

Tables 3-16 to 3-19) from the same locality can be interpreted differently by different observers

and may not represent the real species diversity.

176

Europe

Abundant vitaceous seeds were reported in the Tertiary of Europe; records from 33

localities were reviewed in this study (Table 3-16). The earliest recognizable seed type is st-

Ampelopsis-smooth from the Paleocene of Gonna, Germany (Vitis venablesi Chandler, Mai,

1987). By Early Eocene, they were more diverse; the localities from southern England (Dorset

Pipe Clays, London Clay, Oldhaven Beds) have yielded nine identifiable seed types with oval

chalaza, and smooth or rugose surfaces. The same nine seed types persist to the Miocene of

Europe, with a different seed type, st-Cayratia, occurring in two Miocene localities in Central

Europe (Köflach-Voitsberg, Austria and Hauptzwischenmittel, Germany). The majority of the

fossil seeds have an oval chalaza; the fossil seeds with an unambiguous linear chalaza, st-

Cayratia, are relatively rare in the Tertiary of Europe. Seed types st-Vitis, st-Ampelopsis-

smooth, st-Ampelocissus-rugose, and st-Parthenocissus clarnensis are common in the Tertiary of

Europe, and they frequently co-occurred in the same localities. Most fossil seeds from Europe

resemble extant seeds without discernable differences, nevertheless, some of the examined fossil

seeds have features not present in the extant seeds of the same seed types. Some fossils

classified as st-Ampelocissus-rugose have a sharp apical notch, uncommon in extant

representatives (Table 3-2); Ampelocissus wildei from the Middle Eocene of Messel, Germany

(Table 3-2) and Palaeovitis paradoxa from the Early Eocene of the London Clay (Table 3-7)

have unusually thick endotesta; some st-Parthenocissus type fossil seeds have a rugose surface

(Table 3-9); Vitis magnisperma from the Early Eocene of the London Clay is large and with

closely spaced ventral infolds (Table 3-10); the dubious specimen of Vitis platysperma from the

Early Eocene of Dorset Pipe Clay is laterally compressed as seeds from 9-10-seeded fruits (Table

3-14). Such a diversity of Vitaceae clearly does not exist in the present day flora of Europe.

Vitis vinifera is widely cultivated. The species collected from the wild environment in Europe

177

was identified as V. vinifera (Webb, 1968), or V. sylvestris Gmelin, which often was treated as a

variety or subspecies of V. vinifera (Davis, 1967). It is uncertain whether the present wild

species has originated from cultivation escape.

Siberia

Fossil vitaceous seeds from 12 localities in Siberia were reviewed (Table 3-17). Five

identifiable seed types occur from the Early Eocene to Miocene in Siberia. The earliest

occurrences are st-Ampelopsis-smooth and st-Vitis-Ampelopsis in the Early and Middle Eocene

of West Siberia (Nikitin, 2006). In addition to these two seed types, st-Vitis, and st-

Parthenocissus clarnensis are also present in several Oligocene and Miocene sites. st-Cayratia

occurred in only one locality in Late Oligocene/Early Miocene (Nikitin, 2006). All of the fossil

seeds from Siberia have an oval chalaza except st-Cayratia. st-Ampelopsis-smooth, st-Vitis, and

st-Vitis-Ampelopsis are prevalent in Tertiary Siberia, but the strongly rugose seed type is not

present. Most of the fossil seeds do not differ from the extant vitaceous seeds externally, except

for A. macrosperma which has a very large round chalaza (Table 3-3). A few species of Vitis,

Ampelopsis, and Parthenocissus occurs in the forests of the border region of Russia and

northeastern China today (Kozhevnikov and Nedoluzhko, 2006; Denisov, 2007). Most of fossil

seeds are from western Siberia, outside the range of most extant Vitaceae.

Asia

Fossil vitaceous seeds with an age earlier than the Pliocene are not known from eastern

Asia. Seed types st-Ampelocissus-rugose, st-Ampelopsis-smooth, st-Ampelopsis-rugose, st-Vitis,

and st-Parthenocissus clarnensis are present in the Pliocene of Japan (Table 3-17). In the

present day of Japan, several species of Vitis, Ampelopsis, Parthenocissus, and Cayratia

japonica grow in the temperate to sub-tropical forests. These extant taxa produce seed types

resembling the Pliocene fossil seeds; however, st-Ampelocissus-rugose is not linked to the extant

178

species in Japan. Present day Asia has highly diversified members of Vitaceae in temperate to

tropical regions. With the exception of the Australian endemic Clematicissus and African

endemic Rhoicissus, every extant genus has representatives distributed in Asia and Malesia.

North America

Fossil vitaceous seeds from 13 localities in North America were reviewed (Table 3-18).

In North America, fossil vitaceous seeds were uncovered from the Paleocene of western North

America (Bullion Creek Formation, Fort Union Formation), Eocene of western (Princeton chert,

Clarno Formation, Blue Rim, Green River Formation, Wilcox, Chalk bluffs) and eastern

(Fisher/Sullivan site) North America, Miocene of northeastern North America (Brandon Lignite),

and Miocene of western North America (Remington Hill, Yakima Canyon). The oldest

specimens are Ampelocissus parvisemina from the Paleocene of Bullion Creek Formation, North

Dakota, belonging to st-Ampelocissus-wide infolds, and the specimen from the Paleocene of Fort

Union Formation, Montana (Robinson and Honey, 1987; locality information only), belonging to

st-Vitis. Seeds from the Early Eocene of Fisher/Sullivan site, Virginia and Wilcox, Texas are

similar to extant Vitis. Several different vitaceous seed forms occur in the early Middle Eocene

of the Clarno Formation, including seed types st-Vitis, st-Parthenocissus, st-Ampelopsis-smooth,

and st-Ampelocissus-wide infolds. Seeds with noticeable deviation from the observed modern

seed forms were also present, such as the lens-shaped Ampelocissus scottii (Table 3-6),

Ampelocissus parachandleri with deeply sunken chalaza (Table 3-9), the unusually large Vitis

magnisperma with closely spaced infolds (Table 3-10). Permineralized vitaceous seeds were

reported from the Middle Eocene of Princeton chert; two of the seeds showed the features of

Ampelopsis in transverse section (Table 3-5). Other Tertiary sites in North America have st-

Vitis, st-Vitis-Ampelopsis, st-Vitis rotundifolia seed types. The specimens from Miocene Yakima

Canyon, Washington (Tcherepova and Pigg, 2005) and Remington Hill, California (Condit,

179

1944), reported to have Vitis and/or Ampelopsis affinity, were not observed for this study. Three

seed forms similar to Vitis were reported from the Latest Miocene/Early Pliocene of the Gray

Fossil Site, Tennessee, US (Gong, Karsai, and Liu, 2009; specimens not observed). All fossil

vitaceous seeds from North America have oval or round chalaza, and none of them are strongly

rugose.

Three temperate genera of Vitaceae occur today in North America: Vitis subgenus Vitis

(several species thoughout North America, V. tiliifolia HBK. extending to northern South

America), Ampelopsis (three species, two in central-southern North America, 1 restricted in

Mexico to Guatemala), and Parthenocissus (three species, two with wide distribution north from

Quebec, south to Texas; 1 strictly in Texas) (Brizicky, 1965). Vitis and Parthenocissus produce

st-Vitis and st-Parthenocissus seed types respectively. Interestingly, species of Ampelopsis

producing rugose seeds are all from Asia; all the species in North America produce smooth

seeds, and A. denudata, the one that occurs in Mexico and Guatemala, has wide ventral infolds

(Fig. 7f, Chen and Manchester, 2007). Other occurrences of extant Vitaceae in North America

are in the southern region, including Vitis subgenus Muscadinia, Cissus, and Ampelocissus. Vitis

subgenus Muscadinia has a single species (Vitis rotundifolia) endemic in southeastern North

America, and possibly another in Mexico and Guatemala (Brizicky, 1965). Two to three species

of Cissus mainly occur in southeastern North America. Four species of Ampelocissus occur in

Central America; A. acapulcensis and A. erdvendbergiana extend north to Mexico. These two

species of Ampelocissus produce rugose, wide or narrow ventral infolded seeds. Fossil seed

types from North America mostly can be found in present day of North America not far from the

fossil localities, except the st-Ampelocissus-wide infolds and st-Vitis rotundifolia, which were

180

uncovered from fossil localities (Bullion Creek Formation, Clarno Formation, Brandon Lignite)

further north than the nearest current distribution area in southern North America.

Central and South America

Seeds of st-Ampelocissus-wide infolds and st-perichalaza are found in the Eocene of

Belen, Peru (Table 3-19). One of the st-perichalaza seeds, Carpolithus olssoni, has characters of

Leea; the other, Cissus willardi, resembles extant Cissus. The seeds collected recently from

Miocene of Panama (Carvalho et al., unpublished) are similar to extant Cissus seeds. In present

day Central and South America, Cissus (ca. 80 spp. described) is the major representative of

Vitaceae. At least five species of South America-endemic Cissus do not have the typical

perichalazal seeds ("Austrocissus"); they produce st-Ampelopsis-smooth, st-Ampelopsis-rugose,

or st-Tetrastigma seed types (see Chapter 1 for details). Four species of Ampelocissus and one

species of Ampelopsis (A. denudata) occur in Central America; their seeds belong to st-

Ampelocissus-wide infolds and st-Ampelocissus-rugose seed types. Leea is not native in North,

Central or South America today. If the fossil from Peru is correctly identified then it indicates

the presence of this genus in Eocene time.

Africa

The fossil vitaceous seeds from the Miocene of Lake Victoria, Kenya, Africa are similar

to extant Cissus seeds (Collinson, unpublished) (Table 3-19). In present day Africa and

Madagascar region, Cissus (ca. 200 spp.) and Cyphostemma (250 spp.) are widespread and

highly diversified. Rhoicissus is a genus with 12 species, all endemic to this region.

Ampelocissus (30 spp.), Cayratia (7 spp.) and Leea (2 spp.) also occur in this area (Descoings,

1972). Habitats of these African Vitaceae include riverine forest, evergreen forest, dry forest,

bushland, or grassland. Cissus, Cyphostemma, and Leea produce st-perichalaza type of seeds.

Some species of Rhoicissus produce seeds that can be classified as st-Ampelopsis-rugose.

181

Ampelocissus in Africa produce seeds that are more or less rugose, with long ventral infolds

range from narrow to wide. Seeds of African Cayratia fit to the st-Ampelopsis-rugose seed type

defined in this study; species of Cayratia in Africa do not produce the st-Cayratia seed type

(Table 3-19).

Australia

Vitaceous seeds from two fossil localities in Australia were evaluated (Table 3-19).

Cissocarpus jackesiae from Oligocene of Capella, central Queensland, Australia (Rozefelds,

1988) belongs to seed type st-Tetrastigma (Table 3-12). A seed from Early Eocene of Hotham

heights, Victoria, Australia was identified as aff. Cissocarpus jackesii (Carpenter et al., 2004)

(Table 3-14). Five species of Tetrastigma and the Australian endemic species of Cissus

("Austrocissus"), C. antarctica, C. oblonga, C. hypoglauca, C. penninervis and C. sterculiifolia,

are distributed in eastern Australia (Jackes, 1988b, 1989a), not far away from the Oligocene

locality in Capella where fossils with similar seed type were found. Other extant members of

Vitaceae in Australia include the eight species of Cissus with perichalazal seeds, Cayratia (8

spp.) with st-Ampelopsis-rugose or st-Cayratia type of seeds, Ampelocissus (3 spp.) with st-

Ampelocissus-rugose type of seeds, and the endemic Clematicissus (2 spp.) with st-Ampelopsis-

smooth type of seeds (Jackes, 1984, 1987b, 1988b, 1989b, 1989a; Jackes and Rossetto, 2006)

(Table 3-19).

Summary of seed type distribution

The majority of the fossil vitaceous seeds are from Europe, North America, and Siberia.

The earliest occurrences are from the Paleocene, a st-Ampelopsis-smooth seed from Europe, a st-

Ampelocissus-wide infolds seed and a st-Vitis seed from North America. Fossils from the

northern continents have more or less similar composition, with slight variation. Fossils of st-

Ampelopsis-smooth seed type are relatively abundant (occurred in more localities) in Europe and

182

Siberia, but less frequent in North America. Rugose seeds with an oval chalaza are common in

the Tertiary Europe but not other regions. The st-Parthenocissus seed type is missing in Siberia.

Fossil seed type composition from the southern continents are very different from those from

Europe, North America, and Asia. Most of them have a linear chalaza; only Ampelocissus

bravoi of Belen, Peru has an oval chalaza. The diversity of seed types in Early Eocene of Europe

is comparable to that of Asia now but lacks seeds with a linear chalaza or perichalaza. This

richness in vitaceous seed types diminished in the Late Miocene to Pliocene period. By seed

type comparison, one can relate the reduced diversity to glacial activities in the later Pliocene

and Pleistocene. Climatic cooling had a severe effect on the flora of Vitaceae in Europe. Seed

types formerly widespread in Siberia are now distributed in the southeastern border of Siberia.

In North America, seed type diversity has not strongly changed, but two of the fossil seed types

are now confined to the southern area.

Phylogeny of Vitaceae

Two coding strategies were applied to the continuous characters in the morphological

cladistic analyses (Chapter 2). The morphological phylogeny with discrete coding (Figure 3-1)

is used for hypothesizing biogeography because its topology resembles those of recent molecular

phylogenies (Soejima and Wen, 2006; Wen et al., 2007) more than the phylogeny with GW

coding (Chapter 2). The morphological phylogeny indicates a close relationship of

Ampelocissus, Vitis, Ampelopsis, Parthenocissus, Yua, and Clematicissus. Nothocissus and

Pterisanthes are nested within Ampelocissus; this clade is closely related to Vitis. Yua is grouped

with Parthenocissus; Ampelopsis and the Parthenocissus-Yua clade are sequentially sister to the

Ampelocissus-Vitis clade. These genera mostly bear 5-merous flowers, inflorescences with

tendril-like structure, seeds with an oval chalaza, and an endotesta with elongate sclereids and

small diameter tracheidal cells. Rhoicissus and Cissus are sister to the oval chalazal clade. Both

183

Rhoicissus and Cissus are paraphyletic, although Cissus with perichalaza is monophyletic when

the GW coding method was applied (Chapter 2). Cayratia, Tetrastigma, Acareosperma, and the

majority of Cyphostemma form a clade sister to rest of the family; they are united by unique

characters in inflorescence-bearing branch, frequently stomated sarcotesta, short endotesta

sclereids, and large-diameter tracheidal cells in the seed coat. This phylogeny has the basic

framework of the phylogenies estimated by chloroplast and GAI1 sequences (Soejima and Wen,

2006; Wen et al., 2007), except for the placements of Rhoicissus and Cissus. These two DNA-

based phylogenies indicate a close relationship of Rhoicissus, Ampelopsis, and C. striata; the

monophyly of Cissus with perichalazal seeds is well supported by the molecular data, and the

clade occupied a position sister to the oval chalazal clade. However, the Australian endemic

Cissus and Clematicissus were not included in these molecular phylogenies.

Phylogenetic Signals of the Seed Types

Chalaza shape and seed coat anatomy are associated with higher level groupings within

Vitaceae. In the oval chalazal clade, there is a trend that the later divergent groups, Vitis and

Ampelocissus, have a centrally-positioned chalaza whereas the earlier divergent groups,

Parthenocissus and Ampelopsis, have the chalaza near the apex. Other seed shape characters,

such as those used to classify fossil seeds in this study, also contribute to the grouping of

Ampelocissus, Vitis, Ampelopsis, and Parthenocissus. Within the clade that contains

Cyphostemma, Cayratia and Tetrastigma, Cayratia and Tetrastigma do not have a perichalaza

but the chalaza is still linear and long in most sampled extant seeds (Chapter 1). Most genera

have diverse seed types, such as Ampelocissus, Vitis, Ampelopsis, Cayratia, and Tetrastigma.

Seed type is not strictly correlated with the intrageneric relationships or geographical

distribution, except for Cayratia, where the species with st-Cayratia seeds (C. cardiophylla and

C. geniculata) are phylogenetically distant from others (Figure 3-1). Within Ampelocissus, seed

184

types are somewhat related to the infrageneric groups (Chen and Manchester, 2007); for

example, those Ampelocissus with inflorescences that are racemes of spike from Malesian

rainforests all have flat seeds with wide ventral infolds.

To link extant species to the fossil seeds, seeds of the terminal taxa in the morphological

phylogeny are classified into seed types the same way as the fossil seeds in this study. The

extant seeds that did not fit in to the seed types defined for fossils are given different seed type

names (Figure 3-1). A great number of the fossil vitaceous seeds are indistinguishable from the

extant representatives externally, such as seed types st-Ampelopsis-smooth, st-Vitis, st-

Parthenocissus, and st-perichalaza. Some well-preserved fossil seeds show remarkable

resemblance to the extant representatives in all available characters including transverse section,

such as Ampelopsis rooseae of the Clarno Formation (Chapter 4). These fossils imply that the

extinct taxa may have an overall morphology very similar to that of the extant taxa bearing the

same seed types. Although other plant parts of the fossil taxa are unknown, one can tentatively

use seed types to infer fossil affinity. Nevertheless, some seed types delimited here contain

species from multiple genera (Table 3-15). Some genera with the same seed types have a close

relationship as indicated by morphological and molecular data, such as Pterisanthes and

Ampelocissus (st-Ampelocissus-wide infolds seed type), Nothocissus and Ampelocissus (st-

Ampelocissus-rugose seed type) (Figure 3-1). Since these three genera form a clade, their seed

types can infer the past distribution of this clade. Vitis and Ampelopsis are closely related, hence

the st-Vitis-Ampelopsis seed type was used to indicate the presence of either Vitis or Ampelopsis.

Other genera with the same seed types are not immediately related, such as Ampelocissus

and Cayratia/Tetrastigma (st-Ampelocissus-rugose seed type), or Ampelopsis and

Cayratia/Tetrastigma (st-Ampelopsis-rugose seed type) (Table 3-15; Figure 3-1). Cayratia and

185

Tetrastigma mostly have linear chalaza seeds (Chapter 1), however, some species have shorter

chalaza and therefore are not distinguishable from st-Ampelopsis-rugose or st-Ampelocissus-

rugose defined here. Their external seed characters exhibit interesting convergence,

nevertheless, the testa anatomy usually can distinguish extant Cayratia and Tetrastigma from

Ampelocissus. Since the anatomical characters are lacking, fossil st-Ampelocissus-rugose seed

types are equally likely to be associated with Ampelocissus, Tetrastigma or Cayratia, and st-

Ampelopsis-rugose can be associated with Ampelopsis, Tetrastigma, or Cayratia. All

probabilities were considered in the discussion of biogeography.

The two sampled Yua species have different seed types: Y. chinensis has the st-

Ampelopsis-smooth seed type, and Y. austro-orientalis has the st-Ampelocissus-rugose seed type

(Table 3-15; Figure 3-1). When comparing all seed characters, the seeds of Y. chinensis are not

differentiated from those of Ampelopsis, and seeds of Y. austro-orientalis share numerous

features of those of Ampelocissus (Chapter 1). The monophyly of Yua and Parthenocissus is

supported by both morphological (Figure 3-1; Chapter 2) and molecular data (Wen et al., 2007).

The seeds of Yua indicates that sometimes the seed morphology can be different from that of the

other members within the monophyletic group and resemble that of other genera. It may be

hypothesized that seeds of Yua preserved the ancestral characters of this clade, and the

Parthenocissus seed type was derived later. Fossil records of Yua are not formally recognized

here, but the fossils with seed types st-Ampelopsis-smooth and st-Ampelocissus-rugose may be

related to Yua.

Some fossil seeds are not fully comparable to the extant seeds, such as seed type st-

Parthenocissus clarnensis and those indicated in column "Comment" in Tables 3-1 to 3-14.

Those fossil seeds all have oval chalaza, possibly indicating the greater diversity of the oval

186

chalaza clade in the past. More discussion about the possible extinct seed forms can be found in

Chapter 4. Tentatively, these possible extinct forms are hypothesized to be related to extant taxa

with the same assigned seed types, and st-Parthenocissus clarnensis seed type is viewed as stem

group Parthenocissus.

Clematicissus, "Austrocissus", and Rhoicissus still do not have a firm placement in the

phylogeny. There are two species of Clematicissus endemic to Australia. Clematicissus

angustissima has only one ventral infold, unusually different from other seeds in the family

(Chapter 1). No fossil seeds with this morphology are known. Another species, C. opaca, has

st-Ampelopsis-smooth seed type. Inflorescence and floral structures of Clematicissus are also

similar to those of Ampelopsis, and the cladistic analysis suggested a position sister to other

genera with oval chalaza seeds (Figure 3-1). Among "Austrocissus", those from Australia all

have st-Tetrastigma seed type, and those from South America have st-Ampelopsis-smooth, st-

Ampelopsis-rugose, or st-Tetrastigma seed types (Figure 3-1; Chapter 1). One of the

"Austrocissus" from South America, C. simsiana, is morphologically very similar to Ampelopsis,

its seeds belong to st-Ampelopsis-rugose seed type. This species is probably directly related to

Ampelopsis, and not closely related to other "Austrocissus". Rhoicissus tridentata has slightly

shorter chalaza therefore can be classified as st-Ampelopsis-rugose seed type; other Rhoicissus

have seeds similar to Tetrastigma with divergent infolds (Chapter 1). "Austrocissus" and

Rhoicissus have inflorescences similar to those in the oval chalazal clade, however, they have 4-

merous flowers, and some have seeds resembling Tetrastigma. Because of the uncertainty of

their phylogenetic placement, the fossil seeds associated with these species are not considered in

this study.

187

Biogeographical History

Extant species are linked to fossils by seed types, and the estimated past distribution is

shown in Figure 3-2. The distribution of extant species is summarized in Table 3-20.

Vitis, Ampelocissus, Ampelopsis, and Parthenocissus

The three temperate genera Vitis, Ampelopsis, and Parthenocissus present an Asian-North

American disjunct pattern. These genera share a common ancestor (Figure 3-2). Vitis is

monophyletic, with the North American species forming a clade nesting within the Asian

species. Ampelopsis is paraphyletic. Both Ampelopsis and Parthenocissus-Yua clade have

species from the two regions intermingled without an area related pattern (Figure 3-2). In the

trnL-F phylogeny, the Asian species of Vitis formed a weakly supported clade nested within

North and Central American species of Vitis (Soejima and Wen, 2006); in the GAI1 phylogeny

the differentiation of Vitis by geographical area is not evident (Wen et al., 2007). Hence, the

geographical pattern within Vitis shown in the morphology-based phylogeny (Figure 3-2) is not

considered. No molecular phylogeny indicated the infra-generic geographical pattern of

Ampelopsis and Parthenocissus. Interestingly, within Ampelocissus, the four species from

Central America are sister to the species from Asia, Malesia, and Africa (Figure 3-2). The sister

position of Central American A. javalensis to other Ampelocissus is well-supported by the

chloroplast sequence data (Soejima and Wen, 2006). The fossils indicate the presence of

Ampelocissus, Vitis, Ampelopsis, and Parthenocissus in the Early Eocene of Europe (Table 3-16)

and the early Middle Eocene of North America (Table 3-18) (Figure 3-2). Vitis and Ampelopsis

are also present in the Early Eocene of Siberia (Table 3-17) (Figure 3-2). These fossil species

may have favored the warm Eocene climate and co-existed in the same forests, as their remains

are frequently recovered together in the same fossil localities. Vitis, Ampelopsis, and

Parthenocissus later adapted to the cooling in late Tertiary (Zachos et al., 2001). Ampelocissus

188

possibly did not evolve the tolerance to cold, as implied from the disappearance of its fossils in

Europe since Late Miocene, when temperatures became cooler (Table 3-16).

The more distant relationship of extant Central American/Mexican Ampelocissus to other

Ampelocissus from Asia and Africa may be explained by this scenario: the South American

Eocene Ampelocissus fossil may be more closely related to the North American Paleocene and

Early Eocene Ampelocissus, indicating a wider distribution range of Ampelocissus in the New

World in the Early Tertiary. These Ampelocissus species failed to persist or diversify in

America, but might have been ancestral to the four species surviving in Central American today.

Ancient European Ampelocissus spread to Africa and southern Asia and diversified. A higher

speciation rate is associated with warm temperatures (Francis and Currie, 2003; Currie et al.,

2004), plus other biotic and abiotic variations in the environmnets, the differences between the

American and African/Asian Ampelocissus gradually accumulated to a level that is more readily

detected in modern species.

Vitis, Ampelopsis, and Parthenocissus probably experienced similar climate variation

though time in the North Hemisphere in the Tertiary, and it is likely that a certain degree of

intercontinental exchange remained, since 1) the small sized berries/seeds can be dispersed by

traveling animals such as birds; 2) Beringia connected Asia and North America through much of

the Tertiary, the North Atlantic Land Bridge did not separate till the Late Eocene, and the retreat

of Turgai sea in the Early Oligocene removed the barrier between Asia and Europe (Tiffney and

Manchester, 2001). This may explain why little infrageneric variation can be detected from the

taxa distributed in separate continents today. The later glacial activities destroyed the wild

grapes in Europe and hence left a North American-Asian disjunction pattern for Vitis,

Ampelopsis, and Parthenocissus. Alternatively, the glacial activities could have brought a total

189

extirpations of Vitaceae in the northern regions, and the current North American-Asian

disjunction pattern would then be due to the post glacial intercontinental re-dispersals from

southern refugia. The past diversity in Europe, however, has not recovered since the ice age.

Clematicissus, "Austrocissus", and Rhoicissus

These species are possibly sequentially sister to the monophyletic oval chalazal lineage

(Figure 3-1) but this relationship is not well supported. Nevertheless, the suggested pattern that

the species immediately sister to the oval chalazal clade are all distributed in the south (Figure 3-

2) is intriguing. Their mixed morphology may represent the characters of the stem lineage of the

oval chalaza clade. Fossil seeds were not linked to these taxa, nevertheless, a twig from the

Early Eocene of London Clay was reported to have similar wood anatomy to that of Rhoicissus

(Poole and Wilkinson, 2000). The oldest known fossils of the oval chalaza clade are from the

Paleocene, suggesting a divergence time in or earlier than Paleocene for these southern species.

One scenario is that once there was a worldwide distributed oval chalaza clade, which later

became more adapted to the temperate environments except Ampelocissus. Parthenocissus,

Ampelopsis, and Vitis diversified in the northern continents. Representatives in the southern

continents also adapted the temperate climate in the southern regions in the Tertiary, and evolved

to become Clematicissus, "Austrocissus", or Rhoicissus.

Perichalazal seeds: Cissus, Cyphostemma, and Leea

Among the rest of the family, the two genera with perichalazal seeds, Cissus and

Cyphostemma, are large genera containing more than half of the species in the family. Cissus

currently is widespread pantropically; it is highly diverse in South America and Africa.

Cyphostemma is mostly restricted in tropical and subtropical Africa, only one or two species

occur in southern Asia. No fossil seeds were assigned to Cyphostemma. A seed internal cast

from the Eocene of Peru was recognized as Leea (Table 3-13). Seeds of Cissus were found in

190

the Eocene of South America, Miocene of Central America (Table 3-13; Figure 3-2), and

Miocene of Africa (Table 3-14). The perichalazal seeds were never found in the Tertiary

localities in the Northern Hemisphere, where extensive paleontological investigation have been

conducted since the past century. The evidence from the fossil seeds strongly suggest that

Cissus, Cyphostemma, and Leea were confined to the southern continents thoughout the Tertiary

and have not spread to the northern temperate zones. However, the lack of the typical diagnostic

characters on the seed surface of Cyphostemma and Leea could be the reason that no fossil has

been identified to these genera.

The confinement of fossil perichalazal seeds in the southern continents and Central

America is in sharp contrast to the northern distribution of the majority of the fossil seeds. It

implies that the fossil taxa with perichalazal seeds have long been strictly thermophilic and had

very little tolerance to the cooling of the late Tertiary (Zachos et al., 2001), which was

presumably more severe in the high altitudes. Alternatively, the northward spreading of the taxa

with perichalazal seeds may be extremely unfavored by the factors related to seed dispersal.

Tetrastigma and Cayratia

Tetrastigma, Cayratia, and Acareosperma form a clade with Cyphostemma based on

morphological data (Figure 3-1, 3-2). The monophyly of a Tetrastigma-Cayratia-Cyphostemma

clade is well supported by molecular data (Soejima and Wen, 2006; Wen et al., 2007). Fossil

seed types st-Ampelocissus-rugose and st-Ampelopsis-rugose may be interpreted as Tetrastigma

and Cayratia. Assuming those fossils are Tetrastigma and Cayratia, then the divergence of these

two genera in the Early Eocene and their distribution in Europe is implicated (Table 3-16; Figure

3-2). Tetrastigma may have also been distributed in Australia in the Tertiary, if the fossil st-

Tetrastigma from Australia is considered as Tetrastigma instead of "Austrocissus". Unequivocal

Cayratia fossils with st-Cayratia seed type appeared in the Miocene of Europe and the Late

191

Oligocene/Early Miocene of Siberia, indicating that the genus formerly existed in the far north,

outside its current range (Table 3-20). The genus is usually found in tropical and subtropical

forests, however, C. japonica has a wide range of habitat and also is commonly found in

temperate region in Asia. It is possible that the fossil species of Cayratia can survive in the

temperate climate in the mid Tertiary of Siberia. The appearance of st-Cayratia fossil seeds

coincide with the Late Oligocene/Early Miocene warm phase (Zachos et al., 2001); this may also

explain the existence of extant tropical elements in the more northern regions in the mid Tertiary.

The large ventral hole of st-Cayratia holds air if the sarcotesta is intact, so the seeds usually

float. Dispersal across the Turgai sea, even before its drying out in the Early Oligocene,

therefore is possible. Extant Tetrastigma shares a similar distribution as that of Cayratia, but is

not present in Africa. These two genera are not native in North, Central, and South America at

this time, and there are no fossil seeds indicating their former presence in these regions (Figure

3-2). Assuming the taxa with perichalazal seeds, including Cyphostemma, have not spread to the

northern continents in the Tertiary since their divergence from the common ancestor, the

monophyly of Cyphostemma, Cayratia, and Tetrastigma would implicate an origin of the

equatorial/southern continents for Cayratia and Tetrastigma. The Tertiary appearance of

Cayratia, and possibly Tetrastigma, in Europe/Siberia then is likely the results of dispersal.

Cayratia and Tetrastigma are not native in North America, but they survive in Africa, Asia,

Malesia, and Australia today.

Origin of the family: Timing? North? South?

The oldest fossil seeds of Vitaceae are from the Paleocene, a st-Ampelopsis-smooth seed

from Germany (Mai, 1987), a st-Ampelocissus-wide infold seed from North Dakota, North

America (Chen and Manchester, 2007), and a st-Vitis seed from Montana, North America

(Manchester, unpublished). Judging from the structure of the phylogeny (Figure 3-2),

192

Ampelocissus and Vitis are relatively recently divergent groups, hence the appearance of their

fossils in the Paleocene implies that most genera in the family, and the common ancestor of

Cyphostemma, Cayratia, Tetrastigma, and Acareosperma, had diverged by the Paleocene. The

splitting of Vitaceae from Leea possibly occurred prior to the Paleocene. The divergence time of

Cayratia and Tetrastigma could be as early as Early Eocene, based on the fossils in the London

Clay. Early Eocene Vitaceae representatives in Europe have a composition similar to the extant

representatives in southern Asia, but lack taxa with perichalaza. The Early Eocene high diversity

in Europe curiously coincides approximately with the Paleocene-Eocene thermal maxium. The

divergence of most genera may have occurred in the Paleocene, and the intrageneric

diversification may have peaked in the Early Eocene.

The currently held view that Vitaceae are sister to Rosids suggests that they diverged

long prior to the earliest known Vitaceae fossils (Wang et al., 2009). Given the readily preserved

nature of seeds of Vitaceae and Leeaceae and easily recognized diagnostic characters, the

absence of Cretaceous Vitaceae is perplexing. Perhaps the early history of the lineage occurred

in areas less likely to be preserved (e.g., arid climate) or in areas where Cretaceous age

sediments are not available or not yet studied.

Leea have relatively few fossil records compared to Vitaceae. Only one seed from the

Eocene of Peru may be assigned to Leea. Fossil woods with affinity to Leea have been reported

from Deccan Intertrappean Beds, India, with uncertain age of Late Cretaceous or Early Tertiary

(Prakash and Dayal, 1964), Miocene of Japan (Watari, 1951), and Neogene of Java (Kramer,

1974). However, woods of extant Rhoicissus and Leea are similar (Wheeler and Lapasha,

1994), casting doubt on the generic identity of these fossil woods. Lacking fossils of Leea,

Cyphostemma, and Cissus, the earlier divergent groups of the family, in the northern continents

193

may appear to favor the theory that Vitaceae originated from the tropical equatorial or southern

lands. The taxa with perichalazal seeds persisted in the tropics, while others spread in the warm

Early Eocene of Europe, North America, and North Siberia; later only cold-tolerant species

survived in the now temperate regions. However, the earliest unequivocal presence of fossil

perichalazal seeds is in the Eocene, some 10 million years after the divergence of most genera in

the Paleocene. This leaves room for the theory that the family diversified in the warm Paleocene

of northern landmasses, likely southern Europe/Asia, since the diversity of seed types is high in

the Early Eocene of Europe. Some species spread across the Tethys seaway, including those

with perichalazal seeds, Rhoicissus, "Austrocissus", and possibly also Ampelocissus (as

evidenced by the fossil in Eocene of Peru). Species of perichalazal seeds became rare in the

northern continents but remained in the southern continents in the Tertiary. Fossil seeds do not

strongly hint at the area of origin, nevertheless, they strongly suggest the earlier divergent groups

occurred in tropical environments. Genetic properties, and dispersal-/climate-related factors

have restricted the taxa with perichalazal seeds to tropical and southern regions since Eocene

untill today.

Adaptation, ecology, and biogeography

The most obvious novel attribute of Vitaceae is the climbing habit. The divergence of

Vitaceae involved the transition to a viny habit, possibly initiated by the competition for light in

thick forests. Some species of Cyphostemma have an erect habit and the same kind of terminal

inflorescences as those of Leea, showing that the extant members of Vitaceae can possess some

of the defining characters of Leea. Very likely the viny habit did not become dominant in

Vitaceae right after the divergence of the family. The rapid rise of angiosperm-dominated

forests (Wang et al., 2009) may have placed heavy selection for the climbing growth form. The

evolution of climbing in Vitaceae is associated with the formation of multiple leaf-opposed

194

inflorescences at one branch, and the modification of inflorescences to tendrils (Chapter 2).

Forming multiple inflorescences in one branch provides additional benefit that many flowers can

be produced in a short time, favoring pollination, and an ample supply of berries enhances the

chance of biotic dispersal. Presumably, lignified tissue and perennial growth provided

mechanical support while plants spreading and reaching the tree top. Although extant lianous

species had already evolved a suite of stem anatomical characters that strictly associate them

with forest habitat, at their initial divergence the climbing species may have retained the

plasticity of surviving in a wide ranges of environments. This may explain the relatively

widespread distribution and diversity of Vitaceae compared to Leea.

Berry/Seed shapes and size may effect their dispersal. Presumably, frugivorous birds,

bats, or mammals may eat the berries of wild grapes. Nevertheless, the frugivores may select

against some properties of the berries/seeds. The abundance, habit, spatial scale of forage and

the gut passage rate of the frugivores also determines the success of the dispersals (Moran,

Catterall, and Kanowski, 2009). Some seeds may be better dispersed though water than others,

such as st-Cayratia. These factors possibly contributed to the biogeography of Vitaceae.

However, little is known about which factors are pivotal and how they are related to the

phylogeny. The seed-related synapomorphies of major groups, such as chalaza shape, endotesta

sclereids shape and exotegmic tracheidal cell diameter, are not obviously associated with a

particular function. Seed coat anatomy may be correlated with its mechanical properties and

therefore effect the function of seed storage or germination, which is related to the establishment

in the new environment after a successful dispersal (Moran, Catterall, and Kanowski, 2009).

These hypotheses should be tested experimentally.

195

The plants' interaction with pollinators may be one of the restrictive factors for the

distribution range of a species. Variation in nectarous disc morphology exists in Vitaceae,

however, its correlation to pollination syndromes is not known. Flowers of Vitis, with small

floral disk which produce very little nectar, were visited by insects such as beetles, Halyctids,

honeybees, and Syrphids (Branties, 1978). Some species of Vitis were reported to be pollinated

by wind (Kevan, Longair, and Gadawski, 1985). Flowers of Ampelopsis, which produce large

amount of nectar held by a dish-shaped floral disk, are frequently visited by small flies and

wasps (field observation). Leea, with an elongate floral disc shaped like long tube, was reported

to be pollinated by bees, wasps, syrphid flies (Molina, Green, and Struwe, 2006). There is no

obvious correlation between floral morphology and pollination. Floral disc and carpel

morphology more or less support the monophyly of genus Ampelocissus, Parthenocissus, and

Cyphostemma, but not to the higher level groupings within the family.

Succulence occurs in some Cyphostemma, Cayratia, Tetrastigma, and Cissus. This

physical property is usually linked to crassulacean acid metabolism, which occurs in many plant

families including a wide range of growth forms for adaptation to drought (Dodd et al., 2002).

The morphology-based phylogeny does not suggest a common origin of succulence in this

family (Chapter 2). Hairs usually are associated with defense against herbivory, or retaining the

microclimate of leaf surface. Arachnoid hairs are usually present in Vitis and Ampelocissus, and

malpighian hairs are common in hairy Cissus, "Austrocissus", and Rhoicissus. Whether different

hair types are specialized for different functions is unknown.

Conclusion

Based on the fossil records and the morphological phylogeny, the biogeographic history

of Vitaceae can be hypothesized. The earlier divergent groups, Cyphostemma, Tetrastigma,

Cayratia, and Cissus, are now diverse in warm climate regions. The fossil records imply that the

196

stem lineages of Cissus favored a warm environment. Cyphostemma diversified in and is mainly

confined to Africa nowadays, while Cayratia and Tetrastigma are now mostly confined to

southern Asia and Malesia. Some stem group Cayratia were less constrained by temperature and

spread as far north as Siberia in the Late Oligocene or the Early Miocene. Cissus likely attained

its pantropical distribution during the Tertiary, since its fossils are found in the Tertiary of South

America, Central America, and Africa. The phylogenetic positions of Rhoicissus,

"Austrocissus", and Clematicissus are still uncertain; nevertheless, the suggested sister positions

of these southern species to other members of the oval chalaza clade implies a worldwide spread

of the stem lineage of the oval chalazal clade in ancient time. Members of the oval chalazal

clade were highly diversified in the Early Eocene of Europe and the Eocene of North America,

as indicated by fossil seeds. Fossil seeds also indicate the presence of Vitis and Ampelopsis in

the Early Eocene of Siberia. Very likely Parthenocissus, Ampelopsis, Vitis, and Ampelocissus

occupied Europe, Asia, and North America throughout the Tertiary, until later the climate change

extinguished a great number of them, leaving Parthenocissus, Ampelopsis, and Vitis with a North

American-Asian disjunction pattern. Ampelocissus had a different fate; this lineage retained the

thermophilic nature and became widespread in Africa, southern Asia, and Malesia. However,

the ancient species in North and South America did not persist or diversify and now just four

species remain in Central America. Since there are scanty vitaceous fossils from the warmer

regions, the details of the establishment of Cayratia, Tetrastigma, and Ampelocissus in Africa,

Madagascar, Asia, Australia are largely unknown. Nevertheless, these genera can be linked to

the Tertiary fossil seeds in Europe and Asia, suggesting an Eurasian origin for these extant

species.

197

Assigning fossil seeds to extant genera implies the morphology of a lineage remained

unchanged though many generations untill present time. This seeming morphological stasis may

not be true. Seeds of fossil taxa may be comparable to those of extant taxa, nevertheless there is

chance that the other morphological characters of the fossil taxa were different from those of the

corresponding extant taxa. Seeds of Yua are either similar to Ampelocissus or Ampelopsis

(Chapter 1), nevertheless, flowers of Yua are same as those of Parthenocissus (Chapter 2), and

the monophyly of Yua and Parthenocissus is supported by both morphological (Chapter 2) and

molecular data (Soejima and Wen, 2006; Wen et al., 2007). This incongruence of organ

morphology in a monophyletic group leads to the speculation that species with mixed characters

of extant genera may have existed in the past. The genera in the oval chalazal clade may not

have been well differentiated from each other in early Tertiary. The fossil seeds suggests that

Parthenocissus, Ampelopsis, and Vitis have co-occurred in the same forests in North Hemisphere

since the Eocene. Is it possible that Parthenocissus, Ampelopsis, and Vitis were not as well

separated in the Tertiary as they are today? Or is it more likely that they were as distinct as they

are now, and they co-existed in the same forests remaining unchanged for 55 million years? If

the former case is true, then what made them become morphologically distinct through time? Is

it possible that the stem lineages of these three genera simultaneously evolved to the same three

morphologically distinct groups (Parthenocissus, Ampelopsis, and Vitis) in different regions

(Europe, Asia, and North America)? This case here only represents one of many unresolved

enigmas about evolution and biogeography of Vitaceae. Missing data of the fossils cannot be

ignored; multiple lines of evidence have to be considered when discussing biogeography.

The phylogeny can greatly influence both the assignment of fossil affinities and the

interpretation of the biogeographical history. However, the infrafamilial relationships of

198

Vitaceae are not full resolved (Chapter 2), especially the positions of Rhoicissus, Clematicissus,

and "Austrocissus". Biogeography of Vitaceae should be reviewed again as more evidences of

the relationships within the family become available.

Table 3-1. Fossils classified as seed type st-Ampelocissus-wide infolds. Column "Group" refers to the groups indicated in Table 3-15.

C21 = chalaza length; C18 = chalaza circularity; C22 = chalaza to notch distance; C5 = apical notch angle; C35 = ventral infold width; C9 = ventral infold length; C15 = ventral infold divergence angle; C24 =

external rugosity; C57 = constricted rim on ventral side; a = absent; ambig = ambigous.

Fossil Age Region Locality References Figures Condition C21 C18 C22 C5 C35 C9 C15 C24 C57 Group

Ampelocissus parvisemina Chen & Manchester

Paleocene North America Bullion Creek

Formation, ND, US

Chen and

Manchester, 2007

Fig. 8a apex embedded

in rock

< 1.4 > 0.5 ambig > 60 > 0.2 > 0.6 < 25 < 0.2 a 4

Vitis excavata Chandler Early Eocene Europe Dorset Pipe Clays,

England

Chandler, 1962 Plate 15,

Fig. 29-30

one side broken < 1.4 > 0.5 < 0.1 ambig > 0.2 ambig < 25 < 0.2 a 1

Ampelocissus auriforma Manchester

Early Middle

Eocene

North America Clarno Formation,

OR, US

Chen and

Manchester, 2007

Fig. 8e < 1.4 > 0.5 > 0.1 > 60 > 0.2 > 0.6 < 25 < 0.2 a 3

Ampelocissus parvisemina Chen & Manchester

Early Middle

Eocene

North America Clarno Formation,

OR, US

Chen and

Manchester, 2007

Fig. 8b < 1.4 > 0.5 < 0.1 > 60 > 0.2 > 0.6 < 25 < 0.2 a 1

Ampelocissus bravoi Berry Eocene South America Belen, Peru Chen and

Manchester, 2007

Fig. 8h internal cast < 1.4 > 0.5 > 0.1 > 60 > 0.2 > 0.6 < 25 ambig a 2

199

Fossil Age Region Locality References Figures Condition C21 C18 C22 C5 C35 C9 C15 C24 C57 Group Comment

? Tetrastigma lobata Chandler Early Eocene Europe Dorset Pipe Clay, England

Chandler, 1962 Plate 15, Fig. 35-38s < 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig < 25 > 0.2 a 6

Tetrastigma ? elliotti Chandler Early Eocene Europe London Clay, England Chandler, 1961b Plate 25, Fig. 28-29s < 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig ambig ambig a 8

Tetrastigma corrugata Chandler Early Eocene Europe London Clay, England Chandler, 1961b Plate 25, Fig. 24-25s internal

cast< 1.4 > 0.5 > 0.1 ambig < 0.2 ambig ambig > 0.2 a 7 sharp apical

notch

Tetrastigma davisi Chandler Early Eocene Europe London Clay, England Chandler, 1961b Plate 25, Fig. 22-23s < 1.4 > 0.5 > 0.1 ambig < 0.2 ambig < 25 > 0.2 a 6 sharp apical

notch

Tetrastigma globosa Reid & Chandler

Early Eocene Europe London Clay, England Reid and Chander, 1933

Plate 19, Fig. 6-8s internal

cast< 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 ambig > 0.2 a 10

Tetrastigma sheppeyensis Chandler Early Eocene Europe London Clay, England Chandler, 1961b Plate 25, Fig. 26-27s internal

cast< 1.4 > 0.5 > 0.1 ambig < 0.2 ambig ambig > 0.2 a 7 sharp apical

notch

Paleovitis paradoxa Reid & Chandler

Early Eocene Europe Paris Basin, France Blanc-Louvel, 1986

Plate 1, Fig. 2-7;

Plate 2, Fig. 1-9s

internal cast

< 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig < 25 ambig a 5

Ampelocissus cf. lobatum (Chandler) Chen & Manchester*

Middle Eocene

Europe Messel, Germany Chen and Manchester, 2007

Fig. 8ms < 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig < 25 > 0.2 a 6

Ampelocissus wildei Chen & Manchester

Middle Eocene

Europe Messel, Germany Chen and Manchester, 2007

Fig. 8n-ps < 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig < 25 > 0.2 a 6 thick testa

Tetrastigma lobata Chandler Late Eocene Europe Hordle Headon Hill, England

Chandler, 1925-1926

Plate 5, Fig. 3a-c < 1.4 > 0.5 > 0.1 ambig < 0.2 ambig < 25 > 0.2 a 6 sharp apical notch

Tetrastigma lobata Chandler Late Eocene Europe Hordle Headon Hill, England

Chandler, 1961a Plate 28, Fig. 96-97 < 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig ambig > 0.2 a 7

Vitis uncinata Chandler Late Eocene Europe Hordle Headon Hill, England

Chandler, 1925-1926

Plate 5, Fig. 4a-b; text-fig. 14

< 1.4 > 0.5 > 0.1 ambig < 0.2 ambig < 25 > 0.2 a 6 sharp apical notch

Tetrastigma cf. lobata Chandler Early Miocene

Europe Köflach-Voitsberg, Austria

Meller, 1998 Plate 20, Fig. 4 < 1.4 > 0.5 > 0.1 ambig < 0.2 > 0.6 < 25 > 0.2 a 9 sharp apical notch

Tetrastigma chandleri Kirchheimer Early Miocene

Europe Turów, Poland Czeczott and Skirgiello, 1959

Plate 18, Fig. 2-4 < 1.4 > 0.5 > 0.1 ambig < 0.2 > 0.6 < 25 > 0.2 a 9 sharp apical notch

Ampelocissus chandleri (Kirchheimer) Chen & Manchester*

Early Miocene

Europe Wiesa, Germany Chen and Manchester, 2007

Fig. 8ls < 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 < 25 > 0.2 a 9

Tetrastigma chandleri Kirchheimer Early Miocene

Europe Wiesa, Germany Kirchheimer, 1938 Fig. 17-18 < 1.4 > 0.5 > 0.1 ambig < 0.2 > 0.6 < 25 > 0.2 a 9 sharp apical notch

Tetrastigma chandleri Kirchheimer Early/Middle Miocene

Europe Berzdorf, Upper Lusatia, Germany

Czaja, 2003 Plate 13, Fig. 1 < 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 < 25 > 0.2 a 9

Tetrastigma lobatum Chandler Middle/Late Miocene

Europe Meuroer/Rauno sequences, Germany

Mai, 2001 Plate 29, Fig. 7-8 < 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig < 25 > 0.2 a 6

Tetrastigma lobata Chandler Middle/Late Miocene

Europe Oberpfälzer, Germany Gregor, 1980 Plate 13, Fig. 7-8 < 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig < 25 > 0.2 a 6

Tetrastigma japonica Miki Pliocene Asia Sika, Japan Miki, 1956 Fig. 6 A-D, Plate I-K

< 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig ambig > 0.2 a 7

Tetrastigma tazimiensis Miki Pliocene Asia Simoiguta, Japan Miki, 1956 Fig. 6E, Plate I < 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig ambig > 0.2 a 7

*Ampelocissus cf. lobatum (Chandler) Chen & Manchester basionym = Tetrastigma lobata Chandler; Ampelocissus chandleri (Kirchheimer) Chen & Manchester basionym = Tetrastigma chandleri Kirchheimer; sspecimens observed; C21 =

chalaza length; C18 = chalaza circularity; C22 = chalaza to notch distance; C5 = apical notch angle; C35 = ventral infold width; C9 = ventral infold length; C15 = ventral infold divergence angle; C24 = external rugosity; C57 = constricted rim

on ventral side; a = absent; ambig = ambigous.

Table 3-2. Fossils classified as seed type st-Ampelocissus-rugose. Column "Group" refers to the groups indicated in Table 3-15.

200

Fossil Age Region Locality References Figures C21 C18 C22 C5 C35 C9 C15 C24 C57 Group Comment

Vitis venablesi Chandler Paleocene Europe Gonna, Germany Mai, 1987 Plate 17, Fig < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 11

Vitis ambigua Chandler Early Eocene Europe Dorset Pipe Clay, England

Chandler, 1962 Plate 15, Fig. 27-28 < 1.4 > 0.5 < 0.1 > 60 < 0.2 ambig ambig < 0.2 a 15

Vitis poolensis Chandler Early Eocene Europe Dorset Pipe Clay, England

Chandler, 1962 Plate 15, Fig. 16-19 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 11

Vitis pygmaea Chandler Early Eocene Europe Dorset Pipe Clay, England

Chandler, 1962 Plate 14, Fig. 5-31 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 ambig < 0.2 a 14

Ampelopsis monasteriensis Kirchheimer*

Early Eocene Europe London Clay, England Chandler, 1961b Plate 25, Fig

31s

< 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 > 25 < 0.2 a 13

Ampelopsis rotundata Reid & Chandler

Early Eocene Europe London Clay, England Reid and Chandler, 1933

Plate 19, Fig. 11-

17s

< 1.4 > 0.5 < 0.1 > 60 < 0.2 ambig > 25 < 0.2 a 13

Vitis subglobosa Reid & Chandler

Early Eocene Europe London Clay, England Chandler, 1961b Plate 24, Fig. 14-17 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 ambig < 0.2 a 14

Vitis venablesi Chandler Early Eocene Europe London Clay, England Chandler, 1961b Plate 24, Fig. 31-32 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 11

Ampelopsis sp. 3 Early Eocene Siberia Bartonskih sediment onTym river, Russia

Nikitin, 2006 Plate 11, Fig. 36-39 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 ambig < 0.2 a 14

Ampelopsis rooseae Manchester Early Middle Eocene

North America

Clarno Formation,

OR,US

Manchester, 1994

Plate 44, Fig. 8-9s < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 > 25 < 0.2 a 13

Ampelopsis rotundata Chandler Late Eocene Europe Hordle Headon Hill, England

Chandler, 1925-6 Plate 5, Fig. 5a-c < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 > 25 < 0.2 a 13

Parthenocissus boveyana Chandler

Oligocene Europe The Bovey Tracey lignite, England

Chandler, 1957 Plate 15, Fig125

< 1.4 > 0.5 < 0.1 > 60 < 0.2 ambig > 25 < 0.2 a 13

Vitis hookeri Heer Oligocene Europe The Bovey Tracey lignite, England

Chandler, 1957 Plate 15, Fig127

< 1.4 > 0.5 < 0.1 > 60 < 0.2 ambig > 25 < 0.2 a 13

Ampelopsis pedunculata Dorofeev

Oligocene Siberia Tougan, Russia Dorofeev, 1963 Plate 37, Fig. 6-8 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 > 25 < 0.2 a 13

Ampelopsis rotundata Chandler OligoceneMiocene

Siberia 10 sites in West SiberiaRussia

Nikitin, 2006 Plate 11, Fig. 21-26 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 > 25 < 0.2 a 13

Ampelopsis cf. rotundata

Chandler

Early Miocene

Europe Köflach-Voitsberg, Austria

Meller, 1998 Plate 20, Fig. 3 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 ambig < 0.2 a 14

Ampelopsis rotundata Chandler Early Miocene

Europe Spremberger sequence, Lusatia, Germany

Mai, 2000 Plate 7, Fig.3-7 < 1.4 > 0.5 < 0.1 > 60 < 0.2 ambig ambig < 0.2 a 15

Vitis globosa Mai Early Miocene

Europe Spremberger sequence, Lusatia, Germany

Mai, 2000 Plate 8, Fig. 1 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 ambig < 0.2 a 14

Ampelopsis sp. Early Miocene

Europe Turów, Poland Czeczott and Skirgiello, 1959

Plate 19, Fig. 1-3 < 1.4 > 0.5 < 0.1 > 60 < 0.2 ambig < 25 < 0.2 a 12

Ampelopsis rotundata Chandler Early Miocene

Europe Zittau Basin, Czech Teodoridis, 2003 Plate 7, Fig. 5-6 < 1.4 > 0.5 < 0.1 > 60 < 0.2 ambig > 25 < 0.2 a 13

Ampelopsis cf. aegirophylla (Bge.) Planch.

Early Miocene

Siberia Yekaterininskoye, Russia Dorofeev, 1963 Plate 37, Fig. 1-2 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 > 25 < 0.2 a 13

Ampelopsis tertiaria P. Dorof. ex V. P. Nikitin

Early Miocene

Siberia Yekaterininskoye, Russia Nikitin, 2006 Plate 11, Fig. 27-29 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 > 25 < 0.2 a 13

Table 3-3. Fossils classified as seed type st-Ampelopsis-smooth. Column "Group" refers to the groups indicated in Table 3-15.

201

Ampelopsis rotundatoides Dorofeev

Early Miocene?

Siberia Kozyulino, Russia Dorofeev, 1963 Plate 37, Fig. 9-12 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 > 25 < 0.2 a 13

Ampelopsis rotundata Chandler Early/Middle Miocene

Europe Berzdorf, Upper Lusatia, Germany

Czaja, 2003 Plate 12, Fig. 12 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 11

Ampelopsis rotundata Chandler Early/Middle Miocene

Europe Lettengraben, Germany Mai, 2006 Plate 5, Fig. 2-4 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 > 25 < 0.2 a 13

Ampelopsis malvaeformis (Schlotheim) Mai

Middle Miocene

Europe Salzhausen, Vogelsberg, Germany

Mai and Gregor, 1982

Plate 21, Fig. 2-3 < 1.4 > 0.5 < 0.1 > 60 < 0.2 ambig > 25 < 0.2 a 13

Ampelopsis tertiaria Dorofeev Middle Miocene

Europe Salzhausen, Vogelsberg, Germany

Mai and Gregor, 1982

Plate 21, Fig. 4-8 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 > 25 < 0.2 a 13

Vitis teutonica A. Braun Middle Miocene

Europe Salzhausen, Vogelsberg, Germany

Kirchheimer, 1938

Fig. 1 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 11

Ampelopsis macrosperma Dorofeev

Middle Miocene?

Siberia Irtysh, Russia Dorofeev, 1963 Plate 37, Fig. 16-21 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 > 25 < 0.2 a 13 large seed, big chalaza

Vitis teutonica A. Braun Miocene Europe Markvartice and Veseliko, Czech

Bžek, Holy, and Kvacek, 1976

Plate 7, Fig. text-Fig. 6

< 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 11

Ampelopsis brevipedunculata Trautn.

Pliocene Asia Simosibutani, Japan Miki, 1956 Fig. 2B-L, Plate H < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 > 25 < 0.2 a 13

Vitis cf. silverstris Gmelin Pliocene Europe Reuver, Netherlands Kirchheimer, 1938

Fig. 11 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 ambig < 0.2 a 14

Vitis cf. silverstris Gmelin Pliocene Europe Swalmen, Netherlands Kirchheimer, 1938

Fig. 12 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 11

Vitis cf. silverstris Gmelin Pliocene Europe Tegelen, Netherlands Kirchheimer, 1938

Fig. 14 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 ambig < 0.2 a 14

*Basionym = Ampelopsis rotundata Reid & Chandler; sspecimens observed; C21 = chalaza length; C18 = chalaza circularity; C22 = chalaza to notch distance; C5 = apical notch angle; C35 = ventral infold width; C9 = ventral

infold length; C15 = ventral infold divergence angle; C24 = external rugosity; C57 = constricted rim on ventral side; a = absent; ambig = ambigous.

Fossil Age Region Locality References Figures C21 C18 C22 C5 C35 C9 C15 C24 C57 Group Comment

Table 3-3. Continued.

202

Fossil Age Region Locality References Figures Condition C21 C18 C22 C5 C35 C9 C15 C24 C57 Group

Vitis goodharti Chandler Early Eocene Europe Dorset Pipe Clays, England

Chandler, 1962 Plate 14, Fig. 32-44 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 ambig ambig a 18

Ampelopsis crenulata Reid & Chandler

Early Eocene Europe London Clay, England

Chandler, 1978 Plate 6, Fig. 13-16 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 ambig > 0.2 a 19

Ampelopsis crenulata Reid & Chandler

Early Eocene Europe London Clay, England

Reid and Chandler, 1933

Plate 19, Fig. 11-12s internal

cast< 1.4 > 0.5 < 0.1 > 60 < 0.2 ambig < 25 > 0.2 a 16

Ampelopsis turneri Reid & Chandler

Early Eocene Europe London Clay, England

Chandler, 1961b Plate 25, Fig. 32-33 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 > 25 ambig a 22

Tetrastigma sheppeyensis Chandler

Early Eocene Europe London Clay, England

Chandler, 1978 Plate 6, Fig. 19-20s < 1.4 > 0.5 ambig > 60 < 0.2 < 0.6 ambig > 0.2 a 20

Ampelopsis cf. malvaeformis(Schlotheim) Mai

Early Miocene

Europe Köflach-Voitsberg, Austria

Meller, 1998 Plate 20, Fig. 8-10; Plate 21, Fig. 2-3

< 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 < 25 ambig a 21

Ampelopsis ludwigii(A. Braun) Dorofeev

Early Miocene

Europe Zittau Basin, Czech Teodoridis, 2003 Plate 6, Fig. 13, Plate 7, Fig. 1-2

< 1.4 > 0.5 < 0.1 > 60 < 0.2 ambig > 25 ambig a 23

Ampelopsis ludwigii (A. Braun) Dorofeev

Early/Middle Miocene

Europe Berzdorf, Upper Lusatia, Germany

Czaja, 2003 Plate 12, Fig. 10-11 < 1.4 > 0.5 < 0.1 > 60 ambig < 0.6 < 25 > 0.2 a 17

Ampelopsis malvaeformis (Schlotheim) Mai

Early/Middle Miocene

Europe Lettengraben, Germany

Mai, 2006 Plate 5, Fig. 1; Plate 6. Fig. 11-13

< 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 ambig ambig a 18

Ampelopsis cf. ludwigii (A. Braun) Dorofeev

Miocene Europe Markvartice and Veseliko, Czech

Bžek, Holy, and Kvacek, 1976

Plate 8, Fig. 6-8, text-Fig. 7

< 1.4 > 0.5 < 0.1 > 60 < 0.2 ambig > 25 ambig a 23

Cayratia orbitalis Miki Pliocene Asia Itinohora, Japan Miki, 1956 Fig. 3F-H, Plate E < 1.4 > 0.5 < 0.1 > 60 ambig < 0.6 < 25 > 0.2 a 17

Ampelopsis leeoides Planch. Pliocene Asia Simosibutani, Japan Miki, 1956 Fig. 3B-E, Fig. 7B < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 ambig > 0.2 a 19

Cayratia japonica (Thunb.) Gagn.

