General Disclaimer One or more of the Following Statements ...

83
General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI)

Transcript of General Disclaimer One or more of the Following Statements ...

General Disclaimer

One or more of the Following Statements may affect this Document

This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

This document is paginated as submitted by the original source.

Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

1 r

•a

NASATechnical Memtrandum 86143

USEWs GUIDE FOR THE

NIMBUS 7 ERB

SOLAR ANALYSIS TAPE (ESAT)

J.R. HickeyI

E.R. Major

H.L. Kyle

August 1084

National Aeronautics andSpace Administration

Goddard Space Flight CenterGreenbelt, Maryland 20771

f

(NASA-TM-86143) USBB I S GUILE E0R THE NIMBUS N85-199147 EBB SOLAR ANALYSIS TAPF JESAT) (NASA)83 p BC A05/MF A01 CSCJ, 03B

UnclasG3/92 18132

ti

{^ i

T r NASA

Technical Memorandum 86143

USERy GUIDE FOR THE

NIMBUS 7 ERB

SOLAR ANALYSIS TAPE (ESAT)

John R. HickeyEppley Laboratory, Inc.Newport, Rhode Island, 02840

Eugene R. MajorResearch and Data Systems, Inc.Lanham, Maryland 20706

H. Lee KyleGoddard Space Flight CenterGreenbelt, Maryland 20771

August 1984

National Aeronautics andSpace Administration

Goddard Space Flight CenterGreenbelt, Maryland 20771

i

0,

T

PREFACE

The NIMBUS 7 Earth Radiation Budget ( ERB) data set activity is being conducted

by NASA, Goddard Space Flight Center. Launched on October 24, 1978 the

NIMBUS 7 satellite would have been considered successful if its several

experiments had gathered useful data covering one complete year. Nearly six

years later over half of the experiments, including the ERB, are in good operating

condition and are expected to continue to collect data for several more years.

Monitoring the solar irradiance and Its fluctuations is an important part of the ERB

experiment. The ERB Solar Analysis Tape (ESAT) has been developed to make

these solar observations available to the scientific community in a compact form.

This first ESAT contains five years of solar data covering the period November 169

1978 to October 31, 1983. Additional solar analysis tapes will be issued on a yearly

basis as the data is processed.

The NIMBUS 7 ERB Experiment has been guided by the ERB NIMBUS Experiment

Team ( NE'I) whose members are listed below. The original NET members were

competatively chosen by a NASA Anouncement of Opportunity issued in the fall of

1975. later the NET elected to membership certain individuals who had made a

considerable contribution to the scientific success of the experiment. The ERB

solar sensors were furnished by Eppley laboratory, Inc. and John Hickey, of Eppley

Laboratory, has taken the lead in the quality control and analysis of the solar data.

All the ERB orbital and daily mean solar data on the ESAT were provided by John

Hickey. Solar plage data were provided by Kenneth Schatten and Nate Miller of

NASA/GSFC. The ERB Solar Analysis Tape and this User's Guide were put

together at Goddard by Research and Data Systems, Inc. under NASA contract NAS

5-27728. This was done under the guidance of H. Lee Kyle, NASA /GSFC, and of

John Hickey.

The authors wish to thank Bradley Alton of Eppley Laboratories for his assistance

in constructing the improved ERB solar data set; Mitch Weiss ( RDS) for the

development of software to convert and test the ERB solar data in its final form on

ESAT; and Scott Salomonson ( RDS) for entering key solar activity parameters into

the computer.

^r

ERB NIMBUS EXPERIMENT TEAM (NET) MEMBERS

•* Arking, A. NASA/GSFCCampbell, G.G. CIRA, Colorado State University

'** Coulson, K.L. University of California, DavisHickey, J.R. Eppley Lab., Inc.House, F.B. Drexel UniversityIngersoll, A.P. California Inst. of Technology

* Jacbowitz, H. NOAA/NESDIS" Kyle, H.L. NASA/GSFC** Maschhoff, IL H. Gulton Industries, Inc.

Smith, G.L. NASA/La RCStowe, L.L. NOAA/NESDISVonder Haar, T.H. Colorado State University

* Jacobowitz was elected team leader in 1976.He was succeeded in 1983 by Kyle.

** Elected Members.* * * Left the NET because of other committments.

r

ii

ERB SOLAR ANALYSIS TAPE (ESAT) USER'S GUIDE

TABLE OF CONTENTS

1.0

2.0

pagePREFACE . . . . . . . . . . . . . . . . . . . . . . . . i

TABLE OF CONTENTS . • • • • • • • • • • • . • • . . iii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . .. v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . .. v

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . .1

1.1 Description of ESAT User's Guide . . . . . . . . . . . .1

BACKGROUND . . . . . . . . . . . . . . . . . . . . . .3

2.1 Background of Nimbus-7 and ERB Experiment . . . . . . 3

2.2 Operational Schedule . . . . . . . . . . . . . . . . . 3

2.3 ERB Solar Channels . . . . . . . . . . . . . . . . . .3

2.3.1 Origin of ERB Solar Data. • • • • • • • • • • • • .7

2.3.2 ERB Solar Channel Calibration . . . . . . . . . . .7

2.3.2.1 Channel 10c Calibration, , . , . . . . 10

2.3.3 ERB Solar Channel Data on the SEFDT . . . . . . .11

2.3.3.1 ERB Solar Channel Algorithms . . . . . 11

2.3.3.2 Time of Minimum Solar Elevation• . . . 14

2.4 Solar Activity Indicators . . . . . . . . . . . . . . . .16

3.0 DESCRIPTION OF ESAT CONTENTS . . . . . . . . . . . . 18

3.1 Origin of ESAT Data . . . . . . . . . . . . . . . . . 183.2 Differences Between ESAT and SEFDT . . . . . . . . . 18

3.3 Corrections to SEFDT Data . . . . . . . . . . . . . . 18

3.4 Origin of Solar Activity Indicators . . . . . . . . . . . 19

3.5 ERB Solar Channels . . . . . . . . . . . . . . . . . 22

3.6 Solar Activity indicators . . . . . . . . . . . . . . . 23

3.7 Missing Data . . . . . . . . . . . . . . . . . . . . .23

3.8 ESAT Tape Structure . . . . . . . . . . . . . . . . .24

iii

r

4.0 PHYSICAL STRUCTURE OF ESAT TAPE. . . . . . . . . . 26

4.1 Tape Organization . . . . . . . . . . . . . . . . . 26

4.2 Tape and File Specifications . . . . . . . . . . . . . 26

4.3 ESAT Data File Specifications . . . . . . . . . . . . 26

5.0 DAILY MEAN SOLAR IRRADIANCES . . . . . . . . . . . 36

6.0 REFERENCES . . . . . . . . . . . . . . . . . . . . . 48

Appendix A - NOPS Standard Header File and Trailer Documentation File A-1

Appendix B - Sequence Numbers of SEFDT Tapes Used to Prepare ESAT B-1

Appendix C - Scale Factors for ESAT Data . . . . . . . . . . . . . .0-1

Appendix D - Data Availability . • . . . . • . . . . . . . . . . . D-1

Appendix E - Sample Output, JCL, and Computer Program . . . . . . E-1

iv

F

LIST OF TABLES

Table_

1-1 Characteristics of ERB Solar Channels . . . . . . . . , ,22-1 ERB Channel Coefficients . . . . . . . . . . . . . . 124-1 ESAT Orbital Data Record Format . . . . . . . . . . 274-2 ESAT Daily Mean Data Record Format . . . . . . . . 284-3 ESAT Solar Activity Data Record Format . . . . . . . 29

LIST OF FIGURES

Figure

2-1 Spectral Intervals Monitored by ERB Solar Channels. . . 4

2-2 Typical Solar Channel Schematic . . . . . . . . . . . 6

2-3 Percent Degradations of Solar Channels . . . . . . . . 9

2-4 Time of Minimum Solar Elevation. . . . . . . . . . . 142-5 Solar Irradiance vs. Solar Activity Indicators . . . . . . 17

3-1 ESAT Tape Structure . . . . . . . . . . . . . . . . 255-1 Nimbus-7 Channel 1 Irradiance . . . . . . . . . . . . 305-2 Nimbus-7 Channe12 Irradance . . . . . . . . . . . . 39

5-3 Nimbus-7 Channel 3 Irradiance . . . . . . . . . . . . 40,54 Nimbus-7 Channel 4 Irradiance. . . . . . . . . . . . 415-5 Nimbus-7 Channel5 Irradiance. . . . . . . . . . . .425-6 Nimbus-7 Channe16 Irradiance. . . . . . . . . . . . 43

5-7 Nimbus-7 Channel? Irradiance. . . . . . . . . . . .44

5-8 Nimbus-7 Channel 8 Irradiance . . . . . . . . . . . 455-9 Nimbus-7 Channel irradiance. . . . . . . . . . . .4G5-10 Nimbus-7 Channel 10C Irradiance . . . . . . . . . . 47

v

4

.it

ESAT USER'S GUIDE

1.0 INTRODUCTION

A compact Nimbus-7 ERB Solar Analysis Tape (ESAT) data set has been

compiled to facilitate the solar science community's access to ERB solarmeasurements. These measurements include the total solar irradiance andsix spectral regions as listed in Table 1-1. The first ESAT tape contains acollection of five years of solar data derived from the ERB Solar and EarthFlux Data Tapes (SEFDT). This data set will contain the orbital solar data asderived from the SEFDT and the computed iaily mean solar data derivedfrom the SEFDT by Eppley Laboratories. The data set covers the period fromNovember 16, 1978 to October 31, 1983. The ERB instrument is normally on3 out of every 4 days and makes approximately 14 solar observations per day.The SEFDTs contain the raw counts and calibrated ir.adiances for eachobservation period whereas only one average irradiance value per channel perobservation is given on the ESAT. For inclusion on the ESAT, the SEFDTdata has been carefully sorted and questionable observations rejected.Certain common solar activity indicators are also included on the ESAT tofacilitate analysis of the data. Data will be available on one (1) 1600 BPIComputer Compatible Tape (CCT). Supplemental ESAT tapes will be made asthe ERB data becomes available. Each supplemental tape is expected tocontain one year of data in the same format as the first tape.

1.1 Description of ESAT User's GuideThe ESAT User's Guide will describe the contents of the ERB Solar AnalysisTape (ESAT), the origins of ESAT data, method of processing and correctionsto the data. A brief review of the Nimbus-7 Earth Radiation Budget (ERB)experiment and overview of solar activity indicators useful to satellite-basedsolar-terrestrial studies is Included. This User's Guide will serve as theprincipal document for the ESATby the user community.

1

Y^1'Eii:^a« e ;

• r

NtduUL

yM a4.w

0F °

.y

u

uU

nE NCV E N N N N N N N N N Noobboo 0000

$ x x x x x x x x x xt` t, M to ON t` t, !h -t

mT to

toto to

ONO*

mM

'dz^

... .-^

..

.. t+1 to t-: O N

M 00 N to V; r l^ fn %0 O

M 0000 ON

00 O%0 ^o %0r-D\

M^ to a m W

Tt`

00 ^N

ON N

C^ Nltl

'O E 0 0 0 0 a\ tD ^o C% t- Or r- r r r o ^o o to nr Q ..+Mr .M. N rn

_ ob V" Nt0

3 3 ro to o

.z°L. z 0 a vu:

to h c

O bO

bO 00 00 O^-1 to N N to d' et M toM M , I 1 O O C O

I I ° 1 wC N N N

00 I I IN

yy O O O v ol :: O r

vO O M M M N0 0 0 0

3

v° a z z z z w^H

z z z z e xV3

nv

nv

pa)UU

M to ^o t` 00 O•. O

U '

P.N

uu c L

•^

uV

01 a kh

N Fb a`^

Q)C y 0 b

Yb 00O Nd

zE^t5

> y0 a CN tod p

V V >r Q

G Q 7°

O E

rV ^ ^

E•tx7.^

c 5 °

to = z u

C^ S 3 0 ^^

N EV y L

7v a 3 b > cL°^

O U[ w E

O Id

G4 00Q

N O N W a

:3>

o V Po o

ina n

Com=U 0 .0 e" (J °

a 'uQ >

a)F U

Oz

2

Y

2.0 BACKGROUND

2.1 Background of Nimbus-7 and ERB ExperimentA brief background on the Nimbus-7 ERB experiment is presented here. Theuser is refered to Jacobowitz, et al., (1984) for more detailed descriptions ofNimbus-7 and the ERB experiment. The Nimbus-7 spacecraft was launchedon October 24, 1978 and placed into a 955 km, sun-synchronous polar orbitwith ascending-node and deseendina,;-bode equator crossings at noon andmidnight respectively. The orbital period is about 104.16 minutes.

The Earth Radiation Budget (ERB) experiment is one of seven experimentsaboard the Nimbus-7. The objectives of the ERB experiment are twofold.First, to determine, over a one year period, the radiation budget of the earthby simultaneous measurement of:

(1) Incoming solar radiation(2) Outgoing earth reflected (shortwave) and earth emitted

(longwave) radiation;and second, to develop angular models of the reflection and emission ofradiation from clouds and earth surfaces (Taylor, et al., 1983a, 1983b, 1984)

2.2 Operational Schedule

The ERB instrument normally operates on a three-day-on, one-day-off dutycycle. The first operational science data were available from November 16,1978. The first data year starts on November 1 1 1978 and December 1978 isconsidered the first month of monthly and seasonal products. The ESAT datastarts on November 16, 1978. As of the summer 1984, high quality solar data 1was still being received from the ERB instrument and we expect to continueto receive data for several more years.

2.3 ERB Solar Channels

Incoming solar radiation is measured by ten spectral channels. Measurementsare taken as the satellite crosses the southern terminator headingnorthwards. Table 1-1 lists the characteristics of the solar channels. Figure2-1 shows the ERB solar channel responses superimposed on the 1971 NASAStandard Curve of Extraterrestrial Solar Spectral Irradiance. Figure 2-2shows a cross-sectional drawing of the typical-filtered solar channel.

3

a.o

s

ooN

^

N

Q ppcJ N

Q8 `^

z_

h

r.

zwG

R

n U d

O

_ I7aJ y

ry 3 ^`^.- a „

o K02W- o

u

uuFy

N^yrN

w

A

«

I

^" I

x.

ii

K.1Ci1 ".,^'r

7J

O

mV

KV

N

N M

i i y.^i

(my^N4 n Q

Ja

Ji

Jz

JY^1

u u

zv u

(I w+r urn M) 33NVIOVUUI lVU133dS

4

' Incoming radiation enters the sensor through a protective window. Afterpassing through a spectral filter, it passes through a second window andstrikes a 3M Owl black-painted thermopile detector surface. 'Ihe firstprotective window minimizes the effects of charged particlos, whereas thesecond window reduces the effects of solar heating of the filter andreradiation to the detector. She whole interior of the Boll was anodized toreduce the reflection of solar radiation onto the detector.

Each of the 10 solar channels is an independent, individual modular elementwith a mated amplifier as part of the unit. 'Ihe sensors are advanced versionsof wire-wound type thermopiles. '!here are no imaging optics in the solarchannels—only filters, windows, and apertures. No optical amplification isrequired to maintain high signal-to-noise ratios because of the highthermopile sensitivities and state-of-the-art electronics used. Channels 1and 2 are duplicate, channel 1 being the reference for channel 2 for the in-flight calibration program. Channel 1 is normally shuttered.

Channels 4 and 5 contain broad bandpass filters with transmittance spectramatching those of the standard Schott glasses, OG530 and RG695, of theWorld Meteorological Organization. The interference filters on channels 6-9are deposited on Suprasil W (grade 3) fused silica substrates to minimizedegradation. Blocking outside the primary transmission bands is achieved byinterface layers only. No radiation absorbing glasses are used.

'Ihe spectral intervals in the 0.2,q m to 0.526q m, 0.526,q m to 0.695,q m, and0.20,4f m to 0.695 ,q m range is obtained by differential treatment of thechannel 4 and 5 data together with readings obtained from channel 2.Channels 1 through 8 have type N3 thermopiles; channel 9 has type K2.Channel IOC has a modified model H-F self-calibrating cavity element. 'ihecavity is mounted onto a circular wire-wound thermopile. 'Ihe electric

heater used for self calibration is energized when a "GO/NO GO" heatercommand is issued. 'Ihe thermopile output and the heater voltage andcurrent are then submultiplexed into the channel IOC data system.

