GBM59 52263 - the UWA Profiles and Research Repository

108
GBM59 52263 M3

Transcript of GBM59 52263 - the UWA Profiles and Research Repository

GBM59

52263

M3

GBM59

52263

M3

52263

5

4

1

23

GBM59

1

2 3

4

5

67

8

9

10

OR9OR3-1

OR3-2

M5

M5

OR9

OR3-1

OR3-2

OR3-1

9

8

7

6

5

4

3

21

OR3-2

1

2

3

4

OR9

1

2

3

4

5

6

7

OR15

OR25

OR20

OR11

M6

OR15

OR25

OR20

OR11

M6

OR11

5

4

2

1 7

6

3

OR15

1

2

3

4

5

67

8

9

10

11

12

13

14

15

OR20

1

2

3

4

5

OR25

1

2

3

4

5

6

7

8

9

11

10

OR5-1

OR5-2

OR4

OR7

M7

483A483C

490C

490B 490A

M8

483A

483C

490C

490B

490A

M8

483A

1

2

34

5

6

7

8

9

10

483C

1

2

3

4

5

67

8

910

490A

3

1

2

4

5

490B

3

2

1

45

490C

5

4

32

1

6

7

MC-5 MC-23

109752109740

109744

M9

MC-5 MC-23

109752109740

109744

M9

109740

1

2

3

4

5

6

7

8

9 10

109744

3

8

4

5

26

71

109752

1

2

3

45

6

7

8

9

10

1112

13

MC-5

1

2

3

4

56

7

8

9

10

11

12

13

14

16

15

17

20

19

18

MC-23

4

3

5

1

2

12

11

10

9

9

13

UP-23

UP-25AUP-76

UP-32

UP-26AM10

UP-23

UP-25A

UP-76

UP-32

UP-26A

M10

UP26A

1

2

3

4

5

6

7

UP23

1

2

3

4

5

6

7

UP76

2

13

4

5

6

7

8

9

10

11

1213

14

15

16

UP25A

1

2

3

4

5

6

UP32

4

1

2

3

UP-63

UP-24

UP-35

UP-58

M11

UP-63

UP-24

UP-35

UP-58

M11

UP35

1A

2A1

2

3A

3

4

5

UP58

7

8

6

9

4

3

1

2

10

11

15

14

1213

UP24

1

2

35

4

6

UP63

4

3

1

2

UP74

UP74(1)

UP75

M13

UP74

UP74(1)UP75

M13

UP74

1

2

3

4

5

UP75

1

23

4

56

9

8

10

7

UP74 UP74(1)

1

2

3

4

5

9 6

7

8

10

11

12

13

KL-1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

BLF-6b

1

2

3

4

5

6

7

8

9

10

PAR-7

1

2

4

4

3

5

52239

52285A(1)

52285A(2)

52285A(3)

M14

52239

12

3

45

6

52285A(1)

1

2

3

52285A(1)

3

12

4

52285A(2)

52285A(2)

1

2

3

Locality Host Rock Style Stage Alteration Zone Redox Grade (Au g/t) Sample δ34 2σδ34 δ33 2σδ33 δ36 2σδ36 Δ33S 2σΔ33S Δ36S 2σΔ36SSuper Pit GMD Fimiston SI Py‐Hem 0.1 M14_52285A(2)_1 ‐2.23 0.13 ‐1.11 0.17 0.04 0.18Super Pit GMD Fimiston SI Py‐Hem 0.1 M14_52285A(1)_7 ‐7.41 0.13 ‐3.76 0.16 0.06 0.17Super Pit GMD Fimiston SI Py‐Hem 0 M14_52239_6 22.09 0.14 11.38 0.16 0.06 0.17Super Pit GMD Fimiston SI Py‐Hem 0 M14_52239_3 19.60 0.13 10.11 0.16 0.06 0.17Super Pit GMD Fimiston SI Py‐Hem 0.1 M14_52285A(1)_5 ‐2.07 0.13 ‐0.99 0.16 0.07 0.17Super Pit GMD Fimiston SI Py‐Hem 0.1 M14_52285A(1)_6 ‐1.54 0.13 ‐0.70 0.15 0.09 0.16Super Pit GMD Fimiston SI Py‐Hem 0.1 M14_52285A(1)_1 ‐2.47 0.13 ‐1.15 0.16 0.12 0.17Super Pit GMD Fimiston SI Py‐Hem 0 M14_52239_1 15.11 0.13 7.88 0.15 0.13 0.16Super Pit GMD Fimiston SI Py‐Hem 0.1 M14_52285A(1)_2 1.06 0.13 0.71 0.16 0.17 0.16Super Pit GMD Fimiston SI Py‐Hem 0 M14_52239_5 21.93 0.13 11.41 0.17 0.17 0.18Super Pit GMD Fimiston SI Py‐Hem 0.1 M14_52285A(2)_2 ‐8.91 0.13 ‐4.41 0.17 0.19 0.17Super Pit GMD Fimiston SI Py‐Hem 0.1 M14_52285A(1)_4 ‐7.01 0.13 ‐3.41 0.15 0.20 0.16Super Pit GMD Fimiston SI Py‐Hem 0 M14_52239_4 22.09 0.13 11.52 0.17 0.21 0.18Super Pit GMD Fimiston SI Py‐Hem 0 M14_52239_2 22.21 0.13 11.60 0.16 0.22 0.16Super Pit GMD Fimiston SI Py‐Hem 0.1 M14_52285A(2)_3 ‐4.39 0.13 ‐2.04 0.16 0.22 0.17Super Pit GMD Fimiston SI Py‐Hem 8.8 M1_52166_7 ‐4.59 0.29 ‐2.05 0.17 ‐8.58 0.84 0.31 0.18 0.13 0.81Super Pit GMD Fimiston SI Py‐Hem 8.8 M1_52166_8 ‐4.82 0.29 ‐2.14 0.17 ‐9.25 0.84 0.34 0.18 ‐0.12 0.81Super Pit GMD Fimiston SII Py‐Hem‐Mag PAR7_05 ‐8.39 0.09 ‐4.18 0.10 ‐16.29 0.46 0.15 0.09 ‐0.41 0.45Super Pit GMD Fimiston SII Py‐Hem‐Mag PAR7_02 ‐7.96 0.09 ‐3.95 0.09 ‐15.48 0.45 0.16 0.09 ‐0.41 0.45Super Pit GMD Fimiston SII Py‐Hem‐Mag PAR7_01 ‐5.67 0.09 ‐2.77 0.09 ‐10.98 0.48 0.16 0.09 ‐0.22 0.47Super Pit GMD Fimiston SII Py‐Hem‐Mag PAR7_04 ‐9.22 0.09 ‐4.59 0.10 ‐17.81 0.46 0.17 0.09 ‐0.36 0.45Super Pit GMD Fimiston SII Py‐Hem‐Mag PAR7_03 ‐7.86 0.09 ‐3.88 0.09 ‐15.42 0.45 0.18 0.08 ‐0.54 0.45Super Pit GMD Fimiston SII Py‐Hem 8.8 M1_52166_3 ‐0.27 0.29 0.10 0.17 ‐0.29 0.85 0.24 0.18 0.22 0.83Super Pit GMD Fimiston SII Py‐Hem 8.8 M1_52166_6 ‐4.35 0.29 ‐1.97 0.17 ‐8.28 0.84 0.27 0.18 ‐0.02 0.81Super Pit GMD Fimiston SII Py‐Hem 8.8 M1_52166_1 4.49 0.29 2.62 0.17 8.41 0.87 0.31 0.19 ‐0.15 0.86Super Pit GMD Fimiston SII Py‐Hem 8.8 M1_52166_5 ‐1.32 0.29 ‐0.11 0.17 ‐2.24 0.84 0.56 0.18 0.27 0.82Super Pit GMD Fimiston SII Py‐Hem 8.8 M1_52166_2 0.51 0.29 0.86 0.17 1.01 0.85 0.60 0.18 0.05 0.83Super Pit GMD Fimiston SII Py‐Hem 8.8 M1_52166_4 3.82 0.29 3.12 0.17 6.68 0.85 1.15 0.18 ‐0.60 0.83Super Pit GMD Fimiston SIII Py 6.6 KL1_01 ‐10.06 0.19 ‐5.08 0.14 ‐19.14 0.51 0.12 0.09 ‐0.11 0.39Super Pit GMD Fimiston SIII Py 6.6 KL1_14 ‐7.66 0.18 ‐3.83 0.14 ‐15.33 0.53 0.12 0.09 ‐0.82 0.41Super Pit GMD Fimiston SIII Py 7.19 M1_LV31‐1_5 ‐1.51 0.29 ‐0.65 0.17 ‐2.13 0.86 0.13 0.19 0.73 0.85Super Pit GMD Fimiston SIII Py 6.6 KL1_02 ‐6.15 0.19 ‐3.04 0.14 ‐12.81 0.52 0.13 0.09 ‐1.17 0.40Super Pit GMD Fimiston SIII Py 7.19 M1_LV31‐1_1 ‐10.98 0.29 ‐5.52 0.17 ‐20.56 0.83 0.16 0.18 0.20 0.81Super Pit GMD Fimiston SIII Py 6.6 KL1_13 ‐10.02 0.18 ‐5.01 0.14 ‐20.25 0.51 0.16 0.09 ‐1.31 0.40Super Pit GMD Fimiston SIII Py‐Hem 0.51 M1_LV56‐1_2 ‐9.41 0.28 ‐4.69 0.17 ‐17.32 0.83 0.16 0.18 0.48 0.81Super Pit GMD Fimiston SIII Py 7.19 M1_LV31‐1_3 ‐6.07 0.29 ‐2.97 0.17 ‐11.17 0.84 0.16 0.18 0.33 0.82Super Pit GMD Fimiston SIII Py‐Hem 0.51 M1_LV56‐2_2 ‐5.46 0.28 ‐2.65 0.17 ‐10.09 0.84 0.17 0.18 0.26 0.81Super Pit GMD Fimiston SIII Py 6.6 KL1_10 ‐10.57 0.18 ‐5.29 0.14 ‐20.50 0.51 0.17 0.09 ‐0.51 0.40Super Pit GMD Fimiston SIII Py 6.6 KL1_08 ‐9.77 0.18 ‐4.88 0.14 ‐19.01 0.51 0.17 0.09 ‐0.53 0.39Super Pit GMD Fimiston SIII Py 7.19 M1_LV31‐1_7 ‐9.11 0.29 ‐4.53 0.17 ‐16.69 0.84 0.17 0.19 0.55 0.83Super Pit GMD Fimiston SIII Py 7.19 M1_LV31‐1_6 ‐5.71 0.29 ‐2.78 0.17 ‐10.48 0.86 0.17 0.19 0.35 0.85Super Pit GMD Fimiston SIII Py 6.6 KL1_15 ‐9.95 0.18 ‐4.97 0.14 ‐19.54 0.51 0.17 0.09 ‐0.71 0.40Super Pit GMD Fimiston SIII Py‐Hem 0.51 M1_LV56‐2_3 1.63 0.29 1.01 0.17 3.12 0.87 0.17 0.18 0.02 0.85Super Pit GMD Fimiston SIII Py 7.19 M1_LV31‐1_2 ‐12.60 0.29 ‐6.33 0.17 ‐23.74 0.83 0.18 0.19 0.07 0.81Super Pit GMD Fimiston SIII Py‐Hem 2.3 M1_LSGD001‐2_6 ‐6.08 0.29 ‐2.96 0.17 ‐11.06 0.85 0.18 0.18 0.46 0.83Super Pit GMD Fimiston SIII Py‐Hem 2.3 M1_LSGD001‐2_3 ‐6.05 0.29 ‐2.94 0.17 ‐11.42 0.86 0.18 0.18 0.04 0.84Super Pit GMD Fimiston SIII Py 6.6 KL1_07 ‐6.56 0.19 ‐3.20 0.15 ‐13.03 0.52 0.19 0.09 ‐0.59 0.41Super Pit GMD Fimiston SIII Py‐Hem 0.51 M1_LV56‐1_5 ‐9.36 0.28 ‐4.64 0.17 ‐17.66 0.83 0.19 0.18 0.05 0.81Super Pit GMD Fimiston SIII Py 7.19 M1_LV31‐1_4 ‐10.26 0.29 ‐5.11 0.17 ‐18.71 0.84 0.19 0.19 0.70 0.82Super Pit GMD Fimiston SIII Py 6.6 KL1_09 ‐10.23 0.18 ‐5.09 0.14 ‐19.59 0.54 0.19 0.09 ‐0.24 0.43Super Pit GMD Fimiston SIII Py‐Hem 0.51 M1_LV56‐1_3 ‐9.15 0.28 ‐4.53 0.17 ‐16.74 0.85 0.20 0.18 0.57 0.82Super Pit GMD Fimiston SIII Py‐Hem 0.51 M1_LV56‐1_4 ‐9.66 0.28 ‐4.79 0.17 ‐17.92 0.83 0.20 0.18 0.35 0.81Super Pit GMD Fimiston SIII Py‐Hem 0.51 M1_LV56‐1_7 ‐8.64 0.29 ‐4.26 0.17 ‐16.19 0.84 0.20 0.18 0.16 0.82Super Pit GMD Fimiston SIII Py 6.6 KL1_11 ‐9.10 0.18 ‐4.50 0.14 ‐18.09 0.56 0.20 0.09 ‐0.86 0.45Super Pit GMD Fimiston SIII Py‐Hem 0.51 M1_LV56‐1_8 ‐8.77 0.29 ‐4.32 0.17 ‐16.43 0.84 0.20 0.18 0.17 0.82Super Pit GMD Fimiston SIII Py‐Hem 0.51 M1_LV56‐2_5 ‐9.56 0.30 ‐4.73 0.18 ‐18.67 0.91 0.20 0.20 ‐0.59 0.91Super Pit GMD Fimiston SIII Py‐Hem 0.51 M1_LV56‐1_1 ‐5.20 0.29 ‐2.48 0.17 ‐9.57 0.84 0.21 0.18 0.28 0.82Super Pit GMD Fimiston SIII Py 6.6 KL1_04 ‐10.76 0.18 ‐5.35 0.14 ‐20.53 0.51 0.21 0.09 ‐0.19 0.39Super Pit GMD Fimiston SIII Py‐Hem 2.3 M1_LSGD001‐2_5 ‐5.53 0.29 ‐2.64 0.17 ‐9.99 0.84 0.21 0.18 0.49 0.82Super Pit GMD Fimiston SIII Py 6.6 KL1_03 ‐9.71 0.19 ‐4.80 0.14 ‐18.82 0.51 0.22 0.09 ‐0.45 0.39Super Pit GMD Fimiston SIII Py‐Hem 2.3 M1_LSGD001‐2_2 ‐5.77 0.29 ‐2.76 0.17 ‐10.94 0.86 0.22 0.18 0.00 0.84Super Pit GMD Fimiston SIII Py 6.6 KL1_06 ‐8.50 0.18 ‐4.17 0.14 ‐16.52 0.51 0.22 0.09 ‐0.44 0.40Super Pit GMD Fimiston SIII Py‐Hem 0.51 M1_LV56‐1_6 ‐9.68 0.28 ‐4.78 0.17 ‐18.13 0.84 0.22 0.18 0.19 0.81Super Pit GMD Fimiston SIII Py 6.6 KL1_12 ‐9.96 0.18 ‐4.92 0.14 ‐19.57 0.52 0.22 0.09 ‐0.73 0.41Super Pit GMD Fimiston SIII Py‐Hem 2.3 M1_LSGD001‐2_4 ‐5.56 0.29 ‐2.64 0.17 ‐10.32 0.84 0.23 0.19 0.23 0.82Super Pit GMD Fimiston SIII Py‐Hem 0.51 M1_LV56‐2_4 ‐4.84 0.29 ‐2.26 0.17 ‐8.97 0.85 0.23 0.18 0.20 0.83Super Pit GMD Fimiston SIII Py‐Hem 0.51 M1_LV56‐2_1 ‐9.42 0.28 ‐4.63 0.17 ‐17.31 0.85 0.23 0.18 0.50 0.82Super Pit GMD Fimiston SIII Py 6.6 KL1_05 ‐9.37 0.18 ‐4.59 0.14 ‐18.24 0.52 0.25 0.09 ‐0.52 0.40Super Pit GMD Fimiston SIII Py‐Hem 2.3 M1_LSGD001‐2_1 ‐5.73 0.29 ‐2.69 0.17 ‐10.63 0.86 0.26 0.19 0.23 0.84

