HCPL-314J - 0.4 Amp Output Current IGBT Gate Drive ...

15
Features 0.4 A minimum peak output current High speed response: 0.7 µs max. propagation delay over temp. range Ultra high CMR: min. 25 kV/µs at V CM = 1.5 kV Bootstrappable supply current: max. 3 mA Wide operating temp. range: -40°C to 100°C Wide V CC operating range: 10 V to 30 V over temp. range Available in DIP8 (single) and SO16 (dual) package Safety approvals: UL recognized, 3750 Vrms for 1 minute. CSA approval. IEC/EN/DIN EN 60747-5-2 approval VIORM=891 Vpeak Applications Isolated IGBT/power MOSFET gate drive AC and brushless dc motor drives Inverters for appliances Industrial inverters Switch Mode Power Supplies (SMPS) Uninterruptable Power Supplies (UPS) Functional Diagram Truth Table LED V O OFF LOW ON HIGH HCPL-314J A 0.1 µF bypass capacitor must be connected between pins V CC and V EE . 1 3 SHIELD 2 8 16 14 15 9 N/C CATHODE ANODE N/C V CC V EE V O V EE 7 6 10 11 CATHODE ANODE V O V CC SHIELD Description The HCPL-314J family of devices consists of an Al- GaAs LED optically coupled to an integrated circuit with a power output stage. These optocouplers are ideally suited for driving power IGBTs and MOSFETs used in motor control inverter applications. The high operating voltage range of the output stage provides the drive voltages required by gate controlled devices. The voltage and current supplied by this optocou- pler makes it ideally suited for directly driving small or medium power IGBTs. For IGBTs with higher ratings the HCPL-3150(0.5A) or HCPL-3120 (2.0A) optocouplers can be used. HCPL-314J 0.4 Amp Output Current IGBT Gate Drive Optocoupler Data Sheet CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD. Selection Guide Package Type Part Number Number of Channels SO16 HCPL-314J 2 Lead (Pb) Free RoHS 6 fully compliant RoHS 6 fully compliant options available; -xxxE denotes a lead-free product

Transcript of HCPL-314J - 0.4 Amp Output Current IGBT Gate Drive ...

Features• 0.4Aminimumpeakoutputcurrent• Highspeedresponse:

0.7µsmax.propagationdelayovertemp.range• UltrahighCMR:min.25kV/µsatVCM=1.5kV• Bootstrappablesupplycurrent:max.3mA• Wideoperatingtemp.range:-40°Cto100°C• WideVCCoperatingrange:10Vto30Vovertemp.

range• AvailableinDIP8(single)andSO16(dual)package• Safetyapprovals:ULrecognized,3750Vrmsfor

1minute.CSAapproval.IEC/EN/DINEN60747-5-2approvalVIORM=891Vpeak

Applications• IsolatedIGBT/powerMOSFETgatedrive• ACandbrushlessdcmotordrives• Invertersforappliances• Industrialinverters• SwitchModePowerSupplies(SMPS)• UninterruptablePowerSupplies(UPS)

Functional Diagram

Truth Table

LED VO

OFF LOW

ON HIGH

HCPL-314J

A0.1µFbypasscapacitormustbeconnectedbetweenpinsVCCandVEE.

1

3SHIELD

2

8

16

14

15

9

N/C

CATHODE

ANODE

N/C

VCC

VEE

VO

VEE

7

6

10

11

CATHODE

ANODE

VO

VCC

SHIELD

DescriptionThe HCPL-314J family of devices consists of an Al-GaAsLED optically coupled to an integrated circuitwith a power output stage. These optocouplers areideally suited for driving power IGBTs and MOSFETsused in motor control inverter applications. The highoperating voltage range of the output stage providesthedrivevoltages requiredbygatecontrolleddevices.The voltage and current supplied by this optocou-pler makes it ideally suited for directly driving smallor medium power IGBTs. For IGBTs with higher ratingstheHCPL-3150(0.5A)orHCPL-3120(2.0A)optocouplerscanbeused.

