High-resolution radio observations of Seyfert galaxies in the extended 12-μm sample – I. The...

17
arXiv:astro-ph/0001459v1 26 Jan 2000 Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 1 February 2008 (MN L A T E X style file v1.4) High–resolution radio observations of Seyfert galaxies in the extended 12–micron sample – I. The observations. Andy Thean 1,2 , Alan Pedlar 2 , Marek J. Kukula 3 , Stefi A. Baum 4 and Christopher P. O’Dea 4 1 Istituto di Radioastronomia del CNR, Via P. Gobetti 101, I–40129 Bologna, Italy 2 Nuffield Radio Astronomy Laboratories, University of Manchester, Jodrell Bank, Macclesfield, Cheshire SK11 9DL, U.K. 3 Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ 4 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, Maryland 21218, USA 26th Jan 2000 ABSTRACT We present 8.4 GHz VLA A–configuration observations of 87 sources from the mid–infrared–selected AGN sample of Rush et al. (1993). These 0.25 arcsec resolution observations allow elongated radio structures tens of parsecs in size to be resolved and enable radio components smaller than 3.5 arcsec to be isolated from diffuse galactic disc emission. When combined with previous data, matched radio observations cover- ing ninety percent of the sample have been collected and these represent the largest sub–arcsecond–resolution radio imaging survey of a homogeneously–selected sample of Seyfert galaxies to date. We use our observations to identify 5 radio–loud AGN in the sample. The nature of the radio emission from Seyfert nuclei will be discussed in subsequent papers. Key words: galaxies: active – galaxies: Seyfert – galaxies: statistics – infrared: galaxies – radio continuum: galaxies. 1 INTRODUCTION Exceptional amounts of energy are being released at the cen- tres of a few percent of all galaxies. These Active Galactic Nuclei (AGN) are among the most luminous objects in the Universe and may emit more radiation than an entire galaxy from a region thought to be around ten thousand times as small. Seyfert nuclei, which are usually found in nearby spi- ral galaxies, are an important class of AGN because of the high quality and wide variety of information we may ob- tain about them and their host galaxies: they are sufficiently close and sufficiently luminous to be observed with good lin- ear resolution using a variety of important techniques. For these reasons, samples of Seyfert galaxies may be defined more selectively than other classes of AGN and permit de- tailed comparisons of a wider range of properties. Radio studies of several Seyferts show highly–collimated structures similar to those found in radio galaxies e.g. Markarian 3 (Kukula et al. 1993), Markarian 6 (Kukula et al. 1996), Markarian 463 (Mazzarella et al. 1991), NGC 1068 (Ulvestad et al. 1987), and NGC 4151 (Pedlar et al. 1993). Hubble Space Telescope images have confirmed that small–scale radio structures are often associated with in- dividual narrow–line–region features (Falcke et al. 1998; Capetti et al. 1999), as previously suspected from ground– based spectroscopy (Whittle et al. 1988; Haniff et al. 1988) and it is now clear that the outflows which cause collimated radio structures have a direct influence on the narrow–line emission we observe (see models by Steffen et al. 1997 and Bicknell et al. 1998). Despite this, the importance of colli- mated outflows from Seyfert nuclei is often overlooked. In order to incorporate the radio properties of Seyfert nuclei into models of their activity and provide the context for studies of well–known individual Seyfert galaxies, it is nec- essary to document their generic radio properties. Early statistical studies of the radio properties of Seyfert galaxies were carried out by Wade (1968) and de Bruyn & Wilson (1976). The radio properties of the fol- lowing samples of Seyferts have been studied subsequently; Seyferts from the lists of Markarian (Meurs & Wilson 1984; Ulvestad & Wilson 1984a), distance–limited samples (Ul- vestad & Wilson 1984b; Ulvestad & Wilson 1989; Nagar et al. 1999), an X–ray flux–limited sample (Unger et al. 1987), the CfA Seyfert sample (Edelson 1987; Kukula et al. 1995; Rush et al. 1996), samples selected from the literature (Giuricin et al. 1990; Whittle 1992), far–infrared–selected samples (Roy et al. 1994; Giuricin et al. 1996; Roy et al. 1998) and the mid–infrared–selected extended 12 μm sam- c 0000 RAS

Transcript of High-resolution radio observations of Seyfert galaxies in the extended 12-μm sample – I. The...

arX

iv:a

stro

-ph/

0001

459v

1 2

6 Ja

n 20

00Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 1 February 2008 (MN LATEX style file v1.4)

High–resolution radio observations of Seyfert galaxies in

the extended 12–micron sample – I. The observations.

Andy Thean1,2, Alan Pedlar2, Marek J. Kukula3, Stefi A. Baum4

and Christopher P. O’Dea4

1 Istituto di Radioastronomia del CNR, Via P. Gobetti 101, I–40129 Bologna, Italy2 Nuffield Radio Astronomy Laboratories, University of Manchester, Jodrell Bank, Macclesfield, Cheshire SK11 9DL, U.K.3 Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ4 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, Maryland 21218, USA

26th Jan 2000

ABSTRACT

We present 8.4 GHz VLA A–configuration observations of 87 sources from themid–infrared–selected AGN sample of Rush et al. (1993). These 0.25 arcsec resolutionobservations allow elongated radio structures tens of parsecs in size to be resolved andenable radio components smaller than 3.5 arcsec to be isolated from diffuse galacticdisc emission. When combined with previous data, matched radio observations cover-ing ninety percent of the sample have been collected and these represent the largestsub–arcsecond–resolution radio imaging survey of a homogeneously–selected sampleof Seyfert galaxies to date.

We use our observations to identify 5 radio–loud AGN in the sample. The natureof the radio emission from Seyfert nuclei will be discussed in subsequent papers.

Key words:galaxies: active – galaxies: Seyfert – galaxies: statistics – infrared: galaxies – radiocontinuum: galaxies.

1 INTRODUCTION

Exceptional amounts of energy are being released at the cen-tres of a few percent of all galaxies. These Active GalacticNuclei (AGN) are among the most luminous objects in theUniverse and may emit more radiation than an entire galaxyfrom a region thought to be around ten thousand times assmall. Seyfert nuclei, which are usually found in nearby spi-ral galaxies, are an important class of AGN because of thehigh quality and wide variety of information we may ob-tain about them and their host galaxies: they are sufficientlyclose and sufficiently luminous to be observed with good lin-ear resolution using a variety of important techniques. Forthese reasons, samples of Seyfert galaxies may be definedmore selectively than other classes of AGN and permit de-tailed comparisons of a wider range of properties.

Radio studies of several Seyferts show highly–collimatedstructures similar to those found in radio galaxies e.g.Markarian 3 (Kukula et al. 1993), Markarian 6 (Kukulaet al. 1996), Markarian 463 (Mazzarella et al. 1991), NGC1068 (Ulvestad et al. 1987), and NGC 4151 (Pedlar et al.1993). Hubble Space Telescope images have confirmed thatsmall–scale radio structures are often associated with in-dividual narrow–line–region features (Falcke et al. 1998;

Capetti et al. 1999), as previously suspected from ground–based spectroscopy (Whittle et al. 1988; Haniff et al. 1988)and it is now clear that the outflows which cause collimatedradio structures have a direct influence on the narrow–lineemission we observe (see models by Steffen et al. 1997 andBicknell et al. 1998). Despite this, the importance of colli-mated outflows from Seyfert nuclei is often overlooked. Inorder to incorporate the radio properties of Seyfert nucleiinto models of their activity and provide the context forstudies of well–known individual Seyfert galaxies, it is nec-essary to document their generic radio properties.

Early statistical studies of the radio properties ofSeyfert galaxies were carried out by Wade (1968) andde Bruyn & Wilson (1976). The radio properties of the fol-lowing samples of Seyferts have been studied subsequently;Seyferts from the lists of Markarian (Meurs & Wilson 1984;Ulvestad & Wilson 1984a), distance–limited samples (Ul-vestad & Wilson 1984b; Ulvestad & Wilson 1989; Nagaret al. 1999), an X–ray flux–limited sample (Unger et al.1987), the CfA Seyfert sample (Edelson 1987; Kukula et al.1995; Rush et al. 1996), samples selected from the literature(Giuricin et al. 1990; Whittle 1992), far–infrared–selectedsamples (Roy et al. 1994; Giuricin et al. 1996; Roy et al.1998) and the mid–infrared–selected extended 12 µm sam-

c© 0000 RAS

2 A.Thean, A.Pedlar, M.Kukula, S.Baum and C.O’Dea

ple (Rush et al. 1996). Large, unbiased samples are requiredto compare the properties of the two types of Seyfert galaxy,but the definition of such samples is problematic. Ideally, allphysically–similar objects within a certain volume of spaceshould be selected, however this is extremely difficult toachieve. In practice the selection criteria together with ob-servational limitations tend to bias samples towards certainclasses of object.

In this paper we present observations of the extended12 µm AGN sample of Rush et al. (1993) using an ob-serving technique which has been chosen to optimize sen-sitivity to small–scale radio structures i.e. the VLA in A–configuration at 8.4 GHz. This sample is one of the largesthomogeneously–selected samples of Seyfert galaxies avail-able and contains well–matched populations of type 1 andtype 2 sources. The paper is organized as follows; in Section2 we briefly describe the sample, in Section 3 we describe theobservations and data reduction, in Section 4 we present theresults and in Section 5 we explain how 5 radio–loud objectsfrom the sample may be identified. An analysis of the radioproperties of the sample will be carried out in subsequentpapers.

A value of H◦ = 75 kms−1Mpc−1 is assumed through-out.

2 THE EXTENDED 12–MICRON SAMPLE

The extended 12 µm AGN sample of Rush et al. (1993) isan extension of the original 12 µm AGN sample of Spinoglio& Malkan (1989) to fainter flux levels using the IRAS FaintSource Catalogue Version 2 (Moshir 1991). From an initialsample of 893 mid–infrared–bright sources, AGN catalogueswere used to define a subsample of active galaxies which con-tains 118 objects, the majority of which are Seyfert galax-ies. The sample was selected at 12 µm in order to minimizewavelength–dependent selection effects. Spinoglio & Malkan(1989) proposed that this wavelength carries an approxi-mately constant fraction, around 20%, of the bolometric fluxfor quasars and both types of Seyfert.

Previous radio observations of part of the extended 12µm AGN sample have been made by Nagar et al. (1999)who observed 16 sources with the same resolution as theobservations presented in this paper and Rush et al. (1996)who presented lower resolution observations of the original12 µm sample which includes 51 sources from the extendedsample. The hard X–ray properties of the sample have beenstudied by Barcons et al. (1995) and the host galaxies of thesample have been studied by Hunt & Malkan (1999).

3 THE OBSERVATIONS

We have made new observations of 87 sources and whencombined with matched observations of 19 sources from theCfA Seyfert sample (Kukula et al. 1995) these observationscover 91% of the AGN sample of Rush et al. (1993). Of the12 sources not observed, 10 are unobservable at the VLAdue to their low declination and two are well–studied radiosources (3C 120 and 3C 273).