Union Club Pit HLS Fimiston SIII Py 305 M11_UP‐35_02 ‐5.55 0.22 ‐2.79 0.13 ‐10.61 0.50 0.08 0.11 ‐0.09 0.51Union Club Pit HLS Fimiston SIII Py 305 M11_UP‐35_04 ‐6.36 0.22 ‐3.18 0.14 ‐12.17 0.50 0.11 0.11 ‐0.12 0.51Union Club Pit HLS Fimiston SIII Py 305 M11_UP‐35_01 ‐6.79 0.22 ‐3.37 0.14 ‐12.93 0.50 0.13 0.11 ‐0.07 0.51Union Club Pit HLS Fimiston SIII Py 305 M11_UP‐35_05 ‐5.77 0.22 ‐2.83 0.14 ‐11.30 0.49 0.15 0.11 ‐0.36 0.50Union Club Pit HLS Fimiston SIII Py 6.21 M10_UP32_2 ‐6.21 0.15 ‐3.05 0.11 ‐12.81 0.76 0.16 0.08 ‐1.04 0.61Union Club Pit HLS Fimiston SIII Py 305 M11_UP‐35_03 ‐6.08 0.22 ‐2.98 0.13 ‐11.65 0.51 0.16 0.11 ‐0.13 0.52Union Club Pit HLS Fimiston SIII Py 6.21 M10_UP32_4 ‐6.38 0.15 ‐3.10 0.11 ‐11.28 0.78 0.19 0.07 0.80 0.63Union Club Pit HLS Fimiston SIII Py 6.21 M10_UP32_1 ‐6.54 0.15 ‐3.18 0.11 ‐12.39 0.79 0.20 0.08 0.01 0.65Union Club Pit HLS Fimiston SIII Py 6.21 M10_UP32_3 ‐6.63 0.15 ‐3.22 0.11 ‐12.72 0.77 0.20 0.08 ‐0.16 0.62Union Club Pit HLS Fimiston SIII Py 1.51 M10_UP26A_4 ‐1.37 0.15 ‐0.47 0.11 ‐2.44 0.78 0.23 0.08 0.16 0.63Union Club Pit HLS Fimiston SIII Py 1.51 M10_UP26A_3 ‐2.69 0.15 ‐1.14 0.11 ‐5.66 0.78 0.25 0.08 ‐0.56 0.63Union Club Pit HLS Fimiston SIII Py 1.51 M10_UP25A_3 ‐4.48 0.16 ‐2.06 0.11 ‐9.66 0.79 0.25 0.09 ‐1.17 0.66Union Club Pit HLS Fimiston SIII Py 1.51 M10_UP26A_7 ‐0.75 0.15 ‐0.14 0.11 ‐1.75 0.78 0.25 0.09 ‐0.32 0.64Union Club Pit HLS Fimiston SIII Py 1.51 M10_UP26A_5 ‐0.58 0.15 ‐0.04 0.11 ‐0.63 0.79 0.26 0.08 0.47 0.65Union Club Pit HLS Fimiston SIII Py 1.51 M10_UP26A_6 ‐0.93 0.15 ‐0.20 0.11 ‐2.32 0.78 0.28 0.08 ‐0.54 0.64Union Club Pit HLS Fimiston SIII Py 1.51 M10_UP25A_1 ‐1.34 0.15 ‐0.38 0.11 ‐3.07 0.79 0.30 0.08 ‐0.53 0.65Union Club Pit HLS Fimiston SIII Py 1.51 M10_UP26A_1 ‐0.97 0.15 ‐0.19 0.11 ‐2.25 0.77 0.31 0.08 ‐0.40 0.62Union Club Pit HLS Fimiston SIII Py 1.51 M10_UP26A_2 ‐0.59 0.15 0.02 0.11 ‐1.10 0.78 0.32 0.08 0.03 0.63Union Club Pit HLS Fimiston SIII Py 1.51 M10_UP25A_2 0.18 0.16 0.56 0.11 ‐0.18 0.79 0.47 0.09 ‐0.52 0.66Union Club Pit HLS Fimiston SIII Py 1.51 M10_UP25A_4 0.43 0.16 0.73 0.11 0.20 0.80 0.51 0.08 ‐0.61 0.66Union Club Pit HLS Fimiston SIII Py 1.51 M10_UP25A_5 0.74 0.15 1.00 0.11 1.06 0.79 0.62 0.08 ‐0.34 0.66Union Club Pit HLS Fimiston SIII Py 1.51 M10_UP25A_6 0.86 0.16 1.08 0.11 1.40 0.80 0.64 0.09 ‐0.23 0.67

Super Pit GMD Fimiston SIV Py‐Hem M3_52263_2 ‐1.48 0.17 ‐0.59 0.09 ‐2.44 0.47 0.18 0.07 0.37 0.40Super Pit GMD Fimiston SIV Py‐Hem M3_52263_3 ‐0.77 0.17 ‐0.22 0.09 ‐1.26 0.49 0.18 0.07 0.22 0.43Super Pit GMD Fimiston SIV Py 5.64 M3_GBM59_5 2.01 0.16 1.28 0.09 3.56 0.49 0.25 0.07 ‐0.26 0.42Super Pit GMD Fimiston SIV Py 5.64 M3_GBM59_10 9.28 0.16 5.10 0.09 17.40 0.50 0.34 0.07 ‐0.29 0.44Super Pit GMD Fimiston SIV Py 5.64 M3_GBM59_9 10.27 0.16 5.62 0.09 19.33 0.47 0.34 0.07 ‐0.27 0.40Super Pit GMD Fimiston SIV Py 5.64 M3_GBM59_1 12.57 0.17 6.81 0.09 23.84 0.49 0.36 0.08 ‐0.18 0.43Super Pit GMD Fimiston SIV Py‐Hem M3_52263_4 4.14 0.17 2.51 0.09 7.72 0.48 0.38 0.08 ‐0.16 0.42Super Pit GMD Fimiston SIV Py‐Hem M3_52263_5 4.74 0.17 2.84 0.09 9.03 0.48 0.39 0.08 0.00 0.42Super Pit GMD Fimiston SIV Py 5.64 M3_GBM59_8 11.53 0.16 6.32 0.09 21.60 0.49 0.40 0.07 ‐0.41 0.42Super Pit GMD Fimiston SIV Py‐Hem M3_52263_1 0.39 0.17 0.68 0.09 0.87 0.47 0.47 0.07 0.12 0.40Super Pit GMD Fimiston SIV Py 5.64 M3_GBM59_4 8.04 0.17 4.61 0.09 14.88 0.48 0.48 0.07 ‐0.44 0.41Super Pit GMD Fimiston SIV Py 5.64 M3_GBM59_3 11.34 0.17 6.31 0.09 20.91 0.48 0.49 0.07 ‐0.75 0.42Super Pit GMD Fimiston SIV Py 5.64 M3_GBM59_6 11.88 0.16 6.60 0.09 22.51 0.47 0.50 0.07 ‐0.18 0.40Super Pit GMD Fimiston SIV Py 5.64 M3_GBM59_2 10.44 0.17 5.91 0.09 19.33 0.48 0.55 0.07 ‐0.60 0.42Super Pit GMD Fimiston SIV Py 5.64 M3_GBM59_7 15.69 0.16 8.87 0.09 29.46 0.47 0.82 0.07 ‐0.56 0.40

Mt Charlotte GMD Mt Charlotte SII Distal Py M8_490C_04 3.12 0.22 1.87 0.16 5.59 0.65 0.26 0.11 ‐0.35 0.56Mt Charlotte GMD Mt Charlotte SII Distal Py M8_490C_05 3.15 0.22 1.93 0.16 5.64 0.65 0.30 0.11 ‐0.37 0.56Mt Charlotte GMD Mt Charlotte SII Distal Py M8_490C_01 3.49 0.23 2.10 0.17 6.52 0.65 0.31 0.12 ‐0.12 0.57Mt Charlotte GMD Mt Charlotte SII Distal Py M8_490C_02 2.97 0.23 1.90 0.16 5.35 0.65 0.37 0.11 ‐0.31 0.56Mt Charlotte GMD Mt Charlotte SII Distal Py M8_490C_06 3.17 0.22 2.01 0.16 5.49 0.64 0.37 0.11 ‐0.55 0.55Mt Charlotte GMD Mt Charlotte SII Distal Py M8_490C_07 3.14 0.22 2.01 0.16 5.48 0.66 0.39 0.11 ‐0.50 0.57Mt Charlotte GMD Mt Charlotte SII Distal Py M8_490C_03 3.47 0.23 2.18 0.16 6.04 0.66 0.40 0.12 ‐0.57 0.57Mt Charlotte GMD Mt Charlotte SII Intermediate Py M8_483C_03 3.97 0.22 2.29 0.16 7.22 0.64 0.24 0.11 ‐0.34 0.54Mt Charlotte GMD Mt Charlotte SII Intermediate Py M8_483C_08 4.32 0.22 2.48 0.16 7.97 0.65 0.26 0.11 ‐0.25 0.55Mt Charlotte GMD Mt Charlotte SII Intermediate Py M8_483C_02 3.80 0.22 2.24 0.16 6.25 0.66 0.28 0.11 ‐0.99 0.57Mt Charlotte GMD Mt Charlotte SII Intermediate Py M8_490B_01 3.23 0.22 1.96 0.16 5.52 0.65 0.30 0.11 ‐0.62 0.56Mt Charlotte GMD Mt Charlotte SII Intermediate Py M8_483C_09 4.56 0.22 2.65 0.16 8.00 0.65 0.30 0.11 ‐0.69 0.55Mt Charlotte GMD Mt Charlotte SII Intermediate Py‐Po M9_109744_4b 2.64 0.13 1.66 0.09 4.75 1.01 0.31 0.07 ‐0.26 0.87Mt Charlotte GMD Mt Charlotte SII Intermediate Py M8_490B_04 3.30 0.22 2.01 0.16 5.79 0.66 0.31 0.11 ‐0.49 0.57Mt Charlotte GMD Mt Charlotte SII Intermediate Py M8_483C_05 3.71 0.22 2.24 0.16 6.38 0.65 0.33 0.11 ‐0.68 0.56Mt Charlotte GMD Mt Charlotte SII Intermediate Py‐Po M9_109744_5b 2.63 0.13 1.68 0.09 5.33 0.99 0.33 0.07 0.33 0.84Mt Charlotte GMD Mt Charlotte SII Intermediate Py‐Po M9_109744_7b 2.55 0.13 1.65 0.09 4.80 0.99 0.33 0.07 ‐0.05 0.85Mt Charlotte GMD Mt Charlotte SII Intermediate Py‐Po M9_109744_3b 2.41 0.13 1.58 0.09 5.32 0.99 0.33 0.07 0.74 0.85Mt Charlotte GMD Mt Charlotte SII Intermediate Py‐Po M9_109744_1b 3.70 0.13 2.24 0.10 6.39 1.00 0.34 0.08 ‐0.65 0.86Mt Charlotte GMD Mt Charlotte SII Intermediate Py M8_483C_04 4.44 0.22 2.62 0.16 7.74 0.64 0.34 0.11 ‐0.70 0.55Mt Charlotte GMD Mt Charlotte SII Intermediate Py M8_483C_06 3.64 0.22 2.22 0.16 6.37 0.64 0.34 0.11 ‐0.55 0.55Mt Charlotte GMD Mt Charlotte SII Intermediate Py‐Po M9_109744_6b 2.99 0.13 1.89 0.09 5.21 1.00 0.35 0.07 ‐0.47 0.86Mt Charlotte GMD Mt Charlotte SII Intermediate Py‐Po M9_109744_2b 2.65 0.13 1.72 0.09 5.18 0.99 0.35 0.07 0.14 0.84Mt Charlotte GMD Mt Charlotte SII Intermediate Py M8_483C_10 4.21 0.22 2.53 0.16 7.92 0.63 0.36 0.11 ‐0.09 0.54Mt Charlotte GMD Mt Charlotte SII Intermediate Py M8_490B_05 2.93 0.22 1.88 0.16 4.93 0.64 0.38 0.11 ‐0.65 0.55Mt Charlotte GMD Mt Charlotte SII Intermediate Py M8_483C_07 4.09 0.22 2.51 0.17 7.21 0.64 0.40 0.11 ‐0.59 0.54Mt Charlotte GMD Mt Charlotte SII Intermediate Py M8_490B_02 3.65 0.22 2.28 0.16 6.85 0.66 0.40 0.11 ‐0.09 0.57Mt Charlotte GMD Mt Charlotte SII Intermediate Py M8_490B_03 3.44 0.22 2.18 0.16 5.76 0.64 0.41 0.11 ‐0.79 0.54Mt Charlotte GMD Mt Charlotte SII Intermediate Py M8_483C_01 3.83 0.22 2.39 0.16 6.98 0.64 0.42 0.11 ‐0.31 0.54Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_109740_8b 6.53 0.13 3.43 0.10 12.94 1.00 0.07 0.07 0.49 0.85Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_109740_3b 9.36 0.13 4.95 0.09 18.50 1.00 0.14 0.06 0.64 0.86Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_109740_5b 7.70 0.13 4.13 0.09 14.81 1.01 0.18 0.07 0.12 0.87Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_109740_7b 13.31 0.13 7.02 0.10 26.11 1.01 0.18 0.07 0.66 0.87

Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_109740_2b 6.89 0.13 3.73 0.09 14.11 1.00 0.18 0.07 0.97 0.86Mt Charlotte GMD Mt Charlotte SII Proximal Py M8_483A_03 3.77 0.22 2.15 0.16 6.94 0.64 0.21 0.11 ‐0.24 0.55Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_MC23_3b 10.73 0.13 5.72 0.09 19.59 1.01 0.21 0.07 ‐0.89 0.87Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_MC5_3b 10.73 0.13 5.72 0.09 19.59 1.01 0.21 0.07 ‐0.89 0.87Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_109740_9b 11.76 0.13 6.26 0.09 22.93 1.01 0.22 0.07 0.47 0.87Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_MC23_2b 10.89 0.13 5.82 0.09 20.69 1.02 0.22 0.07 ‐0.10 0.88Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_MC5_2b 10.89 0.13 5.82 0.09 20.69 1.02 0.22 0.07 ‐0.10 0.88Mt Charlotte GMD Mt Charlotte SII Proximal Py‐Po M9_109752_12b 5.58 0.13 3.09 0.09 9.96 1.02 0.23 0.07 ‐0.66 0.88Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_MC5_1b 5.40 0.13 3.01 0.10 10.16 1.00 0.23 0.07 ‐0.13 0.86Mt Charlotte GMD Mt Charlotte SII Proximal Py‐Po M9_109752_3b 6.48 0.13 3.58 0.09 11.04 1.01 0.24 0.07 ‐1.32 0.87Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_MC23_5b 11.49 0.13 6.15 0.09 21.48 1.01 0.24 0.07 ‐0.47 0.87Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_MC5_5b 11.49 0.13 6.15 0.09 21.48 1.01 0.24 0.07 ‐0.47 0.87Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_109740_6b 10.75 0.13 5.77 0.09 21.04 1.02 0.24 0.06 0.51 0.88Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_109740_10b 10.36 0.13 5.57 0.10 20.45 1.00 0.25 0.07 0.68 0.86Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_MC23_4b 10.83 0.13 5.81 0.09 20.34 1.01 0.25 0.07 ‐0.34 0.87Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_MC5_4b 10.83 0.13 5.81 0.09 20.34 1.01 0.25 0.07 ‐0.34 0.87Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_MC23_7b 11.18 0.13 6.00 0.09 20.85 1.00 0.26 0.07 ‐0.49 0.86Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_MC5_7b 11.18 0.13 6.00 0.09 20.85 1.00 0.26 0.07 ‐0.49 0.86Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_MC5_17b 10.34 0.13 5.57 0.09 20.29 1.00 0.26 0.07 0.56 0.86Mt Charlotte GMD Mt Charlotte SII Proximal Py‐Po M9_109752_13b 5.84 0.13 3.26 0.09 9.73 1.01 0.26 0.07 ‐1.41 0.87Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_MC23_8b 11.05 0.13 5.94 0.09 20.33 1.02 0.26 0.07 ‐0.78 0.88Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_MC5_8b 11.05 0.13 5.94 0.09 20.33 1.02 0.26 0.07 ‐0.78 0.88Mt Charlotte GMD Mt Charlotte SII Proximal Py‐Po M9_109752_4b 3.39 0.13 2.01 0.09 5.21 0.99 0.27 0.07 ‐1.24 0.85Mt Charlotte GMD Mt Charlotte SII Proximal Py‐Po M9_109752_8b 6.89 0.13 3.81 0.09 12.64 1.01 0.27 0.07 ‐0.49 0.87Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_MC5_15b 11.92 0.13 6.39 0.10 23.03 1.00 0.27 0.07 0.26 0.86Mt Charlotte GMD Mt Charlotte SII Proximal Py‐Po M9_109752_9b 6.15 0.13 3.43 0.09 10.81 1.01 0.27 0.07 ‐0.91 0.87Mt Charlotte GMD Mt Charlotte SII Proximal Py M8_490A_02 3.33 0.22 2.00 0.16 6.06 0.64 0.29 0.11 ‐0.26 0.55Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_MC23_6b 5.55 0.13 3.15 0.09 9.95 1.00 0.29 0.07 ‐0.62 0.85Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_MC5_6b 5.55 0.13 3.15 0.09 9.95 1.00 0.29 0.07 ‐0.62 0.85Mt Charlotte GMD Mt Charlotte SII Proximal Py‐Po M9_109752_10b 6.46 0.13 3.62 0.09 10.57 1.01 0.30 0.07 ‐1.75 0.87Mt Charlotte GMD Mt Charlotte SII Proximal Py‐Po M9_109752_11b 6.43 0.13 3.61 0.09 10.80 1.01 0.30 0.07 ‐1.45 0.87Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_MC5_16b 3.24 0.13 1.97 0.09 4.83 0.98 0.30 0.07 ‐1.34 0.84Mt Charlotte GMD Mt Charlotte SII Proximal Py‐Po M9_109752_2b 6.56 0.13 3.68 0.10 10.49 1.00 0.30 0.08 ‐2.01 0.86Mt Charlotte GMD Mt Charlotte SII Proximal Py M8_490A_05 3.67 0.22 2.19 0.16 6.66 0.64 0.31 0.11 ‐0.32 0.55Mt Charlotte GMD Mt Charlotte SII Proximal Py‐Po M9_109752_7b 4.52 0.13 2.63 0.10 7.72 1.00 0.31 0.07 ‐0.88 0.86Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_MC5_20b 5.93 0.13 3.36 0.09 10.80 0.99 0.31 0.06 ‐0.50 0.84Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_109740_4b 5.18 0.13 2.97 0.09 10.43 1.00 0.31 0.07 0.58 0.86Mt Charlotte GMD Mt Charlotte SII Proximal Py M8_483A_08 3.69 0.22 2.21 0.16 6.78 0.65 0.31 0.12 ‐0.24 0.56Mt Charlotte GMD Mt Charlotte SII Proximal Py‐Po M9_109752_6b 6.86 0.13 3.84 0.09 11.47 1.01 0.31 0.06 ‐1.61 0.87Mt Charlotte GMD Mt Charlotte SII Proximal Py‐Po M9_109752_5b 5.60 0.13 3.19 0.09 8.75 1.00 0.31 0.07 ‐1.91 0.86Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_MC5_18b 5.59 0.13 3.19 0.09 10.12 0.99 0.31 0.07 ‐0.52 0.84Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_109740_1b 3.23 0.09 5.67 0.13 11.11 0.99 0.32 0.07 0.32 0.85Mt Charlotte GMD Mt Charlotte SII Proximal Py M8_483A_10 3.48 0.23 2.11 0.17 6.48 0.65 0.32 0.12 ‐0.15 0.57Mt Charlotte GMD Mt Charlotte SII Proximal Py M8_490A_01 4.07 0.22 2.41 0.16 7.49 0.66 0.32 0.11 ‐0.26 0.57Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_MC5_19b 3.72 0.13 2.24 0.09 6.97 0.98 0.32 0.07 ‐0.11 0.84Mt Charlotte GMD Mt Charlotte SII Proximal Py M8_490A_03 3.90 0.22 2.34 0.16 7.18 0.64 0.33 0.11 ‐0.24 0.55Mt Charlotte GMD Mt Charlotte SII Proximal Py M8_483A_01 3.34 0.22 2.06 0.16 6.05 0.63 0.34 0.11 ‐0.32 0.54Mt Charlotte GMD Mt Charlotte SII Proximal Py M8_483A_09 3.61 0.23 2.20 0.17 6.56 0.65 0.34 0.12 ‐0.31 0.57Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_MC23_9b 6.46 0.13 3.67 0.09 11.79 1.00 0.35 0.06 ‐0.52 0.86Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_MC5_9b 6.46 0.13 3.67 0.09 11.79 1.00 0.35 0.06 ‐0.52 0.86Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_MC5_14b 4.41 0.13 2.62 0.09 8.28 1.00 0.35 0.07 ‐0.13 0.86Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_MC23_1b 5.90 0.13 3.39 0.10 11.06 1.00 0.35 0.08 ‐0.19 0.86Mt Charlotte GMD Mt Charlotte SII Proximal Py M8_483A_02 3.90 0.22 2.36 0.16 7.08 0.64 0.35 0.11 ‐0.35 0.54Mt Charlotte GMD Mt Charlotte SII Proximal Py M8_483A_05 3.61 0.22 2.21 0.16 6.50 0.66 0.35 0.11 ‐0.36 0.58Mt Charlotte GMD Mt Charlotte SII Proximal Py M8_483A_04 3.72 0.22 2.27 0.16 6.90 0.64 0.35 0.11 ‐0.18 0.55Mt Charlotte GMD Mt Charlotte SII Proximal Py‐Po M9_109752_1b 6.28 0.13 3.59 0.10 10.42 1.02 0.36 0.07 ‐1.54 0.88Mt Charlotte GMD Mt Charlotte SII Proximal Py M8_483A_07 3.64 0.22 2.25 0.16 6.97 0.67 0.37 0.11 0.04 0.59Mt Charlotte GMD Mt Charlotte SII Proximal Py M8_490A_04 3.79 0.22 2.33 0.16 6.55 0.64 0.38 0.11 ‐0.67 0.55Mt Charlotte GMD Mt Charlotte SII Proximal Py M8_483A_06 3.30 0.22 2.10 0.16 5.94 0.66 0.40 0.11 ‐0.34 0.58Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_MC23_13b 8.56 0.13 4.81 0.10 16.03 1.00 0.41 0.07 ‐0.30 0.86Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_MC5_13b 8.56 0.13 4.81 0.10 16.03 1.00 0.41 0.07 ‐0.30 0.86Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_MC23_10b 8.65 0.13 4.86 0.09 16.72 1.00 0.42 0.07 0.23 0.86Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_MC5_10b 8.65 0.13 4.86 0.09 16.72 1.00 0.42 0.07 0.23 0.86Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_MC23_11b 8.69 0.13 4.89 0.10 16.22 1.01 0.42 0.07 ‐0.36 0.88Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_MC5_11b 8.69 0.13 4.89 0.10 16.22 1.01 0.42 0.07 ‐0.36 0.88Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_MC23_12b 8.10 0.13 4.61 0.09 15.19 1.00 0.45 0.06 ‐0.25 0.86Mt Charlotte GMD Mt Charlotte SII Proximal Py M9_MC5_12b 8.10 0.13 4.61 0.09 15.19 1.00 0.45 0.06 ‐0.25 0.86Union Club Pit QFP Mt Charlotte SII Proximal Py 1.4 M11_UP‐24_02 2.06 0.22 1.21 0.13 3.32 0.50 0.15 0.10 ‐0.60 0.51Union Club Pit QFP Mt Charlotte SII Proximal Py 2.19 M10_UP23_5 ‐3.59 0.17 ‐1.66 0.12 ‐7.95 0.79 0.20 0.10 ‐1.13 0.67Union Club Pit QFP Mt Charlotte SII Proximal Py 2.19 M10_UP23_7 ‐0.36 0.16 0.06 0.11 ‐1.89 0.80 0.25 0.09 ‐1.20 0.66

Union Club Pit QFP Mt Charlotte SII Proximal Py 0.19 M11_UP‐63_01 4.23 0.22 2.43 0.13 7.57 0.50 0.26 0.11 ‐0.49 0.51Union Club Pit QFP Mt Charlotte SII Proximal Py 2.19 M10_UP23_2 ‐0.55 0.15 0.00 0.11 ‐2.13 0.78 0.28 0.08 ‐1.08 0.64Union Club Pit QFP Mt Charlotte SII Proximal Py 2.19 M10_UP23_4 ‐0.02 0.15 0.28 0.11 ‐0.72 0.79 0.29 0.09 ‐0.69 0.65Union Club Pit QFP Mt Charlotte SII Proximal Py 0.19 M11_UP‐63_04 2.96 0.22 1.82 0.13 4.29 0.56 0.29 0.11 ‐1.34 0.57Union Club Pit QFP Mt Charlotte SII Proximal Py 0.19 M11_UP‐63_02 4.48 0.22 2.61 0.13 8.20 0.51 0.31 0.11 ‐0.33 0.52Union Club Pit QFP Mt Charlotte SII Proximal Py 2.19 M10_UP23_3 1.50 0.15 1.10 0.11 1.49 0.80 0.32 0.08 ‐1.37 0.67Union Club Pit QFP Mt Charlotte SII Proximal Py 2.19 M10_UP23_1 1.67 0.15 1.24 0.11 1.74 0.78 0.37 0.08 ‐1.44 0.64Union Club Pit QFP Mt Charlotte SII Proximal Py 0.19 M11_UP‐63_03 2.87 0.22 1.85 0.13 4.82 0.50 0.38 0.11 ‐0.63 0.51Union Club Pit QFP Mt Charlotte SII Proximal Py 2.19 M10_UP23_6 1.92 0.16 1.37 0.11 2.47 0.80 0.38 0.09 ‐1.18 0.66Union Club Pit DCB Mt Charlotte SII Proximal Py 0.001 M11_UP‐58_01 1.70 0.22 1.26 0.13 2.87 0.49 0.39 0.10 ‐0.36 0.49Union Club Pit DCB Mt Charlotte SII Proximal Py 0.001 M11_UP‐58_14 2.61 0.23 1.75 0.14 4.47 0.52 0.41 0.12 ‐0.49 0.54Union Club Pit DCB Mt Charlotte SII Proximal Py 0.001 M11_UP‐58_12 2.56 0.23 1.72 0.14 4.66 0.51 0.41 0.12 ‐0.22 0.53Union Club Pit DCB Mt Charlotte SII Proximal Py 0.001 M11_UP‐58_02 2.08 0.22 1.49 0.13 3.43 0.49 0.42 0.10 ‐0.52 0.50Union Club Pit DCB Mt Charlotte SII Proximal Py 0.001 M11_UP‐58_03 2.16 0.22 1.55 0.13 4.03 0.48 0.43 0.10 ‐0.08 0.49Union Club Pit DCB Mt Charlotte SII Proximal Py 0.001 M11_UP‐58_05 2.46 0.22 1.71 0.13 4.45 0.48 0.44 0.10 ‐0.23 0.49Union Club Pit DCB Mt Charlotte SII Proximal Py 0.001 M11_UP‐58_04 2.08 0.22 1.52 0.13 3.93 0.48 0.44 0.10 ‐0.03 0.49Union Club Pit DCB Mt Charlotte SII Proximal Py 0.001 M11_UP‐58_13 2.08 0.23 1.52 0.14 3.17 0.51 0.45 0.11 ‐0.78 0.53Union Club Pit DCB Mt Charlotte SII Proximal Py 0.001 M11_UP‐58_15 1.79 0.23 1.37 0.14 2.24 0.71 0.45 0.12 ‐1.17 0.72Union Club Pit QFP Mt Charlotte SII Proximal Py 1.4 M11_UP‐24_04 3.86 0.22 2.44 0.13 6.59 0.50 0.45 0.11 ‐0.76 0.51Union Club Pit DCB Mt Charlotte SII Proximal Py 0.001 M11_UP‐58_10 2.22 0.22 1.60 0.13 3.63 0.50 0.46 0.11 ‐0.59 0.51Union Club Pit DCB Mt Charlotte SII Proximal Py 0.001 M11_UP‐58_09 2.16 0.22 1.57 0.13 3.63 0.50 0.46 0.11 ‐0.48 0.51Union Club Pit DCB Mt Charlotte SII Proximal Py 0.001 M11_UP‐58_06 2.05 0.22 1.53 0.13 3.77 0.49 0.47 0.11 ‐0.12 0.50Union Club Pit DCB Mt Charlotte SII Proximal Py 0.001 M11_UP‐58_11 2.75 0.22 1.90 0.14 4.61 0.51 0.49 0.12 ‐0.62 0.52Union Club Pit DCB Mt Charlotte SII Proximal Py 0.001 M11_UP‐58_07 2.35 0.22 1.70 0.13 4.12 0.49 0.49 0.11 ‐0.35 0.50Union Club Pit QFP Mt Charlotte SII Proximal Py 1.4 M11_UP‐24_01 3.89 0.22 2.52 0.13 6.49 0.51 0.52 0.11 ‐0.91 0.51Union Club Pit QFP Mt Charlotte SII Proximal Py 1.4 M11_UP‐24_05 3.92 0.22 2.54 0.13 6.88 0.51 0.52 0.10 ‐0.58 0.51Union Club Pit QFP Mt Charlotte SII Proximal Py 1.4 M11_UP‐24_06 3.81 0.22 2.49 0.14 6.38 0.50 0.53 0.11 ‐0.87 0.50Union Club Pit QFP Mt Charlotte SII Proximal Py 1.4 M11_UP‐24_03 3.82 0.22 2.51 0.14 6.74 0.51 0.54 0.11 ‐0.54 0.51Union Club Pit DCB Mt Charlotte SII Proximal Py 0.001 M11_UP‐58_08 2.62 0.22 1.91 0.13 4.91 0.51 0.56 0.10 ‐0.07 0.52