Pliocene Asia Yono, Japan Miki, 1956 Fig. 3L-M, Plate D < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 ambig > 0.2 a 19

Vitis ludwigii A. Braun Pliocene Europe Krocienko, Poland Kirchheimer, 1938

Fig. 16 < 1.4 > 0.5 ambig > 60 < 0.2 < 0.6 ambig > 0.2 a 20

Vitis ludwigii A. Braun Pliocene Europe Wetterau, Germany Kirchheimer, 1938

Fig. 15 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 ambig > 0.2 a 19

Table 3-4. Fossils classified as st-Ampelopsis-rugose. Column "Group" refers to the groups indicated in Table 3-15.

sspecimens observed; C21 = chalaza length; C18 = chalaza circularity; C22 = chalaza to notch distance; C5 = apical notch angle; C35 = ventral infold width; C9 = ventral infold length; C15 = ventral infold

divergence angle; C24 = external rugosity; C57 = constricted rim on ventral side; a = absent; ambig = ambigous.

Fossil Age Region Locality Country References Figures Condition C32 C33 C48 Group

Ampelocissus similkameenensis

Cevallos-Ferriz & Stockey

Middle

Eocene

North

America

Princeton

chert

Canada Cevallos-Ferriz and

Stockey, 1990

Fig.1-9 transverse

section

< 0.8 > 0.72 > 1 24

type 1 seed Middle

Eocene

North

America

Princeton

chert

Canada Cevallos-Ferriz and

Stockey, 1990

Fig. 14-17 transverse

section

< 0.8 > 0.72 > 1 24

Table 3-5. Fossils classified as seed type st-Ampelopsis-xs. Column "Group" refers to the groups indicated in Table 3-15.

C32 = ventral infold thin part ratio; C33 = ventral infold thin part circularity; C48 = number of endotesta sclereid layers.

203

Fossil Age Region Locality References Figures Condition C21 C18 C22 C5 C35 C9 C15 C24 C57 Group Comment

Vitis glabra Chandler Early Eocene Europe Dorset Pipe Clay, England Chandler, 1962 Plate 14,

Fig. 49-53

< 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27

Vitis bilobata Chandler Early Eocene Europe London Clay, England Chandler, 1961b Plate 24, Fig. 22-24

< 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27

Vitis obovoidea Chandler Early Eocene Europe London Clay, England Chandler, 1961b Plate 24, Fig. 25-26

< 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig < 25 < 0.2 a 28

Vitis platyformis Chandler Early Eocene Europe London Clay, England Chandler, 1961b Plate 24, Fig. 33-34

< 1.4 > 0.5 > 0.1 ambig < 0.2 < 0.6 ambig < 0.2 a 28

Vitis rectisulcata Chandler Early Eocene Europe London Clay, England Chandler, 1978 Plate 6, Fig. 9-10

< 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig < 25 < 0.2 a 28

Vitis subglobosa Reid & Chandler

Early Eocene Europe London Clay, England Reid and Chandler, 1933

Plate 18,

Fig. 34-37s

< 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27

? Vitis rectisulcata Chandler Early Eocene Europe Oldhaven Beds, England Chandler, 1964 Plate 2, Fig. 7-8

< 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27

Parthenocissus monasteriensis (Reid & Chandler) Scott

Early Eocene Europe Paris Basin, France Blanc-Louvel, 1986

Plate 3, Fig.

5-6s

internal cast

< 1.4 > 0.5 > 0.1 ambig < 0.2 ambig < 25 < 0.2 a 28

Vitis obovoidea Chandler Early Eocene Europe Paris Basin, France Blanc-Louvel, 1986

Plate 3, Fig.

1-4s

internal cast

< 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig < 25 < 0.2 a 28

Vitis pygmaea Chandler Early Eocene Europe Paris Basin, France Blanc-Louvel, 1986

Plate 3, Fig.

7-11s

internal cast

< 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig ambig < 0.2 a 26

Vitis aff. rectisulcata Chandler Early Eocene Europe Tienen Formation, Belgium

Fairon-Demaret and Smith, 2002

Plate 1, Fig. 6-7

internal cast

< 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27

Vitis sp. 1 Early Eocene North America

Fisher/Sullivan site, VA, US

Tiffney, 1999 Plate 2, Fig. 9-10

< 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig < 25 < 0.2 a 28

Vitis sp. 2 Early Eocene North America

Fisher/Sullivan site, VA, US

Tiffney, 1999 Plate 2, Fig. 11-12

< 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27

Ampelocissites lytlensis Berry Early Eocene North America

Wilcox, TX, US Chen and Manchester, 2007

Fig. 10s < 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27

Ampelocissus scottii Manchester Early Middle Eocene

North America

Clarno Formation, OR, US

Manchester, 1994 Plate 44,

Fig. 11-12s

< 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 ambig a 25 dorsiventrally compressed

Ampelocissus scottii Manchester Early Middle Eocene

North America

Clarno Formation, OR, US

Manchester, 1994 Plate 44,

Fig. 13-15s

internal cast

< 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27

Vitis tiffneyi Manchester Early Middle Eocene

North America

Clarno Formation, OR, US

Manchester, 1994 Plate 44,

Fig. 3s

< 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27

Vitis sp. Middle Eocene Europe Messel, Germany Manchester, unpublished

Me 4025s < 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27

Vitis sp. Early Oligocene Europe Quercy, France De Franceschi et al., 2006

Fig. 4as < 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig < 25 < 0.2 a 28

Parthenocissus eoquinquefolia Tiffney & Barghoorn

Miocene North America

The Brandon Lignite, VT, US

Tiffney and Barghoorn, 1976

Plate 2, Fig. K

< 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 > 25 < 0.2 a 29

Vitis eolabrusca Tiffney & Barghoorn

Miocene North America

The Brandon Lignite, VT, US

Tiffney and Barghoorn, 1976

Plate 2, Fig. A, C

< 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27

Vitis rostrata Tiffney & Barghoorn

Miocene North America

The Brandon Lignite, VT, US

Tiffney and Barghoorn, 1976

Plate 2, Fig. I

< 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27

Vitis cf. cordifolia Michx. Late Oligocene/ Early Miocene

Siberia Kireevskoe, Russia Dorofeev, 1963 Plate 38, Fig. 19-20

< 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 ambig < 0.2 a 28

Table 3-6. Fossils classified as seed type st-Vitis. Column "Group" refers to the groups indicated in Table 3-15.

s

cf. Vitis Paleocene North America

Union Fort Formation, MT, US

Manchester, unpublished

partiallybroken

< 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27

204

Vitis sp. 1 Late Oligocene/ Early Miocene

Siberia Kireevskoe, Russia Dorofeev, 1963 Plate 38, Fig. 23-26

< 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27

Vitis sp. 2 Late Oligocene/ Early Miocene

Siberia Kireevskoe, Russia Dorofeev, 1963 Plate 39, Fig. 3-6

< 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27

Vitis sp. 3 Late Oligocene/ Early Miocene

Siberia Kireevskoe, Russia Dorofeev, 1963 Plate 39, Fig. 1-2

< 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27

Vitis lusatica Czeczott & Skirgiello

Early Miocene Europe Spremberger sequence, Lusatia, Germany

Mai, 2000 Plate 7, Fig. 8-9

< 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27

Vitis teutonica A. Braun Early Miocene Europe Spremberger sequence, Lusatia, Germany

Mai, 2000 Plate 7, Fig. 15-18

< 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig ambig < 0.2 a 26

Vitis lusatica Czeczott & Skirgiello

Early Miocene Europe Turów, Poland Czeczott and Skirgiello, 1959

Plate 17, Fig. 4-12

< 1.4 > 0.5 > 0.1 ambig < 0.2 < 0.6 < 25 ambig a 25

Vitis cf. teutonica A. Braun Early Miocene Europe Zittau Basin, Czech Teodoridis, 2003 Plate 5, Fig. 22

< 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27

Vitis tomskiana P. Dorof. ex V. P. Nikitin

Early Miocene? Siberia Kozyulino, Russia Nikitin, 2006 Plate 13, Fig. 11-12

< 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig < 25 < 0.2 a 28

Vitis lusatica Czeczott & Skirgiello

Early/Middle Miocene

Europe Lettengraben, Germany Mai, 2006 Plate 5, fig. 9-11

< 1.4 > 0.5 > 0.1 ambig < 0.2 < 0.6 < 25 < 0.2 a 27

Vitis teutonica A. Braun Early/Middle Miocene

Europe Lettengraben, Germany Mai, 2006 Plate 5, Fig. 12-15

< 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig ambig < 0.2 a 26

Vitis lusatica Czeczott & Skirgiello

Middle/Late Miocene

Europe Meuroer/Rauno sequences, Lusatia, Germany

Mai, 2001 Plate 27, Fig. 9

< 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 > 25 < 0.2 a 29

Vitis palaeomuscadinia Mai Middle/Late Miocene

Europe Meuroer/Rauno sequences, Lusatia, Germany

Mai, 2001 Plate 27, Fig. 10

< 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig < 25 < 0.2 a 28

Vitis parasilvestris Kirchheimer Middle/Late Miocene

Europe Meuroer/Rauno sequences, Lusatia, Germany

Mai, 2001 Plate 27, Fig. 11-12

< 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig < 25 < 0.2 a 28

Vitis silvestris Gmel. foss. Middle/Late Miocene

Europe Oberpfälzer, Germany Gregor, 1980 Plate 13, Fig. 15-17

< 1.4 > 0.5 > 0.1 ambig < 0.2 < 0.6 < 25 < 0.2 a 27

Vitis teutonica A. Braun Middle/Late Miocene

Europe Oberpfälzer, Germany Gregor, 1980 Plate 13, Fig. 21-22

< 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27

Vitis cf. silvestris Gmelin Miocene Europe Klettwitz, Senftenberg, Germany

Kirchheimer, 1938

Fig. 6 < 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig ambig < 0.2 a 26

Vitis rotundata Miki Pliocene Asia Hanataka, Japan Miki, 1956 Fig. 13A-J, Plate B

< 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig < 25 < 0.2 a 28

Cayratia megasperma (Miki) Miki

Pliocene Asia Osusawa, Japan Miki, 1956 Fig. 4, Plate F-G

< 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 ambig < 0.2 a 28

Vitis labruscoidea Miki Pliocene Asia Osusawa, Japan Miki, 1956 Fig. 12A-D, Plate A

< 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27

Vitis thunbergii S. et Z. Pliocene Asia Simosibutani, Japan Miki, 1956 Fig. 15E-Q, Plate M

< 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27

Vitis cf. silverstris Gmelin Pliocene Europe Brunssum, Netherlands Kirchheimer, 1938

Fig. 10 < 1.4 > 0.5 > 0.1 ambig < 0.2 < 0.6 < 25 < 0.2 a 27

Vitis cf. silverstris Gmelin Pliocene Europe Krocienko, Poland Kirchheimer, 1938

Fig. 9 < 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 > 25 < 0.2 a 29

Fossil Age Region Locality References Figures Condition C21 C18 C22 C5 C35 C9 C15 C24 C57 Group Comment

Table 3-6. Continued.

sspecimens observed; C21 = chalaza length; C18 = chalaza circularity; C22 = chalaza to notch distance; C5 = apical notch angle; C35 = ventral infold width; C9 = ventral infold length; C15 = ventral infold

divergence angle; C24 = external rugosity; C57 = constricted rim on ventral side; a = absent; ambig = ambigous.

205

Fossil Age Region Locality References Figures/ specimens

Condition C21 C18 C22 C5 C35 C9 C15 C24 C57 Group Comment

Reid & ChandlerEarly Eocene Europe London Clay, England Reid and

Chandler, 1933Plate 19, Fig. 20-27

< 1.4 > 0.5 ambig > 60 < 0.2 < 0.6 < 25 < 0.2 a 31 thick endotesta

Vitis minuta Reid & Chandler

Early Eocene Europe London Clay, England Reid and Chandler, 1933

Plate 19, Fig. 3-4

< 1.4 > 0.5 ambig > 60 < 0.2 ambig < 25 < 0.2 a 30

Ampelopsis sp. 1 Early Eocene Siberia Bartonskih sediment on Tym river, Russia

Nikitin, 2006 Plate 13, Fig. 30-33

< 1.4 > 0.5 ambig > 60 < 0.2 < 0.6 < 25 < 0.2 a 31

Ampelopsis sp. 2 Early Eocene Siberia Bartonskih sediment on Tym river, Russia

Nikitin, 2006 Plate 13, Fig. 34-35

< 1.4 > 0.5 ambig > 60 < 0.2 < 0.6 ambig < 0.2 a 33

Vitis/Ampelopsis sp. Middle Eocene

Europe Messel, Germany Manchester, unpublished

Me 4025s < 1.4 > 0.5 ambig > 60 < 0.2 < 0.6 < 25 < 0.2 a 31

Parthenocissus sp. 1 Middle Eocene

Siberia SCR. 1 on Tym river, Russia

Nikitin, 2006 Plate 13, Fig. 17-20

< 1.4 > 0.5 ambig > 60 < 0.2 ambig < 25 < 0.2 a 30

Vitis sp. Late Eocene North America

Blue Rim, WY, US Manchester, unpublished

UF30946s impression < 1.4 > 0.5 ambig > 60 < 0.2 < 0.6 < 25 < 0.2 a 31

Vitis brandoniana Tiffney & Barghoorn

Miocene North America

The Brandon Lignite, VT, US

Tiffney and Barghoorn, 1976

Plate 2, Fig. E, G

<1..4 > 0.5 ambig > 60 < 0.2 ambig < 25 < 0.2 a 30

Vitis sp.1 Miocene Siberia Kuznetsovka, Russia Dorofeev, 1988 Plate 25, Fig. 7-10

< 1.4 > 0.5 ambig > 60 < 0.2 < 0.6 < 25 < 0.2 a 31

Vitis cf. globosa Mai Early Miocene

Europe Köflach-Voitsberg, Austria

Meller, 1998 Plate 20, Fig. 5-7

< 1.4 > 0.5 ambig > 60 < 0.2 < 0.6 < 25 < 0.2 a 31

Ampelopsis tertiaria Dorofeev

Early Miocene

Siberia Yekaterininskoye, Russia

Dorofeev, 1963 Plate 37, Fig. 3-5

< 1.4 > 0.5 ambig > 60 < 0.2 < 0.6 >25 < 0.2 a 32

Vitis tomskiana Dorofeev

Early Miocene?

Siberia Kozyulino, Russia Dorofeev, 1963 Plate 38, Fig. 2-12

< 1.4 > 0.5 ambig > 60 < 0.2 < 0.6 ambig < 0.2 a 33

Vitis lusatica Czeczott & Skirgieo

Early/Middle Miocene

Europe Berzdorf, Upper Lusatia, Germany

Czaja, 2003 Plate 13, Fig. 2

< 1.4 > 0.5 ambig ambig < 0.2 < 0.6 < 25 < 0.2 a 34

Vitis teutonica A. Braun

Middle Miocene

Europe Salzhausen, Vogelsberg, Germany

Kirchheimer, 1938

Fig. 2 < 1.4 > 0.5 ambig > 60 < 0.2 < 0.6 < 25 < 0.2 a 31

Vitis lusatica Czeczott & Skirgieo

Middle/Late Miocene

Europe Oberpfälzer, Germany Gregor, 1980 Plate 13, Fig. 11-13, 18, 19

< 1.4 > 0.5 ambig > 60 < 0.2 < 0.6 < 25 < 0.2 a 31

Vitis parasilvestris Kirchheimer

Middle/Late Miocene

Europe Oberpfälzer, Germany Gregor, 1980 Plate 13, Fig. 14, 20

< 1.4 > 0.5 ambig > 60 < 0.2 < 0.6 < 25 < 0.2 a 31

Vitis cf. silverstris Gmelin

Pliocene Europe Wetterau, Germany Kirchheimer, 1938

Fig. 8 < 1.4 > 0.5 ambig ambig < 0.2 < 0.6 < 25 < 0.2 a 34

Table 3-7. Fossils classified as seed type st-Vitis-Ampelopsis. Column "Group" refers to the groups indicated in Table 3-15.

sspecimens observed; C21 = chalaza length; C18 = chalaza circularity; C22 = chalaza to notch distance; C5 = apical notch angle; C35 = ventral infold width; C9 = ventral infold length; C15 = ventral infold

divergence angle; C24 = external rugosity; C57 = constricted rim on ventral side; a = absent; ambig = ambigous.

Palaeovitis paradoxa

206

Fossil Age Region Locality References Figures Condition C21 C18 C22 C5 C35 C9 C15 C24 C57 Group

Vitis arnensis Chandler Early Eocene Europe Dorset Pipe Clay, England

Chandler, 1962 Plate 15, Fig. 20-26

< 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 < 25 < 0.2 a 35

Vitis lakensis Chandler Early Eocene Europe Dorset Pipe Clay, England

Chandler, 1962 Plate 14, Fig. 47-48

flattened dorsiventrally

< 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 < 25 < 0.2 a 35

? Vitis arnensis Chandler Early Eocene Europe London Clay, England

Chandler, 1978 Plate 6, Fig. 1-2

< 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 < 25 < 0.2 a 35

Tetrastigma ? longisulcata Reid & Chandler

Early Eocene Europe London Clay, England

Reid and Chandler, 1933

Plate 19, Fig. 9-10

internal cast < 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 < 25 < 0.2 a 35

Vitis rectisulcata Chandler Early Eocene Europe London Clay, England

Chandler, 1961b Plate 25, Fig.

16-21s

< 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 < 25 < 0.2 a 35

Vitis semenlabruscoides Reid & Chandler

Early Eocene Europe London Clay, England

Chandler, 1961b Plate 24, Fig. 18-21

< 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 < 25 < 0.2 a 35

Vitis macrochalaza Tiffney Miocene North America

The Brandon Lignite, VT, US

Tiffney, 1977 Fig. 6 < 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 < 25 < 0.2 a 35

Vitis pseudo-rotundifolia Berry

Miocene North America

The Brandon Lignite, VT, US

Tiffney, 1976 Plate 1, Fig. A, C, D, F, H

< 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 < 25 < 0.2 a 35

Vitis palaeomuscadinia Mai Early/Middle Miocene

Europe Berzdorf, Upper Lusatia, Germany

Czaja, 2003 Plate 13, Fig. 3

< 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 < 25 < 0.2 a 35

Table 3-8. Fossils classified as seed type st-Vitis rotundifolia. Column "Group" refers to groups indicated in Table 3-15.

sspecimens observed; C21 = chalaza length; C18 = chalaza circularity; C22 = chalaza to notch distance; C5 = apical notch angle; C35 = ventral infold width; C9 = ventral infold length; C15 = ventral infold

divergence angle; C24 = external rugosity; C57 = constricted rim on ventral side; a = absent.

Fossil Age Region Locality References Figures Condition C21 C18 C22 C5 C35 C9 C15 C24 C57 Group Comment

Vitis cuneata Chandler Early Eocene Europe Dorset Pipe Clay, England

Chandler, 1962 Plate 14, Fig. 45-46

< 1.4 > 0.5 < 0.1 < 60 < 0.2 > 0.6 ambig < 0.2 a 36

Tetrastigma sheppeyensis Chandler

Early Eocene Europe London Clay, England

Chandler, 1978 Plate 6, Fig.

17-18s

< 1.4 > 0.5 < 0.1 < 60 < 0.2 > 0.6 ambig ambig a 36 more rugose than extant

Parthenocissus

Vitis elegans Chandler Early Eocene Europe London Clay, England

Chandler, 1961b Plate 24, Fig. 35-36

< 1.4 > 0.5 < 0.1 ambig < 0.2 > 0.6 > 25 < 0.2 a 36

Ampelocissus parachandleri Chen & Manchester

Parthenocissus

Early MiddleEocene

North America

Clarno Formation, OR, US

Chen and Manchester, 2007

Fig. 8ks internal

cast

< 1.4 > 0.5 ambig < 60 < 0.2 > 0.6 > 25 ambig a 36 chalaza deeply sunken like some Ampelocissus

angustisulcata ScottEarly MiddleEocene

North America

Clarno Formation, OR, US

Manchester, 1994 Plate 45, Fig.

6-7s

internal

cast

< 1.4 > 0.5 ambig < 60 < 0.2 > 0.6 > 25 ambig a 36 more rugose than extant

Parthenocissus

Vitis ludwigi A. Braun Early Miocene

Europe Turów, Poland Czeczott and Skirgiello, 1959

Plate 17, Fig. 1-3

< 1.4 > 0.5 < 0.1 < 60 < 0.2 ambig ambig ambig a 36 more rugose than extant

Parthenocissus

Vitis teutonica A. Braun Late Miocene Europe Naumburg, Bober, Germany

Kirchheimer, 1938 Fig. 4 < 1.4 > 0.5 < 0.1 ambig < 0.2 > 0.6 > 25 < 0.2 a 36

Table 3-9. Fossils classified as seed type st-Parthenocissus. Column "Group" refers to groups indicated in Table 3-15.

sspecimens observed; C21 = chalaza length; C18 = chalaza circularity; C22 = chalaza to notch distance; C5 = apical notch angle; C35 = ventral infold width; C9 = ventral infold length; C15 = ventral infold

divergence angle; C24 = external rugosity; C57 = constricted rim on ventral side; a = absent; ambig = ambigous.

207

Fossil Age Region Locality References Figures Condition C21 C18 C22 C5 C35 C9 C15 C24 C57 Group Comment

Vitis symmetrica Chandler Early Eocene Europe Dorset Pipe Clay, England Chandler, 1962 Plate 15, Fig. 6-7

< 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 > 25 < 0.2 a 38

Vitis triangularis Chandler Early Eocene Europe Dorset Pipe Clay, England Chandler, 1962 Plate 15, Fig. 8-13

< 1.4 > 0.5 ambig > 60 < 0.2 > 0.6 > 25 < 0.2 a 38

Cayratia ? monasteriensis Reid & Chandler

Early Eocene Europe London Clay, England Reid and Chandler, 1933

Plate 19, Fig. 18-19

internal cast

< 1.4 > 0.5 ambig > 60 < 0.2 > 0.6 > 25 < 0.2 a 38

Parthenocissus jenkinsi Chandler

Early Eocene Europe London Clay, England Chandler, 1961b Plate 25, Fig. 38-39

< 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 > 25 < 0.2 a 38

Parthenocissus monasteriensis (Reid & Chandler) Scott

Early Eocene Europe London Clay, England Chandler, 1961b Plate 25, Fig. 34-37

< 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 ambig < 0.2 a 39

Vitis bilobata Chandler Early Eocene Europe London Clay, England Chandler, 1978 Plate 6,

Fig. 3-4s

< 1.4 > 0.5 ambig > 60 < 0.2 > 0.6 ambig < 0.2 a 37

Vitis bracknellensis Chandler

Early Eocene Europe London Clay, England Chandler, 1961b Plate 25, Fig. 1-5

testa polished

< 1.4 > 0.5 ambig > 60 < 0.2 > 0.6 > 25 < 0.2 a 38

Vitis longisulcata (Reid & Chandler) Chandler

Early Eocene Europe London Clay, England Chandler, 1961b Plate 25, Fig. 8-15

< 1.4 > 0.5 ambig > 60 < 0.2 > 0.6 ambig < 0.2 a 37

Vitis magnisperma Chandler

Early Eocene Europe London Clay, England Chandler, 1978 Plate 6,

Fig. 5-6s

< 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 ambig < 0.2 a 39 large seed, ventral infolds closely spaced

Vitis aff. longisulcata Chandler

Early Eocene Europe Tienen Formation, Belgium Fairon-Demaret and Smith, 2002

Plate 1, Fig. 2-4

internal cast

< 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 ambig < 0.2 a 39

Parthenocissus clarnensis Manchester

Early Middle Eocene

North America

Clarno Formation, OR, US Manchester, 1994 Plate 45,

Fig. 3-4s

< 1.4 > 0.5 ambig > 60 < 0.2 > 0.6 > 25 < 0.2 a 38

Vitis magnisperma Chandler

Early Middle Eocene

North America

Clarno Formation, OR, US Manchester, 1994 Plate 45,

Fig. 12-13s

< 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 ambig < 0.2 a 39 large seed, ventral infolds closely spaced

Parthenocissus hordwellensis Chandler

Late Eocene Europe Hordle Headon Hill, England Chandler, 1961a Plate 28, Fig. 90-95

< 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 > 25 < 0.2 a 38

Parthenocissus sp. Late Eocene Europe Hordle Headon Hill, England Chandler, 1925-6 Plate 6, Fig. 1a-c

< 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 ambig < 0.2 a 39

Parthenocissus britannica (Heer) Chandler

Oligocene Europe The Bovey Tracey lignite, England

Chandler, 1957 Plate 15, Fig. 119-122

< 1.4 > 0.5 ambig > 60 < 0.2 > 0.6 > 25 < 0.2 a 38

Parthenocissus obovata V. P. Nikitin

Late Oligocene/EarlyMiocene

Siberia Dunayevsky Yar outcrop,

Russia

Nikitin, 2006 Plate 13, Fig. 13-16

< 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 ambig < 0.2 a 39

Vitis cf. teutonica A. Braun Early Miocene Europe Zittau Basin, Czech Teodoridis, 2003 Plate 6, Fig. 12

< 1.4 > 0.5 ambig > 60 < 0.2 > 0.6 ambig < 0.2 a 37

Parthenocissus elongata Dorofeev

Early Miocene? Siberia Kozyulino, Russia Dorofeev, 1963 Plate 39, Fig. 7-11

< 1.4 > 0.5 ambig > 60 < 0.2 > 0.6 ambig < 0.2 a 37

Parthenocissus britannica (Heer) Chandler

Early/Middle Miocene

Europe Lettengraben, Germany Mai, 2006 Plate 5, Fig. 5-8

< 1.4 > 0.5 > 0.1 ambig < 0.2 > 0.6 ambig < 0.2 a 39

Parthenocissus langsdorfii Mai

Middle Miocene Europe Salzhausen, Vogelsberg, Germany

Mai and Gregor, 1982

Plate 21, Fig. 9-13

< 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 ambig < 0.2 a 39

Parthenocissus britannica (Heer) Chandler

Middle/Late Miocene

Europe Meuroer/Rauno sequences, Lusatia, Germany

Mai, 2001 Plate 29, Fig. 4

< 1.4 > 0.5 ambig > 60 < 0.2 > 0.6 > 25 < 0.2 a 38

Parthenocissus langsdorfii Mai

Middle/Late Miocene

Europe Meuroer/Rauno sequences, Lusatia, Germany

Mai, 2001 Plate 29, Fig. 5-6

< 1.4 > 0.5 ambig > 60 < 0.2 > 0.6 > 25 < 0.2 a 38

Vitis sp.2 Miocene Siberia Volnaya summit, Russia Dorofeev, 1988 Plate 25, Fig. 11-12

< 1.4 > 0.5 ambig > 60 < 0.2 > 0.6 > 25 < 0.2 a 38

Vitis brachypoda Miki Pliocene Asia Tamodaira, Japan Miki, 1956 Fig. 12H-I, Plate C

< 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 ambig < 0.2 a 39

Table 3-10. Fossils classified as seed type st-Parthenocissus clarnensis. Column "Group" refers to the groups indicated in Table 3-15.

sspecimens observed; C21 = chalaza length; C18 = chalaza circularity; C22 = chalaza to notch distance; C5 = apical notch angle; C35 = ventral infold width; C9 = ventral infold length; C15 = ventral infold divergence angle; C24 =

external rugosity; C57 = constricted rim on ventral side; a = absent; ambig = ambigous.

208

Table 3-11. Fossils classified as seed type st-Cayratia. Column "Group" refers to groups indicated in Table 3-15.

*Basionym = Paleocayratia jungii Gregor; C21 = chalaza length; C18 = chalaza circularity; C22 = chalaza to notch distance; C5 = apical notch angle; C35 = ventral infold width; C9 = ventral infold

length; C15 = ventral infold divergence angle; C24 = external rugosity; C57 = constricted rim on ventral side; ambig = ambigous; p = present.

Fossil Age Region Locality References Figures C21 C18 C22 C5 C35 C9 C15 C24 C57 Group

Ampelospermum

pulchellum V. P. Nikitin

Late Oligocene/Early

Siberia Dunayevsky Yar

outcrop, Russia

Nikitin,

2006

Plate 13, Fig.

40-44

< 1.4 < 0.5 < 0.1 > 60 > 0.2 ambig < 25 > 0.2 p 40

Ampelocissus jungii (Gregor) Gregor*

Early Miocene Europe Köflach-Voitsberg,

Austria

Meller,

1998

Plate 20, Fig. 2 < 1.4 < 0.5 < 0.1 > 60 > 0.2 ambig < 25 > 0.2 p 40

Paleocayratia jungii Gregor

Middle Miocene Europe Hauptzwischenmittel,

Germany

Gregor,

1977

Plate 20, Fig. 1-

4; text-Fig. 8

< 1.4 < 0.5 < 0.1 ambig > 0.2 ambig < 25 > 0.2 p 40

Fossil Age Region Locality References Figures C21 C18 C22 C5 C35 C9 C15 C24 C57 Group

Cissocarpus jackesiae Rozefelds

Oligocene Australia Capella, Queensland

Rozefelds, 1988

Fig. 7A-G, Ls

< 1.4 < 0.5 < 0.1 > 60 < 0.2 > 0.6 < 25 > 0.2 a 41

Table 3-12. Fossils classified as seed type st-Tetrastigma. Column "Group" refers to the groups indicated in Table 3-15.

sspecimens observed; C21 = chalaza length; C18 = chalaza circularity; C22 = chalaza to notch distance; C5 = apical notch angle; C35 = ventral infold width; C9 =

ventral infold length; C15 = ventral infold divergence angle; C24 = external rugosity; C57 = constricted rim on ventral side; a = absent.

Fossil Age Region Locality References Figures Condition C21 C18 C22 C5 C35 C9 C15 C24 C57 C53 Group

Carpolithus olssoni Berry Eocene South

America

Belen, Peru Berry, 1929 Manchester, unpublished

sinternal

cast

> 1.4 < 0.5 < 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a ambig 43

Cissus willardi Berry Eocene South

America

Belen, Peru Berry, 1929 Manchester, unpublished

s> 1.4 < 0.5 < 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a a 42

Cissus sp. Miocene Central

America

Cucaracha

Formation, Panama

Carvalho et al.,

unpublished

> 1.4 < 0.5 < 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a a 42

Table 3-13. Fossils classified as seed type st-perichalaza. Column "Group" refers the groups indicated in Table 3-15.

sspecimens observed; C21 = chalaza length; C18 = chalaza circularity; C22 = chalaza to notch distance; C5 = apical notch angle; C35 = ventral infold width; C9 = ventral infold length; C15 = ventral

infold divergence angle; C24 = external rugosity; C57 = constricted rim on ventral side; C53 = ventral infolds covered by edotesta; a = absent; ambig = ambigous.

209

Fossil Age Region Locality References Figures Condition C21 C18 C22 C5 C35 C9 C15 C24 C57 Comment

Ampelopsis cf. monasteriensis Kirchheimer

Paleocene Europe Waßmannsdorf, Germany

Mai, 1987 Plate 17, Fig. 9 incomplete specimens

aff. Cissocarpus jackesii Rozefelds

Early Eocene Australia Hotham heights, Australia

Carpenter, 2004 Fig. 77 dorsal side only < 1.4 < 0.5 ambig > 60

Tetrastigma acuminata Chandler

Early Eocene Europe Dorset Pipe Clay, England

Chandler, 1962 Plate 15, Fig. 39-40

surface obscure

Vitis sp. Early Eocene Europe Dorset Pipe Clay, England

Chandler, 1962 Plate 15, Fig. 31-32

surface obscure

Vitis triangularis ? Chandler Early Eocene Europe Dorset Pipe Clay, England

Chandler, 1962 Plate 15, Fig. 14-15

ventral side obscure < 1.4 > 0.5 < 0.1 a

Vitis sp. Early Eocene Europe Dorset Pipe Clay, England

Chandler, 1962 Plate 15, Fig. 33-34

surface obscure

Vitis platysperma Chandler Early Eocene Europe Dorset Pipe Clay, England

Chandler, 1962 Plate 15, Fig. 1-5

surface obscure laterally compressed

Vitis sp. Early Eocene Europe Dorset Pipe Clay, England

Chandler, 1962 Plate 26, Fig. 23-24

surface obscure

Vitis semenlabruscoides Reid & Chandler

Early Eocene Europe London Clay, England Reid and Chandler, 1933

Plate 19, Fig. 1-2

ventral side obscure < 1.4 > 0.5 > 0.1 a

Vitis sp. Early Eocene Europe London Clay, England Chandler, 1978 Plate 6, Fig. 11-12

dorsal side obscure < 0.2 < 0.6 < 25 < 0.2 a

Paleovitis paradoxa Reid & Chandler

Early Eocene Europe London Clay, England Chandler, 1961b Plate 25, Fig. 40-44

surface obscure

Vitis sp. Early Eocene Europe London Clay, England Chandler, 1961b Plate 25, Fig. 6-7

incomplete specimens

? Vitis excavata Chandler Early Eocene Europe London Clay, England Chandler, 1978 Plate 6, Fig. 7-8

incomplete specimens

> 1.4 ? < 0.5

Vitis bognorensis Reid & Chandler

Early Eocene Europe London Clay, England Reid and Chandler, 1933

Plate 19, Fig.5 internal cast; dorsal side only

< 1.4 > 0.5 > 0.1

Cf. Parthenocissus sp. Early Eocene Europe Tienen Formation, Belgium

Fairon-Demaret and Smith, 2002

Plate 1, Fig. 1 internal cast; dorsal side only

< 1.4 > 0.5 > 0.1 < 0.2

Ampelocissus auriforma Manchester

Middle Eocene North America

Green River Formation, Douglas Pass, CO, US

Chen and Manchester, 2007

Fig. 8j mold of ventral side > 0.2

Carpolithus vitaceus Brown Middle Eocene North America

Green River Formation, Kimball Creek, CO, US

Brown, 1934 Plate 15, Fig.10

embedded in rock; ventral side only

> 0.6 > 25 a

type 2 seed Middle Eocene North America

Princeton chert, Canada Cevallos-Ferriz and Stockey, 1990

Fig. 18 transverse section; incomplete

Vitis sp. Late Eocene Europe Highcliffe, England Chandler, 1963 Plate 16, Fig. 24-27

incomplete specimens

Vitis sp. Late Eocene Europe Highcliffe, England Chandler, 1963 Plate 16, Fig. 18-19

ventral side obscure

Vitis sp. Late Eocene Europe Highcliffe, England Chandler, 1963 Plate 16, Fig. 22-23

incomplete specimens

Vitis sp. Late Eocene Europe Highcliffe, England Chandler, 1963 Plate 16, Fig. 20-21

surface obscure

Vitis pygmaea Chandler Late Eocene Europe Highcliffe, England Chandler, 1963 no image

Table 3-14. Fossil vitaceous seeds not classified in this study.

210

Vitis sp. Late Eocene Europe Highcliffe, England Chandler, 1963 Plate 16, Fig. 16-17

surface obscure

Ampelopsis rotundata Chandler

Late Eocene Europe Hordle Headon Hill, England

Chandler, 1961a no image

Cissus pyriformis MacGinitie Eocene North America

Chalk Bluffs, CA, US

Manchester, unpublished

embedded in rock; ventral side only

< 0.2

Parthenocissus sp. Late Oligocene/ Early Miocene

Siberia Kireevskoe, Russia Dorofeev, 1963 Plate 39, Fig. 12-13

ventral side obscure < 1.4 > 0.5 < 0.1 < 0.2 a

Vitis cf. silvestris Gmelin Late Oligocene/ Early Miocene

Siberia Kireevskoe, Russia Dorofeev, 1963 Plate 38, Fig. 21-22

dorsal side obscure < 0.2 < 0.6 < 25 < 0.2 a

Parthenocissus sp. Early Miocene Europe Köflach-Voitsberg, Austria

Meller, 1998 Plate 20, Fig. 1 dorsal side obscure < 0.2 > 0.6 ambig < 0.2 a

Vitis cf. teutonica A. Braun Early Miocene Europe Köflach-Voitsberg, Austria

Meller, 1998 Plate 21, Fig. 1 dorsal side only < 1.4 > 0.5 < 0.1

Tetrastigma chandleri Kirchheimer

Early Miocene Europe Spremberger sequence, Lusatia, Germany

Mai, 2000 Plate 8, Fig. 2 ventral side obscure < 1.4 > 0.5 > 0.1 > 0.2

Ampelopsis malvaeformis (Schlotheim) Mai

Early Miocene Europe Spremberger sequence, Lusatia, Germany

Mai, 2000 Plate 7, Fig. 1-2

ventral side obscure < 1.4 > 0.5 ambig

Vitis palaeomuscadinia Mai Early Miocene Europe Spremberger sequence, Lusatia, Germany

Mai, 2000 Plate 7, Fig. 10-14

dorsal side only < 1.4 > 0.5 > 0.1 ambig ambig

Tetrastigma lobatum Chandler Early Miocene Europe Spremberger sequence, Lusatia, Germany

Mai, 2000 no image

Vitis teutonica A. Braun Early Miocene Europe Turów, Poland Czeczott and Skirgiello, 1959

Plate 16, Fig. 3-7

image obscure

Vitis cf. thunbergii Sieb. & Zucc.

Early Miocene Europe Turów, Poland Czeczott and Skirgiello, 1959

Plate 16, Fig. 8; text Fig. 6d

image obscure

Vitis cf. silvestris Gmelin Early Miocene Europe Turów, Poland Czeczott and Skirgiello, 1959

Plate 16, Fig. 1-2

image obscure

Tetrastigma sp. Early Miocene Europe Zittau Basin, Czech Teodoridis, 2003 Plate 5, Fig. 27 incomplete specimens

Vitis parasylvestris Kirchheimer

Early/Middle Miocene

Europe Berzdorf, Upper Lusatia, Germany

Czaja, 2003 no image

Vitis globosa Mai Middle Miocene Europe Salzhausen, Vogelsberg, Germany

Mai and Gregor, 1982

Plate 20, Fig. 3 surface obscure

Vitis teutonica A. Braun Middle Miocene Europe Salzhausen, Vogelsberg, Germany

Mai and Gregor, 1982

Plate 20, Fig. 4-8

dorsal side obscure

Ampelopsis/Vitis Middle Miocene North America

Yakima Canyon, WA, US

Tcherepova and Pigg, 2005

no image

Vitis teutonica A. Braun Middle/Late Miocene

Europe Meuroer/Rauno sequences, Germany

Mai, 2001 Plate 29, Fig. 13-14

dorsal side only < 1.4 > 0.5 ambig

Ampelopsis tertiaria Dorofeev Middle/Late Miocene

Europe Meuroer/Rauno sequences, Germany

Mai, 2001 Plate 29, Fig. 1-3

ventral side obscure < 1.4 > 0.5 < 0.1

Ampelopsis rotundata Chandler

Middle/Late Miocene

Europe Meuroer/Rauno sequences, Germany

Mai, 2001 no image

Ampelopsis malvaeformis (Schlotheim) Mai

Middle/Late Miocene

Europe Meuroer/Rauno sequences, Germany

Mai, 2001 no image

Tetrastigma chandleri Kirchheimer

Middle/Late Miocene

Europe Meuroer/Rauno sequences, Germany

Mai, 2001 no image

Fossil Age Region Locality References Figures Condition C21 C18 C22 C5 C35 C9 C15 C24 C57 Comment

Table 3-14. Continued.

211

Ampelopsis sp. Middle/Late Miocene

Europe Oberpfälzer, Germany Gregor, 1980 Plate 13, Fig. 4-6

ventral side obscure < 1.4 > 0.5 < 0.1 a

Ampelopsis ludwigii (A. Braun) Dorofeev

Middle/Late Miocene

Europe Oberpfälzer, Germany Gregor, 1980 Plate 13, Fig. 1-3

surface obscure

Vitis globosa Mai Middle/Late Miocene

Europe Oberpfälzer, Germany Gregor, 1980 Plate 13, Fig. 9-10

ventral side obscure < 1.4 > 0.5 a

Ampelopsis rotundatoides Dorofeev

Middle/Late Miocene

Europe Oberpfälzer, Germany Gregor, 1980 no image

Cissus sp. Miocene Africa Lake Victoria, Kenya Collinson, unpublished

no image

Vitis teutonica A. Braun Miocene Europe Niederpleis, Lower Rhine, Germany

Kirchheimer, 1938 Fig. 3 ventral side obscure < 1.4 > 0.5 > 0.1

Vitis bonseri Condit Miocene North America

Remington Hill, CA, US

Condit, 1944 no image

Vitis sp. 3 Miocene Siberia Berezivka, Russia Dorofeev, 1988 Plate 25, Fig. 4 incomplete specimens

Ampelopsis sp. Miocene Siberia Volnaya summit, Russia Dorofeev, 1988 Plate 25, Fig. 5-

6

ventral side obscure < 1.4 > 0.5 < 0.1 < 0.2

Vitis sp. 1 Late Miocene/ Early Pliocene

North America

Gray Fossil Site, TN, US

Gong, Karsai, and Liu, 2009

no image

Vitis sp. 2 Late Miocene/ Early Pliocene

North America

Gray Fossil Site, TN, US

Gong, Karsai, and Liu, 2009

no image

Vitis sp. 3 Late Miocene/ Early Pliocene

North America

Gray Fossil Site, TN, US

Gong, Karsai, and Liu, 2009

no image

Fossil Age Region Locality References Figures Condition C21 C18 C22 C5 C35 C9 C15 C24 C57 Comment

Table 3-14. Continued.

sspecimens observed; C21 = chalaza length; C18 = chalaza circularity; C22 = chalaza to notch distance; C5 = apical notch angle; C35 = ventral infold width; C9 = ventral infold length; C15 = ventral infold divergence angle; C24 =

external rugosity; C57 = constricted rim on ventral side; a = absent; ambig = ambigous.

212

Group Taxa sharing the same combinatin of characters Seed type

1 Ampelocissus botryostachys , Pterisanthes (5) st-Ampelocissus -wide infolds

2 Ampelocissus (19) st-Ampelocissus -wide infolds

3 Ampelocissus (7) st-Ampelocissus -wide infolds

4 Ampelocissus (8), Pterisanthes (5) st-Ampelocissus -wide infolds

5 Ampelocissus (10), Cayratia triternata , Nothocissus spicifera , Tetrastigma triphyllum , Vitis (13), Yua austro-orientalis , [P. paradoxa , V. tiffneyi , A. wildei ]

st-Ampelocissus -rugose

6 Ampelocissus (10), Cayratia triternata , Nothocissus spicifera , Tetrastigma triphyllum , Yua austro-orientalis , [A. wildei ]

st-Ampelocissus -rugose

7 Ampelocissus (10), Cayratia triternata , Nothocissus spicifera , Tetrastigma (5), Yua austro-orientalis , [A. wildei ]

st-Ampelocissus -rugose

8 Ampelocissus (10), Cayratia triternata , Nothocissus spicifera , Tetrastigma (5), Vitis (14), Yua austro-orientalis , [P. clarnensis , V. magnisperma , P. paradoxa , V. tiffneyi , A. wildei ]

st-Ampelocissus -rugose

9 Ampelocissus (10), Nothocissus spicifera , Tetrastigma triphyllum st-Ampelocissus -rugose

10 Ampelocissus (10), Nothocissus spicifera , Tetrastigma (4) st-Ampelocissus -rugose

11 Ampelopsis (2) st-Ampelopsis -smooth

12 Ampelopsis (2), Cayratia sp. (Peng 6346), Clematicissus opaca st-Ampelopsis -smooth

13 Ampelopsis (6), "Austrocissus" striata , Yua chinensis , [A. rooseae ] st-Ampelopsis -smooth

14 Ampelopsis (8), "Austrocissus" striata , Yua chinensis , [A. rooseae ] st-Ampelopsis -smooth

15 Ampelopsis (8), Cayratia sp. (Peng 6346), "Austrocissus" striata , Clematicissus opaca , Yua chinensis , [A. rooseae ]

st-Ampelopsis -smooth

16 Ampelocissus latifolia , Ampelopsis cantoniensis , Cayratia (2), "Austrocissus" granulosa st-Ampelopsis -rugose

17 Ampelocissus robinsonii, Ampelopsis (2), Cayratia (3), "Austrocissus" granulosa st-Ampelopsis -rugose

18 Ampelopsis (10), Cayratia (3), "Austrocissus" (4), Rhoicissus tridentata , Tetrastigma (5), Yua chinensis , [A. rooseae ]

st-Ampelopsis -rugose

19 Ampelopsis (2), Cayratia (3), "Austrocissus" (3), Rhoicissus tridentata , Tetrastigma (5) st-Ampelopsis -rugose

20 Ampelopsis (2), Cayratia (4), "Austrocissus" (3), Rhoicissus tridentata , Tetrastigma (6), Yua austro-orientalis , [A. wildei ]

st-Ampelopsis -rugose

21 Ampelopsis (3), Cayratia (2), "Austrocissus" granulosa st-Ampelopsis -rugose

22 Ampelopsis (7), Cayratia ciliifera , "Austrocissus" (3), Rhoicissus tridentata , Tetrastigma (5), Yua chinensis , [A. rooseae ]

st-Ampelopsis -rugose

23 Ampelopsis (7), Cayratia ciliifera , "Austrocissus" (3), Rhoicissus tridentata , Tetrastigma (9), Yua chinensis , [A. rooseae ]

st-Ampelopsis -rugose

24 Ampelopsis (9), "Austrocissus" (2), [P. paradoxa ] st-Ampelopsis -xs

25 Cayratia triternata , Vitis (12), Yua austro-orientalis , [P. paradoxa, V. tiffneyi, A. wildei ] st-Vitis

26 Vitis (14), [P. clarnensis , V. magnisperma , P. paradoxa , V. tiffneyi ] st-Vitis

Table 3-15. Groups of taxa sharing the same combinations of characters as the fossils listed in

Tables 3-1 to 3-13. Column "Group" refers to groups indicated in Tables 3-1 to 3-

13. When more than 1, the number of collections examined and found to possess

characters of each seed group is indicated in the parentheses. Fossil taxa are

placed in square brackets.

213

27 Vitis (12), [P. paradoxa , V. tiffneyi ] st-Vitis

28 Vitis (13), [P. paradoxa , V. tiffneyi ] st-Vitis

29 Vitis lanceolatifolia st-Vitis

30 Ampelopsis (2), Cayratia sp. (Peng 6346), Clematicissus opaca , V. tiffneyi , Vitis (13), [P. paradoxa ]

st-Vitis -Ampelopsis

31 Ampelopsis (2), Vitis (12), [P. paradoxa , V. tiffneyi ] st-Vitis -Ampelopsis

32 Ampelopsis (6), "Austrocissus" striata , Vitis lanceolatifolia , Yua chinensis , [A. rooseae ] st-Vitis -Ampelopsis

33 Ampelopsis (8), "Austrocissus" striata , Vitis (13), Yua chinensis , [P. paradoxa , A. rooseae , V. tiffneyi ]

st-Vitis -Ampelopsis

34 Ampelosis (2), Vitis (12), [P. paradoxa , V. tiffneyi ] st-Vitis -Ampelopsis

35 Vitis rotundifolia st-Vitis rotundifolia

36 Parthenocissus (8) st-Parthenocissus

37 Cayratia sp. (Peng 6346), Clematicissus opaca , Vitis rotundifolia , [P. clarnensis , V. magnisperma ] st-Parthenocissus clarnensis

38 [P. clarnensis ] st-Parthenocissus clarnensis

39 Vitis rotundifolia , [P. clarnensis, V. magnisperma ] st-Parthenocissus clarnensis

40 Cayratia (3) st-Cayratia

41 "Austrocissus" (3), Tetrastigma (2) st-Tetrastigma

42 Cissus (29) st-perichalaza

43 Cissus (29), Cyphostemma (7), Leea (13) st-perichalaza

Group Taxa sharing the same combinatin of characters Seed type

Table 3-15. Continued.

214

Pal

eoce

ne

Ear

ly E

oce

ne

Mid

dle

Eo

cen

e

Lat

e E

oce

ne

Ear

ly O

lig

oce

ne

Oli

goce

ne

Ear

ly M

ioce

ne

Ear

ly/M

idd

le M

ioce

ne

Mid

dle

Mio

cen

e

Mid

dle

/Lat

e M

ioce

ne

Lat

e M

ioce

ne

Mio

cen

e

Pli

oce

ne

seed type Go

nn

a

Waß

man

nsd

orf

Do

rset

Pip

e C

lay

Lo

nd

on

Cla

y

Old

hav

en B

eds

Par

is B

asin

Tie

nen

Form

atio

n

Mes

sel

Hig

hcl

iffe

Ho

rdle

Hea

do

n H

ill

Quer

cy

Th

e B

ov

ey T

race

y l

ign

ite

flac

h-V

oit

sber

g

Sp

rem

ber

ger

seq

uen

ce,

Lu

sati

a

Turó

w

Wie

sa

Zit

tau

Bas

in

Ber

zdo

rf,

Up

per

Lu

sati

a

Let

ten

gra

ben

Hau

ptz

wis

chen

mit

tel

Sal

zhau

sen

, V

og

elsb

erg

Meu

roer

/Rau

no

seq

uen

ces,

Lu

sati

a

Ober

pfä

lzer

Nau

mb

urg

, B

ob

er

Kle

ttw

itz,

Sen

ften

ber

g

Mar

kv

arti

ce a

nd

Ves

elik

o

Nie

der

ple

is,

Lo

wer

Rh

ine

Bru

nss

um

Kro

cien

ko

Reu

ver

Sw

alm

en

Teg

elen

Wet

tera

u

To

tal

Pre

sen

t d

ay E

uro

pe

1 st-Ampelocissus -wide infolds 1 1

2 st-Ampelocissus -rugose 1 5 1 2 3 1 1 2 1 1 1 19

3 st-Ampelopsis -smooth 1 3 4 1 2 1 2 1 1 1 1 3 1 1 1 1 25

4 st-Ampelopsis -rugose 1 4 1 1 1 1 1 1 1 12

5 st-Ampelopsis -xs

6 st-Vitis 1 5 1 3 1 1 1 2 1 1 2 3 2 1 1 1 27 p*

7 st-Vitis-Ampelopsis 2 1 1 1 1 2 1 9

8 st-Vitis rotundifolia 2 4 1 7

9 st-Parthenocissus 1 2 1 1 5

10 st-Parthenocissus clarnensis 2 7 1 2 1 1 1 1 2 18

11 st-Cayratia 1 1 2

12 st-Tetrastigma

13 st-perichalaza

14 not classified 1 6 6 1 6 1 2 4 3 1 1 2 5 4 1 44

Total 1 1 18 39 1 4 3 4 6 7 1 3 7 8 7 2 5 6 5 1 7 11 9 1 1 2 1 1 2 1 1 1 2 169

Table 3-16. The stratigraphic distribution of the fossil vitaceous seed types from Europe. Number of seed forms examined

(detailed in Tables 3-1 to 3-14) is indicated in each cell. The presence of seed types in present day Europe is indicated

in the green column. See text for details.

*Vitis vinifera

215

Table 3-17. The stratigraphic distribution of the fossil vitaceous seed types from Siberia and

Japan. Number of seed forms examined (detailed in Tables 3-1 to 3-14) is indicated

in each cell. The presence of seed types in present day Siberia and Japan is

indicated in the green columns. See text for details.

*southeastern Siberia

Ear

ly E

oce

ne

Mid

dle

Eo

cen

e

Oli

go

cen

e

Oli

go

cen

e/M

ioce

ne

Lat

e O

lig

oce

ne/

Ear

ly M

ioce

ne

Ear

ly M

ioce

ne

Ear

ly M

ioce

ne?

Mid

dle

Mio

cen

e?

Mio

cen

e

Pli

oce

ne

seed type Bar

ton

skih

sed

imen

t o

n T

ym

riv

er

SC

R.

1 o

n T

ym

riv

er

To

ug

an

10

sit

es i

n W

est

Sib

eria

Du

nay

evsk

y Y

ar o

utc

rop

Kir

eev

sko

e

Yek

ater

inin

sko

ye

Ko

zyu

lin

o

Irty

sh

Ber

eziv

ka

Ku

znet

sov

ka,

Red

Bu

sh

Vo

lnay

a su

mm

it

Tota

l

Pre

sen

t d

ay S

iber

ia

Jap

an

Pre

sen

t d

ay J

apan

1 st-Ampelocissus -wide infolds

2 st-Ampelocissus -rugose 2

3 st-Ampelopsis -smooth 1 1 1 2 1 1 7 p* 1 p

4 st-Ampelopsis -rugose 3 p

5 st-Ampelopsis - xs

6 st-Vitis 4 1 5 p* 4 p

7 st-Vitis-Ampelopsis 2 1 1 1 1 6

8 st-Vitis rotundifolia

9 st-Parthenocissus p* p

10 st-Parthenocissus clarnensis 1 1 1 3 1

11 st-Cayratia 1 1

12 st-Tetrastigma

13 st-perichalaza

14 not classified 2 1 1 4

Total 3 1 1 1 2 6 3 4 1 1 1 2 26 11

216

Pal

eoce

ne

Ear

ly E

oce

ne

Ear

ly M

idd

le E

oce

ne

Mid

dle

Eoce

ne

Lat

e E

oce

ne

Eo

cen

e

Mio

cen

e

Mid

dle

Mio

cen

e

Lat

e M

ioce

ne/

Ear

ly P

lioce

ne

seed type Fo

rt U

nio

n F

orm

atio

n,

MT

Bu

llio

n C

reek

Fo

rmat

ion

, N

D

Fis

her

/Sull

ivan

sit

e, V

A

Wil

cox,

TA

Cla

rno

Fo

rmat

ion

, O

R

Gre

en R

iver

Fo

rmat

ion

, C

O

Pri

nce

ton

ch

ert,

BC

Blu

e R

im,

WY

Ch

alk

Blu

ffs,

CA

Th

e B

ran

do

n L

ign

ite,

VT

Rem

ingto

n H

ill,

CA

Yak

ima

Can

yo

n,

WA

Gra

y F

oss

il S

ite,

TN

To

tal

pre

sen

t d

ay N

ort

h A

mer

ica

1 st-Ampelocissus -wide infolds 1 2 3 p*

2 st-Ampelocissus -rugose p*

3 st-Ampelopsis -smooth 1 1 p

4 st-Ampelopsis -rugose

5 st-Ampelopsis -xs 2 2

6 st-Vitis 2 1 3 3 10 p

7 st-Vitis-Ampelopsis 1 1 2

8 st-Vitis rotundifolia 2 2 p*

9 st-Parthenocissus 2 2 p

10 st-Parthenocissus clarnensis 2 2

11 st-Cayratia

12 st-Tetrastigma

13 st-perichalaza p*

14 not classified

1

2 1 1 1 1 3 9

Total 1 1 2 1 10 2 3 1 1 6 1 1 3 33

Table 3-18. The stratigraphic distribution of the fossil vitaceous seed types from North

America. Number of seed forms examined (detailed in Tables 3-1 to 3-14) is

indicated in each cell. The presence of seed types in present day North America is

indicated in the green column. See text for details.

*southern North America

217

Cen

tral

Am

eric

a

So

uth

Am

eric

a

Afr

ica

Au

stra

lia

Mio

cen

e

Eo

cen

e

Mio

cen

e

Ear

ly E

oce

ne

Oli

go

cen

e

Seed type Pan

ama

Bel

en

Pre

sen

t d

ay C

entr

al a

nd

So

uth

Am

eric

a

Lak

e V

icto

ria

Pre

sen

t d

ay A

fric

a

Ho

tham

hei

gh

ts

Cap

ella

Pre

sen

t d

ay A

ust

rali

a

1 st-Ampelocissus -wide infolds 1 p p

2 st-Ampelocissus -rugose p p p

3 st-Ampelopsis -smooth pa

pc

4 st-Ampelopsis -rugose papb pb

5 st-Ampelopsis -xs

6 st-Vitis

7 st-Vitis-Ampelopsis

8 st-Vitis rotundifolia

9 st-Parthenocissus

10 st-Parthenocissus clarnensis

11 st-Cayratia p

12 st-Tetrastigma 1 p

13 st-perichalaza 1 2 p p p

14 not classified 1 1

Total 1 3 1 1 1

Table 3-19. The stratigraphic distribution of the fossil vitaceous seed types from Central

America, South America, Africa, and Australia. Number of seed forms examined

(detailed in Tables 3-1 to 3-14) is indicated in each cell. The presence of seed types

in corresponding present day continents is indicated in the green columns. See text

for details.

a"Austrocissus" spp.; bCayratia spp.; cClematicissus opaca

pa

218

Genus no. of species

Distribution

Ampelocissus 94 tropical Africa and Malesia, also in subtropical to temperate Nepal and India. 3 speceis in Australia, 4 speceis in Central America.

Nothocissus 1 tropical rainforest in Malesia.

Pterisanthes 20 tropical rainforest in Malesia.

Vitis 60 mainly in temperate and subtropical Asia, around 10 species in temperate North America, 1species extending to Central America and nothern South America.

Ampelopsis 25 mainly in temperate and subtropical regions. Asia has 19 species, 3 species in North America, 1 species in Central America.

Parthenocissus 15 mainly in temperate and subtropical regions. 12 speices in Asia, 3 species in North America.

Yua 3 warm temperate region of southern China and India.

Clematicissus 2 1 species endemic in western Australia, the other in eastern Australia.

Austrocissus 10 South America, Australia.

Rhoicissus 12 mainly in southern Africa, extending to Madagascar and Arabia.

Cissus 350 tropical and subtropical region world wide.

Cayratia 63 tropical to subtropical Africa, Madagascar, Asia, Malesia, and Australia.

Acareosperma 1 Laos.

Tetrastigma 95 tropical to subtropical Asia, Malesia, and Australia.

Cyphostemma 250 tropical Africa and Madagascar, 1-2 species in India, Sri Lanka, and Thailand.

Leea 32 tropical southern Aisa and Malesia, 2 species in Africa and Madagascar.

Table 3-20. Geographical distribution of extant genera of Vitaceae.

219

Figure 3-1. The morphological phylogeny used for inferring the biogeography of Vitaceae in this

study. The tree is the strict consensus tree of all shortest trees from the

morphological data set with continuous characters treated by discrete coding

(Chapter 2). Numbers above the branches are bootstrap values > 50%. Selected

characters are mapped onto the tree. Character 1 = character 43, 2 = 54, 3 = 101, 4 =

98, 5 = 126, 6 = 130, 7 = 131 from the matrix presented in Chapter 2. Seeds of the

terminal taxa are evaluated the same way as the fossil seeds are evaluated in this

study and classified into seed types; seeds not matching the 14 seed type categories

are given new seed type names in parentheses.