The solar channel assembly is located on the side of the spacecraft facing inthe direction of spacecraft motion. 'Ihe assembly can be rotated 20 0 in 10

steps to either side of the spacecraft's forward direction in order to acquirean on-axis view of the sun under the expected variation of the satellite orbitplane with respect to the sun. The Solar channels were included on the ERB

S

i

.i

ii

i

iO►MtIL WOPAIITI= MDUTION

ntnlq

L! RAMATION[OTOA

14EWLYao)

""Umeft

Figure 2-2: Typical Solar Channel Schematic (Jacobowitz, et. al., 1984)

6

K ^WvY4'.`^

.

to icy ntify spectral regions of solar variability In the visible and near UV andto yield information on uncertainties in the present values of the solaremission spectrum.

2.3.1 Origin of ERB Solar Data

When the ERB instrument is on, measurement of the solar irradiance by the10 solar channels are made once per orbit as the Nimbus -7 spacecraft crossesthe southern terminator just before its northward movement over the sunlit

side of the earth. The instrument views space as a reference before and aftereach solar exposure. The mission allows for up to 14 measurements per dayat approximately 104 minute intervals. For the channel 10c cavityradiometer, the solar disk is completely within the cavity field of view (100)for approximately 200 seconds during each 104 minute orbit. 'iherefore, a

single orbit contains a solar record of 200 raw count samples which aredigitized on an 11 -bit quantization scale. A smoothed estimate of solarIrradiance for each solar measurement, approximately 14 values per day, canbe averaged to generate a best daily estimate of the solar constant ( Hickey,at r31., 1983).

2.3.2 ERB Solar Channel CalibrationPre-launch

The reference for the pre-flight absolute calibration of the ERB solarchannels was the World Radiometric Reference (WRR) scale which isembodied in a number of Lelf -calibrating cavity radiometers. Solar channel10c of the ERB is such a device. This new scale can be referenced toprevious scales such as the International Pyrhellometric Scale ( IPS 1956).

The four major solar channels (1, 2 9 3, and 10c) have been directly

intercompared with self-calibrating cavity instruments of the JPIrPACKRAD and Eppley model H-F types.

For transfer operations, a solar simulator was used as a source and a normalincidence pyrheliometer (NIP) was employed., both traceable to the WRR.When calibrating the filtered channels (41 5, 6, 7, 8, at :d 9) the NIP was fittedwith a filter wheel containing filters matching the flight set. The incidentirradiance is calculated using the measured irradiance and the appropriate

filter factor for the particular filter.

0

,i

I

^i

i

The ERB Reference Sensor Model ( RSM), which Is a duplicate of the flightinstruments relative to the solar channels, has been employed as a transferand checking device throughout the Nimbus 6 and Nimbus 7 calibrationprogram. All vacuum calibrations of the Nimbus 6 and 7 ERB solar channelscould be referenced through the RSM as well as many of the calibrations

rperformed at atmospheric pressure.

In-flightIn-flight calibration for the solar channels does not exist, except for channel

10c whose cavity is heated by a precision resistance heater. Accuratemonitoring of the voltage and current of the heater as well as the detectorresponse yields the calibration sensitivity. This led to very precisedeterminations of the total solar irradiance (Hickey, et al., 1981). Allthermopile channels are equipped with the same heaters which are usedduring pre -launch activities to check whether the channels are functioningproperly. The heaters are used as a rough check in the analysis of operationaldata. These channels are also equipped with an electrical calibration which

h Inserts a precision voltage staircase at the Input to the entire signalj conditioning stream. While the electronic calibration cannot be used to infer

changes in the sensor or optics characteristics, it insures the prevention of a^misinterpretation of electronic measurements. Analysis of the electroniccalibration data has yielded no abnormalities. Channels 1 through 3 can be jdirectly compared with channel 10c to assess their in-flight calibration. In

i addition, the degradation of channel 2 is checked by the occasional exposureof Its duplicate (channel 1), which is normally shuttered. 4 '

a

The degradation with time of the solar channels 1 through 9 is depicted in

Figure 2-3 for the first 8 months of flight. Particular attention should begiven to channels 6 through 9 which contain the interference filters. 'Their

curves show that a high rate of degradation occurred during the first two

months followed by a short period of relative stability. After this' thechannels reversed the earlier trend and began to recover. After a little overfour months in orbit, three of the channels completely recovered while theremaining one (channel 7) almost recovered. I

i Ii

8

v

i

I

^t\\, • • 11,41.;.: ..^

a a 4 0 S 7YON7N5 AFTER OPENING OF SOLAR DOOR

Figure 2-3: Percent Degradations Of Solar Channels.

(Jacobowitz, at al., 1984).

9

)'yc r...--•--. -rte . ._ .;.._v...-qr, A'^5L^.^.y^ ... ,M

2.3.3 ERB Solar Data for SEFDT

Initially only a preliminary data set of the total solar Irradiance called theH 'engineering level' data was available. Other solar parameters were obtained

from the ERB Master Archival Tapes (MATS). After preliminary review ofthe processed flight data from the Nimbus-7 ERB, certain changes were madeIn the processing algorithms and the solar data was reprocessed. This new

a high-quality data set for the ERB solar channels (plus earth flux channel data)were made available on a set of special digital tapes referred to as the Solar-

4hEarth Flux Data Tapes (SEFDT). A user's guide for the SEFDT data has

u recently been made available (Ray, et al., 1984).

if

it 2.3.3.1 ERB Solar Channel Algorithms

' The algorithms used to determine the solar irradiance from the 10 ERB solar

u channels are as follows (Ray, et al., 1984):°tM)'. The Temperature Sensitivity Correction Factor

t'trE

N

is • S(T) = Sy (1 + A (T - L)) (1)k

I whererf Sy = Channel sensitivity in a vacuum at 25 0 C

(220C for channel 10c only) in counts per':t watts/m2 (see Table 2-1).

A = Temperature sensitivity at 25 0C (220C for3a channel 10c only) in 0C-1 (see Table 2-1):L T = Temperature in 0C.id L = Reference Temperature:E

Channels 1-9: 250CChannels 10c. 220

jP

" 1

J4

V

The uncorrected Net Solar Irradiance:

r

10

TABLE 2-1

CHANNEL COEFFICIENTS

I

CHANNEL Sy A

1 1.299 0.0007

2 1.275 0.0008

3 1.214 0.0008

4 1.719 0.0007

5 2.424 0.0006

6 6.931 0.0007

7 9.588 0.0003

8 12.715 -0.0004

9 30.170 -0.0011

l0c 1.3013 0.000524

PRJXLW:V(j PAGL BL;,;^K NOT FILMED

12

f^►GlNl4NNilONAl1Y. 841NR

where

Vo = Solar channel detector output in counts at ToV- _ Solar channel detector output In counts at To - 13 minutes

V+ = Solar channel detector output In counts at To+ 13 minutesS(T) = Temperature sensitivity correction factor

For the ERB channel 10C, a self-calibrating cavity thermopile for equationsused to convert counts to irradiance are:

H 10C = Em Cf / Sp(T) (2)

Where

Em = Eos - E(-13) + E(+13) (3)

2

Sp(T) = So + S (TH - 220) (4)

H10C = channel 10C irradiance in W/m2Cf = channel IOC correction factor ^F aperature area

and nonequivalence (M-2)

Eos = average channel 30C on-sun countsE(± 13) = average channel 10C counts at 1 13 minutes

from on-sum timeSo - power sensitivity zero level (C/W)Sp = power sensitivity slope (C/WOC)TH = channel 10C heat sink temperature (0C)

r Adjustment of Channel 10c for Reflectance.

(Note: This correction Is applied to Channel 10c only).

R 10c = U 100 *0.998

U 10c = Unadjusted Channel 10c Net Solar Irradiance

R10c = Adjusted Channel 10c Net Solar Irradiance

Note: At this point, all the net solar irradiances must be corrected for Sun-Earth distance.

Correction of Net Solar Irradiance for Sun-Earth Distance.

NSR = R * RSE2

(6)

R - Uncorrected Net Solar Irradiance

RSE - Instantaneous Sun-Earth Distance in Astronomical units. Notethat the average Sun-Earth distance in astronomical units is 1.0.

NSR is the final corrected Net Solar Irradiance that appears in the SEFDTSolar Orbital Summary Records.

This is the value for the irradiance that also appears in the orbital and dailymean files of the ESAT.

In addition a separate cosine-corrected channel 10c value is given in theESAT orbital and daily mean files. This is a correction for the off-axis angle

The off-axis angle measures the angular deviation of the pointingvector of the solar channel assembly from the position of the Sun. Thegamma angle is adjusted by ground commands in order to account forchanges in the DSAS (solar azimuth) angle. The off-axis angle as used in theSEFDT is defined as (Ray, et al., 1984):

Toff-axis = 7'+ 0.1 10 gDSAS

1(,

Channel SCounU

i

k- XUX", .

This angle is then used by the Eppley laboratories to obtain the cosine-corrected channel 10c Irradiance:

NSR"(10c) = NSR(10c)/cos (7off-axis)

2.3.3.2 Time of Minimum Solar ElevationThe time of minimum solar elevation is defined to be the relative minimumof the ERB solar channel 5 counts for each orbit as shown in figure 24.Channel 5 is the solar alignment indicator because it suffers the leastdegradation of those channels (1, 2, 4 and 5) that have the proper angularresponse function.

T Tlme

Figure 24. Time of minimum solar elevation

The time of minimum solar elevation was labelled To for all of the ten solar

channels.

The algorithm for determining To was a 3-step process:

1) Search the Channel 5 counts for the orbit and tabulate theoccurence of counts between 1000 and 2000. Counts greater than1000 indicate sun is in the field of view.

2) Find, in the table, the smallest count value occurring more thanfour times (occurring n times).

3) To is the time associated with the median of the possible smallest

count values (n/2). (i.e., if the smallest count values occurs 8

times, To will be the time associated with the fourth occurance).If no time of minimum solar elevation was found, To was set to the southern

terminator time for selection of solar data records.

i

2.4 Solar Activity Indicators

The ERB solar channels are well designed to measure fluctuations in the solarirradiance at several spectral bands. Preliminary studies of variations in

solar radiance with channel 10c have shown that sensor to be quite stable andwell behaved over the first year of measurement (Hickey, et al., 1980). Overlonger periods (first 3 ERB years), measurements of the solar irradiance haverevealed a downward trend which may be due to actual solar irradiancevariability rather than instrumental degradations (Hickey, et al., 1983; Smith,et al., 1983a).

It has been theorized that solar activity (indicated by sunspots, plage regions,etc.) may cause changes in the solar irradiance (Foukal, et al., 1977). Thehigh quality ERB solar measurements constitute a time series that can bematched with solar activity indicators. Preliminary correlative analysis withsolar activity indicators (sunspot numbers and 2800 MHz solar flux) seem tomatch dip in ERB solar irradiance measurement with peak in solar activity asshown in Figure 2-5 for the five-year channel 10c data. This has beendiscussed by Hickey et al., (1982), Hickey and Alton (1983) and Smith et al.,1983a,b). Data from the SEFDT was used to construct this figure. Otherstudies with a similar cavity radiometer (ACRIM) on the Solar MaximumMi.c^!on (SMM) show similar correlations (Willson, et al., 1981). The nature ofthese variations in the solar irradiance is reasoned to be attributed to the

equatorial solar rotation cycle, a long-term (11-year) solar cycle and a long-term solar cycle not directly related to solar activity (Smith, et al., 1983).

u1LO

rou

c 1T

> R•JuUQL ^ro vr CO

N N {

N U 1> cro ^

uCro mr

vR10R

L W I

UO

i-

U! G!c Yc uro '^ Is xU v

V1

N

N iLO IO1.r.LL

17

I

3.0 DESCRIPTION OF ESAT CONTENTS3.1 Origin of ESAT Data

A complete and high precision data set for the Nimbus -7 ERB solar channels

was made available on a set of special digital tapes referred to as the Solar-Earth Flux Data Tapes ( SEFDT). The ERB solar data on these tapes wereused by Eppley Labs to derive the solar data for the ESAT. Appendix B showsthe SEFDT tapes used to generate the ESAT data. With the exception ofchannel 10c (see section 3.3), all of the ERB solar channel data on the ESATare the same as on the SEFDT.

3.2 Differences between ESAT and SEFDTThe purpose of ESAT was to have a complete ERB solar data set free of theEarth-flux data and other information on the SEFDT that is not used by thesolar community. Although the solar data used to generate the ESAT dataset was derived from the SEFDTs, there are some differences between thetwo data sets.

o Solar data corrected or deleted for bad orbits and/or missing or

incorrect data (see section 3.3)

o Daily mean and statistics derived from 'cleaned' orbital information areincluded on the ESAT.

o Calculated off-axis angle, mission day and earth -sun distance areincluded on ESAT.

o Cosine-corrected charnel 10c (see section 3.3) included on ESAT.

o ESAT includes solar activity indicators.

3.3 Correetinns to SEFDT DwtaThe solar data for the ESAT represents a higher order data set than the

already high quality SEFDT data. For the ESAT data set, orbits and/orvariables that are incorrect or beyond certain limits were deleted or

corrected by Eppley Laboratories from the SEFDT orbital summary records.

Limit criteria were based on the off -axis angle and temperatures

18

• ^ •l,'i^4 Y V ^^

19I

^f

of channels 3 and 10c. If the off-axis angle exceeded 3.1 0 then those orbits

were deleted. If the temperature of either channel 3 or channel 10c fell

below 180C then those orbits were deleted. The daily mean solar data and

statistics were generated after screening of the orbital data.

The ESAT data set includes a cosine-corrected channel 10c. This correctionIs a first-order correction performed by Eppley labs and is simply the cosineof the off-axis angle applied to the mean channel 10c Irradiance calculated in

the SEFDT.

The ESAT data set also includes the calculated mission day ( Mission day 1 isNov. 16, 1978) and the calculated off-axis angle (solar azimuth + gammaangle).

3.4 Origin of Solar Activity Indicators

The solar activity indicators defined on the ESAT were derived from theNOAA/National Geophysical Data Center (NODC) Solar Geophysical DataReports (SGD) (NOAA/NGDC, 1982). Sunspot and solar flux data, initiallyderived from the SGDs were obtained from Eppley Labs. Solar plage datawere obtained from Dr. Ken Schatten at NASA/GSFC and were orginiallyobtained from NOAA/NGDC World Data Center-A and published in the SGD.Daily calcium plage index and geomagnetic index were obtained directly fromthe SGD prompt reports.

u

A detailed description of the solar activity Indicators are as follows:

Zurich Relative Sunspot Numbers. A measure of visible daily solaractivity. This number is derived from several observatories andcombines the number of single spots and groups of spots on the solardisk. The formula is:

R.. = k(l Oc + R)

Wherelog = number of spots and groups (weighted by 10)s = total number of distinct single partsIt = factor that depends on the observer and Is used to

convert measure from the original Wolf sunspot scale.

The Zurich Relative Sunspot Numbers comprise a complete daily recordof solar activity for the five year period from 16 November 1978through 31 October 1983.

Ottawa 2800 MHz Solar Flux. A measure of daily radio solar activity.these measurements are the daily observations of the 2800 MHz radioemissions that originate from the solar disk and from any active region.Measurements are made at the Algonquin Radio Observatory (ARO) ofthe National Research Council of Canada with a 1.8 m diameterreflector. Measurements are in flux units of 10-22Wm -2Hz-1,

7be Ottawa 2800 MHz Solar Flux comprise a complete daily record ofsolar activity for the five year period from 16 November 1978 through31 October 1983.

Daily Calcium Plaae Index. An index of solar activity based on the Esolar plage area and coordinates. The Index as given by W. R. Swartzand modified in the SGD is:

CAIIindex = E I

iAiCos 61Cos ^i]i

where the summation includes all plages visible on that day,

h = intensity of oiaee iAi = correcteo area 9f plage i in millionths of solar j

hemisphere8 i = central meridian distance of plage I in degrees

^i = latitude of plage i

iil'20

The Daily Calcium Plage Index data Is available on a daily basis from 16November 1978 through August 1982. Missing data or where noobservations were made are defined as 0.

Geomagnetic Index. A daily index of magnetic activity due to solarevents recorded on a linear scale. The daily Ap series is used and is an

average of 8 values of an intermediate 3-hourly Index.

The Geomagnetic Ap Series Index is available on a daily basis from 16November 1978 through December 1882. Missing data are defined as 0.

Solar Plage Data. Plage regions are the bright areas on the solar disk(also called faculae) sometimes preceeding the appearence of spots.Seven parameters describe the plage region. These were derived fromthe SGD:

Mc Math-Hale Region Number. This is the active region numberassigned in order of appearence on the solar disk. More than oneregion number can appear an a day.

Central Meridian Passage Data. The date of central meridianpassage of the region, at 12h UT and corrected for whether noonor after noon.