An almost identical observing strategy to that used byKukula et al. (1995) was followed for all observations. The

Very Large Array⋆ (VLA) was used in A–configuration at8.4 GHz in snapshot mode with approximately 16 minuteson each source and approximately 6 minutes on a corre-sponding phase calibrator. J2000 co–ordinates were used,with phase calibrators selected from the A–category NRAOlist and the list of Patnaik et al. (1992). In theory the po-sitional accuracy of the final images is 0.005 arcsec, but toallow for atmospheric fluctuations we adopt a conservativeestimate of 0.05 arcsec. Due to an on–line computer fail-ure during the initial observing run, the 87 new sources ob-served were split between two separate observing runs. Thefinal radio database will therefore contain data from 3 sep-arate epochs; 15th July 1995 (63 sources), 25th November1996 (24 sources) and June 1991 (19 sources from the CfAsample). The epoch of each new observation is indicated inTable 1.

Between the 1995 run and the 1996 run, the two defaultVLA observing frequencies changed from 8.415 and 8.464GHz to 8.435 and 8.485 GHz to avoid interference. The mean1–σ noise level for all maps was 53±20 µJy; 56±16 µJyfor the 1995 maps compared with 44±26 µJy beam−1 forthe 1996 maps. Table 1 gives the noise levels for individualmaps. Mean noise values have been calculated using onlythose thermal–noise–limited sources (peak flux < 100 mJybeam−1) observed at high elevation (axial ratio of beam <

5), errors represent the standard deviation of the mean.All data processing, including calibration and mapping,

was performed using the Astronomical Image ProcessingSystem (AIPS) in the standard way. The data were Fourier–transformed using a natural weighting scheme in order tomaximize sensitivity. After CLEAN deconvolution, the mapswere restored with a 0.25 arcsec FWHM Gaussian beam.The largest detectable angular size in this configuration is3.5 arcsec. Seventeen strong sources, whose peak flux den-sity exceeded 10 mJy, were subjected to several cycles ofself–calibration. In the final maps the sensitivity approachedthermal noise levels (1–σ < 120 µJy beam−1) for all except5 sources, these were either bright (> 100 mJy beam−1) orobserved at low elevation (axial ratio of beam > 5).

4 RESULTS AND ANALYSIS

4.1 Observational results

Contour maps of all detected sources are shown in Figure1. The ellipse in the lower left–hand corner shows the shapeof the restoring beam at half power. Optical nuclear posi-tions are marked by a cross where they are available fromClements (1981), Clements (1983) and Argyle & Eldridge(1990); the diameter of the cross shows the 2–σ positionaluncertainty.

Descriptions of the radio maps are shown in Table 1which is arranged as follows; Column 1: Galaxy name, adagger (†) indicates data from the July 1995 observingrun and an asterisk (∗) indicates data from the November1996 observing run. Column 2: Beam major axis, θmaj . Col-umn 3: Beam minor axis, θmin. Column 4: Beam position

⋆ Operated by Associated Universities Inc. under contract withthe National Science Foundation. Thompson et al. (1980) giveinstrumental details.

c© 0000 RAS, MNRAS 000, 000–000

The extended 12–micron Seyferts at 8.4 GHz 3

angle in degrees, PA. Column 5: Peak flux density, Speak

(mJy/beam). Column 6: The root mean square noise, σ,measured at the edge of the field where no deconvolutiontechniques were applied (µJy/beam). Column 7: Contourlevels for each map (µJy/beam). Where possible the basecontour level was set at 3–σ however in 28% of the mapsinstrumental ‘side–lobes’ were present and the base contourlevel was set at a level which excluded obvious spurious fea-tures. Side–lobes result from the incomplete coverage of theuv–plane of the interferometer. They are usually removedby deconvolution techniques such as CLEAN but can re-main strong when the original data are of poor quality orbadly calibrated, or when the target source is particularlybright or observed at low elevation.

4.2 Description of sources

A brief description of those sources with unusual radio mor-phologies is given below (all positions are given in J2000co–ordinates).

NGC 34 (Markarian 938): This infrared–luminousgalaxy is in the advanced stage of a merger with two nu-clei separated by approximately 6 kpc. The weak [O III]emission and strong Hα emission, which is distributed overthe entire galaxy, indicate that this galaxy is more properlyclassified as a starburst galaxy rather than a Seyfert galaxy(Mulchaey et al. 1996).

Note that NGC 34 contains a bright radio sourcemore luminous than two–thirds of the Seyferts observed(P8.4GHz=1×1022 WHz−1) and slightly resolved with a de-convolved size of 0.4 arcsec (150 pc) and position angleof 140◦. High–resolution mid–infrared images show a dou-ble source separated by approximately 1.2 arcsec, with thefainter source at a position angle of around 180◦ from thebrighter source (Miles et al. 1996). Radio observations byCondon et al. (1991) show a faint southern radio extension,not found in our map, which is consistent with the infraredstructure.

NGC 526A: NGC 526A is strongly interacting with agalaxy to the east. The position of the slightly resolved radiosource is closer to the peak in the optical continuum thanto the apex of the putative emission–line wedge identifiedby Mulchaey et al. (1996); whereas the emission–line wedgehas a position angle of 123◦, that of the radio source is 43◦.

Markarian 1034 (V Zw 233): Markarian 1034 is an in-terconnected pair of Seyfert 1 galaxies, MCG+05-06-035(PGC 0009071) at α=02h 23m 18.84s, δ=+32◦ 11′ 18.2′′

and MCG+05-06-036 (PGC 0009074) at α=02h 23m 21.99s,δ=+32◦ 11′ 49.6′′; positions are taken from the NASA/IPACExtragalactic Database (NED) as described by Helou et al.(1995). The new observations show MCG +05-06-036. Thissource has extended ‘wings’ of radio emission symmetricalabout a central bright component.

NGC 1125: The radio source has a clear linear structurewith 3 aligned compact components at a position angle of120◦. The radio structure is not aligned with the slightly re-solved [O III] emission at a position angle of 56◦ (Mulchaeyet al. 1996).

NGC 1365: There is no alignment between the fourcompact radio components observed and none is co–incidentwith the photographic position of the nucleus which lies atα=03h 33m 35.57s, δ=-36◦ 08′ 22.9′′ (NED), or either of

the two infrared sources observed by Telesco et al. (1993),the brightest of which lies at α=03h 33m 36.17s, δ=-36◦ 08′

25.9′′ (positional error of 1.5 arcsec).IRAS F04385-0828: We detect another weak radio

source to the west at a projected linear separation of 15.4kpc, it has an integrated flux of 2.05 mJy and lies at α=04h

40m 51.45s, δ=-08◦ 22′ 23.85′′. This weak source is well be-yond the optical radius of the host galaxy, which extendswestwards approximately 6 kpc, and is unlikely to be re-lated to the Seyfert nucleus.

Markarian 6 (UGC 3547): This source contains a cen-tral, well–collimated radio structure. On larger scales, fea-tures suggestive of shells or bubbles are seen at varying po-sition angles (Baum et al. 1993; Kukula et al. 1996).

Markarian 79 (UGC 3973): This large radio sourceshows a linear structure with 3 clearly aligned components.Lower resolution measurements, at lower frequency, showthat the southern component is stronger than the northerncomponent (Ulvestad & Wilson 1984a), whereas in our im-age these components are almost equally bright.

NGC 2639 (UGC 4544): The source has a bright coreand symmetrical east–west ‘wings’. In our map, the core–to–wings brightness ratio is an order of magnitude higher thanin the 6 cm map of Ulvestad & Wilson (1984a); probably dueto core variability. NGC 2639 displays the rare properties ofH2O megamaser emission (Wilson et al. 1995) and VLBI–scale radio emission (Hummel et al. 1982). It has also beenclassified as a LINER.

NGC 2992 (Arp 245): This edge–on, interacting galaxyhas unusual ‘loops’ of diffuse radio emission (Wehrle & Mor-ris 1988; Colbert et al. 1996).

NGC 4922A/B: NGC 4922 is a system of 3 galaxiessituated at α=13h 01m 24.50s, δ=+29◦ 18′ 29.9′′ (Seyfert2), α=13h 01m 24.67s, δ=+29◦ 18′ 33.0′′ and α=13h

01m 25.26s, δ=+29◦ 18′ 49.58′′ (PGC 044896/FIRSTJ130125.2+291849); positions are taken from NED. We havedetected PGC 044896 (an unresolved 7.8 mJy source atα=13h 01m 25.26s, δ=29◦ 18′ 49.53′′ , shown in Figure 1),but not the nearby Seyfert nucleus.

NGC 5135: Despite the bright radio flux of the nucleusat lower resolutions and frequencies (Ulvestad & Wilson1989), no radio emission is observed at the nucleus in thecurrent observations. Wynn-Williams & Becklin (1993) havesuggested that, “most of the radio emission of this Seyfertgalaxy emanates from structures on either side of the nu-cleus rather than from the nucleus itself”. We detect a weakcomponent with a flux density of 2.33 mJy at α=13h 25m

44.9s, δ=-29◦ 50′ 16.17′′, but it is unlikely to be related tothe active nucleus (see Section 4.3).

Markarian 273 (UGC 8696, I Zw 071): This double–nucleus source is one of the most ultra–luminous infraredgalaxies known. The radio continuum shows two compactradio components separated by approximately 600 pc. Theradio structure has been mapped previously by Condon et al.(1991), who classify it as a compact starburst, and Knapenet al. (1997).

Markarian 463 (UGC 8850): Three aligned north–southradio components are detected in this well–studied double–nucleus galaxy. North–south radio structures have previ-ously been observed from VLBI–scales (Hummel et al. 1982;Kukula et al. 1999) to up to 18 kpc south of the nucleus(Mazzarella et al. 1991). The new observations match the 6

c© 0000 RAS, MNRAS 000, 000–000

4 A.Thean, A.Pedlar, M.Kukula, S.Baum and C.O’Dea

Galaxy θmaj(′′) θmin(′′) PA(◦) Speak(mJy/B) 1–σ(µJy/B) Contour levels (µJy/B)