Super Pit PB Oroya SI Py 3.64 M6_OR25_7 4.80 0.21 1.42 0.13 9.84 0.58 ‐1.05 0.06 0.71 0.46Super Pit PB Oroya SI Py 3.64 M6_OR25_8 4.59 0.21 1.34 0.13 9.51 0.58 ‐1.02 0.07 0.76 0.45Super Pit PB Oroya SI Py 3.64 M6_OR25_11 4.97 0.21 1.54 0.13 10.22 0.59 ‐1.02 0.07 0.76 0.47Super Pit PB Oroya SI Py 3.64 M6_OR25_1 4.91 0.21 1.52 0.13 10.05 0.60 ‐1.00 0.06 0.70 0.47Super Pit PB Oroya SI Py 3.64 M6_OR25_3 5.31 0.21 1.73 0.13 10.93 0.63 ‐1.00 0.06 0.83 0.51Super Pit PB Oroya SI Py 3.64 M6_OR25_10 4.97 0.21 1.55 0.13 10.18 0.59 ‐1.00 0.07 0.72 0.47Super Pit PB Oroya SI Py 3.64 M6_OR25_6 5.09 0.21 1.63 0.13 10.57 0.58 ‐0.99 0.07 0.89 0.45Super Pit PB Oroya SI Py 3.64 M6_OR25_5 4.81 0.21 1.48 0.13 9.87 0.58 ‐0.99 0.06 0.71 0.45Super Pit PB Oroya SI Py 3.64 M6_OR25_4 4.92 0.21 1.56 0.13 10.16 0.58 ‐0.97 0.06 0.79 0.46Super Pit PB Oroya SI Py 3.64 M6_OR25_2 5.11 0.21 1.67 0.13 10.32 0.58 ‐0.97 0.06 0.58 0.46Super Pit PB Oroya SI Py 3.64 M6_OR25_9 4.20 0.21 1.21 0.13 8.53 0.59 ‐0.95 0.07 0.53 0.46Super Pit PB Oroya SII Py‐Po 0.6 M6_OR20_1 7.15 0.21 2.99 0.14 14.13 0.58 ‐0.69 0.07 0.50 0.44Super Pit PB Oroya SII Py‐Po 0.6 M6_OR20_4 8.63 0.21 3.93 0.13 16.93 0.58 ‐0.51 0.06 0.46 0.44Super Pit PB Oroya SII Py‐Po 0.6 M6_OR20_5 4.95 0.21 2.16 0.13 9.48 0.58 ‐0.39 0.06 0.05 0.45Super Pit PB Oroya SII Py‐Po 0.6 M6_OR20_3 4.22 0.21 1.81 0.13 8.01 0.59 ‐0.36 0.06 ‐0.02 0.46Super Pit PB Oroya SII Py‐Po 0.6 M6_OR20_2 9.76 0.21 4.84 0.14 18.57 0.58 ‐0.18 0.07 ‐0.06 0.45Super Pit PB Oroya SII Py 2.83 M5_OR9_4 5.13 0.29 1.74 0.16 10.74 0.83 ‐0.90 0.08 0.96 0.59Super Pit PB Oroya SII Py 2.83 M5_OR9_7 3.50 0.28 0.93 0.15 7.35 0.81 ‐0.87 0.06 0.68 0.56Super Pit PB Oroya SII Py 2.83 M5_OR9_1 3.17 0.29 0.80 0.16 6.65 0.84 ‐0.83 0.08 0.62 0.62Super Pit PB Oroya SII Py 2.83 M5_OR9_5 3.09 0.29 1.05 0.16 6.20 0.83 ‐0.53 0.08 0.33 0.60Super Pit PB Oroya SII Py 2.83 M5_OR9_3 ‐2.57 0.29 ‐1.31 0.16 ‐5.10 0.82 0.02 0.08 ‐0.22 0.58Super Pit PB Oroya SII Py 2.83 M5_OR9_2 ‐6.64 0.29 ‐3.28 0.16 ‐13.02 0.82 0.15 0.08 ‐0.43 0.58Super Pit PB Oroya SII Py 2.83 M5_OR9_6 0.57 0.28 0.47 0.15 0.66 0.81 0.17 0.06 ‐0.43 0.55Super Pit PB Oroya SII Py 3 M6_OR15_5 2.42 0.21 1.78 0.13 4.15 0.58 0.53 0.07 ‐0.46 0.45Super Pit PB Oroya SII Py 3 M6_OR15_4 3.79 0.21 2.70 0.13 6.96 0.58 0.75 0.06 ‐0.26 0.46Super Pit PB Oroya SII Py 3 M6_OR15_12 3.26 0.21 2.65 0.13 5.51 0.57 0.98 0.06 ‐0.69 0.43Super Pit PB Oroya SII Py 3 M6_OR15_10 3.04 0.21 2.55 0.13 5.36 0.57 0.98 0.06 ‐0.42 0.44Super Pit PB Oroya SII Py 3 M6_OR15_1 2.98 0.21 2.55 0.13 5.33 0.59 1.02 0.07 ‐0.33 0.47Super Pit PB Oroya SII Py 3 M6_OR15_15 3.00 0.21 2.57 0.13 4.98 0.57 1.02 0.06 ‐0.74 0.43Super Pit PB Oroya SII Py 3 M6_OR15_9 3.04 0.21 2.59 0.13 5.16 0.58 1.03 0.06 ‐0.63 0.45Super Pit PB Oroya SII Py 3 M6_OR15_13 2.78 0.21 2.46 0.13 4.47 0.57 1.03 0.06 ‐0.82 0.43Super Pit PB Oroya SII Py 3 M6_OR15_3 3.07 0.21 2.62 0.13 5.23 0.58 1.04 0.07 ‐0.61 0.46Super Pit PB Oroya SII Py 3 M6_OR15_7 3.05 0.21 2.61 0.14 4.99 0.59 1.04 0.07 ‐0.82 0.46Super Pit PB Oroya SII Py 3 M6_OR15_8 2.89 0.21 2.53 0.13 4.76 0.57 1.04 0.06 ‐0.74 0.44Super Pit PB Oroya SII Py 3 M6_OR15_11 2.98 0.21 2.58 0.14 4.67 0.57 1.05 0.07 ‐1.01 0.43Super Pit PB Oroya SII Py 3 M6_OR15_14 2.96 0.21 2.57 0.13 4.73 0.57 1.05 0.06 ‐0.90 0.44Super Pit PB Oroya SII Py 3 M6_OR15_6 3.08 0.21 2.64 0.13 5.10 0.58 1.06 0.06 ‐0.75 0.45Super Pit PB Oroya SII Py 3 M6_OR15_2 3.17 0.21 2.69 0.13 5.55 0.61 1.06 0.07 ‐0.48 0.49Super Pit PB Oroya SII Py‐Po BLF6b_09 0.81 0.13 0.85 0.10 1.30 0.47 0.43 0.09 ‐0.24 0.46Super Pit PB Oroya SII Py‐Po BLF6b_10 0.85 0.13 0.93 0.10 1.10 0.45 0.49 0.09 ‐0.52 0.43Super Pit PB Oroya SII Py‐Po BLF6b_08 0.96 0.13 0.99 0.10 1.69 0.46 0.50 0.09 ‐0.14 0.45

Super Pit PB Oroya SII Py‐Po BLF6b_07 0.47 0.13 0.75 0.11 0.55 0.44 0.51 0.10 ‐0.34 0.43Super Pit PB Oroya SII Py‐Po BLF6b_06 1.32 0.13 1.20 0.10 2.38 0.44 0.52 0.09 ‐0.12 0.42Super Pit PB Oroya SII Py‐Po BLF6b_04 13.76 0.13 7.66 0.10 25.69 0.45 0.60 0.09 ‐0.61 0.44Super Pit PB Oroya SII Py‐Po BLF6b_05 23.51 0.14 12.83 0.10 44.52 0.50 0.79 0.09 ‐0.62 0.50Super Pit PB Oroya SIII Py 7.1 M6_OR11_4 ‐8.78 0.20 ‐4.41 0.13 ‐16.73 0.56 0.12 0.06 ‐0.11 0.42Super Pit PB Oroya SIII Py 7.1 M6_OR11_2 ‐7.79 0.20 ‐3.89 0.13 ‐15.28 0.56 0.13 0.06 ‐0.54 0.42Super Pit PB Oroya SIII Py 7.1 M6_OR11_1 ‐9.45 0.20 ‐4.75 0.13 ‐17.82 0.56 0.13 0.06 0.06 0.41Super Pit PB Oroya SIII Py 7.1 M6_OR11_3 ‐4.47 0.20 ‐2.06 0.13 ‐8.72 0.57 0.25 0.06 ‐0.25 0.43Super Pit PB Oroya SIII Py 7.1 M6_OR11_7 ‐0.26 0.21 0.15 0.13 ‐0.96 0.57 0.29 0.06 ‐0.46 0.44Super Pit PB Oroya SIII Py 7.1 M6_OR11_6 ‐3.21 0.21 ‐1.34 0.13 ‐6.67 0.57 0.32 0.06 ‐0.58 0.43Super Pit PB Oroya SIII Py 7.1 M6_OR11_5 ‐1.17 0.21 ‐0.26 0.13 ‐2.65 0.57 0.35 0.06 ‐0.43 0.43Super Pit PB Oroya SIII Py‐Po 28.7 M5_OR3‐2_3 4.00 0.28 1.66 0.15 8.12 0.81 ‐0.40 0.06 0.50 0.55Super Pit PB Oroya SIII Py‐Po 28.7 M5_OR3‐1_7 4.18 0.30 1.77 0.16 8.92 0.85 ‐0.38 0.09 0.95 0.64Super Pit PB Oroya SIII Py‐Po 28.7 M5_OR3‐2_4 4.22 0.29 1.79 0.15 8.22 0.82 ‐0.38 0.06 0.18 0.57Super Pit PB Oroya SIII Py‐Po 28.7 M5_OR3‐1_4 3.85 0.29 1.60 0.16 7.88 0.82 ‐0.38 0.07 0.56 0.58Super Pit PB Oroya SIII Py‐Po 28.7 M5_OR3‐1_5 3.56 0.29 1.46 0.16 7.72 0.84 ‐0.37 0.08 0.95 0.62Super Pit PB Oroya SIII Py‐Po 28.7 M5_OR3‐1_2 3.44 0.29 1.41 0.16 7.06 0.82 ‐0.37 0.07 0.50 0.57Super Pit PB Oroya SIII Py‐Po 28.7 M5_OR3‐1_6 4.39 0.29 1.92 0.16 9.03 0.84 ‐0.34 0.09 0.68 0.62Super Pit PB Oroya SIII Py‐Po 28.7 M5_OR3‐1_3 3.38 0.29 1.41 0.16 7.19 0.82 ‐0.32 0.07 0.77 0.57Super Pit PB Oroya SIII Py‐Po 28.7 M5_OR3‐1_8 3.81 0.30 1.67 0.16 7.91 0.86 ‐0.29 0.09 0.66 0.65Super Pit PB Oroya SIII Py‐Po 28.7 M5_OR3‐2_2 2.50 0.28 1.00 0.15 4.78 0.81 ‐0.29 0.06 0.02 0.55Super Pit PB Oroya SIII Py‐Po 28.7 M5_OR3‐1_1 3.99 0.29 1.78 0.16 7.62 0.85 ‐0.27 0.07 0.02 0.61Super Pit PB Oroya SIII Py‐Po 28.7 M5_OR3‐2_1 0.10 0.28 ‐0.03 0.15 0.13 0.80 ‐0.08 0.06 ‐0.05 0.54Super Pit PB Oroya SIII Py‐Po 28.7 M5_OR3‐1_9 ‐2.12 0.30 ‐0.94 0.16 ‐3.64 0.84 0.15 0.09 0.37 0.63