Latitude. The latituob of the region center of mass, north orsouth of solar equator. Negative latitudes are south.

Central Meridian Distance. Distance of the region center of masseast or west of the central meridian at 12 h UT. Distance is Indegrees measured to the West 0-3600.

Carrington Longitude. An internationally agreed zero meridian.This is the central meridian that passed through the apparentcenter of the disk on 1 January 1854 at 12h UT. The Carringtonlongitude is measured in degrees to the west 0-3600. The zeromeridian is established on completion of a solar rotatia:al periodwith mean duration of 27.2753 days.

21

}dI

i

S

Area. The corrected area (corrected for distance from the centerof the solar disk) in millionths of the solar hemisphere.

Intensity The intensity of the plage region on a scale of 1 (very

faint) to 5 (very bright).

Solar plage data is available from 16 November 1978 through June 1982.The number of plage regions per day is noted on the ESAT tape in orderto read the proper number of plage region records. If no observationswere made then the solar plage parameters are 0.

3.5 ERB Solar Channel DataThe ERB solar channel data, derived from the SEFDTs, are comprised of twoparts: the orbital solar data and the daily mean solar data which consists ofthe mean, standard deviation, minimum and maximum. The daily mean data iwas derived by Eppley Labs from the filtered orbital data using theStatistical Analysis System (SAS) software package.

The contents of the orbital ERB solar data is as follows:

it• Orbit number, year, day of year• Solar azimuth and elevation• Instrument status word (ISW)• Gamma angle• Earth-sun distance (Least Significant Bit, Most Significant Bit)• Channel 3 and Channel 10e temperatures• Channels 1-10c irradiances• Southern terminator crossing time• Mission day since Nov. 16, 1978• Off-axis angle• Cosine corrected channel 10c irradiance

22

Til

1

1

The contents of the daily mean ERB solar data (which includes the mean,standard deviation, minimum and maximum and number of orbits of eachparameter) is as follows:

o Orbit number, year, day of yearo Solar azimuth and elevationo Gamma angleo Channel 3 and 10c temperatureso Channel 1-10c irradianceso Mission day since Nov. 16 9 1978

o Off-axis angleo Cosine corrected channel 10c irradianceo Earth-Sun distance

3.6 Solar Activity Indicators

The solar activity indicators on the ESAT are not the most comprehensive butdo constitute a long time series of the more common and useful indicators.

A description of the contents of the solar activity data set is as follows:• Zurich Relative Sunspot Number (daily)• Ottawa ARO 2800 MHz solar flux (daily)• Daily Calcium Plage Index• Geomagnetic Index (AP)• Solar plage regions including:

• Mc Math-Hale region number• coordinates including CM and Carrington longitude• corrected area• Intensity

3.7 Missing Data

Missing data in the orbital and mean datasets are flagged with -9999. Datagaps and ERB off days in the mean data are flagged with -9999. Gaps in thesolar activity records are not flagged but are simply missing as indicated by0.

23

i

3.8 ESAT Tape Structure

The ESAT has three data files. Data File 1 contains the five-year orbitaldata set, Data File 2 contains the daily mean five-year data set, and DataFile 3 contains the solar activity data. The physical structure of the tape isshown in figure 3-1.

V

24

25

STANDARDHEADER I'Standard Header Record

FILE

DATAFILE ERB Solar Orbital Mission Day 1

1ERB Solar Orbital Mission Day 1811

DATAFILE2

ERB Solar Mean Data Mission Day 1811

Solar Activity Indicators*

*Not all solar activity indicators are available for all five years.

Figure 3-1: Physical Structure of•ESAT Tape

ERB Solar Mean Data Mission Day 1.

DATAFILE3

r era .. .

^h

4.0 PHYSICAL STRUCTURE OF ESAT TAPE

4.1 Tape Organization

The ESAT Tape is a 9-track, unlabeled, 1600 BPI IBM 370/3081 compatibletape. The first file contains the Nimbus Observation Processing System(NOPS) Standard Header. The second file contains the ERB solar orbital datafor five years. The third file contains the ERB solar daily mean data for fiveyears. The fourth file contains the solar activity indicator data.

The NOPS Standard Header file is described in Appendix A.

4.2 Tape and File SpecificationsTape Specifications: 1800 BPI, 9-track non-labeled tapeFile Specifications:

Header Data Data DataFile File 1 File 2 File 3

File Location 1 2 3 4Record Length 630 841 3762 563(bytes)Record Format unblocked U U UData Type EBCDIC binary binary binaryRae ID No none 100 200 300

1 84 bytes per observations x 18406 observations = 1,551,144 bytes2 376 bytes per day x 1811 days = 680,936 bytes356 bytes per observation x 1811 days =101,416 bytes minimumThe total number of bytes for the solar actvity data set 729,036 bytes.

4.3 ESAT Data File SpecificationsThe following Tables (4.1, 4.2, and 4.3) and accompanying informationdescribe in detail the word location of each data item in each data file. A

description of each data item is also included. Appendix C includes the scalefactors used to generate the ESAT data set.

26

4.

TABLE 4-1

ESAT ORBITAL DATARECORD FORMAT

MSB

LSBWORDS 32 0 BIT

1 RECORD NUMBER RECORD ID 32

2 ORBIT NO. SPARE 64

3 YEAR DAY OF YEAR 96

4 SOLAR AZIMUTH SOLAR ELEVATION 128

5 INSTRUMENT STATUS WORD GAMMA ANGLE 160

6 EARTH-SUN DISTANCE(MSB)

EARTH-SUN DISTANCE(LSB)

192

7 CHANNEL 3 TEMPERATURE 224

8 CHANNEL 10 a TEMPERATURE 256

9-18

CHANNEL 1-10c IRRADIANCE 576

19 SOUTH TERM.(HRS/MIN)

SOUTH TERM.(SECS.)

608

20 MISSION DAY OFF-AXIS ANGLE 640

21 COSINE-CORRECTED CHANNEL 10c IRRADIANCES 672

WORDS 1-6 AND 19-20 ARE IBM INTEGER*2 FORMATWORDS 7-8 AND 21 ARE IBM INTEGER*4 FORMAT

27

- - r

TABLE 4-2

ESAT DAILY MEAN DATARECORD FORMAT

MSB

LSBWORDS 32

0 BITS

1 RECORD NUMBER RECORD ID 32

2- 1 ORBIT NO. (MEAN, STD. DEV., MIN., MAX., NO) 1926 I

7 YEAR

DAY OF YEAR J

224

8 2561

9 - SOLAR AZIMUTH ( MEAN, STD. DEV., MIN., MAX-,NO.) 41613

I

114 -^ SOLAR ELEVATION (MEAN, STD. DEV., MIN., MAR., NO.) 57618

19 -

_

GAMMA ANGLE ( MEAN, STD. DEV., MIN., MAX., NO.) 73623

— i24 - CHANNEL 3 TEMPERATURE (MEAN, STD. DEV.,28 MIN., MAX., NO.) 896

29 - CHANNEL 10c TEMPERATURE ( MEAN, STD. DEV.,33 MIN., MAX., NO.) 1056

34 - 1 CHANNEL 1-10c IRRADIANCE ( MEAN, STD. DEV.,83 MIN., MAX., NO.) 2656

84 MISSION DAY 2688

85 - OFF-AXIS ANGLE ( MEAN, STD. DEV., MIN., MAX., NO.) 284889

90 - COSINE-CORRECTED CHANNEL 10c IRRADIANCE94 (MEAN, STD. DEV., MIN., MAX., Na) 3008

WORD 1 IS IBM INTEGER*2 FORMATWORDS 2-99 ARE IBM INTEGER *4 FORMAT

28

.6•

e

.1L Y

TABLE 4-3

ESAT SOLAR ACTIVITY DATARECORD FORMAT

MR

t.RR

WORDS 32 0 BITS1 RECORD NO. RECORD ID. 2

2 YEAR DAY OF YEAR 64

3 NUMBER OF PLAGE OBSERVATIONS 96

4 ZURICH SUNSPOT NUMBER 128

5 2800 MHz SOLAR FLUX 160

6 DAILY CALCIUM PLAGE INDEX 192

7 GEOMAGNETIC INDEX, Ap SERIES 224

8 —14

SOLAR PLAGE REGION DATA 448*

WORDS 1-2 ARE IBM INTEGER*2 FORMATWORDS 3-14 ARE IBM INTEGER*4 FORMAT

*MINIMUM OF 448 BITS, DEPENDS ON NUMBER OF PLAGE REGIONS PER DAY.

29

1

2

2

3

3

4

2

3

4

4

5

6

ITEM NO. WORD1 1

7 4

8 5

TYPE DETAILED DESCRIPTION OF DATA ITEMSI*2 RECORD NO. - Number of this record in this

file.

I*2 RECORD ID. - Record identification number.100 = Orbital File

I*2 ORBIT NO. - Data orbit number

- Spare ( -9999)

I*2 YEAR - 4 digit year

I*2 DAY OF YEAR - Day number

I*2 SOLAR AZIMUTH - Azimuth of sun relative tothe S/C axes. Value in degrees (-180 to +180).Same as DSAS alpha angle, scaled by 10.

I*2 SOLAR ELEVATION - Elevation of sun relativeto the S/C axes. Value in degrees (-180 to +180).Same as DSAS beta angle, scaled by 10.

I*2 INSTRUMENT STATUS WORD - Determinedfrom VIP MF.

Units Decimal Digit (indicates position ofscanhead

0 = Scan mode 3 = LW check position1 = Nadir position 4 = SW check position2 = Space position 9 = Transition mode

Tens Decimal Digit (indicates status of shutters,chs. 1, 11, & 12

0 = Reference chs. CLOSED, Ch. 12 OPEN1 = Reference chs. CLOSED, Ch. 12 CLOSED2 = Reference chs. OPEN, Ch. 12 OPEN3 = Reference chs. OPEN. Ch. 12 CLOSED9 = Status unknown

Hundreds Decimal Digit (indicates status of Ch.12 FOVT-

0 = Ch. 12 FOV WIde1 = Ch. 12 FOV narrow9 = Status Unknown

ERB SOLAR ANALYSIS TAPE - DATA FILE 1ORBITAL ITEM DESCRIPTIONS

30

aril

14.

ITEM NO. WORD TYPE

9 5 I*2

10 6 I*2

11 6 I*2

12 7 I*4

13 8 I*4

14-24 9-18 I*4

25 19 I*2

26 19 I*2

27 20 I*2

28 20 I*2

29 21 I*4

DETAILED DESCRIPTION OF DATA ITEMSThousands Decimal Di it indicates status of El.Cal., and Go No heatego r)

0 = Go/No go heater OFF, El. Cal. OFF1 = Go/No go heater OFF, El. Cal. ON2 = Go/No go heater ON, El. Cal. OFF9 = Status unknown

GAMMA ANGLE - Solar channel subassemblyposition at Middle of MP.

EARTH-SUN DISTANCE - MSB Earth-Sundistance.

EARTH-SUN DISTANCE - LSB Earth-Sundistance.

CHANNEL 3 TEMPERATURE - Temperature indegrees centigrade, scaled by 10.

CHANNEL 10c TEMPERATURE - Temperaturein degrees centigrade, scaled by 10.

CHANNEL 1-10c IRRADIANCES - Channels1-10c irradiances in W /m 2 . Scale factor forchannels 1-5, 10c is 10; channels 6 -9 is 100.

SOUTHERN TERMINATOR (HRS/MIN) - GMThours/minutes of southern terminator crossing.

SOUTHERN TERMINATOR (SECS) - GMTseconds of southern terminator crossing.

MISSION DAY - Mission day number startingwith 1 on 16 November 1978.

OFF-AXIS ANGLE - Calculated sum of solarazimuth and gamma angles.

COSINE-CORRECTED CHANNEL 10c - channel10c irradiance corrected with cosine of off-axisangle, scaled by 10.

r

i

31

J.4

*w- Vp _.

32

r

f 'ERB SOLAR ANALYSIS TAPE

ERB DAILY MEAN ITEM DESCRIPTIONS - DATA FILE 2

ITEM NO. WORD TYPE DETAILED DESCRIPTION OF DATA ITEMSf1 I4$— RECORD NUMBER - The number this record

in this file.

2 1 I*2 RECORD ID - The record identification for thisfile. 200 = Daily Mean

3 2-6 I*4 ORBIT NUMBER - Data Orbit numberMean -scaled by 1000Std. Dev. - scaled by 100,000MINIMUM - minimum orbit numberMAXIMUM - maximum orbit numberNUMBER - Number of orbits to calculate mean

4 7 I*4 YEAR - 4-digit year.

5 8 I*4 DAY OF YEAR - Day number

6 9-13 I*4 SOLAR AZIMUTH - Azimuth of sun relative toS/C axes. Value in degrees (-180 to +180).MEAN - scaled by 10,000Std. Dev. -scaled by 1,000,000MINIMUN - Minimum solar Azimuth, scaled by10.MAXIMUM - Maximum solar azimuth, scaled by10NUMBER - Number to calculate mean

7 14-18 I*4 SOLAR ELEVATION - Elevation of sun relativeto S/C axes. Value in degrees (-180 to +180).MEAN - scaled by 10,000STD. DEV. -scaled 100,000MINIMUM - minimum solar elevation, scaled by10.MAXIMUM - Maximum solar elevation, scaled by10.NUMBER - Number to calculate mean.

8 19-23 I*4 GAMMA ANGLE - Solar channel subassemblyposition at middle of MF.MEAN -scaled by 100,000STD. DEV. -scaled by 100,000MINIMUM - minimum gamma angleMAXIMUM - maximum gamma angleNUMBER - number to calculate mean gammaangle

J►. Y

• frIl

r y - . -,

41

ITEM NO. WORD TYPE DETAILED DESCRIPTION OF DATA ITEMS9 24-28 I*4 CHANNEL 3 TEMPERATURE - Temperature of

channel 3 In degrees centigrade.MEAN -scaled by 10,000STD. DEV. -scaled by 100,000MINIMUM - minimum channel 3 temperature,scaled by 10.MAXIMUM - Maximum channel 3 temperature,scaled by 10.NUMBER - Number to calculate mean channel 3temperature

10 29-33 I*4 CHANNEL 10c TEMPERATURE - Temperatureof channel 10c In degrees centigrade.MEAN -scaled by 10,000STD. DEV. -scaled by 100,000MINIMUM - Minimum channel 10c temperature,scaled by 10.MAXIMUM - Maximum channel 10c temperature,scaled by 10.Number - Number to calculate mean channel 10ctemperature.

11 34-83 I*4 IRRADIANCES - channels- 1-10c irradiances inW/m2.MEAN - channel 1 scaled by 10; channels 2-3, J10c scaled by 100; channels 4-9 scaled by 1000.STD. DEV. -channels 1-2, 4-6 scaled by 100,000.channels 3, 7-10c scaled by 1,000,000.MINIMUM - minimum channels 1-10eirradiances. Channels 1-5 scaled by 10; channels6-10c scaled by 100.MAXIMUM - Maximum channels 1-10c N

Irradiances. Channels 1-5, 10c scaled by 10;channels 6-9 scaled by 100.NUMBER - Number to calculate mean channels1-10c irradiances.

12 84 I*4 MISSION DAY - Day number starting with 1 on16 November 1978.

13 85-89 I*4 OFF-AXIS ANGLE - calculated sum of solarazimuth and gamma angle.MEAN -scaled by 10,000STD. DEV. -scalee by 100,000MINIMUM - minimum off-axis angle, scaled by10.MAXIMUM - Maximum off-axis angle, scaled by10.NUMBER - number to calculate mean off-axisangle.

33

ITEM NO. WORD TYPE DETAILED DESCRIPTION OF DATA ITEMS14 00-94 fro COSINE-CORRECTED CHANNEL 10e - Channel

10c irradiance corrected by cosine of off-axisangle.MEAN -scaled by 100STD. DEV. -sealed by 100,000MINIMUM - minimum corrected channel 10cirradianceMAXIMUM - maximum corrected channel 10cirradianceNUMBER - Number to calculate mean correctedchannel 10c irradiance.

34

e--

i

ERB SOLAR ANALYSIS TAPESOLAR ACTIVITY INDICATORS- DATA FILE 3

ITEM NO. WORD TYPE DETAILED DESCRIPTION OF DATA ITEMS1 1 I*2 RECORD NO. - the number of this record in this

file.

2 1 I*2 RECORD ID - the record Identification of this I

file. Solar Activity = 300.

3 2 I*2 YEAR - 4 digit year

4 2 I*2 DAY OF YEAR - Day number

5 3 I*4 PLAGE NO. - Number of plage regions for thisday. If 0 then no observations are available forthis day. t

6 4 I*4 ZURICH RELATIVE SUNSPOT NUMBERS -dailyindex of solar activity. Daily sunspot numbers.