220

10062

92

66

60

86

79

7995

85

67

81

100

Ampelocissus abyssinicaAmpelocissus africanaNothocissus spiciferaAmpelocissus acetosaAmpelocissus latifoliaPterisanthes cissioidesPterisanthes politaAmpelocissus ochraceaAmpelocissus botryostachysAmpelocissus barbataAmpelocissus javalensisAmpelocissus acapulcensisAmpelocissus erdvendbergianaAmpelocissus robinsoniiVitis aestivalisVitis rotundifoliaVitis flexuosaVitis piasezkiiVitis betulifoliaVitis viniferaVitis tsoiCissus simsianaAmpelopsis grossedentataAmpelopsis cantoniensisAmpelopsis arboreaAmpelopsis delavayanaAmpelopsis glandulosaAmpelopsis cordataParthenocissus dalzieliiParthenocissus laetevirensParthenocissus quinquefoliaParthenocissus vitaceaYua chinensisYua austro-orientalisClematicissus angustissimaClematicissus opacaCissus striata ssp. argentinaCissus granulosaCissus penninervisCissus sterculiifoliaCissus hypoglaucaRhoicissus digitataCissus trianaeRhoicissus tridentataCissus antarcticaCissus biformifoliaCissus paullinifoliaCissus alataCissus palmataCissus assamicaCissus cornifoliaCissus descoingsiiCissus fuligineaCissus mirabilisCissus obovataCissus quadrangularisCissus reniformisCissus verticillataCissus campestrisCyphostemma lazaCayratia japonicaCayratia trifoliaCayratia triternataCayratia maritimaCayratia oligocarpaTetrastigma bioritsenseTetrastigma planicauleTetrastigma obtectumTetrastigma rumicispermumTetrastigma serrulatumAcareosperma spireanumCayratia cardiophyllaCayratia geniculataCyphostemma adenocauleCyphostemma buchananiiCyphostemma paucidentatumCyphostemma setosumCyphostemma hereroenseCyphostemma lageniflorumCyphostemma odontadeniumCyphostemma microdipteraCyphostemma junceumLeea guineensisLeea tetramera

st-Ampelocissus-wide infolds

st-Ampelocissus-rugose

st-Ampelocissus-rugose

st-Ampelocissus-rugose

st-Ampelocissus-rugose

st-Ampelocissus-wide infolds

st-Ampelocissus-wide infolds

st-Ampelocissus-wide infolds

st-Ampelocissus-wide infolds

st-Ampelocissus-wide infolds

st-Ampelocissus-wide infolds

st-Ampelocissus-rugose

st-Ampelocissus-wide infolds

st-Ampelocissus-wide infolds

st-Vitisst-Vitis rotundifoliast-Vitisst-Vitisst-Vitisst-Vitisst-Vitisst-Ampelopsis-rugose

st-Ampelopsis-rugose

st-Ampelopsis-rugose

st-Ampelopsis-smooth

st-Ampelopsis-smooth

st-Ampelopsis-smooth

st-Ampelopsis-smooth

st-Parthenocissusst-Parthenocissusst-Parthenocissusst-Parthenocissusst-Ampelopsis-smooth

st-Ampelocissus-rugose

(st-one infold)

st-Ampelopsis-smooth

st-Ampelopsis-smooth

st-Ampelopsis-rugose

st-Tetrastigmast-Tetrastigmast-Tetrastigma(st-Tetrastigma-divergent infolds)

st-Tetrastigmast-Ampelopsis-rugose

st-Tetrastigma(st-perichalaza-rugose)

(st-perichalaza-rugose)

st-perichalaza

st-perichalaza

st-perichalaza

(st-perichalaza-rugose)

(st-perichalaza-rugose)

(st-perichalaza-rugose)

(st-perichalaza-rugose)

st-perichalaza

st-perichalaza

st-perichalaza

st-perichalaza

st-perichalaza

(st-perichalaza-rugose)

st-Ampelopsis-rugose

st-Ampelopsis-rugose

st-Ampelocissus-rugose

(st-linear chalaza wide infolds)

(st-linear chalaza wide infolds)

st-Ampelopsis-rugose

st-Tetrastigmast-Ampelocissus-rugose

st-Ampelopsis-rugose

st-Tetrastigma(st-Acareosperma)

st-Cayratiast-Cayratia(st-Cyphostemma)

(st-Cyphostemma)

(st-Cyphostemma)

(st-Cyphostemma)

(st-Cyphostemma)

(st-Cyphostemma)

(st-Cyphostemma)

(st-Cyphostemma)

(st-Cyphostemma)

st-perichalaza

st-perichalaza

1. inflorescence :1 2 3

2. petal number:

3. perichalaza:

4. chalaza shape:

5. testa sclereids shape:

6. stomata in sarcotesta :

7. exotegmic tracheidal cell:

4 5 6 7with tendril structurewithout tendril structure54absentpresentovallinearcolumnarcuboidalabsentpresentnarrowwide

characters seed types

221

Figure 3-2. Geographic distribution of fossil and extant Vitaceae. The same tree from Figure 3-

1 is presented. The past distribution is inferred from the fossil seed types presented

in Tables 3-16 to 3-19. P = Paleocene, E = Eocene, O = Oligocene, M = Miocene, Pl

= Pliocene, Eu = Europe, As = Asia, NA = North America, CS = Central America

(Panama), South America, Australia, or Africa. Black boxes indicate the presence of

corresponding fossil seed types.

222

Ampelocissus abyssinicaAmpelocissus africanaNothocissus spiciferaAmpelocissus acetosaAmpelocissus latifoliaPterisanthes cissioidesPterisanthes politaAmpelocissus ochraceaAmpelocissus botryostachysAmpelocissus barbataAmpelocissus javalensisAmpelocissus acapulcensisAmpelocissus erdvendbergianaAmpelocissus robinsoniiVitis aestivalisVitis rotundifoliaVitis flexuosaVitis piasezkiiVitis betulifoliaVitis viniferaVitis tsoiCissus simsianaAmpelopsis grossedentataAmpelopsis cantoniensisAmpelopsis arboreaAmpelopsis delavayanaAmpelopsis glandulosaAmpelopsis cordataParthenocissus dalzieliiParthenocissus laetevirensParthenocissus quinquefoliaParthenocissus vitaceaYua chinensisYua austro-orientalisClematicissus angustissimaClematicissus opacaCissus striata ssp. argentinaCissus granulosaCissus penninervisCissus sterculiifoliaCissus hypoglaucaRhoicissus digitataCissus trianaeRhoicissus tridentataCissus antarcticaCissus biformifoliaCissus paullinifoliaCissus alataCissus palmataCissus assamicaCissus cornifoliaCissus descoingsiiCissus fuligineaCissus mirabilisCissus obovataCissus quadrangularisCissus reniformisCissus verticillataCissus campestrisCyphostemma lazaCayratia japonicaCayratia trifoliaCayratia triternataCayratia maritimaCayratia oligocarpaTetrastigma bioritsenseTetrastigma planicauleTetrastigma obtectumTetrastigma rumicispermumTetrastigma serrulatumAcareosperma spireanumCayratia cardiophyllaCayratia geniculataCyphostemma adenocauleCyphostemma buchananiiCyphostemma paucidentatumCyphostemma setosumCyphostemma hereroenseCyphostemma lageniflorumCyphostemma odontadeniumCyphostemma microdipteraCyphostemma junceumLeea guineensisLeea tetramera

Africa

Africa

SE Asia

Australia

Asia

SE Asia

SE Asia

SE Asia

SE Asia

SE Asia

Central America

Mexico

Mexico

Central America

North America

North America

Asia

Asia

Asia

Asia

Asia

South America

Asia

Asia

North America

Asia

Asia

North America

Asia

Asia

North America

North America

Asia

Asia

Australia

Australia

South America

South America

Australia

Australia

Australia

Africa

South America

Africa

Australia

Central America

South America

Central America

South America

SE Asia

Africa

Central America

Central America

Central America

Central America

Asia

Australia

South America

South America

Madagascar

Asia

Asia

Madagascar

Australia

Asia

Asia

Asia

Asia

Asia

Asia

SE Asia

Australia

SE Asia

Africa

Africa

Africa

Asia

Africa

Africa

Africa

Madagascar

Africa

Asia

Solomon Island

EuAsNACS

P E O M Pl

EuAsNACS

P E O M Pl

EuAsNACS

P E O M Pl

EuAsNACS

P E O M Pl

EuAsNACS

P E O M Pl

EuAsNACS

P E O M Pl

EuAsNACS

P E O M Pl

EuAsNACS

P E O M Pl

EuAsNACS

P E O M Pl

Extant taxa Fossil seeds

10062

92

66

60

86

79

7995

85

67

81

100

223

224

CHAPTER 4 FOSSIL SEEDS OF THE GRAPE FAMILY AND THEIR PHYLOGENETIC POSITIONS

Introduction

Fossil vitaceous seeds are commonly found in many Tertiary beds in the Northern

Hemisphere. These fossil seeds usually have been identified to extant genera, indicating their

close resemblance to extant seeds. Fossil grape seeds hence have great potential to provide

correct past geographical distributions of the genera of Vitaceae. To better recognize the

variation in seed form within this family, a large scale seed survey has been performed (Chapter

1). Fossil vitaceous seeds from throughout the world were re-evaluated based on the results of

the seed survey (Chapter 3). The seed type classification revealed that most fossil vitaceous

seeds are externally indistinguishable from the extant seeds. However, some fossil seeds have

combinations of characters not seen in the extant species. The affinities of these fossils have

provoked great curiosity. In this study, the affinities of six of the better preserved fossil seeds

were tested by similarity comparison and cladistic methods.

Materials and Methods

Fossils from the Clarno Formation are housed at the Florida Museum of Natural History

and Smithsonian Institute. Fossils from the London Clays are housed at the British Museum.

Fossils from Messel, Germany were obtained via museum loan from the Forschungsinstitut und

Naturmuseum Senckenberg, Frankfurt, Germany.

The definition of "Austrocissus" can be found in Chapter 1. All seed characters

mentioned in the study are defined in Chapter 1, and fossil characters were measured the same

way as described there. Seeds were sectioned using a paper-thin diamond saw blade mounted on

a Microslice II annular saw (Malvern, England). Seed coat anatomy of the fossils were either

observed from the cross section under a high power stereo microscope (Palaeovitis paradoxa

225

and Ampelocissus wildei) or from previously prepared thin sections under a light microscope

(Ampelopsis rooseae, Vitis tiffneyi, and Parthenocissus clarnensis; Manchester, 1994). Images

of fossils has been published previously (Reid and Chandler, 1933; Manchester, 1994; Chen and

Manchester, 2007), and additional unpublished images were kindly provided by Dr. Manchester.

Similarity comparison. Seeds grossly similar to the fossil were selected from the extant

seed database (Chapter 1), and a principal component analysis (PCA) was performed with the

fossil included. PCA was carried out by the computer software Minitab 15 (Minitab Inc., US).

The same characters defined in Chapter 1 were used in the PCAs. Since fossils have varying

amounts of missing characters, each PCA was performed with only one fossil included so all

fossil characters were used in the analyses. Extant seeds possessing one ventral infold

(Clematicissus angustissima), whorled rugae (Acareosperma spireanum), or a constricted rim on

ventral side (some species of Cayratia) were excluded from the comparison because none of the

six fossils have these characters. For Ampelocissus wildei, extant seeds with chalaza circularity

> 0.5, ventral infolds width < 0.2, seed rugosity > 0.2 were selected for inclusion in the PCA.

The other five fossils have oval chalaza, linear ventral infolds, and smooth surface, therefore

extant seeds with chalaza circularity > 0.5, ventral infolds width < 0.2, seed rugosity < 0.2 were

selected for inclusion in the PCAs.

Cladistic methods. The same characters used for constructing the morphological

phylogeny (Chapter 2) were used for the analyses including fossils. Of the total 137 characters,

69 continuous characters were coded by either the gap-weighting (GW) method or discrete

coding (Chapter 2). The available characters of fossils were coded by the same two methods.

The same 84 extant species of Vitaceae (Chapter 2) were included in the analyses with fossils.

Only a single fossil was included in each analysis, and in addition, a final analysis was conducted

226

including all 6 fossils. The heuristic search and the bootstrap analyses were performed as

described in Chapter 2. The matrixes used for the analyses with GW coding methods are

presented in Appendixes F to L. The matrix used for the analysis including the six fossil seeds

with discrete coding is presented in Appendix M.

Another set of analyses was performed applying a backbone constraint. In the analyses

in which the continuous characters were treated with discrete coding, the strict consensus tree of

the most parsimonious trees (MPTs) from the analysis with discrete coding without fossils

(presented in Figure 2-1) was used as the backbone constraint tree. When GW coding was

applied to the matrix, the MPT from the analysis with GW coding including only extant species

(presented in Figure 2-2) was used as the backbone constraint tree. Each analysis with backbone

constraint included only one fossil. Heuristic searches were performed by computer package

PAUP* 4.0b (Swofford, 2002), with 1000 random-addition-sequence, holding 10 trees on each

step, with the starting tree obtained by step-wise addition, applying backbone constraint, and

excluding missing or ambiguous characters.

Results

The score plots of PCAs are shown in Figure 4-1. Although Figure 4-1 A-C, E, and F

involved the same extant seeds, their relative position is not exactly the same in the score plots

because characters used varied depending on available fossil characters. The shortest tree, or the

strict consensus of the shortest trees from the parsimony analyses including fossils are shown in

Figure 4-2 to Figure 4-5. Numbers of available characters from fossils, numbers of MPTs,

consistency index (CI), retention index (RI), and tree length from each analysis are presented in

Table 4-1. Fossil affinities indicated from the analyses are summarized in Table 4-2. Most

branches do not have strong bootstrap support; in the analyses with discrete coding including one

fossil, the grouping of the two Yua species, and the grouping of Cayratia cardiophylla and C.

227

genitulata have bootstrap support but the strict consensus trees do not retain these groupings

(Figure 4-5 A-E).

1) Ampelopsis rooseae Manchester 1994

— early Middle Eocene, Clarno Formation, US (UF 6536, UF 9575)

This fossil seed conforms closely to extant seeds of Ampelopsis in every aspect. The

PCA shows the similarity of A. rooseae to Ampelopsis (Figure 4-1 A). In the analyses with GW

coding, with or without constraint, A. rooseae is grouped with Ampelopsis glandulosa (Figure 4-

2 A, Figure 4-3 A, H, I). In the analysis with discrete coding and backbone constraint, A.

rooseae is sister to Ampelopsis delavayana and Ampelopsis glandulosa (Figure 4-4 A). The

analysis with discrete coding without constraint places A. rooseae within the clade that contains

Ampelocissus, Vitis, and Ampelopsis, and the strict consensus tree did not resolve the major

groupings as in the analysis without fossils (Figure 4-5 A; compared to Figure 2-1). In the

analysis with discrete coding including all six fossils, A. rooseae is grouped with Ampelopsis

cordata (Figure 4-5 G).

2) Vitis tiffneyi Manchester 1994

— early Middle Eocene, Clarno Formation, US, UF 6533, UF 9573

The external characters of V. tiffneyi are similar to those of Vitis. The cross section of V.

tiffneyi reveals its thin endotesta, which is thinner than all sampled Vitis (endotesta thickness

0.02 vs. 0.03-0.058). PCA shows the similarity of V. tiffneyi to extant Vitis (Figure 4-1 B). In

the analyses with GW coding, V. tiffneyi is in a position sister to all Vitis (Figure 4-2 B, Figure 4-

3 B, I) or within Vitis (Figure 4-3 H). In the analysis with discrete coding and backbone

constraint, V. tiffneyi has three different positions (data not shown) within Vitis in the 16 MPTs

(Table 4-1), therefore Vitis forms a polytomy in the strict consensus tree (Figure 4-4 B). In the

228

analysis with discrete coding and no constraint, V. tiffneyi is sister to all Vitis (Figure 4-5 B). In

the analysis including six fossils with discrete coding, V. tiffneyi is within the clade containing

Vitis and Ampelocissus (Figure 4-5 G).

3) Palaeovitis paradoxa Reid and Chandler, 1933

— Early Eocene, London Clays, England (v. 62712)

This fossil seed has a very thick endotesta, much thicker than all sampled extant seeds

(endotesta thickness 0.1 vs. 0.01-0.058). The external characters are similar to those of Vitis and

Ampelopsis. In the PCA it is closest to Vitis (Figure 4-1 C). The analyses with GW coding place

it with Vitis aestivalis (Figure 4-2 C, Figure 4-3 C). In the analyses with GW coding including

all six fossil seeds, P. paradoxa is grouped with Ampelocissus wildei, and both were grouped

with Acareosperma spireanum (Figure 4-3 H) or Vitis aestivalis (Figure 4-3 I) (this result is

discussed with Ampelocissus wildei, below). In the analyses with discrete coding with or without

backbone constraint, this fossil seed is grouped with Vitis rotundifolia (Figure 4-4 C, Figure 4-5

C). In the analysis including six fossils with discrete coding, P. paradoxa is placed within the

clade containing Vitis and Ampelocissus (Figure 4-5 G).

4) Ampelocissus wildei Chen & Manchester 2007

— Middle Eocene, Messel, Germany (Me 5729, Me 5730, Me 8786)

This rugose, large seed is similar to Ampelocissus externally; the cross section of the seed

revealed its unusually thick endotesta (endotesta thickness 0.08 vs. 0.01-0.058). PCA does not

group it to a particular genus (Figure 4-1 D). In the analyses with discrete coding with or

without constraint, it is nested within Ampelocissus (Figure 4-4 D, Figure 4-5 D). In the analysis

including six fossils with discrete coding, A. wildei is placed within the clade contained Vitis and

Ampelocissus (Figure 4-5 G). Unexpectedly, the analyses with GW coding all resulted in its

229

grouping with Acareosperma spireanum (Figure 4-2 D, Figure 4-3 D, H). Acareosperma

spireanum has long spine-like outgrowth of endotesta, which are arranged in two whorls along

the lateral edge of the seed (Chapter 1). This distinct feature is not observed in any other

vitaceous seeds. Comparing each character of A. wildei and A. spireanum did not reveal any

obvious reason for this placement. It can only be explained that by coincidence, under most

parsimonious calculation, A. wildei was grouped with A. spireanum. It may be speculated that

the scaling between discrete and continuous characters in the GW method has some effect. All

six fossil seeds have the same five available discrete seed characters, and they all have the same

character states for these discrete characters. Only A. wildei has an additional two discrete

characters, fruit shape and number of seed per fruit. Therefore, the two fruit characters were

coded as unknown for A. wildei and the analyses were re-run. The results have A. wildei grouped

with Yua austro-orientalis (Figure 4-2 E, Figure 4-3 E). In the analysis including six fossils with

GW coding and excluding fruit characters of A. wildei, A. wildei is grouped with Palaeovitis

paradoxa, and both were grouped with Vitis aestivalis (Figure 4-3 I).

5) Parthenocissus clarnensis Manchester 1994

— early Middle Eocene, Clarno Formation, US (UF 6539, UF 6540, UF 9583)

This fossil seed has long and divergent ventral infolds similar to those of Parthenocissus,

however, it does not have a sharp apical notch like this genus. The PCA shows that P. clarnensis

is closest to Cayratia sp. (Peng 6346) and Yua chinensis, and these seeds are not well

differentiated from those of Cissus striata (labeled "Austrocissus"), Clematicissus opaca, and

Ampelopsis (Figure 4-1 E). The analyses including one fossil with GW coding with or without

constraint place P. clarnensis sister to all Parthenocissus (Figure 4-2 F, Figure 4-3 F). In the

analyses with GW coding including all six fossils, P. clarnensis is grouped with Vitis

230

magnisperma, and both are grouped with Vitis rotundifolia (Figure 4-3 H, I). In the analyses

with discrete coding with or without constraint, it is grouped with Vitis rotundifolia (Figure 4-4

E, Figure 4-5 E). The analysis including six fossils with discrete coding place P. clarnensis with

Vitis magnisperma, and they are sister to Parthenocissus and Yua (Figure 4-5 G).

6) Vitis magnisperma Chandler, 1961

— Early Eocene, London Clay Formation, England (v. 30257)

— early Middle Eocene, Clarno Formation, US (USNM 434985, UF 9879; cited in Manchester,

1994)

This fossil seed, like Parthenocissus clarnensis, is smooth, has long, divergent infolds

and a shallow apical notch. It is much larger (9.4 mm vs. 3.2 – 6.7 mm) than all other seeds with

a smooth surface, narrow infolds, and an oval chalazal. Its narrow infolds are closely spaced

(ventral infolds space at the middle ca. 0.1), a feature found only in Clematicissus opaca and

some species of Tetrastigma. Its chalaza appears large (chalaza width = 0.43), an uncommon

condition, but comparable to those of Parthenocissus dalzielii (0.44) and Ampelopsis cordata

(0.4). PCA does not clearly show the similarity of V. magnisperma to an extant genus (Figure 4-

1 F). All the analyses with GW coding place V. magnisperma with Vitis rotundifolia (Figure 4-2

G, Figure 4-3 G, H, I). The analysis including V. magnisperma with discrete coding and

backbone constraint resulted 18 MPTs (Table 4-1). In six of the 18 MPTs, V. magnisperma is

grouped with Ampelocissus, in the other 12 MPTs, it is grouped with Parthenocissus (Figure 4-4

F, G). This fossil changes the placement of Tetrastigma in the analyses with discrete coding

without topology constraint (Figure 4-5 F, G). In the analysis included only V. magnisperma, it

is sister to a clade that contains Parthenocissus, Yua, and Tetrastigma (Figure 4-5 F). In the

analysis including six fossils, it is sister to Parthenocissus and Yua (Figure 4-5 G).

231

Discussion

Effects of Missing Data in the Phylogenetic Analyses

The effect of missing data has been studied previously (Wiens, 2003; Wiens, 2005;

Wiens, 2006). In the present study, missing data of fossils have very different effects on the

analyses with the two coding methods. Adding fossils did not cause major differences in the

topology of the MPTs when the GW coding method was applied; and the analyses with or

without backbone constraint inferred the same placements for the fossils (Figure 4-2; Figure 4-3;

Table 4-2). The multiple segmentation of the continuous characters in GW coding has the nature

of giving very few MPTs because there are many steps involved, and thus the condition of being

most parsimonious is very fine tuned. Adding fossils usually did not disrupt the most

parsimonious calculation. Nevertheless, GW coding sometimes gives suspect results, as shown

in the case of Ampelocissus wildei. The weight-scaling between continuous and discrete

characters obviously effects the placement of A. wildei, demonstrated by changing the ratio of

continuous and discrete characters of the fossil in the matrix. The effect of weighting is also

shown in the two analyses including all six fossils using GW coding (Figure 4-3 H, I). In both

analyses A. wildei is grouped with Palaeovitis paradoxa. These two fossil seeds have thick

endotesta far outside the range of that of the extant seeds. In GW coding the endotesta thickness

of these two fossils are weighted heavily, therefore contributing greatly to their grouping under

parsimony criteria. When cladistic analyses with GW coding are used to assess fossil affinities,

the issue regarding to the weight-scaling has to be taken into consideration.

Unlike GW coding, including fossils to the analyses with discrete coding has various

effects, depending on the characters of the fossils. Including in the analysis with discrete coding

a fossil with features not much different from some extant seeds, such as Ampelopsis rooseae

(Figure 4-1 A), resulted in more MPTs with different tree topologyies (Table 4-1; Figure 4-5 A).

232

Inclusion of Vitis tiffneyi, similar to Vitis but with a thin endotesta, also resulted more MPTs

(Table 4-1). In contrast to the analyses including Ampelopsis rooseae, the topological variation

of the MPTs from the analysis with discrete coding including Vitis tiffneyi is mostly resulting

from the variation within the Vitis-Ampelocissus clade (Figure 4-5 B). Including Palaeovitis

paradoxa, Ampelocissus wildei, and Parthenocissus clarnensis does not have a great effect on

the analyses with discrete coding. Including these fossils in the analyses even slightly reduce the

number of MPTs (Table 4-1). These three fossil seeds did not show strong similarity to seeds of

any particular extant genus (Figure 4-1 C, D, E). Vitis magnisperma reduces the number of

MPTs (Table 4-1) and changes the topology of the MPTs when included in the analyses with

discrete coding (Figure 4-5 F, G). Vitis magnisperma is not similar to a particular genus (Figure

4-1 F); in addition, the fossil has characters similar to those of Parthenocissus (long divergent

ventral infolds, oval chalaza) and those of Tetrastigma (closely spaced ventral infolds). From the

results of the cladistic analyses with discrete coding, it was observed that the missing data of

fossils causes an increase in the number of MPTs when the fossils are very similar to one of the

extant groups, whereas the number of shortest trees is decreased when the fossils are not similar

to a particular extant lineage.

Fossil Affinities

Comparing the results from all the methods applied (Table 4-2), the fossil seeds of

Ampelopsis rooseae is no doubt almost the same as extant seeds of Ampelopsis. Vitis tiffneyi and

Palaeovitis paradoxa have affinity to Vitis although one has much thinner endotesta and the

other has much thicker one compared to the extant species of this genus. These two fossil seeds,

interestingly, imply that the stem lineages of Vitis had a wider range of endotesta thickness

compared to extant Vitis. Vitis tiffneyi occurred in only one locality. The better preserved P.

paradoxa was found only in London Clay; the reported Paleovitis paradoxa from the Paris Basin

233

does not have the endotesta preserved (Blanc-Louvel, 1986) therefore its identity is difficult to

verify. The variation of the endotesta thickness among the fossil Vitis-like seeds is largely

unknown; further accumulation of fossil data may give a better understanding. Measured extant

Parthenocissus seeds mostly have a very thin endotesta, whereas seeds of Vitis have a much

thicker endotesta (Figure 1-5 I). The association of endotesta thickness to seeds of specific

extant genera is intriguing. It is of interest to know when and how this association occurred.

The functions of the endotesta thickness is unknown although it can be speculated to be related

to seed storage and germination. Whether selection or random variation shaped the evolution of

endotesta thickness is in need of further study.

Unlike the three fossils discussed above, Ampelocissus wildei was grouped with different

extant genera in different analysis (Table 4-2). The affinity of A. wildei to Acareosperma

spireanum (Figure 4-2 D, Figure 4-3 D, H) was considered an artifact of weighting in GW

method. Nevertheless, the hypothesis that A. wildei is closely related to Palaeovitis paradoxa

and both are related to the extant species Vitis aestivalis may be reasonable (Figure 4-3 I).

Ampelocissus wildei is also grouped with Ampelocissus (Figure 4-4 C, Figure 4-5 C). Seeds of

Ampelocissus and Vitis sometimes differ only in the degree of rugosity, and the two extant

genera are closely related. There is a possibility that the extremely thick endotesta was a

synapomorphy of an extinct lineage, which contained A. wildei and V. paradoxa, and this lineage

shares a common ancestor with the extant species of Ampelocissus and Vitis.

Another likely affinity for A. wildei is Yua austro-orientalis (Figure 4-2 E, Figure 4-3 E).

Some seeds of Ampelocissus are similar to Y. austro-orientalis in many aspects (Chen and

Manchester, 2007). The results bring up the issue that convergence could have occurred in

extant species, therefore fossil organs cannot be linked to only one extant group. A hypothesis

234

that does not conflict with the various suggested positions for A. wildei (Table 4-2) is that the

fossil belongs to the stem lineage of the clade containing Yua austro-orientalis and

Ampelocissus, which also includes Vitis and Ampelopsis. The indistinguishable seeds from these

two extant genera cast uncertainty on the identification of fossils by seed characters. Although

extant genera have evolved in a way that diagnostic seed characters are mostly associated with

diagnostic characters from other plant organs; whether this still holds true for fossil taxa in the

Tertiary is unknown, because the fossil seeds have been found only in isolation, without other

organs of the parent plants. It can be hypothesized that the stem lineages have all sorts of

combinations between morphology of seeds and other plant organs, though evolution, only the

species with the combinations seen from the extant taxa have survived till today.

Parthenocissus clarnensis represents a seed morphology that does not conform to a

specific extant group. In the PCA it was close to Yua chinensis and Cayratia sp. (Peng 6346).

Seeds of Y. chinensis do not have a sharp apical notch like those of Parthenocissus, however, its

ventral infolds are not as long as those of P. clarnensis, and the cross section configuration of Y.

chinensis is more similar to that of Ampelopsis than to P. clarnensis. Cayratia sp. (Peng 6346)

has cross section configuration similar to that of P. clarnensis; however, its ventral infolds are

parallel, not divergent as P. clarnensis. Parthenocissus clarnensis was placed with

Parthenocissus or Vitis rotundifolia by cladistic analyses (Table 4-2). The seeds of V.

rotundifolia can be distinguished from Parthenocissus by their parallel ventral infolds and lack

of a sharp apical notch. This fossil has a mix of characters from Parthenocissus (long, divergent

infolds) and V. rotundifolia (shallow apical notch). A great number of fossil seeds share the

external features of P. clarnensis; they have been found in Tertiary beds from the Early Eocene

to Pliocene in the North Hemisphere. Fossil seeds comparable to extant Parthenocissus are

235

relatively rare (Chapter 3). Suppose P. clarnensis represents the stem lineage sharing the same

common ancestor with the extant genus Parthenocissus. Could it be that the taxa with seeds

similar to P. clarnensis all became extinct in the late Cenozoic, and only single lineage with

seeds similar to extant Parthenocissus survived untill today? Before answering this question, it

is necessary to confirm whether P. clarnensis truly represents an extinct seed form; this would

require sampling seeds of all extant species of Parthenocissus and Vitis. Seed types st-

Parthenocissus clarnensis, st-Vitis rotundifolia, and st-Parthenocissus usually co-occurred in

localities with abundant fossil seeds in southern England (Table 3-16, Chapter 3). Since the

characters used to distinguish these seed types are continuous, it is possible to imagine an extinct

species with a range of variation including all these seed types. Nevertheless, this speculation is

difficult to prove because no fossil vitaceous seed was attached to other plant organs.

Vitis magnisperma was also classified to the seed type st-Parthenocissus clarnensis

(Chapter 3). Vitis magnisperma and P. clarnensis were grouped together in analyses including

six fossils with either coding method (Figure 4-3 H, I; Figure 4-5 G), suggesting their close

relationship. This fossil seed has a distinct combination of characters not seen in the sampled

extant seeds; its affinity to extant species is difficult to confirm. Affinity to Vitis rotundifolia,

Parthenocissus, or Ampelocissus were inferred from various analyses (Table 4-2). The fossil

seed has the closely spaced ventral infolds present in most Tetrastigma, which explained its

effect on the placement of Tetrastigma in the analyses with discrete coding (Figure 4-5 F, G).

The missing data of V. magnisperma weaken the plausibility of its effect on the change of tree

topology. The monophyly of the Tetrastigma-Cayratia-Cyphostemma clade is well supported by

molecular data (Soejima and Wen, 2006; Wen et al., 2007), reinforcing the view that the change

in tree topology brought about by including V. magnisperma in the analyses is mainly due to the

236

lack of strong supports for the morphology-based phylogeny. Vitis magnisperma has been

identified from two Eocene localities in western North America and England; it was not as

prevalent as the smaller P. clarnensis-like seeds. This unique fossil seed may belong to an

extinct lineage not directly related to any extant group. Alternatively, V. magnisperma may be

viewed as an extinct species belonging to the clade containing Ampelocissus, Vitis, Ampelopsis,

Parthenocissus, and Yua.

Since the Paleocene vitaceous seeds with external characters resembling those of extant

seeds of the family have existed (Chapter 3). Close examination of the six fossils from the

Eocene reveals that some display a set of preserved characters that are the same as those of

extant species (Ampelopsis rooseae); other fossils resemble extant seeds externally, however

certain internal characters exhibit variation outside the range of the corresponding extant taxa

(Vitis tiffneyi and Palaeovitis paradoxa); still others cannot be placed unequivocally with an

extant group (Ampelocissus wildei, Parthenocissus clarnensis and Vitis magnisperma). It was

demonstrated that the fossil vitaceous seeds from the Eocene are not all exactly the same as the

examined extant vitaceous seeds.

Other fossil vitaceous seeds with features not exactly fitting with seeds of extant genera

included the st-Ampelocissus-rugose seed type with a sharp apical notch, the st-Ampelopsis-

smooth seed type with large chalaza, the st-Vitis seed type that is dorsiventrally compressed and

with a sharp margin, the st-Parthenocissus seed type with a sunken chalaza, and the st-

Parthenocissus seed type with a rugose surface (Chapter 3). These fossil seeds made up a small

portion of the fossil records from the Early Eocene to the Miocene in Europe, Siberia, and North

America (Tables 3-1 to 3-13, Chapter 3). Affinities of these fossils have not been fully assessed,

so additional investigations are needed.

Analyses with GW or discrete coding methods, topology constraint applied or not applied

fossil total

characters

fossil GW

characters GW, constraint GW discrete, constraint discrete

84 extant species 1, 0.166, 0.587, 24094 516, 0.142, 0.611, 1186

84 extant species &

A. rooseae

50 45 1, 0.143, 0.476, 8737 1, 0.166, 0.588, 24140 2, 0.119, 0.572, 463 1514, 0.142, 0.612, 1189

84 extant species &

V. tiffneyi

52 47 1, 0.142, 0.477, 9129 1, 0.166, 0.587, 24142 16, 0.118, 0.584, 482 1417, 0.142, 0.612, 1189

84 extant species &

P. paradoxa

53 48 1, 0.145, 0.473, 9145 1, 0.167, 0.588, 23998 4, 0.118, 0.580, 491 439, 0.142, 0.611, 1192

84 extant species &

A. wildei

52 45 1, 0.150, 0.498, 9002 1, 0.166, 0.588, 24046 2, 0.122, 0.592, 476 347, 0.142, 0.611, 1193

84 extant species &

A. wildei*

50 45 1, 0.145, 0.466, 8597 3, 0.166, 0.587, 24041

84 extant species &

P. clarnensis

53 48 1, 0.142, 0.471, 9336 1, 0.165, 0.587,24189 4, 0.118, 0.580, 492 354, 0.142, 0.611, 1193

84 extant species &

V. magnisperma

42 37 1, 0.145, 0.482, 7256 1, 0.166, 0.587, 24151 18, 0.117, 0.573, 392 78, 0.142, 0.611, 1192

84 extant species &

6 fossils

2, 0.165, 0.588, 24295 569, 0.139, 0.613, 1215

84 extant species &

6 fossils*

1, 0.165, 0.588, 24270

*two fruit characters of A. wildei were coded as missing.

Table 4-1. Numbers from the phylogenetic analyses. The numbers in the four columns indicating analyses are number of MPTs,

CI, RI, tree length.

237

Analyses Results

presented in

Ampelopsis rooseae Vitis tiffneyi Palaeovitis paradoxa Ampelocissus wildei Parthenocissus clarnensis Vitis magnisperma

PCA Fig. 4-1 a-f Ampelopsis Vitis near Vitis ambiguous ambiguous ambiguous

GW coding,

constraint

Fig. 4-2 a-g with Ampelopsis glandulosa sister to Vitis with Vitis aestivalis with Acareosperma spireanum ;

with Yua austro-orientalis*

sister to Parthenocissus with Vitis rotundifolia

GW coding,

1 fossil

Fig. 4-3 a-g with Ampelopsis glandulosa sister to Vitis with Vitis aestivalis with Acareosperma spireanum ;

with Yua austro-orientalis*

sister to Parthenocissus with Vitis rotundifolia

GW coding,

6 fossils

Fig. 4-3 h, i with Ampelopsis glandulosa ;

with Ampelopsis glandulosa*

within Vitis ; sister to

Vitis*

with Acareosperma spireanum ;

with Vitis aestivalis*

with Acareosperma spireanum ;

with Vitis aestivalis*

with Vitis rotundifolia ;

with Vitis rotundifolia*

with Vitis rotundifolia ;

with Vitis rotundifolia*

discrete coding,

constraint

Fig. 4-4 a-f sister to Ampelopsis delavayana

and Ampelopsis glandulosa

within/sister to Vitis with Vitis rotundifolia within Ampelocissus with Vitis rotundifolia Parthenocissus ,

Ampelocissus

discrete coding,

1 fossil

Fig. 4-5 a-f among Ampelopsis sister to Vitis with Vitis rotundifolia within Ampelocissus with Vitis rotundifolia sister to Parthenocissus-

Tetrastigm

discrete coding,

6 fossils

Fig. 4-5 g Ampelopsis cordata Ampelocissus/Vitis Ampelocissus/Vitis Ampelocissus/Vitis sister to Parthenocissus-

Yua

sister to Parthenocissus-

Yua

Table 4-2. Fossil affinities to extant species inferred from the analyses presented in this study.

*two fruit characters of A. wildei were coded as missing.

238

5.02.50.0-2.5-5.0-7.5

7.5

5.0

2.5

0.0

-2.5

-5.0

First Component

Se

co

nd

Co

mp

on

en

t Ampelopsis rooseae

Total variance explained by PCI & II = 0.454

5.02.50.0-2.5-5.0-7.5

5.0

2.5

0.0

-2.5

-5.0

-7.5

First Component

Se

co

nd

Co

mp

on

en

t

Vitis tiffneyi

Total variance explained by PCI & II = 0.434

Figure 4-1. The score plots of the first two principle components from the PCAs including extant

and fossil vitaceous seeds. A) A. rooseae; B) V. tiffneyi; C) P. paradoxa; D) A. wildei;

E) P. clarnensis; F) V. magnisperma. See Materials and Methods for details.

"Austrocissus"

Cayratia

Clematicissus

Ampelopsis

Parthenocissus

Yua

Vitis

Fossil

"Austrocissus"

Cayratia

Clematicissus

Ampelopsis

Parthenocissus

Yua

Vitis

Fossil

A

B

239

"Austrocissus"

Tetrastigma

Rhoicissus

Ampelopsis

Yua

Ampelocissus

Nothocissus

Fossil

Cayratia

5.02.50.0-2.5-5.0-7.5

5.0

2.5

0.0

-2.5

-5.0

-7.5

First Component

Se

co

nd

Co

mp

on

en

t

Palaeovitis paradoxa

Total variance explained by PCI & II = 0.420

Total variance explained by PCI & II = 0.369

5.02.50.0-2.5-5.0

5.0

2.5

0.0

-2.5

-5.0

First Component

Se

co

nd

Co

mp

on

en

t

Ampelocissus wildei

"Austrocissus"

Cayratia

Clematicissus

Ampelopsis

Parthenocissus

Yua

Vitis

Fossil

C

D

Figure 4-1. Continued.

240

"Austrocissus"

Cayratia

Clematicissus

Ampelopsis

Parthenocissus

Yua

Vitis

Fossil

Figure 4-1. Continued.

E

F

5.02.50.0-2.5-5.0-7.5

5.0

2.5

0.0

-2.5

-5.0

-7.5

First Component

Se

co

nd

Co

mp

on

en

tTotal variance explained by PCI & II = 0.431

Parthenocissus clarnensis

7.55.02.50.0-2.5-5.0

2.5

0.0

-2.5

-5.0

First Component

Se

co

nd

Co

mp

on

en

t

Vitis magnisperma

Total variance explained by PCI & II = 0.427

"Austrocissus"

Cayratia

Clematicissus

Ampelopsis

Parthenocissus

Yua

Vitis

Fossil

241

1

2

3

Ampelopsis glandulosaAmpelopsis rooseaeAmpelopsis cordata

Vitis rotundifoliaVitis tiffineyiCissus simsiana

Vitis aestivalisPalaeovitis paradoxaVitis rotundifolia

Yua austro-orientalisAmpelocissus wildeiCissus hypoglauca

Parthenocissus vitaceaParthenocissus clarnensisYua chinensis

Vitis rotundifoliaVitis magnispermaVitis aestivalis

Cayratia japonicaAcareosperma spireanumAmpelocissus wildei

1

1

1

1

3

2

2

A

B

C

D

E

F

G

Figure 4-2. The affinities of fossil vitaceous seeds inferred from the morphological

phylogenetic analyses in which the continuous characters were coded with GW

method, and backbone constraint applied. The structure of the constraint tree is

shown (same as in Figure 2-2); the node 1 (circle), 2 (diamond), or 3 (square) is

enlarged to show the positions of fossils: A) A. rooseae; B) V. tiffneyi; C) P.

paradoxa; D) A. wildei; E) A. wildei, excluding fruit characters; F) P. clarnensis;

G) V. magnisperma. Fossils are highlighted by red branches, the names of the

adjacent extant taxa are indicated.

242

Pterisanthes cissioidesPterisanthes politaAmpelocissus botryostachysAmpelocissus ochraceaAmpelocissus barbataAmpelocissus africanaNothocissus spiciferaAmpelocissus abyssinicaAmpelocissus acetosaAmpelocissus latifoliaAmpelocissus acapulcensisAmpelocissus erdvendbergianaAmpelocissus javalensisAmpelocissus robinsoniiVitis flexuosaVitis tsoiVitis piasezkiiVitis betulifoliaVitis viniferaVitis aestivalisVitis rotundifoliaCissus simsianaAmpelopsis glandulosaAmpelopsis rooseaeAmpelopsis cordataAmpelopsis delavayanaAmpelopsis cantoniensisAmpelopsis grossedentataAmpelopsis arboreaClematicissus angustissimaClematicissus opacaParthenocissus dalzieliiParthenocissus laetevirensParthenocissus quinquefoliaParthenocissus vitaceaYua chinensisYua austro-orientalisCissus hypoglaucaCissus antarcticaRhoicissus tridentataRhoicissus digitataCissus trianaeCissus sterculiifoliaCissus penninervisCissus granulosaCissus striata ssp. argentinaCissus biformifoliaCissus paullinifoliaCissus descoingsiiCissus assamicaCissus cornifoliaCissus mirabilisCissus obovataCissus quadrangularisCissus reniformisCissus fuligineaCissus campestrisCissus verticillataCissus alataCissus palmataTetrastigma bioritsenseTetrastigma planicauleTetrastigma rumicispermumTetrastigma obtectumTetrastigma serrulatumCayratia cardiophyllaCayratia geniculataCayratia maritimaCayratia oligocarpaCayratia triternataCayratia trifoliaCayratia japonicaAcareosperma spireanumCyphostemma hereroenseCyphostemma odontadeniumCyphostemma lageniflorumCyphostemma setosumCyphostemma paucidentatumCyphostemma buchananiiCyphostemma adenocauleCyphostemma lazaCyphostemma microdipteraCyphostemma junceumLeea guineensisLeea tetramera

68

100

80

54

95

50

51

50

50

89

62

57

74

52

8299

90

54

67

70

100

Figure 4-3. The affinities of fossil vitaceous seeds inferred from the morphological phylogenetic

analyses in which the continuous characters were coded with GW method. Strict

consensus trees of MPTs are shown, numbers above the branches indicate bootstrap

support values > 50%. Red branches indicate fossils, blue branches indicate position

changed compared to the MPT in analysis without fossils (Figure 2-2). A) A.

rooseae; B) V. tiffneyi; C) P. paradoxa; D) A. wildei; E) A. wildei, fruit characters

excluded; F) P. clarnensis; G) V. magnisperma; H) all 6 fossils included; I) all 6

fossils included, fruit characters excluded.

A

243

Pterisanthes cissioidesPterisanthes politaAmpelocissus botryostachysAmpelocissus ochraceaAmpelocissus barbataAmpelocissus africanaNothocissus spiciferaAmpelocissus abyssinicaAmpelocissus acetosaAmpelocissus latifoliaAmpelocissus acapulcensisAmpelocissus erdvendbergianaAmpelocissus javalensisAmpelocissus robinsoniiVitis flexuosaVitis tsoiVitis piasezkiiVitis betulifoliaVitis viniferaVitis aestivalisVitis rotundifoliaVitis tiffneyiCissus simsianaAmpelopsis cordataAmpelopsis glandulosaAmpelopsis delavayanaAmpelopsis cantoniensisAmpelopsis grossedentataAmpelopsis arboreaClematicissus angustissimaClematicissus opacaParthenocissus dalzieliiParthenocissus laetevirensParthenocissus quinquefoliaParthenocissus vitaceaYua chinensisYua austro-orientalisCissus hypoglaucaCissus antarcticaRhoicissus tridentataRhoicissus digitataCissus sterculiifoliaCissus trianaeCissus granulosaCissus penninervisCissus striata ssp. argentinaCissus biformifoliaCissus paullinifoliaCissus descoingsiiCissus assamicaCissus cornifoliaCissus mirabilisCissus obovataCissus quadrangularisCissus reniformisCissus fuligineaCissus campestrisCissus verticillataCissus alataCissus palmataTetrastigma bioritsenseTetrastigma planicauleTetrastigma rumicispermumTetrastigma obtectumTetrastigma serrulatumCayratia cardiophyllaCayratia geniculataCayratia maritimaCayratia oligocarpaCayratia triternataCayratia trifoliaCayratia japonicaAcareosperma spireanumCyphostemma hereroenseCyphostemma odontadeniumCyphostemma lageniflorumCyphostemma setosumCyphostemma paucidentatumCyphostemma buchananiiCyphostemma adenocauleCyphostemma lazaCyphostemma microdipteraCyphostemma junceumLeea guineensisLeea tetramera

100

80

68

53

79

6750

88

62

57

75

52

8299

89

55

67

69

100

Figure 4-3. Continued.

B

244

Pterisanthes cissioidesPterisanthes politaAmpelocissus botryostachysAmpelocissus ochraceaAmpelocissus barbataAmpelocissus africanaNothocissus spiciferaAmpelocissus abyssinicaAmpelocissus acetosaAmpelocissus latifoliaAmpelocissus acapulcensisAmpelocissus erdvendbergianaAmpelocissus javalensisAmpelocissus robinsoniiVitis flexuosaVitis tsoiVitis piasezkiiVitis betulifoliaVitis viniferaVitis aestivalisPalaeovitis paradoxaVitis rotundifoliaCissus simsianaAmpelopsis cordataAmpelopsis glandulosaAmpelopsis delavayanaAmpelopsis cantoniensisAmpelopsis grossedentataAmpelopsis arboreaClematicissus angustissimaClematicissus opacaParthenocissus dalzieliiParthenocissus laetevirensParthenocissus quinquefoliaParthenocissus vitaceaYua chinensisYua austro-orientalisCissus hypoglaucaCissus antarcticaRhoicissus tridentataRhoicissus digitataCissus sterculiifoliaCissus trianaeCissus granulosaCissus penninervisCissus striata ssp. argentinaCissus biformifoliaCissus paullinifoliaCissus descoingsiiCissus assamicaCissus cornifoliaCissus mirabilisCissus obovataCissus quadrangularisCissus reniformisCissus fuligineaCissus campestrisCissus verticillataCissus alataCissus palmataTetrastigma bioritsenseTetrastigma planicauleTetrastigma rumicispermumTetrastigma obtectumTetrastigma serrulatumCayratia cardiophyllaCayratia geniculataCayratia maritimaCayratia oligocarpaCayratia triternataCayratia trifoliaCayratia japonicaAcareosperma spireanumCyphostemma hereroenseCyphostemma odontadeniumCyphostemma lageniflorumCyphostemma setosumCyphostemma paucidentatumCyphostemma buchananiiCyphostemma adenocauleCyphostemma lazaCyphostemma microdipteraCyphostemma junceumLeea guineensisLeea tetramera

100

80

67

50

66

89

64

57

75

52

8299

90

53

67

70

100

Figure 4-3. Continued.

C

245

Pterisanthes cissioidesPterisanthes politaAmpelocissus botryostachysAmpelocissus ochraceaAmpelocissus barbataAmpelocissus africanaNothocissus spiciferaAmpelocissus abyssinicaAmpelocissus acetosaAmpelocissus latifoliaAmpelocissus acapulcensisAmpelocissus erdvendbergianaAmpelocissus javalensisAmpelocissus robinsoniiVitis flexuosaVitis tsoiVitis piasezkiiVitis betulifoliaVitis viniferaVitis aestivalisVitis rotundifoliaCissus simsianaAmpelopsis cordataAmpelopsis glandulosaAmpelopsis delavayanaAmpelopsis cantoniensisAmpelopsis grossedentataAmpelopsis arboreaClematicissus angustissimaClematicissus opacaParthenocissus dalzieliiParthenocissus laetevirensParthenocissus quinquefoliaParthenocissus vitaceaYua chinensisYua austro-orientalisCissus hypoglaucaCissus antarcticaRhoicissus tridentataRhoicissus digitataCissus trianaeCissus sterculiifoliaCissus penninervisCissus granulosaCissus striata ssp. argentinaCissus biformifoliaCissus paullinifoliaCissus descoingsiiCissus assamicaCissus fuligineaCissus cornifoliaCissus palmataCissus mirabilisCissus obovataCissus quadrangularisCissus reniformisCissus verticillataCissus campestrisCissus alataTetrastigma bioritsenseTetrastigma planicauleTetrastigma rumicispermumTetrastigma obtectumTetrastigma serrulatumCayratia cardiophyllaCayratia geniculataCayratia maritimaCayratia oligocarpaCayratia triternataCayratia trifoliaCayratia japonicaAcareosperma spireanumAmpelocissus wildeiCyphostemma hereroenseCyphostemma odontadeniumCyphostemma lageniflorumCyphostemma setosumCyphostemma paucidentatumCyphostemma buchananiiCyphostemma adenocauleCyphostemma lazaCyphostemma microdipteraCyphostemma junceumLeea guineensisLeea tetramera

69

100

80

51

6653

89

63

58

75

52

8299

90

67

71

51

92

100

Figure 4-3. Continued.

D

246

Pterisanthes cissioidesPterisanthes politaAmpelocissus botryostachysAmpelocissus ochraceaAmpelocissus barbataAmpelocissus africanaNothocissus spiciferaAmpelocissus abyssinicaAmpelocissus acetosaAmpelocissus latifoliaAmpelocissus acapulcensisAmpelocissus erdvendbergianaAmpelocissus javalensisAmpelocissus robinsoniiVitis flexuosaVitis tsoiVitis piasezkiiVitis betulifoliaVitis viniferaVitis aestivalisVitis rotundifoliaCissus simsianaAmpelopsis cordataAmpelopsis glandulosaAmpelopsis delavayanaAmpelopsis cantoniensisAmpelopsis grossedentataAmpelopsis arboreaClematicissus angustissimaClematicissus opacaParthenocissus dalzieliiParthenocissus laetevirensParthenocissus quinquefoliaParthenocissus vitaceaYua chinensisYua austro-orientalisAmpelocissus wildeiCissus hypoglaucaCissus antarcticaRhoicissus tridentataRhoicissus digitataCissus sterculiifoliaCissus trianaeCissus granulosaCissus penninervisCissus striata ssp. argentinaCissus biformifoliaCissus paullinifoliaCissus descoingsiiCissus assamicaCissus quadrangularisCissus reniformisCissus alataCissus campestrisCissus cornifoliaCissus fuligineaCissus mirabilisCissus obovataCissus palmataCissus verticillataTetrastigma bioritsenseTetrastigma planicauleTetrastigma rumicispermumTetrastigma obtectumTetrastigma serrulatumCayratia cardiophyllaCayratia geniculataCayratia maritimaCayratia oligocarpaCayratia triternataCayratia trifoliaCayratia japonicaAcareosperma spireanumCyphostemma hereroenseCyphostemma odontadeniumCyphostemma lageniflorumCyphostemma setosumCyphostemma paucidentatumCyphostemma buchananiiCyphostemma adenocauleCyphostemma lazaCyphostemma microdipteraCyphostemma junceumLeea guineensisLeea tetramera

100

80

69

6551

50

88

63

58

74

51

8299

90

66

69

51

89

100

Figure 4-3. Continued.

E

247

Pterisanthes cissioidesPterisanthes politaAmpelocissus botryostachysAmpelocissus ochraceaAmpelocissus barbataAmpelocissus africanaNothocissus spiciferaAmpelocissus abyssinicaAmpelocissus acetosaAmpelocissus latifoliaAmpelocissus acapulcensisAmpelocissus erdvendbergianaAmpelocissus javalensisAmpelocissus robinsoniiVitis flexuosaVitis tsoiVitis piasezkiiVitis betulifoliaVitis viniferaVitis aestivalisVitis rotundifoliaCissus simsianaAmpelopsis cordataAmpelopsis glandulosaAmpelopsis delavayanaAmpelopsis cantoniensisAmpelopsis grossedentataAmpelopsis arboreaClematicissus angustissimaClematicissus opacaParthenocissus dalzieliiParthenocissus laetevirensParthenocissus quinquefoliaParthenocissus vitaceaParthenocissus clarnensisYua chinensisYua austro-orientalisCissus hypoglaucaCissus antarcticaRhoicissus tridentataRhoicissus digitataCissus sterculiifoliaCissus trianaeCissus granulosaCissus penninervisCissus striata ssp. argentinaCissus biformifoliaCissus paullinifoliaCissus descoingsiiCissus assamicaCissus cornifoliaCissus mirabilisCissus obovataCissus quadrangularisCissus reniformisCissus fuligineaCissus campestrisCissus verticillataCissus alataCissus palmataTetrastigma bioritsenseTetrastigma planicauleTetrastigma rumicispermumTetrastigma obtectumTetrastigma serrulatumCayratia cardiophyllaCayratia geniculataCayratia maritimaCayratia oligocarpaCayratia triternataCayratia trifoliaCayratia japonicaAcareosperma spireanumCyphostemma hereroenseCyphostemma odontadeniumCyphostemma lageniflorumCyphostemma setosumCyphostemma paucidentatumCyphostemma buchananiiCyphostemma adenocauleCyphostemma lazaCyphostemma microdipteraCyphostemma junceumLeea guineensisLeea tetramera

51

72

100

80

69

65

51

88

62

58

74

8298

89

68

70

100

Figure 4-3. Continued.

F

248

Pterisanthes cissioidesPterisanthes politaAmpelocissus botryostachysAmpelocissus ochraceaAmpelocissus barbataAmpelocissus africanaNothocissus spiciferaAmpelocissus abyssinicaAmpelocissus acetosaAmpelocissus latifoliaAmpelocissus acapulcensisAmpelocissus erdvendbergianaAmpelocissus javalensisAmpelocissus robinsoniiVitis flexuosaVitis tsoiVitis piasezkiiVitis betulifoliaVitis viniferaVitis rotundifoliaVitis magnispermaVitis aestivalisCissus simsianaAmpelopsis cordataAmpelopsis glandulosaAmpelopsis delavayanaAmpelopsis cantoniensisAmpelopsis grossedentataAmpelopsis arboreaClematicissus angustissimaClematicissus opacaParthenocissus dalzieliiParthenocissus laetevirensParthenocissus quinquefoliaParthenocissus vitaceaYua chinensisYua austro-orientalisCissus hypoglaucaCissus antarcticaRhoicissus tridentataRhoicissus digitataCissus sterculiifoliaCissus trianaeCissus granulosaCissus penninervisCissus striata ssp. argentinaCissus biformifoliaCissus paullinifoliaCissus descoingsiiCissus assamicaCissus cornifoliaCissus mirabilisCissus obovataCissus quadrangularisCissus reniformisCissus fuligineaCissus campestrisCissus verticillataCissus alataCissus palmataTetrastigma bioritsenseTetrastigma planicauleTetrastigma rumicispermumTetrastigma obtectumTetrastigma serrulatumCayratia cardiophyllaCayratia geniculataCayratia maritimaCayratia oligocarpaCayratia triternataCayratia trifoliaCayratia japonicaAcareosperma spireanumCyphostemma hereroenseCyphostemma odontadeniumCyphostemma lageniflorumCyphostemma setosumCyphostemma paucidentatumCyphostemma buchananiiCyphostemma adenocauleCyphostemma lazaCyphostemma microdipteraCyphostemma junceumLeea guineensisLeea tetramera

99

72

68

65

88

63

58

74

50

8196

87

51

67

71

51

61

100

Figure 4-3. Continued.

G

249

Pterisanthes cissioidesPterisanthes politaAmpelocissus botryostachysAmpelocissus ochraceaAmpelocissus barbataAmpelocissus africanaNothocissus spiciferaAmpelocissus abyssinicaAmpelocissus acetosaAmpelocissus latifoliaAmpelocissus acapulcensisAmpelocissus erdvendbergianaAmpelocissus javalensisAmpelocissus robinsoniiVitis flexuosaVitis tsoiVitis piasezkiiVitis betulifoliaVitis viniferaParthenocissus clarnensisVitis magnispermaVitis rotundifoliaVitis aestivalisVitis tiffneyiCissus simsianaAmpelopsis glandulosaAmpelopsis rooseaeAmpelopsis cordataAmpelopsis delavayanaAmpelopsis cantoniensisAmpelopsis grossedentataAmpelopsis arboreaClematicissus angustissimaClematicissus opacaParthenocissus dalzieliiParthenocissus laetevirensParthenocissus quinquefoliaParthenocissus vitaceaYua chinensisYua austro-orientalisCissus hypoglaucaCissus antarcticaRhoicissus tridentataRhoicissus digitataCissus sterculiifoliaCissus trianaeCissus granulosaCissus penninervisCissus striata ssp. argentinaCissus biformifoliaCissus paullinifoliaCissus descoingsiiCissus assamicaCissus cornifoliaCissus mirabilisCissus obovataCissus quadrangularisCissus reniformisCissus fuligineaCissus campestrisCissus verticillataCissus alataCissus palmataTetrastigma bioritsenseTetrastigma planicauleTetrastigma rumicispermumTetrastigma obtectumTetrastigma serrulatumCayratia cardiophyllaCayratia geniculataCayratia maritimaCayratia oligocarpaCayratia triternataCayratia trifoliaCayratia japonicaPalaeovitis paradoxaAmpelocissus wildeiAcareosperma spireanumCyphostemma hereroenseCyphostemma odontadeniumCyphostemma lageniflorumCyphostemma setosumCyphostemma paucidentatumCyphostemma buchananiiCyphostemma adenocauleCyphostemma lazaCyphostemma microdipteraCyphostemma junceumLeea guineensisLeea tetramera

68

100

76

51

54

89

65

57

74

8296

88

65

71

52

100

Figure 4-3. Continued.

H

250

Pterisanthes cissioidesPterisanthes politaAmpelocissus botryostachysAmpelocissus ochraceaAmpelocissus barbataAmpelocissus africanaNothocissus spiciferaAmpelocissus abyssinicaAmpelocissus acetosaAmpelocissus latifoliaAmpelocissus acapulcensisAmpelocissus erdvendbergianaAmpelocissus javalensisAmpelocissus robinsoniiPalaeovitis paradoxaAmpelocissus wildeiVitis aestivalisParthenocissus clarnensisVitis magnispermaVitis rotundifoliaVitis flexuosaVitis tsoiVitis piasezkiiVitis betulifoliaVitis viniferaVitis tiffneyiCissus simsianaAmpelopsis glandulosaAmpelopsis rooseaeAmpelopsis cordataAmpelopsis delavayanaAmpelopsis cantoniensisAmpelopsis grossedentataAmpelopsis arboreaClematicissus angustissimaClematicissus opacaParthenocissus dalzieliiParthenocissus laetevirensParthenocissus quinquefoliaParthenocissus vitaceaYua chinensisYua austro-orientalisCissus hypoglaucaCissus antarcticaRhoicissus tridentataRhoicissus digitataCissus sterculiifoliaCissus trianaeCissus granulosaCissus penninervisCissus striata ssp. argentinaCissus biformifoliaCissus paullinifoliaCissus descoingsiiCissus assamicaCissus cornifoliaCissus mirabilisCissus obovataCissus quadrangularisCissus reniformisCissus fuligineaCissus campestrisCissus verticillataCissus alataCissus palmataTetrastigma bioritsenseTetrastigma planicauleTetrastigma rumicispermumTetrastigma obtectumTetrastigma serrulatumCayratia cardiophyllaCayratia geniculataCayratia maritimaCayratia oligocarpaCayratia triternataCayratia trifoliaCayratia japonicaAcareosperma spireanumCyphostemma hereroenseCyphostemma odontadeniumCyphostemma lageniflorumCyphostemma setosumCyphostemma paucidentatumCyphostemma buchananiiCyphostemma adenocauleCyphostemma lazaCyphostemma microdipteraCyphostemma junceumLeea guineensisLeea tetramera

100

76

68

51

55

88

64

57

75

65

70

8396

86

51

Figure 4-3. Continued.