Union Club Pit KS Synsedimentary Synsedimentary Py 0.05 M13_UP75_06 3.01 0.19 2.51 0.16 4.98 0.50 0.96 0.12 ‐0.75 0.52Union Club Pit KS Synsedimentary Synsedimentary Py 0.05 M13_UP75_02 2.96 0.18 2.62 0.15 4.70 0.50 1.10 0.10 ‐0.94 0.51Union Club Pit KS Synsedimentary Synsedimentary Py 0.05 M13_UP75_07 3.59 0.19 3.03 0.15 5.92 0.51 1.19 0.11 ‐0.90 0.52Union Club Pit KS Synsedimentary Synsedimentary Py 0.06 M13_UP74_03 1.68 0.19 2.06 0.16 2.48 0.53 1.19 0.12 ‐0.71 0.55Union Club Pit KS Synsedimentary Synsedimentary Py 0.06 M13_UP74_02 2.15 0.19 2.36 0.16 3.44 0.52 1.25 0.12 ‐0.66 0.54Union Club Pit KS Synsedimentary Synsedimentary Py 0.06 M13_UP74_01 2.27 0.19 2.45 0.16 3.57 0.52 1.28 0.12 ‐0.75 0.54Union Club Pit KS Synsedimentary Synsedimentary Py 0.06 M13_UP74_04 1.87 0.19 2.24 0.16 2.58 0.52 1.28 0.12 ‐0.98 0.54Union Club Pit KS Synsedimentary Synsedimentary Py 0.06 M13_UP74_05 2.05 0.19 2.34 0.16 3.10 0.54 1.29 0.12 ‐0.81 0.56Union Club Pit KS Synsedimentary Synsedimentary Py 0.05 M13_UP75_10 3.72 0.19 3.21 0.15 6.16 0.51 1.30 0.11 ‐0.91 0.53Union Club Pit KS Synsedimentary Synsedimentary Py 0.05 M13_UP75_09 3.42 0.19 3.05 0.15 5.46 0.52 1.30 0.11 ‐1.04 0.53Union Club Pit KS Synsedimentary Synsedimentary Py 0.05 M13_UP75_01 3.53 0.18 3.12 0.15 5.59 0.50 1.30 0.10 ‐1.12 0.51Union Club Pit KS Synsedimentary Synsedimentary Py 0.05 M13_UP75_08 2.57 0.19 2.63 0.15 3.88 0.52 1.31 0.11 ‐1.01 0.53Union Club Pit KS Synsedimentary Synsedimentary Py 0.05 M13_UP75_04 2.91 0.18 2.81 0.15 4.34 0.50 1.32 0.11 ‐1.19 0.51Union Club Pit KS Synsedimentary Synsedimentary Py 0.05 M13_UP75_05 3.65 0.18 3.20 0.15 5.78 0.50 1.32 0.10 ‐1.17 0.51Union Club Pit KS Synsedimentary Synsedimentary Py 0.05 M13_UP75_03 2.76 0.18 2.76 0.15 4.01 0.53 1.34 0.11 ‐1.25 0.53Union Club Pit KS Synsedimentary Synsedimentary Py 0.001 M10_UP76_15 2.33 0.15 3.00 0.11 2.12 0.77 1.80 0.08 ‐2.32 0.62Union Club Pit KS Synsedimentary Synsedimentary Py 0.001 M10_UP76_16 2.43 0.15 3.06 0.11 2.88 0.77 1.81 0.08 ‐1.75 0.62Union Club Pit KS Synsedimentary Synsedimentary Py 0.001 M10_UP76_14 2.57 0.15 3.14 0.11 3.57 0.77 1.82 0.08 ‐1.32 0.62Union Club Pit KS Synsedimentary Synsedimentary Py 0.001 M10_UP76_2 2.58 0.15 3.15 0.12 3.62 0.78 1.82 0.10 ‐1.28 0.64Union Club Pit KS Synsedimentary Synsedimentary Py 0.001 M10_UP76_1 3.01 0.15 3.38 0.11 5.55 0.80 1.83 0.08 ‐0.18 0.66Union Club Pit KS Synsedimentary Synsedimentary Py 0.001 M10_UP76_13 2.37 0.15 3.06 0.11 3.63 0.77 1.84 0.08 ‐0.87 0.62Union Club Pit KS Synsedimentary Synsedimentary Py 0.001 M10_UP76_11 2.26 0.15 3.00 0.11 2.26 0.77 1.84 0.08 ‐2.04 0.63Union Club Pit KS Synsedimentary Synsedimentary Py 0.001 M10_UP76_10 2.13 0.15 2.94 0.11 3.42 0.77 1.84 0.08 ‐0.63 0.63Union Club Pit KS Synsedimentary Synsedimentary Py 0.001 M10_UP76_6 2.55 0.15 3.17 0.11 3.34 0.77 1.86 0.08 ‐1.51 0.62Union Club Pit KS Synsedimentary Synsedimentary Py 0.001 M10_UP76_12 2.66 0.15 3.23 0.11 4.20 0.78 1.86 0.08 ‐0.86 0.64Union Club Pit KS Synsedimentary Synsedimentary Py 0.001 M10_UP76_9 2.38 0.15 3.09 0.11 2.95 0.77 1.86 0.09 ‐1.57 0.62Union Club Pit KS Synsedimentary Synsedimentary Py 0.001 M10_UP76_4 2.28 0.15 3.05 0.11 3.10 0.78 1.88 0.08 ‐1.23 0.63Union Club Pit KS Synsedimentary Synsedimentary Py 0.001 M10_UP76_8 2.50 0.15 3.17 0.11 3.33 0.77 1.88 0.08 ‐1.42 0.62Union Club Pit KS Synsedimentary Synsedimentary Py 0.001 M10_UP76_3 2.12 0.15 2.98 0.11 2.51 0.78 1.89 0.08 ‐1.52 0.63Union Club Pit KS Synsedimentary Synsedimentary Py 0.001 M10_UP76_7 2.45 0.15 3.16 0.11 3.52 0.77 1.90 0.08 ‐1.14 0.62Union Club Pit KS Synsedimentary Synsedimentary Py 0.001 M10_UP76_5 1.79 0.15 2.84 0.11 1.98 0.77 1.92 0.07 ‐1.42 0.62Union Club Pit KS Synsedimentary Synsedimentary Py 0.06 M13_UP74(1)_12 2.95 0.18 3.50 0.15 3.88 0.49 1.98 0.10 ‐1.72 0.50Union Club Pit KS Synsedimentary Synsedimentary Py 0.06 M13_UP74(1)_06 3.18 0.18 3.71 0.15 4.45 0.50 2.07 0.10 ‐1.61 0.51Union Club Pit KS Synsedimentary Synsedimentary Py 0.06 M13_UP74(1)_13 2.53 0.18 3.42 0.14 3.20 0.50 2.12 0.10 ‐1.61 0.50Union Club Pit KS Synsedimentary Synsedimentary Py 0.06 M13_UP74(1)_15 2.16 0.18 3.24 0.15 2.74 0.49 2.13 0.11 ‐1.37 0.50Union Club Pit KS Synsedimentary Synsedimentary Py 0.06 M13_UP74(1)_10 2.47 0.18 3.40 0.15 2.53 0.50 2.13 0.10 ‐2.17 0.51Union Club Pit KS Synsedimentary Synsedimentary Py 0.06 M13_UP74(1)_03 3.66 0.19 4.02 0.15 5.29 0.51 2.13 0.11 ‐1.68 0.52Union Club Pit KS Synsedimentary Synsedimentary Py 0.06 M13_UP74(1)_14 2.05 0.18 3.24 0.15 2.11 0.50 2.18 0.10 ‐1.79 0.50Union Club Pit KS Synsedimentary Synsedimentary Py 0.06 M13_UP74(1)_08 2.27 0.18 3.35 0.15 2.54 0.53 2.18 0.11 ‐1.78 0.54Union Club Pit KS Synsedimentary Synsedimentary Py 0.06 M13_UP74(1)_04 2.52 0.19 3.49 0.15 3.00 0.51 2.19 0.11 ‐1.80 0.52Union Club Pit KS Synsedimentary Synsedimentary Py 0.06 M13_UP74(1)_09 2.59 0.18 3.52 0.15 2.69 0.51 2.19 0.11 ‐2.23 0.52Union Club Pit KS Synsedimentary Synsedimentary Py 0.06 M13_UP74(1)_11 3.66 0.18 4.07 0.15 5.46 0.50 2.19 0.10 ‐1.50 0.51Union Club Pit KS Synsedimentary Synsedimentary Py 0.06 M13_UP74(1)_05 3.10 0.19 3.79 0.15 4.15 0.50 2.19 0.10 ‐1.75 0.52Union Club Pit KS Synsedimentary Synsedimentary Py 0.06 M13_UP74(1)_02 2.79 0.19 3.63 0.15 3.50 0.53 2.19 0.11 ‐1.81 0.55Union Club Pit KS Synsedimentary Synsedimentary Py 0.06 M13_UP74(1)_07 2.68 0.18 3.58 0.15 3.13 0.50 2.20 0.11 ‐1.96 0.51Union Club Pit KS Synsedimentary Synsedimentary Py 0.06 M13_UP74(1)_01 3.11 0.19 3.81 0.16 4.10 0.51 2.21 0.12 ‐1.82 0.53

Introduction to Chapter 3

This chapter is centered on the trace element signature of hydrothermal sulfides and the role of

fluid composition to modify the Au and Te content in pyrite from orogenic gold ores (doi:

10.1007/s00126-020-00958-w). As with Chapter 2, key samples of the Fimiston, Oroya and Mt.

Charlotte mineralization styles were used to have a complete collection covering all the deposits

from the Super Pit to the Mt. Percy open pits. Textural observations and mineral assemblages

recorded by optical microscopy as well as SEM-EDS microanalyses permitted to establish a

paragenetic framework and define reduced and oxidized sulfide-gold-telluride-V-bearing

assemblages in each style of mineralization, and in syngentic pyrite from the Kapai Slate. Linear

Mixed Effects modeling was used to test for statistical differences in hydrothermal pyrites from

distinct mineralization styles and assemblages. Additionally, the compilation of trace element

data in pyrite was performed by the candidate and used to generate a global compilation of

orogenic gold deposits.

The trace element data was acquired in the GeoHistory Facility, John de Laeter Centre, Curtin

University with the assistance of Noreen Evans. SEM-EDS work was undertaken by the

candidate at CMCA, UWA. Processing of LA-ICP-MS spectra to yield trace element contents

was conducted by the candidate. The manuscript preparation, data presentation and interpretation

as well as drafting of figures and compilations of published trace element analyses of orogenic

gold was conducted by the candidate. Statistical modeling was conducted in collaboration with

Max Frenzel at the Helmholtz-Zentrum Institute, Germany. The co-author provided necessary

revisions and discussions on potential implications of the datasets produced for this chapter.

ARTICLE

Laser ablation ICP-MS trace element systematics of hydrothermalpyrite in gold deposits of the Kalgoorlie district, Western Australia

Marcelo Godefroy-Rodríguez1 & Steffen Hagemann1& Max Frenzel2 & Noreen J. Evans3

Received: 17 April 2019 /Accepted: 3 February 2020# Springer-Verlag GmbH Germany, part of Springer Nature 2020

AbstractThe Kalgoorlie district in the Archean Yilgarn Craton of Western Australia contains two world-class gold deposits: thegiant Golden Mile shear-zone system and the Mt Charlotte quartz-vein stockworks. Mineralization occurs in three styles:(a) Fimiston style is characterized by ankerite-pyrite ± hematite-magnetite-gold replacement, (b) Oroya style overprintsFimiston ore in the shear zones and is characterized by silica-ankerite-V-muscovite-pyrite ± pyrrhotite-gold-telluridereplacement and (c) Mt. Charlotte style is characterized by veins with ankerite-sericite ± albite-pyrite-pyrrhotite-goldselvages. Hydrothermal pyrite is ubiquitous in all styles and occurs in several stages. Laser ablation inductively coupledplasma mass spectrometry (LA-ICP-MS) spot analyses (n = 652) were collected on 54 representative samples of pyritefrom three deposits. Smooth sections in the ablation spectra were selected for quantitative analysis excluding peakscaused by micron-sized inclusions. Linear mixed effects (LME) modeling of the analytical results indicates no system-atic differences between the Fimiston, Oroya and Mt Charlotte styles. The variance introduced to the dataset bygeological variability reflected in random differences between samples and deposits is large. This may be a major reasonfor difficulties in distinguishing the differences due to mineralization style. However, there are clear differences betweenpyrites co-existing with different mineral assemblages. These indicate a strong control on pyrite chemistry by thecomposition of the hydrothermal fluids. Finally, Au-Te-As systematics show that a substantial proportion of the analyzedpyrites in all deposits fall into the field of gold saturation consistent with the known metallurgical character of the ores.Mineralogical studies, ultra-fine grinding and recovery by cyanide leach show that > 82% of all gold is present in nativegrains or in Au-Ag-tellurides. The refractory nature of the Fimiston pyrite concentrates is due to clusters of micron- tonano-sized inclusions rather than due to abundant lattice-bound gold.

Keywords Kalgoorlie . Trace elements . LA-ICP-MS . Gold . Pyrite

Editorial handling: A. G. Mueller

Electronic supplementary material The online version of this article(https://doi.org/10.1007/s00126-020-00958-w) contains supplementarymaterial, which is available to authorized users.

* Marcelo Godefroy-Rodrí[email protected]

Steffen [email protected]

Max [email protected]

Noreen J. [email protected]

1 Centre for Exploration Targeting, School of Earth Sciences,University of Western Australia, 35 Stirling Highway,Crawley, WA 6009, Australia

2 Helmholtz-Zentrum Dresden Rossendorf, Institute Freiberg forResource Technology, Chemnitzer Str. 40, 09599 Freiberg, Germany

3 School of Earth and Planetary Science/John de Laeter Centre, CurtinUniversity, Perth, WA 6845, Australia

Mineralium Depositahttps://doi.org/10.1007/s00126-020-00958-w

Introduction

The Kalgoorlie Terrane of the Archean Yilgarn Craton is ofmajor importance as a Au province with past productionand resources of 5910 t of Au (Witt et al. 2017). The maindeposits in the Kalgoorlie district are the Golden Mile andMount Charlotte. The Golden Mile deposit comprises his-toric underground mines (pre-1992), now contained in theSuper Pit, while the Mt. Charlotte deposit is mined under-ground and is located to the north of the Super Pit (Fig. 1).The Mt. Percy open pits (Fig. 1) contributed 8.2 t gold tothe total production (Mueller 2015). The historically minedand contained resources in the Golden Mile and Mt.Charlotte deposits total ~ 2137 t of Au as of December2016 (Newmont Annual Report 2016; unpublished;Mueller 2017; this issue). About 20% of the Au in theGolden Mile deposit occurs as Au-Ag tellurides, 70–75%as native gold grains contained as inclusions in pyrite, andthe remainder as solid solution or nanoparticles in pyrite(Clout 1989; Shackleton et al. 2003; Spry et al. 2004). In

contrast, gold in the Mt. Charlotte underground mine isfound mostly as “visible” gold grains, whereas Au-Ag tel-lurides rarely exceed 1% (Clout et al. 1990; Mueller 2015).