7 5 I*4 OTTAWA 2800 MHz SOLAR FLUX - daily indexof solar activity. Daily radio emissions fromactive regions in 10-22 Wm-2 Hz-1 scaled by 10.

8 6 I*4 DAILY CALCIUM PLAGE INDEX - summationof all plages visible on solar disk corrected for <distance from center.

9 7 I"4 GEOMAGNETIC INDEX -Geomagnetic Ap seriesmeasure of magnetic activity due to solaractivity. Scaled by 10.

r10 B-14 I*4 SOLAR PLAGE REGION DATA - consists of

following seven parameters.MCMATH-HALE REGION NUMBER - numberassigned to region of solar activity.CENTRAL MERIDIAN PASSAGE DATE -Central meridian at 12h UT at time ofobservation. Scaled by 10.LATITUDE - Latitude of region north or south ofsolar equator. South latitudes are negative.CENTRAL MERIDIAN DISTANCE - distanceeast or west of central meridian of region.Measured 0-3600 to the west.CARRINGTON LONGITUDE - central meridianthat passed through solar disk on 1 January 1854

`+

at 12h UT. Measured 0-3600 to the west.AREA - area of region corrected for distancefrom the center of the solar disk in millionths ofsolar hemisphere.INTENSITY - Intensity of region on a scale of 1 =faint to 5 = very bright, scaled by 10.Note: More than one solar plage region per daymay be visible.

35

y

5.0

DAILY MEAN SOLAR IRRADIANCES

The daily mean solar irradiances as measured by each of the 19 ERB solar channelswere plotted for the five years from 16 Nov 1978 through 31 Oct 1983 including data

gaps as shown in figures 5-1 to 5-10.

No correction has been made in this data set for sensor degradation. Only channel10c is self-calibrating and the calibration data shows no visible sign of degradationIn this channel. Comparison of the 9 other solar channels to channel 10c shows avisible history of channel sensitivity changes in all 9 channels. This makes theanalysis of this data more complicated than that of channel 10c. Rickey et al.,(1981) and Smith et al., (1983a) have used the spectral channels to examine spectralirradiance changes connected to the solar rotation period during active sun periods.Additional studies of ERB spectral irradiances are planned by the ERB experiment

team.

As discussed in Section 2.3.1, all of the channels except channel 10c were affectedby degradation and recovery events immediately after launch. The ultravioletchannels, (6-9) were the most severely affected and show significant recovery,although channels 6 and 9 show a trend toward increasing solar irradiance. Thisdegradation and recovery process was explained in a paper by Predmore, et al.,(1982). The plots shown in Figures 5-1 through 5-10 show ERB solar channel ikmeasurements that were screened for bad orbits, etc. from the SEFDTh as , .. ssedin Section 3.3. The following preliminary analysis describes the degradation and

recover; characteristics of each channel:

Channel 1: Mostly shuttered and opened periodically, but does show a constantdownward trend. After initial degradation and recovery, Channel 1 shows 3% (0.6%per year) degradation from 1 Mar 1979 through 31 Oct 1983.

Channel 2: Initial degradation from 16 Nov 1978 through 30 Nov 1979. Channel 2shows 5.2% degradation (^-1.3% per year) from 1 Dec 1979 through 31 Oct 1983.

36

- _04 -V-A 7. u,

{ Channel 3: Initial degradation from 16 Nov 1978 through 30 Apr 1979. Channel 3

shows an overall degradation 0.36% ( —.08% per year) from 1 May 1979 through 31Oct 1983. However, there Is a period of Increasing irradiance from 31 Dec 1982through 31 Oct 1983 of 0.3%. Therefore, the degradation from 1 May 1979 through31 Dec 1982 is 0.7% (^-0.18% per year).

Channel 4: Initial degradation from 16 Nov 1978 through 30 Nov 1979. Channel 4shows --3% degradation (^'0.7% per year) from 1 Dec 1979 through 31 Oct 1983.

Channel 5: Shows a complicated behavior throughout the five year period. Initialrapid degradation from 16 Nov 1978 to mid-January 1979 followed by recovery byearly May 1979 and another degradation period to mid-August 1979. Channel 5shows a recovery by 1 Dec 1979 and an overall degradation to 31 Oct 1983 of -•-1.3%(— 0.3% per year). There is a period between 1 Jan 1981 and 1 Feb 1981 of veryrapid drop In irradiance of-1.2% In 1 month.

Channel 6: initial rapid degradation and recovery from 16 Nov 1978 through 31 Mar1979. Channel 6 shows-1.4% increase in irradiance (- 0.3% per year) from 1 Apr1979 through 31 Oct 1983.

Channel 7: Initial rapid degradation and recovery from 16 Nov 1978 through 31 Mar1979. Channel 7 shows a more marked degradation of-18.5% (^-4.1% per year) from1 Apr 1979 through 31 Oct 1973.

Channel 8: Initial rapid degradation and recovery from 16 Nov 1978 through 31 May1979. Channel 8 shows —30.3% degradation (— 6.7% per year) from 1 Apr 1979through 31 Oct 1983.

Channel 9: initial rapid degradation and recovery from 16 Nov 1978 through 31 Mar1979. Channel 9 shows an increase in irradiance of 6.4% (-1.4% per year) from 1Apr 1979 through 31 Oct 1983. Ther:c is a gap from mid-December 1982 throughJanuary 1983 where no data is available due to saturation of channel 9.

Channel 10c: Is a self calibrating cavity radiometer and the calibration data showno indication of degradation. It is therefore, hypothesized that the slight decreaseIn the solar constant from Nov. 1978 to Oct. 1983 may be real, however undetected

degradation may exist. As discussed in Sec. 2.4 the short term excursions in thedata correlate well with several solar activity indices.

37

Ix

0

VJPmv

t

e

q

NZROr

r0

`ciu

g

CbP

3Z

sUR

i

n

n

41

iy F O O b ' r V n h

M M M M N .1 H w N M M(^.n taaw^rpzHui

y.

0 O P O

°

O V O d w O O O P O O V O d .^ O

02 n a n e Q n a a n ro a a a a° :° wN M M H M M M N H N M M N M M M H H g N M(Q^Y)ZONYIOYQOI

39

re

yv

I 1 €S

Z

g^

i

T

5 ^ ^

3

1

Tg0

S I

3

3 1

'1W

GT Pi

N

ii

e

3N

OdI

Cu

^g 1F

^ zs ^

i

Y

Zi Qu N

oz

2

1 ^

4

^p

i

R

aGVii0

YA

leUL^VJPmit

o a o o n o r + 0 00 o h h h h b o b n n

n n n e ^ n n n n nN .^ nl H H(av )aawtiatrni ^

i^ n

i

.^ gn _

_a

Qt 6

" 01o -0aOz

x IIU

I

i

8 9

s2 g

L

B

e

of

L

eCd^

v

unx`

II

B

1f

e

f

a

g^3

O p h p p O t A dp O

O O O O p p O O O O O(i^l)iONtlp^iil

x 41

Z

P^O E

spy

9

B

L

8

a

8

01

I1

9

L

r+ 8n .,

n

Qe&^ 8

8

^ Ol

g-II

U

:_ l

Z

49

ail

e

V

0fj

UJ0mc

1

76

t^ 9

= 0

Z

L

B

& O

{81

Ol

9

L'

e

L

e0

^+ 8

ct

yZF ^

0t

!I

O

V v w a • 0 0a ,^ C t1 0 • oQ t^ a a a p y y ^ 0 0M y y

(swa)amtv:aYwVZ

43

Z

r

r

^e

3' 6

9

^ 0

e

n L

e

m

iIt

0 }

L

n gw _

8

w6 ^ (lt

^

g_ I

t.

it

0

0r°

^n o °m ^°o n o i v o v oal H M ^I M M M y M

ti(ewA)aauYcaVXWI

Mt::

e!'

10,

^l000 m v

°pH N N^6^^)9]N^IO^itI

45

i

a

M

00

yb

c

P

g e

E. 6

9

= 0

2

L

8

8

of

U

9

L

n 8n -a

6

yry of

3 —

g-111^_

0: L

la

3

i

a

e

s

dI

8i

e

m

it

e

t

ro B

r

6

Ol

g -

N

Y.C

L

4

9

3 B

a

Q

p

i

6i,

z

c

^a

89MC

0

I.

L

fYx pup

pp6ni

VJt

x 95

u

g

x

Ol

11

nB

L

n 0A ^

MN_y\

A (j

w

I 8N Ol

.O ^

g-it

r.^

:r

M

^ M

Ys

M .y

M^

Yf

Y.^

• M

•r•

M ^•

• M

O •

n n

A

n

N w

n n

a

n

o O h

n °n n

o 0

n° nw w w w w w w w .. .. w

i

1

i

l

e.f

.0.

6.0 REFERENCES

Foukal, P.V., P.E. Mack, J.E. Vernassa, (1977), The Effect of Sunspots and

Faeulao on the Solar Constant, Ap• J., 215, 952-959.

Hickey, J.R., L.L. Stowe, H. Jacbowitz, P. Pelllgrino, R.H. Maschhoff, F.

House, and T.H. Vender Haar, (1980), Initial Solar Irradiance Determination

from Nimbus-7 Cavity Radiometer Measurements, Science, 208 9 281-283.

Hickey, J.R., B.M. Alton. F.J. Griffin, H. Jacobowitz, P. Pelllgrino and R.H.

Maschhoff, (1981), "Indications of Solar Variability in the near UV from

Nimbus 7 ERB Experiment", Collection of Extended Abstracts, IAMAP Third

Scientific Assembly, Hamburg, F.R.G-, Aug. 17-28,1981, Boulder, CO.

Hickey, J.R., B.M. Alton, F.J. Oriffin, H. Jacobowitz, P. Pellegrino, R.H. iMaschhoff, E.A. Smith and T.H. Vender Haar (1982), Extraterrestrial Solar

Irradiance Variability, Two and One-half Years of Measurements from

Nimbus-7 1 Solar Energy, 29, 125-127. i

Hickey, J.R., and B.M. Alton, (1983), "Extraterrestrial Solar Irradiance-

Results from the ERB Experiment of Nimbus-7 119 5th Conference on

Atmospheric Radiation, Baltimore, MD, October 31 - November 4, 1983, 444- i

447. '!

Jacobowitz, H., H.V. Soule, H.L. Kyle, F. House, and Nimbus-7 ERB

Experiment Team, (1984)9 The Earth Radiation Budget (ERB) Experiment - An

Overview, J. Geophys. Res., 89, Atmospheres, 49874996.

National Geophysical Data Center (NGDC), NOAA, Solar-Geophysical Data

Part I (Prompt Reports), E/GC2, 325 Broadway, Boulder, CO.

Predmore, R.E, H. Jacobowitz, J.R. Hickey, (1982), "Exospheric Cleaning of

the Earth Radiation Budget Solar Radiometer During Solar Maximum",

Spacecraft Contamination Environment, Proc. SPIE, 338, 104-113. i

Ray, S.N., R.J. Tighe and S.A. Scherrer, (1984), User's Guide for ERB 7

SEFDT, NASA Contract Report CR 170616, NASA/GSFC, Greenbelt, MD.

48

4n

Smith, E.A., J.R. Hickey, R. Maschhoff, T.H. Vender Haar, (1983a), "The

Spectral Nature of Solar Irradiance Variability and its Phase Relationship to

Solar Activity", 5th Conference on Atmospheric Radiation, Baltimore, MD,

October 31 - November 4 1 1983, 400488.

Smith, E.A., T.H. Vonder Haar, J.R. Hickey, R. Maschhoff, (1983b), The

Nature of the Short Period Fluctuations In Solar Irradiance Received by the

Earth, Climatic Change, 5, 211-235.

Taylor, V.R., J.M. Vilardo, L.L. Stowe, and S.K. Vemury (1983x), Nimbus-7

ERB Emission Models for ERBE processing, 5th Conference on Atmospheric

Radiation, AMS; Baltimore, MD; October 31 - November 4, 1983, 433435.

Taylor, V.R., L.L. Stowe, and J.M. Vilardo, (1983b), Nimbus-7 ERB

Reflectance Models for ERBE Processing, 5th Conference on Atmospheric

Radiation, AMS; Baltimore, MD; October 31 - November 4 1 1983, 452455.

Taylor, V.R., and L.L. Stowe, (1984), Reflectance Characteristics of Uniform

Earth and Cloud Surface Derived from Nimbus-7 ERB, J. Geophys. Res., 89,

Atmospheres, 49874998.

Willson, R.C., S. Golkis, M. Janssen, J.S. Hudson, G.A. Chapman, (1981),

Observations of Solar Irradiance Variability, Science, 211, 700-702.

49

/i

APPENDIX A

NOPS STANDARD HEADER FILE AND TRAILER

DOCUMENTATION FILE (TDF)

Every Individual derivative products tape contains a standard Header File and a Trailer

Documentation File. * Each is written in a format common to all archival tapes produced

by the Nimbus Observation Processing System (NOPS).

The Standard Header File is the first file on any tape. It is used to define key

characteristics of the tape.

The Trailer Documentation File (TDF) is the last file on any tape. It is intended to

provide a geneology of the current product by providing data relating to previous

products that went into the making of the current product.

C.1 Standard Header File

The standara header file contains two identical blocks (physical records) of 630

characters written in EBCDIC. Each block consists of five 126-Character lines.

Lines 1 and 2 are written according to a standardized format called the NOPS Standard

Header Record.

at;

Line 1:

COLUMNS DESCRIPTION

1 An indicator to show that a TDF will be found at the end of a tape

blank = No TDF

* = TDF present

2-24 Label: NIMBUS-7bNOPSbSPECbNobT

I

25-30 Tape '5peeification Number. See Appendix D

51-37 Label: bSQbNObW 38-39 PDF Code:

.w

*Not included on ESAT tape.

b=blank

A-1

b

4.

COLUMNS DESCRIPTIONAS=ESAT

40-45,47 Tape sequence number, defined as follows:

40 The last digit of the year in which the data were acquired.41-43 Julian day of the year in which the data were acquired.

44 Sequence number for this particular product

45 The existing hyphen remains unless there Is a remake of thetape for any reason. In this case, an ascending alphacharacter will replace the hyphen, and the most recentreasons for remake will be recorded in logical record 4 ofthe header.

47 This will remain as a blank unless It is needed to removeambiguities in character 40. This may occur if data arebeing acquired on or after October 24, 1988.

46 Copy number

1 = original 12 = copySee Section C.3

47-52 Subsystem ID (with leading and trailing blank). Forderivative products valid codes are SBUV or TOMS.

53-58 Generation (Source) Facility. For derivative products, validcodes are: NOAA (National Oceanographic and Atmospheric

Administration); SACC (Science Applications ComputingCenter)

57-80 Label: bTOb

81-64 Destination Facility. For derivative products, this is IPDb

(information Processing Division, Goddard)

A-2

,

COLUMNS DESCRIPTION

65-87 Start year, Julian day, hour, minute, second for data

coverage on this tape, in the form

bSTARTb19YYbDDDbHHMMSSb

88-106 End year, Julian day, hour, minute, second for data coverage

on this tape, in the form

TOb19YYbDDDbHHMMSSb

In order to avoid unnecessary processing complications, the

true ending date does not appear in the header record,

Instead a fill date is used:

1999b365b240000

107-126 Generation year, Julian day, hour, minute, second that the

tape was created in the form:

GENbl9YYbDDDbHHMMSSb

_f 4.

r

Line 2:

1-12 Software program name and version number.

13-18 Program documentation reference number, if it exists.

19 Blank

20-126 User defined comments that may be more relevant to the

user than the preceding ones.

Lines 3-5 May contain further descriptive information about the tape

such as which software was used (program name, version

number, and version date), or how this version of the data

differs from the previous version.

A-3

Iin

Vm .

I

NOPS PRODUCT SPECIFICATION CODES

Tapess A six digit number prefixed with a T to denote TAPE will be used.