100

I

251

Ampelopsis glandulosaAmpelopsis rooseaeAmpelopsis cordata

Vitis piasezkii

Vitis tsoiVitis tiffneyi

Vitis rotundifoliaPalaeovitis paradoxaVitis aestivalis

A B

C

Figure 4-4. The affinities of fossil vitaceous seeds inferred from the morphological

phylogenetic analyses in which the continuous characters were coded with discrete

method, and backbone constraint applied. The structure of the constraint tree is

shown (same as in Figure 2-1); the node indicated by the arrow is enlarged to show

the positions of fossils: A) A. rooseae; B) V. tiffneyi; C) P. paradoxa; D) A. wildei;

E) P. clarnensis; F-G) V. magnisperma. Fossils are highlighted by red branches,

the names of the adjacent extant taxa are indicated. The topology represent the

strict consensus trees of all MPTs, except for V. magnisperma: F shows the

structure of the strict consensus tree of 6, out of the 18 total MPTs, G shows that of

the rest 12 MPTs.

252

Ampelocissus latifoliaAmpelocissus wildeiPterisanthes cissioides

Vitis rotundifoliaParthenocissus clarnensisVitis aestivalis

Ampelocissus latifoliaVitis magnispermaPterisanthes cissioides

Parthenocissus vitaceaVitis magnispermaYua chinensis

D

E

F

G

Figure 4-4. Continued.

253

Ampelopsis rooseae

10063

9264

60

86

78

7794

8565

81100

Ampelocissus abyssinicaAmpelocissus africanaNothocissus spiciferaAmpelocissus acetosaAmpelocissus latifoliaPterisanthes cissioidesPterisanthes politaAmpelocissus ochraceaAmpelocissus botryostachysAmpelocissus barbataAmpelocissus javalensisAmpelocissus acapulcensisAmpelocissus erdvendbergianaAmpelocissus robinsoniiVitis rotundifoliaVitis aestivalisVitis flexuosaVitis piasezkiiVitis betulifoliaVitis viniferaVitis tsoiCissus simsianaAmpelopsis grossedentataAmpelopsis cantoniensisAmpelopsis delavayanaAmpelopsis glandulosaAmpelopsis cordataAmpelopsis arborea

Parthenocissus dalzieliiParthenocissus laetevirensParthenocissus quinquefoliaParthenocissus vitaceaYua chinensisYua austro-orientalisClematicissus angustissimaClematicissus opacaCissus striata ssp. argentinaCissus granulosaCissus penninervisCissus sterculiifoliaCissus hypoglaucaRhoicissus digitataCissus trianaeRhoicissus tridentataCissus antarcticaCissus biformifoliaCissus paullinifoliaCissus alataCissus palmataCissus assamicaCissus cornifoliaCissus descoingsiiCissus fuligineaCissus mirabilisCissus obovataCissus quadrangularisCissus reniformisCissus verticillataCissus campestrisCyphostemma lazaCayratia japonicaCayratia trifoliaCayratia triternataCayratia maritimaCayratia oligocarpaTetrastigma bioritsenseTetrastigma planicauleTetrastigma obtectumTetrastigma rumicispermumTetrastigma serrulatumAcareosperma spireanumCayratia cardiophyllaCayratia geniculataCyphostemma adenocauleCyphostemma buchananiiCyphostemma paucidentatumCyphostemma setosumCyphostemma hereroenseCyphostemma lageniflorumCyphostemma odontadeniumCyphostemma microdipteraCyphostemma junceumLeea guineensisLeea tetramera

Figure 4-5. The affinities of fossil vitaceous seeds inferred from the morphological

phylogenetic analyses in which the continuous characters were coded with

discrete method. Strict consensus trees of all MPTs are shown, numbers above

the branches indicate bootstrap support values > 50%. Red branches indicate

fossils, blue branches indicate position changed compared to the strict consensus

trees of the MPTs from analysis without fossils (Figure 2-1). A) A. rooseae; B)

V. tiffneyi; C) P. paradoxa; D) A. wildei; E) P. clarnensis; F) V. magnisperma;

G) all 6 fossils included.

A

254

10062

9266

59

63

100

82

66

8495

78

74

Ampelocissus abyssinicaAmpelocissus africanaNothocissus spiciferaAmpelocissus acetosaAmpelocissus latifoliaPterisanthes cissioidesPterisanthes politaAmpelocissus ochraceaAmpelocissus botryostachysAmpelocissus barbataAmpelocissus acapulcensisAmpelocissus erdvendbergianaAmpelocissus javalensisAmpelocissus robinsoniiVitis betulifoliaVitis viniferaVitis flexuosaVitis piasezkiiVitis tsoiVitis aestivalisVitis rotundifoliaVitis tiffneyiCissus simsianaAmpelopsis grossedentataAmpelopsis cantoniensisAmpelopsis delavayanaAmpelopsis glandulosaAmpelopsis cordataAmpelopsis arboreaParthenocissus dalzieliiParthenocissus laetevirensParthenocissus quinquefoliaParthenocissus vitaceaYua chinensisYua austro-orientalisClematicissus angustissimaClematicissus opacaCissus striata ssp. argentinaCissus granulosaCissus penninervisCissus sterculiifoliaCissus hypoglaucaRhoicissus digitataCissus trianaeRhoicissus tridentataCissus antarcticaCissus biformifoliaCissus paullinifoliaCissus alataCissus palmataCissus assamicaCissus cornifoliaCissus descoingsiiCissus fuligineaCissus mirabilisCissus obovataCissus quadrangularisCissus reniformisCissus verticillataCissus campestrisCyphostemma lazaCayratia japonicaCayratia trifoliaCayratia triternataCayratia maritimaCayratia oligocarpaTetrastigma bioritsenseTetrastigma planicauleTetrastigma obtectumTetrastigma rumicispermumTetrastigma serrulatumAcareosperma spireanumCayratia cardiophyllaCayratia geniculataCyphostemma adenocauleCyphostemma buchananiiCyphostemma paucidentatumCyphostemma setosumCyphostemma hereroenseCyphostemma lageniflorumCyphostemma odontadeniumCyphostemma microdipteraCyphostemma junceumLeea guineensisLeea tetramera

Figure 4-5. Continued.

B

255

82

100

7795

85

66

71

74

10062

92

5954

Ampelocissus abyssinicaAmpelocissus africanaNothocissus spiciferaAmpelocissus acetosaAmpelocissus latifoliaPterisanthes cissioidesPterisanthes politaAmpelocissus ochraceaAmpelocissus botryostachysAmpelocissus barbataAmpelocissus javalensisAmpelocissus acapulcensisAmpelocissus erdvendbergianaAmpelocissus robinsoniiVitis rotundifoliaPalaeovitis paradoxaVitis aestivalisVitis flexuosaVitis piasezkiiVitis betulifoliaVitis viniferaVitis tsoiCissus simsianaAmpelopsis grossedentataAmpelopsis cantoniensisAmpelopsis delavayanaAmpelopsis glandulosaAmpelopsis cordataAmpelopsis arboreaParthenocissus dalzieliiParthenocissus laetevirensParthenocissus quinquefoliaParthenocissus vitaceaYua chinensisYua austro-orientalisClematicissus angustissimaClematicissus opacaCissus striata ssp. argentinaCissus granulosaCissus penninervisCissus sterculiifoliaCissus hypoglaucaRhoicissus digitataCissus trianaeRhoicissus tridentataCissus antarcticaCissus biformifoliaCissus paullinifoliaCissus alataCissus palmataCissus assamicaCissus cornifoliaCissus descoingsiiCissus fuligineaCissus mirabilisCissus obovataCissus quadrangularisCissus reniformisCissus verticillataCissus campestrisCyphostemma lazaCayratia japonicaCayratia trifoliaCayratia triternataCayratia maritimaCayratia oligocarpaTetrastigma bioritsenseTetrastigma planicauleTetrastigma obtectumTetrastigma rumicispermumTetrastigma serrulatumAcareosperma spireanumCayratia cardiophyllaCayratia geniculataCyphostemma adenocauleCyphostemma buchananiiCyphostemma paucidentatumCyphostemma setosumCyphostemma hereroenseCyphostemma lageniflorumCyphostemma odontadeniumCyphostemma microdipteraCyphostemma junceumLeea guineensisLeea tetramera

Figure 4-5. Continued.

C

256

Figure 4-5. Continued.

10062

91

59

68

7894

85

66

78

100

Ampelocissus abyssinicaAmpelocissus africanaNothocissus spiciferaAmpelocissus acetosaAmpelocissus latifoliaAmpelocissus wildeiPterisanthes cissioidesPterisanthes politaAmpelocissus ochraceaAmpelocissus botryostachysAmpelocissus barbataAmpelocissus javalensisAmpelocissus acapulcensisAmpelocissus erdvendbergianaAmpelocissus robinsoniiVitis aestivalisVitis rotundifoliaVitis flexuosaVitis piasezkiiVitis betulifoliaVitis viniferaVitis tsoiCissus simsianaAmpelopsis grossedentataAmpelopsis cantoniensisAmpelopsis delavayanaAmpelopsis glandulosaAmpelopsis cordataAmpelopsis arboreaParthenocissus dalzieliiParthenocissus laetevirensParthenocissus quinquefoliaParthenocissus vitaceaYua chinensisYua austro-orientalisClematicissus angustissimaClematicissus opacaCissus striata ssp. argentinaCissus granulosaCissus penninervisCissus sterculiifoliaCissus hypoglaucaRhoicissus digitataCissus trianaeRhoicissus tridentataCissus antarcticaCissus biformifoliaCissus paullinifoliaCissus alataCissus palmataCissus assamicaCissus cornifoliaCissus descoingsiiCissus fuligineaCissus mirabilisCissus obovataCissus quadrangularisCissus reniformisCissus verticillataCissus campestrisCyphostemma lazaCayratia japonicaCayratia trifoliaCayratia triternataCayratia maritimaCayratia oligocarpaTetrastigma bioritsenseTetrastigma planicauleTetrastigma obtectumTetrastigma rumicispermumTetrastigma serrulatumAcareosperma spireanumCayratia cardiophyllaCayratia geniculataCyphostemma adenocauleCyphostemma buchananiiCyphostemma paucidentatumCyphostemma setosumCyphostemma hereroenseCyphostemma lageniflorumCyphostemma odontadeniumCyphostemma microdipteraCyphostemma junceumLeea guineensisLeea tetramera

D

257

10062

91

5757

7892

80

56

73

100

Ampelocissus abyssinicaAmpelocissus africanaNothocissus spiciferaAmpelocissus acetosaAmpelocissus latifoliaPterisanthes cissioidesPterisanthes politaAmpelocissus ochraceaAmpelocissus botryostachysAmpelocissus barbataAmpelocissus javalensisAmpelocissus acapulcensisAmpelocissus erdvendbergianaAmpelocissus robinsoniiVitis rotundifoliaParthenocissus clarnensisVitis aestivalisVitis flexuosaVitis piasezkiiVitis betulifoliaVitis viniferaVitis tsoiCissus simsianaAmpelopsis grossedentataAmpelopsis cantoniensisAmpelopsis delavayanaAmpelopsis glandulosaAmpelopsis cordataAmpelopsis arboreaParthenocissus dalzieliiParthenocissus laetevirensParthenocissus quinquefoliaParthenocissus vitaceaYua chinensisYua austro-orientalisClematicissus angustissimaClematicissus opacaCissus striata ssp. argentinaCissus granulosaCissus penninervisCissus sterculiifoliaCissus hypoglaucaRhoicissus digitataCissus trianaeRhoicissus tridentataCissus antarcticaCissus biformifoliaCissus paullinifoliaCissus alataCissus palmataCissus assamicaCissus cornifoliaCissus descoingsiiCissus fuligineaCissus mirabilisCissus obovataCissus quadrangularisCissus reniformisCissus verticillataCissus campestrisCyphostemma lazaCayratia japonicaCayratia trifoliaCayratia triternataCayratia maritimaCayratia oligocarpaTetrastigma bioritsenseTetrastigma planicauleTetrastigma obtectumTetrastigma rumicispermumTetrastigma serrulatumAcareosperma spireanumCayratia cardiophyllaCayratia geniculataCyphostemma adenocauleCyphostemma buchananiiCyphostemma paucidentatumCyphostemma setosumCyphostemma hereroenseCyphostemma lageniflorumCyphostemma odontadeniumCyphostemma microdipteraCyphostemma junceumLeea guineensisLeea tetramera

Figure 4-5. Continued.

E

258

Ampelocissus abyssinicaAmpelocissus africanaNothocissus spiciferaAmpelocissus acetosaAmpelocissus latifoliaPterisanthes cissioidesPterisanthes politaAmpelocissus ochraceaAmpelocissus botryostachysAmpelocissus barbataAmpelocissus acapulcensisAmpelocissus erdvendbergianaAmpelocissus javalensisAmpelocissus robinsoniiVitis aestivalisVitis rotundifoliaVitis betulifoliaVitis viniferaVitis flexuosaVitis piasezkiiVitis tsoiCissus simsianaAmpelopsis grossedentataAmpelopsis cantoniensisaaAmpelopsis delavayanaAmpelopsis glandulosaAmpelopsis cordataAmpelopsis arboreaClematicissus angustissimaClematicissus opacaCissus striata ssp. argentinaParthenocissus dalzieliiParthenocissus laetevirensParthenocissus quinquefoliaYua austro-orientalisYua chinensisParthenocissus vitaceaTetrastigma bioritsenseTetrastigma planicauleTetrastigma serrulatumTetrastigma obtectumTetrastigma rumicispermumVitis magnispermaCissus granulosaCissus penninervisCissus sterculiifoliaCissus hypoglaucaRhoicissus digitataCissus trianaeRhoicissus tridentataCissus antarcticaCissus biformifoliaCissus paullinifoliaCissus alataCissus palmataCissus assamicaCissus cornifoliaCissus descoingsiiCissus fuligineaCissus mirabilisCissus obovataCissus quadrangularisCissus reniformisCissus verticillataCissus campestrisCyphostemma lazaCayratia japonicaCayratia trifoliaCayratia triternataCayratia maritimaCayratia oligocarpaCayratia cardiophyllaCayratia geniculataAcareosperma spireanumCyphostemma adenocauleCyphostemma buchananiiCyphostemma paucidentatumCyphostemma setosumCyphostemma hereroenseCyphostemma lageniflorumCyphostemma odontadeniumCyphostemma microdipteraCyphostemma junceumLeea guineensisLeea tetramera

9762

88

85

75

7993

5755

100

61

Figure 4-5. Continued.

F

259

Ampelocissus abyssinicaAmpelocissus africanaNothocissus spiciferaAmpelocissus acetosaAmpelocissus latifoliaPterisanthes cissioidesPterisanthes politaAmpelocissus ochraceaAmpelocissus botryostachysAmpelocissus barbataVitis betulifoliaVitis viniferaVitis flexuosaVitis piasezkiiAmpelocissus acapulcensisAmpelocissus erdvendbergianaAmpelocissus javalensisAmpelocissus robinsoniiVitis aestivalisVitis rotundifoliaVitis tsoiPalaeovitis paradoxaVitis tiffneyiAmpelocissus wildeiAmpelopsis grossedentataAmpelopsis cantoniensisCissus simsianaAmpelopsis delavayanaAmpelopsis cordataAmpelopsis rooseaeAmpelopsis glandulosaAmpelopsis arboreaClematicissus opacaClematicissus angustissimaCissus striata ssp. argentinaParthenocissus dalzieliiParthenocissus laetevirensParthenocissus quinquefoliaParthenocissus vitaceaYua austro-orientalisYua chinensisParthenocissus clarnensisVitis magnispermaCissus granulosaCissus penninervisTetrastigma obtectumTetrastigma rumicispermumTetrastigma serrulatumTetrastigma planicauleTetrastigma bioritsenseCissus hypoglaucaCissus sterculiifoliaCissus trianaeRhoicissus digitataRhoicissus tridentataCissus antarcticaCissus biformifoliaCissus paullinifoliaCissus alataCissus palmataCissus descoingsiiCissus fuligineaCissus assamicaCissus cornifoliaCissus mirabilisCissus obovataCissus quadrangularisCissus reniformisCissus verticillataCissus campestrisCyphostemma lazaCayratia japonicaCayratia trifoliaCayratia triternataCayratia maritimaCayratia oligocarpaCayratia cardiophyllaCayratia geniculataAcareosperma spireanumCyphostemma adenocauleCyphostemma buchananiiCyphostemma paucidentatumCyphostemma setosumCyphostemma hereroenseCyphostemma lageniflorumCyphostemma odontadeniumCyphostemma microdipteraCyphostemma junceumLeea guineensisLeea tetramera

9862

90

59

7786

68

68

55

Figure 4-5. Continued.

G

100

260

APPENDIX A

SPECIMENS INFORMATION OF THE VITACEOUS SEEDS SAMPLED IN THIS STUDY

Taxa are listed in alphabetic order. The information is listed as follows: taxon, collector and

collector's number (herbarium deposited), locality. Abbreviations for herbaria follow Thiers

(continuously updated). The seeds that are not sampled for the character measurement but with

images shown in the article are marked with "*".

Acareosperma spireanum Gagnep., Spire 140 & 357 (P), Loas; Ampelocissus abyssinica Planch., A. J. M.

Leeuwenberg 8070 (MO), Ivory Coast; Ampelocissus acapulcensis (Kunth) Planch., C. G. Pringle 8503 (A),

Mexico; Ampelocissus acapulcensis (Kunth) Planch., Rafael Torres C. 5476 (GH), Mexico; Ampelocissus acetosa

(F. Muell.) Planch., N. Duke s. n. (A), Australia; Ampelocissus africana (Lour.) Merr., C. J. Kayombo 2229 (MO),

Tanzania; Ampelocissus arachnoidea Planch., M. Eug. Poilane 14309 (A), Cambodia; Ampelocissus barbata

Planch., D. J. Middleton, S. Suddee & C. Hemrat 1325 (A), Thailand; Ampelocissus bombycina Planch., A. A. Euti

38455 (MO), Ghana; Ampelocissus borneensis Merr., M. Ramos & G. Edano 44369 (NY), Philippines;

Ampelocissus botryostachys Planch., M. Ramos 48106 (NY), Philippines; Ampelocissus cavicaulis Planch., A. J. M.

Leeuwenberg 5183 (MO), Cameroon; Ampelocissus divaricata Planch., M. Suzuki et al. 9193023 (A), Nepal;

Ampelocissus elegans Gagnep., S. Riswan et al. B-14 (MO), Borneo; Ampelocissus elephantina Planch., D. K.

Harder et al. 1743 (MO), Madagascar; Ampelocissus erdvendbergiana Planch., E. Matuda 3201 (A), Mexico;

Ampelocissus gracilis Planch., R. S. Toroes 1479 (NY), Sumatra; Ampelocissus grantii (Baker) Planch., J.G. Adam

15369 (MO), Mali; Ampelocissus imperialis Planch., M. Ramos 1430 (A), Borneo; Ampelocissus javalensis (Seem.)

W. D. Stevens & A. Pool, M. H. Grayum & G. Schatz 5282 (MO), Costa Rica; Ampelocissus latifolia (Roxb.)

Planch., R. R. Stewart 11143 (NY), India; Ampelocissus leonensis Planch., A. Jacques-Georges 8757 (MO),

Senegal; Ampelocissus macrocirrha Gilg & Brandt, J. G. Adam 25752 (MO), Liberia; Ampelocissus martini

Planch., M. Ramos 1879 (MO), Philippines; Ampelocissus muelleriana Planch., R. Kaneheira & S. Hatusima 12055

(A), New Guinea; Ampelocissus muelleriana Planch., Shomer & Katik 75140 (A), New Guinea; Ampelocissus

multistriata Planch., E. M. C. Groenendijk et al. 1163 (MO), Mozambique; Ampelocissus obtusata (Welw. ex

Baker) Planch., N. A. Mwangulango 607 (MO), Tanzania; Ampelocissus obtusata subsp. kirkiana (Planch.) Wild &

R.B. Drumm., D. K. Harder & M. G. Bingham 2581 (MO), Zambia; Ampelocissus ochracea Merr., J. H. Beaman

10316 (GH), Malaysia; Ampelocissus pauciflora Merr., R. B. Fox 474 (A), Philippines; Ampelocissus polystachya

Planch., R. S. Toroes 1736 (NY), Sumatra; Ampelocissus racemifera Planch., W. Takeuchi, Z. Efendi, & D. Junaidi

18748 (A), Indonesia; Ampelocissus robinsonii Planch., J. G. Jack 5441 (A), Cuba; Ampelocissus rugosa Planch.,

M. Suzuki et al. 9470131 (A), Nepal; Ampelocissus tomentosa (Roth) Planch., C. J. Seldanha & P. Prakash 3664

(MO), India; Ampelopsis aconitifolia Bunge, Ki-Mon Liou 7997 (IBSC), China; Ampelopsis arborea (L.) Koehne, I.

Chen 59 (FLAS), US; Ampelopsis cantoniensis (Hook. & Arn.) Planch., Wang Xue Wen & Zhang Gui Cai 8073

(IBSC), China; Ampelopsis cordata Michx., A. Gholson Jr. 6431 (FLAS), US; Ampelopsis delavayana Planch. ex

Franch., Wang Wen Hua 3510 (CDBI), China; Ampelopsis denudata Planch., Silvia Salas M. et al. 2035 (NY),

Mexico; Ampelopsis glandulosa (Wall.) Momiyama, I. Chen 48 (TAIF), Taiwan; Ampelopsis grossedentata (Hand.-

Mazz.) W. T. Wang, Cao Ya Ling & He Yong Hua 87-18 (CDBI), China; Ampelopsis humulifolia Bunge, Fu Kun

Jun 17754 (IBY), China; Ampelopsis japonica (Thunb.) Makino, Zhong Ji Xin 808247 (IBY), China; Ampelopsis

megalophylla Diels & Gilg, s. n. 13316 (CDBI), China; Ampelopsis rubifolia (Wall.) Planch., Chun Z. C. 51757

(IBY), China; Cayratia acris (F. Muell.) Domin, B. R. Jackes s. n. (JCT), Australia; Cayratia cardiophylla Jackes,

H. Hopkins s. n. (JCT), Papua New Guinea; Cayratia ciliifera (Merr.) Chun, S. K. Lau 4906 (IBSC), China;

Cayratia ciliifera (Merr.) Chun, S.K. Lau 178 (US), China; Cayratia corniculata (Benth.) Gagnep., Liu Gin Kuoa

s. n. (TAIF), Taiwan; Cayratia formosana Hsu & Kuoh, I. Chen 53 (TAIF), Taiwan; Cayratia geniculata Gagnep.,

M. Ramos 1115 (US), Philippines; Cayratia japonica (Thunb.) Gagnep., I. Chen 45 (TAIF), Taiwan; Cayratia

maritima Jackes, I. Chen 531 (FLAS), Australia; Cayratia mollissima Gagnep., D. J. Middleton et al. 409 (IBSC),

Thailand; Cayratia oligocarpa Gagnep., Zhou Hong Fu 26434 (IBSC), China; Cayratia pedata (Lam.) Juss. ex

Gagnep., P.L. Comanor 1043 (US), Ceylon; Cayratia saponaria (Benth.) Domin, B. R. Jackes s. n. (JCT),

Australia; Cayratia sp. , Peng Yu Lan 6346 (CDBI), China; Cayratia trifolia (L.) Domin, I. Chen 119 (FLAS),

China; Cayratia triternata (Baker) Desc., H. Jacquemin H343J (P), Madagascar; Cayratia triternata (Baker) Desc.,

J. M. Hildebrandt 2962 (P), Madagascar; Cissus adnata Roxb., C. R. Dunlop 4776 (JCT), Australia; Cissus alata

261

Jacq., S. Mori & J. Kallunki 1786 (US), Panama; Cissus antarctica Vent., B. R. Jackes s. n. (JCT), Australia;

Cissus assamica (M.A. Lawson) Craib, Huang Zhi 40054 (IBY), China; Cissus assamica (M.A. Lawson) Craib, J.

F. Rock 777 (US), Myanmar; Cissus biformifolia Standl., R. W. Lent 2326 (US), Costa Rica; Cissus cacuminis

Standl., Antonio Molina R. 1350 (US), Honduras; Cissus campestris (Baker) Planch., F. C. A. Oliverira et al. 271

(US), Brazil; Cissus cardiophylla (F.Muell.) Jackes, B. R. Jackes s. n. (JCT), Australia; Cissus caustica Tussac, E.

C. Leonard 8435 (US), Haiti; Cissus cornifolia Planch., E. A. Mearns 3007 (US), Uganda; Cissus cucurbitina

Standl., s. n. 1131 (US), Mexico; Cissus decidua Lombardi, A. Chase 7823 (US), Brazil; Cissus descoingsii

Lombardi, W. Burger & G. Matta U. 4712 (US), Costa Rica; Cissus diffusiflora Planch., G. Zenker 507 (US),

Cameroon; Cissus dinklagei Gilg & Brandt, A. Hladik 2040 (US), Gabon; Cissus duarteana Cambess., G. Eiten &

L. T. Eiten 9700 (US), Brazil; Cissus elongata Roxb., Wang et al. 4107 (IBY), China; Cissus erosa Rich., H. Pittier

3995 (US), Panama; Cissus farinosa (Welwitsch ex Baker) Planch., R. Dummer 262 (US), Uganda; Cissus flavifolia

Lombardi, D. S. Pennys & M. A. Blanco Coto 1671 (FLAS), Panama; Cissus fuliginea Kunth, P. H. Allen 5450

(US), Costa Rica; Cissus fusifolia Lombardi, Jose Schunke V. 2589 (US), Peru; Cissus gardneri Thwaites, S. H.

Sohmer et al. 8557 (US), Ceylon; Cissus gongylodes (Burch. ex Baker) Planch., J. J. Strudwick & G. L. Sobel 3940

(US), Brazil; Cissus granulosa Ruiz & Pav., J. Francis Macbride 3726 (US), Peru; Cissus hastata Miq., B. R.

Jackes s. n. (JCT), Australia; Cissus hexangularis Thorel ex Planch., Zhoung Ji Xin 808815 (IBY), China; Cissus

heyneana Steud., G. Davidse & D. B. Sumithraarachchi 8864 (US), Ceylon; Cissus hypoglauca A. Gray, B. R.

Jackes s. n. (JCT), Australia; Cissus intermedia A. Rich., s. n. s. n. (US), Cuba; Cissus javana DC., J. F. Rock 1016

(US), Thailand; Cissus lonchiphylla Thwaites, S. Waas 1904 (US), Ceylon; Cissus mexicana DC., H. S. Gentry

14279 (US), Mexico; Cissus microcarpa Vahl, P. C. Standley 52861 (US), Honduras; Cissus mirabilis (Urb. &

Ekman) Lombardi, E.L. Ekman 4809 (US), Haiti; Cissus obovata Vahl, E. C. Leonard 4263 (US), Haiti; Cissus

obovata Vahl, P. Acevedo-Rdgz 11708 (US), Puerto Rico; Cissus oliveri Gilg ex Engl., R. B. Faden et al. 800 (US),

Kenya; Cissus palmata Poir., T. M. Pedersen 3721 (US), Argentina; Cissus paullinifolia Vell., R. Klein 1770 (US),

Brazil; Cissus penninervis (F. Muell.) Planch., B. R. Jackes s. n. (JCT), Australia; Cissus picardae Urb., P.

Acevedo-Rdgz et al. 8470 (US), Republica Dominicana; Cissus planchoniana Gilg, A. Hlandik 2051 (US), Africa;

Cissus pteroclada Hayata, s. n. 84569 (IBY), China; Cissus quadrangularis L., Herb. Wight. propr. 423 (US),

India; Cissus reniformis Domin, I. Chen 517 (TAIF), Australia; Cissus repens Lam., B. R. Jackes s. n. (JCT),

Australia; Cissus rotundifolia (Forssk.) Vahl, P. Acevedo-Rdgz 11003 (US), Caribbean; Cissus rubiginosa Planch.,

Flamiqui 120 (US), Africa; Cissus simsiana Schult. & Schult. f., G. Hatschbach & J. M. Silva 49092 (US), Brazil;

Cissus sp., A. Macedo 3197 (US), Brasil; Cissus sp., C. J. Saldanha 13311 (US), India; Cissus sp., G. E. Schatz

1606 (US), Madagascar; Cissus sp., P. H. & D. Allen 5249 (US), Costa Rica; Cissus sterculiifolia (Benth.) Planch.,

B. R. Jackes s. n. (JCT), Australia; Cissus stipulata Vell., P. R. Reiz 3060 (US), Brazil; Cissus striata Ruiz & Pav.,

O. Kuntze s. n. (US), Chile; Cissus striata subsp. argentina (Suess.) Lombardi, O. S. Ribas & V. Nicolack 303 (US),

Brazil; Cissus subhastata Gagnep., J. F. Rock 222 (US), Thailand; Cissus tiliacea Kunth, R. M. King & T. R.

Soderstrom 4987 (US), Mexico; Cissus trianae Planch., J. Cuatrecasas 8711 (US), Colombia; Cissus trigona Willd.

ex Roem. & Schult., D. Bell & S. Wiser 88-146 (US), Peru; Cissus trilobata Lam., L. Bernardi 15759 (US), Ceylon;

Cissus tuberosa DC., J. N. Rose & R. Hay 5896a (US), Mexico; Cissus tweedieana (Baker) Planch., S. Venturi

142115 (US), Argentina; Cissus verticillata (L.) Nicolson & C. E. Jarvis, I. Chen 38 (TAIF), Taiwan; Cissus vinosa

Jackes, B. R. Jackes s. n. (JCT), Australia; Cissus vitiginea L., G. Davidse 7341 (US), Ceylon; Clematicissus

angustissima (F. Muell.) Planch., E. M. Jackes s. n. (BRI), Australia; Clematicissus opaca (F. Muell.) Jackes &

Rossetto, B. R. Jackes s. n. (JCT), Australia; Cyphostemma adenocaule (Steud. ex A. Rich.) Desc. ex Wild & R. B.

Drumm., I. Friis et al. 7987 (US), Ethiopia; Cyphostemma braunii (Gilg & Brandt) Desc., H. J. Beentje et al. 1081

(US), Kenya; Cyphostemma buchananii (Planch.) Desc. ex Wild & R. B. Drumm., R. B. Faden et al. 521 (US),

Kenya; Cyphostemma cirrhosum (Thunb.) Desc. ex Wild & R. B. Drumm., G. Davidse 6804 (US), South Afirca;

Cyphostemma cyphopetalum (Fresen.) Desc. ex Wild & R. B. Drumm., R.L. Piemeisel & L.W. Kephart 22 (US),

Kenya; Cyphostemma hereroense (Schinz) Desc. ex Wild & R. B. Drumm., R. Seydel 4215a (US), Namibia;

Cyphostemma hildebrandtii (Gilg) Desc. ex Wild & R. B. Drumm., Luke 2905 (US), Kenya; Cyphostemma

hypoleuca (Harv.) Desc., J. Medly Wood 448 (US), South Africa; Cyphostemma jiguu Verdc., Luke 3855 (US),

Kenya; Cyphostemma junceum (Webb) Desc. ex Wild & R. B. Drumm., A. Meurillon 861 (P), Cameroon;

Cyphostemma lageniflorum (Gilg & Brandt) Desc., C. H. S. Kabuye et al. 635 (US), Kenya; Cyphostemma

lanigerum (Harv.) Desc. ex Wild & R. B. Drumm., P. Herman 171 (US), South Africa; Cyphostemma laza Desc., P.

B. Philipson 2476 (P), Madagascar; Cyphostemma marlothii (Dinter & Gilg) Desc., R. Seydel 3111 (US),

southwestern Africa; Cyphostemma microdiptera (Baker) Desc., R. Decary 17158 (P), Madagascar; Cyphostemma

odontadenium (Gilg) Desc., S. A. Rovertson 6710 (US), Kenya; Cyphostemma paucidentatum (Klotzsch) Desc. ex

262

Wild & R. B. Drumm., J. Frazier 1139 (US), Tanzania; Cyphostemma schimperi (Hochst. ex A. Rich.) Desc.,

Schimper 644 (US), Afirca; Cyphostemma serpens (Hochst. ex A. Rich.) Desc., Schimper 154 (US), Africa;

Cyphostemma setosum (Roxb.) Alston, Bernardi 14299 (US), Ceylon; Cyphostemma simulans (C. A. Sm.) Wild &

R. B. Drumm., J. Medly Wood 8249 (US), South Africa; Cyphostemma ukerewense (Gilg) Desc., P. K.

Rwavurindore 1796 (US), Uganda; Leea aculeata Blume, H. P. Fuchs 21234 (A), Malayisa; Leea aequata L.,

Kessler et al. P. K. 1340 (A), Indonesia; Leea aequata L., M. Shah & Lee Wai Chin 2693 (US), Malaysia; Leea

angulata Korth. ex Miq., W. N. & C. M. Bangham 656 (A), Indonisia; Leea asiatica (L.) Ridsdale, M. Suzuki et al.

9455064 (A), Nepal; Leea compactiflora Kurz, T. T. Yu 17683 (A), China; Leea congesta Elmer, R. B. Fox 5259-1

(A), Philippine; Leea coryphantha Lauterb., H. Streimann & A. Kairo 39230 (A), New Guinea; Leea guineensis G.

Don, I. Chen 44 (TAIF), Taiwan; Leea heterodoxa K. Schum. & Lauterb., D. Foreman et al. 45917 (A), New

Guinea; Leea macropus Lauterb. & K. Schum., W. Takeuchi 9048B (A), Papua New Guinea; Leea papuana Merr.

& L. M. Perry, L. J. Brass 23959 (A), New Guinea; *Leea philippinensis Merr., C. Frake 56725 (A), Philippines;

Leea quadrifida Merr., D. Mendoza & P. Convocar 253 (A), Phillippines; *Leea robusta Roxb., Father Anglade s.

n. (A), India; Leea tetramera B. L. Burtt, T. C. Whitmore 6226 (A), Solomon Island; Nothocissus spicifera (Griff.)

Latiff, H. O. Forbes 2831 (US), Sumatra; Parthenocissus dalzielii Gagnep., Nan Ling Dui 1572 (IBSC), China;

Parthenocissus feddei (H. Lév.) C.L. Li, Cao Ya Ling et al. 13 (CDBI), China; Parthenocissus henryana (Hemsl.)

Graebn. ex Diels & Gilg, Hu Zhi Xin 3575 (IBSC), China; Parthenocissus heptaphylla (Buckley) Britton ex Small,

M. Hopkins s. n. (US), US; Parthenocissus laetevirens Rehder, Ma Xi Peng 53495 (IBSC), China; Parthenocissus

quinquefolia (L.) Planch., I. Chen 204 (FLAS), US; Parthenocissus semicordata (Wall.) Planch., Li Xi Wen 157

(IBSC), China; Parthenocissus vitacea (Knerr) Hitchc., J. C. Blumer 1289 (US), US; Pterisanthes cissioides

Blume, J. Agama 1117 (US), Borneo; Pterisanthes eriopoda Planch., W. de Wilde 21340 (SYS), Sumatra;

Pterisanthes eriopoda Planch., W. J. J. O. de Wilde & B. E. E. de Wilde-Duyfjes 20589 (US), Sumatra;

Pterisanthes polita (Miq.) M. A. Lawson, J. Sinclair 10380 (US), Sarawak; Pterisanthes quinquefoliolata Merr., S.

Kokawa & M. Hotta 475 (L), Sabah; Rhoicissus digitata (L. f.) Gilg & Brandt, R.D.A. Bayliss 1615 (US), South

Africa; Rhoicissus revoilii Planch., E. A. Mearns 1041 (US), Kenya; Rhoicissus rhomboidea (E. Mey. ex Harv.)

Planch., O.A Leistner et al. 3307 (US), South Africa; Rhoicissus schlechteri Gilg & Brandt, R. J. Rodin 4680 (US),

South Africa; Rhoicissus tridentata (L.f.) Wild & R. B. Drumm., M. E. Mathias & D. Taylor A116 (US), Tanzania;

Rhoicissus tridentata (L.f.) Wild & R. B. Drumm., M. E. Mathias & D. Taylor 142 (US), Tanzania; Tetrastigma

bioritsense (Hayata) Hsu & Kuoh, A. Henry 104 (US), Taiwan; Tetrastigma brunneum Merr., M. Ramos 20542

(US), Philippines; Tetrastigma caudatum Merr. & Chun, Liu Xin Qi 26617 (IBSC), China; Tetrastigma cauliflorum

Merr., H. Y. Liang 66618 (IBY), China; Tetrastigma crenatum Jackes, B. Gray 07372 (BRI), Australia; Tetrastigma

cruciatum Craib & Gagnep., J. F. Rock 1118 (US), Thailand; Tetrastigma cruciatum Craib & Gagnep., Menglian

survey 010060 (SYS), China; Tetrastigma delavayi Gagnep., Chang C. C. 10928 (IBY), China; Tetrastigma

erubescens Planch., Hainan 00135 (IBY), China; Tetrastigma formosanum (Hemsl.) Gagnep., E. H. Wilson 10994

(US), Taiwan; Tetrastigma hainanense Chun & F. C. How, S. H. Chun 11723 (IBY), China; Tetrastigma harmandii

Planch., J. & M. S. Clemens 3992 (US), Vietnam; Tetrastigma hemsleyanum Diels & Gilg, Peng 7 (CDBI), China;

Tetrastigma henryi Gagnep., Mao Pin 455 (IBY), China; *Tetrastigma hypoglaucum Planch., B. Bartholomew et al.

507 (US), China; Tetrastigma kwangsiense C. L. Li, Nonggan Survey 10957 (IBY), China; Tetrastigma

lanceolarium (Roxb.) Planch., H. B. Morse 681 (US), China; Tetrastigma loheri Gagnep., A. Loher 5843 (US),

Philippines; Tetrastigma megalocarpum W. T. Wang, Zhu Hua 936 (SYS), China; Tetrastigma nilagiricum (Miq.)

B. V. Shetty, G. Davidse & A. H. Jayasuriya 8390 (US), Ceylon; Tetrastigma nitens (F. Muell.) Planch., V. K.

Moriarty 782 (BRI), Australia; Tetrastigma obtectum Planch. ex Franch., Sichuan survey 51995 (SYS), China;

Tetrastigma pachyphyllum (Hemsl.) Chun, Tsang Wai-Tak 152 (SYS), China; Tetrastigma papillosum Planch., M.

Ramos 30348 (US), Philippines; Tetrastigma pedunculare Planch., Meijer 134578 (US), Malaysia; Tetrastigma

petraeum Jackes, B. R. Jackes s. n. (BRI), Australia; Tetrastigma pingpienense C. Y. Wu, C. C. Chang 12559

(IBY), China; Tetrastigma pisicarpum (Miq.) Planch., M. Ramos & S. Fdano 14751 (US), Philippines; Tetrastigma

pisicarpum (Miq.) Planch., R. Schodde 2575 (BRI), New Guinea; Tetrastigma planicaule Gagnep., P. Tsang

120694 (SYS), China; Tetrastigma pubinerve Merr. & Chun, Huang Zhi 34529 (IBSC), China; Tetrastigma

retinervium Planch., Nonggang survey 10964 (SYS), China; Tetrastigma rumicispermum (M. A. Lawson) Planch.,

H. T. Tsai 60421 (IBSC), China; Tetrastigma rumicispermum (M. A. Lawson) Planch., Liao Guo Sheng 1802

(SYS), China; Tetrastigma serrulatum Planch., D. H. Nicolson 2939 (US), Nepal; Tetrastigma serrulatum Planch.,

Xu Guo Hong 25804 (CDBI), China; Tetrastigma serrulatum Planch., Yue Qing Sheng & Mou Ke Hua 5734

(CDBI), China; Tetrastigma sulcatum Gamble, C. J. Saldanha 13351 (US), India; Tetrastigma thorsborneorum

Jackes, R. J. Cumming 10178 (JCT), Australia; Tetrastigma triphyllum (Gagnep.) W. T. Wang, Gao Xin Fen et al.

263

3998 (IBSC), China; Tetrastigma umbellatum Nakai, E. H. Wilson 9694 (US), Taiwan; Tetrastigma vitiense (A.

Gray) A. C. Sm., A. C. Smith 720 (US), Fiji; Tetrastigma xishuangbannaense C. L. Li, Li Yan Hui 004817 (IBY),

China; Tetrastigma yunnanense Gagnep., A. Henry 11647 (US), China; Vitis aestivalis Michx., I. Chen 60 (FLAS),

US; Vitis amurensis Rupr., Zhang Yu Liang et al. 1924 (SYS), China; Vitis balansana Planch., S. K. Lau 102

(SYS), China; Vitis betulifolia Diels & Gilg, Sichuan survey 51693 (SYS), China; Vitis chunganensis Hu, He Xian

Yu 29370 (IBSC), China; Vitis flexuosa Thunb., An Ming Tai 5199 (TAIF), China; Vitis jacquemontii R. Parker, H.

Takayama et al. 9239082 (A), Nepal; Vitis lanceolatifoliosa C. L. Li, Wang De Zhen 1662 (IBSC), China; Vitis

piasezkii Maxim., s. n. 0929 (CDBI), China; Vitis rotundifolia Michx., I. Chen 577 (FLAS), US; Vitis sp. , S. R.

Manchester s. n. (FLAS), US; Vitis tsoi Merr., Zhang Gui Cai 306 (IBSC), China; Vitis vinifera L., s. n. 84-1333

(IBSC), China; Vitis vulpina L., I. Chen 58 (FLAS), US; Vitis wilsoniae H. J. Veitch, Chen Ke & Li Han Zhang

3169 (IBY), China; Yua austro-orientalis (F. P. Metcalf) C. L. Li, S. P. Ko 50800 (IBSC), China; Yua chinensis C.

L. Li, Peng Ding Yi 46098 (IBSC), China.

264

APPENDIX B

SPECIMENS EXAMINED FOR THE MORPHOLOGICAL ANALYSES

Specimen information is arranged as: taxa, collector(s) collector's number (herbarium

deposited), locality. Taxa are listed in alphabetical order, "—" indicates that the identification is

the same as the preceding taxon. p = specimen examined for pollen morphology, s = specimen

examined for seed morphology.

Acareosperma spireanum Gagnep., Spire 140 & 357s (P), Loas; Ampelocissus abyssinica Planch., A. J. M.

Leeuwenberg 8070s (MO), Ivory Coast; — , C. J. Kayombo et al. 1212

p (MO), Tanzania; — , Fay, J. M. 5523 (MO),

Central African Republic; — , John M. Fay 7015 (MO), Central African Republic; — , R. E. Gereau et al. 5837

(MO), Tanzania; Ampelocissus acapulcensis (Kunth) Planch., C. A. Purpus 9056p (GH), Mexico; — , C. G. Pringle

8503 (A), Mexico; — , Edward Palmer 364 (GH), Mexico; — , Paul C. Standley 21982 (NY), El Salvador; — ,

Rafael Torres C. et al. 5476s (GH), Mexico; Ampelocissus acetosa (F. Muell.) Planch., L. J. Brass 900 (A), Papua

New Guinea; — , L. J. Brass 8647p (A), Papua New Guinea; — , N. Duke s. n.

s (A), Australia; — , P. Martensz

AE732 (MO), Australia; Ampelocissus africana (Lour.) Merr., C. J. Kayombo 2229s (MO), Tanzania; — , I. H.

Patel & J. L. Balaka 4338 (NY), Malawi; — , I. H. Patel & K. Kaunda 4237 (NY), Malawi; — , M. Reekmans

2931p (MO), Burundi; Ampelocissus barbata Planch., D. J. Middleton et al. 1325

s (A), Thailand; — , R. W. Squires

912p (A, MO), Vietnam; Ampelocissus botryostachys Planch., M. Ramos 48106

s (NY), Philippines; — , M. Ramos

& G. Edano 75175p (NY), Philippinnes; Ampelocissus erdvendbergiana Planch., C. A. Purpus 8418 (NY), Mexico;

— , E. Matuda 3201s (A, NY), Mexico; — , Edward Palmer 331 (MO), Mexico; — , O. Tellez 2362 (MO), Mexico;

— , W. E. Harmon 2292p (MO), Guatemala; Ampelocissus javalensis (Seem.) W. D. Stevens & A. Pool, G.

Gallardo 207 (MO), Costa Rica; — , M. H. Grayum & G. Schatz 5282ps

(MO), Costa Rica; — , Michael Grayum et

al. 4377 (MO), Costa Rica; Ampelocissus latifolia (Roxb.) Planch., Allam s. n.p (GH), s. n.; — , H. Kanai & G.

Murata 2970 (A), Eastern India; — , R. R. Stewart 11143s (NY), India; — , R. R. Stewart 15046 (NY),

Northwestern Himalaya; Ampelocissus ochracea Merr., Arsat 1061 (NY), Borneo; — , G. E. Edano 1686p (A),

Philippines; — , J. H. Beaman 10316s (GH, MO), Malaysia; Ampelocissus robinsonii Planch., Bro. Alain H. Liogier

11457 (NY), Dominican Republic; — , J. G. Jack 5441s (A), Cuba; — , N. L. Britton & A. Hollick 2767 (NY),

Jamaica; — , R. A. & E. S. Howard 8159p (GH), Dominican Republic; — , R. A. & E. S. Howard 8430 (GH),

Dominican Republic; — , T. Zanoni et al. 37775 (NY), Republica Dominicana; Ampelopsis arborea (L.) Koehne, I.

Chen 7 (FLAS), US; — , I. Chen 9 (FLAS), US; — , I. Chen 19p (FLAS), US; — , I. Chen 59

s (FLAS), US;

Ampelopsis cantoniensis (Hook. & Arn.) Planch., Chen Shao Qing 16697 (IBY), China; — , I. Chen 28p (TAIF),

Taiwan; — , Shi Guo Liang 15365 (IBSC), China; — , T. Y. A. Yang et al. 15109 (HAST), Taiwan; — , Wang Xue

Wen & Zhang Gui Cai 8073s (IBSC), China; — , Wei Zhao Fen 127705 (IBSC), China; — , Wen-Pen Leu et al.

1992 (HAST), Taiwan; Ampelopsis cordata Michx., A. Gholson Jr. 6431s (FLAS), US; — , I. Chen 11 (FLAS), US;

— , R. Dale Thomas 18870p (FLAS), US; Ampelopsis delavayana Planch. ex Franch., Jin 9048 (CDBI), China; — ,

Tang & Liu 9884 (CDBI), China; — , Tang & Lui 9886p (CDBI), China; — , Wang Wen Hua 3510

s (CDBI), China;

Ampelopsis glandulosa (Wall.) Momiyama, I. Chen 25 (TAIF), Taiwan; — , I. Chen 32 (TAIF), Taiwan; — , I.

Chen 46 (TAIF), Taiwan; — , I. Chen 48ps

(TAIF), Taiwan; Ampelopsis grossedentata (Hand.-Mazz.) W. T. Wang,

Cao Ya Ling & He Yong Hua 87-18s (CDBI), China; — , Huang Wen Cai & Xie Chong Yuan 3729 (IBSC),

Guangxi; — , I. Chen 89p (TAIF), China; — , Li Chao Luan 003 (CDBI), China; — , Wang Gong Fan 1-0222

(TAIF), China; Cayratia cardiophylla Jackes, B. Hyland 21109V (JCT), Australia; — , E. M. Jackes s. n.s (JCT),

Australia; — , H. Hopkins s. n. (JCT), Papua New Guinea; — , J. R. Clarkson 3951 (JCT), Australia; — , N. Duke s.

n.p (JCT), Australia; Cayratia geniculata Gagnep., I. Chen 541 (SING), Singapore; — , I. Chen 551 (TAIF),

Malaysia; — , M. Ramos 1115s (US), Philippines; — , M. Ramos & G. Edano 40597

p (US), Philippines; Cayratia

japonica (Thunb.) Gagnep., I. Chen 26 (TAIF), Taiwan; — , I. Chen 45ps

(TAIF), Taiwan; — , I. Chen 123 (TAIF),

China; — , I. Chen 523 (TAIF), Australia; Cayratia maritima Jackes, B. R. Jackes s. n. (JCT), Australia; — , I.

Chen 531s (TAIF), Australia; — , I. Chen 538

p (TAIF), Singapore; Cayratia oligocarpa Gagnep., H. F. Chin 70534

(IBY), China; — , S. S. Sin 21509p (IBSC), China; — , Wang De Zhen 789 (IBSC), China; — , Zhou Hong Fu

26434s (IBSC), China; Cayratia trifolia (L.) Domin, B. R. Jackes s. n. (JCT), Australia; — , I. Chen 110 (TAIF),

China; — , I. Chen 116p (TAIF), China; — , I. Chen 119

s (TAIF), China; — , M. O. Rankin 1746 (JCT), Australia;

Cayratia triternata (Baker) Desc., H. Jacquemin H343J (P), Madagascar; — , J. Bosser 19036p (P), Madagascar; —

265

, J. M. Hildebrandt 2962s (P), Madagascar; — , M. Boivin 2110 (P), Madagascar; — , Marion Nicoll 375 (P),

Madagascar; Cissus alata Jacq., S. Mori & J. Kallunki 1786s (US), Panama; — , W. H. Lewis et al. 1544

p (US),

Panama; Cissus antarctica Vent., B. R. Jackes s. n.ps

(JCT), Australia; — , F. McKenzie s. n. (JCT), Australia; — ,

I. Chen 533 (TAIF), Australia; — , J. B. Williams s. n. (JCT), Australia; Cissus assamica (M.A. Lawson) Craib, C.

J. Saldanha 15415p (US), India; — , Huang Zhi 40054 (IBY), China; — , J. F. Rock 777

s (US), Myanmar; — , T. Y.

A. Yang 08749 (TAIF), Taiwan; Cissus biformifolia Standl., Alexander F. Skutch 2812p (US), Costa Rica; — , Paul

C. Standley 55108 (US), Honduras; — , R. W. Lent 2326s (US), Costa Rica; Cissus campestris (Baker) Planch., F.

C. A. Oliverira et al. 271s (US), Brazil; — , G. T. Prance et al. 24775 (US), Brazil; — , T. S. Filgueiras & D.

Alvarenga 1586p (US), Brazil; Cissus cornifolia Planch., Dr. Edgar A. Mearns 3068

p (US), Africa; — , E. A.

Mearns 3007s (US), Uganda; — , H. J. Schlieben 7370 (US), South Africa; Cissus descoingsii Lombardi, S. Mori &

J. Kallunki 5172p (US), Panama; — , W. Burger & Guillermo Matta U. 4712

s (US), Costa Rica; Cissus fuliginea

Kunth, Mr. & Mrs. J. N. Rose 21782 (US), Venezuela; — , Nee 7647p (US), Panama; — , P. H. Allen 5450

s (US),

Costa Rica; Cissus granulosa Ruiz & Pav., J. Francis Macbride 3726s (US), Peru; — , Octavio Vedarde Nunez

3439p (US), Peru; — , Ruiz s. n. (US), Peru; Cissus hypoglauca A. Gray, B. R. Jackes s. n.

s (JCT), Australia; — , F.

M. Bailey s. n. (US), Australia; — , F. Mueller s. n. (US), Australia; — , G. Crowley s. n.p (JCT), Australia; — , I.

Chen 524 (TAIF), Australia; Cissus mirabilis (Urb. & Ekman) Lombardi, E. L. Ekman 4809ps

(US), Haiti; — , E. L.

Ekman 14412 (US), Dominican Republic; Cissus obovata Vahl, A. H. Curtiss 193 (US), Bahamas; — , David

Fairchild 2558 (US), Bahamas; — , E. C. Leonard 4263s (US), Haiti; — , E. L. Ekman 1035

p (US), Haiti; — , P.

Acevedo-Rdgz. 10861 (US), Puerto Rico; — , P. Acevedo-Rdgz. 11708 (US), Puerto Rico; — , P. Acevedo-Rdgz.

13463 (US), Puerto Rico; Cissus palmata Poir., A. Charpin & U. Esleuche AC 20375p (US), Argentina; — , T. M.

Pedersen 3721s (US), Argentina; Cissus paullinifolia Vell., G. Hatschbach 13384

p (US), Brazil; — , G. Hatschbach

28612 (US), Brazil; — , P. Dusen 12045 (US), Brazil; — , R. Klein 1770s (US), Brazil; Cissus penninervis (F.

Muell.) Planch., B. Jackes 8613 (JCT), Australia; — , B. R. Jackes s. n.ps

(JCT), Australia; — , I. Chen 526 (TAIF),

Australia; Cissus quadrangularis L., B. C. Kundu & N. Balakrishnan 367p (US), Ceylon; — , F. G. Meyer 7589

(US), Ethiopia; — , Herb. Wight. propr. 423s (US), India; Cissus reniformis Domin, C. Dunlop & D. Jones s. n.

(JCT), Australia; — , C. R. Dunlop 4627 (JCT), Australia; — , I. Chen 517s (TAIF), Australia; — , M. O. Rankin

1270p (JCT), Australia; Cissus simsiana Schult. & Schult. f., Doris Cochran s. n. (US), Brazil; — , G. Hatschbach

& J. M. Silva 49092s (US), Brazil; — , R. M. Harley 16365

p (US), Brazil; Cissus sterculiifolia (Benth.) Planch., B.

R. Jackes s. n.ps

(JCT), Australia; — , I. Chen 525 (TAIF), Australia; — , L. J. Brass 33746 (BRI), Australia; — , P.

Grimshaw G330 (BRI), Australia; — , R. W. Lockyer s. n. (BRI), Australia; — , S. P. Phillips 781 (BRI), Australia;

Cissus striata spp. argentina (Suess.) Lombardi, A. Kegler 493 (US), Brazil; — , G. Eatschbach 15491 (US), Brazil;

— , M. Nee & I. Vargas C. 38275p (US), Bolivia; — , O. S. Ribas & V. Nicolack 303

s (US), Brazil; — , R. Wasum &

N. Bastos 8029 (US), Brazil; — , S. Venturi s. n. (US), Brazil; Cissus trianae Planch., Alexander F. Skutch 3252p

(US), Costa Rica; — , J. Cuatrecasas 8711s (US), Colombia; — , M. E. Davidson 248 (US), Panama; — , Paul C.

Standley 42791 (US), Costa Rica; — , Paul C. Standley & Juvenal Valerio 50170 (US), Costa Rica; — , Plantae

mexicanae Liebmann 1231 (US), Mexico; Cissus verticillata (L.) Nicolson & C. E. Jarvis, I. Chen 18 (FLAS), US;

— , I. Chen 38ps

(TAIF), Taiwan-not native; Clematicissus angustissima (F. Muell.) Planch., E. M. Jackes s. n.ps

(BRI), Australia; Clematicissus opaca (F. Muell.) Jackes & Rossetto, B. R. Jackes s. n.s (JCT), Australia; — , E. M.

Jackes s. n. (JCT), Australia; — , Fell, D. G. DF0856 (JCT), Australia; — , I. Chen 518 (TAIF), Australia; — , J.

Wieneke s. n. (JCT), Australia; Cyphostemma adenocaule (Steud. ex A. Rich.) Desc. ex Wild & R. B. Drumm., I.

Friis et al. 7987ps

(US), Ethiopia; Cyphostemma buchananii (Planch.) Desc. ex Wild & R. B. Drumm., R. B. Faden

et al. 521ps

(US), Kenya; Cyphostemma hereroense (Schinz) Desc. ex Wild & R. B. Drumm., R. Seydel 2623p (US),

Africa; — , R. Seydel 4215as (US), Namibia; Cyphostemma junceum (Webb) Desc. ex Wild & R. B. Drumm., A.

Meurillon 861s (P), Cameroon; — , A. Raynal 13315

p (P), Cameroon; — , Dr. G. Scweinfurth 1268 (P), Sudan; — ,

H. Jacques-Felix 3986 (P), Cameroon; — , H. Jacques-Felix 4323 (P), Africa; Cyphostemma lageniflorum (Gilg &

Brandt) Desc., C. H. S. Kabuye et al. 635s (US), Kenya; — , F. J. Breteler 7041

p (US), Africa; Cyphostemma laza

Desc., B. Descoings 2225 (P), Madagascar; — , J. Bosser 10463 (P), Madagascar; — , J. Leandri & Ratoto Jean De

Dieu 3771p (P), Madagascar; — , P. B. Philipson 2476

s (P), Madagascar; Cyphostemma microdiptera (Baker) Desc.,

Don de M. Baillon s. n. (P), Madagascar; — , P. J. Rakotomalaza et al. 1186p (P), Madagascar; — , R. Decary

17158s (P), Madagascar; Cyphostemma odontadenium (Gilg) Desc., S. A. Rovertson 6710

ps (US), Kenya;

Cyphostemma paucidentatum (Klotzsch) Desc. ex Wild & R. B. Drumm., J. Frazier 942 (US), Africa; — , J.

Frazier 1139s (US), Tanzania; — , Jack Frazier 1025

p (US), Africa; Cyphostemma setosum (Roxb.) Alston,

Bernardi 14299s (US), Ceylon; — , M. Jayasuriya et al. 608

p (US), Ceylon; — , R. G. Cooray 70032517R (US),

Ceylon; Leea guineensis G. Don, I. Chen 44ps

(TAIF), Taiwan; Leea tetramera B. L. Burtt, R. Schodde and L.

266

Craven 4114p (A), Papua New Guinea; — , T. C. Whitmore 6226

s (A), Solomon Island; Nothocissus spicifera

(Griff.) Latiff, Communicat. Ex Herbario Lugduno-Batavo s. n. (NY), s. n.; — , H. N. Ridley s. n.p (SING),

Singapore; — , H. O. Forbes 2831s (US), Sumatra; — , I. Chen 544 (SING), Singapore; — , I. Chen 554 (TAIF),

Malaysia; — , J. F. Maxwell 81-162 (SING), Singapore; — , M. Shah et al. MS4128 (SING), Singapore; — , Mohd

Kasim 1108 (UKMB), Malaysia; Parthenocissus dalzielii Gagnep., Ching-I Peng 11002 (HAST), Taiwan; — , I.

Chen 33p (TAIF), Taiwan; — , I. Chen 47 (TAIF), Taiwan; — , I. Chen 99 (TAIF), China; — , Nan Ling Dui 1572

s

(IBSC), China; Parthenocissus laetevirens Rehder, I. Chen 82 (TAIF), China; — , I. Chen 100 (TAIF), China; — ,

Ma Xi Peng 53495s (IBSC), China; — , Z. Y. Yang 308

p (IBSC), China; Parthenocissus quinquefolia (L.) Planch., I.

Chen 1 (FLAS), US; — , I. Chen 8 (FLAS), US; — , I. Chen 16p (FLAS), US; — , I. Chen 20 (FLAS), US; — , I.