HCPL-314J0.4 Amp Output Current IGBT Gate Drive Optocoupler

Data Sheet

CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

Selection GuidePackage Type Part Number Number of Channels

SO16 HCPL-314J 2

Lead (Pb) FreeRoHS 6 fullycompliant

RoHS 6 fully compliant options available;-xxxE denotes a lead-free product

user
新建印章

2

Package Outline Drawing

HCPL-314J SO16 Package:

HCPL-314J8.76 ± 0.20(0.345 ± 0.008)

7.49 ± 0.10(0.295 ± 0.004)

0.016 ± 0.0003(0.406 ± 0.007)

3.51 ± 0.13(0.138 ± 0.005)

0.457(0.018)

1.27(0.050)

16 15 14 11 10 9

1 2 3 6 7 8

VIEWFROMPIN 16

VIEWFROMPIN 1

0.64(0.025 MIN.)

10.36 ± 0.20(0.408 ± 0.008)

0.23(0.0091)

8.76 ± 0.20(0.345 ± 0.008)

ALL LEADS TO BE COPLANAR ± 0.05 mm (0.002 INCHES) .

DIMENSIONS IN MILLIMETERS AND (INCHES).

NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.

0 - 8°

VC

C1

VO

1

GN

D1

VC

C2

VO

2

GN

D2

NC

VIN

1

V1

VIN

2

V2

NC

0.10 - 0.30(0.004 - 0.0118)

STANDOFF

TOP VIEW

11.63 (0.458)

2.16 (0.085)

0.64 (0.025)

LAND PATTERN RECOMMENDATION

Ordering Information

HCPL-314JisULRecognizedwith3750Vrmsfor1minuteperUL1577.

Part number

Option

PackageSurfaceMount

Tape& Reel

IEC/EN/DIN EN 60747-5-2 Quantity

RoHSCompliant

Non RoHSCompliant

HCPL-314J-000E No option

SO-16X X 45 per tube

-500E #500 X X X 850 per reel

Toorder,chooseapartnumberfromthepartnumbercolumnandcombinewiththedesiredoptionfromtheoptioncolumntoformanorderentry.

Example1:

HCPL-314J-500EtoorderproductofSO-16SurfaceMountpackageinTapeandReelpackagingwithIEC/EN/DINEN60747-5-2SafetyApprovalinRoHScompliant.

Example2:

HCPL-314JtoorderproductofSO-16SurfaceMountpackageintubepackagingwithIEC/EN/DINEN60747-5-2SafetyApprovalandnonRoHScompliant.

Optiondatasheetsareavailable.ContactyourAvagosalesrepresentativeorauthorizeddistributorforinformation.

Remarks:Thenotation‘#XXX’isusedforexistingproducts,while(new)productslaunchedsince15thJuly2001andRoHScompliantoptionwilluse‘-XXXE‘.

user
新建印章

3

Regulatory InformationThe HCPL-314J has been approvedbythefollowingorganizations:

IEC/EN/DIN EN 60747-5-2Approvedunder:IEC60747-5-2:1997+A1:2002EN60747-5-2:2001+A1:2002DINEN60747-5-2(VDE0884 Teil2):2003-01.UL

ApprovalunderUL1577,componentrecognition program up to VISO =3750Vrms.FileE55361.

CSA

ApprovedunderCSAComponentAc-ceptanceNotice#5,FileCA88324.

Solder Reflow Thermal Profile

Recommended Pb-Free IR Profile

0

TIME (SECONDS)

TE

MP

ER

AT

UR

E (

°C)

200

100

50 150100 200 250

300

0

30SEC.

50 SEC.

30SEC.

160°C

140°C150°C

PEAKTEMP.245°C

PEAKTEMP.240°C

PEAKTEMP.230°C

SOLDERINGTIME200°C

PREHEATING TIME150°C, 90 + 30 SEC.

2.5°C ± 0.5°C/SEC.

3°C + 1°C/–0.5°C

TIGHTTYPICALLOOSE

ROOMTEMPERATURE

PREHEATING RATE 3°C + 1°C/–0.5°C/SEC.REFLOW HEATING RATE 2.5°C ± 0.5°C/SEC.

217 °C

RAMP-DOWN6 °C/SEC. MAX.

RAMP-UP3 °C/SEC. MAX.

150 - 200 °C

260 +0/-5 °C

t 25 °C to PEAK

60 to 150 SEC.

20-40 SEC.

TIME WITHIN 5 °C of ACTUALPEAK TEMPERATURE

tp

tsPREHEAT

60 to 180 SEC.

tL

TL

TsmaxTsmin

25

Tp

TIME

TE

MP

ER

AT

UR

E

NOTES:THE TIME FROM 25 °C to PEAK TEMPERATURE = 8 MINUTES MAX.Tsmax = 200 °C, Tsmin = 150 °C

Note: Non-halide flux should be used.