∗Mrk 938 0.39 0.25 11 6.2 35 3–σ×-1,1,2,4,8,16,32∗NGC 262 0.28 0.20 -76 310.3 187 3–σ×-1,1,2,4,8,16,32,64,128,256,512∗E541 0.46 0.25 12 0.4 28 3–σ×-1,1,2,4∗NGC 424 0.85 0.25 1 7.0 69 12–σ×-1,1,2,4,8∗NGC 526A 0.73 0.24 3 3.9 48 3–σ×-1,1,2,4,8,16∗NGC 513 0.30 0.25 -67 0.8 30 3–σ×-1,1,2,4,8†F01475-0740 0.48 0.24 39 132.0 65 6–σ×-1,1,2,4,8,16,32,64,128,256†Mrk 1034 0.29 0.26 57 2.9 44 3–σ×-1,1,2,4,8,16†MCG-3-7-11 0.67 0.24 37 2.0 50 3–σ×-1,1,2,4,8†NGC 1056 0.70 0.26 1 0.4 51 3–σ×-1,1,2†NGC 1097 0.59 0.25 2 2.8 49 3–σ×-1,1,2,4,8,16∗NGC 1125 0.42 0.27 -7 4.2 32 3–σ×-1,1,2,4,8,16,32†NGC 1194 0.58 0.25 51 0.7 51 3–σ×-1,1,2,4∗NGC 1241 0.36 0.27 -13 5.3 46 4–σ×-1,1,2,4,8,16,32†NGC 1320 0.60 0.25 51 0.7 55 3–σ×-1,1,2,4†NGC 1365 0.76 0.25 -1 1.5 59 3–σ×-1,1,2,4,8†NGC 1386 0.78 0.25 -7 5.6 52 15–σ×-1,1,2,4†F03362-1642 1.01 0.26 -48 0.7 46 3–σ×-1,1,2,4∗F03450+0055 0.32 0.27 -17 4.2 31 3–σ×-1,1,2,4,8,16,32∗Mrk 618 0.38 0.27 -14 1.7 26 3–σ×-1,1,2,4,8,16†F04385-0828 0.75 0.26 -50 4.7 43 6–σ×-1,1,2,4,8,16†NGC 1667 0.64 0.26 -50 0.4 48 3–σ×-1,1,2†MCG-5-13-17 0.65 0.25 8 1.4 70 3–σ×-1,1,2,4∗F05189-2524 0.53 0.27 -8 5.0 57 6–σ×-1,1,2,4,8†E253-G3 1.49 0.24 2 5.7 485 3–σ×-1,1†F05563-3820 0.85 0.26 4 5.1 107 15–σ×-1,1,2†Mrk 6 0.46 0.24 -85 12.8 36 3–σ×-1,1,2,4,8,16,32†Mrk 9 0.55 0.24 -71 0.4 40 3–σ×-1,1,2†Mrk 79 0.27 0.26 -41 0.8 49 3–σ×-1,1,2,4∗F07599+6508 0.34 0.29 61 5.0 35 3–σ×-1,1,2,4,8,16,32†NGC 2639 0.26 0.26 0 90.6 67 9–σ×-1,1,2,4,8,16,32,64,128†OJ 287 0.31 0.26 -1 1515.3 1175 9–σ×-1,1,2,4,8,16,32,64,128†F08572+3915 0.26 0.25 80 2.6 54 6–σ×-1,1,2,4†Mrk 704 0.27 0.26 21 0.7 62 3–σ×-1,1,2∗UGC 5101 0.30 0.21 63 29.0 97 3–σ×-1,1,2,4,8,16,32,64†NGC 2992 0.37 0.26 -8 3.9 57 3–σ×-1,1,2,4,8,16†Mrk 1239 0.31 0.26 7 6.8 90 6–σ×-1,1,2,4,8,16∗NGC 3031 0.32 0.20 60 221.2 133 3–σ×-1,1,2,4,8,16,32,64,128,256,512†3C 234 0.26 0.25 68 33.5 67 4–σ×-1,1,2,4,8,16,32,64†NGC 4579 1.32 0.26 56 33.9 59 15–σ×-1,1,2,4,8,16,32†NGC 4593 0.65 0.25 49 1.0 45 3–σ×-1,1,2,4†NGC 4594 0.94 0.25 50 84.7 53 3–σ×-1,1,2,4,8,16,32,64,128,256,512†TOL1238 0.90 0.30 -17 1.4 102 3–σ×-1,1,2†MCG-2-33-34 0.38 0.26 13 0.6 55 3–σ×-1,1,2†PGC 044896 0.45 0.26 65 5.0 69 6–σ×-1,1,2,4,8,16†NGC 4941 0.45 0.26 41 1.9 48 3–σ×-1,1,2,4,8†NGC 4968 0.47 0.26 1 2.8 47 6–σ×-1,1,2,4,8†NGC 5005 0.56 0.26 64 1.2 46 3–σ×-1,1,2,4,8†MCG-3-34-63 0.41 0.26 -8 24.5 64 12–σ×-1,1,2,4,8,16,32†NGC 5194 0.54 0.26 68 0.3 47 3–σ×-1,1,2†MCG-6-30-15 0.82 0.24 -22 0.4 68 3–σ×-1,1†F13349+2438 0.38 0.25 66 4.0 52 3–σ×-1,1,2,4,8,16†NGC 5256 0.57 0.26 67 3.5 39 3–σ×-1,1,2,4,8,16†Mrk 273 0.55 0.26 69 22.2 38 6–σ×-1,1,2,4,8,16,32,64†IC 4329A 0.70 0.26 -21 4.9 91 3–σ×-1,1,2,4,8,16†NGC 5347 1.00 0.26 58 0.7 59 3–σ×-1,1,2†Mrk 463 0.63 0.25 58 38.2 43 3–σ×-1,1,2,4,8,16,32,64,128,256†NGC 5506 0.35 0.26 -31 50.8 77 3–σ×-1,1,2,4,8,16,32,64,128†Mrk 817 0.67 0.26 61 2.9 58 3–σ×-1,1,2,4,8,16†F15091-2107 0.45 0.26 -6 6.0 68 3–σ×-1,1,2,4,8,16†NGC 5953 0.89 0.26 57 0.4 55 3–σ×-1,1,2†Arp 220 0.86 0.26 58 54.6 41 24–σ×-1,1,2,4,8,16,32†MCG-2-40-4 0.38 0.26 -13 1.6 42 3–σ×-1,1,2,4,8†F15480-0344 0.33 0.26 -6 9.5 85 3–σ×-1,1,2,4,8,16,32†NGC 6890 1.35 0.24 5 0.6 53 3–σ×-1,1,2∗Mrk 509 0.40 0.25 20 1.8 32 3–σ×-1,1,2,4,8,16∗Mrk 897 0.42 0.26 48 1.7 30 3–σ×-1,1,2,4,8,16†NGC 7130 0.74 0.24 8 8.9 98 6–σ×-1,1,2,4,8†NGC 7172 0.65 0.24 10 2.0 59 3–σ×-1,1,2,4,8∗F22017+0319 0.37 0.26 41 0.7 28 3–σ×-1,1,2,4†NGC 7213 1.71 0.24 -1 132.2 183 3–σ×-1,1,2,4,8,16,32,64,128,256∗3C 445 0.35 0.25 24 56.3 36 3–σ×-1,1,2,4,8,16,32,64,128,256,512∗NGC 7314 0.53 0.25 -2 0.8 41 3–σ×-1,1,2,4∗MCG-3-58-7 0.44 0.24 -1 0.3 31 3–σ×-1,1,2∗NGC 7496 1.17 0.24 -1 3.2 56 3–σ×-1,1,2,4,8,16∗NGC 7582 1.09 0.25 2 2.4 80 3–σ×-1,1,2,4,8∗CG 381 0.37 0.26 40 0.3 29 3–σ×-1,1,2

Table 1. Key to radio maps presented in Figure 1.

c© 0000 RAS, MNRAS 000, 000–000

The extended 12–micron Seyferts at 8.4 GHz 5

CONT: MK938 IPOL 8460.100 MHZ MK938 NA.ICLN.1

Cont peak flux = 6.1841E-03 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)00 11 06.65 06.60 06.55 06.50 06.45

-12 06 26.0

26.5

27.0

27.5

28.0

28.5

29.0

29.5

i ) Markarian 938

CONT: N262 IPOL 8460.100 MHZ N262 NA.SCICLN.1

Cont peak flux = 3.1033E-01 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)00 48 47.30 47.25 47.20 47.15 47.10 47.05 47.00

31 57 27.0

26.5

26.0

25.5

25.0

24.5

24.0

23.5

23.0

ii ) NGC 262 (Markarian 348)

CONT: E541 IPOL 8460.100 MHZ E541 _NA.ICLN.1

Cont peak flux = 3.7369E-04 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)01 02 17.50 17.45 17.40 17.35 17.30 17.25

-19 40 06.5

07.0

07.5

08.0

08.5

09.0

09.5

10.0

10.5

iii ) E541-IG12

CONT: N424 IPOL 8460.100 MHZ N424 _NA.ICLN.1

Cont peak flux = 6.9874E-03 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)01 11 27.80 27.75 27.70 27.65 27.60 27.55 27.50

-38 04 59.0

59.5

05 00.0

00.5

01.0

01.5

02.0

02.5

iv ) NGC 424

CONT: N526A IPOL 8460.100 MHZ N526A _NA.ICLN.1

Cont peak flux = 3.8663E-03 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)01 23 54.50 54.45 54.40 54.35 54.30 54.25

-35 03 54.0

54.5

55.0

55.5

56.0

56.5

57.0

57.5

v ) NGC 526A

CONT: N513 IPOL 8460.100 MHZ N513 NA.ICLN.1

Cont peak flux = 8.1089E-04 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)01 24 26.95 26.90 26.85 26.80 26.75 26.70 26.65

33 47 60.0

59.5

59.0

58.5

58.0

57.5

57.0

56.5

vi ) NGC 513

CONT: F01475 IPOL 8439.900 MHZ F01475 _NA.SCICLN.1

Cont peak flux = 1.3198E-01 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)01 50 02.85 02.80 02.75 02.70 02.65 02.60 02.55

-07 25 46

47

48

49

50

51

vii ) F01475-0740

CONT: MK1034 IPOL 8439.900 MHZ MK1034 _NA.ICLN.1

Cont peak flux = 2.9152E-03 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)02 23 22.15 22.10 22.05 22.00 21.95 21.90 21.85 21.80 21.75

32 11 51

50

49

48

47

46

viii ) Markarian 1034

CONT: M-3-7-11 IPOL 8439.900 MHZ M-3-7-11 _NA.RECAL.1

Cont peak flux = 1.9618E-03 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)02 24 40.70 40.65 40.60 40.55 40.50 40.45 40.40 40.35

-19 08 28

29

30

31

32

33

ix ) MCG-3-7-11

CONT: N1056 IPOL 8439.900 MHZ N1056 _NA.ICLN.1

Cont peak flux = 3.8024E-04 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)02 42 48.70 48.65 48.60 48.55 48.50 48.45 48.40 48.35 48.30

28 34 28

27

26

25

24

23

x ) NGC 1056

CONT: N1097 IPOL 8439.900 MHZ N1097 _NA.RECAL.1

Cont peak flux = 2.7918E-03 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)02 46 19.15 19.10 19.05 19.00 18.95 18.90 18.85 18.80 18.75

-30 16 26

27

28

29

30

31

xi ) NGC 1097

CONT: N1125 IPOL 8460.100 MHZ N1125 _NA.ICLN.1

Cont peak flux = 4.1499E-03 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)02 51 40.60 40.55 40.50 40.45 40.40 40.35

-16 39 00.5

01.0

01.5

02.0

02.5

03.0

03.5

04.0

xii ) NGC 1125

Figure 1. A-configuration 8.4 GHz images.

c© 0000 RAS, MNRAS 000, 000–000

6 A.Thean, A.Pedlar, M.Kukula, S.Baum and C.O’Dea

CONT: N1194 IPOL 8439.900 MHZ N1194 _NA.ICLN.1

Cont peak flux = 6.4884E-04 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)03 03 49.25 49.20 49.15 49.10 49.05 49.00 48.95