T X1 X2 X3 X4 X5 X6

X 1 Subsystem1 = ERB2 = SMMR3 = THIR4=SAM 115 = LIMS6 = SBUV/TOMS7 = CZCS8 = SAMS9 = ILT

X 2 Source Facility (Same code as Destination Facility)

X 3 Destination Facility:1 = NOC (Pre-NOPS)2 = MDHS (NOPS)

i=tWC5 = LARC6 = NCAR7 = NOAA8 = OXFD9 = USER

X 41 X 5 : Tape number in sequence for subsystem (code to be derived depending on how manytapes are needed)

X 6 Tape Description:1 = 9 Trk 1600 BPI2 = 9 Trk 800 BPI3 = 7 Trk 800 BPI4 = 7 Trk 556 BPI5 = HDT OPD)6 = 9 Trk 6250 BPI

A-4

-r. - ^G i . I

STANDARD HEADER (PHYSICAL RECORD FORMAT)

MSB

24' 22 20 18 16 14 12 10 8 F

LSB

4 2 1

bNimbus - 7bNOPSbSPECbNObT

(24 Characters)

SPEC NO. (6 Digits)

bSQbNOb(7 Characters)

PDFC CODE (2 Char.)

5 Digit Sequence No. (5 Characters)

Hyphen (1 Char.)

1 Char. Type Copy No. Blank Character

(4 Characters) SUBSYSTEM I.A.

Blank Character SOURCE FACILITY

(4 Characters) Blank Character

(T) Character (0) Character Blank Character

(4 Characters) DESTINATION FACILITY I.D.

(23 Characters)

START YEAR, DAY, HOURS, MINUTES, SECONDS

b START b19XXbDDDbHHM.MSSb

(19 Characters)

END DATE AND TIME OF DATA*Some Facilities may not

TOb 19XXbDDDbHH.MMSSbinclude end time in header

(20 Characters)

DATE AND TIME TAPE WAS GENERATED

GENb19xxbDDDbHHMMSSb

BLANK ( 126 Characters)

BLANK ( 126 Characters)

BLANK ( 126 Characters)

BLANK (126 Characters)

1

89

10

13

14

15

16

17

18

19

20

21

22

29

36

42

84

126

168

210

192

408

696

1008

2016

3024

4032

5040

EBCDIC TAPE FORMAT

A- ^

4'

APPENDIX B

SEQUENCE NUMBERS OF THE SEFDT TAPES USED TO GENERATE SOLAR DATAAT EPPLEY LABORATORIES FOR THE ERB SOLAR ANALYSIS TAPE (ESAT)

NOV 1978 AD83051-3 NOV 1980 AD03061-3DEC 1978 AD83351-3 DEC 1980 AD03361-3JAN 1979 AD90011-3 JAN 1981 AD10011-3FEB 1979 AD90330-3 FEB 1981 AD19321-3MAR 1979 AD90601-3 MAR 1981 AD10601-3APR 1979 AD90911-3 APR 1981 AD10921-3MAY 1979 AD91211-3 MAY 1981 AD11211-3JUN 1979 AD91521-3 JUN 1981 AD11521-3JUL 1979 AD91821-3 JUL 1981 AD11821B3AUG 1979 AD92131-3 AUG 1981 AD12131-3SEP 1979 AD92441-3 SEP 1981 AD12441-3OCT 1979 AD92741-3 OCT 1981 AD12741-3

NOV 1979 AD93051-3 NOV 1981 AD13051-3DEC 1979 AD05771-3 DEC 1981 AD13361-3JAN 1980 AD06241-3 JAN 1982 AD20011-3FEB 1980 ADO6661-3 FEB 1982 AD20321-3MAR 1980 AD07111-3 MAR 1982 AD20601-3APR 1980 AD07531-3 APR 1982 AD20911-3MAY 1980 AD07951-3 MAY 1982 AD21211-3JUN 1980 AD08421-3 JUN 1982 AD21521-3JUL 1980 AD08831-3 JUL 1982 AD21831-3AUG 1980 AD09261-3 AUG 1982 AD22131-3SEP 1980 AD09731-3 SEP 1982 AD22441-3OCT 1980 AD10141-3 OCT 1982 AD22751-3

NOV 1982 AD23051-3DEC 1982 AD23351-3JAN 1983 AD30021-3FEB 1983 AD30321-3MAR 1983 AD30601-3APR 1983 AD30911-3MAY 1983 AD31221-3JUN 1983 AD31521-3JUL 1983 AD31921-3AUG 1983 AD32141-3SEP 1983 AD32441-3OCT 1983 AD32741-3

8-1

V

APPENDIX C

TABLE OF SCALE FACTORSDAILY MEAN DATA

NUMBERSTANDARD OF

DATA ITEM MEAN DEVIATION MINIMUM MAXIMUM ORBITS

1. Orbit No 1,000 100,000 I I I2. Year I3. Day of Year I4. Solar Azimuth 10,000 10000,000 10 10 I5. Solar Elevation 10,000 100,000 10 10 I6. Gamma Angle 100,000 100,000 I I I7. Ch. 3. Temp 10,000 100,000 10 10 I8. Ch, 10e Temp 10,000 100,000 10 10 I9. Ch. 1 Irrad. 10 100,000 10 10 I10. Ch. 2 Irrad. 100 100,000 10 10 I11. Ch. 3 Irrad. 100 1,000,000 10 10 I12. Ch. 4 Irrad. 1000 100,000 10 10 I13. Ch. 5 Irrad. 1000 100,000 10 10 I14. Ch. 6 Irrad. 1000 100,000 100 100 I15. Ch. 7 brad. 1000 1,000,000 100 100 I16. Ch. 8 Irrad. 1000 1,000,000 100 100 I17. Ch. 9 Irrad. 10,000 1,000,000 100 100 I18. Ch. 10c Irrad. 100 19000,000 100 10 I19. Mission Day I20. Off-axis Angle 10,000 100,000 1.0 10 121. Cosine Corrected

Ch. 10c Irrad. 100 100,000 100 100 1

I = Integer value; not scaled

TABLE OF SCALE FACTORSORBITAL DATA

DATA ITEM SCALE FACTOR

1. Orbit No. 12. Year 13. Day of Year 14. Solar Azimuth 105. Solar Elevation 106. ISW I7. Gamma Angle 18. MSB E-S Dist. 19. LSB E-S Dist. I10. Ch. 3 Temp 1011. Ch. 10c Temp 1012. Ch. 1Irrad. 1013. Ch. 2Irrad. 1014. Ch. 3 Irrad 1015. Ch. 4Irrad. 1016. Ch. 5Irrad. 1017. Ch. 6Irrad. 10018. Ch. 7Irrad. 10019. Ch. 8Irrad. 10020. Ch. 9Irrad. 10021. Ch. 10c Irrad. 1022. So. Term (hrs/min) 123. So. Term (secs) 124. Mission Day I25. Off-axis angle I26. Cosine-Corrected Ch. 10c Irrad. 10

I = Integer Value, not scaled

C-L

r .. r r. . .a\ t Fr.[ a13 aW.. . n. a`• —,r :.:._. T ._ yx, a ^^ a r

F.

" TABLE OF SCALE FACTORSSOLAR ACTIVITY DATA

DATA ITEM SCALE FACTOR

1. YEAR I2. DAY OF YEAR I3. NO. OF PLAGE OBSERVATIONS I4. SUNSPOT NO. I5. SOLAR FLUX (2800 MHz) 106. DAILY CALCIUM PLAGE INDEX 107. GEOMAGNETIC INDEX I8. MCMATH-HALE REG. NO. 19. CENTRAL MERIDIAN PASSAGE DATE 1010. LATITUDE I11. CENTRAL MERIDIAN DISTANCE I12. CARRINGTON LONGITUDE I13. AREA I14. INTENSITY 10

I = Integer Value $ not scaled

t

r_7

A,

APPENDIX D

is -I

DATA AVAILABILITY

To obtain archived data or information about it call or write:

National Space Sciences Data CenterRequest Coordinator, Code 633

i NASA, Goddard Space Flight Center

Greenbelt, Maryland 20771Phone: (301)-344-6695

A User's Guide should be ordered by all first time users of the data.Researchers who reside outside the USA should direct their requests to:

World Data Center A for Rockets and SatellitesCode 630.2

Goddard Space Flight CenterGreenbelt, Maryland 20771 USA

(301)344-6695

The data will also be made available on the NASA/GSFC Pilot Climate DataSystem (PCDS). This is a scientific information system for selected climate datasets. Users of the system may access the data and information about the data vialocal Q.e. at GSFC) and remote computer terminals. They may learn about climatedata, its availability, the details of the PCDS holdings, access, select and subsetdata sets of interest, perform data manipulation and comparisons and obtain a wide Y

variety of graphical representations of data.

The PCDS has many climate data sets most of spacecraft origin.

Data sets from the following experiments are supported in the PCDS.

• Nimbus-4 Backscatter Ultraviolet (BUV)• Nimbus4/5 Selective Chopper Radiometer (SCR)• Nimbus-5 Electrically Scanning Microwave Radiometer (ESMR)• Nimbus-7 Limb Infrared Monitor of the Stratosphere (LIMS)• Nimbus-7 Solar Backseatter Ultraviolet(SBUV)• Nimbus-7 Total Ozone Mapping Spectrometer (TOMS)

°o- ejf^-J'.

• Nimbus-7 Earth Radiation Budget (ERB)

• Nimbus-7 Stratospheric Aerosol Measurement ( SAM II)

• AEM-2 Stratospheric Aerosol and Gas Experiment (SAGE)

• National Meteorological Center (NMC) Daily Analyses of

Atmospheric Parameters

• World Monthly Surface Station Climatology

• First Global Atmospheric Research Program Global Experiment

(FGGE)

• NOAA Heat Budget Data

• Middle Atmosphere Electrodynamics (MAD) miscellaneous rocket

data sets

In addition to the ERB Solar Analysis data set, the PCDS will also make

available in the future selected data sets produced for the International Satellite

Cloud Climatology Project (ISCCP).

'Those interested in utilizing the PCDS should contact:

Lloyd A. 'Itteinish or Paul H. SmithNational Space Science Data Center

Code 634NASA, Goddard Space Flight Center

Greenbelt, Maryland 20770

Phone: (301)-344-9489or (301)-344-5876

p-t

, t

APPENDIX E

COMPUTER PROGRAM AND SAMPLE OUTPUT

i

4}

a;u

V

i

fl

Y

xxxx TSO FOREGROUND HARDCOPY xxxxDSNAMEnX7TORM.SOLAR.ESAT,ANALYSIS.FOR7 (ESATREAD)

C 00000010Cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx00000020C FUNCTION - THIS PROGRAM READS THE ERB SOLAR ANALYSIS TAPE (ESAT)00000030C AND DUMPS THE HOPS STANDARD HEADER FILE. THE FIRST 10 00000040C RECORDS OF THE DAILY MEAN FILE, THE FIRST 10 RECORDS 00000050C OF THE ORBITAL FILE# AND THE FIRST 10 RECORDS OF THE 00000060C SOLAR ACTIVITY FILE. 00000070C THIS PROGRAM CAN BE MnDIFIED TO DUMP AS MANY OR AS FEW 00000080C RECORDS DESIRED FROM ANY FILE BY SPECIFYING THE 00000090C FILE NUMBER TO BE READ AND RECORD NUMBERS TO DUMP. 00000100

C 00000120ARGUMENT LIST - HOA2..C ----°° ---- 00000130C 140

00000150C LOCAL VARIABLES ,C ----- ----°°-- 00000160C VARIABLE TYPE DESCRIPTION 00000170C ------ -°- ----------- 00000180C IFILE Ix4 FILE NUMBER TO BE READ, OG000190C IFILE(1)=1 - NOPS STANDARD LABEL 00000200C IFILE(2)=2 - ORBITAL SOLAR DATA 00000210C IFILE(3)=3 - DAILY MEAN SOLAR DATA 00000220C IFILE(4)=4 - SOLAR ACTIVITY INDICATORS 00000230C IREC1 Ix4 FIRST RECORD NUMBER 00000240C IREC2 Ix4 LAST RECORD NUMBER 00000250C 00000260C CALLED FROM , NONE. THIS IS THE MAIN PROGRAM 00000270

00000280C CALLS TO: 00000290 !C NOPS - READS THE HOPS STANDARD HEADER FILE 00000300C DMEAN - READS THE DAILY MEAN SOLAR DATA FILE 00000310C ORBTAL - READS THE ORBITAL SOLAR DATA FILE 00000320C SOLAR - READS THE SOLAR ACTIVITY DATA FILE 00000330C 00000340C INPUT TAPE , 9-TRACK#1600 BPI, RECFM=U, BLKSIZE=32760 00000350C 00000360C PROGRAMMERt 0. MAJOR, RESEARCH 8 DATA SYSTEMS, INC. 00000370C 00000380 ! iC LANGUAGE/COMPUTER, VS FORTRAN/IBM 3081 AT NASA/GSFC 00000390C 00000400C VERSION DATE : JULY 1984 00000410C 00000420Cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx00000430C 00000440

DIMENSION IFILE ( 4) 00000450^C 00000460

IFILE ( 1) = l 00000470IFILE(2) = 2 00000480

IFILE(3) = 3 00000490IFILE(4) = 4 00000500IREC1 = 1 00000510IREC2 = 10 00000520

v 00000530DO 30 I =L4 00000540IF(IFILE(I).EQ.1) THEN 00000550

IF=l 00000560

1

p C VERSION DATE I JULY 1984 00001780C ' ' 00001790CNNNN1fNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOO1800C 00001810

C REALN4 BARRAY(68),DD 00001830INTEOERN2 R1(2),JA,JB 00001840INTEGERN4 RARRAY(94),LENOTH,TMPARY(68) 00001850EQUIVALENCE ( R1(1),RARRAY ( 1)) 00001860LENOTH = 376 00001870IN=O 00001880

C WRITE(6,1000) IFILE 000019001000

FORMAT(/ ' OPEN ILE',I3,' TO READ DATA '// 10X,' DAILY MEAN ERB',1 / ^

000 019 20

C POSITION TAPE TO FILE 3 00001940

C222

CALL POSN(1,lO,IFILE) 00001960

C DO 105 K=1,1811 00001980CALL FREAD(RARRAY,10,LE1(GTH,900,902) 00001990

dA = R1(1) 00002000d3=R1(2) 00002010

C IF(K.EQ.I.OR.K.LE.50) THEN 00002020c 000030 111C SEPERATION OF INTEGERS TO BE LATER CONVERTED TO REAL FROM THOSE 00002040 JC REMAINING INTEGERS. THE INTEGERS THAT WILL BE MADE REAL ARE 00002050 1C STORED IN TMPARY(70). 00002060C 00002070

!i IL=S 00002080IK = O 00002090LL=13 00002100

C 00002110DO 600 L=2,94 00002120

IF((L.GE.4).AND.(L.LE.8)) GO TO 600 00002130IF(LL.GT.83)GO TO 590 00002140IF(L.EQ.LL)GO TO 589 00002150

590 CONTINUE 00002160IF((L.EQ.2I).OR.(L.EQ.22)) 00 TO 600 00002170

IF((L.EQ.84).OR.((L.EQ.89).OR.(L.EQ.94)))00 TO 600 00002180 jIK = IK+ 1 00002190TMPARY(IK)=RARRAY(L) 0000220000 TO 600 00002210

589 LL=LL+IL 00002220600 CONTINUE 00002230

C 00002240C CONVERSION OF INTEGER(REALS) TO REALN4 00002250

^C 00002260MML = 14 00002270ML=15 00002280MLL = 16 00002290MMML=33 00002300

C 00002310DO 601 M=1,68 00002320

DD=REAL(TMPARY(M)) 00002330IF(DO . EQ.-9999.) BARRAY ( M)=DD 00002340

C IF(M.EQ.MML)THEN 00002360

f ^ F-

i

Si

IF(DD.EQ.-9999.)00 TO 32 00002370IF(MML.EQ.30) 00 TO 21 00002380IF((MML.GE.46).AND.(MML.LE.58)) GO TO 21 00002390

BARRAY(M) = DD/100000. 00002400MML=MML+4 0000241000 TO 201 00002420

21 BARRAY(M)=DD/3000000. 0000243032 MML=MML+4 00002440

`201 CONTINUE 00002450ENDIF 00002460

C IF(M.EQ.ML) THEN 00002480IF(DD.EQ.-9999.)00 TO 33 00002490IF((ML.OE.43).AND.(ML.LE.55)) 00 TO 22 00002500IF(ML.EQ.67) GO TO 22 00002510

BARRAY(M)=DD/10. 00002520ML=ML+4 00002530GO TO 202 00002540

22 BARRAY(M)=DD/100. 0000255033 ML=ML+4 00002560202 CONTINUE 00002570

ENDIF 00002580

C IF(M.EQ.MLL) THEN 00002600IF(DD.EQ.-9999.)00 TO 34 00002610IF((ML.GE.44).AND.(ML.LE.56)) GO TO 23 00002620IF(ML.EQ.68) GO TO 23 00002630

BARRAY(M)=DD/10. 00002640MLL=MLL+4 00002650GO TO 203 00002660

23 BARRAY(M)=DD/100. 0000267034 MLL=14! L+,4 00002680203 CONTINUE 00002690

ENDIF 00002700

C IF(M.EQ.MMML) THEN 00002720IF(TMPARY(M).EQ.-9999.)GO TO 35 00002730IF(MMML.GT .49) 00 TO 204 00002740

BARRAY(M)=DD/1000, 0000275035 MMML=MMML+4 00002760204 CONTINUE 00002770

ENDIF 00002780 jlC 00002790 a d

IF(DD . EQ.-9M' .) GO TO 599 00002800C 00002810 rt

IF((M.EQ.5).OR.(M . EQ.6)) BARRAY ( M) = DD/10. 00002820IF((M.EQ.9).OR.(M.EQ.10)) BARRAY(M) = DD/10. 00002830IF(M.EQ.21) BARRAY(M) = DD/10. 00002840

C 00002850IF((M.EQ . 25).OR. ( M.EQ.29)) BARRAY ( M)=DD/100. 00002860IF((M.EQ . 57).OR.(M.EQ.65)) BARRAY(M) = DD/100. 00002870

C IF(M.EQ.1) BARRAY(M) = DD/1000. 00002890

C IF((M.EQ.3).OR.(M.EQ.7)) BARRAY ( M)=DD/10000. 00002910IF((M.EQ.13).DR.(M.EQ.17)) BARRAY(M) = DD/10000. 00002920IF((M.EQ.53).OR.(M.EQ.61)) BARRAY(M) = DD/10000. 00002930

.0 00002940IF((M.EQ.2).OR.(M.EQ.8)) BARRAY(M) = DD/100000. 00002950IF((M.EQ.11).OR.(M.EQ.12)) BARRAY(M) = DD/100000. 00002960

CONTINUECONTINUE

CONTINUEWRITE(6,2000)FOP»MAT(//' ENDRETURNEND

OF FILE 2 PROCESSING'//)

SUBROUTINE ORBTAL(IF,IRECI,IREC2)

'a.