Note: Non-halide flux should be used.

user
新建印章

4

OU

TP

UT

PO

WE

R –

PS

, IN

PU

T C

UR

RE

NT

– I S

00

TS – CASE TEMPERATURE – °C

200

600

400

25

HCPL-J314

800

50 75 100

200

150 175

PS (mW)

125

100

300

500

700IS (mA)

IEC/EN/DIN EN 60747-5-2 Insulation Characteristics Description Symbol Characteristic Unit

InstallationclassificationperDINVDE0110/1.89,Table1 forratedmainsvoltage≤150Vrms I-IV forratedmainsvoltage≤300Vrms I-IV forratedmainsvoltage≤600Vrms I-III

ClimaticClassification 55/100/21

PollutionDegree(DINVDE0110/1.89) 2

MaximumWorkingInsulationVoltage VIORM 891 Vpeak

InputtoOutputTestVoltage,Methodb* VIORMx1.875=VPR,100%ProductionTestwith VPR 1670 Vpeak tm=1sec,Partialdischarge<5pC

InputtoOutputTestVoltage,Methoda* VIORMx1.5=VPR,TypeandSampleTest,tm=60sec, VPR 1336 VpeakPartialdischarge<5pC

HighestAllowableOvervoltage VIOTM 6000 Vpeak (TransientOvervoltagetini=10sec)

Safety-limitingvalues-maximumvaluesallowedinthe eventofafailure. CaseTemperature TS 175 °C InputCurrent** IS,INPUT 400 mA OutputPower** PS,OUTPUT 1200 mW

InsulationResistanceatTS,VIO=500V RS >109 Ω

*RefertotheoptocouplersectionoftheIsolationandControlComponentsDesigner’sCatalog,underProductSafetyRegulationssection, IEC/EN/DINEN60747-5-2,foradetaileddescriptionofMethodaandMethodbpartialdischargetestprofiles.

**RefertothefollowingfigurefordependenceofPSandISonambienttemperature.

user
新建印章

5

Insulation and Safety Related Specifications Parameter Symbol HCPL-314J Units Conditions

MinimumExternalAirGap L(101) 8.3 mm Measuredfrominputterminalstooutput (Clearance) terminals,shortestdistancethroughair.

MinimumExternalTracking L(102) 8.3 mm Measuredfrominputterminalstooutput (Creepage) terminals,shortestdistancepathalongbody.

MinimumInternalPlasticGap 0.5 mm Throughinsulationdistanceconductorto (InternalClearance) conductor,usuallythestraightlinedistance thicknessbetweentheemitteranddetector.

TrackingResistance CTI >175 V DINIEC112/VDE0303Part1 (ComparativeTrackingIndex)

IsolationGroup IIIa MaterialGroup(DINVDE0110,1/89,Table1)

Recommended Operating Conditions Parameter Symbol Min. Max. Units Note

PowerSupply VCC -VEE 10 30 V

InputCurrent(ON) IF(ON) 8 12 mA

InputVoltage(OFF) VF(OFF) -3.6 0.8 V

OperatingTemperature TA -40 100 °C

Absolute Maximum Ratings Parameter Symbol Min. Max. Units Note StorageTemperature TS -55 125 °C

OperatingTemperature TA -40 100 °C

AverageInputCurrent IF(AVG) 25 mA 1

PeakTransientInputCurrent(<1µspulse IF(TRAN) 1.0 A width,300pps)

ReverseInputVoltage VR 5 V

“High”PeakOutputCurrent IOH(PEAK) 0.6 A 2

“Low”PeakOutputCurrent IOL(PEAK) 0.6 A 2

SupplyVoltage VCC-VEE -0.5 35 V

OutputVoltage VO(PEAK) -0.5 VCC V

OutputPowerDissipation PO 260 mW 3

InputPowerDissipation PI 105 mW 4

LeadSolderTemperature 260°Cfor10sec.,1.6mmbelowseatingplane

SolderReflowTemperatureProfile SeePackage Outline Drawingssection

user
新建印章

6

Electrical Specifications (DC)Overrecommendedoperatingconditionsunlessotherwisespecified.