Chen 204s (FLAS), US; Parthenocissus vitacea (Knerr) Hitchc., H. Walton Clark 1898 (US), US; — , J. C. Blumer

1289s (US), US; — , Robert F. Thorne 17406

p (US), US; — , Virginius H. Chase 9672 (US), US; Pterisanthes

cissioides Blume, J. Agama 1117ps

(US), Borneo; Pterisanthes polita (Miq.) M. A. Lawson, A..R 3001 (SING),

Malaysia; — , I. Chen 552p (TAIF), Malaysia; — , J. F. Maxwell 82-283 (IBSC), Singapore; — , J. Sinclair 10380

s

(US), Sarawak; Rhoicissus digitata (L. f.) Gilg & Brandt, H. Rudatis 1498p (US), South Africa; — , H. S. Gentry &

A. S. Barclay 19134 (US), South Africa; — , R.D.A. Bayliss 1615s (US), South Africa; Rhoicissus tridentata (L.f.)

Wild & R. B. Drumm., H. J. Schlieben 7804 (US), South Africa; — , M. E. Mathias & D. Taylor 142s (US),

Tanzania; — , M. E. Mathias & D. Taylor A116 (US), Tanzania; — , R. L. Piemeisel, L. W. Kephart 26 (US),

Kenya; — , William Burger 3117p (US), Ethiopia; Tetrastigma bioritsense (Hayata) Hsu & Kuoh, A. Henry 104

s

(US), Taiwan; — , Ching-I Peng 5379p (HAST), Taiwan; — , I. Chen 22 (TAIF), Taiwan; — , I. Chen 40 (TAIF),

Taiwan; — , Pi-Fong Lu 6011 (TAIF), Taiwan; Tetrastigma obtectum Planch. ex Franch., Gao 4616 (CDBI),

China; — , Liao Guo Sheng C0460p (SYS), China; — , S. W. Teng 90378 (HAST), China; — , Sichuan survey

51995s (SYS), China; Tetrastigma planicaule Gagnep., Chen Huan Yong 6465 (IBSC), China; — , I. Chen 103

(TAIF), China; — , I. Chen 105 (TAIF), China; — , Li Qi Yi 0202 (SYS), China; — , P. Tsang 120694s (SYS),

China; — , S. H. Chun 12089 (IBSC), China; — , Zuo 26070p (IBY), China; Tetrastigma rumicispermum (M. A.

Lawson) Planch., H. T. Tsai 60421s (IBSC), China; — , Liao Guo Sheng 1802 (SYS), China; — , Mao Pin Yi 02442

(IBSC), China; — , Mao Pin Yi 4161p (IBSC), China; — , Wang Xin Nian 745 (IBY), China; — , Zhang Hong Da

1622 (IBSC), China; Tetrastigma serrulatum Planch., D. H. Nicolson 2387 (US), Nepal; — , D. H. Nicolson 2939

(US), Nepal; — , F. Ducloux 165p (IBSC), China; — , Gao et al. 4287 (CDBI), China; — , J. F. Rock 16618 (US),

China; — , Xu Guo Hong 25804 (CDBI), China; — , Yue Qing Sheng & Mou Ke Hua 5734s (CDBI), China; — ,

Zhao & Liu 7802 (CDBI), China; Vitis aestivalis Michx., I. Chen 10p (FLAS), US; — , I. Chen 12 (FLAS), US; — ,

I. Chen 21 (FLAS), US; — , I. Chen 60s (FLAS), US; — , S. R. Manchester s. n. (FLAS), US; Vitis betulifolia Diels

& Gilg, Qiu Bing Yun 51665 (IBSC), China; — , s. n. 002634 (CDBI), China; — , Sichuan survey 51693s (SYS),

China; — , Wu Ling 21 (IBSC), China; — , Zhang Ze Rong 25246p (IBSC), China; Vitis flexuosa Thunb., An Ming

Tai 5199s (TAIF), China; — , Chun-Chi Wu et al. 673

p (HAST), Taiwan; — , Tsai Guo Dong 91 (IBSC), China;

Vitis piasezkii Maxim., Kuang Li Hui 28 (IBSC), China; — , Li & Kuang 896p (TAIF), China; — , s. n. 0929

s

(CDBI), China; — , Z. Y. Yang 514 (IBSC), China; Vitis rotundifolia Michx., I. Chen 2 (FLAS), US; — , I. Chen 3p

(FLAS), US; — , I. Chen 56 (FLAS), US; — , I. Chen 61 (FLAS), US; — , I. Chen 577s (FLAS), US; Vitis tsoi

Merr., Dunn 2499p (IBSC), China; — , Yue Qi Si 4598 (IBSC), China; — , Zhang Gui Cai 306

s (IBSC), China; — ,

Zuo Jing Lie 20347 (IBSC), China; Vitis vinifera L., Park Bo-youn s. n. (HAST), Korea; — , s. n. 156 (IBSC),

China; — , s. n. 84-1333s (IBSC), China; — , Yang Xiang Xue 11272

p (IBSC), China; Yua austro-orientalis (F. P.

Metcalf) C. L. Li, C. Wang 31203 (IBSC), China; — , Lu Qing Hua 3236p (IBSC), China; — , S. K. Lau 2487

(SYS), China; — , S. P. Ko 50800s (IBSC), China; Yua chinensis C. L. Li, Chen 2424

p (CDBI), China; — , Hsiung

et al. 31564 (IBSC), China; — , Peng Ding Yi 46098s (IBSC), China; — , Qu Qui Ling 2686 (IBSC), China.

267

268

APPENDIX C MORPHOLOGICAL CHARACTERS AND CHARACTER STATES USED IN THE

CLADISTIC ANALYSES OF VITACEAE

All absence/presence characters were scored as present if observed, regardless of

frequency. †Consulted from specimens labels or literature when characters poorly preserved on

herbarial sheets. ©Continuous characters. #Meristic character. ♦Size characters, natural

logarithm transformed in GW method.

General growth (Characters 1-4)

1. Growth habit†: (0) lianas or vines (1) erect herbs or shrubs or caudiform trees. Taxa with

rigorous seasonal growth produce many unlignified branches and old branches were not always

observed. Therefore, for character coding, vines are not distinguished from lianas.

2. Old branches flattened: (0) absent; (1) present.

3. Stem shape in transverse section tetra-, penta-, or hexagonal: (0) absent; (1) present. When

angular stems present in succulent species, the shape persists when the stem becomes woody,

and the character is uniform in the same species. Angular stems can occur in non-succulent

species, and this feature was used for species identification within Ampelopsis and

Parthenocissus (Li, 1998). When angular stems occur in Ampelopsis or Parthenocissus, the

shape does not persist in enlarged woody stems, and variation within individuals exists.

4. Stem succulent†: (0) absent; (1) present.

Phyllotaxy (Character 5)

5. Phyllotaxy: (0) tendril interrupted in three-node modularity; (1) tendril not interrupted; (2) no

tendril; (3) tendril interrupted in two-node modularity.

Tendril morphology (Characters 6-9)

269

6. Tendril organization: (0) monochasium; (1) umbel; (2) simple. An unbranched tendril with a

bract-like structure in the middle is considered as having a monochasial organization. See

Discussion of Chapter 2 (p.103).

7. Tendril maximum arm number©#: (0) one, two, or three; (1) four or more. Tendril arm

number sometimes varies in the same individual. Tendril arm number was observed from all

available specimens of the same terminal taxon and the most common number was scored. State

(1) is common in Parthenocissus.

8. Young tendril tip swollen or discoid: (0) absent; (1) present.

9. Mature tendril tip with suction pad: (0) absent; (1) present.

Stipule morphology (Characters 10-13)

Characters regarding stipule shape and size (character 11-13) were scored from the fully

exposed stipules in the developing shoot apices, which are usually at least 3-5 nodes below the

shoot apcies.

10. Stipule deciduousness: (0) caducous; (1) persisting until flowering; (2) persisting until

fruiting. The character was scored as state (1)/(2) if stipules are present in the nodes producing

inflorescences with open flowers/infructescences with mature fruits.

11. Stipule apex shape: (0) rounded; (1) triangular or pointed. Observed from stipules at the

shoot apex.

12. Stipule base shape: (0) not cordate or lobate; (1) cordate or lobate. Observed from stipules at

the shoot apex. Cordate or lobate stipules were observed in some species of Cissus.

13. Stipule length©♦: (0) < 2.2 mm; (1) ≥ 2.2 mm. Scored from the average of three stipules

from the same or different shoot. Most Vitis and Ampelopsis have state (0).

Leaf morphology (Characters 14-26)

270

14. Leaf form: (0) simple; (1) palmately compound; (2) pedately compound; (3) pinnately

compound. Most common condition of mature leaves was scored.

15. Petiole to blade length ratio: (0) less than 1; (1) equal or more than 1; (2) leaf sessile. Most

species of Parthenocissus have long petioles. Sessile leaves occur in some Cyphostemma.

16. Secondary vein number©#: (0) 6 pairs or less; (1) 7 pairs or more. Usually less than 6

regardless leaf type.

17. Secondary veins to the teeth: (0) straight or bent, ending in the teeth; (1) looped, branched

and joining other secondary veins, not ending in the teeth.

18. Tertiary vein type: (0) opposite or mixed opposite/alternate percurrent; (1) alternate

percurrent; (2) random or regular polygonal reticulate. Tertiary veins are more closely spaced in

state (0) than in state (1).

19. Teeth density©#: (0) absent or rarely 1 or 2 teeth present in the whole leaf (raw value < 2);

(1) 0-2 tooth between two secondary veins (raw value 2-8); (2) 2 or more between two secondary

veins (raw value ≥ 8). A typical grape leaf has every secondary vein ending in a tooth. When

scoring raw data for GW coding, the teeth number was counted between two secondary veins,

including the two teeth in which the two secondary veins end. A leaf without teeth was counted

as zero. Two sets of such counting were made from the same leaf, and the two numbers were

sumed as the raw data. Counting was made from three leaves and averaged. In palmate or

pedate leaves I counted from the outer margin of the lateral leaflets. State (1) is prevalent in

sampled taxa. Leaves with entire margins are very rare. The simple leaf of Ampelocissus tends

to have a densely serrate margin, i.e., state (2).

20. Tooth shape: (0) convex or concave; (1) straight.

21. Tooth sinus shape: (0) angular; (1) round. Typical condition is angular.

271

22. Tooth length©♦: (0) < 1 mm; (1) ≥ 1 mm. The distance from tooth apex to the sinus on the

apical side was measured. Teeth from five randonly chosen mature leaves were averaged.

Leaves of Cissus mostly have state (0).

23. Tooth sinus angle©: (0) < 65°; (1) ≥ 65°. If leaf teeth sinus is round I measured the angle

formed between the 2 tooth apices and the lowest point of sinus; teeth from five randomly

chosen leaves were averaged. Most Cissus have state (0).

24. Leaf glaucous: (0) absent; (1) present. Only leaves with obvious whitish surface preserved

on dry specimens were scored as present.

25. Pocket-shaped domatia on leaf abaxial surface: (0) absent; (1) present. In Ampelopsis, the

pocket-shaped domatia are not as prominent as those of Australian Cissus, and the condition

varies among individuals.

26. Tuft of dense uniseriate hair on the joints of major veins on leaf abaxial surface: (0) absent;

(1) present.

Hair (Characters 27-30)

Hair characters were scored from any part of the whole plant; as long as observed, scored

as present.

27. Uniseriate hair: (0) absent; (1) present.

28. Arachnoid hair: (0) absent; (1) present. If present then always also present in shoot apex, can

be lost or denser when organs are old.

29. 2-armed hair: (0) absent; (1) present.

30. Multiseriate hair: (0) absent; (1) present.

Sexuality (Character 31)

31. Plant dioecious: (0) absent; (1) present.

272

Inflorescence-branch morphology (Characters 32-41)

Characters 32-41 were scored from branches that bore open flowers. For Vitis and

Tetrastigma, characters were scored from staminate inflorescences.

32. Tendril in inflorescence-branch: (0) absent; (1) present. Species of Ampelocissus and

Ampelopsis sometimes have the upper part of the inflorescence aborted but the inflorescence-

tendril is well developed and resembles a tendril; or the inflorescence-axes are reduced and

resemble an intermediate form of inflorescence and tendril. These conditions were not

considered as state (1).

33. Developing shoot apex remained on inflorescence-branch at anthesis: (0) absent; (1) present.

In Cayratia and Cyphostemma, some species have both states on the same specimens or in the

same species. They were coded as present.

34. Number of nodes produced in one inflorescence-branch: (0) more than three; (1) two or

three. When more than three nodes, node number varies greatly; however, state (0) and state (1)

can be distinguished easily.

35. Inflorescence-branch internode length at anthesis: (0) not shorter; (1) shorter; compared to

the vegetative-branch.

36. Inflorescence-branch first internode usually shorter than other internodes in the same branch:

(0) absent; (1) present. More commonly observed in Vitis and Parthenocissus. Species with

large leaves or inflorescence like Ampelocissus frequently do not have this character available on

the herbarial sheet.

37. Compressed inflorescence-branch second internode: (0) absent; (1) present. When present

the first node appears to have a pair of opposite leaves, stipules, or stipule scars. In observed C.

273

laza the inflorescences are either at the first or the second node. The preserved condition did not

show the character clearly hence coded "?".

38. Leaves in inflorescence-branch: (0) frequently missing; (1) present.

39. The lowest node with an inflorescence in an inflorescence-branch: (0) any unspecific basal

node; (1) strictly from second node; (2) higher than 5th node.

40. Number of inflorescences produced in one branch: (0) more than 4; (1) 1; (2) 2 to 4.

41. Inflorescence-branch terminal node with two inflorescences and one leaf: (0) absent; (1)

present.

Inflorescence morphology (Characters 42-53)

Inflorescence morphology was measured from the mature inflorescences at anthesis

stage.

42. Inflorescence length©♦: (0) ≤ 10 cm; (1) > 10 cm. Length of the whole inflorescence was

measured starting from the node, excluding free end inflorescence-tendril arm. Two to three

inflorescences were averaged for each terminal taxa. Most species of Ampelocissus have large

inflorescences.

43. Inflorescence-tendril organization: (0) different from tendril organization; (1) monochasial

with two to three arms; (2) monochasial with four or more arms; (3) umbellate. See terminology

in Chapter 2 (p. 81) for the explanation of this character.

44. Inflorescence-tendrils with a free end(s): (0) absent; (1) present. When present in

Ampelocissus, this character is not variable among/within individuals. When observed in other

taxa, the condition is variable and the common condition is absent.

45. Inflorescence-tendrils twining: (0) absent; (1) present.

274

46. Inflorescence-first-axis branching organization: (0) umbel; (1) di-, tri-, or tetra-chasium; (2)

racemose; (3) bifurcate or multi-chasium. State (3) refers to the uncertain condition of C.

junceum (see Discussion of Chapter 2, p. 117).

47. Inflorescence-first-axis length: (0) very short (0-2 mm); (1) not short ( > 4mm).

48. Inflorescence-second-axis branching organization: (0) umbel; (1) di- or tri-chasium; (2)

racemose. Acareosperma was scored as an umbel for character 48 and 50 because the central

flower was not present but both an umbel and di- or tri-chasium could be the true condition.

49. Inflorescence-terminal-axis branching pattern: (0) umbel; (1) dichasium; (2) double cincinus;

(3) spiral.

50. Inflorescence-axis branching order number©#: (0) one or not branched; (1) two to three; (2)

four or more. Cayratia and Cyphostemma have state (2).

51. Inflorescence-axis cymoid branching order number: (0) absent; (1) one; (2) equal to

inflorescence-axis branching order number.

52. Inflorescence-axis shape: (0) terete; (1) laminar.

53. Floral pedicel length©♦: (0) sessile ( = 0); (1) ≤ 2 mm; (2) > 2 mm. Measured from herbarial

sheet. Average of 5 pedicels for each terminal taxa. Ampelocissus mostly has state (1). The

floral pedicels of Acareosperma were not preserved, however, the fruit pedicels are 1 cm long. It

was assumed that the floral pedicels are more than 2mm long and coded state (2) in discrete

coding, and coded "?" in GW method.

Floral morphology (Characters 54-70)

Continuous floral characters were measured from 2-3 boiled open and intact flowers,

scoring the average of three organs. Staminate/carpellate floral characters were measured from

staminate/pistillate flowers if the plant is dioecious. Filaments are usually shorter and sometimes

275

bent in bud, and longer when flower opened. Styles usually become longer after the flowers

have lost petals and stamens.

54. Floral merosity: (0) mostly four; (1) mostly five, six or seven. V. rotundifolia frequently

have 6- or 7-merous flowers.

55. Petal adnate to disc: (0) absent; (1) present.

56. Flower bud apex lobed: (0) absent; (1) present.

57. Petal red color†: (0) absent; (1) present. State (0) is equal to petal greenish or yellowish

white. Bright pink, fuchsia, crimson, maroon were considered as red. Red color in a petal varies

from the entire petal to only red at apex or margin; as long as the red color is present at any part

of petal, it was coded as state (1).

58. Hair on petal outer surface: (0) absent; (1) present.

59. Petals united to calyptra: (0) absent; (1) present.

60. Filament to petal length ratio©: (0) < 0.9; (1) ≥ 0.9. Filaments of male Vitis flower are

usually longer than petal at anthesis ( > 0.9).

61. Anther to petal length ratio©: (0) < 0.4; (1) ≥ 0.4. Parthenocissus have large anthers ( > 0.4).

62. Disk margin: (0) grooved at filament; (1) dissected deeply to ovary at filament; (2) with one

extra groove between filaments. State (0) is typical in vitaceous flowers. State (1) was mostly

observed in Cyphostemma; the dissected disk resembles four separate glands. State (2) is

common in Ampelocissus.

63. Disk rim: (0) unseparable from the ovary; (1) angular or pressed tightly against the ovary; (2)

disc rim higher than the inner part of disc (> 0.1 mm) and not touching the ovary. State (0) is

common in Parthenocissus. Most sampled taxa have state (1).

276

64. Ovary hair: (0) absent; (1) present. Uniseriate hairs are the only hair type observed on the

outer surface of the ovary. Common in Cyphostemma.

65. Stigma shape: (0) truncate or capitate; (1) lobed.

66. Disk to carpel high ratio©: (0) < 0.25; (1) 0.25-0.4; (2) > 0.4. State (0) occurs in most Vitis

and Tetrastigma. State (2) is common in Ampelocissus. Very large value in Leea tetramera.

67. disc height to diameter ratio©: (0) < 0.5; (1) ≥ 0.5. State (1) occurs in Yua and most

Parthenocissus. The value is very large in Leea tetramera.

68. Style width to length ratio©: (0) < 0.8; (1) ≥ 0.8. Ampelocissus, Nothocissus, Pterisanthes

and some species of Tetrastigma have state (1).

69. Style to carpel length ratio©: (0) < 0.43; (1) ≥ 0.43. Ampelocissus and most species of

Tetrastigma have state (0).

70. Style base width to disk diameter ratio©: (0) < 0.3; (1) ≥ 0.3. Ampelocissus and Vitis have

state (0).

Pollen morphology (Characters 71-73)

Pollen characters were measured from the average of 10 random pollen grains of two to

three boiled open flowers.

71. Pollen size©♦: (0) < 30 µm; (1) ≥ 30 µm. Pollen size is measured as either the equatorial

diameter or the polar axis, whichever is larger. Vitis, Ampelocissus, Pterisanthes and

Tetrastigma have state (0). Other genera mostly have state (1).

72. Pollen E/P ratio©: (0) < 1; (1) ≥ 1. Equatorial diameter to polar axis ratio. Ampelopsis and

most Cissus have state (0). Ampelocissus mostly have state (1).

73. Maximum lumen diameter©♦: (0) < 0.7 µm; (1) ≥ 0.7 µm. Measure the diameter of largest

lumen of pit or reticulum on the pollen surface. Rhoicissus, Tetrastigma, Vitis, Pterisanthes, and

277

most species of Ampelocissus have state (0). Parthenocissus have state (1). Leea tetramera has

very large lumen (5.05 µm).

Fruit morphology (Characters 74-80)

74. Lenticels on fruit pedicel: (0) absent; (1) present.

75. Seed number per fruit†: (0) 1; (1) 1 or 2; (2) 1 to 4; (3) 6 to 9. The character was observed

from 1-3 boiled fruits, the dry fruits on the herbarium sheets, and also consulted literatures.

Cissus sterculiifolia was reported to have 1-2(-3)-seeded fruits (Jackes, 1988b). In this study

only 1-2-seeded fruits were observed so C. sterculiifolia was scored state (1).

76. Fruit shape: (0) globose or compressed globose; (1) ellipsoid or fusiform. Observed from 1-3

boiled fruits. The fruit shape does not change a lot when dry.

77. Fruit skin color†: (0) dark purple; (1) yellow, orange, red, or green; (2) iridescent blue. State

(2) was only observed in some Ampelopsis species.

78. Lenticel density on fruit surface©#: (0) not dense (< 25); (1) dense (≥ 25). Number of

lenticels was counted from half surface of one berry; value was counted from 1-3 boiled fruits

and averaged. All species of Ampelopsis have state (1).

79. Hair on fruit surface: (0)absent; (1) present.

80. Stomata on fruit surface: (0) absent; (1) present. Present in some Cayratia, Cyphostemma

and Tetrastigma.

Seed morphology (Characters 81-137)

Definition and the delimitation of all seed characters were described in Chapter 1.

81. Seed max length©♦: (0) < 7 mm; (1) ≥ 7 mm.

82. Seed width/length ratio©: (0) < 0.6; (1) ≥ 0.6.

83. Seed apex to widest part©: (0) < 0.5; (1) ≥ 0.5.

278

84. Apical notch depth©: (0) < 0.05; (1) ≥ 0.05.

85. Apical notch angle©: (0) < 60°; (1) ≥ 60°.

86. Beak length©: (0) < 0.1; (1) ≥ 0.1.

87. Beak angle©: (0) < 80°; (1) ≥ 80°.

88. vi circularity©: (0) < 0.4; (1) ≥ 0.4.

89. vi length©: (0) < 0.6; (1) ≥ 0.6.

90. vi apex to widest part©: (0) < 0.4; (1) ≥ 0.4.

91. vi space at the apex©: (0) < 0.5; (1) ≥ 0.5.

92. vi space at the middle©: (0) < 0.35; (1) ≥ 0.35.

93. vi space at the base©: (0) < 0.15; (1) ≥ 0.15.

94. vi space base to middle ratio©: (0) < 1; (1) ≥1.

95. vi divergence angle©: (0) < 25°; (1) ≥ 25°.

96. vi curve angle©: (0) < 180°; (1) ≥ 180°.

97. vi base to beak distance©: (0) < 0.2; (1) ≥ 0.2.

98. Chalaza circularity©: (0) < 0.5; (1) ≥ 0.5.

99. Chalaza width©: (0) < 0.25; (1) ≥ 0.25.

100. Chalaza apex to widest part©: (0) < 0.6; (1) ≥ 0.6.

101. Chalaza length©: (0) < 1.4; (1) ≥ 1.4.

102. Chalaza to notch distance©: (0) < 0.1; (1) ≥ 0.1.

103. Chalaza to beak distance©: (0) < 0.1; (1) 0.1-0.4; (2) ≥ 0.4.

104. External rugosity©: (0) < 0.2; (1) ≥ 0.2.

105. Raphe curve angle©: (0) < 180°; (1) ≥ 180°.

106. Ruga sinus angle©: (0) < 50°; (1) ≥ 50°.

279

107. Ruga ridge angle©: (0) < 85°; (1) 85°-155°; (2) ≥ 155°.

108. Apical groove angle©: (0) < 150°; (1) ≥ 150°.

109. Base groove angle©: (0) < 150°; (1) ≥ 150°.

110. cs high/width ratio©: (0) < 0.9; (1) ≥ 0.9.

111. vi rugosity©: (0) < 0.26; (1) ≥ 0.26.

112. vi thin part ratio©: (0) < 0.85; (1) ≥ 0.85.

113. vi thin part circularity©: (0) < 0.72; (1) ≥ 0.72.

114. vi depth©: (0) < 0.5; (1) ≥ 0.5.

115. vi width©: (0) < 0.2; (1) ≥ 0.2.

116. Chalaza surface angle©: (0) < 150°; (1) ≥ 150°.

117. Chalaza sunken angle©: (0) < 30°; (1) 30°-150°; (2) ≥ 150°.

118. Chalaza thickness©: (0) < 0.15; (1) ≥ 0.15.

119. Ruga depth/width ratio©: (0) < 1; (1) ≥ 1.

120. Endotesta thickness©: (0) < 0.03; (1) ≥ 0.03.

121. Endotesta max thickness©: (0) < 0.15; (1) ≥ 0.15.

122. Endotesta thickness at vi©: (0) < 0.015; (1) 0.015-0.03; (2) ≥ 0.03.

123. Endotesta thickness at chalaza©: (0) < 2.5; (1) ≥ 2.5.

124. Endotesta thickness at ruga sinus©: (0) < 0.45; (1) 0.45-1; (2) > 1.

125. Endotesta thickness at ruga apex©: (0) < 2; (1) ≥ 2.

126. Endotesta sclereid width/length ratio©: (0) < 0.4; (1) ≥ 0.4.

127. Endotesta sclereid wall thickness©♦: (0) < 6 µm; (1) ≥ 6 µm.

128. Number of endotesta sclereid layers©#: (0) < 4; (1) ≥ 4.

129. Endotesta sclereid crystals: (0) absent; (1) present.

280

130. Stomata on sarcotesta: (0) absent; (1) present.

131. Tracheidal cell diameter©♦: (0) < 10 µm; (1) ≥ 10 µm.

132. Number of tracheidal cell layers: (0) tracheidal exotegmen 1 cell thick; (1) 2 cells thick, the

2 layer of cells have different diameter, the difference is more than twice.

133. vi covered by endotesta: (0) absent; (1) present.

134. Ruga whorled: (0) absent; (1) present.

135. One vi: (0) absent; (1) present.

136. vi cavity V-shaped: (0) absent; (1) present.

137. Constricted rim on ventral side: (0) absent; (1) present.

APPENDIX D

DATA MATRIX OF THE MORPHOLOGICAL CHARACTERS, CONTINUOUS

CHARACTERS TREATED WITH DISCRETE CODING

281

10 20 30 40 50 60 70 80 90 100 110 120 130

. . . . . . . . . . . . .

Acareosperma spireanum 0000000000???20001100000001000???1001111?0000010?2202????????????????????0010010110110000100000101000111100110100001100010011101101101010

Ampelocissus abyssinica 0000?000001010000120100000110000100?01000111121202101100100102100211010111111000110010011100000101000111001000010010100000011010100000000

Ampelocissus acapulcensis 00000010001010000120010000110000100001000121121202101100100102100201010101200100110111111110000101000111111000011010100000010010100000000

Ampelocissus acetosa 00001000000002000210110100110000100001000111121202101100100002100211010100210100010010101100100101000111001000010001100000010000100000000

Ampelocissus africana 00000000000000000120000000010000100001000011121202101100100002100201010101110100110010101100000101000111111000010000100000010010100000000

Ampelocissus barbata 00000000000000000120000000110100100?01000121121202101100100002100211010001211100111010111100000101000121111110010011100001010010000000000

Ampelocissus botryostachys 0000000000???1000110010000110000?00?01000111121231001000100012100211010101211100110110111000000101000020112110010011200000010010100000000

Ampelocissus erdvendbergiana 00000010000010000120000000110000100001000121121202101100100102110201011101200100010111011100000011100121111000011011200101010010100000000

Ampelocissus javalensis 00000010000000000120010000110000100001000121121202101100100002100211011111201000110111011100000101000121011000010011100101010010000000000

Ampelocissus latifolia 00001010010000000120000000110000100101000121121202101100100002100211010101210100010010101100000101100011101000011001100100010000000000000

Ampelocissus ochracea 00000000021010000020100000110000100101000111121231000000000012100201010100211000110111011100000101000120112110010011200000010000000000000

Ampelocissus robinsonii 00000000000000000120000000110000100001000011121001101100000002100201010011200100010111010000100111100021111000011011100000010010100000000

Ampelopsis arborea 00000000000003000210000010100000100001000010101121202100000000100100101011200100010011100100100111110020112100001001200100010010100000000

Ampelopsis cantoniensis 00000000000003000110000010100000100001000010001121202100000000100100101000200100010011110000100111100021011100001001200100010010100000000

Ampelopsis cordata 00000000000000000110000010100000100001000010101121202100000000200100101010202100010011100100101111110020112100101101200100010010000000000

Ampelopsis delavayana 00000000000001000110000010101000100001000010101121202100000000200100101000200100010011110010101111110020112100001001200000010010100000000

Ampelopsis glandulosa 00000000000000000110000010101000100001000010101121202100000000200100101010202100010011100000101111110020112110001001200000010010100000000

Ampelopsis grossedentata 00100000000003000211000000100000100001000010001121202100000000100100101001201100010011110100110111110021111100011011200000010010000000000

Cayratia cardiophylla 00001000011001000010000000100000011010110010011112202001000000200100101010201001010010010100010110000011011000010011100000010100100000001

Cayratia geniculata 00000000011001010110000000100000011010110010011112202001000000200100101110201000111010101100100110000111012110010001200010010111111100001

Cayratia japonica 00000000001002000110000000100001100011110000011112202001000000200100100100200000010111110000100111000021110010010101100101010111110000000

Cayratia maritima 00000000001002000210000000100001100011110000011112202001000000200100101010200000010111010000000110000021110000010011100000010111111100000

Cayratia oligocarpa 00000000001012010110000000100001100011110000011112202001000000200100101010201001110111011100010100000021010010010011100000011110111100000

Cayratia trifolia 00000011101011110110000000100001100011110000011112202001000000200100100100200001010011010100100111000021011110010001200100010111111100000

Cayratia triternata 00000000001013000110000000100001100011110000011112201001010000200201101000200001010111010100100011000121011000010011100101010111110100000

Cissus alata 00001000020011000121010000100100000001000000001121202000000000100000101000000000100010100100100110001010010111000101200000110111100000000

Cissus antarctica 00000000001010010111011010001000100001000010100121202000010000100100100101200100110010101100000100000011101000110000100002120111100000000

Cissus assamica 00000000010010000011011000001000100001000000001121202000010000100100101000010000000010000111101110001011011111110101200000010101100000000

Cissus biformifolia 00001000000010000011011000001000000001000000001121202000110001200000101011010100110010100000000100001011110111100001200000111111100000000

Cissus campestris 00001000000000200121011000100000000001000000001121202000000010200100101000000000010010100100100100001010112111000101200100010111101000000

Cissus cornifolia 10002????10010000211011000001000100001020000001022202000000000200100101000010000100010100100100100001011011111100101200000010111101000000

Cissus descoingsii 00001000000010000111010000101000000001000000001122201000110000100100101000011000111011000100000100001011011111110101201000010101101000000

Cissus fuliginea 00001200010000000111010000101000101001000000001122202000000000200100101000000000010011010100000100001021010110100111200000010101100000000

Cissus granulosa 00001000020011011210011000100000000001021010001002202000000000100110101000200000010010100101000101110021102110100001101000100010000000000

Cissus hypoglauca 00000000001011011201010100001000101000020010001002201000000000200100011011200100100010101111100100000011102100101001100000010010000000000

Cissus mirabilis 00010000010001000211010000001000101101000000001121202000100000200200101010010000110011000000100110001011010101110001200000110010100000000

Cissus obovata 00011001110001000210011000001000100001000000001121202000100000200200101000000000010011000101100110001010112111000101200000010110100000000

Cissus palmata 00000001020011000211011000101001100101020000001121202000100010100000101000210000100010100100100110001010011111000101200000010111101000000

Cissus paullinifolia 00001000000013000110011000001000000001000000001122202000100000100000101001010100100010100100100100001011011111000001200000010111000000000

Cissus penninervis 0000100000000101120????000100000000001021010001022202000000000100110101011200000100010101110001000000011102110100101200000000010100000000

Cissus quadrangularis 00111000000000000111011000000001100001020000001121202000100000200100101000000000011010000100110100001010012111100101200000010110100000000

Cissus reniformis 00010000000110000111011000000000001001000000001121202000100000200100101010000000011010010100000100001010012111110101200000010010100000000

Cissus simsiana 00000000000001010110000010100000100001020011101122202000010010100100101000200100010011010000101111110021111000011011100000010010101000000

Cissus sterculiifolia 00001000001011011201010010101000001000001010001022201000000000100100100101110100101010101100000100000011101011010001001000000010100000000

Cissus striata ssp. argentina 00001000010001011210010000100000000101001010001121202000100002100100100010200100010010000100001101110020112100101001200000010010100000000

Cissus trianae 00001000000011001210010000001000101001000011001121202000000002000210001000201100010010101111101110110011002110100001100000100110000000000

Cissus verticillata 00010000000110000111011000100000100001000000001121202000000000200000101000000000011010100100100100001010111111000101200000010111101000000

Clematicissus angustissima 0000000001000100120????000000000100001000011111121202100000000100100101010210100000010101000000101110020112110100101200000010010101100100

Clematicissus opaca 00000000000001000210010000100000100001000010111121202100100000200100101000200100010011001000000101100020112110011101200000010010100000000

Cyphostemma adenocaule 00000000021012010110000000100101100011110000011122202001110001210000101110010010010010100101100100001010111111000101200000010101111010000

Cyphostemma buchananii 00000000021011010110000000100001100011110000011112202001110001200110100100011010110010100100100110001011111111000101200000010101101010000

Cyphostemma hereroense 00012????2101121121010000010010001001111010000112220200111000121011010110001?011110010100101100100001011102111100101200100010111111010000

Cyphostemma junceum 10002????11011211110000000100000000101221100031112202001100001200210101010010001110010100100100100001011110111000101200100010111111010000

Cyphostemma lageniflorum 00010000021011000110000000100100010011110000011112202001110001210110101100011010010010100100100100001011111011110101200000010111101110000

Cyphostemma laza 100100000010130002100110001000011000?1110000011122202001100001200100101010010011111010100100100000001011112111000101100100010111111010000

Cyphostemma microdiptera 00000000021013000210000000100100010011110000011112202001100000200100101010010001000010100101100100001011112111100101200000010111011010000

Cyphostemma odontadenium 00010000021011000110000000100100010011110000011112202001?1000121000010101001?011011010100100000100001010111111110101200100010111111010000

Cyphostemma paucidentatum 0000000002111100111000000010010110001111000001111220200111000120000010100001?011010010100100100110001011111111010101200100010101111010000

Cyphostemma setosum 00010000021011200110000000000101100010110000011112202001100001200100101010011010110010100100100100001011110111110101200000011111111110000

Leea guineensis 10002????00013010010000001100000000001221100001022202110100000200210101111301000010010100100110000001000102111010001011000100100101010000

Leea tetramera 10002????00013010010100000100000000001221100001012202010010000200210101111301000100010100100010100001000002111110101011000000111101010000

Nothocissus spicifera 00003000000000000011010000110000000001221110020001102000?00002100211010101111000100010101101100101100111102000010000101000010010000000000

Parthenocissus dalzielii 00000011101011110210000000100000001101000020000?00201100000000100210111011200000010100101111001101100020112000110101200000010010100000000

Parthenocissus laetevirens 00000011101011110110000000100000001101000020001021202100000010000210111011200100010100101111101101100020112010110101200000010010100000000

282

Parthenocissus quinquefolia 00000010101011100210000000100000001101000020000001202100100010000210111011200100010100101110101001100020112000100001200000010010100000000

Parthenocissus vitacea 00000000001011110210000000100000000101020110001022202100000010000100011010200000010100101110001001100020112000100101200000010010100000000

Pterisanthes cissioides 00000000010001010211010000010000100101000111120?30010000100010000001100100101000110010111000010101000020112110011011200000010010000000000

Pterisanthes polita 00000000000000000111010000010000100101000111120?30010000100010000001100000101000110110111100010101100020012010010011200001010010100000000

Rhoicissus digitata 0000100000100100120????010001000101001020010000121201100010000100000101001200100010010101111001100000011102000100001100100010010101100000

Rhoicissus tridentata 00001000001011000110100010001000100001000011100121202100100000200000101101200100010011100101101110000011002110100001110100010011000000000

Tetrastigma bioritsense 01011201011011000210000000100010011000120000001101202001000000201001010101201000110010001100011001010011102110110101100000000010110000000

Tetrastigma obtectum 000011101210011102100000001000100110001100300?0?00202001100000101001010000000000010010101110001001000121112110010001200000000100011100000

Tetrastigma planicaule 01001000011011010210010000100010011000110000001002202001000000101001000001201001100010001100100100000011102110100101200000010010011100000

Tetrastigma rumicispermum 00000000011012110210001000100010011000110000001002201001000000101000000001201000010110100110001011000021111000100001100100010000001100010

Tetrastigma serrulatum 00000000021012010210001000100011101001110000001001202001000000101001010000200000010010000111101110000011110110000101200000010010011100000

Vitis aestivalis 00000000000000000110000000110011100101020111121201102100001100100000110101200000010010100100100111100120112100010001100101010010100000000

Vitis betulifolia 00000000000000000110100000110011100101020010021201102100001100100000000001200000010111010100110111100120112000010101200101010010100000000

Vitis flexuosa 00000000000000000110100001110011100101020000021201101100001100100000110101200000010111010100100111100120012000011001100100010010100000000

Vitis piasezkii 00000000000001000110100000110011100101020100021202101100001100100100110101200000010011000100000111000120012000010001200101010010100000000

Vitis rotundifolia 00000000000000000110000001110011100101020011121201101100001110100000110101200000010010101100100011100110112000100001100100010010000000000

Vitis tsoi 00000000000000000110000000110011100101020000020201101100001110100000110001200000010011110100100111000121111000010011100101010010000000000

Vitis vinifera 00000000010000000110000000010001100101020011021201102100001110100000100001200000010011000100100111000120112010010100200101010001000000000

Yua austro-orientalis 0000000000???1001211010100000000?00101020010001001202100?00010100110111011200100110011100111100111100121111100100101100100010010100000000

Yua chinensis 00000000001011001210000100100000100101020010001001202100000010000110111001200100010011000110101011100020112110100101200100010010100000000

283

APPENDIX E

DATA MATRIX OF THE MORPHOLOGICAL CHARACTERS, CONTINUOUS

CHARACTERS TREATED WITH GW CODING

284

10 20 30 40 50 60 70 80 90 100 110 120 130

. . . . . . . . . . . . .

Acareosperma spireanum 0000006000???20b016008e0001000???1001111?d000010?e20?????????????????????0010210mhlrp5043e67a86c8q470n6al20rr0ra651mj334l05ar45k10q101010

Ampelocissus abyssinica 0000?0300010900701d01bk000110000100?01000q1112120e10d100100ea2100aaj2r9d51111400caj3h5afle57755c6j551rdak5jcg23ra6jgk235362621m3104000000

Ampelocissus acapulcensis 000000d00010a00b01r005h000110000100001000f2112120e10d100100fd210064e6paa21200j00gfh9b7bdkdfaa5ac6kc53fd5lca8h71rk8acgb1b474a01p3104000000

Ampelocissus acetosa 0000106000003209026013g100110000100001000h1112120b10d100100a82100daa6jbe40210j009bj3k3h8me9bb56c5fc44f8ck2ghh52rhc5ql636246611b3101000000

Ampelocissus africana 000000600000300901j00gh000010000100001000b1112120b10610010039210095e8m6d21110r00cbk2m1j2kfbe936f7e743lbaldh0012rk540a233110a03m0104000000

Ampelocissus barbata 000000300000100901m00bn000110100100?01000n2112120b10510010086210086e5n4a41211e00aap1m4gekg47864c6e6a2le3lffmp12ra4lnl405292911h3002000000

Ampelocissus botryostachys 0000000000???109016005c000110000?00?01000q111212360050001006h21009a85l3b21211m00hbc6h0hgp843585c1ka527j0mrrnl51rf7rrm304263a04r3105000000

Ampelocissus erdvendbergiana 000000d00000600701m00gk000110000100001000j2112120h10d100100df211095c4edd11200e007rf9f9agfce995aacrh52ce5lhbjf60rm7crmf0d2e6a02e3101000000

Ampelocissus javalensis 000000900000100901g005g000110000100001000q2112120h10d100100782100c9f3jde71201900jgf9dc2ljg76765can441gh3jlfhf21rkbhpl50c5e1a11j3002000000

Ampelocissus latifolia 000010900100200701g00dl000110000100101000g2112120e106100100442100b7b7j8c41210l008ej2f7b7mj5b735c5ge053b8l4lgf41rlbakj71d582a0193003000000

Ampelocissus ochracea 000000300210d00900d01ar000110000100101000r11121236000000000bj210085c9p5d10211700gaf6bb3glf45445c9k891fh1lrrnr10rb4krn401255a0190001000000

Ampelocissus robinsonii 000000600000200701d007c000110000100001000d11121006109100000532100a4r1b99b1200n006ea7ge4fa57ab66ffqe628h6ldkhk61rn8crkd06162a03h3104000000

Ampelopsis arborea 000000600000430702600nc01010000010000100091010112820e100000640100431c2k861200d005eb1qeb7df9ge57mdhkq54j1lrrmh826qb5rm80e215a01g3102000000

Ampelopsis cantoniensis 000000300000230b01600ee01010000010000100081000112820j100000650100542g6d920200d003jb1naer0a8ae8acrjda37l8hgfmd71dn86rmb1p722700g3104000000

Ampelopsis cordata 000000600000200901700qf01010000010000100091010112820j1000008c0200661p6m550202j007jd0r7j76ebdd6fdfjpk80g1lrpqk77akf3rp60d213a01h3003000000

Ampelopsis delavayana 000000600000010b017008e01010100010000100051010112620e1000002b0200652k9g440200b002pd2m8fb95fgf5fcbkeg60n0lrrre72drc4rn70a322a04g3104000000

Ampelopsis glandulosa 000000600000300501700je01010100010000100081010112620e1000008d0200541k4h770202g000jc0raca80dee5dfejlr70h1lrrrr91glc4rrb09515a03l3105000000

Ampelopsis grossedentata 001000300000230702610le00010000010000100071000112820f1000004c0100643b6d431201b003l95f8dqad7bh95cmphd30l6lnfmc61rpadrra1c662a01g0003000000

Cayratia cardiophylla 000010300110110b00a00ek000100000011010110c1001111h20j001000430200650f0h4502012016hg3l19nbg45ab4ch734707b6ffge32rd3ekl423142a1806105000001

Cayratia geniculata 000000300110410d01a00ek000100000011010110a1001111k20l0010005f0200550h2ee80201300eaq2l1e0gf5fc45fdb5449b3crrrr71r300rn405r63a07h811f100001

Cayratia japonica 000000600010420b01600ee000100001100011110d0001111k20j0010009a0200550l1bc402002005kfaccce73acg74chc6650gdle5fq42rff7rla2r7f4818fe116000000

Cayratia maritima 000000600010420b02700ek000100001100011110d0001111k20g001000890200632d3d9c02001008j87b97kc646664cd81440f9ld5eh62rh6emh818552a16je11g100000

Cayratia oligocarpa 000000600010520g01700cf000100001100011110d0001111n20j001000460200641d2g360201801ddh9b8akee44784ca41450e4j73kl21rh7grk301643a58g611f100000

Cayratia trifolia 000000k11010611d01700ef000100001100011110b0001111e20j001000a70200523h5bc202002017d63kh8k5bdeh76crga440gbkgcmn62rgc9rm73j562a15pe11d100000

Cayratia triternata 000000600010630b01700ef00010000110001111080001111k2080010106b0200c46e4f8202001014gc8hf5n9d88c86bhk672cj3lggfg62rd3jrk91e2f3a09ge116100000

Cissus alata 000010600200810b01g102a00010010000000100060000112820j0000006d0100431l4ha40000400b4a0r1j73e9dl84ce234m082cr9rrr2h6g2rrc0b41aa05jk107000000

Cissus antarctica 000000300010e00d017102g01000100010000100071010012620e000010470100542f6cb41200g00blc1l0m9hf66878c740460bfl2d5554rg17fbc365rfr04ge105000000

Cissus assamica 0000003001007007007102400000100010000100090000112820g0000109d0100431h2l25001030098g0r4924eglh4cjb205j0775karrlem2h3rr62931561638107000000

Cissus biformifolia 0000103000005009006105500000100000000100080000112820d0001107d1200340j4k661010h00fbj0r1k7a66c944ha214j09qle5rrcgh1b6rrc4520c724ge104000000

Cissus campestris 000010300000102701g105200010000000000100080000112820h0000003g0200441k5f6200000006hh0r3j45d6cf74ja544l080lrrrrc2c7h2rr70d524a08me107000000

Cissus cornifolia 10002????10090090261002000001000100001020c0000102e20e000000a70200541h4p420010200f4g0r1f66r3ce60fa324h064grgrrg7l2l2rr607417a07j810d000000

Cissus descoingsii 00001000000050090161058000101000000001000a0000112e20d000110490100440k2g620011900jem0r7a57dab638c3214k07r39arrjar3f6rr8b42145175e108000000

Cissus fuliginea 0000120001004007019105d00010100010100100050000112b20j000000bd0200540l0k6300004007lk0rr3k9c68b75c6414g0j58q8rr9825kerr705316715b8106000000

Cissus granulosa 000010600200510d126000400010000000000102181000100b20g000000590100671j8e9402007009jf0r2e2dfag93ak9hpn60kbl3rrr6f0ja1rhcn511f101g0004000000

Cissus hypoglauca 000000300010g10e121102f10000100010100002081000100b2090000003d02005458agad1200j00b6e0r0f1gehjb3ac355460d9l2rr994dm83rl728224701g3002000000

Cissus mirabilis 0001006001004107026102e00000100010110100070000112620j0001004b0200831q1j550010400bad0ra59796ef66mc864h0a3fp7r7f9r3c6rp90532ca04p6105000000

Cissus obovata 0001103111000107026000400000100010000100070000112820j0001004e0200733j4j5200004003de0rb647ebpn54kha93h081lrrrre1k6h3rq50b223a07m3106000000

Cissus palmata 000000310200710b0261035000101001100101020a0000112820j0001006k0100321m5p730210700e6e0r5d78n7dj73fe335g091hrlrre3e2l3rr50a413a18pe10a000000

Cissus paullinifolia 000010600000530b0170030000001000000001000c0000112b20k0001006a0100330q3p441010j00m6l0r4da3e7eg64f9365k07e9fcrrh375b5rrd29303914jk003000000

Cissus penninervis 000010300000210r120????000100000000001021c1000102b20j000000410100661d5f551200900d6j0r2j1nfg985d719a4707gl1rrr568hf2rq534113102m0106000000

Cissus quadrangularis 0011100000004007016101600000000110000102080000112820l0001005c0200551l9j8300001005fn0r2852e25dd0c4204q090frrrrj5j2n2rq80b324a05p3106000000

Cissus reniformis 0001000000019009017101400000000000100100050000112820j0001007a0200642h5n0600000009ap0r64d1f57b84c1224q0c10rrrrjbn1r3rr504223a03m0104000000

Cissus simsiana 000000300000410d01a0078010100000100001020c1110112b20g0000107g0100532d4f650200n006jc4gcada6dab6eceher35e4lpgd860rn5alj817214812g3108000000

Cissus sterculiifolia 000010000010610d121100f01010100000100000181000102b20d000000300100531n3ab41110q00r0r0r2c0mfda848c001450cll0jjrd1rda3n01q0013203j3106000000

Cissus striata ssp. argentina 000010600100410j126005e00010000000010100171000112820h000100ba2100551m8b960200j005he0r5969fab84bcamlg43n1lrrpe648mb4rr90b213a01j0106000000

Cissus trianae 0000106000006109126002800000100010100100061100112820h00000097200096477f530201n009ce0r1e1fflnh4bcdadp60d9l4prr77aj71rdg5510r005p3005000000

Cissus verticillata 0001003000018007017102400010000010000100070000112820l000000300200431n7j7400002006dn0r7c95e8df66ja844k082lqcrre0baf5rrb0c417915ee109000000

Clematicissus angustissima 0000003001003100120????000000000100001000b1111112820h100000580100652g9f680210d0087d0r4e3f300004c7emp38k1lfrrra4lfd8rr404234502g010m100100

Clematicissus opaca 000000000000110b023005c00010000010000100071011112620h1001004d0200623g4h420200g008mb0r9a7k686667c3ml443k0lrrrr60rpe8rra05737a02m0106000000

Cyphostemma adenocaule 000000300210a20d016007f00010010110001111050001112h20j001110b21210240e2gb600102107ej0r6l18e9jg57r9524r061lrerrd3k1j0rr807416a0798119010000

Cyphostemma buchananii 000000300210e10d01700jk00010000110001111090001111k20j001110451200670f3ac30011410a9l0r1l2bf9bg84cb785m066ljgrrc1k6l0rr51b31480a5e109010000

Cyphostemma hereroense 00012????210912e12601hf000100100010011110g0000112e20m0011106b1210660l1fc3001?011h9l0r0r09fbjf47m4774p08dl5rrrf4f5f0rqb0n415404jk11g010000

Cyphostemma junceum 10002????110l12g116007f000100000000101221j0003111n20e0011009c1200881c5g950010101bae0r1n1afbee58d6554n077le8rrf2e5e0rpb0k51571cmr11b010000

Cyphostemma lageniflorum 000100300210810b01a00ek000100100010011110c0001111r20e001110931210680h3db30011110a8h2m4g09f68c84ca654l0c5lrahrc3r6e0rr308213a1cge10r110000

Cyphostemma laza 100100300010630702600540001000011000?111080001112e20l001100681200641g1n9b0010111eep0r5l0eee9b7894654r0a9nerrre3f5h0rl90h41571cpr11b010000

Cyphostemma microdiptera 0000006002109307027007h000100100010011110c0001111n20l001100740200641g2g9c001010187k0r4f1deahe46g69b4n058pgrrrdak6k0rr302116a0rge019010000

Cyphostemma odontadenium 000100300210910b017007k00010010001001111080001111h20g001?10781210450k4g66001?2116jm0r0p1ce7ca56j5634q0a1lplrrder3k0rr80k323a08de11a010000

Cyphostemma paucidentatum 000000300211h10b11a00ej000100101100011110b0001111k20f001110b41200230k2g74001?0119cf2m0p36f8af84cc744n086lmhnre3r5e0rr40d322a199e119010000

Cyphostemma setosum 000100600210912901d00em000000101100010110d0001111n20l001100a41200540r1d960011210cak3j1j19e8ed54j3775m0bal95rrchr3f0rr90a416a26jk11g110000

Leea guineensis 10002????000k30m00c00b8001100000000001221h0000102h20j1101000c0200gc1e3rrc13010004ek0r2g5cf55rr484454q030l1rrre2r8c0r2rg932e01586108010000

Leea tetramera 10002????000r30l00601eq000100000000001221m0000101e20g0100102f0200rr0m2ndr1301100p2m0r5h17f47a84c4595n00190rrrm9r0e0r1hr7106005ge10e010000

Nothocissus spicifera 00003000000030090061058000110000000001221p1002000610e000?00662100cf90a9c41111000e6l2g6b0nfcjd45c6np73kbpl2qa773r5a1544c1024501g0000000000

Parthenocissus dalzielii 000000r11010511d02600ee000100000001101000420000?0320d100000880100792bbf7612004005ngr05j2rfll72jc5rr530j1lrrej76mfg4rrd05125a03e0104000000

Parthenocissus laetevirens 000000r11010511e016009c00010000000110100082000102820e1000006j00007d3alk3b1200g007nhq22m4legjd4cc4qh720k0lrrcr38r9g3rr301024a03g0104000000

285

Parthenocissus quinquefolia 000000r01010c11b02600nc000100000001101000a2000000620k1001008m00008c3cnf351200f006dd536b3kfmcc5d97njb33l1lrrah95gcd4rr504115a01g0102000000

Parthenocissus vitacea 000000600010a11e02600mc000100000000101020e1000102b20j1000006n00004449hg8a02007006ge916c4gelba5m78lja40j1lrrdh66hdj5rm607127a01j0106000000

Pterisanthes cissioides 000000000100210d0261059000010000100101000p11120?33010000100ap0000005r62d20101700blh1l1qnjb44684c2dc480l0lrrrr72rkbkrm705687a03j0004000000

Pterisanthes polita 0000000000004007016105f000010000100101000p11120?33010000100am0000007r72910101400cjj6d1pmge44684c2mm660r1grrlp72rk8hrq6052a7a01j0106000000

Rhoicissus digitata 000010000010310b120????0100010001010010200100001262051000106b0100322p9d631200n006nk4m6g3kerr92pc8a6c70adl1rfh6hbbb2rcb3c536a03g610n100000

Rhoicissus tridentata 000010300010810701601dp010001000100001000b1110012620f100100a60200220l3hd41200n00apf4n8l57fcjh5gmeb73c07ff5rrr7bgcb5rfl4p526a04p8002000000

Tetrastigma bioritsense 010112010110910902600bm00010001001100012050000110820g001000af02013368d3f01201700bje0r590led479j55d9g54ael0rrr5mr2j1rk722017104m0115000000

Tetrastigma obtectum 000011n01210411d02600ee0001000100110001108300?0?0020r001100b5010122639b5400000005jd0r1l1ldjdb4d22la83hfal6rrr50rf82rr061011307a001h100000

Tetrastigma planicaule 010010300110f10r027005e000100010011000110d0000100b20l0010007d0101336162931201401n4j575a0pccbc68c4675905al0rrp5cd9h2rm360116413p301q100000

Tetrastigma rumicispermum 000000300110521e02600a600010001001100011080000100k20b001000650101333742711201100aj08f4e3bdja84r0cd4232falbcfg5fe892rk34e6115117300k100010

Tetrastigma serrulatum 000000300210820e0260084000100011101001110a0000100620l00100072010122e2ja2302001009d81p6a4demlj5fcj96360cale6rr63jdg2rr527123901j001k100000

Vitis aestivalis 000000600000200701a00gp000110011100101020g1112120810e100001ka0100223be6b412001005ce0q7c8bdbce68dcqj41ph0rrrnh82ra96rgf0n3a4a01g3102000000

Vitis betulifolia 000000600000400901901ep000110011100101020d1002120810e100001dc010044559b2512003009a85eg5e5d88c96cjnd41ch1lrr9k72rgd8pm60e292a01j6102000000

Vitis flexuosa 0000003000004009016019l001110011100101020c00021208109100001hf0100335aj1e212002003gf7de8g8fcee59cdpg52ee1krr9h71rl88rke0g273a02k3104000000

Vitis piasezkii 000000300000210b01601bp000110011100101020f0002120b10a100001l90100443a93b112001008ae1nb8a8ea9a68cdnb41lm1hrrek71rec6hm40e290a01g3103000000

Vitis rotundifolia 000000000000300501600rf001110011100101020b11121208105100001rr0100232cj4b112001009dl3g5f4eebcg868bpg42mb2ler8e76fbc3rl90d221a00j0001000000

Vitis tsoi 0000000000003009017009e00011001110010102050002020810a100001gh0100234ae09012002004hb4gabf7f7ag85chna52ee5ljg5f72rfaalk71c2b3800j3001000000

Vitis vinifera 000000600100300b01900gp000010001100101020b1102120810l100001gh0100342a96331200300aba3jj68aeacc58efpb31jg0qrrcl72rfe7dm50m4a3a0368003000000

Yua austro-orientalis 0000003000???107124100e100000000?0010102091000100820k100?00cj01006a3cpj871200c00cb81m8c1eeghg59ccmc42ff8ldcnj4edce1rj92h312900m3102000000

Yua chinensis 000000300010910b12600bc10010000010010102041000100620e100000aj0000692bgf031200h006b51me63cemgd4e1egj947g1lrrmr877jf4rr50d322a00g3102000000

Character state:

a = 10, b = 11, c = 12, d = 13, e = 14, f = 15, g = 16, h = 17, j = 18, k = 19, l = 20, m = 21, n = 22, p = 23, q = 24, r = 25

286

APPENDIX F

DATA MATRIX USED IN THE ANALYSIS INCLUDING FOSSIL AMPELOPSIS ROOSEAE,

CONTINUOUS CHARACTERS TREATED WITH GW CODING

287

10 20 30 40 50 60 70 80 90 100 110 120 130

. . . . . . . . . . . . .