Y

509

510

511

512

513

t

514

515

899

C900902

C105

2000

0000385000003860000038700000388000003890000039000000391000003920000039300000394000003950

14x,la) 00003570WRITE(6,509) (BARRAY(J),J=33,36),RARRAY(53), 00003580

1 (BARRAY(J),J=37,40),RARRAY(58) 00003590FORMAT(1X,'CH, 4 IRR. NOT SCALED',14X,F12.3,1X, 00003600

1 F12.S,2(lX,FI2.1),4X,I8/IX, l CH. 5 IRR. NOT SCALED', 000036102 14X,F12.3,1X,F12.5,2(1X,F12.1),4X,18) 00003620

WRITE(6,510) (BARRAY(J),J=41,44),RARRAY(63) 00003630FORMAT(1X,'CH. 6 IRR. NOT SCALED',14X,F12.3,1X,F12.5,2(1X,F12,2), 00003640

1 4X,I8) .00003650WRITE(6,511) (BARRAY(J),J=45,48),RARRAY(68), 00003660

1 (BARRAY(J),J=49,52),RARRAY(73) 00003670FORMAT(1X, I CH. 7 IRR. NOT SCALED',14X,F12.3,1X,F12.6,2(1X,F12.2), 00003680

1 4X,I8/1X,'CH. 8 IRR. NOT SCALED',14X,F12.3,1X,F12.6,2(1X,F12.2) 0 000036902 4X,I8) 00003700

WRITE(6,512) (B:XRAY(J),J=53,56),RARRAY(78) 00003710FORMAT(1X,'CH. 9 IRR. NOT SCALED',14X,F12.4,1X,F12.6,2(1X,F12,2), 00003720

1 4X,I8) 00003730WRITE(6,513) (BARRAY(J),J=57,60),RARRAY(83),RARRAY(84) 00003740

FORMAT(1X,'CH.IOC IRR. NOT SCALED',13X,F12.2,1X,F12.6, 000037501 2(1X,F12.1),4X,I8/1X,'MISSION DAY',28X,I8) 00003760

WRITE(6,514) (BARRAY(J),J=61,64),R,:RRAY(89) 00003770FDRMAT(1X,'OFF AXIS ANGLE IN DEG.',13X,F12.4,1X,F12.5,2(lX,FI2.I),0000378O

1 4X,I8) 00003790WRITE(6,515) (BARRAY(J),J=65,58),RARRAY(94) 00003800

FORMAT(1X,'COS. CORRECTED SEFDT SOLAR IRR. CH.IDC',F9.2,1X,F12.5, 000038101 2(1X,F12.2),4X,IB) 00003820

C014TI14UE 00003830END IF 00003840

C 00003960Cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 00003970C 00003980C FUNCTION - THIS ROUTINE WILL OUTPUT ERB ORBITAL SOLAR DATA FROM 00003990C TAPE WITH A CONSISTENT FORMAT FOR ALL DATA RECORDS 00004000C 00004010C ARGUMENT LIST 00004020C -------- ---.-- 00004030C VARIABLE TYPE IO DESCRIPTION 00004040C ----••--- ---- -- ----------- 00004050

.0 IF Ix4 I FILE POSITION 00004060C IREC1 Ix4 I FIRST RECORD NUMBER 00004070C IREC2 Ix4 I LAST RECORD NUMBER 00004080C 00004090C LOCAL VARIABLES USED : 00004100C ------ -------- ----- 00004110C VARIABLE TYPE DESCRIPTION 00004120C -------- ---- ----------- 00004130

.0 JARRAY 1x2 ARRAY OF DATA FOR ONE SOLAR ORBITAL RECORD 00004140C R10C Ix4 COSINE-CORRECTED CHAII14EL 10C SOLAR DATA 00004150C LENGTH Ix4 LENGTH OF ONE SOLAR ORBITAL RECORD IN BYTES 00004160

i,yo.. -, a

C 00004170C CALLED FROMt MAIN 00004180C 00004190C 'CALLS TOI 00004200C POSN - FT1O TAPE POSITIONING ROUTINE 00004210C FREAD - FTIO TAPE READ ROUTINE 00004220C 00004230C PROGRAMMER, M. WEISS, RESEAt+."H 8 DATA SYSTEMS, INC. 00004240C 00004250C LANGUAGE/COMPUTER' VS FORTRAN/IBM 3081 AT NASA/G9'. 00004260C OOOO4270C VERSION DATE: JULY 1984 00004280C 00004290Cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx00004300C 00004310

INTEGERx2 RARRAY(42),JARRAY(42) 00004320INTEGERx4 R102) 00004330REALx4 R2(12),R10C 00004340EQUIVALENCE (R1(1),RARRAY(13)) 00004350EQUIVALENCE (R10C,RARRAY(41)) 00004360LENGTH=84 00004370IN =O 00004380

C 00004390C 00004400

WRITE(6,1000) 000044101000 FORMAT(//' OPEN FILE 2 FOR PROCESSING'//IOX,'ORBITAL ERB', 00004420

1 ' SOLAR DATA'//) 00004430C 00004440C POSITION TAPE TO FILE 2 FOR PROCESSING 00004450C 00004460

CALL P0SN(1,10,IF) 00004470C 00004480

DO 105 K=1,16778 00004490CALL FREAD(JARRAY,10,LENGTH,900,902) 00004500

DO 10 I=1,42 00004510RARRAY(I)=JARRAY(I) 00004520

10 CONTINUE 00004530C 00004540

K1=0 00004550DO 20 I=13,35,2 00004560

K1=K1+1 00004570R1(K1)=RARRAY(I) 00004580

20 CONTINUE 00004590R10C=RARRAY(41)/10. 00004600

C 00004610C HEADINGS FOR OUTPUT OF ORBITAL DATA 00004620C 00004630C IF(K.EQ.2.0R.K.EQ.6000) THEN 00004640

IF(K.GE.IRECI.AND.K.LE.IREC2) THEN 00004650° IN=IN+1 00004660

IF(IN.GT.1) GO TO 390 00004670WRITE(6,490) 00004680

490 F0RMAT(5X,'FIVE YEARS OF ESAT ORBITAL DATA FROM NIMBUS 7') 00004690WRITE(6,493) 00004700

493 FORMAT(lOX,'ESD = EARTH SUN DISTANCE',1X/) 00004710C 00004720C FORMATTED OUTPUT OF ALL VARIABLES FOR AN 00004730

.0 OBSERVATION OF ORBITAL DATA 00004740C 00004750390 WRITE(6,494) RARRAY(1),RARRAY(2) 00004760

494 FORMAT(////5X,'RECORD NUMBER = ',I5,2X,'RECORD IDENTIFICATION=',I3) 00004770WRITE(6,495) 00004780

495 FOP,MAT(8X,'ORBIT',9X,'YEAR',BX,'DAY OF',7X,'SOLAR',8X, 000047901 'SOLAR',8X,'INSTR',8X,'GA)'MA',9X,'MSB OF') 00004800

WRITE(6,496) 00004810496 FORMAT(7X,'NUMBER',22X,'YEAR',7X,'AZIMUTH',5X,'ELEVATION' 1 4X, 00004820

1 'STAT WORD',6X,'ANGLE',lOX,'ESD') 00004830SOLA = RARRAY(7)/10. 00004840SOLE=RARRAY(8)/10. 00004850

WRITE(6,497) RARRAY(3),(RARRAY(J),J=5,6),SOLA,SOLE, 000048601 (RARRAY(J1),J1=9,11) 00004870

497 FORMAT(4X,I8,2(5X,I8),2(5X,F8.1),3(5X,I8),1X/) 00004880WRITE(6,498) 00004890

498 FORMAT(7X,'LSB OF',4X,'CH 3 DEG C',2X,'CH 10C DEG C 1 ,3X, 000049001 'CH 1 IRR',5X,'CH 2 IRR',5X,'CH 3 IRR',SX,'CH 4 IRR',5X, 000049102 'CH 5 IRR',SX,'CH 6 IRR') 00004920

WRITE(6,499) 00004930499 FORMAT(9X,'ESD',5X,'--- -------',2X,'--- -------',2X, 00004940

1 '--- -------',2X,'--- -------',2X,'--- -------',2X,'--- -------',000049502 2X,'--- -------',2X,'--- -------') 00004960

DO 50 J3=1,7 00004970R2(J3)=R1(J3)/10. 00004980

50 CONTINUE 00004990R2(8)=R1(8)/100. 00005000WRITE(6,510) RARRAY(12),(R2(J),J=1,8) 00005010

510 FORMAT(4X,I8,7(5X,F8.1),5X,F8.2,1X/) 00005020WRITE(6,501) 00005030

501 FORMAT(5X,'CH 7 IRR',5X,'CH 8 IRR',5X,'CH 9 IRR',4X, 000050401 'CH 10C IRR',5X,'SOUTHTERM',4X,'SOUTHTERM',5X,'MISSION', 000050502 5X,'OFF AXIS',3X,'COS CORR') 00005060

WRITE(-502 FORMAT(4X,'---

--------',1X,'--- --------',1X,'--- --°---- ' ,1X, 00005080

1 '--- -------',3X,'TIME(HR/MIN)',2X,'TIME(SEC)',7X,'DAY', 000050902 6X,'ANGLE(DEG)',1X,'SEFDT CH10C') 00005100

DO 60 J4=9,12 00005110R2(J4)=R1(J4)/100. 00005120

60 CONTINUE 00005130WRITE(6,5)1) (R2(J),J = 9,12),(RARRAY(M),M=37,40),R10C 00005140

511 FORMAT(4X,4(FA.2,5X),4(I8,5X),FB.1,1X///) 00005150ENDIF 00005160

C IF(K.EQ.6295.OR.K.EQ.12295) THEN 00005170C 00005180C IF(K.EQ.13147.OR.K.EQ.16147) THEN 00005190C ENDIF 00005200C 00005210900 CONTINUE 00005220902 CONTINUE 00005230

C 00005240105 CONTINUE 00005250

14RITE(6,2000) 000052602000 FORMAT(//' END OF FILE 3 PROCESSING'//) 00005270

RETURN 00005280END 00005290

C 00005300SUBROUTINE SOLAR(IF,IRECI,IREC2) 00005310

C*xxxxxxxxxxxx^cxxx*xxxxxx*xrxxxxxxx*xxx*xxxxx*xxxxxxxxx*xxafxx** 00005320C FUNCTION — THIS PROGRAM READS THE SOLAR ACTIVITY INDICATORS FILE00005330

":C OF THE ERB SOLAR ANLAYSIS TAPE (ESAT). 00005340C SELECTED RECORDS ARE PRINTED OUT. 00005350C 00005360

C ARGUMENT LIST : 00005370

C VARIABLE TYPE IO DESCRIPTION 00005390i! C -------- ---- -- ----------- 00005400+ C IF Ix4 I FILE POSITION 00005410€j C IREC1 1x4 I FIRST RECORD 00005420Gs C IREC2 Ix4 I LAST RECORD 00005430

C 00005440C LOCAL VARIABLES USED : 00005450

C VARIABLE TYPE DESCRIPTION 00005470x C -------- ---- ----------- 00005480

C SOL Ix4 ARRAY OF SOLAR ACTIVITY PARAMETERS 00005490C IOPLAG Ix4 ARRAY OF SOLAR PLAGE DATA 00005500C SOLACT Ix2 ARRAY CONTAINS SOLAR ACTIVITY DATA FOR 1 RECORD 00005510C IREC Ix2 RECORD NUMBER 00005520C IRECID Ix2 RECORD ID 00005530

R C YEAR Ix2 YEAR OF OBSERVATION 00005540C DAY Ix2 DAY OF OBSERVATION 00005550C NOBS Ix4 NUMBER OF PLAGE REGION OBSERVATIONS PER DAY 00005560C ISS Ix4 ZURICH SUNSPOT NUMBER 00005570C MHZ Ix4 2800 MHZ SOLAR FLUX 00005580C CAL Ix4 DAILY CALCIUM PLAGE INDEX 00005590

s C IGEO Ix4 GEOMAGNETIC INDEX (AP SERIES) 00005600C PLAGE Rx4 PLAGE REGION DATA. CONTAINS : 00005610C CMPD — CENTRAL MERIDIAN PASSAGE DATE 00005620

a C MHRN — MCMATH —HALE REGION NUMBER 00005630C LAT — LATITUDE OF REGION 00005640

R C CMD — CENTRAL MERIDIAN DISTANCE OF REGION 00005650C LON — CARRINGTON LONGITUDE OF REGION 00005660C AREA — AREA OF REGION IIJ MILLIONTHS OF SOL. HEM.00005670C !NT — INTENSITY OF REGION (1 = FAINT,5 = BRIGHT) 00005680C 00005690C 00005700C NOTE: THERE MAY BE MORE THAN ONE PLAGE REGION OBSERVATION 00005710C PER DAY. THEREFORE PLAGE REGION RECORDS ARE READ 00005720C SEPERATELY DEPENDING ON THE VALUE OF NOBS. 00005730

x C 00005740C CALLED FROM :MAIN 00005750C 00005760C CALLS TO: 00005770C POSH — FTIO TAPE POSITIONING ROUTINE 00005780C FREAD — FTIO TAPE READ ROUTINE 00005790C 00005800C PROGRAMMER: G. MAJOR, RESEARCH 8 DATA SYSTEMS, INC. 00005810C 00005820C LANGUAGE/COMPUTER: VS FORTRAN/IBM 3081 AT NASA/GSFC 00005830C 00005840C VERSION DATE :JULY 1984 00005850

— C 00005860Cx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx00005870C 00005880

INTEGERx4 SOL(7),IOPLAG(350) 00005890INTEGERx2 SOL.4CT(714),IREC,IRECID,YEAR,DAY 00005900REALx4 MHZ,PLAGE(50,7) 00005910

C 00005920EQUIVALEtICE(SOLACT(5),SOL(1)) 00005930EQUIVALENCE(SOLACT(15),IOPLAG(1)) 00005940

C 000059504IRITE(6,3000) 00005960

wl

J3=J3+1 00006570C WRITE(6,9008) IOPLAO(K) 00006580C9006 FORMAT(' IOPLAG=',I10) 00006590111 CONTINUE 00006600

END IF 00006610C 00006620C UNPACK PLAGE REGION DATA 00006630C 00006640

K=D 00006650DO 112 J=1,NOBS 00006660

DO 113 J2=1,7 00006670K=K+1 00006680IF(J2.EQ.1) PLAGE(J,J2)=FLOAT(IOPLAO(K))/10. 00006690!F(J2.GT.1.OR.J2.LT.7) THEN 00006700