Test Parameter Symbol Min. Typ. Max. Units Conditions Fig. Note

HighLevelOutputCurrent IOH 0.2 A Vo=VCC-4 2 5

0.4 0.5 Vo=VCC-10 3 2

LowLevelOutputCurrent IOL 0.2 0.4 A Vo=VEE+2.5 5 5

0.4 0.5 Vo=VEE+10 6 2

HighLevelOutputVoltage VOH VCC-4 VCC-1.8 V Io=-100mA 1 6,7

LowLevelOutputVoltage VOL 0.4 1 V Io=100mA 4

HighLevelSupplyCurrent ICCH 0.7 3 mA Io=0mA 7,8 15

LowLevelSupplyCurrent ICCL 1.2 3 mA Io=0mA

ThresholdInputCurrent IFLH 5 mA Io=0mA, 9,15 LowtoHigh Vo>5V

ThresholdInputVoltage VFHL 0.8 V HightoLow

InputForwardVoltage VF 1.2 1.5 1.8 V IF=10mA 16

TemperatureCoefficientof ∆VF/∆TA -1.2 mV/°C InputForwardVoltage

InputReverseBreakdown BVR 3 10 V IR=100µA Voltage

InputCapacitance CIN pF f=1MHz, VF=0V

Switching Specifications (AC)Overrecommendedoperatingconditionsunlessotherwisespecified.

Test Parameter Symbol Min. Typ. Max. Units Conditions Fig. Note

PropagationDelayTimeto tPLH 0.1 0.2 0.7 µs Rg=47Ω, 10,11, 14 HighOutputLevel Cg=3nF, 12,13,

PropagationDelayTimeto tPHL 0.1 0.3 0.7 µs f=10kHz, 14,17 LowOutputLevel DutyCycle=

PropagationDelay PDD -0.5 0.5 µs50%,

10 DifferenceBetweenAny

IF=8mA,

TwoPartsorChannels VCC=30V

RiseTime tR ns

FallTime tF ns

OutputHighLevelCommon |CMH| 25 35 kV/µs TA=25°C, 18 11, ModeTransientImmunity VCM=1.5kV 12

OutputLowLevelCommon |CML| 25 35 kV/µs 18 11, ModeTransientImmunity 13

user
新建印章

7

Package CharacteristicsForeachchannelunlessotherwisespecified.

Test Parameter Symbol Min. Typ. Max. Units Conditions Fig. Note

Input-OutputMomentary VISO 3750 Vrms TA=25°C, 8,9 WithstandVoltage RH<50%

Output-OutputMomentary VO-O 1500 Vrms for1min. 16 WithstandVoltage

Input-OutputResistance RI-O 1012 Ω VI-O=500V 9

Input-OutputCapacitance CI-O 1.2 pF Freq=1MHz

Notes: 1. Deratelinearlyabove70°Cfreeairtemperatureatarateof0.3mA/°C. 2. Maximumpulsewidth=10µs,maximumdutycycle=0.2%.ThisvalueisintendedtoallowforcomponenttolerancesfordesignswithIO

peakminimum=0.4A.SeeApplicationsectionforadditionaldetailsonlimitingIOLpeak. 3. Deratelinearlyabove85°C,freeairtemperatureattherateof4.0mW/°C. 4. Inputpowerdissipationdoesnotrequirederating. 5. Maximumpulsewidth=50µs,maximumdutycycle=0.5%. 6. Inthistest,VOHismeasuredwithaDCloadcurrent.WhendrivingcapacitiveloadVOHwillapproachVCCasIOHapproacheszeroamps. 7. Maximumpulsewidth=1ms,maximumdutycycle=20%. 8. InaccordancewithUL1577,eachHCPL-314Joptocouplerisprooftestedbyapplyinganinsulationtestvoltage≥5000Vrmsfor1second

(leakagedetectioncurrentlimitII-O≤5µA).Thistestisperformedbefore100%productiontestforpartialdischarge(methodB)shownintheIEC/EN/DINEN60747-5-2InsulationCharacteristicsTable,ifapplicable.