-01 06 11

12

13

14

15

16

xiii ) NGC 1194

CONT: N1241 IPOL 8460.100 MHZ N1241 _NA.ICLN.1

Cont peak flux = 5.2821E-03 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)03 11 14.75 14.70 14.65 14.60 14.55 14.50

-08 55 17.0

17.5

18.0

18.5

19.0

19.5

20.0

20.5

xiv ) NGC 1241

CONT: N1320 IPOL 8439.900 MHZ N1320 _NA.ICLN.1

Cont peak flux = 6.6976E-04 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)03 24 48.85 48.80 48.75 48.70 48.65 48.60 48.55 48.50

-03 02 30

31

32

33

34

35

xv ) NGC 1320

CONT: N1365 IPOL 8439.900 MHZ N1365 _NA.RECAL.1

Cont peak flux = 1.5072E-03 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)03 33 37.0 36.8 36.6 36.4 36.2 36.0 35.8

-36 08 16

18

20

22

24

26

28

30

32

xvi ) NGC 1365

CONT: N1386 IPOL 8439.900 MHZ N1386 _NA.RECLN.1

Cont peak flux = 5.6158E-03 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)03 36 46.40 46.35 46.30 46.25 46.20 46.15 46.10 46.05 46.00

-35 59 55

56

57

58

59

-36 00 00

xvii ) NGC 1386

CONT: F03362 IPOL 8439.900 MHZ F03362 _NA.RECAL.1

Cont peak flux = 6.9048E-04 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)03 38 33.75 33.70 33.65 33.60 33.55 33.50 33.45 33.40

-16 32 16

17

18

19

20

21

xviii ) F03362-1642

CONT: F03450 IPOL 8460.100 MHZ F03450 _NA.ICLN.1

Cont peak flux = 4.2385E-03 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)03 47 40.30 40.25 40.20 40.15 40.10

01 05 16.0

15.5

15.0

14.5

14.0

13.5

13.0

12.5

12.0

xix ) F03450+0055

CONT: MK618 IPOL 8460.100 MHZ MK618 NA.ICLN.1

Cont peak flux = 1.7025E-03 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)04 36 22.40 22.35 22.30 22.25 22.20

-10 22 32.0

32.5

33.0

33.5

34.0

34.5

35.0

35.5

36.0

xx ) Markarian 618

CONT: N1667 IPOL 8439.900 MHZ N1667 NA.ICLN.1

Cont peak flux = 3.7373E-04 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)04 48 37.35 37.30 37.25 37.20 37.15 37.10 37.05 37.00

-06 19 10

11

12

13

14

xxi ) NGC 1667

CONT: F04385 IPOL 8439.900 MHZ F04385 _NA.RECAL.1

Cont peak flux = 4.6880E-03 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)04 40 55.15 55.10 55.05 55.00 54.95 54.90 54.85 54.80

-08 22 20

21

22

23

24

xxii ) F04385-0828

CONT: M-5-13-1 IPOL 8439.900 MHZ M-5-13-1 _NA.ICLN.1

Cont peak flux = 1.3841E-03 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)05 19 36.00 35.95 35.90 35.85 35.80 35.75 35.70 35.65 35.60

-32 39 25

26

27

28

29

30

xxiii ) MCG-5-13-1

CONT: F05189 IPOL 8460.100 MHZ F05189 _NA.ICLN.1

Cont peak flux = 4.9676E-03 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)05 21 01.60 01.55 01.50 01.45 01.40 01.35 01.30 01.25 01.20

-25 21 42

43

44

45

46

47

48

xxiv ) F05189-2524

Figure 1. A-configuration 8.4 GHz images (continued).

c© 0000 RAS, MNRAS 000, 000–000

The extended 12–micron Seyferts at 8.4 GHz 7

CONT: F05563 IPOL 8439.900 MHZ F05563 _NA.RECLN.1

Cont peak flux = 5.1228E-03 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)05 58 03.0 02.5 02.0 01.5 01.0

-38 19 50

55

20 00

05

10

xxv ) F05563-3820

CONT: MK6 IPOL 8439.900 MHZ MK6 NA.SCICLN.1

Cont peak flux = 1.2822E-02 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)06 52 13.0 12.8 12.6 12.4 12.2 12.0 11.8

74 25 39

38

37

36

35

xxvi ) Markarian 6

CONT: MK9 IPOL 8439.900 MHZ MK9 NA.ICLN.1

Cont peak flux = 4.0452E-04 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)07 36 57.3 57.2 57.1 57.0 56.9 56.8 56.7

58 46 16

15

14

13

12

11

xxvii ) Markarian 9

CONT: MK79 IPOL 8439.900 MHZ MK79 NA.ICLN.1

Cont peak flux = 8.1650E-04 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)07 42 33.1 33.0 32.9 32.8 32.7 32.6

49 48 37

36

35

34

33

32

xxviii ) Markarian 79

CONT: F07599 IPOL 8460.100 MHZ F07599 _NA.ICLN.1

Cont peak flux = 5.0535E-03 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)08 04 30.7 30.6 30.5 30.4 30.3 30.2

64 59 54.5

54.0

53.5

53.0

52.5

52.0

51.5

51.0

xxix ) F07599+6508

CONT: N2639 IPOL 8439.900 MHZ N2639 NA.SCICLN.1

Cont peak flux = 9.0637E-02 JY/BEAM D

EC

LIN

AT

ION

(J2

000)

RIGHT ASCENSION (J2000)08 43 38.3 38.2 38.1 38.0 37.9 37.8

50 12 22

21

20

19

18

xxx ) NGC 2639

CONT: OJ287 IPOL 8439.900 MHZ OJ287 _NA.SCICLN.1

Cont peak flux = 1.5153E+00 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)08 54 49.05 49.00 48.95 48.90 48.85 48.80 48.75 48.70

20 06 33

32

31

30

29

28

xxxi ) OJ287

CONT: F08572 IPOL 8439.900 MHZ F08572 _NA.ICLN.1

Cont peak flux = 2.6196E-03 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)09 00 25.6 25.5 25.4 25.3 25.2

39 03 57

56

55

54

53

52

xxxii ) F08572+3915

CONT: MK704 IPOL 8439.900 MHZ MK704 _NA.ICLN.1

Cont peak flux = 6.4611E-04 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)09 18 26.15 26.10 26.05 26.00 25.95 25.90 25.85 25.80

16 18 22

21

20

19

18

17

xxxiii ) Markarian 704

CONT: U5101 IPOL 8460.100 MHZ U5101 _NA.SCICLN.1

Cont peak flux = 2.8996E-02 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)09 35 51.8 51.7 51.6 51.5 51.4

61 21 13.5

13.0

12.5

12.0

11.5

11.0

10.5

10.0

xxxiv ) UGC 5101

CONT: N2992 IPOL 8439.900 MHZ N2992 NA.ICLN.1

Cont peak flux = 3.9281E-03 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)09 45 42.3 42.2 42.1 42.0 41.9 41.8 41.7 41.6

-14 19 30

32

34

36

38

40

xxxv ) NGC 2992

CONT: MK1239 IPOL 8439.900 MHZ MK1239 NA.RECAL.2

Cont peak flux = 6.8358E-03 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)09 52 19.25 19.20 19.15 19.10 19.05 19.00 18.95

-01 36 41

42

43

44

45

46

xxxvi ) Markarian 1239

Figure 1. A-configuration 8.4 GHz images (continued).

c© 0000 RAS, MNRAS 000, 000–000

8 A.Thean, A.Pedlar, M.Kukula, S.Baum and C.O’Dea

CONT: N3031 IPOL 8460.100 MHZ N3031 NA.SCICLN.1

Cont peak flux = 2.2123E-01 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)09 55 33.5 33.4 33.3 33.2 33.1 33.0 32.9 32.8

69 03 57.0

56.5

56.0

55.5

55.0

54.5

54.0

53.5

53.0

xxxvii ) NGC 3031

CONT: 3C234 IPOL 8439.900 MHZ 3C234 _NA.SCICLN.1

Cont peak flux = 3.3532E-02 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)10 01 49.70 49.65 49.60 49.55 49.50 49.45 49.40 49.35

28 47 11

10

09

08

07

06

xxxviii ) 3C 234

CONT: N4579 IPOL 8439.900 MHZ N4579 NA.SCICLN.2

Cont peak flux = 3.3939E-02 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)12 37 43.70 43.65 43.60 43.55 43.50 43.45 43.40 43.35

11 49 08

07

06

05

04

03

xxxix ) NGC 4579

CONT: N4593 IPOL 8439.900 MHZ N4593 NA.ICLN.1

Cont peak flux = 1.0200E-03 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)12 39 39.60 39.55 39.50 39.45 39.40 39.35 39.30

-05 20 37

38

39

40

41

xl ) NGC 4593

CONT: N4594 IPOL 8439.900 MHZ N4594 _NA.SCICLN.1

Cont peak flux = 8.4653E-02 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)12 39 59.60 59.55 59.50 59.45 59.40 59.35 59.30 59.25

-11 37 21

22

23

24

25

xli ) NGC 4594

CONT: TOL1238 IPOL 8439.900 MHZ TOL1238 _NA.RECAL.1

Cont peak flux = 1.4248E-03 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)12 40 53.1 53.0 52.9 52.8 52.7 52.6 52.5

-36 45 17

18

19

20

21

22

23

24

xlii ) TOL1238

CONT: M-2-33-3 IPOL 8439.900 MHZ M-2-33-3 _NA.ICLN.1

Cont peak flux = 6.2855E-04 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)12 52 12.65 12.60 12.55 12.50 12.45 12.40 12.35 12.30

-13 24 51

52

53

54

55

56

xliii ) MCG-2-33-3

CONT: N4922A/B IPOL 8439.900 MHZ N4922A/B-CL.ICLN.1

Cont peak flux = 5.0222E-03 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)13 01 25.40 25.35 25.30 25.25 25.20 25.15 25.10

29 18 51.5

51.0

50.5

50.0

49.5

49.0

48.5

48.0

47.5

xliv ) PGC 044896

CONT: N4941 IPOL 8439.900 MHZ N4941 _NA.ICLN.1

Cont peak flux = 1.8468E-03 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)13 04 13.30 13.25 13.20 13.15 13.10 13.05 13.00 12.95

-05 33 04

05

06

07

08

xlv ) NGC 4941

CONT: N4968 IPOL 8439.900 MHZ N4968 _NA.RECLN.1

Cont peak flux = 2.8265E-03 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)13 07 06.10 06.05 06.00 05.95 05.90 05.85 05.80 05.75

-23 40 34

35

36

37

38

39

xlvi ) NGC 4968

CONT: N5005 IPOL 8439.900 MHZ N5005 _NA.ICLN.1

Cont peak flux = 1.1828E-03 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)13 10 56.5 56.4 56.3 56.2 56.1

37 03 35

34

33

32

31

30

xlvii ) NGC 5005

CONT: M-3-34-6 IPOL 8439.900 MHZ M-3-34-6 _NA.SCICLN.1

Cont peak flux = 2.4537E-02 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)13 22 24.65 24.60 24.55 24.50 24.45 24.40 24.35 24.30