Based on textural, mineralogical, geochemical and struc-tural criteria, three distinct types of gold and telluride miner-alization have been differentiated in the Kalgoorlie district(Mueller et al. 1988; Clout et al. 1990; Bateman andHagemann 2004). Fimiston style mineralization is character-ized by shear-zone and breccia-hosted ankerite-sericite-pyrite-gold-telluride lodes, while Oroya-style mineralization is char-acterized by breccias and locally sheared ore zones containingankerite-sericite-pyrite ± V-muscovite-gold-tellurides. Finally,Mt. Charlotte-style mineralization is characterized by aquartz-carbonate-scheelite-pyrite vein network with ankerite-sericite-albite-pyrite ± pyrrhotite-gold haloes. The presence ofpyrite in all three mineralization styles (Lungan 1986; Clout1989; Mikucki and Heinrich 1993; Harbi 1997) associatedwith different sulfide-oxide-V-muscovite mineral assem-blages provides a unique opportunity to study the variationsin pyrite trace element signatures related to variations in the

Fig. 1 Geological map of theKalgoorlie mining district(modified after Bateman et al.2001). The sample locations areprojected to surface and shown asblack rhombs. The inset map(modified from the GSWAwebsite; https://geoview.dmp.wa.gov.au) indicates the location ofthe Kalgoorlie district (K) in theArchean granite (pink) andgreenstone (green) terranes of theYilgarn Craton. Proterozoic mo-bile belts are shown in brown andthe Perth sedimentary basin inblue

Miner Deposita

hydrothermal fluids circulating in the Kalgoorlie faultnetwork.

Previous work on the trace element composition of py-rite has focused on a variety of different aspects. For in-stance, diagenetic and synsedimentary pyrites with hightrace element contents were proposed as a major sourceof metals for some hydrothermal deposits (Large et al.2007, 2009; Pitcairn et al. 2010). Laser ablation inductive-ly coupled plasma mass spectrometry (LA-ICP-MS) anal-yses of hydrothermal pyrite have also been used as a ten-tative indicator for the geochemical evolution of fluids,where various events deposited multiple sulfide stages(e.g., Large et al. 2007, 2009; Morey et al. 2008; Sunget al. 2009; Peterson and Mavrogenes 2014; Velásquezet al. 2014; Gregory et al. 2016; Ward et al. 2017).Similarly, trace elements in pyrite from relatively reducedand oxidized sulfide-oxide-gold ± telluride assemblagesand their δ34S values have been used to constrain fO2 ofthe ore-forming fluids (Peterson and Mavrogenes 2014;Ward et al. 2017; Spence-Jones et al. 2018).

However, few studies have focused on investigating thetemporal and spatial variations in the trace element signaturesof pyrite within and between deposits of the same miningdistrict (e.g., Belousov et al. 2016; Keith et al. 2018;Gregory et al. 2019). This study investigates the trace elementcomposition of hydrothermal and syngenetic pyrite in theGolden Mile, Mt. Charlotte, and Mount Percy deposits underthe same petrographic framework as the sulfur isotope studypresented in Godefroy-Rodríguez et al. (2018; this issue).Specifically, we investigated the variation of trace ele-ment contents in pyrite due to different hierarchical at-tributes in the data set. The extent to which each attri-bute can explain the trace element signature of the py-rite was explored by means of linear mixed effects(LME) modeling.

Geological setting of the Kalgoorlie deposits

The Kalgoorlie Terrane in the Archean Yilgarn Crastoncomprises metamorphosed volcanic and sedimentary rocks2.70 to 2.65 Ga in age (Czarnota et al. 2010; Witt et al.2017), as well as high-Ca and low-Ca granitic domal bath-oliths 2.68 to 2.60 Ga in age (Champion and Sheraton1997; Champion and Cassidy 2007). Mueller et al. (2016;this issue) provide a magmatic, structural, hydrothermaland geochronological framework for the southernKalgoorlie Terrane.

Stratigraphy

The stratigraphic units in the Kalgoorlie district, from oldest toyoungest, are the Hannan’s Lake Serpentinite, Devon Consols

Basalt, Kapai Slate shale, Paringa Basalt and the Black FlagBeds (Woodall 1965). The Golden Mile Dolerite sill (2680 ±9 Ma; U-Pb SHRIMP on zirconolite; Rasmussen et al. 2009)is the major host rock of gold mineralization and is dividedinto ten petrographic units (Travis et al. 1971). The sill wasemplaced between the Paringa Basalt and the Black Flaggreywacke succession (cf. Phillips 1986).

The Kapai Slate has been defined as a regional markerhorizon in the Kalgoorlie-Kambalda area (Woodall 1965),with an air-fall tuff component containing magmatic zirconsdated at 2692 ± 4 Ma (U-Pb SHRIMP; Claoué-Long et al.1988). The Kapai Slate has been described as a carbonaceouscherty shale with pyrite and pyrrhotite layers (Woodall 1965;Gregory et al. 2016). Pyrite in the Kapai Slate occurs as nod-ules and layers interpreted as syn-sedimentary in origin(Steadman et al. 2015).

Structural framework

Structural models from Mueller et al. (1988), Swager(1989), Clout et al. (1990), and Bateman and Hagemann(2004) have explained the order of deformation events inthe Kalgoorlie district. Recently, Mueller et al. (2016; thisissue) combined structural observations in the KalgoorlieTerrane with deposit-scale observations and new U-Pb zir-con geochronology. They propose a five-stage deformationhistory comprising: D0 extension associated with deposi-tion of volcanic and sedimentary rocks in a fault-boundedbasin; D1 compression resulting in upright and NW-striking folds, such as the Kalgoorlie anticline-synclinepair (Figs. 1 and 2); D2 sinistral strike-slip faulting as ev-idenced by the Boulder Lefroy and Golden Mile faults(Figs. 1 and 2); D3 compression associated with NNW-trending thrust faults such as the Oroya Thrust (Fig. 2);D4 dextral strike-slip responsible for generating NNE-trending structures such as the Charlotte and GoldenPike faults (Figs. 1 and 2); and D5 normal faultingtraced by ENE-striking Proterozoic dykes. The structur-al, hydrothermal, and mineralization features within theGolden Mile deposit are described in Mueller (2017;this issue).

Styles of mineralization in the Golden Mile and Mt.Charlotte deposits

Based on textural, structural and geochemical criteria, goldmineralization in the Kalgoorlie district has been subdividedinto Fimiston, Oroya and Mt. Charlotte styles (Bateman andHagemann 2004; Mueller and Muhling 2013; Mueller 2015).Using U-Pb age dating in monazite and zircon as well as K-Arage dates in muscovite, a single mineralization event at ca.2640 Ma was proposed (Vielreicher et al. 2010). In contrast,a succession of three mineralization events from 2665 to

Miner Deposita

2650 Ma was proposed by utilizing cross cutting structuralrelationships and U-Pb dating of porphyry magmatic zirconsand hydrothermal xenotime (Mueller et al. 2016; Mueller2017; this issue).

Fimiston style mineralization

Fimiston style mineralization (Fig. 3) is hosted in D2 faultsand occurs mainly in the Golden Mile Dolerite (Travis et al.1971). A few orebodies are hosted in the Paringa Basalt, theHannan’s Lake Serpentinite and the Williamstown Dolerite inthe Super Pit, Mt. Percy open pits and Hidden Secret under-ground mine (Clout et al. 1990; Mueller and Muhling 2013).Fimiston lodes are largely comprised of brittle-ductile shearzones containing breccias as well as shear veins (Phillips1986; Mueller et al. 1988; Clout et al. 1990). Ore texturesinclude crack-seal, banded and breccia in quartz-carbonateveins (Fig. 3a–d). Fimiston style proximal ankerite-sericite-pyrite ± hematite ± magnetite-leucoxene alteration haloes lat-erally transition into chlorite, ankerite and calcite (Fig. 3b andc). In turn, distal chlorite and calcite alteration overprints theregional actinolite-zoisite-albite metamorphic assemblage inthe Golden Mile Dolerite (Travis et al. 1971; Phillips andGibb 1993; White et al. 2003; Mueller 2017).

Mineralized shear zones referred to as “lodes” (e.g.,Lindgren 1906; Larcombe 1913; Stillwell 1931) comprisemore than 1000 interconnected structures and are broadlysubdivided into the Eastern and Western lode systems withrespect to the Golden Mile Fault (Woodall 1965; Fig. 2).The length of lodes ranges from 1 to 2 km and verticalextents are up to 1.5 km (Travis et al. 1971). Based onthe strike and dip of mineralized shear zones, Finucane(1948) divided the Fimiston lodes into Main (315–330°/85°), Caunter (280°/70°), No.2 (300–305°/80°) and Cross(50°/65°) lodes (Fig. 2).

Fimiston style mineralization contains pyrite ± hematite-magnetite-anhydrite assemblages implying a high oxidationstate in the hydrothermal fluid (e.g., Mueller 2018; thisissue). A paragenetic scheme is presented in Godefroy-Rodriguez et al. (2018; this issue):

Stage I is composed of volumetrically minor and barren(with respect to gold) magnetite breccias with rare pyrite andhematite (Fig. 3e).

Stage II represents the first gold stage and is characterizedby gold-pyrite-magnetite ± telluride mineralization (Fig. 3f).

Stage III is composed of gold-pyrite-telluride-leucoxeneassemblage and comprises most of the gold in the Fimistonlodes (Fig. 3g).

Fig. 2 Geological map of the300 m level (below the MountCharlotte water tank datum) of theGolden Mile area (modified fromMueller 2017; this issue). NNEstriking faults are highlighted inblue whereas the ore bodies(lodes) are highlighted in red. Thesubdivision of the lodes by orien-tation in the stereonet diagram isafter Finucane (1948)

Miner Deposita

Miner Deposita

Stage IV is composed of pyrite-hematite-gold hosted inirregular breccias and veins (Fig. 3h).

Oroya style mineralization

The most prominent example of Oroya style mineralizationin the Golden Mile deposit is the 1.3 km long Oroya shoot,an ore pipe which produced > 62 t of Au (Lungan 1986;Mueller and Muhling 2019; this issue). This telluride-richore is characterized by green V-bearing muscovite andtermed “green leader” (Tomich 1959; Nickel 1977).Mueller and Muhling (2019; this issue) propose two mainmineralization stages based on detailed mapping in theParinga mine: (1) Early chert-like quartz-chlorite-carbonate associated with auriferous pyrite; (2) Quartz-ankerite-V-muscovite-tourmaline associated with nativegold and tellurides. Petrographic results from this investi-gation (Godefroy-Rodríguez et al. 2018) are based on sam-ples from the Oroya Shoot (Hagemann and Vielreicher1999) and the Paringa mine (Mueller 2018; this issue). Wecorrelate our stages II and III with stage 1 and 2 of Muellerand Muhling (2019) and regard our ilmenite-rutile-pyritestage I as largely pre-gold (Fig. 4e). Our stage II is charac-terized by poikilitic pyrite with inclusion poor cores andinclusion-rich rims (Fig. 4f) and by the assemblagepyrite-chalcopyrite-sphalerite (Fig. 4g). Our stage IIIcontains free gold and tellurides and V-rich muscovite(Fig. 4h). Despite intensive research on tellurides inOroya ore (Golding 1978; Clout 1989; Shackletonet al. 2003; Mueller and Muhling 2019) new Te-bear ing minera ls are s t i l l d iscovered such askalgoorlieite (As2Te3; Rempel and Stanley 2016).

Mt. Charlotte style mineralization

Mt. Charlotte style mineralization (Fig. 5a) consists of quartz-carbonate-scheelite-pyrite veins in the Golden Mile Dolerite,which form the main orebodies in the Mt. Charlotte deposit(Clark 1980; Clout 1989; Mikucki and Heinrich 1993;Mueller 2015) and isolated orebodies in the Super Pit(Drysdale and Golden Pike; Clout 1989; Harbi 1997;

Bateman and Hagemann 2004). Locally, this style of goldmineralization is also present in theMt. Percy open pit, hostedby the Devon Consols Basalt and quartz-feldspar porphyrydikes.

The veins are enclosed in proximal ankerite-sericite-albite-pyrite replacement selvages with > 2 g/t Au (Fig.5b), intermediate chlorite-ankerite ± sericite-pyrite-pyr-rhotite, and distal chlorite-calcite alteration zones(Fig. 5c). Vein fill consist of stage I marginal parts, whichoften enclose stage II quartz-carbonate-scheelite-pyriteparts (Fig. 5d). Pyrite in the wall-rock is often intergrownwith ilmenite and rutile lamellae after titanomagnetite andcontains inclusions of chalcopyrite (Figs. 5e,f). In the out-er vein alteration zones, pyrite is locally in contact withpyrrhotite.

Methodology

Sample selection and characterization

The following collections were used to select characteristic pyritesamples for this study: (1) the UWA Edward de Courcy ClarkeEarth Science Museum, samples are documented by Clark(1980), Neall (1985) and Mueller (1990); (2) the UWA teachingcollection, including samples from Bateman and Hagemann(2004), Hagemann and Vielreicher (1999) and Dunga (2015);(3) the personal collection of L. Gauthier, with samples describedin Gauthier (2006); and (4) the personal collection of A.G.Mueller, with samples described in Mueller (2015) and Mueller(2018; this issue). The location (mine grid coordinates), hostrock, mineralization style, paragenetic stage, and associated min-eral assemblage (cf. Figs. 3 to 6) are documented in theElectronic Supplementary Material (ESM Table 1). Leastaltered samples of the Kapai Slate black shale werecollected from diamond core below the Union Clubopen pit at Mt. Percy (ESM Fig. 1). Bulk contents ofgold in Kapai Slate drill core are ≤ 0.06 ppm (ESMTable 1), and petrographic inspection indicates no obvi-ous hydrothermal alteration.

Internal textural relations of pyrite grains (e.g., Figs.6a,e) were studied with a Tescan Vega 3 Scanning ElectronMicroscope (SEM) at the Centre for Microscopy,Characterization and Analysis (CMCA), University ofWestern Australia (UWA). An accelerating voltage of20 kV and a beam intensity of 15 nA were used duringall the analytical sessions. Back scattered electron (BSE)images in combination with energy dispersive X-rayspectra (EDS) enabled the identification of silicate, car-bonate, oxide, gold and telluride inclusions in pyrite.These petrographic studies allowed us to assign hydro-thermal pyrite to mineralization styles and stages (ESMFig. 2).