9. Deviceconsideredatwo-terminaldevice:pinsoninputsideshortedtogetherandpinsonoutputsideshortedtogether.10. PDDisthedifferencebetweentPHLandtPLHbetweenanytwopartsorchannelsunderthesametestconditions.11. Pins3and4(HCPL-314J)needtobeconnectedtoLEDcommon.12. Commonmodetransientimmunityinthehighstateisthemaximumtolerable|dVcm/dt|ofthecommonmodepulseVCMtoassurethatthe

outputwillremaininthehighstate(i.e.Vo>6.0V).13. Commonmodetransientimmunityinalowstateisthemaximumtolerable|dVCM/dt|ofthecommonmodepulse,VCM,toassurethatthe

outputwillremaininalowstate(i.e.Vo<1.0V).14. Thisloadconditionapproximatesthegateloadofa1200V/25AIGBT.15. Foreachchannel.ThepowersupplycurrentincreaseswhenoperatingfrequencyandQgofthedrivenIGBTincreases.16. Deviceconsideredatwoterminaldevice:Channeloneoutputsidepinsshortedtogether,andchanneltwooutputsidepinsshortedtogeth-

er.

user
新建印章

8

Figure 1. VOH vs. Temperature. Figure 2. IOH vs. Temperature. Figure 3. VOH vs. IOH.

Figure 4. VOL vs. Temperature. Figure 5. IOL vs. Temperature. Figure 6. VOL vs. IOL.

Figure 7. ICC vs. Temperature. Figure 8. ICC vs. VCC. Figure 9. IFLH vs. Temperature.

(VO

H-V

CC

) –

HIG

H O

UT

PU

T V

OL

TA

GE

DR

OP

– V

-50-2.5

TA – TEMPERATURE – °C

125-25

HCPL-J314 fig 01

0

0 25 75 10050

-2.0

-1.5

-1.0

-0.5

I OH

– O

UT

PU

T H

IGH

CU

RR

EN

T –

A

-500.30

TA – TEMPERATURE – °C

125-25

HCPL-J314 fig 02

0.40

0 25 75 10050

0.32

0.34

0.36

0.38

0-6

IOH – OUTPUT HIGH CURRENT – A

0.6

HCPL-J314 fig 03

0

0.2 0.4

-5

-4

-3

-1

(VO

H-V

CC

) –

OU

TP

UT

HIG

H V

OL

TA

GE

DR

OP

– V

-2

VOH

VO

L –

OU

TP

UT

LO

W V

OL

TA

GE

– V

-500.39

TA – TEMPERATURE – °C

125-25

HCPL-J314 fig 04

0.44

0 25 75 10050

0.40

0.41

0.42

0.43

I OL

– O

UT

PU

T L

OW

CU

RR

EN

T –

A

-500.440

TA – TEMPERATURE – °C

125-25

HCPL-J314 fig 05

0.470

0 25 75 10050

0.450

0.455

0.460

0.465

0.445

I CC

– S

UP

PL

Y C

UR

RE

NT

– m

A

-500

TA – TEMPERATURE – °C

125-25

HCPL-J314 fig 07

1.4

0 25 75 10050

0.4

0.6

0.8

1.2

0.2

1.0

ICCL

ICCH I CC

– S

UP

PL

Y C

UR

RE

NT

– m

A

100

VCC – SUPPLY VOLTAGE – V

3015

HCPL-J314 fig 08

1.2

20 25

0.4

0.8

0.2

0.6

1.0

ICCL

ICCH

I FL

H –

LO

W T

O H

IGH

CU

RR

EN

T T

HR

ES

HO

LD

– m

A

-501.5

TA – TEMPERATURE – °C

125-25

HCPL-J314 fig 09

3.5

0 25 75 10050

2.0

2.5

3.0

VO

L –

OU

TP

UT

LO

W V

OL

TA

GE

– V

00

IOL – OUTPUT LOW CURRENT – mA

700100

HCPL-J314 fig 06

25

400 500

5

20

200 300 600

15

10

user
新建印章

9

Figure 10. Propagation Delay vs. VCC. Figure 11. Propagation Delay vs. IF. Figure 12. Propagation Delay vs. Temperature.

Figure 13. Propagation Delay vs. Rg. Figure 14. Propagation Delay vs. Cg. Figure 15. Transfer Characteristics.

Figure 16. Input Current vs. Forward Voltage.