Acareosperma spireanum 0000006000???20b016008e0001000???1001111?d000010?e20?????????????????????0010210mhlrp5043e67a86c8q470n6al20rr0ra651mj334l05ar45k10q101010

Ampelocissus abyssinica 0000?0300010900701d01bk000110000100?01000q1112120e10d100100ea2100aaj2r9d51111400caj3h5afle57755c6j551rdak5jcg23ra6jgk235362621m3104000000

Ampelocissus acapulcensis 000000d00010a00b01r005h000110000100001000f2112120e10d100100fd210064e6paa21200j00gfh9b7bdkdfaa5ac6kc53fd5lca8h71rk8acgb1b474a01p3104000000

Ampelocissus acetosa 0000106000003209026013g100110000100001000h1112120b10d100100a82100daa6jbe40210j009bj3k3h8me9bb56c5fc44f8ck2ghh52rhc5ql636246611b3101000000

Ampelocissus africana 000000600000300901j00gh000010000100001000b1112120b10610010039210095e8m6d21110r00cbk2m1j2kfbe936f7e743lbaldh0012rk540a233110a03m0104000000

Ampelocissus barbata 000000300000100901m00bn000110100100?01000n2112120b10510010086210086e5n4a41211e00aap1m4gekg47864c6e6a2le3lffmp12ra4lnl405292911h3002000000

Ampelocissus botryostachys 0000000000???109016005c000110000?00?01000q111212360050001006h21009a85l3b21211m00hbc6h0hgp843585c1ka527j0mrrnl51rf7rrm304263a04r3105000000

Ampelocissus erdvendbergiana 000000d00000600701m00gk000110000100001000j2112120h10d100100df211095c4edd11200e007rf9f9agfce995aacrh52ce5lhbjf60rm7crmf0d2e6a02e3101000000

Ampelocissus javalensis 000000900000100901g005g000110000100001000q2112120h10d100100782100c9f3jde71201900jgf9dc2ljg76765can441gh3jlfhf21rkbhpl50c5e1a11j3002000000

Ampelocissus latifolia 000010900100200701g00dl000110000100101000g2112120e106100100442100b7b7j8c41210l008ej2f7b7mj5b735c5ge053b8l4lgf41rlbakj71d582a0193003000000

Ampelocissus ochracea 000000300210d00900d01ar000110000100101000r11121236000000000bj210085c9p5d10211700gaf6bb3glf45445c9k891fh1lrrnr10rb4krn401255a0190001000000

Ampelocissus robinsonii 000000600000200701d007c000110000100001000d11121006109100000532100a4r1b99b1200n006ea7ge4fa57ab66ffqe628h6ldkhk61rn8crkd06162a03h3104000000

Ampelopsis arborea 000000600000430702600nc01010000010000100091010112820e100000640100431c2k861200d005eb1qeb7df9ge57mdhkq54j1lrrmh826qb5rm80e215a01g3102000000

Ampelopsis cantoniensis 000000300000230b01600ee01010000010000100081000112820j100000650100542g6d920200d003jb1naer0a8ae8acrjda37l8hgfmd71dn86rmb1p722700g3104000000

Ampelopsis cordata 000000600000200901700qf01010000010000100091010112820j1000008c0200661p6m550202j007jd0r7j76ebdd6fdfjpk80g1lrpqk77akf3rp60d213a01h3003000000

Ampelopsis delavayana 000000600000010b017008e01010100010000100051010112620e1000002b0200652k9g440200b002pd2m8fb95fgf5fcbkeg60n0lrrre72drc4rn70a322a04g3104000000

Ampelopsis glandulosa 000000600000300501700je01010100010000100081010112620e1000008d0200541k4h770202g000jc0raca80dee5dfejlr70h1lrrrr91glc4rrb09515a03l3105000000

Ampelopsis grossedentata 001000300000230702610le00010000010000100071000112820f1000004c0100643b6d431201b003l95f8dqad7bh95cmphd30l6lnfmc61rpadrra1c662a01g0003000000

Cayratia cardiophylla 000010300110110b00a00ek000100000011010110c1001111h20j001000430200650f0h4502012016hg3l19nbg45ab4ch734707b6ffge32rd3ekl423142a1806105000001

Cayratia geniculata 000000300110410d01a00ek000100000011010110a1001111k20l0010005f0200550h2ee80201300eaq2l1e0gf5fc45fdb5449b3crrrr71r300rn405r63a07h811f100001

Cayratia japonica 000000600010420b01600ee000100001100011110d0001111k20j0010009a0200550l1bc402002005kfaccce73acg74chc6650gdle5fq42rff7rla2r7f4818fe116000000

Cayratia maritima 000000600010420b02700ek000100001100011110d0001111k20g001000890200632d3d9c02001008j87b97kc646664cd81440f9ld5eh62rh6emh818552a16je11g100000

Cayratia oligocarpa 000000600010520g01700cf000100001100011110d0001111n20j001000460200641d2g360201801ddh9b8akee44784ca41450e4j73kl21rh7grk301643a58g611f100000

Cayratia trifolia 000000k11010611d01700ef000100001100011110b0001111e20j001000a70200523h5bc202002017d63kh8k5bdeh76crga440gbkgcmn62rgc9rm73j562a15pe11d100000

Cayratia triternata 000000600010630b01700ef00010000110001111080001111k2080010106b0200c46e4f8202001014gc8hf5n9d88c86bhk672cj3lggfg62rd3jrk91e2f3a09ge116100000

Cissus alata 000010600200810b01g102a00010010000000100060000112820j0000006d0100431l4ha40000400b4a0r1j73e9dl84ce234m082cr9rrr2h6g2rrc0b41aa05jk107000000

Cissus antarctica 000000300010e00d017102g01000100010000100071010012620e000010470100542f6cb41200g00blc1l0m9hf66878c740460bfl2d5554rg17fbc365rfr04ge105000000

Cissus assamica 0000003001007007007102400000100010000100090000112820g0000109d0100431h2l25001030098g0r4924eglh4cjb205j0775karrlem2h3rr62931561638107000000

Cissus biformifolia 0000103000005009006105500000100000000100080000112820d0001107d1200340j4k661010h00fbj0r1k7a66c944ha214j09qle5rrcgh1b6rrc4520c724ge104000000

Cissus campestris 000010300000102701g105200010000000000100080000112820h0000003g0200441k5f6200000006hh0r3j45d6cf74ja544l080lrrrrc2c7h2rr70d524a08me107000000

Cissus cornifolia 10002????10090090261002000001000100001020c0000102e20e000000a70200541h4p420010200f4g0r1f66r3ce60fa324h064grgrrg7l2l2rr607417a07j810d000000

Cissus descoingsii 00001000000050090161058000101000000001000a0000112e20d000110490100440k2g620011900jem0r7a57dab638c3214k07r39arrjar3f6rr8b42145175e108000000

Cissus fuliginea 0000120001004007019105d00010100010100100050000112b20j000000bd0200540l0k6300004007lk0rr3k9c68b75c6414g0j58q8rr9825kerr705316715b8106000000

Cissus granulosa 000010600200510d126000400010000000000102181000100b20g000000590100671j8e9402007009jf0r2e2dfag93ak9hpn60kbl3rrr6f0ja1rhcn511f101g0004000000

Cissus hypoglauca 000000300010g10e121102f10000100010100002081000100b2090000003d02005458agad1200j00b6e0r0f1gehjb3ac355460d9l2rr994dm83rl728224701g3002000000

Cissus mirabilis 0001006001004107026102e00000100010110100070000112620j0001004b0200831q1j550010400bad0ra59796ef66mc864h0a3fp7r7f9r3c6rp90532ca04p6105000000

Cissus obovata 0001103111000107026000400000100010000100070000112820j0001004e0200733j4j5200004003de0rb647ebpn54kha93h081lrrrre1k6h3rq50b223a07m3106000000

Cissus palmata 000000310200710b0261035000101001100101020a0000112820j0001006k0100321m5p730210700e6e0r5d78n7dj73fe335g091hrlrre3e2l3rr50a413a18pe10a000000

Cissus paullinifolia 000010600000530b0170030000001000000001000c0000112b20k0001006a0100330q3p441010j00m6l0r4da3e7eg64f9365k07e9fcrrh375b5rrd29303914jk003000000

Cissus penninervis 000010300000210r120????000100000000001021c1000102b20j000000410100661d5f551200900d6j0r2j1nfg985d719a4707gl1rrr568hf2rq534113102m0106000000

Cissus quadrangularis 0011100000004007016101600000000110000102080000112820l0001005c0200551l9j8300001005fn0r2852e25dd0c4204q090frrrrj5j2n2rq80b324a05p3106000000

Cissus reniformis 0001000000019009017101400000000000100100050000112820j0001007a0200642h5n0600000009ap0r64d1f57b84c1224q0c10rrrrjbn1r3rr504223a03m0104000000

Cissus simsiana 000000300000410d01a0078010100000100001020c1110112b20g0000107g0100532d4f650200n006jc4gcada6dab6eceher35e4lpgd860rn5alj817214812g3108000000

Cissus sterculiifolia 000010000010610d121100f01010100000100000181000102b20d000000300100531n3ab41110q00r0r0r2c0mfda848c001450cll0jjrd1rda3n01q0013203j3106000000

Cissus striata ssp. argentina 000010600100410j126005e00010000000010100171000112820h000100ba2100551m8b960200j005he0r5969fab84bcamlg43n1lrrpe648mb4rr90b213a01j0106000000

Cissus trianae 0000106000006109126002800000100010100100061100112820h00000097200096477f530201n009ce0r1e1fflnh4bcdadp60d9l4prr77aj71rdg5510r005p3005000000

Cissus verticillata 0001003000018007017102400010000010000100070000112820l000000300200431n7j7400002006dn0r7c95e8df66ja844k082lqcrre0baf5rrb0c417915ee109000000

Clematicissus angustissima 0000003001003100120????000000000100001000b1111112820h100000580100652g9f680210d0087d0r4e3f300004c7emp38k1lfrrra4lfd8rr404234502g010m100100

Clematicissus opaca 000000000000110b023005c00010000010000100071011112620h1001004d0200623g4h420200g008mb0r9a7k686667c3ml443k0lrrrr60rpe8rra05737a02m0106000000

Cyphostemma adenocaule 000000300210a20d016007f00010010110001111050001112h20j001110b21210240e2gb600102107ej0r6l18e9jg57r9524r061lrerrd3k1j0rr807416a0798119010000

Cyphostemma buchananii 000000300210e10d01700jk00010000110001111090001111k20j001110451200670f3ac30011410a9l0r1l2bf9bg84cb785m066ljgrrc1k6l0rr51b31480a5e109010000

Cyphostemma hereroense 00012????210912e12601hf000100100010011110g0000112e20m0011106b1210660l1fc3001?011h9l0r0r09fbjf47m4774p08dl5rrrf4f5f0rqb0n415404jk11g010000

Cyphostemma junceum 10002????110l12g116007f000100000000101221j0003111n20e0011009c1200881c5g950010101bae0r1n1afbee58d6554n077le8rrf2e5e0rpb0k51571cmr11b010000

Cyphostemma lageniflorum 000100300210810b01a00ek000100100010011110c0001111r20e001110931210680h3db30011110a8h2m4g09f68c84ca654l0c5lrahrc3r6e0rr308213a1cge10r110000

Cyphostemma laza 100100300010630702600540001000011000?111080001112e20l001100681200641g1n9b0010111eep0r5l0eee9b7894654r0a9nerrre3f5h0rl90h41571cpr11b010000

Cyphostemma microdiptera 0000006002109307027007h000100100010011110c0001111n20l001100740200641g2g9c001010187k0r4f1deahe46g69b4n058pgrrrdak6k0rr302116a0rge019010000

Cyphostemma odontadenium 000100300210910b017007k00010010001001111080001111h20g001?10781210450k4g66001?2116jm0r0p1ce7ca56j5634q0a1lplrrder3k0rr80k323a08de11a010000

Cyphostemma paucidentatum 000000300211h10b11a00ej000100101100011110b0001111k20f001110b41200230k2g74001?0119cf2m0p36f8af84cc744n086lmhnre3r5e0rr40d322a199e119010000

Cyphostemma setosum 000100600210912901d00em000000101100010110d0001111n20l001100a41200540r1d960011210cak3j1j19e8ed54j3775m0bal95rrchr3f0rr90a416a26jk11g110000

Leea guineensis 10002????000k30m00c00b8001100000000001221h0000102h20j1101000c0200gc1e3rrc13010004ek0r2g5cf55rr484454q030l1rrre2r8c0r2rg932e01586108010000

Leea tetramera 10002????000r30l00601eq000100000000001221m0000101e20g0100102f0200rr0m2ndr1301100p2m0r5h17f47a84c4595n00190rrrm9r0e0r1hr7106005ge10e010000

Nothocissus spicifera 00003000000030090061058000110000000001221p1002000610e000?00662100cf90a9c41111000e6l2g6b0nfcjd45c6np73kbpl2qa773r5a1544c1024501g0000000000

Parthenocissus dalzielii 000000r11010511d02600ee000100000001101000420000?0320d100000880100792bbf7612004005ngr05j2rfll72jc5rr530j1lrrej76mfg4rrd05125a03e0104000000

Parthenocissus laetevirens 000000r11010511e016009c00010000000110100082000102820e1000006j00007d3alk3b1200g007nhq22m4legjd4cc4qh720k0lrrcr38r9g3rr301024a03g0104000000

288

Parthenocissus quinquefolia 000000r01010c11b02600nc000100000001101000a2000000620k1001008m00008c3cnf351200f006dd536b3kfmcc5d97njb33l1lrrah95gcd4rr504115a01g0102000000

Parthenocissus vitacea 000000600010a11e02600mc000100000000101020e1000102b20j1000006n00004449hg8a02007006ge916c4gelba5m78lja40j1lrrdh66hdj5rm607127a01j0106000000

Pterisanthes cissioides 000000000100210d0261059000010000100101000p11120?33010000100ap0000005r62d20101700blh1l1qnjb44684c2dc480l0lrrrr72rkbkrm705687a03j0004000000

Pterisanthes polita 0000000000004007016105f000010000100101000p11120?33010000100am0000007r72910101400cjj6d1pmge44684c2mm660r1grrlp72rk8hrq6052a7a01j0106000000

Rhoicissus digitata 000010000010310b120????0100010001010010200100001262051000106b0100322p9d631200n006nk4m6g3kerr92pc8a6c70adl1rfh6hbbb2rcb3c536a03g610n100000

Rhoicissus tridentata 000010300010810701601dp010001000100001000b1110012620f100100a60200220l3hd41200n00apf4n8l57fcjh5gmeb73c07ff5rrr7bgcb5rfl4p526a04p8002000000

Tetrastigma bioritsense 010112010110910902600bm00010001001100012050000110820g001000af02013368d3f01201700bje0r590led479j55d9g54ael0rrr5mr2j1rk722017104m0115000000

Tetrastigma obtectum 000011n01210411d02600ee0001000100110001108300?0?0020r001100b5010122639b5400000005jd0r1l1ldjdb4d22la83hfal6rrr50rf82rr061011307a001h100000

Tetrastigma planicaule 010010300110f10r027005e000100010011000110d0000100b20l0010007d0101336162931201401n4j575a0pccbc68c4675905al0rrp5cd9h2rm360116413p301q100000

Tetrastigma rumicispermum 000000300110521e02600a600010001001100011080000100k20b001000650101333742711201100aj08f4e3bdja84r0cd4232falbcfg5fe892rk34e6115117300k100010

Tetrastigma serrulatum 000000300210820e0260084000100011101001110a0000100620l00100072010122e2ja2302001009d81p6a4demlj5fcj96360cale6rr63jdg2rr527123901j001k100000

Vitis aestivalis 000000600000200701a00gp000110011100101020g1112120810e100001ka0100223be6b412001005ce0q7c8bdbce68dcqj41ph0rrrnh82ra96rgf0n3a4a01g3102000000

Vitis betulifolia 000000600000400901901ep000110011100101020d1002120810e100001dc010044559b2512003009a85eg5e5d88c96cjnd41ch1lrr9k72rgd8pm60e292a01j6102000000

Vitis flexuosa 0000003000004009016019l001110011100101020c00021208109100001hf0100335aj1e212002003gf7de8g8fcee59cdpg52ee1krr9h71rl88rke0g273a02k3104000000

Vitis piasezkii 000000300000210b01601bp000110011100101020f0002120b10a100001l90100443a93b112001008ae1nb8a8ea9a68cdnb41lm1hrrek71rec6hm40e290a01g3103000000

Vitis rotundifolia 000000000000300501600rf001110011100101020b11121208105100001rr0100232cj4b112001009dl3g5f4eebcg868bpg42mb2ler8e76fbc3rl90d221a00j0001000000

Vitis tsoi 0000000000003009017009e00011001110010102050002020810a100001gh0100234ae09012002004hb4gabf7f7ag85chna52ee5ljg5f72rfaalk71c2b3800j3001000000

Vitis vinifera 000000600100300b01900gp000010001100101020b1102120810l100001gh0100342a96331200300aba3jj68aeacc58efpb31jg0qrrcl72rfe7dm50m4a3a0368003000000

Yua austro-orientalis 0000003000???107124100e100000000?0010102091000100820k100?00cj01006a3cpj871200c00cb81m8c1eeghg59ccmc42ff8ldcnj4edce1rj92h312900m3102000000

Yua chinensis 000000300010910b12600bc10010000010010102041000100620e100000aj0000692bgf031200h006b51me63cemgd4e1egj947g1lrrmr877jf4rr50d322a00g3102000000

Ampelopsis rooseae ????????????????????????????????????????????????????????????????????????????????3hb0r8aab3egg5ekdmmf40h1lrrrk82fne4rra0k453a0???????00000

Character state:

a = 10, b = 11, c = 12, d = 13, e = 14, f = 15, g = 16, h = 17, j = 18, k = 19, l = 20, m = 21, n = 22, p = 23, q = 24, r = 25

289

APPENDIX G

DATA MATRIX USED IN THE ANALYSIS INCLUDING FOSSIL VITIS TIFFNEYI,

CONTINUOUS CHARACTERS TREATED WITH GW CODING

290

10 20 30 40 50 60 70 80 90 100 110 120 130

. . . . . . . . . . . . .

Acareosperma spireanum 0000006000???20b016008e0001000???1001111?d000010?e20?????????????????????0010210mhlrp5043e67a86c8q470n6al20rr0ra651mj334l05ar45k10q101010

Ampelocissus abyssinica 0000?0300010900701d01bk000110000100?01000q1112120e10d100100ea2100aaj2r9d51111400caj3h5afle57755c6j551rdak5jcg23ra6jgk235362621m3104000000

Ampelocissus acapulcensis 000000d00010a00b01r005h000110000100001000f2112120e10d100100fd210064e6paa21200j00gfh9b7bdkdfaa5ac6kc53fd5lca8h71rk8acgb1b474a01p3104000000

Ampelocissus acetosa 0000106000003209026013g100110000100001000h1112120b10d100100a82100daa6jbe40210j009bj3k3h8me9bb56c5fc44f8ck2ghh52rhc5ql636246611b3101000000

Ampelocissus africana 000000600000300901j00gh000010000100001000b1112120b10610010039210095e8m6d21110r00cbk2m1j2kfbe936f7e743lbaldh0012rk540a233110a03m0104000000

Ampelocissus barbata 000000300000100901m00bn000110100100?01000n2112120b10510010086210086e5n4a41211e00aap1m4gekg47864c6e6a2le3lffmp12ra4lnl405292911h3002000000

Ampelocissus botryostachys 0000000000???109016005c000110000?00?01000q111212360050001006h21009a85l3b21211m00hbc6h0hgp843585c1ka527j0mrrnl51rf7rrm304263a04r3105000000

Ampelocissus erdvendbergiana 000000d00000600701m00gk000110000100001000j2112120h10d100100df211095c4edd11200e007rf9f9agfce995aacrh52ce5lhbjf60rm7crmf0d2e6a02e3101000000

Ampelocissus javalensis 000000900000100901g005g000110000100001000q2112120h10d100100782100c9f3jde71201900jgf9dc2ljg76765can441gh3jlfhf21rkbhpl50c5e1a11j3002000000

Ampelocissus latifolia 000010900100200701g00dl000110000100101000g2112120e106100100442100b7b7j8c41210l008ej2f7b7mj5b735c5ge053b8l4lgf41rlbakj71d582a0193003000000

Ampelocissus ochracea 000000300210d00900d01ar000110000100101000r11121236000000000bj210085c9p5d10211700gaf6bb3glf45445c9k891fh1lrrnr10rb4krn401255a0190001000000

Ampelocissus robinsonii 000000600000200701d007c000110000100001000d11121006109100000532100a4r1b99b1200n006ea7ge4fa57ab66ffqe628h6ldkhk61rn8crkd06162a03h3104000000

Ampelopsis arborea 000000600000430702600nc01010000010000100091010112820e100000640100431c2k861200d005eb1qeb7df9ge57mdhkq54j1lrrmh826qb5rm80e215a01g3102000000

Ampelopsis cantoniensis 000000300000230b01600ee01010000010000100081000112820j100000650100542g6d920200d003jb1naer0a8ae8acrjda37l8hgfmd71dn86rmb1p722700g3104000000

Ampelopsis cordata 000000600000200901700qf01010000010000100091010112820j1000008c0200661p6m550202j007jd0r7j76ebdd6fdfjpk80g1lrpqk77akf3rp60d213a01h3003000000

Ampelopsis delavayana 000000600000010b017008e01010100010000100051010112620e1000002b0200652k9g440200b002pd2m8fb95fgf5fcbkeg60n0lrrre72drc4rn70a322a04g3104000000

Ampelopsis glandulosa 000000600000300501700je01010100010000100081010112620e1000008d0200541k4h770202g000jc0raca80dee5dfejlr70h1lrrrr91glc4rrb09515a03l3105000000

Ampelopsis grossedentata 001000300000230702610le00010000010000100071000112820f1000004c0100643b6d431201b003l95f8dqad7bh95cmphd30l6lnfmc61rpadrra1c662a01g0003000000

Cayratia cardiophylla 000010300110110b00a00ek000100000011010110c1001111h20j001000430200650f0h4502012016hg3l19nbg45ab4ch734707b6ffge32rd3ekl423142a1806105000001

Cayratia geniculata 000000300110410d01a00ek000100000011010110a1001111k20l0010005f0200550h2ee80201300eaq2l1e0gf5fc45fdb5449b3crrrr71r300rn405r63a07h811f100001

Cayratia japonica 000000600010420b01600ee000100001100011110d0001111k20j0010009a0200550l1bc402002005kfaccce73acg74chc6650gdle5fq42rff7rla2r7f4818fe116000000

Cayratia maritima 000000600010420b02700ek000100001100011110d0001111k20g001000890200632d3d9c02001008j87b97kc646664cd81440f9ld5eh62rh6emh818552a16je11g100000

Cayratia oligocarpa 000000600010520g01700cf000100001100011110d0001111n20j001000460200641d2g360201801ddh9b8akee44784ca41450e4j73kl21rh7grk301643a58g611f100000

Cayratia trifolia 000000k11010611d01700ef000100001100011110b0001111e20j001000a70200523h5bc202002017d63kh8k5bdeh76crga440gbkgcmn62rgc9rm73j562a15pe11d100000

Cayratia triternata 000000600010630b01700ef00010000110001111080001111k2080010106b0200c46e4f8202001014gc8hf5n9d88c86bhk672cj3lggfg62rd3jrk91e2f3a09ge116100000

Cissus alata 000010600200810b01g102a00010010000000100060000112820j0000006d0100431l4ha40000400b4a0r1j73e9dl84ce234m082cr9rrr2h6g2rrc0b41aa05jk107000000

Cissus antarctica 000000300010e00d017102g01000100010000100071010012620e000010470100542f6cb41200g00blc1l0m9hf66878c740460bfl2d5554rg17fbc365rfr04ge105000000

Cissus assamica 0000003001007007007102400000100010000100090000112820g0000109d0100431h2l25001030098g0r4924eglh4cjb205j0775karrlem2h3rr62931561638107000000

Cissus biformifolia 0000103000005009006105500000100000000100080000112820d0001107d1200340j4k661010h00fbj0r1k7a66c944ha214j09qle5rrcgh1b6rrc4520c724ge104000000

Cissus campestris 000010300000102701g105200010000000000100080000112820h0000003g0200441k5f6200000006hh0r3j45d6cf74ja544l080lrrrrc2c7h2rr70d524a08me107000000

Cissus cornifolia 10002????10090090261002000001000100001020c0000102e20e000000a70200541h4p420010200f4g0r1f66r3ce60fa324h064grgrrg7l2l2rr607417a07j810d000000

Cissus descoingsii 00001000000050090161058000101000000001000a0000112e20d000110490100440k2g620011900jem0r7a57dab638c3214k07r39arrjar3f6rr8b42145175e108000000

Cissus fuliginea 0000120001004007019105d00010100010100100050000112b20j000000bd0200540l0k6300004007lk0rr3k9c68b75c6414g0j58q8rr9825kerr705316715b8106000000

Cissus granulosa 000010600200510d126000400010000000000102181000100b20g000000590100671j8e9402007009jf0r2e2dfag93ak9hpn60kbl3rrr6f0ja1rhcn511f101g0004000000

Cissus hypoglauca 000000300010g10e121102f10000100010100002081000100b2090000003d02005458agad1200j00b6e0r0f1gehjb3ac355460d9l2rr994dm83rl728224701g3002000000

Cissus mirabilis 0001006001004107026102e00000100010110100070000112620j0001004b0200831q1j550010400bad0ra59796ef66mc864h0a3fp7r7f9r3c6rp90532ca04p6105000000

Cissus obovata 0001103111000107026000400000100010000100070000112820j0001004e0200733j4j5200004003de0rb647ebpn54kha93h081lrrrre1k6h3rq50b223a07m3106000000

Cissus palmata 000000310200710b0261035000101001100101020a0000112820j0001006k0100321m5p730210700e6e0r5d78n7dj73fe335g091hrlrre3e2l3rr50a413a18pe10a000000

Cissus paullinifolia 000010600000530b0170030000001000000001000c0000112b20k0001006a0100330q3p441010j00m6l0r4da3e7eg64f9365k07e9fcrrh375b5rrd29303914jk003000000

Cissus penninervis 000010300000210r120????000100000000001021c1000102b20j000000410100661d5f551200900d6j0r2j1nfg985d719a4707gl1rrr568hf2rq534113102m0106000000

Cissus quadrangularis 0011100000004007016101600000000110000102080000112820l0001005c0200551l9j8300001005fn0r2852e25dd0c4204q090frrrrj5j2n2rq80b324a05p3106000000

Cissus reniformis 0001000000019009017101400000000000100100050000112820j0001007a0200642h5n0600000009ap0r64d1f57b84c1224q0c10rrrrjbn1r3rr504223a03m0104000000

Cissus simsiana 000000300000410d01a0078010100000100001020c1110112b20g0000107g0100532d4f650200n006jc4gcada6dab6eceher35e4lpgd860rn5alj817214812g3108000000

Cissus sterculiifolia 000010000010610d121100f01010100000100000181000102b20d000000300100531n3ab41110q00r0r0r2c0mfda848c001450cll0jjrd1rda3n01q0013203j3106000000

Cissus striata spp. argentina 000010600100410j126005e00010000000010100171000112820h000100ba2100551m8b960200j005he0r5969fab84bcamlg43n1lrrpe648mb4rr90b213a01j0106000000

Cissus trianae 0000106000006109126002800000100010100100061100112820h00000097200096477f530201n009ce0r1e1fflnh4bcdadp60d9l4prr77aj71rdg5510r005p3005000000

Cissus verticillata 0001003000018007017102400010000010000100070000112820l000000300200431n7j7400002006dn0r7c95e8df66ja844k082lqcrre0baf5rrb0c417915ee109000000

Clematicissus angustissima 0000003001003100120????000000000100001000b1111112820h100000580100652g9f680210d0087d0r4e3f300004c7emp38k1lfrrra4lfd8rr404234502g010m100100

Clematicissus opaca 000000000000110b023005c00010000010000100071011112620h1001004d0200623g4h420200g008mb0r9a7k686667c3ml443k0lrrrr60rpe8rra05737a02m0106000000

Cyphostemma adenocaule 000000300210a20d016007f00010010110001111050001112h20j001110b21210240e2gb600102107ej0r6l18e9jg57r9524r061lrerrd3k1j0rr807416a0798119010000

Cyphostemma buchananii 000000300210e10d01700jk00010000110001111090001111k20j001110451200670f3ac30011410a9l0r1l2bf9bg84cb785m066ljgrrc1k6l0rr51b31480a5e109010000

Cyphostemma hereroense 00012????210912e12601hf000100100010011110g0000112e20m0011106b1210660l1fc3001?011h9l0r0r09fbjf47m4774p08dl5rrrf4f5f0rqb0n415404jk11g010000

Cyphostemma junceum 10002????110l12g116007f000100000000101221j0003111n20e0011009c1200881c5g950010101bae0r1n1afbee58d6554n077le8rrf2e5e0rpb0k51571cmr11b010000

Cyphostemma lageniflorum 000100300210810b01a00ek000100100010011110c0001111r20e001110931210680h3db30011110a8h2m4g09f68c84ca654l0c5lrahrc3r6e0rr308213a1cge10r110000

Cyphostemma laza 100100300010630702600540001000011000?111080001112e20l001100681200641g1n9b0010111eep0r5l0eee9b7894654r0a9nerrre3f5h0rl90h41571cpr11b010000

Cyphostemma microdiptera 0000006002109307027007h000100100010011110c0001111n20l001100740200641g2g9c001010187k0r4f1deahe46g69b4n058pgrrrdak6k0rr302116a0rge019010000

Cyphostemma odontadenium 000100300210910b017007k00010010001001111080001111h20g001?10781210450k4g66001?2116jm0r0p1ce7ca56j5634q0a1lplrrder3k0rr80k323a08de11a010000

Cyphostemma paucidentatum 000000300211h10b11a00ej000100101100011110b0001111k20f001110b41200230k2g74001?0119cf2m0p36f8af84cc744n086lmhnre3r5e0rr40d322a199e119010000

Cyphostemma setosum 000100600210912901d00em000000101100010110d0001111n20l001100a41200540r1d960011210cak3j1j19e8ed54j3775m0bal95rrchr3f0rr90a416a26jk11g110000

Leea guineensis 10002????000k30m00c00b8001100000000001221h0000102h20j1101000c0200gc1e3rrc13010004ek0r2g5cf55rr484454q030l1rrre2r8c0r2rg932e01586108010000

Leea tetramera 10002????000r30l00601eq000100000000001221m0000101e20g0100102f0200rr0m2ndr1301100p2m0r5h17f47a84c4595n00190rrrm9r0e0r1hr7106005ge10e010000

Nothocissus spicifera 00003000000030090061058000110000000001221p1002000610e000?00662100cf90a9c41111000e6l2g6b0nfcjd45c6np73kbpl2qa773r5a1544c1024501g0000000000

Parthenocissus dalzielii 000000r11010511d02600ee000100000001101000420000?0320d100000880100792bbf7612004005ngr05j2rfll72jc5rr530j1lrrej76mfg4rrd05125a03e0104000000

Parthenocissus laetevirens 000000r11010511e016009c00010000000110100082000102820e1000006j00007d3alk3b1200g007nhq22m4legjd4cc4qh720k0lrrcr38r9g3rr301024a03g0104000000

291

Parthenocissus quinquefolia 000000r01010c11b02600nc000100000001101000a2000000620k1001008m00008c3cnf351200f006dd536b3kfmcc5d97njb33l1lrrah95gcd4rr504115a01g0102000000

Parthenocissus vitacea 000000600010a11e02600mc000100000000101020e1000102b20j1000006n00004449hg8a02007006ge916c4gelba5m78lja40j1lrrdh66hdj5rm607127a01j0106000000

Pterisanthes cissioides 000000000100210d0261059000010000100101000p11120?33010000100ap0000005r62d20101700blh1l1qnjb44684c2dc480l0lrrrr72rkbkrm705687a03j0004000000

Pterisanthes polita 0000000000004007016105f000010000100101000p11120?33010000100am0000007r72910101400cjj6d1pmge44684c2mm660r1grrlp72rk8hrq6052a7a01j0106000000

Rhoicissus digitata 000010000010310b120????0100010001010010200100001262051000106b0100322p9d631200n006nk4m6g3kerr92pc8a6c70adl1rfh6hbbb2rcb3c536a03g610n100000

Rhoicissus tridentata 000010300010810701601dp010001000100001000b1110012620f100100a60200220l3hd41200n00apf4n8l57fcjh5gmeb73c07ff5rrr7bgcb5rfl4p526a04p8002000000

Tetrastigma bioritsense 010112010110910902600bm00010001001100012050000110820g001000af02013368d3f01201700bje0r590led479j55d9g54ael0rrr5mr2j1rk722017104m0115000000

Tetrastigma obtectum 000011n01210411d02600ee0001000100110001108300?0?0020r001100b5010122639b5400000005jd0r1l1ldjdb4d22la83hfal6rrr50rf82rr061011307a001h100000

Tetrastigma planicaule 010010300110f10r027005e000100010011000110d0000100b20l0010007d0101336162931201401n4j575a0pccbc68c4675905al0rrp5cd9h2rm360116413p301q100000

Tetrastigma rumicispermum 000000300110521e02600a600010001001100011080000100k20b001000650101333742711201100aj08f4e3bdja84r0cd4232falbcfg5fe892rk34e6115117300k100010

Tetrastigma serrulatum 000000300210820e0260084000100011101001110a0000100620l00100072010122e2ja2302001009d81p6a4demlj5fcj96360cale6rr63jdg2rr527123901j001k100000

Vitis aestivalis 000000600000200701a00gp000110011100101020g1112120810e100001ka0100223be6b412001005ce0q7c8bdbce68dcqj41ph0rrrnh82ra96rgf0n3a4a01g3102000000

Vitis betulifolia 000000600000400901901ep000110011100101020d1002120810e100001dc010044559b2512003009a85eg5e5d88c96cjnd41ch1lrr9k72rgd8pm60e292a01j6102000000

Vitis flexuosa 0000003000004009016019l001110011100101020c00021208109100001hf0100335aj1e212002003gf7de8g8fcee59cdpg52ee1krr9h71rl88rke0g273a02k3104000000

Vitis piasezkii 000000300000210b01601bp000110011100101020f0002120b10a100001l90100443a93b112001008ae1nb8a8ea9a68cdnb41lm1hrrek71rec6hm40e290a01g3103000000

Vitis rotundifolia 000000000000300501600rf001110011100101020b11121208105100001rr0100232cj4b112001009dl3g5f4eebcg868bpg42mb2ler8e76fbc3rl90d221a00j0001000000

Vitis tsoi 0000000000003009017009e00011001110010102050002020810a100001gh0100234ae09012002004hb4gabf7f7ag85chna52ee5ljg5f72rfaalk71c2b3800j3001000000

Vitis vinifera 000000600100300b01900gp000010001100101020b1102120810l100001gh0100342a96331200300aba3jj68aeacc58efpb31jg0qrrcl72rfe7dm50m4a3a0368003000000

Yua austro-orientalis 0000003000???107124100e100000000?0010102091000100820k100?00cj01006a3cpj871200c00cb81m8c1eeghg59ccmc42ff8ldcnj4edce1rj92h312900m3102000000

Yua chinensis 000000300010910b12600bc10010000010010102041000100620e100000aj0000692bgf031200h006b51me63cemgd4e1egj947g1lrrmr877jf4rr50d322a00g3102000000

Vitis tiffneyi ????????????????????????????????????????????????????????????????????????????????3fh2m8ad8e9ac77cfqg42pj0lrreg70rhh8rk50617?a02j0????00000

Character state:

a = 10, b = 11, c = 12, d = 13, e = 14, f = 15, g = 16, h = 17, j = 18, k = 19, l = 20, m = 21, n = 22, p = 23, q = 24, r = 25

292

APPENDIX H

DATA MATRIX USED IN THE ANALYSIS INCLUDING FOSSIL PALAEOVITIS

PARADOXA, CONTINUOUS CHARACTERS TREATED WITH GW CODING

293

10 20 30 40 50 60 70 80 90 100 110 120 130

. . . . . . . . . . . . .

Acareosperma spireanum 0000006000???20b016008e0001000???1001111?d000010?e20?????????????????????0010210mhlrp5043e67a86c8q470n6al20rr0ra651mj232l05ar45g10q101010

Ampelocissus abyssinica 0000?0300010900701d01bk000110000100?01000q1112120e10d100100ea2100aaj2r9d51111400caj3h5afle57755c6j551rdak5jcg23ra6jgk232362621m2104000000

Ampelocissus acapulcensis 000000d00010a00b01r005h000110000100001000f2112120e10d100100fd210064e6paa21200j00gfh9b7adkdfaa5ac6kc53fd5lca8h71rk8acg815474a01p2104000000

Ampelocissus acetosa 0000106000003209026013g100110000100001000h1112120b10d100100a82100daa6jbe40210j009bj3k3g8me9bb56c5fc44f8ck2ghh52rhc5ql533246611b2101000000

Ampelocissus africana 000000600000300901j00gh000010000100001000b1112120b10610010039210095e8m6d21110r00cbk2m1h2kfbe936f7e743lbaldh0012rk540a131110a03m0104000000

Ampelocissus barbata 000000300000100901m00bn000110100100?01000n2112120b10510010086210086e5n4a41211e00aap1m4fekg47864c6e6a2le4lffmp12ra4lnl302292911h2002000000

Ampelocissus botryostachys 0000000000???109016005c000110000?00?01000q111212360050001006h21009a85l3b21211m00hbc6h0ggp843585c1ka527j1mrrnl51rf7rrm202263a04r2105000000

Ampelocissus erdvendbergiana 000000d00000600701m00gk000110000100001000j2112120h10d100100df211095c4edd11200e007rf9f9agfce995aacrh52ce5lhbjf60rm7crmb062e6a02e2101000000

Ampelocissus javalensis 000000900000100901g005g000110000100001000q2112120h10d100100782100c9f3jde71201900jgf9dc2ljg76765can441gh3jlfhf21rkbhpl4055e1a11j2002000000

Ampelocissus latifolia 000010900100200701g00dl000110000100101000g2112120e106100100442100b7b7j8c41210l008ej2f7b7mj5b735c5ge053b8l4lgf41rlbakj516582a0192003000000

Ampelocissus ochracea 000000300210d00900d01ar000110000100101000r11121236000000000bj210085c9p5d10211700gaf6bb3glf45445c9k891fh1lrrnr10rb4krn301255a0190001000000

Ampelocissus robinsonii 000000600000200701d007c000110000100001000d11121006109100000532100a4r1b99b1200n006ea7ge4fa57ab66ffqe628h6ldkhk61rn8crk903162a03h2104000000

Ampelopsis arborea 000000600000430702600nc01010000010000100091010112820e100000640100431c2k861200d005eb1qea7df9ge57mdhkq54j1lrrmh826qb5rm606215a01g2102000000

Ampelopsis cantoniensis 000000300000230b01600ee01010000010000100081000112820j100000650100542g6d920200d003jb1nadr0a8ae8acrjda37l8hgfmd71dn86rm81a722700g2104000000

Ampelopsis cordata 000000600000200901700qf01010000010000100091010112820j1000008c0200661p6m550202j007jd0r7h76ebdd6fdfjpk80g1lrpqk77akf3rp406213a01h2003000000

Ampelopsis delavayana 000000600000010b017008e01010100010000100051010112620e1000002b0200652k9g440200b002pd2m8eb95fgf5fcbkeg60n0lrrre72drc4rn504322a04g2104000000

Ampelopsis glandulosa 000000600000300501700je01010100010000100081010112620e1000008d0200541k4h770202g000jc0raca80dee5dfejlr70h1lrrrr91glc4rr804515a03l2105000000

Ampelopsis grossedentata 001000300000230702610le00010000010000100071000112820f1000004c0100643b6d431201b003l95f8dqad7bh95cmphd30l6lnfmc61rpadrr815662a01g0003000000

Cayratia cardiophylla 000010300110110b00a00ek000100000011010110c1001111h20j001000430200650f0h4502012016hg3l19nbg45ab4ch734707b6ffge32rd3ekl321142a1805105000001

Cayratia geniculata 000000300110410d01a00ek000100000011010110a1001111k20l0010005f0200550h2ee80201300eaq2l1d0gf5fc45fdb5449b3crrrr71r300rn302r63a07h711f100001

Cayratia japonica 000000600010420b01600ee000100001100011110d0001111k20j0010009a0200550l1bc402002005kfaccce73acg74chc6650gdle5fq42rff7rl82b7f4818fb116000000

Cayratia maritima 000000600010420b02700ek000100001100011110d0001111k20g001000890200632d3d9c02001008j87b97kc646664cd81440f9ld5eh62rh6emh614552a16jb11g100000

Cayratia oligocarpa 000000600010520g01700cf000100001100011110d0001111n20j001000460200641d2g360201801ddh9b89kee44784ca41450e4j73kl21rh7grk200643a58g511f100000

Cayratia trifolia 000000k11010611d01700ef000100001100011110b0001111e20j001000a70200523h5bc202002017d63kh8k5bdeh76crga440gbkgcmn62rgc9rm538562a15pb11d100000

Cayratia triternata 000000600010630b01700ef00010000110001111080001111k2080010106b0200c46e4f8202001014gc8hf5n9d88c86bhk672cj3lggfg62rd3jrk6162f3a09gb116100000

Cissus alata 000010600200810b01g102a00010010000000100060000112820j0000006d0100431l4ha40000400b4a0r1h73e9dl84ce234m082cr9rrr2h6g2rr90541aa05jg107000000

Cissus antarctica 000000300010e00d017102g01000100010000100071010012620e000010470100542f6cb41200g00blc1l0l9hf66878c740460bfl2d5554rg17fb8335rfr04gb105000000

Cissus assamica 0000003001007007007102400000100010000100090000112820g0000109d0100431h2l25001030098g0r4924eglh4cjb205j0775karrlem2h3rr42431561637107000000

Cissus biformifolia 0000103000005009006105500000100000000100080000112820d0001107d1200340j4k661010h00fbj0r1k7a66c944ha214j09qle5rrcgh1b6rr94220c724gb104000000

Cissus campestris 000010300000102701g105200010000000000100080000112820h0000003g0200441k5f6200000006hh0r3h45d6cf74ja544l080lrrrrc2c7h2rr506524a08mb107000000

Cissus cornifolia 10002????10090090261002000001000100001020c0000102e20e000000a70200541h4p420010200f4g0r1f66r3ce60fa324h064grgrrg7l2l2rr403417a07j710d000000

Cissus descoingsii 00001000000050090161058000101000000001000a0000112e20d000110490100440k2g620011900jem0r7957dab638c3214k07r39arrjar3f6rr6b22145175b108000000

Cissus fuliginea 0000120001004007019105d00010100010100100050000112b20j000000bd0200540l0k6300004007lk0rr3k9c68b75c6414g0j58q8rr9825kerr502316715b7106000000

Cissus granulosa 000010600200510d126000400010000000000102181000100b20g000000590100671j8e9402007009jf0r2e2dfag93ak9hpn60kbl3rrr6f0ja1rh9n211f101g0004000000

Cissus hypoglauca 000000300010g10e121102f10000100010100002081000100b2090000003d02005458agad1200j00b6e0r0e1gehjb3ac355460d9l2rr994dm83rl524224701g2002000000

Cissus mirabilis 0001006001004107026102e00000100010110100070000112620j0001004b0200831q1j550010400bad0ra49796ef66mc864h0a3fp7r7f9r3c6rp70232ca04p5105000000

Cissus obovata 0001103111000107026000400000100010000100070000112820j0001004e0200733j4j5200004003de0rb647ebpn54kha93h081lrrrre1k6h3rq305223a07m2106000000

Cissus palmata 000000310200710b0261035000101001100101020a0000112820j0001006k0100321m5p730210700e6e0r5d78n7dj73fe335g091hrlrre3e2l3rr405413a18pb10a000000

Cissus paullinifolia 000010600000530b0170030000001000000001000c0000112b20k0001006a0100330q3p441010j00m6l0r4da3e7eg64f9365k07e9fcrrh375b5rra24303914jg003000000

Cissus penninervis 000010300000210r120????000100000000001021c1000102b20j000000410100661d5f551200900d6j0r2h1nfg985d719a4707gl1rrr568hf2rq432113102m0106000000

Cissus quadrangularis 0011100000004007016101600000000110000102080000112820l0001005c0200551l9j8300001005fn0r2852e25dd0c4204q090frrrrj5j2n2rq605324a05p2106000000

Cissus reniformis 0001000000019009017101400000000000100100050000112820j0001007a0200642h5n0600000009ap0r64d1f57b84c1224q0c10rrrrjbn1r3rr302223a03m0104000000

Cissus simsiana 000000300000410d01a0078010100000100001020c1110112b20g0000107g0100532d4f650200n006jc4gc9da6dab6eceher35e4lpgd860rn5alj613214812g2108000000

Cissus sterculiifolia 000010000010610d121100f01010100000100000181000102b20d000000300100531n3ab41110q00r0r0r2b0mfda848c001450cll0jjrd1rda3n01q0013203j2106000000

Cissus striata ssp. argentina 000010600100410j126005e00010000000010100171000112820h000100ba2100551m8b960200j005he0r5969fab84bcamlg43n1lrrpe648mb4rr705213a01j0106000000

Cissus trianae 0000106000006109126002800000100010100100061100112820h00000097200096477f530201n009ce0r1d1fflnh4bcdadp60d9l4prr77aj71rdb5210r005p2005000000

Cissus verticillata 0001003000018007017102400010000010000100070000112820l000000300200431n7j7400002006dn0r7c95e8df66ja844k082lqcrre0baf5rr805417915eb109000000

Clematicissus angustissima 0000003001003100120????000000000100001000b1111112820h100000580100652g9f680210d0087d0r4d3f300004c7emp38k1lfrrra4lfd8rr302234502g010m100100

Clematicissus opaca 000000000000110b023005c00010000010000100071011112620h1001004d0200623g4h420200g008mb0r997k686667c3ml443k1lrrrr60rpe8rr802737a02m0106000000

Cyphostemma adenocaule 000000300210a20d016007f00010010110001111050001112h20j001110b21210240e2gb600102107ej0r6k18e9jg57r9524r061lrerrd3k1j0rr503416a0797119010000

Cyphostemma buchananii 000000300210e10d01700jk00010000110001111090001111k20j001110451200670f3ac30011410a9l0r1l2bf9bg84cb785m066ljgrrc1k6l0rr41531480a5b109010000

Cyphostemma hereroense 00012????210912e12601hf000100100010011110g0000112e20m0011106b1210660l1fc3001?011h9l0r0q09fbjf47m4774p08dl5rrrf4f5f0rq80a415404jg11g010000

Cyphostemma junceum 10002????110l12g116007f000100000000101221j0003111n20e0011009c1200881c5g950010101bae0r1n1afbee58d6554n077le8rrf2e5e0rp80851571cml11b010000

Cyphostemma lageniflorum 000100300210810b01a00ek000100100010011110c0001111r20e001110931210680h3db30011110a8h2m4f09f68c84ca654l0c5lrahrc3r6e0rr204213a1cgb10r110000

Cyphostemma laza 100100300010630702600540001000011000?111080001112e20l001100681200641g1n9b0010111eep0r5k0eee9b7894654r0a9nerrre3f5h0rl70841571cpl11b010000

Cyphostemma microdiptera 0000006002109307027007h000100100010011110c0001111n20l001100740200641g2g9c001010187k0r4e1deahe46g69b4n058pgrrrdak6k0rr301116a0rgb019010000

Cyphostemma odontadenium 000100300210910b017007k00010010001001111080001111h20g001?10781210450k4g66001?2116jm0r0n1ce7ca56j5634q0a1lplrrder3k0rr609323a08db11a010000

Cyphostemma paucidentatum 000000300211h10b11a00ej000100101100011110b0001111k20f001110b41200230k2g74001?0119cf2m0n36f8af84cc744n086lmhnre3r5e0rr306322a199b119010000

Cyphostemma setosum 000100600210912901d00em000000101100010110d0001111n20l001100a41200540r1d960011210cak3j1j19e8ed54j3775m0bbl95rrchr3f0rr705416a26jg11g110000

Leea guineensis 10002????000k30m00c00b8001100000000001221h0000102h20j1101000c0200gc1e3rrc13010004ek0r2g5cf55rr484454q030l1rrre2r8c0r2jg432e01585108010000

Leea tetramera 10002????000r30l00601eq000100000000001221m0000101e20g0100102f0200rr0m2ndr1301100p2m0r5g17f47a84c4595n00190rrrm9r0e0r1cr3106005gb10e010000

Nothocissus spicifera 00003000000030090061058000110000000001221p1002000610e000?00662100cf90a9c41111000e6l2g6b0nfcjd45c6np73kbpl2qa773r5a1543c0024501g0000000000

Parthenocissus dalzielii 000000r11010511d02600ee000100000001101000420000?0320d100000880100792bbf7612004005ngr05j2rfll72jc5rr530j1lrrej76mfg4rra02125a03e0104000000

Parthenocissus laetevirens 000000r11010511e016009c00010000000110100082000102820e1000006j00007d3alk3b1200g007nhq22l4legjd4cc4qh720k0lrrcr38r9g3rr201024a03g0104000000

294

Parthenocissus quinquefolia 000000r01010c11b02600nc000100000001101000a2000000620k1001008m00008c3cnf351200f006dd536b3kfmcc5d97njb33l1lrrah95gcd4rr302115a01g0102000000

Parthenocissus vitacea 000000600010a11e02600mc000100000000101020e1000102b20j1000006n00004449hg8a02007006ge916b4gelba5m78lja40j1lrrdh66hdj5rm403127a01j0106000000

Pterisanthes cissioides 000000000100210d0261059000010000100101000p11120?33010000100ap0000005r62d20101700blh1l1qnjb44684c2dc480l0lrrrr72rkbkrm502687a03j0004000000

Pterisanthes polita 0000000000004007016105f000010000100101000p11120?33010000100am0000007r72910101400cjj6d1nmge44684c2mm660r1grrlp72rk8hrq4022a7a01j0106000000

Rhoicissus digitata 000010000010310b120????0100010001010010200100001262051000106b0100322p9d631200n006nk4m6g3kerr92pc8a6c70adl1rfh6hbbb2rc835536a03g510n100000

Rhoicissus tridentata 000010300010810701601dp010001000100001000b1110012620f100100a60200220l3hd41200n00apf4n8l57fcjh5gmeb73c07ff5rrr7bgcb5rff4a526a04p7002000000

Tetrastigma bioritsense 010112010110910902600bm00010001001100012050000110820g001000af02013368d3f01201700bje0r580led479j55d9g54ael0rrr5mr2j1rk521017104m0115000000

Tetrastigma obtectum 000011n01210411d02600ee0001000100110001108300?0?0020r001100b5010122639b5400000005jd0r1k1ldjdb4d22la83hfal6rrr50rf82rr060011307a001h100000

Tetrastigma planicaule 010010300110f10r027005e000100010011000110d0000100b20l0010007d0101336162931201401n4j575a0pccbc68c4675905al0rrp5cd9h2rm260116413p201q100000

Tetrastigma rumicispermum 000000300110521e02600a600010001001100011080000100k20b001000650101333742711201100aj08f4e3bdja84r0cd4232falbcfg5fe892rk2466115117200k100010

Tetrastigma serrulatum 000000300210820e0260084000100011101001110a0000100620l00100072010122e2ja2302001009d81p694demlj5fcj96360cale6rr63jdg2rr323123901j001k100000

Vitis aestivalis 000000600000200701a00gp000110011100101020g1112120810e100001ka0100223be6b412001005ce0q7c8bdbce68dcqj41ph0rrrnh82ra96rgb0a3a4a01g2102000000

Vitis betulifolia 000000600000400901901ep000110011100101020d1002120810e100001dc010044559b2512003009a85eg5e5d88c96cjnd41ch1lrr9k72rgd8pm406292a01j5102000000

Vitis flexuosa 0000003000004009016019l001110011100101020c00021208109100001hf0100335aj1e212002003gf7de8g8fcee59cdpg52ee1krr9h71rl88rka07273a02k2104000000

Vitis piasezkii 000000300000210b01601bp000110011100101020f0002120b10a100001l90100443a93b112001008ae1nb7a8ea9a68cdnb41lm1hrrek71rec6hm306290a01g2103000000

Vitis rotundifolia 000000000000300501600rf001110011100101020b11121208105100001rr0100232cj4b112001009dl3g5e4eebcg868bpg42mb2ler8e76fbc3rl706221a00j0001000000

Vitis tsoi 0000000000003009017009e00011001110010102050002020810a100001gh0100234ae09012002004hb4gabf7f7ag85chna52ee6ljg5f72rfaalk5162b3800j2001000000

Vitis vinifera 000000600100300b01900gp000010001100101020b1102120810l100001gh0100342a96331200300aba3jj68aeacc58efpb31jg0qrrcl72rfe7dm3094a3a0367003000000

Yua austro-orientalis 0000003000???107124100e100000000?0010102091000100820k100?00cj01006a3cpj871200c00cb81m8c1eeghg59ccmc42ff8ldcnj4edce1rj628312900m2102000000

Yua chinensis 000000300010910b12600bc10010000010010102041000100620e100000aj0000692bgf031200h006b51me63cemgd4e1egj947g1lrrmr877jf4rr406322a00g2102000000

Palaeovitis paradoxa ????????????????????????????????????????????????????????????????????????????????alm0r1rg8ebee58fank55ea0lrrfda2clb7rer0rad3a02gr????00000

Character state:

a = 10, b = 11, c = 12, d = 13, e = 14, f = 15, g = 16, h = 17, j = 18, k = 19, l = 20, m = 21, n = 22, p = 23, q = 24, r = 25

295

APPENDIX I

DATA MATRIX USED IN THE ANALYSIS INCLUDING FOSSIL AMPELOCISSUS WILDEI,

CONTINUOUS CHARACTERS TREATED WITH GW CODING

296

10 20 30 40 50 60 70 80 90 100 110 120 130

. . . . . . . . . . . . .