-16 43 40

41

42

43

44

45

xlviii ) MCG-3-34-6

Figure 1. A-configuration 8.4 GHz images (continued).

c© 0000 RAS, MNRAS 000, 000–000

The extended 12–micron Seyferts at 8.4 GHz 9

CONT: N5194 IPOL 8439.900 MHZ N5194 _NA.ICLN.1

Cont peak flux = 2.9986E-04 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)13 29 52.9 52.8 52.7 52.6 52.5

47 11 45

44

43

42

41

40

xlix ) NGC 5194

CONT: M-6-30-1 IPOL 8439.900 MHZ M-6-30-1 _NA.RECAL.1

Cont peak flux = -4.1327E-04 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)13 35 54.35 54.30 54.25 54.20 54.15 54.10 54.05 54.00 53.95

-34 17 50

51

52

53

54

55

l ) MCG-6-30-1

CONT: F13349 IPOL 8439.900 MHZ F13349-CL.ICLN.2

Cont peak flux = 4.0222E-03 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)13 37 18.90 18.85 18.80 18.75 18.70 18.65 18.60 18.55

24 23 06

05

04

03

02

01

li ) F13349+2438

CONT: N5256 IPOL 8439.900 MHZ N5256 NA.RECLN.1

Cont peak flux = 3.4487E-03 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)13 38 18.2 18.0 17.8 17.6 17.4 17.2 17.0 16.8

48 16 46

44

42

40

38

36

34

32

30

lii ) NGC 5256

CONT: MK273 IPOL 8439.900 MHZ MK273 NA.SCICLN.2

Cont peak flux = 2.2196E-02 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)13 44 42.4 42.3 42.2 42.1 42.0 41.9 41.8

55 53 16

15

14

13

12

11

liii ) Markarian 273

CONT: I4329A IPOL 8439.900 MHZ I4329A _NA.RECLN.1

Cont peak flux = 4.9088E-03 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)13 49 20.5 20.0 19.5 19.0

-30 18 20

25

30

35

40

liv ) IC 4329A

CONT: N5347 IPOL 8439.900 MHZ N5347 NA.ICLN.1

Cont peak flux = 6.6584E-04 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)13 53 18.00 17.95 17.90 17.85 17.80 17.75 17.70 17.65 17.60

33 29 29

28

27

26

25

24

lv ) NGC 5347

CONT: MK463 IPOL 8439.900 MHZ MK463 NA.SCICLN.1

Cont peak flux = 3.8222E-02 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)13 56 03.05 03.00 02.95 02.90 02.85 02.80 02.75 02.70

18 22 20

19

18

17

16

lvi ) Markarian 463

CONT: N5506 IPOL 8439.900 MHZ N5506 _NA.SCICLN.1

Cont peak flux = 6.1480E-02 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)14 13 15.00 14.95 14.90 14.85 14.80 14.75

-03 12 25.5

26.0

26.5

27.0

27.5

28.0

28.5

29.0

lvii ) NGC 5506

CONT: MK817 IPOL 8439.900 MHZ MK817 NA.ICLN.1

Cont peak flux = 2.9412E-03 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)14 36 22.4 22.3 22.2 22.1 22.0 21.9 21.8

58 47 42

41

40

39

38

37

lviii ) Markarian 817

CONT: F15091 IPOL 8439.900 MHZ F15091-CL.ICLN.2

Cont peak flux = 6.0451E-03 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)15 12 00.00 11 59.95 59.90 59.85 59.80 59.75 59.70 59.65

-21 18 59

19 00

01

02

03

04

lix ) F15091-2107

CONT: N5953 IPOL 8439.900 MHZ N5953 _NA.ICLN.1

Cont peak flux = 3.8970E-04 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)15 34 32.55 32.50 32.45 32.40 32.35 32.30 32.25 32.20

15 11 40

39

38

37

36

35

lx ) NGC 5953

Figure 1. A-configuration 8.4 GHz images (continued).

c© 0000 RAS, MNRAS 000, 000–000

10 A.Thean, A.Pedlar, M.Kukula, S.Baum and C.O’Dea

CONT: ARP220 IPOL 8439.900 MHZ ARP220 _NA.SCICLN.1

Cont peak flux = 5.4625E-02 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)15 34 57.6 57.5 57.4 57.3 57.2 57.1

23 30 16

15

14

13

12

11

10

09

08

lxi ) UGC 9913 = Arp 220

CONT: M-2-40-4 IPOL 8439.900 MHZ M-2-40-4 _NA.RECAL.1

Cont peak flux = 1.6443E-03 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)15 48 25.15 25.10 25.05 25.00 24.95 24.90 24.85 24.80

-13 45 25

26

27

28

29

30

lxii ) MCG-2-40-4

CONT: F15480 IPOL 8439.900 MHZ F15480 _NA.ICLN.1

Cont peak flux = 9.5211E-03 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)15 50 41.65 41.60 41.55 41.50 41.45 41.40 41.35

-03 53 16

17

18

19

20

lxiii ) F15480-0344

CONT: N6890 IPOL 8439.900 MHZ N6890 _NA.RECLN.1

Cont peak flux = 5.5319E-04 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)20 18 18.0 17.5 17.0 16.5

-44 48 20

25

30

35

lxiv ) NGC 6890

CONT: MK509 IPOL 8460.100 MHZ MK509 NA.ICLN.1

Cont peak flux = 1.7673E-03 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)20 44 09.85 09.80 09.75 09.70 09.65

-10 43 23.0

23.5

24.0

24.5

25.0

25.5

26.0

26.5

lxv ) Markarian 509

CONT: MK897 IPOL 8460.100 MHZ MK897 _NA.SHIFT.1

Cont peak flux = 1.7233E-03 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)21 07 45.95 45.90 45.85 45.80 45.75

03 52 42.0

41.5

41.0

40.5

40.0

39.5

39.0

38.5

lxvi ) Markarian 897

CONT: N7130 IPOL 8439.900 MHZ N7130 _NA.RECAL.1

Cont peak flux = 8.9419E-03 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)21 48 19.7 19.6 19.5 19.4 19.3

-34 57 02

03

04

05

06

07

lxvii ) NGC 7130

CONT: N7172 IPOL 8439.900 MHZ N7172 _NA.ICLN.1

Cont peak flux = 1.9702E-03 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)22 02 02.10 02.05 02.00 01.95 01.90 01.85 01.80 01.75 01.70

-31 52 08

09

10

11

12

13

lxviii ) NGC 7172

CONT: F22017 IPOL 8460.100 MHZ F22017 _NA.ICLN.1

Cont peak flux = 6.4521E-04 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)22 04 19.25 19.20 19.15 19.10 19.05

03 33 53.0

52.5

52.0

51.5

51.0

50.5

50.0

49.5

lxix ) F22017+0319

CONT: N7213 IPOL 8439.900 MHZ N7213 _NA.SCICLN.1

Cont peak flux = 1.8287E-01 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)22 09 16.5 16.4 16.3 16.2 16.1 16.0 15.9

-47 09 55

56

57

58

59

10 00

01

02

lxx ) NGC 7213

CONT: 3C445 IPOL 8460.100 MHZ 3C445 _NA.SCICLN.1

Cont peak flux = 5.6273E-02 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)22 23 49.65 49.60 49.55 49.50 49.45

-02 06 11.0

11.5

12.0

12.5

13.0

13.5

14.0

14.5

lxxi ) 3C 445

CONT: N7314 IPOL 8460.100 MHZ N7314 _NA.ICLN.1

Cont peak flux = 7.7770E-04 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)22 35 46.4 46.3 46.2 46.1 46.0

-26 02 56

57

58

59

03 00

01

02

03

lxxii ) NGC 7314

Figure 1. A-configuration 8.4 GHz images (continued).

c© 0000 RAS, MNRAS 000, 000–000

The extended 12–micron Seyferts at 8.4 GHz 11

CONT: M-3-58-7 IPOL 8460.100 MHZ M-3-58-7 _NA.ICLN.1

Cont peak flux = 3.1431E-04 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)22 49 37.30 37.25 37.20 37.15 37.10 37.05 37.00 36.95

-19 16 22

23

24

25

26

27

lxxiii ) MCG-3-58-7

CONT: N7496 IPOL 8460.100 MHZ N7496 _NA.ICLN.1

Cont peak flux = 3.2143E-03 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)23 09 47.5 47.4 47.3 47.2 47.1

-43 25 37

38

39

40

41

42

43

lxxiv ) NGC 7496

lxxv ) N7582

CONT: CG381 IPOL 8460.100 MHZ CG381 _NA.ICLN.1

Cont peak flux = 3.1840E-04 JY/BEAM

DE

CL

INA

TIO

N (

J200

0)

RIGHT ASCENSION (J2000)23 48 41.80 41.75 41.70 41.65 41.60

02 14 25.0

24.5

24.0

23.5

23.0

22.5

22.0

21.5

lxxvi ) CG 381

Figure 1. A-configuration 8.4 GHz images (continued).

cm radio structure observed by Mazzarella et al. (1991) withthe exception of the weak central radio component which ap-pears to coincide with a bright knot in the aligned opticaljet (Uomoto et al. 1993). This is the second most radio–luminous Seyfert in the extended 12 µm sample.

NGC 5506: This edge–on galaxy has a compact coresurrounded by a diffuse halo. The ‘loop’ identified by Wehrle& Morris (1987) is just traceable to the north–west of thecore (see also Colbert et al. 1996).

UGC 9913 (Arp 220): The two closely separated ra-dio components are the nuclei of this well–known double–nucleus galaxy. The nature of its activity is uncertain. De-spite being the 7th most radio–luminous radio–quiet sourcein the extended 12 µm sample, recent VLBI observations bySmith et al. (1998) provide strong evidence that the radioemission from the north–western component originates in acompact nuclear starburst.

IRAS F22017+0319: If the weak northernmost compo-nent is included, this source is a linearly aligned triple radiosource.

NGC 7314: This variable X–ray source is a north–southradio double.

MCG-03-58-007: A north–south radio double.NGC 7582: The source has a diffuse radio structure con-

sistent with the lower–resolution observations of Ulvestad &Wilson (1984b).