�Fig. 3 Photographs of Fimiston style gold mineralization in the GoldenMile illustrating the different paragenetic stages. a Fimiston style lodeexposed in an open pit bench, courtesy of J. McDivitt. b Diamond drillcore sample showing quartz-carbonate veins with ankerite-sericite sel-vages and outer chlorite-calcite alteration, sample LV49. c Quartz-calcite veins contained in chlorite-calcite alteration. Leucoxene (brown)and magnetite (black) grains are disseminated, sample GBM95. d Intenseankerite-sericite-pyrite alteration containing an irregular quartz vein, sam-ple LV49. e Pyrite in contact with hematite, sample 52285A. f Subhedralmagnetite crystals with hematite rims and pyrite crystals, sampleGBM95. g Pyrite-gold-leucoxene assemblage, sample LV45. hSubhedral pyrite crystals in contact with leucoxene and ilmenite, sample52263

Miner Deposita

Miner Deposita

Laser ablation inductively coupled plasma massspectrometry of pyrite

Pyrite bearing samples were analyzed at the GeoHistoryFacility, John de Laeter Centre, Curtin University. A total of652 in situ LA-ICP-MS spots were ablated during three ses-sions (ESM Table 1). Samples rested in a RESOlution M-50A-LR ablation cell. A Compex 102 laser (193 nm) was usedto ablate sulfides using a 75-μm beam and laser energy flux of2.5 J/cm2. A period of 20 s of background was followed by45 s of ablation at a 7 Hz repetition rate and 20 s washout.Laser ablation was performed in a He (0.68 L min−1) and N2

(2.8 mL min−1) atmosphere. The ablation rate was about1 μm/s. An Agilent 7700 s quadrupole Inductively CoupledPlasmaMass Spectrometer (ICP-MS) was used for analysis. Asweep and dwell time of 384 ms and 8.33 ms, respectively,were used in each run. International standard reference mate-rials were analyzed before and after every 10 unknown samplespots during a four-day period. Ablation spectra were record-ed for 51V, 57Fe, 59Co, 60Ni, 63Cu, 75As, 82Se, 95Mo, 107Ag,118Sn, 121Sb, 125Te, 182W, 197Au, 205Tl, 208Pb and 209Bi inorder to quantify absolute concentrations of trace elementsin pyrite. The spectra of 24Mg, 27Al, 28Si, 44Ca and 48Ti werealso monitored to detect the presence of buried gangueinclusions.

Data reduction

Visualization of individual mass spectra was done using the soft-ware SILLS developed by Guillong et al. (2008). Integrationintervals for calculating absolute concentrations in ppm werechosen on smooth spectra concordant with the 57Fe signal ofthe pyrite. International standards MASS-1 and IMER (Wilsonet al. 2002; Ding et al. 2011) were used as external standardmaterials, whereas the stoichiometric concentration of Fe in py-rite (46.55 wt%) was used as the internal standard. Because ofAu inhomogeneity in MASS-1 at the micron scale (e.g.,Franchini et al. 2015; Román et al. 2019), IMER was used as aprimary standard to calculate Au concentrations in unknownpyrite. Time-resolved analyses (counts per second) were

processed in SILLS to obtain absolute concentrations in partsper million (ppm) and limits of detection using mathematicalexpressions from Longerich et al. (1996).

Inclusions of ore minerals

Subparallel and smooth ablation spectra (Fig. 7a) are generallyindicative of elements included in the crystal structure of pyrite(Reich et al. 2005;Morey et al. 2008; Deditius et al. 2008, 2011).However, evenly distributed nano-scale inclusions can also resultin similar ablation traces (< 0.1 μm; Román et al. 2019). In orderto distinguish between evenly distributed nano-inclusions andelements within the crystal structure additional microanalyticaltechniques are required (e.g., high-resolution transmitted electronmicroscopy, HRTEM; Reich et al. 2005). On the other hand,spectral peaks (Fig. 7b) of a given element are likely to reflectmineral inclusions (cf. Román et al. 2019). Micron-sized inclu-sionswere detected by peakswith awidth of 1–2 s and a signal atleast an order of magnitude higher than background (Fig. 7b).The SILLS software is designed to allow the exclusion of spikysignals from quantitative integration, a standard practice to avoidcontamination (Guillong et al. 2008). For this reason, such inter-vals were excluded from further consideration. The visual inter-pretation of selected sample spectra suggests that chalcopyriteand tennantite-tertrahedrite inclusions are abundant, and that in-clusions of Au-Ag minerals are common in Fimiston pyrite.Such inclusions are less abundant in Oroya and rare in MtCharlotte pyrite.

Data treatment and statistical analysis

A detailed statistical analysis was conducted to characterize theeffects of mineralization style, stage and mineral paragenesis onthe trace element signature of pyrite. Only those trace elementswhose concentrations were above detection limit in more thanhalf of all individual measurements were included. Data pre-treatment consisted of fixed-value imputation of below detectionlimit (BDL) values with the respective detection limit, as well aslog-transformation of all concentrations. These are standard pro-cedures that ensure the data fulfill the requirements for statisticalanalysis (van den Boogaart and Tolosana-Delgado 2013; Frenzelet al. 2016). The limitations introduced to data interpretation byimputation are discussed in Frenzel et al. (2016).

Linear mixed effects (LME) models (Winter 2013) werethen fitted to the data. This is a class of models that allows forthe statistical analysis of unbalanced datasets with complexhierarchical structures, which often result from themicrochemical analysis of minerals (e.g., Dmitrijeva et al.2018). Using the notation employed to describe linear modelsin R (cf. Winter 2013), LME models are of the general form:

X∼Y þ 1jZð Þ 1ð Þ

�Fig. 4 Photographs of Oroya-style mineralization illustrating the parage-netic stages. a Breccia with Paringa Basalt clasts (“green leader”) inquartz-calcite hydrothermal cement. Pyrite is disseminated and presentin aggregates, sample OR3. b Paringa Basalt with intense “green leader”(V-rich muscovite) alteration. Foliation and quartz veins are subparallel,sample from the UWA rock collection. c Paringa Basalt breccia clasts inquartz-carbonate cement. V-rich muscovite alteration is pervasive in bothclasts and matrix, sample from UWA rock collection. d Paringa Basaltwith intense sericite-ankerite-pyrite alteration and quartz-calcite-pyriteveins, sample OR25. e Pyrite in contact with rutile from stage I, sampleOR25. f Inclusion-rich rim containing a solid pyrite core, sample OR7. gPyrite in contact with a sphalerite-chalcopyrite-pyrrhotite aggregate, sam-ple OR20. h BSE image of pyrite in contact with Au-Ag tellurides, sam-ple BLF-11c

Miner Deposita

Fig. 5 Photographs of the MountCharlotte style mineralizationillustrating vein fill and thezonation in vein selvages. aUnderground exposure of MountCharlotte stockwork veins. bMount Charlotte stylemineralization displayingscheelite bearing quartz-pyriteveins (Stage II; Clark 1980)enclosed by intense ankerite-sericite-pyrite alteration, sampleMC-5/109741. c Vein selvage inGoldenMile Dolerite showing theproximal zone of ankerite-sericite-pyrite (“bleached” zone),intermediate zone of ankerite-sericite-pyrite±chlorite (“semi-bleached” zone) and distal zone ofchlorite-ankerite alteration. FromUWA rock collection. d MountCharlotte vein hosted in sericite-ankerite-pyrite±gold alteredGoldenMile Dolerite (“bleached”wall rock). The vein walls aredefined as stage I, whereas thevein center (scheelite-quartz-car-bonate±gold) is defined as stage II(modified from Clark 1980). eDistal zone: pyrite replacing rutileand remanent ilmenite grains,sample 490C (reflected polarizedlight). f Intermediate zone, pyritewith inclusion of chalcopyrite,sample 490B (reflected polarizedlight). g Pyrrhotite (with ilmeniteinclusions) in contact with pyrite,sample 109744 (BSE image)

Miner Deposita

where X is the dependent variable, Y is a fixed effect, and Z is arandom effect. Generally, several independent fixed and ran-dom effects can be modeled. Here, mineralization style and

stage, as well as sulfide-oxide-V-muscovite-telluride assem-blages, weremodeled as fixed effects, while deposit and samplewere modeled as random effects (intercepts only), such that:

Fig. 6 Photomicrographs of sulfide-oxide-telluride assemblages. aFimiston: pyrite in contact with gesrdorffite, the inset shows the EDSspectrum, sample UP32, Mt Percy. b Fimiston: euhedral magnetite withpyrite and chalcopyrite inclusion, sample PAR-7 Golden Mile deposit. cOroya: pyrite in contact with chalcopyrite and sphalerite, sample OR15,

Golden Mile deposit. d Oroya: solid pyrite enclosed by inclusion-richpyrrhotite, sample OR5, Golden Mile deposit. e Oroya: pyrite in contactwith interstitial arsenopyrite, sample OR4, Golden Mile deposit. f Oroya:Gold and tellurides embedded in carbonate and quartz, sample OR3,Golden Mile deposit

Miner Deposita

log Cð Þ∼Style : Stageþ Assemblageþ 1jSampleð Þþ 1jDepositð Þ 2ð Þ

where C denotes the concentration of a trace element in pyrite.The notation Style:Stagemeans that the effect of mineralizationstage for each style is distinct, i.e., pyrite stage I in Fimistonstyle mineralization is not equivalent to pyrite stage I in Oroya-style mineralization, and these are therefore modeled separately.The notation (1|Sample) and (1|Deposit) expressed in Eq. (2),assumes each sample and deposit have different random inter-cepts (Winter 2013). The inclusion of sample and deposit asrandom effects removes spurious signals introduced into thedataset from systematic variations between the samples anddeposits that may otherwise distort the results (cf. Dmitrijevaet al. 2018). Note that for Mt. Charlotte style mineralization, weused position (proximal, intermediate, distal) with respect to thevein instead of stage, since all analyzed pyrite samples camefrom the stage II of this style.

To test the statistical significance of mineralization style,stage and sulfide-oxide-V-muscovite-telluride assemblage inexplaining the data, incomplete models, each omitting one ofthese variables, were constructed and compared to the com-plete model. This allowed for the estimation of specific

p values for the fixed effects (cf.Winter 2013). The R softwaresuite, version 3.6.1 (R Core Team 2019), with packages lme4(Bates et al. 2015) and piecewiseSEM (Lefcheck 2016) wasused to conduct the analysis. An example script for one traceelement is given in ESM Appendix 1.

Results

The trace element data is organized hierarchically following asequence of deposit, mineralization style, paragenetic stageand zonation, with the latter only captured in Mt. Charlottestyle (data structure summarized in Fig. 8). An overview of theresults for Fimiston, Oroya and Mt. Charlotte style, as well assyngenetic pyrite is provided as box and whisker plots inFig. 9, and as a summary in Table 1, including median values,geometric means, 95% probability intervals and percentage ofanalyses below detection (% BDL). Note that the bounds ofthe 95% probability intervals correspond to the geometricmean multiplied or divided by the exponential of two timesthe log-standard deviation (cf. Dmitrijeva et al. 2018).

In syngenetic pyrite from the Kapai Slate, Au, Te and Vare mostly below detection (76–100%). The median valuesof Ni, Co, Cu, Pb, Sb and Ag fall within the same range as

Fig. 7 Mass spectra of LA-ICP-MS pyrite spot analyses (75-μmdiameter). The integration inter-vals selected for quantitative traceelement analysis represent ablatedpyrite without inclusions. aFimiston pyrite: integration inter-val of analysis M4_LGX-2. Peaksof W indicate micron-sizedscheelite inclusions. b Fimistonpyrite: analysis M4_LV45–12,the integration interval excludesmicron-sized native Au and Agtelluride inclusions

Fig. 8 Chart displaying thehierarchy of LA-ICP-MS traceelement data. The number ofsamples and analyses (in italics)are indicated in parentheses

Miner Deposita

the median values for the hydrothermal pyrites. Only Asand Bi fall outside that range, with As being significantlylower and Bi significantly higher in the syngenetic pyrite.The pyrite in black shale beds has been proposed as asource of Au at Kalgoorlie and Kambalda (Steadmanet al. 2015; Gregory et al. 2016). Considering that Au isbelow detection in 100% of all pyrite analyses from theKapai Slate (Table 1) and bulk grades ≤ 0.06 ppm Au inthis marker bed (ESM Table 1), it is unlikely thatsyngenetic pyrite played any role as a source for preciousmetals in the hydrothermal deposits.

The concentrations of Cr, Mn, Se, Mo, W, Sn and Tl wereBDL ≥ 50% (ESM Table 3). Therefore, these elements wereexcluded from further statistical analysis. Bi and Te were alsomostly below detection but these elements were used to checkwhether any trends may still be discerned (Table 1). Theirinclusion in the analysis reflects their particular geologicalsignificance for the geochemistry of the gold ores in the dis-trict (e.g., Mueller 2018; this issue). Overall, the consideredtrace elements comprise (1) the base and heavy metals Ni, Co,Cu, Pb and V; (2) the metalloids As, Bi, Te and Sb; and (3) theprecious metals Au and Ag.

Linear mixed effects modeling for hydrothermalpyrite

Table 2 provides a summary of LME model results. The p-values clearly indicate that bothmineralization style/stage and

co-existing mineral assemblages have a statistically signifi-cant effect (p < 0.05) on the concentrations of most trace ele-ments in pyrite. Exceptions are As, Co, Te and V, for whichstyle/stage have no significant effect, and Pb, for which min-eral assemblage is not a significant explanatory variable. ForBi, none of the two fixed effects is significant. Overall, thefitted models account for between 40 and 80% of the totalvariance. However, in most cases, more than half of the ex-plained variance is due to the random effects, that is sampleand deposit.