Acareosperma spireanum 0000006000???20b016008e0001000???1001111?d000010?e20?????????????????????0010210mhlrp5043e67a86c8q470n6al20rr0ra651mj332l05ar44g10q101010

Ampelocissus abyssinica 0000?0300010900701d01bk000110000100?01000q1112120e10d100100ea2100aaj2r9d51111400caj3h5afle57755c6j551rdak5jcg23ra6jgk233362621h2104000000

Ampelocissus acapulcensis 000000d00010a00b01r005h000110000100001000f2112120e10d100100fd210064e6paa21200j00gfh9b7bdkdfaa5ac6kc53fd5lca8h71rk8acgb17474a01k2104000000

Ampelocissus acetosa 0000106000003209026013g100110000100001000h1112120b10d100100a82100daa6jbe40210j009bj3k3h8me9bb56c5fc44f8ck2ghh52rhc5ql63424661192101000000

Ampelocissus africana 000000600000300901j00gh000010000100001000b1112120b10610010039210095e8m6d21110r00cbk2m1j2kfbe936f7e743lbaldh0012rk540a232110a03h0104000000

Ampelocissus barbata 000000300000100901m00bn000110100100?01000n2112120b10510010086210086e5n4a41211e00aap1m4gekg47864c6e6a2le3lffmp12ra4lnl403292911e2002000000

Ampelocissus botryostachys 0000000000???109016005c000110000?00?01000q111212360050001006h21009a85l3b21211m00hbc6h0hgp843585c1ka527j0mrrnl51rf7rrm302263a04m2105000000

Ampelocissus erdvendbergiana 000000d00000600701m00gk000110000100001000j2112120h10d100100df211095c4edd11200e007rf9f9agfce995aacrh52ce5lhbjf60rm7crmf082e6a02c2101000000

Ampelocissus javalensis 000000900000100901g005g000110000100001000q2112120h10d100100782100c9f3jde71201900jgf9dc2ljg76765can441gh3jlfhf21rkbhpl5075e1a11f2002000000

Ampelocissus latifolia 000010900100200701g00dl000110000100101000g2112120e106100100442100b7b7j8c41210l008ej2f7b7mj5b735c5ge053b8l4lgf41rlbakj718582a0182003000000

Ampelocissus ochracea 000000300210d00900d01ar000110000100101000r11121236000000000bj210085c9p5d10211700gaf6bb3glf45445c9k891fh1lrrnr10rb4krn401255a0180001000000

Ampelocissus robinsonii 000000600000200701d007c000110000100001000d11121006109100000532100a4r1b99b1200n006ea7ge4fa57ab66ffqe628h6ldkhk61rn8crkd04162a03e2104000000

Ampelopsis arborea 000000600000430702600nc01010000010000100091010112820e100000640100431c2k861200d005eb1qeb7df9ge57mdhkq54j1lrrmh826qb5rm809215a01d2102000000

Ampelopsis cantoniensis 000000300000230b01600ee01010000010000100081000112820j100000650100542g6d920200d003jb1naer0a8ae8acrjda37l8hgfmd71dn86rmb1e722700d2104000000

Ampelopsis cordata 000000600000200901700qf01010000010000100091010112820j1000008c0200661p6m550202j007jd0r7j76ebdd6fdfjpk80g1lrpqk77akf3rp608213a01e2003000000

Ampelopsis delavayana 000000600000010b017008e01010100010000100051010112620e1000002b0200652k9g440200b002pd2m8fb95fgf5fcbkeg60n0lrrre72drc4rn706322a04d2104000000

Ampelopsis glandulosa 000000600000300501700je01010100010000100081010112620e1000008d0200541k4h770202g000jc0raca80dee5dfejlr70h1lrrrr91glc4rrb05515a03g2105000000

Ampelopsis grossedentata 001000300000230702610le00010000010000100071000112820f1000004c0100643b6d431201b003l95f8dqad7bh95cmphd30l6lnfmc61rpadrra17662a01d0003000000

Cayratia cardiophylla 000010300110110b00a00ek000100000011010110c1001111h20j001000430200650f0h4502012016hg3l19nbg45ab4ch734707b6ffge32rd3ekl422142a1805105000001

Cayratia geniculata 000000300110410d01a00ek000100000011010110a1001111k20l0010005f0200550h2ee80201300eaq2l1e0gf5fc45fdb5449b3crrrr71r300rn403r63a07e711f100001

Cayratia japonica 000000600010420b01600ee000100001100011110d0001111k20j0010009a0200550l1bc402002005kfaccce73acg74chc6650gdle5fq42rff7rla2f7f4818cb116000000

Cayratia maritima 000000600010420b02700ek000100001100011110d0001111k20g001000890200632d3d9c02001008j87b97kc646664cd81440f9ld5eh62rh6emh815552a16fb11g100000

Cayratia oligocarpa 000000600010520g01700cf000100001100011110d0001111n20j001000460200641d2g360201801ddh9b8akee44784ca41450e4j73kl21rh7grk300643a58d511f100000

Cayratia trifolia 000000k11010611d01700ef000100001100011110b0001111e20j001000a70200523h5bc202002017d63kh8k5bdeh76crga440gbkgcmn62rgc9rm73b562a15kb11d100000

Cayratia triternata 000000600010630b01700ef00010000110001111080001111k2080010106b0200c46e4f8202001014gc8hf5n9d88c86bhk672cj3lggfg62rd3jrk9192f3a09db116100000

Cissus alata 000010600200810b01g102a00010010000000100060000112820j0000006d0100431l4ha40000400b4a0r1j73e9dl84ce234m082cr9rrr2h6g2rrc0741aa05fg107000000

Cissus antarctica 000000300010e00d017102g01000100010000100071010012620e000010470100542f6cb41200g00blc1l0m9hf66878c740460bfl2d5554rg17fbc335rfr04db105000000

Cissus assamica 0000003001007007007102400000100010000100090000112820g0000109d0100431h2l25001030098g0r4924eglh4cjb205j0775karrlem2h3rr62631561627107000000

Cissus biformifolia 0000103000005009006105500000100000000100080000112820d0001107d1200340j4k661010h00fbj0r1k7a66c944ha214j09qle5rrcgh1b6rrc4320c724db104000000

Cissus campestris 000010300000102701g105200010000000000100080000112820h0000003g0200441k5f6200000006hh0r3j45d6cf74ja544l080lrrrrc2c7h2rr708524a08hb107000000

Cissus cornifolia 10002????10090090261002000001000100001020c0000102e20e000000a70200541h4p420010200f4g0r1f66r3ce60fa324h064grgrrg7l2l2rr604417a07f710d000000

Cissus descoingsii 00001000000050090161058000101000000001000a0000112e20d000110490100440k2g620011900jem0r7a57dab638c3214k07r39arrjar3f6rr8b22145174b108000000

Cissus fuliginea 0000120001004007019105d00010100010100100050000112b20j000000bd0200540l0k6300004007lk0rr3k9c68b75c6414g0j58q8rr9825kerr70331671597106000000

Cissus granulosa 000010600200510d126000400010000000000102181000100b20g000000590100671j8e9402007009jf0r2e2dfag93ak9hpn60kbl3rrr6f0ja1rhcn311f101d0004000000

Cissus hypoglauca 000000300010g10e121102f10000100010100002081000100b2090000003d02005458agad1200j00b6e0r0f1gehjb3ac355460d9l2rr994dm83rl725224701d2002000000

Cissus mirabilis 0001006001004107026102e00000100010110100070000112620j0001004b0200831q1j550010400bad0ra59796ef66mc864h0a3fp7r7f9r3c6rp90332ca04k5105000000

Cissus obovata 0001103111000107026000400000100010000100070000112820j0001004e0200733j4j5200004003de0rb647ebpn54kha93h081lrrrre1k6h3rq507223a07h2106000000

Cissus palmata 000000310200710b0261035000101001100101020a0000112820j0001006k0100321m5p730210700e6e0r5d78n7dj73fe335g091hrlrre3e2l3rr506413a18kb10a000000

Cissus paullinifolia 000010600000530b0170030000001000000001000c0000112b20k0001006a0100330q3p441010j00m6l0r4da3e7eg64f9365k07e9fcrrh375b5rrd25303914fg003000000

Cissus penninervis 000010300000210r120????000100000000001021c1000102b20j000000410100661d5f551200900d6j0r2j1nfg985d719a4707gl1rrr568hf2rq533113102h0106000000

Cissus quadrangularis 0011100000004007016101600000000110000102080000112820l0001005c0200551l9j8300001005fn0r2852e25dd0c4204q090frrrrj5j2n2rq807324a05k2106000000

Cissus reniformis 0001000000019009017101400000000000100100050000112820j0001007a0200642h5n0600000009ap0r64d1f57b84c1224q0c10rrrrjbn1r3rr503223a03h0104000000

Cissus simsiana 000000300000410d01a0078010100000100001020c1110112b20g0000107g0100532d4f650200n006jc4gcada6dab6eceher35e4lpgd860rn5alj814214812d2108000000

Cissus sterculiifolia 000010000010610d121100f01010100000100000181000102b20d000000300100531n3ab41110q00r0r0r2c0mfda848c001450cll0jjrd1rda3n01q0013203f2106000000

Cissus striata ssp. argentina 000010600100410j126005e00010000000010100171000112820h000100ba2100551m8b960200j005he0r5969fab84bcamlg43n1lrrpe648mb4rr907213a01f0106000000

Cissus trianae 0000106000006109126002800000100010100100061100112820h00000097200096477f530201n009ce0r1e1fflnh4bcdadp60d9l4prr77aj71rdg5310r005k2005000000

Cissus verticillata 0001003000018007017102400010000010000100070000112820l000000300200431n7j7400002006dn0r7c95e8df66ja844k082lqcrre0baf5rrb07417915cb109000000

Clematicissus angustissima 0000003001003100120????000000000100001000b1111112820h100000580100652g9f680210d0087d0r4e3f300004c7emp38k1lfrrra4lfd8rr402234502d010m100100

Clematicissus opaca 000000000000110b023005c00010000010000100071011112620h1001004d0200623g4h420200g008mb0r9a7k686667c3ml443k0lrrrr60rpe8rra03737a02h0106000000

Cyphostemma adenocaule 000000300210a20d016007f00010010110001111050001112h20j001110b21210240e2gb600102107ej0r6l18e9jg57r9524r061lrerrd3k1j0rr804416a0787119010000

Cyphostemma buchananii 000000300210e10d01700jk00010000110001111090001111k20j001110451200670f3ac30011410a9l0r1l2bf9bg84cb785m066ljgrrc1k6l0rr51731480a4b109010000

Cyphostemma hereroense 00012????210912e12601hf000100100010011110g0000112e20m0011106b1210660l1fc3001?011h9l0r0r09fbjf47m4774p08dl5rrrf4f5f0rqb0e415404fg11g010000

Cyphostemma junceum 10002????110l12g116007f000100000000101221j0003111n20e0011009c1200881c5g950010101bae0r1n1afbee58d6554n077le8rrf2e5e0rpb0b51571chl11b010000

Cyphostemma lageniflorum 000100300210810b01a00ek000100100010011110c0001111r20e001110931210680h3db30011110a8h2m4g09f68c84ca654l0c5lrahrc3r6e0rr305213a1cdb10r110000

Cyphostemma laza 100100300010630702600540001000011000?111080001112e20l001100681200641g1n9b0010111eep0r5l0eee9b7894654r0a9nerrre3f5h0rl90a41571ckl11b010000

Cyphostemma microdiptera 0000006002109307027007h000100100010011110c0001111n20l001100740200641g2g9c001010187k0r4f1deahe46g69b4n058pgrrrdak6k0rr301116a0rdb019010000

Cyphostemma odontadenium 000100300210910b017007k00010010001001111080001111h20g001?10781210450k4g66001?2116jm0r0p1ce7ca56j5634q0a1lplrrder3k0rr80c323a08bb11a010000

Cyphostemma paucidentatum 000000300211h10b11a00ej000100101100011110b0001111k20f001110b41200230k2g74001?0119cf2m0p36f8af84cc744n086lmhnre3r5e0rr408322a198b119010000

Cyphostemma setosum 000100600210912901d00em000000101100010110d0001111n20l001100a41200540r1d960011210cak3j1j19e8ed54j3775m0bal95rrchr3f0rr906416a26fg11g110000

Leea guineensis 10002????000k30m00c00b8001100000000001221h0000102h20j1101000c0200gc1e3rrc13010004ek0r2g5cf55rr484454q030l1rrre2r8c0r2rg632e01575108010000

Leea tetramera 10002????000r30l00601eq000100000000001221m0000101e20g0100102f0200rr0m2ndr1301100p2m0r5h17f47a84c4595n00190rrrm9r0e0r1hr5106005db10e010000

Nothocissus spicifera 00003000000030090061058000110000000001221p1002000610e000?00662100cf90a9c41111000e6l2g6b0nfcjd45c6np73kbpl2qa773r5a1544c1024501d0000000000

Parthenocissus dalzielii 000000r11010511d02600ee000100000001101000420000?0320d100000880100792bbf7612004005ngr05j2rfll72jc5rr530j1lrrej76mfg4rrd03125a03c0104000000

Parthenocissus laetevirens 000000r11010511e016009c00010000000110100082000102820e1000006j00007d3alk3b1200g007nhq22m4legjd4cc4qh720k0lrrcr38r9g3rr301024a03d0104000000

297

Parthenocissus quinquefolia 000000r01010c11b02600nc000100000001101000a2000000620k1001008m00008c3cnf351200f006dd536b3kfmcc5d97njb33l1lrrah95gcd4rr503115a01d0102000000

Parthenocissus vitacea 000000600010a11e02600mc000100000000101020e1000102b20j1000006n00004449hg8a02007006ge916c4gelba5m78lja40j1lrrdh66hdj5rm604127a01f0106000000

Pterisanthes cissioides 000000000100210d0261059000010000100101000p11120?33010000100ap0000005r62d20101700blh1l1qnjb44684c2dc480l0lrrrr72rkbkrm703687a03f0004000000

Pterisanthes polita 0000000000004007016105f000010000100101000p11120?33010000100am0000007r72910101400cjj6d1pmge44684c2mm660r1grrlp72rk8hrq6032a7a01f0106000000

Rhoicissus digitata 000010000010310b120????0100010001010010200100001262051000106b0100322p9d631200n006nk4m6g3kerr92pc8a6c70adl1rfh6hbbb2rcb37536a03d510n100000

Rhoicissus tridentata 000010300010810701601dp010001000100001000b1110012620f100100a60200220l3hd41200n00apf4n8l57fcjh5gmeb73c07ff5rrr7bgcb5rfl4e526a04k7002000000

Tetrastigma bioritsense 010112010110910902600bm00010001001100012050000110820g001000af02013368d3f01201700bje0r590led479j55d9g54ael0rrr5mr2j1rk721017104h0115000000

Tetrastigma obtectum 000011n01210411d02600ee0001000100110001108300?0?0020r001100b5010122639b5400000005jd0r1l1ldjdb4d22la83hfal6rrr50rf82rr0610113079001h100000

Tetrastigma planicaule 010010300110f10r027005e000100010011000110d0000100b20l0010007d0101336162931201401n4j575a0pccbc68c4675905al0rrp5cd9h2rm360116413k201q100000

Tetrastigma rumicispermum 000000300110521e02600a600010001001100011080000100k20b001000650101333742711201100aj08f4e3bdja84r0cd4232falbcfg5fe892rk3486115116200k100010

Tetrastigma serrulatum 000000300210820e0260084000100011101001110a0000100620l00100072010122e2ja2302001009d81p6a4demlj5fcj96360cale6rr63jdg2rr524123901f001k100000

Vitis aestivalis 000000600000200701a00gp000110011100101020g1112120810e100001ka0100223be6b412001005ce0q7c8bdbce68dcqj41ph0rrrnh82ra96rgf0d3a4a01d2102000000

Vitis betulifolia 000000600000400901901ep000110011100101020d1002120810e100001dc010044559b2512003009a85eg5e5d88c96cjnd41ch1lrr9k72rgd8pm608292a01f5102000000

Vitis flexuosa 0000003000004009016019l001110011100101020c00021208109100001hf0100335aj1e212002003gf7de8g8fcee59cdpg52ee1krr9h71rl88rke0a273a02g2104000000

Vitis piasezkii 000000300000210b01601bp000110011100101020f0002120b10a100001l90100443a93b112001008ae1nb8a8ea9a68cdnb41lm1hrrek71rec6hm409290a01d2103000000

Vitis rotundifolia 000000000000300501600rf001110011100101020b11121208105100001rr0100232cj4b112001009dl3g5f4eebcg868bpg42mb2ler8e76fbc3rl908221a00f0001000000

Vitis tsoi 0000000000003009017009e00011001110010102050002020810a100001gh0100234ae09012002004hb4gabf7f7ag85chna52ee5ljg5f72rfaalk7182b3800f2001000000

Vitis vinifera 000000600100300b01900gp000010001100101020b1102120810l100001gh0100342a96331200300aba3jj68aeacc58efpb31jg0qrrcl72rfe7dm50d4a3a0357003000000

Yua austro-orientalis 0000003000???107124100e100000000?0010102091000100820k100?00cj01006a3cpj871200c00cb81m8c1eeghg59ccmc42ff8ldcnj4edce1rj92a312900h2102000000

Yua chinensis 000000300010910b12600bc10010000010010102041000100620e100000aj0000692bgf031200h006b51me63cemgd4e1egj947g1lrrmr877jf4rr508322a00d2102000000

Ampelocissus wildei ??????????????????????????????????????????????????????????????????????????01????k992p2k2befef6a8bd733jb5lhkkj12??a6rfe2r8?1a02rr????00000

Character state:

a = 10, b = 11, c = 12, d = 13, e = 14, f = 15, g = 16, h = 17, j = 18, k = 19, l = 20, m = 21, n = 22, p = 23, q = 24, r = 25

298

APPENDIX J

DATA MATRIX USED IN THE ANALYSIS INCLUDING FOSSIL PARTHENOCISSUS

CLARNENSIS, CONTINUOUS CHARACTERS TREATED WITH GW CODING

299

10 20 30 40 50 60 70 80 90 100 110 120 130

. . . . . . . . . . . . .

Acareosperma spireanum 0000006000???20b016008e0001000???1001111?d000010?e20?????????????????????0010210mhlrp5043e67a86c8q470n6al20rr0ra651mj334l05ar45k10q101010

Ampelocissus abyssinica 0000?0300010900701d01bk000110000100?01000q1112120e10d100100ea2100aaj2r9d51111400caj3h5afle57755c6j551rdak5jcg23ra6jgk235362621m3104000000

Ampelocissus acapulcensis 000000d00010a00b01r005h000110000100001000f2112120e10d100100fd210064e6paa21200j00gfh9b7bdkdfaa5ac6kc53fd5lca8h71rk8acgb1b474a01p3104000000

Ampelocissus acetosa 0000106000003209026013g100110000100001000h1112120b10d100100a82100daa6jbe40210j009bj3k3h8me9bb56c5fc44f8ck2ghh52rhc5ql636246611b3101000000

Ampelocissus africana 000000600000300901j00gh000010000100001000b1112120b10610010039210095e8m6d21110r00cbk2m1j2kfbe936f7e743lbaldh0012rk540a233110a03m0104000000

Ampelocissus barbata 000000300000100901m00bn000110100100?01000n2112120b10510010086210086e5n4a41211e00aap1m4gekg47864c6e6a2le3lffmp12ra4lnl405292911h3002000000

Ampelocissus botryostachys 0000000000???109016005c000110000?00?01000q111212360050001006h21009a85l3b21211m00hbc6h0hgp843585c1ka527j0mrrnl51rf7rrm304263a04r3105000000

Ampelocissus erdvendbergiana 000000d00000600701m00gk000110000100001000j2112120h10d100100df211095c4edd11200e007rf9f9agfce995aacrh52ce5lhbjf60rm7crmf0d2e6a02e3101000000

Ampelocissus javalensis 000000900000100901g005g000110000100001000q2112120h10d100100782100c9f3jde71201900jgf9dc2ljg76765can441gh3jlfhf21rkbhpl50c5e1a11j3002000000

Ampelocissus latifolia 000010900100200701g00dl000110000100101000g2112120e106100100442100b7b7j8c41210l008ej2f7b7mj5b735c5ge053b8l4lgf41rlbakj71d582a0193003000000

Ampelocissus ochracea 000000300210d00900d01ar000110000100101000r11121236000000000bj210085c9p5d10211700gaf6bb3glf45445c9k891fh1lrrnr10rb4krn401255a0190001000000

Ampelocissus robinsonii 000000600000200701d007c000110000100001000d11121006109100000532100a4r1b99b1200n006ea7ge4fa57ab66ffqe628h6ldkhk61rn8crkd06162a03h3104000000

Ampelopsis arborea 000000600000430702600nc01010000010000100091010112820e100000640100431c2k861200d005eb1qeb7df9ge57mdhkq54j1lrrmh826qb5rm80e215a01g3102000000

Ampelopsis cantoniensis 000000300000230b01600ee01010000010000100081000112820j100000650100542g6d920200d003jb1naer0a8ae8acrjda37l8hgfmd71dn86rmb1p722700g3104000000

Ampelopsis cordata 000000600000200901700qf01010000010000100091010112820j1000008c0200661p6m550202j007jd0r7j76ebdd6fdfjpk80g1lrpqk77akf3rp60d213a01h3003000000

Ampelopsis delavayana 000000600000010b017008e01010100010000100051010112620e1000002b0200652k9g440200b002pd2m8fb95fgf5fcbkeg60n0lrrre72drc4rn70a322a04g3104000000

Ampelopsis glandulosa 000000600000300501700je01010100010000100081010112620e1000008d0200541k4h770202g000jc0raca80dee5dfejlr70h1lrrrr91glc4rrb09515a03l3105000000

Ampelopsis grossedentata 001000300000230702610le00010000010000100071000112820f1000004c0100643b6d431201b003l95f8dqad7bh95cmphd30l6lnfmc61rpadrra1c662a01g0003000000

Cayratia cardiophylla 000010300110110b00a00ek000100000011010110c1001111h20j001000430200650f0h4502012016hg3l19nbg45ab4ch734707b6ffge32rd3ekl423142a1806105000001

Cayratia geniculata 000000300110410d01a00ek000100000011010110a1001111k20l0010005f0200550h2ee80201300eaq2l1e0gf5fc45fdb5449b3crrrr71r300rn405r63a07h811f100001

Cayratia japonica 000000600010420b01600ee000100001100011110d0001111k20j0010009a0200550l1bc402002005kfaccce73acg74chc6650gdle5fq42rff7rla2r7f4818fe116000000

Cayratia maritima 000000600010420b02700ek000100001100011110d0001111k20g001000890200632d3d9c02001008j87b97kc646664cd81440f9ld5eh62rh6emh818552a16je11g100000

Cayratia oligocarpa 000000600010520g01700cf000100001100011110d0001111n20j001000460200641d2g360201801ddh9b8akee44784ca41450e4j73kl21rh7grk301643a58g611f100000

Cayratia trifolia 000000k11010611d01700ef000100001100011110b0001111e20j001000a70200523h5bc202002017d63kh8k5bdeh76crga440gbkgcmn62rgc9rm73j562a15pe11d100000

Cayratia triternata 000000600010630b01700ef00010000110001111080001111k2080010106b0200c46e4f8202001014gc8hf5n9d88c86bhk672cj3lggfg62rd3jrk91e2f3a09ge116100000

Cissus alata 000010600200810b01g102a00010010000000100060000112820j0000006d0100431l4ha40000400b4a0r1j73e9dl84ce234m082cr9rrr2h6g2rrc0b41aa05jk107000000

Cissus antarctica 000000300010e00d017102g01000100010000100071010012620e000010470100542f6cb41200g00blc1l0m9hf66878c740460bfl2d5554rg17fbc365rfr04ge105000000

Cissus assamica 0000003001007007007102400000100010000100090000112820g0000109d0100431h2l25001030098g0r4924eglh4cjb205j0775karrlem2h3rr62931561638107000000

Cissus biformifolia 0000103000005009006105500000100000000100080000112820d0001107d1200340j4k661010h00fbj0r1k7a66c944ha214j09qle5rrcgh1b6rrc4520c724ge104000000

Cissus campestris 000010300000102701g105200010000000000100080000112820h0000003g0200441k5f6200000006hh0r3j45d6cf74ja544l080lrrrrc2c7h2rr70d524a08me107000000

Cissus cornifolia 10002????10090090261002000001000100001020c0000102e20e000000a70200541h4p420010200f4g0r1f66r3ce60fa324h064grgrrg7l2l2rr607417a07j810d000000

Cissus descoingsii 00001000000050090161058000101000000001000a0000112e20d000110490100440k2g620011900jem0r7a57dab638c3214k07r39arrjar3f6rr8b42145175e108000000

Cissus fuliginea 0000120001004007019105d00010100010100100050000112b20j000000bd0200540l0k6300004007lk0rr3k9c68b75c6414g0j58q8rr9825kerr705316715b8106000000

Cissus granulosa 000010600200510d126000400010000000000102181000100b20g000000590100671j8e9402007009jf0r2e2dfag93ak9hpn60kbl3rrr6f0ja1rhcn511f101g0004000000

Cissus hypoglauca 000000300010g10e121102f10000100010100002081000100b2090000003d02005458agad1200j00b6e0r0f1gehjb3ac355460d9l2rr994dm83rl728224701g3002000000

Cissus mirabilis 0001006001004107026102e00000100010110100070000112620j0001004b0200831q1j550010400bad0ra59796ef66mc864h0a3fp7r7f9r3c6rp90532ca04p6105000000

Cissus obovata 0001103111000107026000400000100010000100070000112820j0001004e0200733j4j5200004003de0rb647ebpn54kha93h081lrrrre1k6h3rq50b223a07m3106000000

Cissus palmata 000000310200710b0261035000101001100101020a0000112820j0001006k0100321m5p730210700e6e0r5d78n7dj73fe335g091hrlrre3e2l3rr50a413a18pe10a000000

Cissus paullinifolia 000010600000530b0170030000001000000001000c0000112b20k0001006a0100330q3p441010j00m6l0r4da3e7eg64f9365k07e9fcrrh375b5rrd29303914jk003000000

Cissus penninervis 000010300000210r120????000100000000001021c1000102b20j000000410100661d5f551200900d6j0r2j1nfg985d719a4707gl1rrr568hf2rq534113102m0106000000

Cissus quadrangularis 0011100000004007016101600000000110000102080000112820l0001005c0200551l9j8300001005fn0r2852e25dd0c4204q090frrrrj5j2n2rq80b324a05p3106000000

Cissus reniformis 0001000000019009017101400000000000100100050000112820j0001007a0200642h5n0600000009ap0r64d1f57b84c1224q0c10rrrrjbn1r3rr504223a03m0104000000

Cissus simsiana 000000300000410d01a0078010100000100001020c1110112b20g0000107g0100532d4f650200n006jc4gcada6dab6eceher35e4lpgd860rn5alj817214812g3108000000

Cissus sterculiifolia 000010000010610d121100f01010100000100000181000102b20d000000300100531n3ab41110q00r0r0r2c0mfda848c001450cll0jjrd1rda3n01q0013203j3106000000

Cissus striata ssp. argentina 000010600100410j126005e00010000000010100171000112820h000100ba2100551m8b960200j005he0r5969fab84bcamlg43n1lrrpe648mb4rr90b213a01j0106000000

Cissus trianae 0000106000006109126002800000100010100100061100112820h00000097200096477f530201n009ce0r1e1fflnh4bcdadp60d9l4prr77aj71rdg5510r005p3005000000

Cissus verticillata 0001003000018007017102400010000010000100070000112820l000000300200431n7j7400002006dn0r7c95e8df66ja844k082lqcrre0baf5rrb0c417915ee109000000

Clematicissus angustissima 0000003001003100120????000000000100001000b1111112820h100000580100652g9f680210d0087d0r4e3f300004c7emp38k1lfrrra4lfd8rr404234502g010m100100

Clematicissus opaca 000000000000110b023005c00010000010000100071011112620h1001004d0200623g4h420200g008mb0r9a7k686667c3ml443k0lrrrr60rpe8rra05737a02m0106000000

Cyphostemma adenocaule 000000300210a20d016007f00010010110001111050001112h20j001110b21210240e2gb600102107ej0r6l18e9jg57r9524r061lrerrd3k1j0rr807416a0798119010000

Cyphostemma buchananii 000000300210e10d01700jk00010000110001111090001111k20j001110451200670f3ac30011410a9l0r1l2bf9bg84cb785m066ljgrrc1k6l0rr51b31480a5e109010000

Cyphostemma hereroense 00012????210912e12601hf000100100010011110g0000112e20m0011106b1210660l1fc3001?011h9l0r0r09fbjf47m4774p08dl5rrrf4f5f0rqb0n415404jk11g010000

Cyphostemma junceum 10002????110l12g116007f000100000000101221j0003111n20e0011009c1200881c5g950010101bae0r1n1afbee58d6554n077le8rrf2e5e0rpb0k51571cmr11b010000

Cyphostemma lageniflora 000100300210810b01a00ek000100100010011110c0001111r20e001110931210680h3db30011110a8h2m4g09f68c84ca654l0c5lrahrc3r6e0rr308213a1cge10r110000

Cyphostemma laza 100100300010630702600540001000011000?111080001112e20l001100681200641g1n9b0010111eep0r5l0eee9b7894654r0a9nerrre3f5h0rl90h41571cpr11b010000

Cyphostemma microdiptera 0000006002109307027007h000100100010011110c0001111n20l001100740200641g2g9c001010187k0r4f1deahe46g69b4n058pgrrrdak6k0rr302116a0rge019010000

Cyphostemma odontadenium 000100300210910b017007k00010010001001111080001111h20g001?10781210450k4g66001?2116jm0r0p1ce7ca56j5634q0a1lplrrder3k0rr80k323a08de11a010000

Cyphostemma paucidentatum 000000300211h10b11a00ej000100101100011110b0001111k20f001110b41200230k2g74001?0119cf2m0p36f8af84cc744n086lmhnre3r5e0rr40d322a199e119010000

Cyphostemma setosum 000100600210912901d00em000000101100010110d0001111n20l001100a41200540r1d960011210cak3j1j19e8ed54j3775m0bal95rrchr3f0rr90a416a26jk11g110000

Leea guineensis 10002????000k30m00c00b8001100000000001221h0000102h20j1101000c0200gc1e3rrc13010004ek0r2g5cf55rr484454q030l1rrre2r8c0r2rg932e01586108010000

Leea tetramera 10002????000r30l00601eq000100000000001221m0000101e20g0100102f0200rr0m2ndr1301100p2m0r5h17f47a84c4595n00190rrrm9r0e0r1hr7106005ge10e010000

Nothocissus spicifera 00003000000030090061058000110000000001221p1002000610e000?00662100cf90a9c41111000e6l2g6b0nfcjd45c6np73kbpl2qa773r5a1544c1024501g0000000000

Parthenocissus dalzielii 000000r11010511d02600ee000100000001101000420000?0320d100000880100792bbf7612004005ngr05j2rfll72jc5rr530j1lrrej76mfg4rrd05125a03e0104000000

Parthenocissus laetevirens 000000r11010511e016009c00010000000110100082000102820e1000006j00007d3alk3b1200g007nhq22m4legjd4cc4qh720k0lrrcr38r9g3rr301024a03g0104000000

300

Parthenocissus quinquefolia 000000r01010c11b02600nc000100000001101000a2000000620k1001008m00008c3cnf351200f006dd536b3kfmcc5d97njb33l1lrrah95gcd4rr504115a01g0102000000

Parthenocissus vitacea 000000600010a11e02600mc000100000000101020e1000102b20j1000006n00004449hg8a02007006ge916c4gelba5m78lja40j1lrrdh66hdj5rm607127a01j0106000000

Pterisanthes cissioides 000000000100210d0261059000010000100101000p11120?33010000100ap0000005r62d20101700blh1l1qnjb44684c2dc480l0lrrrr72rkbkrm705687a03j0004000000

Pterisanthes polita 0000000000004007016105f000010000100101000p11120?33010000100am0000007r72910101400cjj6d1pmge44684c2mm660r1grrlp72rk8hrq6052a7a01j0106000000

Rhoicissus digitata 000010000010310b120????0100010001010010200100001262051000106b0100322p9d631200n006nk4m6g3kerr92pc8a6c70adl1rfh6hbbb2rcb3c536a03g610n100000

Rhoicissus tridentata 000010300010810701601dp010001000100001000b1110012620f100100a60200220l3hd41200n00apf4n8l57fcjh5gmeb73c07ff5rrr7bgcb5rfl4p526a04p8002000000

Tetrastigma bioritsense 010112010110910902600bm00010001001100012050000110820g001000af02013368d3f01201700bje0r590led479j55d9g54ael0rrr5mr2j1rk722017104m0115000000

Tetrastigma obtectum 000011n01210411d02600ee0001000100110001108300?0?0020r001100b5010122639b5400000005jd0r1l1ldjdb4d22la83hfal6rrr50rf82rr061011307a001h100000

Tetrastigma planicaule 010010300110f10r027005e000100010011000110d0000100b20l0010007d0101336162931201401n4j575a0pccbc68c4675905al0rrp5cd9h2rm360116413p301q100000

Tetrastigma rumicispermum 000000300110521e02600a600010001001100011080000100k20b001000650101333742711201100aj08f4e3bdja84r0cd4232falbcfg5fe892rk34e6115117300k100010

Tetrastigma serrulatum 000000300210820e0260084000100011101001110a0000100620l00100072010122e2ja2302001009d81p6a4demlj5fcj96360cale6rr63jdg2rr527123901j001k100000

Vitis aestivalis 000000600000200701a00gp000110011100101020g1112120810e100001ka0100223be6b412001005ce0q7c8bdbce68dcqj41ph0rrrnh82ra96rgf0n3a4a01g3102000000

Vitis betulifolia 000000600000400901901ep000110011100101020d1002120810e100001dc010044559b2512003009a85eg5e5d88c96cjnd41ch1lrr9k72rgd8pm60e292a01j6102000000

Vitis flexuosa 0000003000004009016019l001110011100101020c00021208109100001hf0100335aj1e212002003gf7de8g8fcee59cdpg52ee1krr9h71rl88rke0g273a02k3104000000

Vitis piasezkii 000000300000210b01601bp000110011100101020f0002120b10a100001l90100443a93b112001008ae1nb8a8ea9a68cdnb41lm1hrrek71rec6hm40e290a01g3103000000

Vitis rotundifolia 000000000000300501600rf001110011100101020b11121208105100001rr0100232cj4b112001009dl3g5f4eebcg868bpg42mb2ler8e76fbc3rl90d221a00j0001000000

Vitis tsoi 0000000000003009017009e00011001110010102050002020810a100001gh0100234ae09012002004hb4gabf7f7ag85chna52ee5ljg5f72rfaalk71c2b3800j3001000000

Vitis vinifera 000000600100300b01900gp000010001100101020b1102120810l100001gh0100342a96331200300aba3jj68aeacc58efpb31jg0qrrcl72rfe7dm50m4a3a0368003000000

Yua austro-orientalis 0000003000???107124100e100000000?0010102091000100820k100?00cj01006a3cpj871200c00cb81m8c1eeghg59ccmc42ff8ldcnj4edce1rj92h312900m3102000000

Yua chinensis 000000300010910b12600bc10010000010010102041000100620e100000aj0000692bgf031200h006b51me63cemgd4e1egj947g1lrrmr877jf4rr50d322a00g3102000000

Parthenocissus clarnensis ????????????????????????????????????????????????????????????????????????????????4db2l5h5jeb775d95lnm4bf0lrrjjc5r5g4rhb0j452a01j3????00000

Character state:

a = 10, b = 11, c = 12, d = 13, e = 14, f = 15, g = 16, h = 17, j = 18, k = 19, l = 20, m = 21, n = 22, p = 23, q = 24, r = 25

301

APPENDIX K

DATA MATRIX USED IN THE ANALYSIS INCLUDING FOSSIL VITIS MAGNISPERMA,

CONTINUOUS CHARACTERS TREATED WITH GW CODING

302

10 20 30 40 50 60 70 80 90 100 110 120 130

. . . . . . . . . . . . .

Acareosperma spireanum 0000006000???20b016008e0001000???1001111?d000010?e20?????????????????????0010210mhlrp5043e67a86c8q460n6al20rr0ra651mj334l05ar45k10q101010

Ampelocissus abyssinica 0000?0300010900701d01bk000110000100?01000q1112120e10d100100ea2100aaj2r9d51111400caj3h5afle57755c6j541rdak5jcg23ra6jgk235362621m3104000000

Ampelocissus acapulcensis 000000d00010a00b01r005h000110000100001000f2112120e10d100100fd210064e6paa21200j00gfh9b7bdkdfaa5ac6kc43fd5lca8h71rk8acgb1b474a01p3104000000

Ampelocissus acetosa 0000106000003209026013g100110000100001000h1112120b10d100100a82100daa6jbe40210j009bj3k3h8me9bb56c5fc34f8ck2ghh52rhc5ql636246611b3101000000

Ampelocissus africana 000000600000300901j00gh000010000100001000b1112120b10610010039210095e8m6d21110r00cbk2m1j2kfbe936f7e733lbaldh0012rk540a233110a03m0104000000

Ampelocissus barbata 000000300000100901m00bn000110100100?01000n2112120b10510010086210086e5n4a41211e00aap1m4gekg47864c6e682le3lffmp12ra4lnl405292911h3002000000

Ampelocissus botryostachys 0000000000???109016005c000110000?00?01000q111212360050001006h21009a85l3b21211m00hbc6h0hgp843585c1ka427j0mrrnl51rf7rrm304263a04r3105000000

Ampelocissus erdvendbergiana 000000d00000600701m00gk000110000100001000j2112120h10d100100df211095c4edd11200e007rf9f9agfce995aacrh42ce5lhbjf60rm7crmf0d2e6a02e3101000000

Ampelocissus javalensis 000000900000100901g005g000110000100001000q2112120h10d100100782100c9f3jde71201900jgf9dc2ljg76765can441gh3jlfhf21rkbhpl50c5e1a11j3002000000

Ampelocissus latifolia 000010900100200701g00dl000110000100101000g2112120e106100100442100b7b7j8c41210l008ej2f7b7mj5b735c5ge053b8l4lgf41rlbakj71d582a0193003000000

Ampelocissus ochracea 000000300210d00900d01ar000110000100101000r11121236000000000bj210085c9p5d10211700gaf6bb3glf45445c9k871fh1lrrnr10rb4krn401255a0190001000000

Ampelocissus robinsonii 000000600000200701d007c000110000100001000d11121006109100000532100a4r1b99b1200n006ea7ge4fa57ab66ffqe528h6ldkhk61rn8crkd06162a03h3104000000

Ampelopsis arborea 000000600000430702600nc01010000010000100091010112820e100000640100431c2k861200d005eb1qeb7df9ge57mdhkl54j1lrrmh826qb5rm80e215a01g3102000000

Ampelopsis cantoniensis 000000300000230b01600ee01010000010000100081000112820j100000650100542g6d920200d003jb1naer0a8ae8acrjd837l8hgfmd71dn86rmb1p722700g3104000000

Ampelopsis cordata 000000600000200901700qf01010000010000100091010112820j1000008c0200661p6m550202j007jd0r7j76ebdd6fdfjpf80g1lrpqk77akf3rp60d213a01h3003000000

Ampelopsis delavayana 000000600000010b017008e01010100010000100051010112620e1000002b0200652k9g440200b002pd2m8fb95fgf5fcbked60n0lrrre72drc4rn70a322a04g3104000000

Ampelopsis glandulosa 000000600000300501700je01010100010000100081010112620e1000008d0200541k4h770202g000jc0raca80dee5dfejll70h1lrrrr91glc4rrb09515a03l3105000000

Ampelopsis grossedentata 001000300000230702610le00010000010000100071000112820f1000004c0100643b6d431201b003l95f8dqad7bh95cmphb30l6lnfmc61rpadrra1c662a01g0003000000

Cayratia cardiophylla 000010300110110b00a00ek000100000011010110c1001111h20j001000430200650f0h4502012016hg3l19nbg45ab4ch733707b6ffge32rd3ekl423142a1806105000001

Cayratia geniculata 000000300110410d01a00ek000100000011010110a1001111k20l0010005f0200550h2ee80201300eaq2l1e0gf5fc45fdb5449b3crrrr71r300rn405r63a07h811f100001

Cayratia japonica 000000600010420b01600ee000100001100011110d0001111k20j0010009a0200550l1bc402002005kfaccce73acg74chc6550gdle5fq42rff7rla2r7f4818fe116000000

Cayratia maritima 000000600010420b02700ek000100001100011110d0001111k20g001000890200632d3d9c02001008j87b97kc646664cd81340f9ld5eh62rh6emh818552a16je11g100000

Cayratia oligocarpa 000000600010520g01700cf000100001100011110d0001111n20j001000460200641d2g360201801ddh9b8akee44784ca41450e4j73kl21rh7grk301643a58g611f100000

Cayratia trifolia 000000k11010611d01700ef000100001100011110b0001111e20j001000a70200523h5bc202002017d63kh8k5bdeh76crga340gbkgcmn62rgc9rm73j562a15pe11d100000

Cayratia triternata 000000600010630b01700ef00010000110001111080001111k2080010106b0200c46e4f8202001014gc8hf5n9d88c86bhk662cj3lggfg62rd3jrk91e2f3a09ge116100000

Cissus alata 000010600200810b01g102a00010010000000100060000112820j0000006d0100431l4ha40000400b4a0r1j73e9dl84ce233m082cr9rrr2h6g2rrc0b41aa05jk107000000

Cissus antarctica 000000300010e00d017102g01000100010000100071010012620e000010470100542f6cb41200g00blc1l0m9hf66878c740360bfl2d5554rg17fbc365rfr04ge105000000

Cissus assamica 0000003001007007007102400000100010000100090000112820g0000109d0100431h2l25001030098g0r4924eglh4cjb204j0775karrlem2h3rr62931561638107000000

Cissus biformifolia 0000103000005009006105500000100000000100080000112820d0001107d1200340j4k661010h00fbj0r1k7a66c944ha213j09qle5rrcgh1b6rrc4520c724ge104000000

Cissus campestris 000010300000102701g105200010000000000100080000112820h0000003g0200441k5f6200000006hh0r3j45d6cf74ja543l080lrrrrc2c7h2rr70d524a08me107000000

Cissus cornifolia 10002????10090090261002000001000100001020c0000102e20e000000a70200541h4p420010200f4g0r1f66r3ce60fa323h064grgrrg7l2l2rr607417a07j810d000000

Cissus descoingsii 00001000000050090161058000101000000001000a0000112e20d000110490100440k2g620011900jem0r7a57dab638c3214k07r39arrjar3f6rr8b42145175e108000000

Cissus fuliginea 0000120001004007019105d00010100010100100050000112b20j000000bd0200540l0k6300004007lk0rr3k9c68b75c6413g0j58q8rr9825kerr705316715b8106000000

Cissus granulosa 000010600200510d126000400010000000000102181000100b20g000000590100671j8e9402007009jf0r2e2dfag93ak9hpj60kbl3rrr6f0ja1rhcn511f101g0004000000

Cissus hypoglauca 000000300010g10e121102f10000100010100002081000100b2090000003d02005458agad1200j00b6e0r0f1gehjb3ac355360d9l2rr994dm83rl728224701g3002000000

Cissus mirabilis 0001006001004107026102e00000100010110100070000112620j0001004b0200831q1j550010400bad0ra59796ef66mc863h0a3fp7r7f9r3c6rp90532ca04p6105000000

Cissus obovata 0001103111000107026000400000100010000100070000112820j0001004e0200733j4j5200004003de0rb647ebpn54kha93h081lrrrre1k6h3rq50b223a07m3106000000

Cissus palmata 000000310200710b0261035000101001100101020a0000112820j0001006k0100321m5p730210700e6e0r5d78n7dj73fe334g091hrlrre3e2l3rr50a413a18pe10a000000

Cissus paullinifolia 000010600000530b0170030000001000000001000c0000112b20k0001006a0100330q3p441010j00m6l0r4da3e7eg64f9364k07e9fcrrh375b5rrd29303914jk003000000

Cissus penninervis 000010300000210r120????000100000000001021c1000102b20j000000410100661d5f551200900d6j0r2j1nfg985d719a3707gl1rrr568hf2rq534113102m0106000000

Cissus quadrangularis 0011100000004007016101600000000110000102080000112820l0001005c0200551l9j8300001005fn0r2852e25dd0c4203q090frrrrj5j2n2rq80b324a05p3106000000

Cissus reniformis 0001000000019009017101400000000000100100050000112820j0001007a0200642h5n0600000009ap0r64d1f57b84c1223q0c10rrrrjbn1r3rr504223a03m0104000000

Cissus simsiana 000000300000410d01a0078010100000100001020c1110112b20g0000107g0100532d4f650200n006jc4gcada6dab6ecehem35e4lpgd860rn5alj817214812g3108000000

Cissus sterculiifolia 000010000010610d121100f01010100000100000181000102b20d000000300100531n3ab41110q00r0r0r2c0mfda848c001450cll0jjrd1rda3n01q0013203j3106000000

Cissus striata ssp. argentina 000010600100410j126005e00010000000010100171000112820h000100ba2100551m8b960200j005he0r5969fab84bcamld43n1lrrpe648mb4rr90b213a01j0106000000

Cissus trianae 0000106000006109126002800000100010100100061100112820h00000097200096477f530201n009ce0r1e1fflnh4bcdadk60d9l4prr77aj71rdg5510r005p3005000000

Cissus verticillata 0001003000018007017102400010000010000100070000112820l000000300200431n7j7400002006dn0r7c95e8df66ja844k082lqcrre0baf5rrb0c417915ee109000000

Clematicissus angustissima 0000003001003100120????000000000100001000b1111112820h100000580100652g9f680210d0087d0r4e3f300004c7emk38k1lfrrra4lfd8rr404234502g010m100100

Clematicissus opaca 000000000000110b023005c00010000010000100071011112620h1001004d0200623g4h420200g008mb0r9a7k686667c3ml343k0lrrrr60rpe8rra05737a02m0106000000

Cyphostemma adenocaule 000000300210a20d016007f00010010110001111050001112h20j001110b21210240e2gb600102107ej0r6l18e9jg57r9523r061lrerrd3k1j0rr807416a0798119010000

Cyphostemma buchananii 000000300210e10d01700jk00010000110001111090001111k20j001110451200670f3ac30011410a9l0r1l2bf9bg84cb784m066ljgrrc1k6l0rr51b31480a5e109010000

Cyphostemma hereroense 00012????210912e12601hf000100100010011110g0000112e20m0011106b1210660l1fc3001?011h9l0r0r09fbjf47m4773p08dl5rrrf4f5f0rqb0n415404jk11g010000

Cyphostemma junceum 10002????110l12g116007f000100000000101221j0003111n20e0011009c1200881c5g950010101bae0r1n1afbee58d6553n077le8rrf2e5e0rpb0k51571cmr11b010000

Cyphostemma lageniflorum 000100300210810b01a00ek000100100010011110c0001111r20e001110931210680h3db30011110a8h2m4g09f68c84ca653l0c5lrahrc3r6e0rr308213a1cge10r110000

Cyphostemma laza 100100300010630702600540001000011000?111080001112e20l001100681200641g1n9b0010111eep0r5l0eee9b7894653r0a9nerrre3f5h0rl90h41571cpr11b010000

Cyphostemma microdiptera 0000006002109307027007h000100100010011110c0001111n20l001100740200641g2g9c001010187k0r4f1deahe46g69b3n058pgrrrdak6k0rr302116a0rge019010000

Cyphostemma odontadenium 000100300210910b017007k00010010001001111080001111h20g001?10781210450k4g66001?2116jm0r0p1ce7ca56j5633q0a1lplrrder3k0rr80k323a08de11a010000

Cyphostemma paucidentatum 000000300211h10b11a00ej000100101100011110b0001111k20f001110b41200230k2g74001?0119cf2m0p36f8af84cc743n086lmhnre3r5e0rr40d322a199e119010000

Cyphostemma setosum 000100600210912901d00em000000101100010110d0001111n20l001100a41200540r1d960011210cak3j1j19e8ed54j3774m0bal95rrchr3f0rr90a416a26jk11g110000

Leea guineensis 10002????000k30m00c00b8001100000000001221h0000102h20j1101000c0200gc1e3rrc13010004ek0r2g5cf55rr484453q030l1rrre2r8c0r2rg932e01586108010000

Leea tetramera 10002????000r30l00601eq000100000000001221m0000101e20g0100102f0200rr0m2ndr1301100p2m0r5h17f47a84c4594n00190rrrm9r0e0r1hr7106005ge10e010000

Nothocissus spicifera 00003000000030090061058000110000000001221p1002000610e000?00662100cf90a9c41111000e6l2g6b0nfcjd45c6np53kbpl2qa773r5a1544c1024501g0000000000

Parthenocissus dalzielii 000000r11010511d02600ee000100000001101000420000?0320d100000880100792bbf7612004005ngr05j2rfll72jc5rr430j1lrrej76mfg4rrd05125a03e0104000000

Parthenocissus laetevirens 000000r11010511e016009c00010000000110100082000102820e1000006j00007d3alk3b1200g007nhq22m4legjd4cc4qh620k0lrrcr38r9g3rr301024a03g0104000000

303

Parthenocissus quinquefolia 000000r01010c11b02600nc000100000001101000a2000000620k1001008m00008c3cnf351200f006dd536b3kfmcc5d97nj933l1lrrah95gcd4rr504115a01g0102000000

Parthenocissus vitacea 000000600010a11e02600mc000100000000101020e1000102b20j1000006n00004449hg8a02007006ge916c4gelba5m78lj840j1lrrdh66hdj5rm607127a01j0106000000

Pterisanthes cissioides 000000000100210d0261059000010000100101000p11120?33010000100ap0000005r62d20101700blh1l1qnjb44684c2dc380l0lrrrr72rkbkrm705687a03j0004000000

Pterisanthes polita 0000000000004007016105f000010000100101000p11120?33010000100am0000007r72910101400cjj6d1pmge44684c2mm560r1grrlp72rk8hrq6052a7a01j0106000000

Rhoicissus digitata 000010000010310b120????0100010001010010200100001262051000106b0100322p9d631200n006nk4m6g3kerr92pc8a6a70adl1rfh6hbbb2rcb3c536a03g610n100000

Rhoicissus tridentata 000010300010810701601dp010001000100001000b1110012620f100100a60200220l3hd41200n00apf4n8l57fcjh5gmeb73c07ff5rrr7bgcb5rfl4p526a04p8002000000

Tetrastigma bioritsense 010112010110910902600bm00010001001100012050000110820g001000af02013368d3f01201700bje0r590led479j55d9d54ael0rrr5mr2j1rk722017104m0115000000

Tetrastigma obtectum 000011n01210411d02600ee0001000100110001108300?0?0020r001100b5010122639b5400000005jd0r1l1ldjdb4d22la63hfal6rrr50rf82rr061011307a001h100000

Tetrastigma planicaule 010010300110f10r027005e000100010011000110d0000100b20l0010007d0101336162931201401n4j575a0pccbc68c4674905al0rrp5cd9h2rm360116413p301q100000

Tetrastigma rumicispermum 000000300110521e02600a600010001001100011080000100k20b001000650101333742711201100aj08f4e3bdja84r0cd4232falbcfg5fe892rk34e6115117300k100010

Tetrastigma serrulatum 000000300210820e0260084000100011101001110a0000100620l00100072010122e2ja2302001009d81p6a4demlj5fcj96360cale6rr63jdg2rr527123901j001k100000

Vitis aestivalis 000000600000200701a00gp000110011100101020g1112120810e100001ka0100223be6b412001005ce0q7c8bdbce68dcqj31ph0rrrnh82ra96rgf0n3a4a01g3102000000

Vitis betulifolia 000000600000400901901ep000110011100101020d1002120810e100001dc010044559b2512003009a85eg5e5d88c96cjnd31ch1lrr9k72rgd8pm60e292a01j6102000000

Vitis flexuosa 0000003000004009016019l001110011100101020c00021208109100001hf0100335aj1e212002003gf7de8g8fcee59cdpg42ee1krr9h71rl88rke0g273a02k3104000000

Vitis piasezkii 000000300000210b01601bp000110011100101020f0002120b10a100001l90100443a93b112001008ae1nb8a8ea9a68cdnb31lm1hrrek71rec6hm40e290a01g3103000000

Vitis rotundifolia 000000000000300501600rf001110011100101020b11121208105100001rr0100232cj4b112001009dl3g5f4eebcg868bpg32mb2ler8e76fbc3rl90d221a00j0001000000

Vitis tsoi 0000000000003009017009e00011001110010102050002020810a100001gh0100234ae09012002004hb4gabf7f7ag85chna42ee5ljg5f72rfaalk71c2b3800j3001000000

Vitis vinifera 000000600100300b01900gp000010001100101020b1102120810l100001gh0100342a96331200300aba3jj68aeacc58efpb31jg0qrrcl72rfe7dm50m4a3a0368003000000

Yua austro-orientalis 0000003000???107124100e100000000?0010102091000100820k100?00cj01006a3cpj871200c00cb81m8c1eeghg59ccmc32ff8ldcnj4edce1rj92h312900m3102000000

Yua chinensis 000000300010910b12600bc10010000010010102041000100620e100000aj0000692bgf031200h006b51me63cemgd4e1egj847g1lrrmr877jf4rr50d322a00g3102000000

Vitis magnisperma ????????????????????????????????????????????????????????????????????????????????edh5g1l6gf9567a72qrr3lb0lrrch6????5rm?08???a0???????00000

Character state:

a = 10, b = 11, c = 12, d = 13, e = 14, f = 15, g = 16, h = 17, j = 18, k = 19, l = 20, m = 21, n = 22, p = 23, q = 24, r = 25

304

APPENDIX L

DATA MATRIX USED IN THE ANALYSIS INCLUDING SIX FOSSILS, CONTINUOUS

CHARACTERS TREATED WITH GW CODING

305

10 20 30 40 50 60 70 80 90 100 110 120 130

. . . . . . . . . . . . .

Acareosperma spireanum 0000006000???20b016008e0001000???1001111?d000010?e20?????????????????????0010210mhlrp5043e67a86c8q460n6al20rr0ra651mj232l05ar44g10q101010

Ampelocissus abyssinica 0000?0300010900701d01bk000110000100?01000q1112120e10d100100ea2100aaj2r9d51111400caj3h5afle57755c6j541rdak5jcg23ra6jgk232362621h2104000000

Ampelocissus acapulcensis 000000d00010a00b01r005h000110000100001000f2112120e10d100100fd210064e6paa21200j00gfh9b7adkdfaa5ac6kc43fd5lca8h71rk8acg815474a01k2104000000

Ampelocissus acetosa 0000106000003209026013g100110000100001000h1112120b10d100100a82100daa6jbe40210j009bj3k3g8me9bb56c5fc34f8ck2ghh52rhc5ql53324661192101000000

Ampelocissus africana 000000600000300901j00gh000010000100001000b1112120b10610010039210095e8m6d21110r00cbk2m1h2kfbe936f7e733lbaldh0012rk540a131110a03h0104000000

Ampelocissus barbata 000000300000100901m00bn000110100100?01000n2112120b10510010086210086e5n4a41211e00aap1m4fekg47864c6e682le4lffmp12ra4lnl302292911e2002000000

Ampelocissus botryostachys 0000000000???109016005c000110000?00?01000q111212360050001006h21009a85l3b21211m00hbc6h0ggp843585c1ka427j1mrrnl51rf7rrm202263a04m2105000000

Ampelocissus erdvendbergiana 000000d00000600701m00gk000110000100001000j2112120h10d100100df211095c4edd11200e007rf9f9agfce995aacrh42ce5lhbjf60rm7crmb062e6a02c2101000000

Ampelocissus javalensis 000000900000100901g005g000110000100001000q2112120h10d100100782100c9f3jde71201900jgf9dc2ljg76765can441gh3jlfhf21rkbhpl4055e1a11f2002000000

Ampelocissus latifolia 000010900100200701g00dl000110000100101000g2112120e106100100442100b7b7j8c41210l008ej2f7b7mj5b735c5ge053b8l4lgf41rlbakj516582a0182003000000

Ampelocissus ochracea 000000300210d00900d01ar000110000100101000r11121236000000000bj210085c9p5d10211700gaf6bb3glf45445c9k871fh1lrrnr10rb4krn301255a0180001000000

Ampelocissus robinsonii 000000600000200701d007c000110000100001000d11121006109100000532100a4r1b99b1200n006ea7ge4fa57ab66ffqe528h6ldkhk61rn8crk903162a03e2104000000

Ampelopsis arborea 000000600000430702600nc01010000010000100091010112820e100000640100431c2k861200d005eb1qea7df9ge57mdhkl54j1lrrmh826qb5rm606215a01d2102000000

Ampelopsis cantoniensis 000000300000230b01600ee01010000010000100081000112820j100000650100542g6d920200d003jb1nadr0a8ae8acrjd837l8hgfmd71dn86rm81a722700d2104000000

Ampelopsis cordata 000000600000200901700qf01010000010000100091010112820j1000008c0200661p6m550202j007jd0r7h76ebdd6fdfjpf80g1lrpqk77akf3rp406213a01e2003000000

Ampelopsis delavayana 000000600000010b017008e01010100010000100051010112620e1000002b0200652k9g440200b002pd2m8eb95fgf5fcbked60n0lrrre72drc4rn504322a04d2104000000

Ampelopsis glandulosa 000000600000300501700je01010100010000100081010112620e1000008d0200541k4h770202g000jc0raca80dee5dfejll70h1lrrrr91glc4rr804515a03g2105000000

Ampelopsis grossedentata 001000300000230702610le00010000010000100071000112820f1000004c0100643b6d431201b003l95f8dqad7bh95cmphb30l6lnfmc61rpadrr815662a01d0003000000

Cayratia cardiophylla 000010300110110b00a00ek000100000011010110c1001111h20j001000430200650f0h4502012016hg3l19nbg45ab4ch733707b6ffge32rd3ekl321142a1805105000001

Cayratia geniculata 000000300110410d01a00ek000100000011010110a1001111k20l0010005f0200550h2ee80201300eaq2l1d0gf5fc45fdb5449b3crrrr71r300rn302r63a07e711f100001

Cayratia japonica 000000600010420b01600ee000100001100011110d0001111k20j0010009a0200550l1bc402002005kfaccce73acg74chc6550gdle5fq42rff7rl82b7f4818cb116000000

Cayratia maritima 000000600010420b02700ek000100001100011110d0001111k20g001000890200632d3d9c02001008j87b97kc646664cd81340f9ld5eh62rh6emh614552a16fb11g100000

Cayratia oligocarpa 000000600010520g01700cf000100001100011110d0001111n20j001000460200641d2g360201801ddh9b89kee44784ca41450e4j73kl21rh7grk200643a58d511f100000

Cayratia trifolia 000000k11010611d01700ef000100001100011110b0001111e20j001000a70200523h5bc202002017d63kh8k5bdeh76crga340gbkgcmn62rgc9rm538562a15kb11d100000

Cayratia triternata 000000600010630b01700ef00010000110001111080001111k2080010106b0200c46e4f8202001014gc8hf5n9d88c86bhk662cj3lggfg62rd3jrk6162f3a09db116100000

Cissus alata 000010600200810b01g102a00010010000000100060000112820j0000006d0100431l4ha40000400b4a0r1h73e9dl84ce233m082cr9rrr2h6g2rr90541aa05fg107000000

Cissus antarctica 000000300010e00d017102g01000100010000100071010012620e000010470100542f6cb41200g00blc1l0l9hf66878c740360bfl2d5554rg17fb8335rfr04db105000000

Cissus assamica 0000003001007007007102400000100010000100090000112820g0000109d0100431h2l25001030098g0r4924eglh4cjb204j0775karrlem2h3rr42431561627107000000

Cissus biformifolia 0000103000005009006105500000100000000100080000112820d0001107d1200340j4k661010h00fbj0r1k7a66c944ha213j09qle5rrcgh1b6rr94220c724db104000000

Cissus campestris 000010300000102701g105200010000000000100080000112820h0000003g0200441k5f6200000006hh0r3h45d6cf74ja543l080lrrrrc2c7h2rr506524a08hb107000000

Cissus cornifolia 10002????10090090261002000001000100001020c0000102e20e000000a70200541h4p420010200f4g0r1f66r3ce60fa323h064grgrrg7l2l2rr403417a07f710d000000

Cissus descoingsii 00001000000050090161058000101000000001000a0000112e20d000110490100440k2g620011900jem0r7957dab638c3214k07r39arrjar3f6rr6b22145174b108000000

Cissus fuliginea 0000120001004007019105d00010100010100100050000112b20j000000bd0200540l0k6300004007lk0rr3k9c68b75c6413g0j58q8rr9825kerr50231671597106000000

Cissus granulosa 000010600200510d126000400010000000000102181000100b20g000000590100671j8e9402007009jf0r2e2dfag93ak9hpj60kbl3rrr6f0ja1rh9n211f101d0004000000

Cissus hypoglauca 000000300010g10e121102f10000100010100002081000100b2090000003d02005458agad1200j00b6e0r0e1gehjb3ac355360d9l2rr994dm83rl524224701d2002000000

Cissus mirabilis 0001006001004107026102e00000100010110100070000112620j0001004b0200831q1j550010400bad0ra49796ef66mc863h0a3fp7r7f9r3c6rp70232ca04k5105000000

Cissus obovata 0001103111000107026000400000100010000100070000112820j0001004e0200733j4j5200004003de0rb647ebpn54kha93h081lrrrre1k6h3rq305223a07h2106000000

Cissus palmata 000000310200710b0261035000101001100101020a0000112820j0001006k0100321m5p730210700e6e0r5d78n7dj73fe334g091hrlrre3e2l3rr405413a18kb10a000000

Cissus paullinifolia 000010600000530b0170030000001000000001000c0000112b20k0001006a0100330q3p441010j00m6l0r4da3e7eg64f9364k07e9fcrrh375b5rra24303914fg003000000

Cissus penninervis 000010300000210r120????000100000000001021c1000102b20j000000410100661d5f551200900d6j0r2h1nfg985d719a3707gl1rrr568hf2rq432113102h0106000000

Cissus quadrangularis 0011100000004007016101600000000110000102080000112820l0001005c0200551l9j8300001005fn0r2852e25dd0c4203q090frrrrj5j2n2rq605324a05k2106000000

Cissus reniformis 0001000000019009017101400000000000100100050000112820j0001007a0200642h5n0600000009ap0r64d1f57b84c1223q0c10rrrrjbn1r3rr302223a03h0104000000

Cissus simsiana 000000300000410d01a0078010100000100001020c1110112b20g0000107g0100532d4f650200n006jc4gc9da6dab6ecehem35e4lpgd860rn5alj613214812d2108000000

Cissus sterculiifolia 000010000010610d121100f01010100000100000181000102b20d000000300100531n3ab41110q00r0r0r2b0mfda848c001450cll0jjrd1rda3n01q0013203f2106000000

Cissus striata ssp. argentina 000010600100410j126005e00010000000010100171000112820h000100ba2100551m8b960200j005he0r5969fab84bcamld43n1lrrpe648mb4rr705213a01f0106000000

Cissus trianae 0000106000006109126002800000100010100100061100112820h00000097200096477f530201n009ce0r1d1fflnh4bcdadk60d9l4prr77aj71rdb5210r005k2005000000

Cissus verticillata 0001003000018007017102400010000010000100070000112820l000000300200431n7j7400002006dn0r7c95e8df66ja844k082lqcrre0baf5rr805417915cb109000000

Clematicissus angustissima 0000003001003100120????000000000100001000b1111112820h100000580100652g9f680210d0087d0r4d3f300004c7emk38k1lfrrra4lfd8rr302234502d010m100100

Clematicissus opaca 000000000000110b023005c00010000010000100071011112620h1001004d0200623g4h420200g008mb0r997k686667c3ml343k1lrrrr60rpe8rr802737a02h0106000000

Cyphostemma adenocaule 000000300210a20d016007f00010010110001111050001112h20j001110b21210240e2gb600102107ej0r6k18e9jg57r9523r061lrerrd3k1j0rr503416a0787119010000

Cyphostemma buchananii 000000300210e10d01700jk00010000110001111090001111k20j001110451200670f3ac30011410a9l0r1l2bf9bg84cb784m066ljgrrc1k6l0rr41531480a4b109010000

Cyphostemma hereroense 00012????210912e12601hf000100100010011110g0000112e20m0011106b1210660l1fc3001?011h9l0r0q09fbjf47m4773p08dl5rrrf4f5f0rq80a415404fg11g010000

Cyphostemma junceum 10002????110l12g116007f000100000000101221j0003111n20e0011009c1200881c5g950010101bae0r1n1afbee58d6553n077le8rrf2e5e0rp80851571chl11b010000

Cyphostemma lageniflorum 000100300210810b01a00ek000100100010011110c0001111r20e001110931210680h3db30011110a8h2m4f09f68c84ca653l0c5lrahrc3r6e0rr204213a1cdb10r110000

Cyphostemma laza 100100300010630702600540001000011000?111080001112e20l001100681200641g1n9b0010111eep0r5k0eee9b7894653r0a9nerrre3f5h0rl70841571ckl11b010000

Cyphostemma microdiptera 0000006002109307027007h000100100010011110c0001111n20l001100740200641g2g9c001010187k0r4e1deahe46g69b3n058pgrrrdak6k0rr301116a0rdb019010000

Cyphostemma odontadenium 000100300210910b017007k00010010001001111080001111h20g001?10781210450k4g66001?2116jm0r0n1ce7ca56j5633q0a1lplrrder3k0rr609323a08bb11a010000

Cyphostemma paucidentatum 000000300211h10b11a00ej000100101100011110b0001111k20f001110b41200230k2g74001?0119cf2m0n36f8af84cc743n086lmhnre3r5e0rr306322a198b119010000

Cyphostemma setosum 000100600210912901d00em000000101100010110d0001111n20l001100a41200540r1d960011210cak3j1j19e8ed54j3774m0bbl95rrchr3f0rr705416a26fg11g110000

Leea guineensis 10002????000k30m00c00b8001100000000001221h0000102h20j1101000c0200gc1e3rrc13010004ek0r2g5cf55rr484453q030l1rrre2r8c0r2jg432e01575108010000

Leea tetramera 10002????000r30l00601eq000100000000001221m0000101e20g0100102f0200rr0m2ndr1301100p2m0r5g17f47a84c4594n00190rrrm9r0e0r1cr3106005db10e010000

Nothocissus spicifera 00003000000030090061058000110000000001221p1002000610e000?00662100cf90a9c41111000e6l2g6b0nfcjd45c6np53kbpl2qa773r5a1543c0024501d0000000000

Parthenocissus dalzielii 000000r11010511d02600ee000100000001101000420000?0320d100000880100792bbf7612004005ngr05j2rfll72jc5rr430j1lrrej76mfg4rra02125a03c0104000000

Parthenocissus laetevirens 000000r11010511e016009c00010000000110100082000102820e1000006j00007d3alk3b1200g007nhq22l4legjd4cc4qh620k0lrrcr38r9g3rr201024a03d0104000000

306

Parthenocissus quinquefolia 000000r01010c11b02600nc000100000001101000a2000000620k1001008m00008c3cnf351200f006dd536b3kfmcc5d97nj933l1lrrah95gcd4rr302115a01d0102000000

Parthenocissus vitacea 000000600010a11e02600mc000100000000101020e1000102b20j1000006n00004449hg8a02007006ge916b4gelba5m78lj840j1lrrdh66hdj5rm403127a01f0106000000

Pterisanthes cissioides 000000000100210d0261059000010000100101000p11120?33010000100ap0000005r62d20101700blh1l1qnjb44684c2dc380l0lrrrr72rkbkrm502687a03f0004000000

Pterisanthes polita 0000000000004007016105f000010000100101000p11120?33010000100am0000007r72910101400cjj6d1nmge44684c2mm560r1grrlp72rk8hrq4022a7a01f0106000000

Rhoicissus digitata 000010000010310b120????0100010001010010200100001262051000106b0100322p9d631200n006nk4m6g3kerr92pc8a6a70adl1rfh6hbbb2rc835536a03d510n100000

Rhoicissus tridentata 000010300010810701601dp010001000100001000b1110012620f100100a60200220l3hd41200n00apf4n8l57fcjh5gmeb73c07ff5rrr7bgcb5rff4a526a04k7002000000

Tetrastigma bioritsense 010112010110910902600bm00010001001100012050000110820g001000af02013368d3f01201700bje0r580led479j55d9d54ael0rrr5mr2j1rk521017104h0115000000

Tetrastigma obtectum 000011n01210411d02600ee0001000100110001108300?0?0020r001100b5010122639b5400000005jd0r1k1ldjdb4d22la63hfal6rrr50rf82rr0600113079001h100000

Tetrastigma planicaule 010010300110f10r027005e000100010011000110d0000100b20l0010007d0101336162931201401n4j575a0pccbc68c4674905al0rrp5cd9h2rm260116413k201q100000

Tetrastigma rumicispermum 000000300110521e02600a600010001001100011080000100k20b001000650101333742711201100aj08f4e3bdja84r0cd4232falbcfg5fe892rk2466115116200k100010

Tetrastigma serrulatum 000000300210820e0260084000100011101001110a0000100620l00100072010122e2ja2302001009d81p694demlj5fcj96360cale6rr63jdg2rr323123901f001k100000

Vitis aestivalis 000000600000200701a00gp000110011100101020g1112120810e100001ka0100223be6b412001005ce0q7c8bdbce68dcqj31ph0rrrnh82ra96rgb0a3a4a01d2102000000

Vitis betulifolia 000000600000400901901ep000110011100101020d1002120810e100001dc010044559b2512003009a85eg5e5d88c96cjnd31ch1lrr9k72rgd8pm406292a01f5102000000

Vitis flexuosa 0000003000004009016019l001110011100101020c00021208109100001hf0100335aj1e212002003gf7de8g8fcee59cdpg42ee1krr9h71rl88rka07273a02g2104000000

Vitis piasezkii 000000300000210b01601bp000110011100101020f0002120b10a100001l90100443a93b112001008ae1nb7a8ea9a68cdnb31lm1hrrek71rec6hm306290a01d2103000000

Vitis rotundifolia 000000000000300501600rf001110011100101020b11121208105100001rr0100232cj4b112001009dl3g5e4eebcg868bpg32mb2ler8e76fbc3rl706221a00f0001000000

Vitis tsoi 0000000000003009017009e00011001110010102050002020810a100001gh0100234ae09012002004hb4gabf7f7ag85chna42ee6ljg5f72rfaalk5162b3800f2001000000

Vitis vinifera 000000600100300b01900gp000010001100101020b1102120810l100001gh0100342a96331200300aba3jj68aeacc58efpb31jg0qrrcl72rfe7dm3094a3a0357003000000

Yua austro-orientalis 0000003000???107124100e100000000?0010102091000100820k100?00cj01006a3cpj871200c00cb81m8c1eeghg59ccmc32ff8ldcnj4edce1rj628312900h2102000000

Yua chinensis 000000300010910b12600bc10010000010010102041000100620e100000aj0000692bgf031200h006b51me63cemgd4e1egj847g1lrrmr877jf4rr406322a00d2102000000

Parthenocissus clarnensis ????????????????????????????????????????????????????????????????????????????????4db2l5h5jeb775d95lnh4bf1lrrjjc5r5g4rh808452a01f2????00000

Vitis magnisperma ????????????????????????????????????????????????????????????????????????????????edh5g1l6gf9567a72qrr3lb0lrrch6????5rm?04???a0???????00000

Palaeovitis paradoxa ????????????????????????????????????????????????????????????????????????????????alm0r1rg8ebee58fank45ea0lrrfda2clb7rer0rad3a02dr????00000

Ampelopsis rooseae ????????????????????????????????????????????????????????????????????????????????3hb0r8aab3egg5ekdmmd40h1lrrrk82fne4rr708453a0???????00000

Vitis tiffneyi ????????????????????????????????????????????????????????????????????????????????3fh2m8ad8e9ac77cfqg32pj0lrreg70rhh8rk40317?a02f0????00000

Ampelocissus wildei ??????????????????????????????????????????????????????????????????????????01????k992p2j2befef6a8bd733jb5lhkkj12??a6rfa2j8?1a02rr????00000

Character state:

a = 10, b = 11, c = 12, d = 13, e = 14, f = 15, g = 16, h = 17, j = 18, k = 19, l = 20, m = 21, n = 22, p = 23, q = 24, r = 25

307

APPENDIX M

DATA MATRIX USED IN THE ANALYSIS INCLUDING SIX FOSSILS, CONTINUOUS

CHARACTERS TREATED WITH DISCRETE CODING

308

10 20 30 40 50 60 70 80 90 100 110 120 130

. . . . . . . . . . . . .