4.3 Radio properties

Radio parameters for all observed sources from the extended12 µm AGN sample are given in Table 2; radio parametersderived by Kukula et al. (1995) for 19 sources which be-long to the CfA sample have also been included. The ta-ble is organized as follows; Column 1: Galaxy name. Anasterisk (∗) is used to indicate those sources whose radioparameters are taken from Kukula et al. (1995). Column2: Seyfert type. For this paper objects are classified sim-ply as type 1 or type 2 following Rush et al. (1993) exceptwhere alternative classifications have been proposed by Do-pita et al. (1998) (9 sources) and Mulchaey et al. (1996)(NGC 34). Reclassified sources are labeled using the follow-ing the abbreviations; Q for Quasar, L for LINER and sbfor Starburst. For these sources, the classification given byRush et al is given in parenthesis. Column 3: Redshift, astaken from Rush et al. (1993). Columns 4 and 5: Right as-cension, RA (h, m, s), and declination, Dec (deg, arcmin,arcsec), of each radio component in J2000 co–ordinates. Po-sitions were determined by Gaussian fitting. For point–likesources the accuracy of fit, estimated by comparing the mod-elled and measured flux densities, was found to be around5%. Column 6: Integrated flux density of each component,S (mJy/beam). The mean flux density of each componentwas measured directly from the map. Care was taken toensure that the effects of non–zero background levels weretaken into account. The uncertainty on each flux measure-ment may be estimated by combining the calibration error

c© 0000 RAS, MNRAS 000, 000–000

12 A.Thean, A.Pedlar, M.Kukula, S.Baum and C.O’Dea

Galaxy Type z RA(J2000) Dec(J2000) S(mJy) θ(′′) D(pc) Trad PA(◦)

Mrk335∗ 1 0.02586 00 06 19.541 20 12 10.63 2.1 < 0.1 < 50 UNGC34(Mrk938) sb(2) 0.01919 00 11 06.553 -12 06 27.71 14.5 0.4 149 S 140NGC262(Mrk348) 2 0.01509 00 48 47.144 31 57 25.07 346.0 < 0.1 < 29 UIZW1∗ 1 0.06039 00 53 34.938 12 41 35.96 0.9 < 0.1 < 117 UE541-IG12 2 0.05636 01 02 17.381 -19 40 08.52 0.8 < 0.2 < 219 UNGC424(TOL0109) 2 0.01169 01 11 27.647 -38 05 00.72 11.9 < 0.3 < 68 UNGC526A 1 0.01905 01 23 54.382 -35 03 55.68 7.1 0.3 111 S 43NGC513 2 0.01949 01 24 26.803 33 47 58.24 1.2 < 0.1 < 38 UF01475-0740 2 0.01739 01 50 02.696 -07 25 48.53 129.8 < 0.2 < 67 UMrk1034 1 0.03797 02 23 21.965 32 11 48.90 11.6 2.1 1546 L 65MCG-3-7-11 1 0.03378 02 24 40.546 -19 08 30.50 1.9 2.1 1376 L 34

02 24 40.587 -19 08 29.48 †0.2Total 2.1

NGC931(Mrk1040) 1 0.01639 < 0.4NGC1056(Mrk1183) 2 0.00520 02 42 48.483 28 34 25.69 0.6 < 0.2 < 20 UNGC1068∗ 2 0.00384 02 42 40.608 -00 00 51.52 †30.3 10.0 745 L 65

02 42 40.718 -00 00 47.58 282.402 42 40.724 -00 00 47.40 252.602 42 40.916 -00 00 43.07 70.4

Total 762.4NGC1097 L(2) 0.00430 02 46 18.955 -30 16 28.43 3.1 < 0.2 < 17 UNGC1125 2 0.03178 02 51 40.438 -16 39 02.33 †3.0 0.8 493 L 120

02 51 40.458 -16 39 02.53 3.702 51 40.487 -16 39 02.74 5.3

Total 11.7NGC1143/4∗ 2 0.02880 02 55 12.233 -00 11 00.73 †2.3 7.5 4189 L 62

02 55 12.487 -00 10 59.03 1.602 55 12.560 -00 10 57.03 3.102 55 12.653 -00 10 57.22 0.9

Total 10.5MCG-2-8-39 2 0.03008 < 0.3NGC1194 2 0.01339 03 03 49.106 -01 06 13.63 0.9 < 0.2 < 52 UNGC1241 2 0.00720 03 11 14.618 -08 55 18.88 6.8 < 0.1 < 14 UNGC1320(Mrk607) 2 0.00989 03 24 48.675 -03 02 32.38 1.0 < 0.2 < 38 UNGC1365 1 0.00550 03 33 36.036 -36 08 28.25 2.1 13.2 1407 A

03 33 36.402 -36 08 18.46 †2.003 33 36.647 -36 08 28.19 1.803 33 36.765 -36 08 18.49 3.3

Total 9.3

NGC1386 sb(2) 0.00310 03 36 46.197 -35 59 57.41 6.8 < 0.3 < 18 UF03362-1642 2 0.03598 03 38 33.557 -16 32 18.40 1.5 < 0.3 < 209 UF03450+0055 1 0.03098 03 47 40.193 01 05 13.97 6.8 0.3 180 S 19Mrk618 1 0.03468 04 36 22.299 -10 22 34.03 2.9 0.2 134 S 87F04385-0828 2 0.01519 04 40 54.964 -08 22 22.08 6.0 < 0.3 < 88 UNGC1667 2 0.01529 04 48 37.168 -06 19 11.97 1.5 < 0.2 < 59 UMCG-5-13-17 1 0.01249 05 19 35.794 -32 39 28.23 †1.0 1.3 315 S 27

05 19 35.815 -32 39 27.82 1.4Total 3.24

F05189-2524 2 0.04147 05 21 01.405 -25 21 45.30 6.9 0.4 322 S 177E253-G3 2 0.04067 < 2.4F05563-3820 1 0.03438 05 58 01.725 -38 20 04.11 3.7 24.3 16200 A

05 58 01.814 -38 19 58.37 1.605 58 02.030 -38 20 04.34 6.905 58 02.273 -38 20 01.59 1.605 58 02.288 -38 19 49.04 4.005 58 02.384 -38 20 02.29 2.105 58 02.676 -38 20 12.86 †2.6

Total 22.4Mrk6 2(1) 0.01849 06 52 12.331 74 25 37.05 †27.9 2.4 860 L 170

06 52 12.327 74 25 38.13 10.9Total 38.8

Mrk9 1 0.00630 07 36 57.016 58 46 13.48 †0.6 0.9 110 L 10507 36 56.900 58 46 13.72 0.2

Total 0.8

Table 2. Observational results.

c© 0000 RAS, MNRAS 000, 000–000

The extended 12–micron Seyferts at 8.4 GHz 13

Galaxy Type z RA(J2000) Dec(J2000) S(mJy) θ(′′) D(pc) Trad PA(◦)

Mrk79 1 0.02208 07 42 32.809 49 48 34.90 1.2 3.5 1499 L 1207 42 32.841 49 48 36.64 1.107 42 32.790 49 48 33.67 †0.8

Total 3.1F07599+6508 1 0.15000 08 04 30.465 64 59 52.85 5.8 < 0.1 < 291 UNGC2639 1 0.01079 08 43 38.077 50 12 19.99 118.0 1.6 335 L 109OJ287 1 0.30579 08 54 48.876 20 06 30.59 1520.7F08572+3915 2 0.05826 09 00 25.379 39 03 54.15 3.8 < 0.1 < 113 UMrk704 1 0.02928 09 18 25.995 16 18 19.65 0.9 < 0.1 < 57 UUGC5101 1 0.03997 09 35 51.605 61 21 11.74 45.1 0.2 155 S 88NGC2992 2(1) 0.00769 09 45 41.945 -14 19 34.60 5.5 8.2 1223 D

Total 40.3Mrk1239 1 0.01989 09 52 19.096 -01 36 43.46 10.5 < 0.1 < 39 UNGC3031(M81) L(1) 0.00110 09 55 33.174 69 03 55.04 221.0 < 0.1 < 2 UNGC3079∗ 2 0.00371 10 01 57.801 55 40 47.24 93.3 < 0.1 < 7 U3C234 Q(1) 0.18477 10 01 44.908 28 46 52.28 38.8

10 01 46.098 28 46 54.17 162.310 01 46.930 28 46 40.10 11.610 01 47.280 28 47 18.67 7.710 01 49.522 28 47 08.89 38.810 01 53.824 28 47 38.97 63.8

Total 323.0NGC3227∗ 1 0.00390 10 23 30.574 19 51 54.24 12.2 0.5 38 S 173NGC3511 1 0.00370 < 0.3NGC3516∗ 1 0.00883 11 06 47.466 72 34 07.30 3.1 < 0.1 < 17 UM+0-29-23 2 0.02488 < 0.3NGC3660 2 0.01229 < 0.3NGC3982∗ 2 0.00396 11 56 28.134 55 07 30.95 0.8 < 0.2 < 15 UNGC4051∗ 1 0.00204 12 03 09.605 44 31 52.73 0.6 < 0.1 < 4 UUGC7064 1 0.02498 < 0.3NGC4151∗ 1 0.00323 12 10 32.424 39 24 20.69 8.0 5.0 314 L 77

12 10 32.508 39 24 20.89 †10.912 10 32.545 39 24 21.03 17.712 10 32.582 39 24 21.09 30.512 10 32.658 39 24 21.35 5.2

Total 72.3Mrk766∗ 1 0.01279 12 18 26.517 29 48 46.50 8.7 0.3 74 S 27NGC4388∗ 2 0.00848 12 25 46.735 12 39 41.87 †1.4 3.3 543 L 23

12 25 46.780 12 39 43.68 3.4

Total 9.4NGC4501 2 0.00769 < 0.2NGC4579 1 0.00500 12 37 43.511 11 49 05.42 36.5 < 0.4 < 39 UNGC4593 1 0.00829 12 39 39.445 -05 20 39.02 1.9 < 0.2 < 32 UNGC4594 1 0.00380 12 39 59.435 -11 37 23.11 86.6 < 0.3 < 22 UNGC4602 1 0.00849 < 0.2TOL1238-364 2 0.00120 12 40 52.783 -36 45 20.63 3.5 2.4 56 A

12 40 52.841 -36 45 21.22 †2.3Total 9.6

MCG-2-33-34 1 0.01389 12 52 12.479 -13 24 53.31 1.5 < 0.1 < 27 UMrk231(UGC8058)∗ 1 0.04096 12 56 14.238 56 52 25.21 234.5 < 0.1 < 79 UNGC4922A/B 2 0.02368 < 0.3NGC4941 2 0.00370 13 04 13.096 -05 33 05.69 1.7 1.0 72 S 127

13 04 13.109 -05 33 05.91 †2.1Total 4.8

NGC4968 2 0.00989 13 07 05.915 -23 40 36.83 †2.1 1.3 249 L 252 0.00989 13 07 05.928 -23 40 36.47 3.7

Total 5.8NGC5005 2 0.00400 13 10 56.258 37 03 32.88 8.8 0.7 54 S 155NGC5033∗ 1 0.00297 13 13 27.469 36 35 37.93 2.1 < 0.1 < 6 UMCG-3-34-63 2 0.01719 13 22 24.465 -16 43 42.45 42.2 1.3 433 S 30NGC5135 2 0.01369 < 2.3NGC5194(M51) 2 0.00160 13 29 52.704 47 11 42.79 0.5 < 0.2 < 6 UMCG-6-30-15 1 0.00769 < 0.3

Table 2 – continued

c© 0000 RAS, MNRAS 000, 000–000

14 A.Thean, A.Pedlar, M.Kukula, S.Baum and C.O’Dea

Galaxy Type z RA(J2000) Dec(J2000) S(mJy) θ(′′) D(pc) Trad PA(◦)

F13349+2438 1 0.10693 13 37 18.722 24 23 03.32 4.7 < 0.2 < 415 UNGC5256(Mrk266) 2 0.02748 13 38 17.238 48 16 43.94 1.3 12.8 6821 A

13 38 17.241 48 16 32.18 4.613 38 17.600 48 16 35.67 †2.913 38 17.789 48 16 41.09 5.7