TP

– P

RO

PA

GA

TIO

N D

EL

AY

– n

s

60

IF – FORWARD LED CURRENT – mA

18

HCPL-J314 fig 11

400

9 1512

100

200

300

-500

TA – TEMPERATURE – °C

125-25

HCPL-J314 fig 12

500

0 25 75 10050

100

200

300

400

TP

– P

RO

PA

GA

TIO

N D

EL

AY

– n

s

TPLHTPHL

TP

– P

RO

PA

GA

TIO

N D

EL

AY

– n

s

0200

Rg – SERIES LOAD RESISTANCE – Ω

200

HCPL-J314 fig 13

400

50 150100

250

300

350

TPLHTPHL

VO

– O

UT

PU

T V

OL

TA

GE

– V

0-5

IF – FORWARD LED CURRENT – mA

6

25

15

1

HCPL-J314 fig 15

35

2 3 4

5

5

0

10

20

30

I F –

FO

RW

AR

D C

UR

RE

NT

– m

A

1.20

VF – FORWARD VOLTAGE – V

1.8

HCPL-J314 fig 16

25

1.4 1.6

5

10

15

20

TP

– P

RO

PA

GA

TIO

N D

EL

AY

– n

s

00

Cg – LOAD CAPACITANCE – nF

100

HCPL-J314 fig 14

400

20 8060

100

200

300

TPLHTPHL

40

TP

– P

RO

PA

GA

TIO

N D

EL

AY

– n

s

100

VCC – SUPPLY VOLTAGE – V

30

HCPL-J314 fig 10

400

15 2520

100

200

300

TPLHTPHL

user
新建印章

10

Figure 17. Propagation Delay Test Circuit and Waveforms.

Figure 18. CMR Test Circuit and Waveforms.

0.1 µFVCC = 15to 30 V

47 Ω

1

3

IF = 7 to 16 mA

VO

+–

+–

2

4

8

6

7

5

10 KHz50% DUTY

CYCLE

500 Ω

3 nF

IF

VOUT

tPHLtPLH

tftr

10%

50%

90%

0.1 µF

VCC = 30 V

1

3

IF

VO+–

+–

2

4

8

6

7

5

A

+ –

B

VCM = 1500 V

5 V

VCM

∆t

0 V

VO

SWITCH AT B: IF = 0 mA

VO

SWITCH AT A: IF = 10 mA

VOL

VOH

∆t

VCMδV

δt=

user
新建印章

11

Applications InformationEliminating Negative IGBT Gate Drive

TokeeptheIGBTfirmlyoff,theHCPL-314JhasaverylowmaximumVOLspecificationof1.0V.MinimizingRgandtheleadinductancefromtheHCPL-314JtotheIGBTgateandemitter(possiblybymountingtheHCPL-314JonasmallPCboarddirectlyabovetheIGBT)caneliminatetheneedfornegativeIGBTgatedriveinmanyapplicationsasshowninFigure19.CareshouldbetakenwithsuchaPCboarddesigntoavoidroutingtheIGBTcollectororemittertracesclosetotheHCPL-314Jinputasthiscan

resultinunwantedcouplingoftransientsignalsintotheinputofHCPL-314Janddegradeperformance.(IftheIGBTdrainmustberoutedneartheHCPL-314Jinput,thentheLED should be reverse biased when in the off state, topreventthetransientsignalscoupledfromtheIGBTdrainfromturningontheHCPL-314J.)Anexternalclampdiodemaybeconnectedbetweenpins14&15andpins9&10(asshowninFigure19)fortheprotectionofHCPL-314JinthecaseofIGBTsswitchinginductiveload.

Figure 19. Recommended LED Drive and Application Circuit for HCPL-314J.

+ HVDC

3-PHASE AC

0.1 µF

FLOATINGSUPPLYVCC = 18 V

1

3

+–

2

16

14

15

270 Ω

HCPL-314J+5 V

CONTROLINPUT

Rg74XXOPENCOLLECTOR

GND 1

7

6

8

10

11

9

- HVDC

0.1 µFVCC = 18 V

+–

Rg

270 Ω

+5 V

CONTROLINPUT

74XXOPENCOLLECTOR

GND 1

VOL

user
新建印章

12

Figure 20. Energy Dissipated in the HCPL-314J and for Each IGBT Switching Cycle.