PLAGE(J,J2)=IOPLAG(K) 00006710END IF 00006720IF(J2.EQ.7) PLAGE(J,J2)=FLOAT(IOPLAG(K))/10. 00006730

113 CONTINUE 00006740112 CONTINUE 00006750

C 00006760C WRITE SPECIFIED RECORDS 00006770C 00006780C IF(I.LT.30) THEN 00006790

IF(I.UE.IRECI.AND.I.LE.IREC2) THEN 00006800WRITE(6,1005) I,YEAR,DAY,NOBS,ISS,MHZ,CAL,IGEO 00006810

1005 FORMAT(1X,I4,2X,I4,2X,I3,2X,I4,2X,I3,2X,F5.1,2X,F5.1,2X,I4/) 00006820IF(NOBS.EQ.0) WRITE(6,1006) (IOPLAG(J6),J6=1,7) 00006830

1006 FORMAT(48X,F5.1,2X,F8.0,2X,F5.0,2X,F5.0,2X,F5.0,2X,F6.1, 000068401 2X,F5.1) 00006850

IF(NOBS.GT .0) THEN 00006860DO 105 J7=1,NOBS 00006870WRITE(6,1006) (PLAGE(J7,J8),J8=1,7) 00006880

105 CONTINUE 00006890END IF 00006900

END IF 00006910100 CONTINUE 00006920

WRITE(6,3001) 000069303001 FORMAT(//' END OF FILE 4 PROCESSING'//) 00006940

RETURN 00006950END 00006960

J0J

t^W

^ x

^n rc

0 0K LK HO

aOW Z

LL

O

z

u

6

W

LL

0

W

4aO

4ON

H qA t5

OC LO }F- JN G

M

^iO

4 ^f

2N NNNN Nr.1NnNNNNNNN NN ZN NNNNN.•INNNNNNNNN

n n.•I V ••Ib OgHVgNOV00 MO4N NPgV N

LM n0 OOPVNnN •" O •I NNbNggPb•OgMn O^M^PbObO.nM .•1

N r•I r•Ib.•I nH

M MnVMgOnMgVOPPPV M•"ILH VM PPPMr-Ib N nnn^O OpI I .r .•Ib NtltlPbb q ..n I O

tir-1•-I P b Nrb•. r•I b " M"

N n ObPHPPgHbn""Oq4_H .NNPVM 110 NNb•0onmatlngnnH HMPbOb OryH1-I"n N11"b1-1

q NNVNrnPVMPVVPbnoLH VV Or4PMNbN^Nb^O

I I NNbNggPbbq•-InMMMPVObObn1-1 '1 r4 NI-I pl 11

O n1-IOVNONNbNNMObn NNO VgOP•••IO MNbMPtlOM N n"O nPOObOPMVV.I N.InN qNNO tlNONMOnMMbPVN00 MnO nNOnMOVOM•-IO VNNM NNN N •N •o ooN

} O •YOOOPO • 000 • OOO P O 0000O P6' P00 IOLL"011 Otl0000000^M000gb0V•"IeMx OnNOOOOO gNNV""Vn On6'O MNVOVVP NN 1 g 1 N •W"C o OP OO b• ••IN V• ••I • •MO OeiLL0''Y N .M NnnNbb q . n .n^J^ H VI I V•-IN " r•I rMiP b N••b1 . alb " 101-1uLL21F. 1 U

xw¢ p ZS^1 W1q U¢pSK 64 Kp uu n

xW NN "K 00 C

lyl• TSuU p .10/1pp WWWW pw 0•WWWWWWWWWJ WFWW<44 JJJJJJ U pp11 WW444444¢¢¢UK ggU000N .Ww0000o-1W NNNNM0

NNN NH£ O 1••Iw F-Y1-1-Yf Yf F-o WONO x"

K0000000002 JW2 YY •Z22xZZxT.2 OYw zn4w11

6K L Wr-IW OWWKI'1'OC 0.'1'1'1'KC p 6'W_OW wYNJ xl-1-.....'1'61'1'" Nu'

2 4W4 U1-I M"MM"UOxu£K M 01. 1. 4 n Or•IrvnVNbngP^"4

• . . . . . . . • . . .NLLN0Y0.00 UuuuuuuUUUu£Ou

O NNOgIpOnMVMMtlnN"O PVOPbeNNNVPPbPVO nNOVr•IO tl111NO b10 •"INnNO bNOVgP g lllbbb NNNN O NaONVOV^bVgN.N'INh

F•O •r-I"OOPM •MOO" O P O 0000q PK P00 1OLL.n0Z OnN00000^NNNN-WW.Z.O M g bO ggP •V q•-InWI-IS PNONnbnN • • • •N I-1q l- o O MNgONnbq nL4 M MN Nr4^^PPObO"M2J' N 1 1 NNM N Pb N•-1•-I Ip •-1n LL

ZxwLw 00u WE40 JJL 440O UUxW NNK 0H

ziL N UU ppOp000pppWWWWWWWWWWJ4 OOJJJJJJJJJ4FII WW4¢¢4uuuuuOW OO

oNNNNNNNNN

NL O M"FM1FF1^1-•F•F•O00 S" 0000000002Y K FI- •22z222Zx2W K•y06W61i41' L WIS-1^O^W 1'KKYKCI'K K

_WO z T NJ2HF • 1'1'p'CC.....

W LLaW4 U"M"M""""1-IUS6 F- OKK¢M0.-NMV N.ongao

tl QWN }JJL . .^.

OT 0000uuuuuuuuuuuu

i1

^. v %allor ♦

l

k

+ nn zw avnvuovuvvvvav p Vv z zo 000000000000000 0o zM MI'lnnno1 ^1 ti,•, M,4 ,4 M,4 M•4 H•M ti,-I nl M••1 n•1 0,4.4

r40 N gOVNhONVgbNNNPb No M hppgMObNhpOHMOb n0 h hNOhN0• M QNLn

P.-IpqooPNNbN •oP

q KqLM MNbn •o n PN .; T. tiI NNPN pgPNb g hh L MO OnP PIJbN ••••I1 NNPVggPNNhNh Ob L'H HO NnPI NNP,•I dnnPb O •pOOn ^ Pnn P •pObOOM ••1 Phn P•+.+ Nnn b.rI hn Pr•I •-I N.IXbX1 1

3 1 P

NN N NPVnbPgMMMtiPn V•4 Nrl p nMVPHOPMgOP•p M• •Ib n0 r nnpng0. P VI .q PMh .n M h .P hPP •b tlOto SH pn OOPnrI•pN nlII NNPNggPnNqOh OIX L Ln ap P O Ph ••I NN O11 XNPVggPVpbPh OIP LH Op OOP11 NNPh PnH P•O O •pObM h PnnPNObONM h P^ PeI •M Nnn •4 M PX•-I N•-1 •-I X M PI .1 I •-I 1

pN O pP0000•GNPOMI .1000 hV O OOONNOOPgOnnhNq qq O gOMpOAn O hn000o nNN• •I g NnnN Nb O qV 0•p XOOnhNVMNh p p P O MIhOPhPVb NO Nn ONNOOOMNbn gbb q0 N NO NgOhP00000htlhgh ON NO OpOnpOA O WIUO... N NN. •I.M=9 •-IN O OMONNOboM••1 •-IN PON Nn o 'NHOggon0 N1•• O •v •0ooN••-IO OOPO •OOO 00 N

F•NH O N •p •X r •1.-IM•X OOOPO •000 • 00 NH O N-.=camMq O P O 0000P Mq p O P O 0000

PMO

O PPK P OL G' P POo I 000 O", 1 c o0 ILLX LLX LL

qLLXNOb OII O gN00000oNNNOOhNOhnOtl OII O Ogw00000ophOObNpONN O•p O• ==9NNoOV 2 OhNONONN •O pNNgNhOn eM 2 o OhOOP00N •1.=Pr• IOt) W• NN•

Or•1 2 ••IhNbnaPnNOr •1 OCO N

WXL •.ONO N1.P •bpgOnb •Or-I Orn •p PNX • •I. rl

O •Oi-I K OWML KOWML N• MOPU'SpP -IP MN •••IMOpPPgn • •On

O ••• I r•I

wo bWNL •

HPnObbPPpOtlHP• I. p} H .O • .PN g bNNb q . 1. .h OI-• tlh p .O .P pg bNN p 1. .I. .P OI-• O .6 • .P

HHX LQ Nn p•-I • OOPMM p PObOOMI I p NN I XXPbNXX V•-I On•-I Y=^

L4_«

Y.MVO .00PMM p PObOOM1 1 VNN I •-In P•O N.•I.yO••I

OIMr•I

P M 4 1 •H NP

1 I p NN 1=^

U zX U zX zX U =I+t z 1- o

XwU

X P

4Xw

UX(

U LIp-I Op S. E,-I pa YX 00qp WW N S 11 WW .^r(

LK W•W^LK 4C K CK W SK 4K K tQK O UU w O N O UU w O f1..11UM U NN U 00 U NN M U MNK XK }1- OC XK XLL• 1-1- OC MK F-F•Q L 00 4 L M L 00 Q L 00J II .T.S J M M SS J 0

z

L M UU 0 •0 Lp H LN UU O • 0 Lb VUO poomp=Pnow O gOOOgpqOpW O OWMp LL II

•WWWWWWWWWJWWQQQQQQQQQ

WI­onLL Ia1•

KLL 21.1•

66wwwwwwwww ­0

ggUUUUUUUU^N

WI­ `s W

XNzWKW OOVVUUUUUUU.000.00000 LWXN LUUU'!X W 4 fJ W _ __0000.0NNN 2WXN Od'{{YYnXqqU_ __NN q z zz X wo 1- 0p I- zq'

WW NO SX XXOOOOOOOOOZ WW 0JW NO X

Y X

0000000002X..

0. O SyH MpSM,0

OQK zKIpp^1

W wWOWWKK pZ(KKCKKK^F Q qzK Iz-I Qzow C W=WU^ K^QW tK n=WO5WK6O L= 6. 6. 6• K1, .K WO N 1110 7 W KKKK K CKYNJZh K6. 0C 6'0f CLX N. WO Z

`J }NJZ1-F•oC0wzX0 zU z }NJZXF• K«d'6• KQWQ X XXXXXX X.0 LU N LU z QWQ X XXXXX 9X0 $W z XLL4WtW LL U UOXU W X IIW LL U VOXU OOC pC nOXMXU4 LY. H OLL'1'QMWnNH p Nbh g PDXK LC L LK OOC O[Q H^XNM p nbh gP^Xt LK I-XqK}J^Ow . 04}JJS • _ •'' NLLN OQ1•W000Q

}^.Q.I^ ._ •N]' S•XLLOwo 1 OOKLLO p'W QOO 6.'C ^^O 0} 0 U0NOD UUUUUUUUUULOU 0 }QNNODUV

x;

i

!y.

r^

iy

r

HHMMHMMHH HH LM MHHMHOMMMHMMHHM MN 2N NNNNNONNNNNNNNN NN zN NNNNNr•I n1rYN n1 /1••INN NM N nlN r4 3 1•M MN..IN N••INNN i1N •4 NMNNN

HdNgpdNOb HO O bNdhNOPMhNNNboO VO ••^ nNVVPONhNNnHNeH MO q nNVNnNnPOg N•ON ••-1 NO N^d •aNVnMO NM a•ON ••1 N NZV NVquoOPVNNN •r-1MO NO •jMLV HO Oo

dnnPH d•OPn VINI NNPVngPVVbHn O H II NNav pgPdHHOn M I NNHMPbObOPM ^ PMMPbObOPM .•1 PMHPbObOPrO r4C. nIN N••INH••1 n PNN N••INHN M P.•1'I N••IN H-r MM r4 M

►.H Hggpg b q Mo q MHVdPObNOnOdOHH HN M nNUUPONnNNnVIN VM MN M NddnlbNNVHSIN M•-1 Ofl^Td d•OPn

•qOIOPLM

. . . . NV g O •dd OOPHNNn •O11 NNPVgpPdMMPn•HO10

•-IL•t • • NVgO •HO OOPdr••HN •r•1II NNPd gOPdMHPn•MO N MNYd dM pq11 .•INM ^PbObOH^ n PHMP•OObOMM n PHMPVOb 01l1M nn N•MN M PNN NNN N ^ PNN NNr•I r-I M

'^ pNNMgNHOd Md O On 0•^IO ONbPVbPHVM Hn O 000000000000000 00 O HMOnVNhOOndOHq dP O HMOgNONrIV nNnOHO VH O OOOOOOOpO000O00000000000000000 00Oo O MH O/4MNHONP}' Y1N N H•p anN qIt, o- bnN 0hNM OHo vOObNOr•Ia HPNHHOHHnOMMOOMOnMnHNq H qn OHO 000000000000000 00 H0 ONOMd6;l hNNNN.^OH NN o r4H0ggaOP Nr •INNNnn NN o a000o0000000000 00 O ^VObbM. •-IN q . N •n •NN• N • H O .o .0no0 HO •000 00 h• O •M OOO Pr-I •000 00 1^ P •P PPPPP • PPP PP f O •0000d!

O 0000 1^10 O P O 0000P M0 PP PPPPPPPPP PPPPPPPPPPPPPPaPPPPPP PPPP N0 O0 000I 0P R• PI PPPPPPPPPPPPPPPPIIIIIIPIIIPPPP PP11 6•00e O I I 1 1 1 1 O

y PgHHPNnM n •O r •I q Y.NOx O q •ObaONHOPnPr •IOV g H V f•VH LL r4OII Ogn00000000000O000gON LL i-IOx OggnPO2N'f^

hnNpP NOnOnMbP H0N SQ(O OOnNdbOM qM g nONMP•b bbMn gONN•M PM n r'I V ^N 20.'O OOI• N00000 •NnOOnNNOHMO O OOOP NNNdgd ONOHN2MO OOnNNoM"N=NV!r-1 • . r.pNdgHNddb n ON•n WMLOH •d PnOONPdN.O • • •NM.PdgHr•IdHV . n ON•n WM$OH •r4 nNOVPPdN • • •O rl.O PdgHNVMH . n .n WI••IYp H H C O

I';" HM g POb O PMI•I rIP bN Mr •IHn OHN Y6 Od HO • .4 •- I PMM g PO .00PMI 1 dNN I r-IP bN'I r'IM'I OMr^ YQ'JU NV HO . 00PMHgPOVOPMI 1 dNN 1 r-I • ••IP VNMN H•-1 OM Y6 MV MO rP0I 1 dr4 NO_UY ZLL

'J_ULLu 2N u 2M u xu•IO

N^ O

NO•+

MxQ^

OW U xN U MWW WQWQ

K O U^ G O UU w 0 UUN UA NH M uZW Hn M U2W HHO' Of fH C NOC KK L 00 ( L 0000 <K L 0000JO

x 2Z JO

n 2Z JO

IIFIP

22OO

WWWWWWWW^ WI-_Mh

uuWWWWWW WWWW WH_Mq Uu Oggq000qW p0 Y UU

•W W WWWWWWJ WI-tt000^UUUU. SW

`C(y6• qggUUUUUUUUUH

an

zW 9K qW

E000,Uuou,uo 2W OCo

WW

MH MU 000000000 MH MW HHHHNH00 .0 MWI- 0Sn S z2 H 0p z z'L H 00 S 2200000000z JW OF SM NNOOOOOOOOOS JW 0O SM NNOOOOOOOOOx JW 0"J' SM NNz2x2ZZZ2 ^OF z W zZ2zZx22a.2 y °z f^.t 2 w zzzxzZZZZ 011- 2 KII1 ^4WO.LUUK

KZK M;4^WWL1W • YoC^aWLL==6qWKKKOLYOC OL OC I,b OC OC OCMwww.G 09 90 >NJ2F KKKKZKKKKwgow ^O ►N ZFFKK^KKKKKO2•.M 0 0K WO YNJ2S^MMMMMMMM SMO YU S QWQ MMFIM NMMMM SHO YU x 4WQ MMMMN MI•IMM 2MO LU Z 4WQU01tU W!w W U UOXU .,w w U uoxu xW w UNHf H•On g PON4

NLLO•NH OKOL 44FF M^NNHVHbhnPONQN0K2`T^JS

LK HMK OKKQ HONNMdHbhp P0N6QQE N N0 • zw 1-MOK.' oxw4H0QQE' NS xSSxSSN wo K

r60O4SSSSSSSSSSSSMLLO OCW60016'S5UUUUUUULOU OYg00O(WKOOQSSSSSSSSS52000UUUUUUUUUUYOUSMLL0 OT000000UUUUUUUUUULOU OYg00000

p/'• /' l^' A A 1

—/ I

.. .. .. V .. V V V .. V V V V ., r v r J J J J

4

u

w v KSp8UOI^W

N NOrM.Ii pLL8Y1N

O ° INi IO 0^ d

^4W0o„ N•-1 vAN

I N W ZO r•I r'^•r1'I M r4 rVM •• I • •• I Zd dddd VOd........ dd III P

^ILJ

••1 ••I n•I.•I M.•1.4 r•1.4 nlrM ••1 M•^I •Y ••M n•I •••I r•IJ ••I pI mI .. S IOLii