Total 14.5Mrk273(UGC8696) 2 0.03727 13 44 42.127 55 53 13.49 †30.5 0.8 578 L 149

13 44 42.179 55 53 12.77 2.7Total 33.5

IC4329A 1 0.01609 13 49 19.263 -30 18 34.09 †10.4 23.0 7177 A13 49 19.271 -30 18 36.70 1.813 49 20.427 -30 18 19.29 1.513 49 20.686 -30 18 40.52 1.9

Total 15.5NGC5347 2 0.00779 13 53 17.803 33 29 26.77 0.8 < 0.3 < 45 UMrk463 2 0.05047 13 56 2.886 18 22 18.68 †43.6 1.2 1174 L 177

13 56 2.890 18 22 17.46 3.613 56 2.895 18 22 17.85 0.4

Total 47.2NGC5506 2 0.00580 14 13 14.880 -03 12 27.68 67.6 3.2 360 D+UNGC5548∗ 1 0.01728 14 17 59.541 25 08 12.65 2.2 < 0.1 < 34 UMrk817 1 0.03148 14 36 22.084 58 47 39.38 2.8 < 0.2 < 122 UF15091-2107 1 0.04457 15 11 59.803 -21 19 01.52 7.8 < 0.2 < 173 S 2NGC5929∗ 2 0.00835 15 26 06.109 41 40 14.05 †9.1 1.3 210 L 60

15 26 06.167 41 40 14.42 1.115 26 06.208 41 40 14.68 6.5

Total 16.8NGC5953 2 0.00660 15 34 32.382 15 11 37.44 1.1 < 0.3 < 38 UUGC9913(Arp220) sb(2) 0.01819 15 34 57.267 23 30 12.13 77.2 1.0 353 L 100

15 34 57.336 23 30 11.96 †63.0Total 140.3

MCG-2-40-4 2 0.02438 15 48 24.962 -13 45 27.22 †2.4 0.8 378 L 12115 48 25.006 -13 45 27.61 0.6

Total 3.0F15480-0344 2 0.03038 15 50 41.498 -03 53 18.06 12.4 < 0.1 < 59 UNGC6890 2 0.00809 20 18 16.467 -44 48 36.50 0.6 22.7 3563 A

20 18 17.346 -44 48 17.30 0.420 18 18.092 -44 48 21.78 †0.5

Total 1.5

Mrk509 1 0.03458 20 44 9.744 -10 43 24.73 2.2 < 0.1 < 67 UUGC11680(Mrk897) 2 0.02638 21 07 45.858 03 52 40.45 3.5 < 0.1 < 51 UNGC7130(IC5135) 2 0.01619 21 48 19.522 -34 57 04.79 18.1 0.6 188 S 165NGC7172 2 0.00859 22 02 1.888 -31 52 10.47 4.7 0.4 67 S 18F22017+0319 2 0.06595 22 04 19.141 03 33 52.17 0.2 2.1 2686 L 163

22 04 19.163 03 33 51.22 0.622 04 19.184 03 33 50.12 †1.2

Total 2.0NGC7213 1 0.00590 22 09 16.200 -47 09 58.86 183.8 < 0.6 < 69 U3C445 1 0.05616 22 23 49.540 -02 06 12.87 58.1NGC7314 1 0.00480 22 35 46.155 -26 02 57.87 1.0 3.8 353 L 173

22 35 46.191 -26 03 01.60 †0.7Total 1.7

MCG-3-58-7 2 0.03158 22 49 37.106 -19 16 23.23 0.5 3.2 1960 L 16922 49 37.148 -19 16 26.34 †0.4

Total 0.9NGC7469∗ 1 0.01598 23 03 15.616 08 52 26.12 16.0 0.2 62 S 107NGC7496 2 0.00550 23 09 47.282 -43 25 40.05 3.8 < 0.4 < 43 UNGC7582 2 0.00530 23 18 23.638 -42 22 13.35 51.8 10.2 1046 DNGC7590 2 0.00500 < 0.2NGC7603(Mrk530)∗ 1 0.02957 23 18 56.653 00 14 37.96 3.3 < 0.2 < 115 UNGC7674(Mrk533)∗ 2 0.02899 23 27 56.680 08 46 44.33 †12.8 0.8 450 L 117

23 27 56.712 08 46 44.13 27.0Total 39.8

CGCG381-051 2 0.03048 23 48 41.709 02 14 23.25 0.6 < 0.1 < 59 U

Table 2 – continued

c© 0000 RAS, MNRAS 000, 000–000

The extended 12–micron Seyferts at 8.4 GHz 15

(Weiler et al. 1986 estimated a value of around 4%) andthe map error for each source (around 4% for strong sourcesand 14% for weak sources). For those sources which werenot detected an upper limit on their radio flux of 5–σ hasbeen assumed. In multiple component sources the compo-nent nearest the photographic position (taken from NED) islabeled with a dagger symbol (†). Ninety–three percent ofthe sources had at least one radio component within 2–σ ofthe available photographic position; of the others, four showclose alignment between the radio position and the galacticcentre as judged from Palomar Sky Survey images (MCG-3-7-11, NGC 5194 = M51, NGC 5033 and NGC 5005) and2 have been excluded from further analysis (NGC 4922A/Band NGC 5135). The sky density of sources above the av-erage 3–σ detection threshold of 159 µJy at 8.4 GHz hasbeen estimated by Windhorst et al. (1993) and implies a2% probability of detecting an unrelated source within the51 ×51 arcsec2 field–of–view. Column 7: Maximum angu-lar size of radio structure in arcseconds, θ. For unresolvedsources an upper limit to the angular size was taken as onethird of the major axis of the beam. For slightly resolvedsources the angular size was taken as the length of the ma-

jor axis of the nominal deconvolution† for single Gaussianfits, or the maximum separation of the peaks for multipleGaussian fits. For all other sources the maximum size mea-sured was either the maximum peak separation (for thosesources with point–like components) or the maximum sizeat the lowest contour (for those sources with diffuse com-ponents). Column 8: Maximum linear size in parsecs, D,assuming H◦ = 75 kms−1Mpc−1. Column 9: Type of radiostructure, Trad, according to the notation used by Ulves-tad & Wilson (1984a): U for single unresolved sources, S forsingle slightly–resolved sources, A for sources with ambigu-ous structures, D for sources with diffuse structures and Lfor sources with possible linear structures (sources with twocomponents, sources with three or more aligned componentsor sources with extended linear components). Gaussian fit-ting was used to distinguish between types U and S, type Ssources had a signal to noise ratio greater than 20 and a nom-inal deconvolution size greater than one third of the beamat FWHM. Column 10: Position angle of radio structure,PA, measured North to East from 0◦ to 180◦. For partiallyresolved sources (type S) the position angle of the nominaldeconvolution was used. The position angle of clearly re-solved linear sources (type L) was measured directly fromthe map.

5 THE IDENTIFICATION OF RADIO-LOUD

SOURCES

The distinction between ‘radio–loud’ and ‘radio–quiet’ AGN(Kellerman et al. 1989; Miller et al. 1990) is widely ac-cepted and usually thought to result from truly distinguish-able physical processes (e.g. Wilson & Colbert 1995). In thissection we describe the identification of five radio–loud ob-jects in the extended 12 µm AGN sample (OJ 287, 3C 120,3C 234, 3C 273 and 3C 445); these sources will be excluded

† The nominal deconvolution is obtained when the Gaussian fitto a component is deconvolved from the CLEAN beam

-10 -8 -6 -40

5

10

15

20

25

Figure 2. A histogram showing the criterion used to exclude5 radio–loud sources from the Seyfert sample. The frequencyof sources per logarithmic radio to far–infrared luminosity ra-tio interval ∆log(L3.6cm/L60µm) = 0.4 is plotted. A value oflog(L3.6cm/L60µm) of around -4.8 may be used to distinguish thetwo classes, above this limit sources are considered radio–loud.

from further statistical analysis and henceforth the remain-ing sources will be referred to as the extended 12 µm Seyfertsample.

We have chosen to use the radio to far–infrared lumi-nosity ratio as the main diagnostic of ‘radio–loudness’. Thishas been done by using IRAS FSC 60 µm luminosities andour newly–measured 8.4 GHz (3.6 cm) radio luminosities;single–dish radio observations from Wright et al. 1991 wereused for the two unobserved radio–loud objects, 3C 120 and3C 273, and 3C 445 for which the majority of the flux isoutside the field–of–view of the new observations. The radioto far–infrared luminosity ratio is probably a more usefulindicator of radio–loudness than the radio luminosity alonegiven that the bolometric luminosities of the sources in thesample are likely to span several orders of magnitude. Fig-ure 2 is a histogram showing the frequency of sources inthe extended 12 µm AGN sample per logarithmic radio tofar–infrared luminosity ratio interval ∆log(L3.6cm/L60µm)= 0.4; the L3.6cm/L60µm ratio for each detected source isgiven in Table 3. The 5 excluded sources have the high-est radio to far–infrared luminosity ratios of the sample;all have log(L3.6cm/L60µm) ratios greater than -4.6, whereaslog(L3.6cm/L60µm) ratios are less than -5.1 for the Seyferts.These values are in agreement with the radio to far–infraredluminosity ratios used by Rush et al. (1996) to identify 3of the same radio–loud sources in the original 12 µm AGNsample (OJ287, 3C 120 and 3C 273). The mean ratio be-tween the 8.4 GHz A–configuration flux to the 5 GHz D–configuration flux for those sources observed by Rush et al.(1996) is around 0.3; this ratio is consistent with a meanradio spectral index of α = -0.7 (Rush et al. 1996) anda A–configuration to D–configuration flux ratio of around0.5. Using this flux ratio, the radio to far–infrared luminos-ity ratios used by Rush et al. (1996) translate to -4.7 <

log(L3.6cm/L60µm) < -2.3 for radio–loud sources and -6.3 <

log(L3.6cm/L60µm) < -4.8 for radio–quiet sources.Note that there is no clear evidence for a bimodal distri-

bution of the radio to far–infrared luminosity ratio, possiblybecause of the infrared flux-limit used to define the sample.As well as having the highest radio to far–infrared luminosity

c© 0000 RAS, MNRAS 000, 000–000

16 A.Thean, A.Pedlar, M.Kukula, S.Baum and C.O’Dea

Source log(Lrad/Lir) Source log(Lrad/Lir)