=24V–5V 0.6A

=32Ω

Rg ≥ VCC – VOL IOLPEAK

LED Drive Circuit Considerations for Ultra High CMR Performance Without a detector shield, thedominantcauseofoptocouplerCMRfailure is capacitive coupling fromthe input side of the optocoupler,throughthepackage,tothedetectorICasshowninFigure21.TheHCPL-314JimprovesCMRperformancebyusingadetectorICwithanopticallytransparent Faraday shield, whichdiverts the capacitively coupledcurrent away from the sensitive ICcircuitry. However, this shield doesnoteliminatethecapacitivecouplingbetween the LED and optocouplerpins 5-8 as shown in Figure 22.This capacitive coupling causesperturbations in the LED currentduring common mode transientsand becomes the major source ofCMRfailuresforashieldedoptocou-pler.ThemaindesignobjectiveofahighCMRLEDdrivecircuitbecomeskeepingtheLEDintheproperstate(on or off ) during common modetransients. For example, the recom-mended application circuit (Figure19),canachieve10kV/µsCMRwhileminimizingcomponentcomplexity.

Techniques to keep the LED in theproperstatearediscussedinthenexttwosections.

Selecting the Gate Resistor (Rg)

Step 1:CalculateRgminimumfromtheIOLpeakspecification.TheIGBTandRginFigure24canbeanalyzedasasimpleRCcircuitwithavoltagesuppliedbytheHCPL-314J.

TheVOLvalueof5VinthepreviousequationistheVOLatthepeakcurrentof0.6A.(SeeFigure6).

Step 2:ChecktheHCPL-314JpowerdissipationandincreaseRgifnecessary.TheHCPL-314Jtotalpowerdissipation(PT)isequaltothesumoftheemitterpower(PE)andtheoutputpower(PO).

PT = PE + PO

PE = IF • VF • Duty Cycle

PO = PO(BIAS) + PO(SWITCHING) = ICC • VCC + ESW (Rg,Qg)• f

=(ICCBIAS+KICC • Qg • f) • VCC+ESW(Rg,Qg) • f

whereKICC • Qg • fistheincreaseinICCduetoswitchingandKICC isaconstantof0.001mA/(nC*kHz).Forthecircuit inFigure19with IF (worstcase)=10mA,Rg=32Ω,MaxDutyCycle=80%,Qg=100nC,f=20kHzandTAMAX=85°C:

PE =10mA • 1.8V• 0.8=14mW

PO=(3mA+(0.001mA/(nC • kHz))• 20kHz• 100nC)• 24V+0.4µJ• 20kHz

=128mW

<260mW (PO(MAX)@85°C)

Thevalueof3mAforICCinthepreviousequationisthemax.ICCoverentireoperatingtemperaturerange.

SincePOforthiscaseislessthanPO(MAX),Rg=32Ωisalrightforthepowerdissipation.

Esw

– E

NE

RG

Y P

ER

SW

ITC

HIN

G C

YC

LE

– µ

J

00

Rg – GATE RESISTANCE – Ω

100

1.5

20

4.0

40

1.0

60 80

3.5Qg = 50 nC

Qg = 100 nC

Qg = 200 nC

Qg = 400 nC3.0

2.0

0.5

2.5

user
新建印章

13

Figure 21. Optocoupler Input to Output Capacitance Model for Un-shielded Optocouplers.

Figure 22. Optocoupler Input to Output Capacitance Model for Shielded Optocouplers.

Figure 23. Equivalent Circuit for Figure 17 During Common Mode Transient.

Figure 24. Not Recommended Open Collector Drive Circuit. Figure 25. Recommended LED Drive Circuit for Ultra-High CMR IPM Dead Time and Propagation Delay Specifications.

HCPL-J314 fig 23

1

3

2

4

8

6

7

5

CLEDP

CLEDN

SHIELD

CLEDO1

CLEDO2

HCPL-J314 fig 24

Rg

1

3

VSAT

2

4

8

6

7

5

+

VCM

ILEDP

CLEDP

CLEDN

SHIELD

* THE ARROWS INDICATE THE DIRECTIONOF CURRENT FLOW DURING –dVCM/dt.

+5 V

+– VCC = 18 V

• • •

• • •

0.1µF

+

HCPL-J314 fig 25

1

3

2

4

8

6

7

5

CLEDP

CLEDN

SHIELD

+5 V

Q1ILEDN

HCPL-J314 fig 26

1

3

2

4

8

6

7

5

CLEDP

CLEDN

SHIELD

+5 V

HCPL-J314 fig 22

1

3

2

4

8

6

7

5

CLEDP

CLEDN

user
新建印章

14

CMR with the LED On (CMRH)

A high CMR LED drive circuit must keep the LED onduring common mode transients. This is achieved byoverdrivingtheLEDcurrentbeyondtheinputthresholdso that it is not pulled below the threshold during atransient. A minimum LED current of 8 mA providesadequate margin over the maximum IFLH of 5 mA toachieve10kV/µsCMR.