Acareosperma spireanum 0000000000???20001100000001000???1001111?0000010?2202????????????????????0010010110110000100000101000111100110100001100010011101101101010

Ampelocissus abyssinica 0000?000001010000120100000110000100?01000111121202101100100102100211010111111000110010011100000101000111001000010010100000011010100000000

Ampelocissus acapulcensis 00000010001010000120010000110000100001000121121202101100100102100201010101200100110111111110000101000111111000011010100000010010100000000

Ampelocissus acetosa 00001000000002000210110100110000100001000111121202101100100002100211010100210100010010101100100101000111001000010001100000010000100000000

Ampelocissus africana 00000000000000000120000000010000100001000011121202101100100002100201010101110100110010101100000101000111111000010000100000010010100000000

Ampelocissus barbata 00000000000000000120000000110100100?01000121121202101100100002100211010001211100111010111100000101000121111110010011100001010010000000000

Ampelocissus botryostachys 0000000000???1000110010000110000?00?01000111121231001000100012100211010101211100110110111000000101000020112110010011200000010010100000000

Ampelocissus erdvendbergiana 00000010000010000120000000110000100001000121121202101100100102110201011101200100010111011100000011100121111000011011200101010010100000000

Ampelocissus javalensis 00000010000000000120010000110000100001000121121202101100100002100211011111201000110111011100000101000121011000010011100101010010000000000

Ampelocissus latifolia 00001010010000000120000000110000100101000121121202101100100002100211010101210100010010101100000101100011101000011001100100010000000000000

Ampelocissus ochracea 00000000021010000020100000110000100101000111121231000000000012100201010100211000110111011100000101000120112110010011200000010000000000000

Ampelocissus robinsonii 00000000000000000120000000110000100001000011121001101100000002100201010011200100010111010000100111100021111000011011100000010010100000000

Ampelopsis arborea 00000000000003000210000010100000100001000010101121202100000000100100101011200100010011100100100111110020112100001001200100010010100000000

Ampelopsis cantoniensis 00000000000003000110000010100000100001000010001121202100000000100100101000200100010011110000100111100021011100001001200100010010100000000

Ampelopsis cordata 00000000000000000110000010100000100001000010101121202100000000200100101010202100010011100100101111110020112100101101200100010010000000000

Ampelopsis delavayana 00000000000001000110000010101000100001000010101121202100000000200100101000200100010011110010101111110020112100001001200000010010100000000

Ampelopsis glandulosa 00000000000000000110000010101000100001000010101121202100000000200100101010202100010011100000101111110020112110001001200000010010100000000

Ampelopsis grossedentata 00100000000003000211000000100000100001000010001121202100000000100100101001201100010011110100110111110021111100011011200000010010000000000

Cayratia cardiophylla 00001000011001000010000000100000011010110010011112202001000000200100101010201001010010010100010110000011011000010011100000010100100000001

Cayratia geniculata 00000000011001010110000000100000011010110010011112202001000000200100101110201000111010101100100110000111012110010001200010010111111100001

Cayratia japonica 00000000001002000110000000100001100011110000011112202001000000200100100100200000010111110000100111000021110010010101100101010111110000000

Cayratia maritima 00000000001002000210000000100001100011110000011112202001000000200100101010200000010111010000000110000021110000010011100000010111111100000

Cayratia oligocarpa 00000000001012010110000000100001100011110000011112202001000000200100101010201001110111011100010100000021010010010011100000011110111100000

Cayratia trifolia 00000011101011110110000000100001100011110000011112202001000000200100100100200001010011010100100111000021011110010001200100010111111100000

Cayratia triternata 00000000001013000110000000100001100011110000011112201001010000200201101000200001010111010100100011000121011000010011100101010111110100000

Cissus alata 00001000020011000121010000100100000001000000001121202000000000100000101000000000100010100100100110001010010111000101200000110111100000000

Cissus antarctica 00000000001010010111011010001000100001000010100121202000010000100100100101200100110010101100000100000011101000110000100002120111100000000

Cissus assamica 00000000010010000011011000001000100001000000001121202000010000100100101000010000000010000111101110001011011111110101200000010101100000000

Cissus biformifolia 00001000000010000011011000001000000001000000001121202000110001200000101011010100110010100000000100001011110111100001200000111111100000000

Cissus campestris 00001000000000200121011000100000000001000000001121202000000010200100101000000000010010100100100100001010112111000101200100010111101000000

Cissus cornifolia 10002????10010000211011000001000100001020000001022202000000000200100101000010000100010100100100100001011011111100101200000010111101000000

Cissus descoingsii 00001000000010000111010000101000000001000000001122201000110000100100101000011000111011000100000100001011011111110101201000010101101000000

Cissus fuliginea 00001200010000000111010000101000101001000000001122202000000000200100101000000000010011010100000100001021010110100111200000010101100000000

Cissus granulosa 00001000020011011210011000100000000001021010001002202000000000100110101000200000010010100101000101110021102110100001101000100010000000000

Cissus hypoglauca 00000000001011011201010100001000101000020010001002201000000000200100011011200100100010101111100100000011102100101001100000010010000000000

Cissus mirabilis 00010000010001000211010000001000101101000000001121202000100000200200101010010000110011000000100110001011010101110001200000110010100000000

Cissus obovata 00011001110001000210011000001000100001000000001121202000100000200200101000000000010011000101100110001010112111000101200000010110100000000

Cissus palmata 00000001020011000211011000101001100101020000001121202000100010100000101000210000100010100100100110001010011111000101200000010111101000000

Cissus paullinifolia 00001000000013000110011000001000000001000000001122202000100000100000101001010100100010100100100100001011011111000001200000010111000000000

Cissus penninervis 0000100000000101120????000100000000001021010001022202000000000100110101011200000100010101110001000000011102110100101200000000010100000000

Cissus quadrangularis 00111000000000000111011000000001100001020000001121202000100000200100101000000000011010000100110100001010012111100101200000010110100000000

Cissus reniformis 00010000000110000111011000000000001001000000001121202000100000200100101010000000011010010100000100001010012111110101200000010010100000000

Cissus simsiana 00000000000001010110000010100000100001020011101122202000010010100100101000200100010011010000101111110021111000011011100000010010101000000

Cissus sterculiifolia 00001000001011011201010010101000001000001010001022201000000000100100100101110100101010101100000100000011101011010001001000000010100000000

Cissus striata ssp. argentina 00001000010001011210010000100000000101001010001121202000100002100100100010200100010010000100001101110020112100101001200000010010100000000

Cissus trianae 00001000000011001210010000001000101001000011001121202000000002000210001000201100010010101111101110110011002110100001100000100110000000000

Cissus verticillata 00010000000110000111011000100000100001000000001121202000000000200000101000000000011010100100100100001010111111000101200000010111101000000

Clematicissus angustissima 0000000001000100120????000000000100001000011111121202100000000100100101010210100000010101000000101110020112110100101200000010010101100100

Clematicissus opaca 00000000000001000210010000100000100001000010111121202100100000200100101000200100010011001000000101100020112110011101200000010010100000000

Cyphostemma adenocaule 00000000021012010110000000100101100011110000011122202001110001210000101110010010010010100101100100001010111111000101200000010101111010000

Cyphostemma buchananii 00000000021011010110000000100001100011110000011112202001110001200110100100011010110010100100100110001011111111000101200000010101101010000

Cyphostemma hereroense 00012????2101121121010000010010001001111010000112220200111000121011010110001?011110010100101100100001011102111100101200100010111111010000

Cyphostemma junceum 10002????11011211110000000100000000101221100031112202001100001200210101010010001110010100100100100001011110111000101200100010111111010000

Cyphostemma lageniflorum 00010000021011000110000000100100010011110000011112202001110001210110101100011010010010100100100100001011111011110101200000010111101110000

Cyphostemma laza 100100000010130002100110001000011000?1110000011122202001100001200100101010010011111010100100100000001011112111000101100100010111111010000

Cyphostemma microdiptera 00000000021013000210000000100100010011110000011112202001100000200100101010010001000010100101100100001011112111100101200000010111011010000

Cyphostemma odontadenium 00010000021011000110000000100100010011110000011112202001?1000121000010101001?011011010100100000100001010111111110101200100010111111010000

Cyphostemma paucidentatum 0000000002111100111000000010010110001111000001111220200111000120000010100001?011010010100100100110001011111111010101200100010101111010000

Cyphostemma setosum 00010000021011200110000000000101100010110000011112202001100001200100101010011010110010100100100100001011110111110101200000011111111110000

Leea guineensis 10002????00013010010000001100000000001221100001022202110100000200210101111301000010010100100110000001000102111010001011000100100101010000

Leea tetramera 10002????00013010010100000100000000001221100001012202010010000200210101111301000100010100100010100001000002111110101011000000111101010000

Nothocissus spicifera 00003000000000000011010000110000000001221110020001102000?00002100211010101111000100010101101100101100111102000010000101000010010000000000

Parthenocissus dalzielii 00000011101011110210000000100000001101000020000?00201100000000100210111011200000010100101111001101100020112000110101200000010010100000000

Parthenocissus laetevirens 00000011101011110110000000100000001101000020001021202100000010000210111011200100010100101111101101100020112010110101200000010010100000000

309

Parthenocissus quinquefolia 00000010101011100210000000100000001101000020000001202100100010000210111011200100010100101110101001100020112000100001200000010010100000000

Parthenocissus vitacea 00000000001011110210000000100000000101020110001022202100000010000100011010200000010100101110001001100020112000100101200000010010100000000

Pterisanthes cissioides 00000000010001010211010000010000100101000111120?30010000100010000001100100101000110010111000010101000020112110011011200000010010000000000

Pterisanthes polita 00000000000000000111010000010000100101000111120?30010000100010000001100000101000110110111100010101100020012010010011200001010010100000000

Rhoicissus digitata 0000100000100100120????010001000101001020010000121201100010000100000101001200100010010101111001100000011102000100001100100010010101100000

Rhoicissus tridentata 00001000001011000110100010001000100001000011100121202100100000200000101101200100010011100101101110000011002110100001110100010011000000000

Tetrastigma bioritsense 01011201011011000210000000100010011000120000001101202001000000201001010101201000110010001100011001010011102110110101100000000010110000000

Tetrastigma obtectum 000011101210011102100000001000100110001100300?0?00202001100000101001010000000000010010101110001001000121112110010001200000000100011100000

Tetrastigma planicaule 01001000011011010210010000100010011000110000001002202001000000101001000001201001100010001100100100000011102110100101200000010010011100000

Tetrastigma rumicispermum 00000000011012110210001000100010011000110000001002201001000000101000000001201000010110100110001011000021111000100001100100010000001100010

Tetrastigma serrulatum 00000000021012010210001000100011101001110000001001202001000000101001010000200000010010000111101110000011110110000101200000010010011100000

Vitis aestivalis 00000000000000000110000000110011100101020111121201102100001100100000110101200000010010100100100111100120112100010001100101010010100000000

Vitis betulifolia 00000000000000000110100000110011100101020010021201102100001100100000000001200000010111010100110111100120112000010101200101010010100000000

Vitis flexuosa 00000000000000000110100001110011100101020000021201101100001100100000110101200000010111010100100111100120012000011001100100010010100000000

Vitis piasezkii 00000000000001000110100000110011100101020100021202101100001100100100110101200000010011000100000111000120012000010001200101010010100000000

Vitis rotundifolia 00000000000000000110000001110011100101020011121201101100001110100000110101200000010010101100100011100110112000100001100100010010000000000

Vitis tsoi 00000000000000000110000000110011100101020000020201101100001110100000110001200000010011110100100111000121111000010011100101010010000000000

Vitis vinifera 00000000010000000110000000010001100101020011021201102100001110100000100001200000010011000100100111000120112010010100200101010001000000000

Yua austro-orientalis 0000000000???1001211010100000000?00101020010001001202100?00010100110111011200100110011100111100111100121111100100101100100010010100000000

Yua chinensis 00000000001011001210000100100000100101020010001001202100000010000110111001200100010011000110101011100020112110100101200100010010100000000

Parthenocissus clarnensis ????????????????????????????????????????????????????????????????????????????????010010101100001001110120112001110111100100010010????00000

Vitis magnisperma ????????????????????????????????????????????????????????????????????????????????110110101100001001110110112000????112?00???10???????00000

Palaeovitis paradoxa ????????????????????????????????????????????????????????????????????????????????010010110100100101100110112000001011110101010011????00000

Ampelopsis rooseae ????????????????????????????????????????????????????????????????????????????????010011000000101111110020112100001111200100010???????00000

Vitis tiffneyi ????????????????????????????????????????????????????????????????????????????????010011110100100111100120112000010111100000?10010????00000

Ampelocissus wildei ??????????????????????????????????????????????????????????????????????????01????1100101001001000110001111110000??01110010?010011????00000

310

311

LIST OF REFERENCES

ALMEIDA, M. T., AND F. A. BISBY. 1984. A Simple method for establishing taxonomic characters from measurement data. Taxon 33: 405-409.

ANGIOSPERM PHYLOGENY GROUP (APG III). 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161: 105-121.

ARCHIE, J. W. 1985. Methods for coding variable morphological features for numerical taxonomic analysis. Systematic Zoology 34: 326-345.

BACKER, C. A., AND R. C. BAKHUIZEN VAN DEN BRINK. 1965. Vitaceae, Flora of Java (Spermatophytes only), Volume II, Angiospermae, Families111-160. 641 pp., 3 Volumes; 1963-1968. P. Noordhoff, Groningen.

BAUM, B. R. 1988. A Simple procedure for establishing discrete characters from measurement data, applicable to cladistics. Taxon 37: 63-70.

BERRY, E. W. 1927. Petrified fruits and seeds from the Oligocene of Peru. Pan-American Geology 47: 121-132.

______. 1929. Early Tertiary fruits and seeds from Belen, Peru. Johns Hopkins University Studies in Geology 10: 137-180.

BLANC-LOUVEL, C. 1986. Paleoflore du gisement Eocene de Premontre dans l'Aisne; Vitaceae. Paleoflora from the Eocene deposit in Premontre in Aisne; Vitaceae. 111e Congres national des societes savantes, Poitiers, France, 1986, France (FRA), sciences, fasc. II: 37-48.

BOSS, P. K., AND M. R. THOMAS. 2002. Association of dwarfism and floral induction with a grape 'green revolution' mutation. Nature 416: 847-850.

BOSS, P. K., E. J. BUCKERIDGE, A. POOLE, AND M. R. THOMAS. 2003. New insights into grapevine flowering. Functional plant biology 30: 593-606.

BRANTIES, N. B. M. 1978. Pollinator attraction of Vitis vinifera subsp. silvestris. Vitis 17: 229-233.

BRIZICKY, G. K. 1965. The genera of Vitaceae in the southeastern United States. Journal of the Arnold Arboretum 46: 48-67.

BROWN, R. W. 1934. U. S. Geological Survey Professional Paper 185-C. The recognizable species of the Green River flora, U. S. Geological Survey Professional Paper 185-C, pages 45-77. United States Goverment Printing Office, Washington, D. C.

312

BŮŽEK, Č., F. HOLY, AND Z. KVACEK. 1976. Tertiary flora from the Volcanogenic Series at Markvartice and Veseličko near Ceska Kamenice (Ceske stredohori Mts.). Palaeontology 18: 69-132.

CALONJE, M., P. CUBAS, J. M. MARTINEZ-ZAPATER, AND M. J. CARMONA. 2004. Floral meristem identity genes are expressed during tendril development in grapevine. Plant Physiology 135: 1491-1501.

CARLQUIST, S. 1991. Anatomy of vine and liana stems: a review and synthesis. In F. E. Putz and H. A. Mooney [eds.], The Biology of Vines., pp. 53-71. Cambridge University Press, Cambridge.

CARMONA, M. J., P. CUBAS, M. CALONJE, AND J. M. MARTINEZ-ZAPATER. 2007. Flowering transition in grapevine (Vitis vinifera L.). Canadian Journal of Botany 85: 701-711.

CARMONA, M. J., J. CHIEB, J. M. MARTINEZ-ZAPATER, AND M. R. THOMAS. 2008. A molecular genetic perspective of reproductive development in grapevine. Journal of experimental botany 59: 2579-2596.

CARPENTER, R. J., R. S. HILL, D. R. GREENWOOD, A. D. PARTRIDGE, AND M. A. BANKS. 2004. No snow in the mountains: Early Eocene plant fossils from Hotham Heights, Victoria, Australia. Australian Journal of Botany 52: 685-718.

CEVALLOS-FERRIZ, S. R. S., AND R. A. STOCKEY. 1990. Permineralized fruits and seeds from The Princeton Chert (Middle Eocene) of British Columbia - Vitaceae. Canadian Journal of Botany 68: 288-295.

CHANDLER, M. E. J. 1925-1926. The Upper Eocene flora of Hordle, Hants, 52 pp. Printed for the Paleontographical Society, London.

______. 1957. The Oligocene flora of the Bovey Tracey Lake Basin, Devonshire. Bulletin of the British Museum (Natural History) 3: 103-106.

______. 1961a. Flora of the Lower Headon Beds of Hampshire and the Isle of Wight. Bulletin of the British Museum (Natural History) 5: 133-135.

______. 1961b. The lower Tertiary floras of southern England. I Paleocene Floras. London Clay flora (Supplement). Text and atlas., 354 pp., 334 pl. The British Museum (Natural History), London.

______. 1962. The Lower Tertiary floras of southern England. II Flora of the Pipe-clay series of Dorset (Lower Bagshot), 176 pp. The British Museum (Natural History), London.

______. 1963. The Lower Tertiary flora of southern England. III Flora of the Bournemouth Beds; the Boscombe, and the Highcliff Sands., 169 pp. The British Museum (Natural History), London.

313

______. 1964. The Lower Tertiary floras of southern England. IV A summary and survey of findings in the light of recent botanical observations., p.102, London.

______. 1978. Supplement to the Lower Tertiary floras of southern England, Part 5, 47 pp. The Tertiary Research Group, London.

CHAPPILL, J. A. 1989. Quantitative characters in phylogenetic analysis. Cladistics 5: 217-234.

CHEN, I., AND S. R. MANCHESTER. 2007. Seed morphology of modern and fossil Ampelocissus (Vitaceae) and implications for phytogeography. American Journal of Botany 94: 1534-1553.

COLLESS, D. H. 1980. Congruence between morphometric and allozyme data for Menidia species - a reappraisal. Systematic Zoology 29: 289-299.

COLLINSON, M. E., AND C. J. CLEAL. 2001a. Late Middle Eocene-early Oligocene (Bartonian-Rupelian) and Miocene paleaeobotany of Great Britain. In C. J. Cleal, B. A. Thomas, D. J. Batten, and M. E. Collinson [eds.], Mesozoic and Tertiary Palaeobotany of Great Britain, Geological Conservation Review Series, No. 22., 335 pp. Joint Nature Conservation Committee, Peterborough, UK.

______. 2001b. Early and early Middle Eocene (Ypresian-Lutetian) paleaeobotany of Great Britain. In C. J. Cleal, B. A. Thomas, D. J. Batten, and M. E. Collinson [eds.], Mesozoic and Tertiary Palaeobotany of Great Britain, Geological Conservation Review Series, No. 22., 335 pp. Joint Nature Conservation Committee, Peterborough, UK.

CONDIT, C. 1944. The Remington Hill flora [Calif.], Chapter 2 of Chaney, R. W., ed., Pliocene floras of California and Oregon. Carnegie Institution of Washington Publications 553: 21-55.

CORNER, E. J. H. 1976. The seeds of Dicotyledons, 2 volumes, 311 pp. and 552 pp. Cambridge University Press, Cambridge, UK.

CURRIE, D. J., G. G. MITTELBACH, H. V. CORNELL, R. FIELD, J. F. GUEGAN, B. A. HAWKINS, D. M. KAUFMAN, J. T. KERR, T. OBERDORFF, E. O'BRIEN, AND J. R. G. TURNER. 2004. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology Letters 7: 1121-1134.

CZAJA, A. 2003. Paleocarpological investigations of the taphocoenoses of the Lower- and Middle Miocene from the opencast mine Berzdorf/Upper Lusatica (Saxony). Palaeontographica Abteilung B 265: 1-148.

CZECZOTT, H., AND A. SKIRGIEŁŁO. 1959. Flora Kopalna Turowa Kolo Bogatyni II (1), Docotyledones, Hamamelidaceae, Nymphaeaceae, Sabiaceae, Vitaceae, Nyssaceae, Prace Museum Ziemi-Zeszyt No. 3, Odbitka Autorska, p.93-121. Wydawnictwa Geologicze, Warsaw, Poland.

314

DALBO, M. A., G. N. YE, N. F. WEEDEN, H. STEINKELLNER, K. M. SEFC, AND B. I. REISCH. 2000. A gene controlling sex in grapevines placed on a molecular marker-based genetic map. Genome 43: 333-340.

DAVIS, P. H. 1967. Flora of Turkey. University press, Edinburgh.

DE FRANCESCHI, D., C. LE GALL, G. ESCARGUEL, M. HUGUENEY, S. LEGENDRE, R. SIMON-COINCON, T. PELISSIE, AND B. SIGE. 2006. Une Paleoflore des phosphatieres Karstiques du Quercy (sud-quest France): premiere decouverte, resultats et perspectives. Strata 13: 97-101.

DE PINNA, M., C. C. 1991. Concepts and tests of homology in the cladistic paradigm. Cladistics 7: 367-394.

DE SANTO, A. V., A. ALFANI, G. RUSSO, AND A. FIORETTO. 1983. Relationship between CAM and succulence in some species of Vitaceae and Piperaceae. Botanical Gazette 144: 342-346.

DENISOV, N. I. 2007. The taxonomical analysis of ligneous lianas in the Russian Far East. Bulletin of the Botanical Garden-Institute of the Russian Academy of Sciences 1: 44-50.

DESCOINGS, B. 1961. Le genre Cayratia Juss. (Vitacées) à Madagascar. Bulletin du Jardin botanique de l'État a Bruxelles 31: 419-428.

______. 1967. Vitacées. In H. Humbert and J. F. Leroy [eds.], Flore de Madagascar et des Comores: plantes vasculaires / publiée sous les auspices du gouvernement général de Madagascar et sous la direction de H. Humbert., 1-156. Tananarive: Impr. officielle, 1936-.

______. 1972. Vitacées, Flore du Cameroun, 3-132. Museum national d'histoire natur, Paris.

______. 2004. Les grandes Vitacees pachycaules. Succulentes Special 2004: 32-49.

DEWIT, J., AND L. WILLEMS. 1960. Vitaceae, Flore du Congo belge et du Ruanda-Urundi. Spermatophytes. Vo. 9., 453-597. Institut national pour l'étude agronomique du Congo belge, 1948-1960., Brussel.

DODD, A. N., A. M. BORLAND, R. P. HASLAM, H. GRIFFITHS, AND K. MAXWELL. 2002. Crassulacean acid metabolism: plastic, fantastic. Journal of Experimental Botany 53: 569-580.

DONOGHUE, M. J., AND S. A. SMITH. 2004. Patterns in the assembly of temperate forests around the Northern Hemisphere. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 359: 1633-1644.

DONOGHUE, M. J., C. D. BELL, AND J. H. LI. 2001. Phylogenetic patterns in Northern Hemisphere plant geography. International Journal of Plant Sciences 162: S41-S52.

315

DOROFEEV, P. I. 1963. Tertiary floras of western Siberia. Komarov Botanical Institute, Academy of Sciences of the U.S.S.R., Moscow.

______. 1988. Miocene Floras of the Tambov Region (in Russian). Academy of Sciences of the USSR, Komorov Botanical Institute, Leningrad.

ENGLISH-LOEB, G., A. P. NORTON, AND M. A. WALKER. 2002. Behavioral and population consequences of acarodomatia in grapes on phytoseiid mites (Mesostigmata) and implications for plant breeding. Entomologia Experimentalis et Applicata 104: 307-319.

FAIRON-DEMARET, M., AND T. SMITH. 2002. Fruits and seeds from the Tienen Formation at Dormaal, Palaeocene-Eocene transition in eastern Belgium. Review of Palaeobotany and Palynology 122: 47-62.

FRANCIS, A. P., AND D. J. CURRIE. 2003. A globally consistent richness-climate relationship for angiosperms. American Naturalist 161: 523-536.

GAGNEPAIN, F. 1911a. Classification des Cissus et Cayratia. Notulae Systematicae 1: 339-343.

______. 1911b. Revision des Ampelidacees asiatiques et Malaises. Societe d'Histoire Naturelle d'Autun, Bulletin. 24: 1-41.

______. 1919. Acareosperma, un genre nouveau d’Ampélidacées. Bulletin du Muséum d’Histoire Naturelle 25: 131-132.

GALET, P. 1967. Recherches sur les méthodes d'identification et de classification des Vitacées des zones tempérées. Doctoral thesis. 526 pp., Université de Montpellier, Montpellier, France.

GARCIA-CRUZ, J., AND V. SOSA. 2006. Coding quantitative character data for phylogenetic analysis: a comparison of five methods. Systematic Botany 31: 302-309.

GERRATH, J. M., AND U. POSLUSZNY. 1986. Formation of serial accessory buds in Ampelopsis brevipedunculata (Maxim) Koehne (Vitaceae). American Journal of Botany 73: 627-628.

______. 1988a. Morphological and anatomical development in the Vitaceae. 2. Floral development in Vitis riparia. Canadian Journal of Botany 66: 1334-1351.

______. 1988b. Morphological and anatomical development in the Vitaceae. 1. Vegetative development in Vitis riparia. Canadian Journal of Botany 66: 209-224.

______. 1989a. Morphological and anatomical development in the Vitaceae. 5. Vegetative and floral development in Ampelopsis brevipedunculata. Canadian Journal of Botany 67: 2371-2386.

______. 1989b. Morphological and anatomical development in the Vitaceae. 4. Floral development in Parthenocissus inserta. Canadian Journal of Botany 67: 1356-1365.

316

______. 1989c. Morphological and anatomical development in the Vitaceae. 3. Vegetative development in Parthenocissus inserta. Canadian Journal of Botany 67: 803-816.

______. 1994. Morphological and anatomical development in the Vitaceae.6. Cissus antarctica. Canadian Journal of Botany 72: 635-643.

GERRATH, J. M., AND C. R. LACROIX. 1997. Heteroblastic sequence and leaf development in Leea guineensis. International Journal of Plant Sciences 158: 747-756.

GERRATH, J. M., AND U. POSLUSZNY. 2007. Shoot architecture in the Vitaceae. Canadian Journal of Botany 85: 691-700.

GERRATH, J. M., C. R. LACROIX, AND U. POSLUSZNY. 1990. The developmental morphology of Leea guineensis.2. Floral development. Botanical Gazette 151: 210-220.

______. 1998. Phyllotaxis in the Vitaceae. In R. V. Jean and D. Barabé [eds.], Symmetry in plants, page 89-107. World Scientific Publishing, Singapore.

GERRATH, J. M., U. POSLUSZNY, AND N. G. DENGLER. 2001. Primary vascular patterns in the Vitaceae. International Journal of Plant Sciences 162: 729-745.

GERRATH, J. M., T. WILSON, AND U. POSLUSZNY. 2004. Morphological and anatomical development in the Vitaceae. VII. Floral development in Rhoicissus digitata with respect to other genera in the family. Canadian Journal of Botany 82: 198-206.

GILG, E. 1896. Vitaceae. In A. Engler and K. Prantl [eds.], Die Naturlichen Pflanzenfamilien, 427-456. Engelmann, Leipzig.

GILG, E., AND M. BRANDT. 1911. Vitaceae Africanae. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie 46: 415-557.

GONG, F., I. KARSAI, AND Y. LIU. 2009. Grape seeds (Vitis) from the late Neogene Gray Fossil Site, northeast Tennessee. Boatny 2009, Snowbird.

GREGOR, H. J. 1977. Subtropische Elemente im europäischen Tertiär II (Fruktifikationen) Die Gattungen Quercus (Fagaceae), Myristicacarpum (Myristicaceae), Brueckelholzia und Cyclea (Menispermaceae), Disanthus und Fortunearia (Hamamelidaceae), Frangula (Rhamnaceae), Palaeocayratia (Vitaceae) und Acantbopanax (Araliaceae). Paläontologische Zeitschrift 51: 199-226.

______. 1980. The Miocene fruit and seed floras of the Oberpfälzer brown coal II. Findings in the coal and clayed inter beds. Palaeontographica Abteilung B Palaeophytologie 174: 7-94.

GUERRERO, J. A., E. DE LUNA, AND C. SANCHEZ-HERNANDEZ. 2003. Morphometrics in the quantification of character state identity for the assessment of primary homology: an analysis of character variation of the genus Artibeus (Chiroptera: Phyllostomidae). Biological Journal of the Linnean Society 80: 45-55.

317

HARDY, D., AND E. RETIEF. 1981. The Caudiciform Cyphostemma species from southern Africa. Cactus and Succulent Journal (U.S.) 53: 163-166.

HAWKINS, J. A., C. E. HUGHES, AND R. W. SCOTLAND. 1997. Primary homology assessment, characters and character states. Cladistics 13: 275-283.

HILU, K. W., T. BORSCH, K. MULLER, D. E. SOLTIS, P. S. SOLTIS, V. SAVOLAINEN, M. W. CHASE, M. P. POWELL, L. A. ALICE, R. EVANS, H. SAUQUET, C. NEINHUIS, T. A. B. SLOTTA, J. G. ROHWER, C. S. CAMPBELL, AND L. W. CHATROU. 2003. Angiosperm phylogeny based on matK sequence information. American Journal of Botany 90: 1758-1776.

INGROUILLE, M. J., M. W. CHASE, M. F. FAY, D. BOWMAN, M. VAN DER BANK, AND A. D. E. BRUIJN. 2002. Systematics of Vitaceae from the viewpoint of plastid rbcL DNA sequence data. Botanical Journal of the Linnean Society 138: 421-432.

JACKES, B. R. 1984. Revision of the Australian Vitaceae: 1. Ampelocissus Planchon. Austrobaileya 2: 81-86.

______. 1987a. A Study of the trichomes of several frequently confused species of Cissus L. (Vitaceae). Blumea 32: 143-147.

______. 1987b. Revision of the Australian Vitaceae: 2. Cayratia Juss. Austrobaileya 2: 365-379.

______. 1988a. A key to the genera of Australian Vitaceae. In R. Kitching [ed.], The ecology of Australia's wet tropics. Surrey Beatty and Sons, Chipping Norton, N.S.W.

______. 1988b. Revision of the Australian Vitaceae: 3. Cissus L. Austrobaileya 2: 481-505.

______. 1989a. Revision of the Australian Vitaceae, 5. Tetrastigma (Miq.) Planchon. Austrobaileya 3: 149-158.

______. 1989b. Revision of the Australian Vitaceae, 4. Clematicissus Planchon. Austrobaileya 3: 101-102.

JACKES, B. R., AND M. ROSSETTO. 2006. A new combination in Clematicissus Planch. (Vitaceae). Telopea 11: 390-391.

JAILLON, O., J. M. AURY, B. NOEL, A. POLICRITI, C. CLEPET, A. CASAGRANDE, N. CHOISNE, S. AUBOURG, N. VITULO, C. JUBIN, A. VEZZI, F. LEGEAI, P. HUGUENEY, C. DASILVA, D. HORNER, E. MICA, D. JUBLOT, J. POULAIN, C. BRUYERE, A. BILLAULT, B. SEGURENS, M. GOUYVENOUX, E. UGARTE, F. CATTONARO, V. ANTHOUARD, V. VICO, C. DEL FABBRO, M. ALAUX, G. DI GASPERO, V. DUMAS, N. FELICE, S. PAILLARD, I. JUMAN, M. MOROLDO, S. SCALABRIN, A. CANAGUIER, I. LE CLAINCHE, G. MALACRIDA, E. DURAND, G. PESOLE, V. LAUCOU, P. CHATELET, D. MERDINOGLU, M. DELLEDONNE, M. PEZZOTTI, A. LECHARNY, C. SCARPELLI, F. ARTIGUENAVE, M. E. PE, G. VALLE, M. MORGANTE, M. CABOCHE, A. F. ADAM-BLONDON, J. WEISSENBACH, F. QUETIER, AND P. WINCKER. 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449: 463-U465.

318

JANSEN, R. K., C. KAITTANIS, C. SASKI, S.-B. LEE, J. TOMKINS, A. J. ALVERSON, AND H. DANIELL. 2006. Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids. BMC Evolutionary Biology 6: 32-46.

KEVAN, P. G., R. W. LONGAIR, AND R. M. GADAWSKI. 1985. Dioecy and pollen dimorphism in Vitis riparia (Vitaceae). Canadian Journal of Botany 63: 2263-2267.

KIRCHHEIMER, F. 1938. Beiträge zur näheren Kenntnis von Vitaceen-Samenformen tertiären Alters. Planta 28: 582-598.

KOZHEVNIKOV, A. E., AND V. A. NEDOLUZHKO. 2006. Vitaceae, Flora of Russian Far East: Additions and changes to the publication "Vascular Plants of the Soviet Far East, Vol 1-8 (1985-1996)", 200-201. Dalnauka, Vladivostok.

KRAMER, K. 1974. Die Tertiären Hölzer Südost-Asiens (unter Ausschluß der Dipterocarpaceae) 2. Teil. [The tertiary woods of Southeast-Asia (Dipterocarpaceae excluded) Part 2]. Palaeontographica.Abteilung B: Palaeophytologie 145, Part 1-4: 150.

KUBITZKI, K. 2007. Introduction to Vitales. In K. Kubitzki [ed.], The families and genera of vascular plants. Springer.

LACROIX, C. R., AND U. POSLUSZNY. 1989a. Phyllotactic patterns in some members of the Vitaceae. Botanical Gazette 150: 303-313.

______. 1989b. Stipules in some members of the Vitaceae - relating processes of development to the mature structure. American Journal of Botany 76: 1203-1215.

LACROIX, C. R., J. M. GERRATH, AND U. POSLUSZNY. 1990. The developmental morphology of Leea guineensis.1. Vegetative Development. Botanical Gazette 151: 204-209.

LATIFF, A. 1981. Studies in Malesian Vitaceae: 5. The genus Cayratia in the Malay Peninsula. Sains Malaysiana 10: 129-139.

______. 1982a. Studies in Malesian Vitaceae: 2. Nothocissus: a new Malesian genus. Federation Museums Journal 27: 70-75.

______. 1982b. Studies in Malesian Vitaceae: 1. A revision of Pterisanthes Bl. Federation Museums Journal 27: 42-69.

______. 1982c. Studies in Malesian Vitaceae: 3. Ampelocissus complanata, a new species from Borneo. Federation Museums Journal 27: 75-77.

______. 1982d. Studies in Malesian Vitaceae: 4. The genera Ampelocissus, Ampelopsis and Parthenocissus in the Malay Peninsula. Federation Museums Journal 27: 78-93.

______. 1982e. Studies in Malesian Vitaceae: 6. The Malay Peninsula species of Cissus L. Malayan Nature Journal 35: 197-207.

319

______. 1983. Numerical analysis and classification of Malesian Vitaceae. Malays 12: 7-13.

______. 1984. Studies in Malesian Vitaceae: 7. The genus Tetrastigma in the Malay Peninsula. The Gardens' Bulletin Singapore 36: 213-228.

______. 1991. Towards an improved infrageneric classification of Ampelocissus. 2nd International Flora Malesiana Symposium, Jogjakarta, Indonesia (mimeo).

______. 1994. On the seeds of fossil and modern taxa of Vitaceae. Malaysian Applied Biology 22: 87-99.

______. 2001a. Studies in Malesian Vitaceae: 12. Taxonomic notes on Cissus, Ampelocissus, Nothocissus and Tetrastigma and other genera. Folia Malaysiana 2: 179-189.

______. 2001b. Diversity of the Vitaceae in the Malay Archipelago. Malayan Nature Journal 55: 29-42.

LATIFF, A., AND K. MAT SALLEH. 1999. Studies in Malesian Vitaceae: 11. Pterisanthes in Borneo, with additional notes on P. grandis and P. hirtiflora. Sandakania 13: 67-78.

LEAF ARCHITECTURE WORKING GROUP. 1999. Manual of Leaf Architecture - morphological description and categorization of dicotyledonous and net-veined monocotyledonous angiosperms. private, Washington, D. C.

LI, C. 1998. Vitaceae, Flora Reipublicae Popularis Sinica, volume 48, 208 pp. Science Press, Beijing.

LOMBARDI, J. A. 1997. Types of names in Ampelocissus and Cissus (Vitaceae) referring to taxa in the Caribbean, Central and North America. Taxon 46: 423-432.

______. 2000. Vitaceae - Gêneros Ampelocissus, Ampelopsis e Cissus., Flora Neotropica Monograph, pp. 251. The New York Botanical Garden, Bronx, New York.

MABBERLEY, D. J. 1995. Vitaceae. In M. D. Dassanayake [ed.], A revised handbook to the Flora of Ceylon, 446-482. Smithsonian Institution, Washington, D. C.

MADDISON, W. P., AND D. R. MADDISON. 2001. MacClade 4: analysis of phylogeny and character evolution. Sinauer Associates, Sunderland, Massachusetts, USA.

______. 2009. Mesquite: a modular system for evolutionary analysis. Version 2.6 http://mesquiteproject.org.

MAI, D. H. 1987. Neue Früchte und Samen aus paläozänen Ablagerungen Mitteleuropas. Feddes Repertorium 98: 197-229.

______. 2000. The Lower Miocene floras of the Spremberger sequence and the second brown coal horizon in the Lusatica region. Part III: Dialypetalae and Sympetalae. Palaeontographica Abteilung B 253: 1-106.

320

______. 2001. The Middle and Upper Miocene floras of the Meuro and Rauno sequences in the Lusatica region. Part II: Dicotyledones. Palaeontographica Abteilung B 257: 35-174.

______. 2006. Neue Pflanzenfunde aus den Tertiar der Rhon; Die miozane Flora vom Lettengraben. Beitrage zur Naturkunde in Osthessen 42: 3-46.

MAI, D. H., AND H.-J. GREGOR. 1982. Neue und interessante Arten aus dem Miozan von Salzhausen im Vogelsberg. Feddes Repertorium 93: 405-435.

MANCHESTER, S. R. 1994. Fruits and seeds of the Middle Eocene Nut Beds Flora, Clarno Formation, Oregon. Palaeontographica Americana 58: 1-114.

MARGUERIT, E., C. BOURY, A. MANICKI, M. DONNART, G. BUTTERLIN, A. NEMORIN, S. WIEDEMANN-MERDINOGLU, D. MERDINOGLU, N. OLLAT, AND S. DECROOCQ. 2009. Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine. Theoretical and Applied Genetics 118: 1261-1278.

MELLER, B. 1998. Systematic-taxonomic and palaeoecological investigations of the Carpo-Taphocoenoses from the Köflach-Voitsberg lignite mining area (Styria, Austria; Early Miocene). Jahrbuch der Geologischen Bundesanstalt 140: 497-655.

MICKEVICH, M. F., AND M. S. JOHNSON. 1976. Congruence between morphological and allozyme data in evolutionary inference and character evolution. Systematic Zoology 25: 260-270.

MIKI, S. 1956. Seed remains of Vitaceae in Japan. Journal of the Institute of Polytechnics, Osaka City University 7: 247-271.

MOLINA, J., E. GREEN, AND L. STRUWE. 2006. Phenology and pollination of the ancestral grape relative Leea (Leeaceae/Vitaceae). Boatny 2006, Chico.

MOORE, M. O. 1990. A systematic study of eastern North American Vitis (Vitaceae) north of Mexico, University of Georgia, Athens, United States.

MORAN, C., C. P. CATTERALL, AND J. KANOWSKI. 2009. Reduced dispersal of native plant species as a consequence of the reduced abundance of frugivore species in fragmented rainforest. Biological Conservation 142: 541.

NANDI, O. I., M. W. CHASE, AND P. K. ENDRESS. 1998. A combined cladistic analysis of angiosperms using rbcL and non-molecular data sets. Annals of the Missouri Botanical Garden 85: 137-212.

NAZIMUDDIN, S., AND M. QAISER. 1982. Vitaceae. In S. I. Ali and M. Qaiser [eds.], Flora of Pakistan. University of Karachi & Missouri Botanical Garden, St. Louis.

NEGI, S. S., AND H. P. OLMO. 1971. Conversion and determination of sex in Vitis vinifera L. (sylvestris). Vitis 9: 265-279.

321

______. 1972. Certain embryological and biochemical aspects of Cytokinin Sd-8339 in converting sex of a male Vitis vinifera (Sylvestris). American Journal of Botany 59: 851-857.

NIKITIN, V. P. 2006. Paleocarpology and stratigraphy of the Paleogene and Neogene strata in Asian Russia. Academic Publishing House, Novosibirsk.

PATIL, S. G. 1998. Inter-generic variations in pollen grains of the family Vitaceae and their taxonomic significance. Journal of Indian Botanical Society 77: 99-102.

______. 2006. Inter-generic variations in the leaf characters of family Vitaceae and their taxonomic significance. Journal of Economic and Taxonomic Botany 30: 699-704.

PERIASAMY, K. 1962. Studies on seeds with ruminate endosperm: 2. Development of rumination in the Vitaceae. Proceedings of India Academy of Sciences B 56: 13-26.

PLANCHON, J. E. 1887. Monographie des Ampélidées vraies. In A. L. P. P. de Candolle and C. de Candolle [eds.], Monographiae Phanerogamarum, Volume V, p. 306-654. Sumptibus G. Mason, Paris.

POOLE, I., AND H. P. WILKINSON. 2000. Two early Eocene vines from south-east England. Botanical Journal of the Linnean Society 133: 1-26.

POSLUSZNY, U., AND J. M. GERRATH. 1986. The vegetative and floral development of the hybrid grape cultivar Ventura. Canadian Journal of Botany 64: 1620-1631.

PRAKASH, U., AND R. DAYAL. 1964. Fossil wood resembling Elaeocarpus and Leea from Deccan Intertrappean Beds of Mahurzari near Nagpur. Palaeobotanist 12: 121-127.

RASBAND, W. S. 1997-2006. Image J. U. S. National Institutes of Health, http://rsb.info.nih.gov/ij/, Bethesda, Maryland, USA.

REID, E. M., AND M. E. J. CHANDLER. 1933. The London Clay Flora, 561 pp. The British Museum (Natural History), London.

REILLE, M. 1967. Contribution a letude palynologique de la famille des Vitacees. Pollen et Spores 9: 279-303.

REN, H., K.-Y. PAN, Z.-D. CHEN, AND R.-Q. WANG. 2003. Structural characters of leaf epidermis and their systematic significance in Vitaceae. Acta Phytotaxonomica Sinica 41: 531-544.

RIAZ, S., A. F. KRIVANEK, K. XU, AND M. A. WALKER. 2006. Refined mapping of the Pierce's disease resistance locus, PdR1, and Sex on an extended genetic map of Vitis rupestris x V. arizonica. Theoretical and Applied Genetics 113: 1317-1329.

RIDSDALE, C. E. 1974. A revision of the family Leeaceae. Blumea 22: 57-100.

322

______. 1976. Leeaceae. In C. G. C. J. v. Steenis [ed.], Flora Malesiana, 755-782.

ROBINSON, L., AND J. G. HONEY. 1987. Geologic setting of a new Paleocene mammal locality in the northern Powder River Basin, Montana. Palaios 2: 87-90.

ROSSETTO, M. 2007. An updated estimate of intergeneric phylogenetic relationships in the Australian Vitaceae. Canadian Journal of Botany 85: 722-730.

ROSSETTO, M., B. R. JACKES, K. D. SCOTT, AND R. J. HENRY. 2002. Is the genus Cissus (Vitaceae) monophyletic? Evidence from plastid and nuclear ribosomal DNA. Systematic Botany 27: 522-533.

ROZEFELDS, A. C. 1988. A Mid Tertiary rainforest flora from Capella, Central Queensland. Proceedings of the 3rd IOP Conference, Melbourne: 123-136.

SCOTLAND, R. W., R. G. OLMSTEAD, AND J. R. BENNETT. 2003. Phylogeny reconstruction: the role of morphology. Systematic Biology 52: 539-548.

SHETTY, B. V., AND P. SINGH. 2000. Vitaceae. In N. P. Singh, J. N. Vohra, P. K. Hajra, and D. K. Singh [eds.], Flora of India, volume 5, Olacaceae - Connaraceae, 246-342. Botanical survey of India, Calcutta.

SOEJIMA, A., AND J. WEN. 2006. Phylogenetic analysis of the grape family (Vitaceae) based on three chloroplast markers. American Journal of Botany 93: 278-287.

SOLTIS, D. E., A. E. SENTERS, M. J. ZANIS, S. KIM, J. D. THOMPSON, P. S. SOLTIS, L. P. RONSE DE CRAENE, P. K. ENDRESS, AND J. S. FARRIS. 2003. Gunnerales are sister to other core eudicots: implications for the evolution of pentamery. American Journal of Botany 90: 461-470.

SOLTIS, D. E., P. S. SOLTIS, M. W. CHASE, M. E. MORT, D. C. ALBACH, M. ZANIS, V. SAVOLAINEN, W. H. HAHN, S. B. HOOT, M. F. FAY, M. AXTELL, S. M. SWENSEN, L. M. PRINCE, W. J. KRESS, K. C. NIXON, AND J. S. FARRIS. 2000. Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Botanical Journal of the Linnean Society 133: 381-461.

SRINIVASAN, C., AND M. G. MULLINS. 1978. Control of flowering in grapevine (Vitis-Vinifera L) - Formation of inflorescences in vitro by isolated tendrils. Plant Physiology 61: 127-130.

______. 1979. Flowering in Vitis - Conversion of tendrils into inflorescences and bunches of grapes. Planta 145: 187-192.

______. 1980. Effects of temperature and growth-regulators on formation of anlagen, tendrils and inflorescences in Vitis vinifera L. Annals of botany 45: 439-446.

STEVENS, P. F. 1991. Character states, morphological variation, and phylogenetic analysis: a review. Systematic Biology 16: 553-583.

323

______. 2001 onwards. Angiosperm Phylogeny Website. Version 9, June 2008 [and more or less continuously updated since].

SÜSSENGUTH, K. 1953. Vitaceae. In A. Engler and K. Prantl [eds.], Die Natürlichen Pflanzenfamlien 20. d., p. 174-333. Duncker & Humblot, Berlin.

SWOFFORD, D. L. 2002. PAUP: Phylogenetic analysis using parsimony, version 4.0b10. Sinauer Associates., Inc., Sunderland, MA.

TARNAVSCHI, I. T., AND E. PETRIA. 1968. Contribution to the knowledge of the microsporal structure in the family Leeaceae. Pollen et Spores 10: 221-249.

TCHEREPOVA, M., AND K. B. PIGG. 2005. Vitaceae: fossil seeds and wood from the Middle Miocene of Yakima Canyon, Washington, USA. Botany 2005, Austin, Texas.

TEODORIDIS, V. 2003. Early Miocene carpological material from the Czech part of the Zittau Basin. Acta Palaeobotanica 43: 9-49.

THIELE, K. 1993. The holy grail of the perfect character: the cladistic treatment of morphometric data. Cladistics 9: 275-304.

THIERS, B. continuously updated. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden's Virtual Herbarium. http://sweetgum.nybg.org/ih/.

THORPE, R. S. 1984. Coding Morphometric Characters For Constructing Distance Wagner Networks. Evolution 38: 244-255.

TIFFNEY, B. H. 1977. Fossil Angiosperm fruits and seeds. Journal of Seed Technology 2: 54-71.

______. 1994. Reevaluation of the age of the Brandon Lignite (Vermont, USA) based on plant megafossils. Review of Palaeobotany and Palynology 82: 299-315.

______. 1999. Part 8. Fossil fruit and seed flora from the Early Eocene Fisher/Sullivan site. In R. E. Weems and G. J. Grimsley [eds.], Early Eocene vertebrates and plants from the Fisher/Sullivan site (Nanjemoy Formation) Stafford county, Virginia, 139-159. Virginia division of mineral resources, Charlottesville, Virginia.

TIFFNEY, B. H., AND E. S. BARGHOORN. 1976. Fruits and seeds of Brandon lignite.1. Vitaceae. Review of Palaeobotany and Palynology 22: 169-191.

TIFFNEY, B. H., AND S. R. MANCHESTER. 2001. The use of geological and paleontological evidence in evaluating plant phylogeographic hypotheses in the northern hemisphere tertiary. International Journal of Plant Sciences 162: S3-S17.

TIMMONS, S. A., U. POSLUSZNY, AND J. M. GERRATH. 2007a. Morphological and anatomical development in the Vitaceae. IX. Comparative ontogeny and phylogenetic implications of Vitis rotundifolia Michx. Canadian Journal of Botany 85: 850-859.

324

______. 2007b. Morphological and anatomical development in the Vitaceae. X. Comparative ontogeny and phylogenetic implications of Cissus quadrangularis L. Canadian Journal of Botany 85: 860-872.

VASSILCZENKO, I. T. 1970. Vitaceae. In K. H. Rechinger [ed.], Flora Iranica, 1-5, 4pl. Akacemische Druck-U. Verlagsanstalt, Austria.

VERDCOURT, B. 1993. Flora of tropical East Africa: Vitaceae. A.A. Balkema, Rotterdam.

WANG, H. C., M. J. MOORE, P. S. SOLTIS, C. D. BELL, S. F. BROCKINGTON, R. ALEXANDRE, C. C. DAVIS, M. LATVIS, S. R. MANCHESTER, AND D. E. SOLTIS. 2009. Rosid radiation and the rapid rise of angiosperm-dominated forests. Proceedings of the National Academy of Sciences of the United States of America 106: 3853-3858.

WANG, W. T. 1979. Vitacearum novitates. Acta Phytotaxonomica Sinica 17: 73-96; plate V, VI.

WATARI, S. 1951. Studies on the fossil woods from the Tertiary of Japan. (VII): Leea (Vitaceae) from the Miocene of Simane. The Botanical Magazine, Tokyo 64: 1-7.

WEBB, D. A. 1968. Vitaceae. In T. G. Tutin, V. H. Heywood, N. A. Burges, D. M. Moore, D. H. Valentine, S. M. Walters, and D. A. Webb [eds.], Flora Europaea, 2, Rosaceae to Umbelliferae, 246-247. Cambridge University Press, Cambridge.

WEBERLING, F. 1989. Morphology of flowers and inflorescences. Cambridge University Press, Cambridge.

WEN, J. 1999. Evolution of eastern Asian and eastern North American disjunct distributions in flowering plants. Annual Review of Ecology and Systematics 30: 421-455.

______. 2001. Evolution of eastern Asian-Eastern North American biogeographic disjunctions: A few additional issues. International Journal of Plant Sciences 162: S117-S122.

______. 2007a. Leeaceae. In K. Kubitzki [ed.], The families and genera of vascular plants. Springer.

______. 2007b. Vitaceae. In K. Kubitzki [ed.], The families and genera of vascular plants. Springer.

WEN, J., Z.-L. NIE, A. SOEJIMA, AND Y. MENG. 2007. Phylogeny of Vitaceae based on the nuclear GAI1 gene sequences. Canadian Journal of Botany 85: 731-745.

WHEELER, E. A., AND C. A. LAPASHA. 1994. Woods of the Vitaceae - fossil and modern. Review of Palaeobotany and Palynology 80: 175-207.

WIENS, J. J. 2001. Character analysis in morphological phylogenetics: problems and solutions. Systematic Biology 50: 689-699.

325

______. 2003. Missing data, incomplete taxa, and phylogenetic accuracy. Systematic Biology 52: 528-538.

______. 2005. Can incomplete taxa rescue phylogenetic analyses from long-branch attraction? Systematic Biology 54: 731-742.

______. 2006. Missing data and the design of phylogenetic analyses. Journal of Biomedical Informatics 39: 34-42.

WIENS, J. J., AND R. E. ETHERIDGE. 2003. Phylogenetic relationships of Hoplocerid lizards: coding and combining meristic, morphometric, and polymorphic data using step matrices. Herpetologica 59: 375-398.

WILD, H., AND R. B. DRUMMOND. 1966. Vitaceae. In A. W. Exell, A. Fernandes, and H. Wild [eds.], Flora Zambesiaca, 439-492.

WILSON, T., AND U. POSLUSZNY. 2003a. Novel variation in the floral development of two species of Parthenocissus. Canadian Journal of Botany 81: 738-748.

______. 2003b. Complex tendril branching in two species of Parthenocissus: implications for the vitaceous shoot architecture. Canadian Journal of Botany 81: 587-597.

WILSON, T. C., J. M. GERRATH, AND U. POSLUSZNY. 2006. Morphological and anatomical development in the Vitaceae. VIII. Comparative development of three Cyphostemma (Vitaceae) species reveals important vegetative and reproductive differences among the species. Canadian Journal of Botany 84: 702-716.

XIANG, Q. Y. J., AND D. E. SOLTIS. 2001. Dispersal-vicariance analyses of intercontinental disjuncts: Historical biogeographical implications for angiosperms in the Northern Hemisphere. International Journal of Plant Sciences 162: S29-S39.

ZACHOS, J., M. PAGANI, L. SLOAN, E. THOMAS, AND K. BILLUPS. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686-693.

ZUBKOVA, I. G. 1966. Epiderma lista Vitaceae i ee systematicheskkoe znachenie. Botanicheskiy Zhurnal 51: 278-283.

______. 1975. Comparative morphological/anatomical study of petiole and epidermis of leaves in the representatives of family Vitaceae Juss., to the history of the study of family Vitaceae in connection with its systematics [translated from Russia]. In L. Budantsev [ed.], Voprosy sravnitel'noj morfologii semennyh rastenij. Izdatelbstvo Nauka, Leningradskoe otdelenie, Leningrad.

326

BIOGRAPHICAL SKETCH

Iju Chen was born in Taiwan. She received a bachelor's degree from National Taiwan

University, with a major in plant pathology. For her master's degree she studied plant

bacteriology at the University of California at Berkeley. She worked in Dr. Na-Sheng Lin's lab

in Academia Sinica, Taipei, doing research related to Bamboo Mosaic Virus. Before entering

the doctoral program, she worked for Dr. Roger Beachy in Donald Danforth Plant Science

Center, assisting the research of Tobacco Mosaic Virus.

During the early years of the doctoral program, Iju Chen collected plant fossils in

northeastern China with Dr. Steven Manchester. She worked on the pollen flora of Huadian,

Jilin, described seeds of Nuphar (Nympheaceae) from Wutu, Shangdong province, and prepared

electronic microscopic photographs of fossil Tetracentron (Trochodendraceae). For her

dissertation research, the morphology-based phylogeny of Vitaceae, she visited Australia,

Malaysia, Singapore, and China to collect plant materials and work in the herbaria. She worked

as a teaching assistant for the courses such as plant anatomy, plant diversity, and biology at the

University of Florida. She received her Ph. D. from the University of Florida in the fall of 2009.