3C 273 -3.10 Mrk 1034 -7.29

3C 120 -4.15 Mrk 509 -7.32

OJ 287 -4.31 NGC 1241 -7.33

3C 234 -4.39 F22017+0319 -7.35

3C 445 -4.54 Mrk 273 -7.35

Mrk 348 -5.14 NGC 3516 -7.35

F01475-0740 -5.45 F03362-1642 -7.36

NGC 7213 -5.69 NGC 3227 -7.36

F05563-3820 -5.75 MGC-3-7-11 -7.40

NGC 2639 -5.76 Arp 220 -7.41

Mrk 6 -6.03 Mrk 817 -7.43

Mrk 231 -6.10 MGC-2-33-34 -7.45

Mrk 463 -6.19 UGC 11680 -7.45

NGC 4594 -6.21 NGC 1386 -7.47

NGC 4151 -6.41 Mrk 9 -7.48

F15480-0344 -6.47 Mrk 618 -7.49

NGC 5506 -6.51 NGC 7130 -7.49

F03450+0055 -6.63 TOL1238-364 -7.50

IC 4329A -6.67 NGC 1194 -7.52

NGC 7674 -6.67 NGC 7582 -7.53

MGC-3-34-63 -6.69 NGC 4388 -7.57

Mrk 1239 -6.72 NGC 34 -7.58

NGC 4579 -6.74 E541-IG12 -7.59

Mrk 335 -6.75 NGC 7172 -7.61

NGC 424 -6.75 MGC-2-40-4 -7.66

F13349+2438 -6.78 NGC 7469 -7.77

F15091-2107 -6.83 NGC 4593 -7.79

NGC 3031 -6.83 NGC 5347 -7.80

UGC 5101 -6.93 F05189-2524 -7.81

NGC 1068 -6.94 F08572+3915 -7.81

NGC 2992 -6.95 NGC 1320 -7.85

F07599+6508 -7.00 NGC 5005 -7.93

NGC 1125 -7.02 I ZW 1 -7.94

NGC 526A -7.04 NGC 7496 -7.95

NGC 513 -7.07 NGC 6890 -7.96

Mrk 704 -7.11 CGCG381-051 -7.99

NGC 4941 -7.11 MGC-3-58-7 -8.00

NGC 7603 -7.11 NGC 7314 -8.01

MGC-5-13-17 -7.12 NGC 1667 -8.13

NGC 4968 -7.15 NGC 5033 -8.44

Mrk 766 -7.17 NGC 3982 -8.46

NGC 5548 -7.20 NGC 1365 -8.48

F04385-0828 -7.21 NGC 1056 -8.50

Mrk 79 -7.22 NGC 5953 -8.55

NGC 5256 -7.22 NGC 1097 -8.71

NGC 1143/4 -7.23 NGC 4051 -8.77

NGC 3079 -7.26 NGC 5194 -9.86

NGC 5929 -7.28

Table 3. Detected sources ranked according to decreasingL3.6cm/L60µm (Lrad/Lir) luminosity ratio.

ratios, the radio–loud sources we have identified are also the5 most radio luminous sources in the sample, being the onlysources more luminous than L3.6cm > 1024 WHz. They areall well–known objects with powerful jets; three show super–luminal motions in their jet components (OJ287, 3C120 and3C273, as cited by Ghosh & Soundararajaperumal 1995) andthe other two are classical FR–II radio galaxies with radiostructures hundreds of kiloparsecs in size (see Leahy et al.1986 and Leahy et al. 1997 for images of 3C234 and 3C445respectively). A strong reason for excluding these sources isthat they are broad–line objects which, when grouped withthe Seyfert 1 subsample, would systematically affect com-parisons between the two Seyfert types.

6 SUMMARY

The maps presented in this paper reveal for the first timethe sub–arcsecond radio structures of Seyferts contained inthe extended 12 µm AGN sample. They provide a large

and homogeneously–selected database for investigating thegeneric properties of compact radio cores in Seyfert nuclei.

Seventy–five of the 87 sources observed were detected;36 contain single unresolved radio sources, 13 contain singleslightly–resolved radio sources, 9 contain radio sources withdiffuse or ambiguous structures, 8 contain radio sources withtwo distinguishable components and 9 contain radio sourceswith three or more linearly–aligned components or extendedlinear structures. Subsequent papers will discuss the statis-tical properties of the sample in detail, paying particularattention to comparisons of the radio powers and radio mor-phologies of the two Seyfert types.

7 ACKNOWLEDGMENTS

AHCT would like to acknowledge the receipt of a stu-dentship from the Particle Physics and Astronomy Re-search Council and a visit funded by the STScI visitorprogram. Part of this research was supported by the Eu-ropean Commission, TMR Programme, Research NetworkContract ERBFMRXCT96-0034 “CERES”. We have madeuse of NASA’s Astrophysics Data System Abstract Service,the NASA/IPAC Extragalactic database (NED), which isoperated by the Jet Propulsion Laboratory.

REFERENCES

Argyle R. W., Eldridge P., 1990, MNRAS, 243, 504

Barcons X., Franceschini A., De Zotti G., Danese L.,Miyaji T., 1995, ApJ, 455, 480

Baum S. A., O’Dea C. P., Dallacasa D., de Bruyn A., Ped-lar A., 1993, ApJ, 419, 553

Bicknell G. V., Dopita M. A., Tsvetanov Z. I., Suther-land R. S., 1998, ApJ, 495, 680

Capetti A., Axon D. J., Macchetto F. D., Marconi A.,Winge C., 1999, ApJ, 516, 187

Clements E. D., 1981, MNRAS, 197, 829

Clements E. D., 1983, MNRAS, 204, 811

Colbert E., Baum S., Gallimore J., O’Dea C., Christensen J.,1996, ApJ, 467, 551

Condon J., Huang Z.-P., Yin Q., Thuan T., 1991, ApJ, 378,65

de Bruyn A. G., Wilson A. S., 1976, A&A, 53, 93

Dopita M. A., Heisler C., Lumsden S., Bailey J., 1998, ApJ,498, 570

Edelson R. A., 1987, ApJ, 313, 651

Falcke H., Wilson A. S., Simpson C., 1998, ApJ, 502, 199

Ghosh K. K., Soundararajaperumal S., 1995, ApJS, 100, 37

c© 0000 RAS, MNRAS 000, 000–000

The extended 12–micron Seyferts at 8.4 GHz 17

Giuricin G., Mardirossian F., Mezzetti M., Bertotti G., 1990,ApJS, 72, 551

Giuricin G., Fadda D., Mezzetti M., 1996, ApJ, 468, 475

Haniff C., Wilson A., Ward M., 1988, ApJ, 334, 104

Helou G., Madore B., Schmitz M., Wu X., Corwin H.,LaGue Jr. C. Bennett J., Sun H. in Egret D., Al-brecht M. A., eds, Information and On-Line Data inAstronomy, p. 95, Kluwer, Dordrecht, 1995

Hummel E., Fanti C., Parma P., Schilizzi R. T., 1982, A&A,114, 400

Hunt L. K., Malkan M. A., 1999, ApJ, 516, 660

Kellerman K. I., Sramek R., Schmidt M., Shaffer D. B.,Green R., 1989, AJ, 98, 1195

Knapen J. H., Laine S., Yates J., Richards A., Doyon R.,Nadeau D., 1997, ApJ, 490, L29

Kukula M. J., Ghosh T., Pedlar A., Schilizzi R. T., Mi-ley G. K., de Bruyn A. G., Saikia D. J., 1993, MN-RAS, 264, 893

Kukula M. J., Pedlar A., Baum S. A., O’Dea C. P., 1995,MNRAS, 276, 1262

Kukula M. J., Holloway A., Pedlar A., Meaburn J.,Lopez J. A., Axon D. J., Schilizzi R. T., 1996, MN-RAS, 280, 1283

Kukula M. J., Ghosh T., Pedlar A., Schilizzi R. T., 1999,ApJ, 518, 117

Leahy J. P., Pooley G. G., Riley J. M., 1986, MNRAS, 222,753

Leahy J. P., Black A. R. S., Dennett-Thorpe J., Hardcas-tle M. J., Komissarov S., Perley R. A., Riley J. M.,Scheuer P. A. G., 1997, MNRAS, 291, 20

Mazzarella J., Gaume R., Soifer B., Graham J., Neuge-bauer G., Matthews K., 1991, AJ, 102, 1241

Meurs E. J., Wilson A. S., 1984, A&A, 136, 206

Miles J., Houck J., Hayward T., Ashby L., 1996, ApJ, 465,191

Miller L., Peacock J., Mead A., 1990, MNRAS, 244, 207

Moshir M. et al. Explanatory Supplement to the IRAS FaintSource Survey, Version 2. 1991, (Pasadena:JPL)

Mulchaey J. S., Wilson A. S., Tsvetanov Z., 1996, ApJS,102, 309

Nagar N. M., Wilson A. S., Mulchaey J. S., Gallimore J. F.,1999, ApJS, 120, 209

Patnaik A., Browne I. W. A., Wilkinson P. N., Wrobel J. W.,1992, MNRAS, 254, 665

Pedlar A., Kukula M. J., Longley D. P. T., Muxlow T. W. B.,

Axon D. J., Baum S., O’Dea C. P., Unger S. W., 1993,MNRAS, 263, 471

Roy A., Norris R. P., Kesteven M. J., Troup E. R.,Reynolds J. E., 1994, ApJ, 432, 496

Roy A., Norris R. P., Kesteven M. J., Troup E. R.,Reynolds J. E., 1998, MNRAS, 301, 1019

Rush B., Malkan M. A., Spinoglio L., 1993, ApJS, 89, 1

Rush B., Malkan M. A., Edelson R., 1996, ApJ, 473, 130

Smith H., Lonsdale C., Lonsdale C., Diamond P., 1998, ApJ,493, L17

Spinoglio L., Malkan M. A., 1989, ApJ, 342, 83

Steffen W., Gomez J. L., Raga A. C., Williams R., 1997,ApJ, 491, L73

Telesco C., Dressel L., Wolstencroft R., 1993, ApJ, 414, 120

Thompson A., Clark B., Wade C. M., Napier P. J., 1980,ApJS, 44, 151

Ulvestad J. S., Wilson A. S., 1984a, ApJ, 278, 544

Ulvestad J. S., Wilson A. S., 1984b, ApJ, 285, 439

Ulvestad J. S., Wilson A. S., 1989, ApJ, 343, 659

Ulvestad J., Neff S., Wilson A., 1987, AJ, 93, 22

Unger S., Lawrence A., Wilson A., Elvis M., Wright A.,1987, MNRAS, 228, 521

Uomoto A., Cagnof S., Ford H., Rosenblatt E., An-tonucci R., Evans I., Cohen R., 1993, AJ, 105, 1308

Wade C., 1968, AJ, 73, 876

Wehrle A., Morris M., 1987, ApJ, 313, L43

Wehrle A., Morris M., 1988, AJ, 95, 1689

Weiler K. W., Sramek R. A., Pangia N., van der Hulst J. M.,Salvati M., 1986, ApJ, 301, 790

Whittle M., Pedlar A., Meurs E., Unger S., Axon D.,Ward M., 1988, ApJ, 326, 125

Whittle M., 1992, ApJS, 79, 49

Wilson A. S., Colbert E. J. M., 1995, ApJ, 438, 62

Wilson A., Braatz J. A., Henkel C., 1995, ApJ, 455, L129

Windhorst R. A., Fomalont E. B., Partridge R. B., Lowen-thal J. D., 1993, ApJ, 405, 498

Wright A., Wark R., Troup E., Otrupcek R., Jennings D.,Hunt A., Cooke D., 1991, MNRAS, 251, 330

Wynn-Williams C., Becklin E., 1993, ApJ, 412, 535

c© 0000 RAS, MNRAS 000, 000–000