CMR with the LED Off (CMRL)

AhighCMRLEDdrivecircuitmustkeeptheLEDoff(VF≤VF(OFF))duringcommonmodetransients.Forexample,during a -dVCM/dt transient in Figure 23, the currentflowingthroughCLEDPalsoflowsthroughtheRSATandVSATofthe logicgate.As longasthe lowstatevoltagedevelopedacrossthelogicgateislessthanVF(OFF)theLED will remain off and no common mode failure willoccur.

Theopencollectordrivecircuit,showninFigure24,cannotkeeptheLEDoffduringa+dVCM/dttransient,sinceallthecurrentflowingthroughCLEDNmustbesuppliedbytheLED,anditisnotrecommendedforapplicationsrequiringultrahighCMR1performance.Thealternativedrive circuit which like the recommended applicationcircuit (Figure19),doesachieveultrahighCMRperfor-mancebyshuntingtheLEDintheoffstate.

IPM Dead Time and Propagation Delay Specifications

The HCPL-314J includes a Propagation Delay Dif-ference (PDD) specification intended to helpdesigners minimize “dead time” in their powerinverter designs. Dead time is the time high andlow side power transistors are off. Any overlapin Ql and Q2 conduction will result in large currentsflowing through the power devices from the high-voltagetothelow-voltagemotorrails.Tominimizedeadtime in a given design, the turn on of LED2 should bedelayed(relativetotheturnoffofLED1)sothatunderworst-caseconditions,transistorQ1has justturnedoffwhentransistorQ2turnson,asshowninFigure26.Theamountofdelaynecessary toachieve thiscondition isequal to themaximumvalueof thepropagationdelaydifference specification, PDD max, which is specifiedto be 500 ns over the operating temperature range of-40°to100°C.

Delaying the LED signal by the maximum propaga-tion delay difference ensures that the minimum deadtime is zero, but it does not tell a designer what themaximum dead time will be. The maximum deadtime is equivalent to the difference between themaximum and minimum propagation delay dif-ference specification as shown in Figure 27. Themaximum dead time for the HCPL-314J is 1 µs (= 0.5µs - (-0.5µs))over theoperatingtemperature rangeof- 40°Cto100°C.

NotethatthepropagationdelaysusedtocalculatePDDanddeadtimearetakenatequaltemperaturesandtestconditionssincetheoptocouplersunderconsiderationare typicallymounted incloseproximity toeachotherandareswitchingidenticalIGBTs.

user
新建印章

For product information and a complete list of distributors, please go to our website: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries.Data subject to change. Copyright © 2005-2008 Avago Technologies Limited. All rights reserved. Obsoletes 5989-2943ENAV02-0169EN - April 9, 2008

Figure 26. Minimum LED Skew for Zero Dead Time.

Figure 27. Waveforms for Dead Time.

tPHL MAX

tPLH MIN

PDD* MAX = (tPHL- tPLH)MAX = tPHL MAX - tPLH MIN

*PDD = PROPAGATION DELAY DIFFERENCENOTE: FOR PDD CALCULATIONS THE PROPAGATION DELAYSARE TAKEN AT THE SAME TEMPERATURE AND TEST CONDITIONS.

VOUT1

ILED2

VOUT2

ILED1

Q1 ON

Q2 OFF

Q1 OFF

Q2 ON

HCPL-J314 fig 27

tPLHMIN

MAXIMUM DEAD TIME(DUE TO OPTOCOUPLER)= (tPHL MAX - tPHL MIN) + (tPLH MAX - tPLH MIN)= (tPHL MAX - tPLH MIN) – (tPHL MIN - tPLH MAX)= PDD* MAX – PDD* MIN

*PDD = PROPAGATION DELAY DIFFERENCENOTE: FOR DEAD TIME AND PDD CALCULATIONS ALL PROPAGATIONDELAYS ARE TAKEN AT THE SAME TEMPERATURE AND TEST CONDITIONS.

VOUT1

ILED2

VOUT2

ILED1

Q1 ON

Q2 OFF

Q1 OFF

Q2 ON

HCPL-J314 fig 28

tPHL MIN

tPHL MAX

tPLH MAX

PDD* MAX

(tPHL-tPLH) MAX

user
新建印章