IOL•I4LJf N MYN111••• O M N Q

OP'Oa O.+.••tlOV HO N •OMVMgOVbp•^InMpOa VO OQ f q O R O•p PJVPNNhM .^Pd gp PMNNNI^

••I°d

NV .YIM •p.yMO NNPONVN NI NNPVggPMNdMh

M°P

P.T.ilUl

P •M•I •M•I PbN••IM Mn bNMnNMPn•M-IPI

hM I 1

M

woNLO Y ^ P NI!;wO pnNN

NMhM^ ^hMbVr4hOVMgVdM^^° Mo MF M ^ SM M

PPnVti •O O IyMLV VO OOPh• ••I M• •n •rn O N N-1-PM pg PMNV gh l0 I 1 NNPMpg PNr •lM nt• Ir^l Si'11.1P MMPpObONH

Pro.-1 Nr•IM MhM

PMMPbO.pONMP.1 ^-• N'1M M

hMI w I n O

1i-RN A ^SN J-

o M1MNN g apbN NN o l•IpOVNO.IPabvNVNM b•-1 NWIO NlYd1 SWw n°oo wWt"VN W..I^NNg PMNM1^ NHON OO bnOpNOVNVMNpI^MtiMOOONOVI^VMNVbNO MVMrn JW M OLNNO p MI^OVMNbNOOgP Vr •Ip VI`V MVN NOO M b ONMOOb q N p O PI`PNNO1, 00 NNN V•-IpM NbNNS1r-1U

• M •w.•ON N N • •M •M M•-lNPti '000 . 00 H O •OpOOPM • 000 . 00P O 0000 M O a O 0000

^ IP 00 P 040N OC P M V O{O h OJ= M^ ^O OJOpr1pNVNbVPPMO

• h•pMNNVN •0 0 I. •- IOIIZ O pPp 06r10NbVP•-I rIhOVOVNOhN290= • N PbNNpOOMnr^M N'J MN1.MpX t ••IIPP O I1rr •1 M NNSP •OgVMPM N NO N MNOOPNP •Nb P I^NV n 14POr-1 • •VMPdpMMMNd 'nP^M pPOdO pM

On•hOH al-L6 NVWilli.Pr40NOPq'1 • On•O •P M pVMNMd • nMO • r •1NPMM gPOpOpM

O'1•nO^SMZ

M1••Si I1.1 ir•1SU FIh

1 •••IP bNnI-IN rI ry d I I VNN I • •• I l•• l P •Lf Nr •l r •lN ry=LL OpWU mo

q'

^IVMr'l

xo^Zu ^U

{-W^YI I NOCYM

G^H Pi.. Rf

UO°

Z 1 00

.T

U

Naa

"~ GNo IOLO UU K <N Y OG H 4 U

KU

w 1Ziw YI- of 0 w b° U KQ L 00 4 S< KZ C K1 .

IMJ IIw0 SZ JO (7 M J O7 p C MW N^w IYNtO •NO L.• Uu O

WWWWWWWWWJN

WHZM NN ON N1- H h ° P

q10Y

WWWWWWWWw^ WF •¢q INII u p

WNtht N•^•

U^CQIU UtQi 1Q,lUUVUi SW OK mmuu UUUI{IUUIQIN SW O L LLW W Yi Fii" CfN00000000 MN W W00000000 MN w J O1 .• I-• M 1^I^F•1^1-•1^0 W NE O MM1^1^M M1^1^1^1^1- • S W0 6 O H NN N1I'00000.0000 JW '1' 14 O_O_ 00_DO_O_00_Z JW N w N NSZZZZZZZZ YZU

Nm_ pp(W Z SU N WNp(

=i,,OON K O MpQQWQ[OQWS

LL L •Y W M

0NNNKK w w=.00wKNNNNNNNNM NN

qqWO F1- KKKKKKKK KIN-1°Ow LL J IIW ^G =IrNI N WN I^ib 00MM MI.IM MNFIN ZMO LU Z RWQ MMIYMMMMMM ZMO M `j Z M N Y

l•INMVNbI^pa OI •IQUOXU OeL m H LL U UOKU.4'L' MOl ••INMVNbI.pP°I-lQ Oa LL MLL WN 1 ZiNLL1t

ULOU OYONNpuuuuuuuuuuUULOU W 0

- - - - - - - - - - - - - -

II p 6'•-•V OC 1 n O[H •p O[ I h OCM P 6' O 6'HP K V (YIN KS KS HlN KS H o KS H H KI • OUH

HI1 OUn OUO • OUH •

`^`p!

1 b U n b 1 n U n V 1 p U h •O n U n b OOI N 1-MNOH OS I N 1-•M Oi 1 N FMN0H OS I N HQ M0 12 NO ltUW ul UW uI UW

OU1 UW01

N N N N

I IN-IW 0.'I NW K1 NW KI wW 0y01 K IN-IY0YI10 V

010 0y0^IK•11 w 4

IN q W 0 LWH H IN qWN LW"• •K•IIN 6WN =NHYl 4WHY1HIll nN I P LL J N I P LL J N I P LL J N P N•I Pb LL JWO b LLO b LLU' b LLO b J.

1 OZ SI 0= SI OZ SI ZO 4 S Ol

U I 4 U l 4 ul U

I O 4W KI O qW KI u ¢W 0.I O W M0I P YN •p^0 Y. I M HYN LJb WM 1-: f.N TJN4.•O ^N `^YY U'

?H NIIV NqNO Q= H I . N4NO L04= H VVIPN4NO Q= P N6N0 dZ b N

I p 04 IPVI 0¢ _ 04 VIP = 04 VIP __ _

I P UIP UIP uI ulI I 1

^^ ^ p£I ^^ I ££^ I ^LL' %uI V W 6' O 6' W11 P W WHN V OC OHSO 6'1' 11 P W W1-NO 6' O1-30 R' 1I P W WMNO 6' O♦-SO M I p hNb 1-20 M1' M M1 5-..-^ N H SAM N « I 2vM N I ivV N H 2IP Hw MH IP Hul ZH IP

SL H6 MIp S£ HQ M p SIPP >LOH q1-MIPP 7LOH

H1-H

MIPP OH H M OH H M Oll

NI- N ul I NH N uIl NH N uiH NH N u^H N

I £H = 1 £H Z 0 1 KC o I CWE 0 ME 0 I WEmi

1 IN SiN Jq>>~ HI P V J4 Hlb M J4v HI N /1 JKN .I. SIuV1 ^W NW11 Nlv SWH

>NW Il NlV SWM Niu NlN SWN NP,I NIN SM O£ J M OL J M OL J M OL JW M O

W N1- W ul H N1-W ul H N1-

N1 iH NF uiH1 I

u l H^

K^ PI K^ K^ K1S-1 ^1 Kh KI KI Kf KH KI ti^, I P 1 V 04OP d• I P 1 h 06OP 6' I P .1. OQ"J' N„ I P M I p OQ^JN•CJ£ LL' 1 PH1IP I H OJ£NO HMH 1IP ulI G OJLNORM H I •

UI O

• NOHOJL V H ^P I MUI NOHV P U

Ib UO Iih II NNI HIP -IN II NNIIP

•'• P oln IINNI P Oln II NNI H P MM H M 2 4 P H M Z Q P H M 2 4 H M Z 4 Pi I I1 H 1 H O i 1 I I •-1 O =It 1 1 H O 1=1 1 1 M O

ui `i ui 1-ul ui "i ui a uI u

CI I ww I 0 I K I LL0Q6Q' 0 I K 0 KI1I H KK I V HOK

^yWN0IG I N

Kw 1

1HI^ OKWN O I P w n w NV 1Z.0 ^M O I H

I.-I HIM h 2Y i L1Z ¢Y 3NI O I N I II+Q NW4YM IH W¢YMOO IHUIN P1H OO VIN P1H m0 1U N PIN PIH O0H UOIN P H H SIV H SIV

HIr I SIV HI IV HI O HII UI 0

HIU

Y 1 U I O UI 0 1 UII 1e l I K it I m ul 0 u1 0 ulO u

1 KI KK ul KI w ul J w u1 K 1 0°K ui K2

WI O W1^ PW n IKi1 OW h W IC HD IN HIP nW n HIV p111 n Hln P MY OIHc 10 1 Y 01H I Y 01M I Y O H p p4 IN .10 MIN p lo MIN mi.O MIN c MINa SI ul^ SI u1H SI u1H 11 1 uI W. II n 1 II u I 1 uI1 1 W ul 1 W u IK Wm m O

1 L £ £ ! uK1 ZMK LL mI =H0.' LL Kt 2Hy LL K1 =HK LL K

00 WP 00H Kl p HWO OOM KIH HW OOV KIM HWNOmmM OQV KV10 MNO ly1VIp MmON NO Hl p OmmM NO HIN OmmM NO Hl p KK£M m NWN nIKKLM OWN i KKLM OWN 1 KK£M OWNN N IhIV 000 N N nN V 000 N N RIV 000 N N'el NIN 007U= J M V U Z J HMI VSIH U ZW J MI VSIH u=W J 1 VSIH W 1 SIH WK I SuU K u I K u l K u ll

VIP _7

UOHv

t^S.rF1..HPHLLWN

OWPOWJOZ 24! oNNONNNNOONOOgNNONN OOONOONNONNNOONONO ONONOON00 No4 ^ HHNNHHHHNMNMNHHNHNN MNMHHNHHMN Nr-^r-^H HNNH NNMNHrrNMM MH

FI

4 0000009000000000000 999OO0000000000000 000000000 00YN 40C1 OooOO O •^0009900G0090 O00090eeoogo900000 oOpo00eo0 004 ^pO9090009pp9900gOq 9oopo99gg900009900 o9poo99ao P9O NNbbNHHHHbbVgMNNnP MngH NVbM WI.NHMNNnNn b. ONNr.IH HM HHH HN WI.. M H,,H. mH H

Z0 .rrrr,,rrr rrrrrrr,rrrr r,J M wHV h NNnVnbP g VbbMMn VHHVNNgbgVMV9VbMPh VNPVPHbHV No 1U ryNMMPOOMVV V VNVbnMMMMMNMMMM M NN NNN MhbNVHH v VMO9wHNNNNNNNNN M MMMMNMMM MVV VNVVMMM" NNNNN MbNN

WN 1NbV 0 ..... ...r .........HnPNN..IONNN.1nbNVVHHN ....... ... .. .O hhOgH^TNVOPObONPNM.......

NPnOnOVhO MqI

W N HM U.N.VNV g PgoHn wNHHPnnbVb MH N=NN N HMN rO NbW-Iw H M,Sy M M NNMMN NNNNNNN MMM NMN MM eH rH

M nPHgbVnHnoMVNMVbHhF hnN V .ONVNVNnHnVb gHP W,,W"W bNN hNZ 6 NMHH HMNMHN NN N NMHNHN NHNMHHNNNNHMNMHHHM HHNNNNHNN NNZ

r'. J 1 I I I I I I I I 1 1 1 1 1 1 1 1 I I I 1 1 1 I I^

So PZn bMNVNHgnHMnHONhPgMO OMgnPMNOHFHngHNHNM VHHhHMPgO OqW WO bNbNV.uNNnVVNbV.p .p bVln hbbbbnnbNV n oo.wN.N NhNVNnVbh nbM OW4K b.pb b .Y.Ob bbb b.O.GbVb V.GVNNNNNNNNNNNNNNNNNNN rpb b.p rD.ObbVbb b.p brO V.p bNNNNNN NNNNNNNVIN N NN bb brObb.0 b.ONNMNNN bb%oH HHHHHHHHHHHHHHHHHHH HHHHHHHHHHHHHHHHHH HHHHHH HH •a=

0000009 gO000000 p 000 00000000OOpppO000O 000000000 00I V oU MOwgNPNVPNNNNnPVNMN NMNPVNNNNNPVNPNgPO WPWINNNVNN NNIH nbNNgngNVOMQMPHNHOM MOHHN.tVMwMKNgnpNNb NJVM V.TNHM HHIF 4 HHHHHHHHHHHHH NNNNN NNNN NNN HHH HHHHHHHH HHHHHNNNN NN

M vl C% b .e N M1 H LLI o0 H1 K 04WO

64F• U YJ^ q H o hN HJ N P O

1 N IN-li 4 H H (.11 NH

J?•^b C M1'%60 h H V P I.K 6T OLL N

1 F ^F,n N H NH NH NH1 O U J4M Z n N M N

M n P P pINV ON

0 NOCW NI H M ^y''1JH

WNLL w'M q) H N H111'1 IN-. ZI LL

YIOl Q q M M NM rN1

1 P W V OC1J1 .4.I QS,CI LL W

Jy O W n n n n

11b. I LL H M Y1 O Y1 H N H V0Z W H pO

w o0 0

P

1I '

I I k

A,

OOO9NON90N9NN990N.^..rr.rrrrN.rMNnnIN HMNMNMNNr...

99oee9e9oppo0o000.................999000099999GG9999ooeppe0009990000Nr-•q OhN V bb1.N 01.gNMN

.1 r1 .4 rr r1 Mol

MtlMVP Vrr PI.MNNbNNOMNNNNN.P. NIV'IH.V'1 3MI IN.I 3MI N MN

rI.O ti NN .:9 NntiOVOMgnNHNHa ngrvVbNNVNn.-.NMMMMNNN

r4 M..MN NnINNnMn V ntiNM

11 I 111 1

M.O PI. NI. H......I. V HNNgnbhbbl. l.1.N NI.NNNV VNbbbbbbbbbbb b.Obbbbbr4 rY rY r-1 rY rY .. ti r4.4 nl M.... M M nl

a9oeo9eo99990ppG9HVVPNMNNNPVgOPNNPO..

NNN NNN VVVNNVNgtlI.NNnnnnnnnnn..NN

OO

Pn

n

P

vNM

qA

N

NNON00000MNMNI•I.MMM

999099999

000000090I.ObV gr.gMqrM r4 n. M r/ nIM

bN P.-IN g9vvMNMVrI N NNNMMNNNNNN

VON PrrbgOl.VNNgNMM PI.NMMMN

eOvin •o olV r.iV.. N....M NN.-I1 1111

MVnMPVgOhNM NI. •p N,p l.hbbbNb N•OVb

099999000OtlNNVVNNM... NNNNNN

bN

OO

b

b

NNM

0n

b

Noo90ufNH M.rHM

9909990000.0GGGpppVMgMghN.. MM

vv9.nu.P. M•u111VNNNNNM

p q •p.-i VNPHMNVMNHMM

NNNnnbv11111

hOgbPHI.I.VhbNV,O.Obbb

099090VINNVVGNNNNN.b.

NN

OO

ri

Ar

V

bNM

pA

n

NOON N000 O OONOONOONNONOONNMMO N -•MMM M MMn1 N r.NNMNNNN..M M.+

0000 0009 9 9999999090900909...0 0990 . .0ee.........9..OOOO 0000 O 0000000900060000hgHV M.M..tl..q. M OOphVpNOPbgON tln.P

1-. r. .+N w r.N N N N w

bMVV oVMM V VNN.IM 1 I rrNNV I IY I I I I

3NINN .P.I NNN N NNNNNN N.b..Ni rP..b..N. .M9.M.H w-I

Vti9.. BONN 9 r.NP.9VgNPnNONMONV NPN bNNM P MVVNf..... N O NN NNN"N

MNM NMM N MMMNNNNNN

N N I WINIIN,InriI N-I.b9NV ; NN .' N ; H N N ; MNr. r-INr-IN Nn... n.....N

MPOh POPP O OPI.gMMNPOhpNMOr.VN bl. 1. hl. b•0 1. f.bbbbhl.h gl.l.ptlPtltlbVbb bVbb Ip b•p •pbbbbVbbbbVbb•p

HM^ti MM...4 M ....M MM M.'1N r4 rY Nn1.4 nIM..

0009 0999 9 9909090990000900OVNM NNVV N NVPNMNNNNMM9abPb..NNN NNNN N NNNNNN NNNNNNMMNN

N q oN .. •O

O o NO O NN

P N rN N N

N r NYI V q

v .. br-1

h tl aN N NM M H

q p qA 1. M

p a OH

S^

11

i^

L(

ti

u

!:IZMNHW00rc6vw..I4

LL0

O2W

sA