To better visualize the specific results for individual fixedeffects, Figs. 10 and 11 show the fitted mean factor differencesbetween different mineralization styles/stages as well as min-eral assemblages. The nature of the LME models, in whichlog-transformed concentration data was used as input (Eq.(2)), makes this the most efficient way of representing results.The figures are to be read as follows: the mean concentrationof an element in any specific combination of mineralizationstyle/stage and mineral assemblage is given by multiplicationof the respective base-level (Table 3) with the appropriatecombination of mean fitted factors plotted in Figs. 10 and11. For instance, the mean Au concentration in a pyrite-onlyassemblage of Fimiston Stage II would be given by 0.04 ppm(base-level in Table 3) multiplied by a factor 10.3 to adjust forstyle/stage (Fig. 10), and then multiplied by a factor 4.1 toadjust for the effect of assemblage (Fig. 11), giving a meangold concentration of 1.7 ppm. Statistically significant differ-ences of specific populations from the base-level are indicated

Fig. 9 Whisker and box diagrams of selected trace elements ofsyngenetic, Fimiston, Oroya and Mount Charlotte pyrite. The geometricmean (dot), median (horizontal line), first quartile (Q1, lower limit of box)

and third quartile (Q3, upper limit of box) are shown. Outlier values areshown as triangles and circles (see legend)

Miner Deposita

Table1

Mineralisationstyle

Statisticalp

aram

eter

Ni

Co

Cu

Pb

VAs

SbTe

Bi

Au

Ag

Fimiston

Median(ppm

)47.15

159.14

31.96

3.07

2.28

164.06

2.61

<1.75

<0.05

0.82

0.53

233spots

Geometricmean(ppm

)55.49

137.82

27.26

3.46

2.57

140.00

3.58

1.11

0.12

1.16

0.77

23samples

95%

PI(ppm

)1-3111.06

4.47-4423.63

0.18-4095

0.07-180.08

0.11-62.04

0.3-65053.71

0.08-167.74

<0.01-115.95

<0.01-1.92

0.02-68.56

0.02-30.14

BDL(%

)2.6

0.4

16.3

20.6

30.9

6.4

27.9

56.2

71.2

30.0

29.2

Oroya

Median(ppm

)193.55

183.45

29.46

13.43

2.66

141.47

10.92

<2.57

0.23

0.81

0.97

279spots

Geometricmean(ppm

)201.30

144.18

19.94

12.02

3.04

104.69

11.06

2.82

0.25

0.92

1.24

12samples

95%

PI(ppm

)13.62-2981.83

7.14-2898.1

0.54-745.59

0.44-329.97

0.26-35.18

1.71-6595.22

0.36-337.88

<0.03-304.66

0.02-3.11

0.04-22.4

0.05-30.14

BDL(%

)0.4

0.4

15.8

6.8

21.1

3.6

10.4

49.8

30.5

24.0

16.5

Mount

Charlotte

Median(ppm

)104.74

106.94

<0.91

1.09

0.92

309.08

<0.54

<2.04

<0.05

<0.15

<0.18

107spots

Geometricmean(ppm

)80.87

95.99

1.61

1.27

1.23

145.00

0.72

2.38

0.13

0.16

0.22

15samples

95%

PI(ppm

)0.39-16718.41

3.21-2869.09

<0.03-80.51

0.06-28.66

0.13-11.37

2.35-8945.97

<0.11-4.74

<0.35-16.35

<0.01-1.35

<0.03-0.86

<0.02-2.46

BDL(%

)15.0

0.9

55.1

37.4

40.2

1.9

75.7

79.4

73.8

87.9

69.2

Syngenetic(K

apaiSlate)

Median(ppm

)258.85

158.39

2.04

13.04

<1.49

3.85

1.22

<1.79

0.87

<0.23

<0.52

33spots

Geometricmean(ppm

)252.45

110.19

14.60

12.92

1.67

15.79

1.96

2.00

0.87

0.25

0.92

3samples

95%

PI(ppm

)30.2-2110.15

3.08-3936.65

0.02-10890.98

0.81-205.39

<0.61-4.62

0.08-2993.81

0.13-28.91

<0.44-9.15

0.09-8.25

<0.06-1.01

<0.03-32.87

BDL(%

)0.0

0.0

33.3

0.0

84.8

0.0

36.4

75.8

9.1

100.0

51.5

Lim

itsof

detectionforallRange

LOD(ppm

)3.86-13.81

0.14-1.14

0.23-6.7

0.09-5.43

0.05-45.95

0.05-13.95

0.14-4.32

0.01-9.28

0.02-0.93

0.03-2.16

0.06-1.06

LA-ICP-MSdata

MedianLO

D(ppm

)1.13

0.26

0.61

0.31

0.68

0.80

0.50

1.31

0.05

0.12

0.12

The

numberof

analyses

belowthedetectionlim

it(#

BDL’s)areindicatedinitalics.Elementsused

forstatisticalanalyses

areindicatedinbold.T

hedetectionlim

itvaluewas

used

tocomputethemedian,

geom

etricmean,standard

deviationanda95%

probability

intervals(PI).T

herangeandmedians

oflim

itsof

detection(LOD)areincluded

inthetwobotto

mrows

Miner Deposita

by confidence intervals that do not overlap with the base-level.Base-level concentrations for each element include 95% con-fidence intervals (Table 3).

Furthermore, because the choice of base-level in the modelis arbitrary, two effects in Figs. 10 and 11 are significantlydifferent from each other if the confidence interval of one does

not overlap with the mean of the other and vice versa (Winter2013). An example for such a case is Sb in Fimiston Stage Iand Oroya Stage I (Fig. 10f), or As in the pyrite-pyrrhotite andpyrite-hematite assemblages (Fig. 11b).

Overall, it is clear from Fig. 10 that the uncertainties on theeffects of style/stage are considerable. Clearly, the data does

Fig. 10 Summary of the fitted mean factor differences between stages ofthe three Kalgoorlie mineralization styles for selected trace elements inpyrite. Arsenic, Bi, Co, Te and Vare not included in this figure since theeffect of stage and style was not statistically significant for these elements.The statistical parameters of these elements are listed in Table 2.

Abbreviations: Mount Charlotte (Mt. Ch.), proximal zone (Prox),intermediate zone (Int) and distal zone (Dist). Note that all MountCharlotte samples were from stage II and position was used in the modelinstead of stage. Color codes are as in Fig. 9

Table 2 Summary of linearmixed effects model results fordifferent trace elements

Element p (stage/style)

p(assemblage)

R2

(fixed)R2

(sample)R2

(deposit)R2

(total)Totalvariance*

Ag 6.7 × 10−4 2.6 × 10−4 0.24 0.16 0.03 0.44 3.4

As 0.41 4.5 × 10−17 0.27 0.4 0.06 0.73 7.7

Au 1.4 × 10−3 3.1 × 10−4 0.27 0.28 0 0.56 4.2

Bi 0.47 0.32 0 0.44 0.18 0.62 2.7

Co 0.22 3.0 × 10−3 0.08 0.36 0 0.44 2.9

Cu 7.0 × 10−4 8.1 × 10−4 0.3 0.14 0.29 0.73 7.3

Ni 1.2 × 10−3 1.0 × 10−3 0.2 0.22 0.39 0.81 5.6

Pb 0.03 0.16 0.17 0.34 0.17 0.68 6

Sb 2.6 × 10−3 2.5 × 10−3 0.31 0.37 0 0.69 5.1

Te 0.077 1.9 × 10−9 0.18 0.22 0 0.4 4.8

V 0.11 8.2 × 10−11 0.23 0.39 0.08 0.7 3.1

Miner Deposita

not allow for the identification of any systematic differencesbetween mineralization styles. Only individual stages are dis-tinct from the base-level or from each other, e.g., Ag in pyritefrom Fimiston Stage II is significantly higher than the base-level (Fig. 10a), as is Cu in Oroya Stage I (Fig. 10c).

As Fig. 11 shows, the effects of mineral assemblage arebetter constrained than those of style/stage. For instance,there are clearly significant differences in As concentra-tions between pyrites from different assemblages, and As

shows a systematic trend of increasing concentration withincreasing fO2. Generally, trace element concentrationsappear to be lowest in pyrite from pyrite-tetrahedrite,and highest in the pyrite ± hematite-magnetite, pyrite-V-muscovite-telluride and pyrite-gersdorfite assemblages(Fig. 11).

Fig. 11 Summary of the fitted mean factor differences between mineralassemblages for selected trace elements in pyrite. Bismuth and Pb are notincluded since the effect of mineral assemblage was not statisticallysignificant. Abbreviations: pyrite-pyrrhotite (Py-Po), pyrite-only (Py),pyrite-tellurides-V-muscovite (Py-Te-V), pyrite-hematite ± magnetite

(Py-Hem), pyrite-tetrahedrite (Py-Ttr), pyrite-chalcopyrite ± sphalerite(Py-Ccp), pyrite-gersdorffite ± galena (Py-Gsd), pyrite-arsenopyrite(Py-Apy). Common assemblages: Mount Charlotte and Oroya (blue),Oroya (Green), and Fimiston (Red)

Miner Deposita

Discussion

In the following subsections, we briefly explore the implica-tions of our results for pyrite chemistry in the Kalgoorlie dis-trict, and studies of mineral chemistry in general. We start byconsidering the influence of the random effects, sample, anddeposit, and then move on to discuss the effects of minerali-zation style and mineral assemblage on pyrite compositions,including the potential implications of the observed trends forthe conditions of ore formation. We also examine the Au-Te-As systematics of the Kalgoorlie pyrites and compare them tothose of other orogenic gold deposits.

Random effects

It is well known that different samples from the same oretype in the same deposit may have highly variable traceelement contents, both in terms of the bulk ore concentra-tions and concentrations within specific minerals (e.g.,Frenzel et al. 2016; Bauer et al. 2019; Frenzel et al.2019). This can be due to a variety of factors, includingvariations in the geological background, zonation of thedeposit, or random fluctuations in the ore-forming system,such as may be induced by fault movement. Significantdifferences between deposits of the same type within adistrict may also occur (Dmitrijeva et al. 2018). These var-iations usually appear to be random and cannot be predict-ed. However, they can easily confound studies aiming tounderstand the controls on mineral trace element composi-tions, particularly when the collected datasets are unbal-anced, as is generally the case (cf. Dmitrijeva et al.2018). So far, this issue has mostly been ignored in themineral trace element literature.

The results of LME modeling carried out in this studyclearly show that the random effects, sample and deposit, ac-count for a significant proportion of the total variance for mostof the investigated trace elements in pyrite (Table 2). In manycases, this proportion is greater than the proportion explained

by the fixed effects. Dmitrijeva et al. (2018) made similarobservations for trace elements in hematite from theMiddleback Ranges, South Australia. While the results ofthese two studies cannot be generalized, it is nevertheless clearthat the effects of variables related to sampling can be sub-stantial. If they are left unaccounted for in the statistical anal-ysis of the data, this may result in wrong conclusions.Therefore, random effects related to sampling should alwaysbe considered in the statistical analysis and modeling of min-eral trace element data.

Mineralization styles

Another interesting result from the present study is thelack of clear distinctions achieved by the LME modelsbetween the different mineralization styles and stageswithin them. Note that this does not appear to be due tosmall effect sizes, but rather to large uncertainties(Fig. 10), when compared with the differences of the var-ious mineral assemblages co-existing with pyrite(Fig. 11). The most likely explanation for this observationis the structure of the data set: there are virtually no sam-ples containing pyrite from two or more mineralizationstages. However, such samples would have been requiredin order to better separate the effects of style/stage fromthe random effects of sampling. Another possibility is thatthere are no systematic differences between pyrite miner-alization styles/stages once the effects of co-existing min-eral assemblages are accounted for. Since mineralizationstyles and mineral assemblages correlate (cf. ESMTable 1), this may provide an alternative explanation forthe observed lack of significant differences.

Unfortunately, the present data set does not allow us todistinguish between these two possibilities. This is due to itsstructure, an observation with implications for the design offuture mineral trace element studies. Namely, it means thatpreference should always be given to samples in which severalof the different categories to be distinguished are present.

Table 3 Base-levelconcentrations of trace elementsin pyrite (all categories)

Mean concentration (ppm) 95% confidence interval (ppm) Stage/style Paragenesis

Ag 0.11 0.03–0.48 Mt. Ch. Int. Py-Ttr

As 0.73 0.26–2.1 – Py-Ttr

Au 0.04 0.01–0.24 Mt. Ch. Dist. Py-Ttr

Bi 0.16 0.03–0.97 – –

Co 21 14–32 – Py-Ttr

Cu 0.42 0.03–6.8 Mt. Ch. Dist. Py-Ttr

Ni 0.62 0.04–11 Fimiston IV Py-Po

Pb 1.3 0.08–20 Mt. ch. Int. –

Sb 4 0.43–36 Mt. Ch. Prox. Py-Ttr

Te 0.08 0.05–0.13 – Py-Ttr

V 0.4 0.20–0.82 – Py-Ttr

Miner Deposita

Furthermore, each possible pairwise combination of catego-ries should be present in at least one sample. Such a samplingscheme may not always be possible.

Mineral assemblages

The effects of co-existing mineral assemblages on pyrite compo-sition are much better constrained by LME modeling than theeffects of mineralization style/stage. This allows for a more de-tailed interpretation of the results with respect to the conditions ofore formation. Specifically, the results suggest that the physico-chemical conditions under which pyrite formed had a significanteffect on its composition. For instance, the influence of fO2 isquite clear for As concentrations, which show an increasing trendfrom pyrite-pyrrhotite to pyrite-hematite assemblages (Figs. 11and 12). Other characteristics of the ore-fluids also appear to havehad a strong effect: high As concentrations occur in pyrite asso-ciated with arsenopyrite and gersdorffite. This implies a directcontrol by the As content in the fluid with the co-occurrence ofarsenopyrite signifying particularly high As concentrations.Similarly, the highest Te contents occur in pyrite co-existing withV-muscovite-telluride assemblages. These assemblages arealso documented in the Tuvuatu epithermal deposit andinterpreted as oxidized (Fig. 12; Spry and Scherbarth 2006).We note, however, that while certain features of the results arecertainly characteristic of specific physico-chemical controls,others, such as the occurrence of low As concentrations in pyriteassociated with tetrahedrite, are more difficult to interpret.Nevertheless, there is clear overall evidence for a control onpyrite compositions by fluid composition and fO2. This corrob-orates the suggestions by previous workers (e.g., Kusebauchet al. 2018; Xing et al. 2019).

Au-Te-As systematics of Kalgoorlie pyrites

The gold concentrations in Kalgoorlie pyrites are assessed intwo discrimination diagrams. The first one (Fig. 13a) sepa-rates Te-rich from Te-poor mineralization (Belousov et al.

2016), and the second one uses empirical regression lines todistinguish between particles (Au0) and lattice-bound gold(Au1+) in arsenical pyrite (Fig. 13b). Neither diagram providesa clear distinction between the different mineralization stylesat Kalgoorlie. In Au-As space (Fig. 13b), most values (> 90%)plot below the Carlin gold solubility curve defined by Reichet al. (2005). However, about half of all values lie above theline for orogenic deposits (Deditius et al. 2014). This empiri-cal solubility line (CAu = 0.004CAs + 2.1 × 10−7; Deditius et al.2014) is interpreted to allow the identification of lattice-boundgold in orogenic arsenical pyrite.

In Fig. 14, our results are plotted in the same discrim-ination diagrams according to mineral assemblage(Fig. 14a, b), and compared to data from orogenic golddeposits worldwide (Fig. 14c, d). The Mount Charlottepyrites are almost exclusively represented by imputedvalues, because 79–88% of the gold and tellurium analy-ses are below detection (Table 1). The Oroya pyrites inboth the reduced (pyrite-pyrrhotite) and more oxidizedassemblages (Au-Te-V-muscovite) plot predominantly inthe Te-rich field of orogenic deposits (Fig. 14a), andabove the solubility line of Deditius et al. (2014) in Au-As space (Fig. 14b) suggesting that most gold is presentin inclusions. This result is consistent with the trend de-fined by other Te-rich orogenic gold deposits (Fig. 14d).Fimiston pyrites from oxidized pyrite-hematite-magnetiteore plot in the Te-poor field defined by most orogenicdeposits (Fig. 14a, c). They cluster above and below thesolubility line of Deditius et al. (2014) indicating thatsuggesting that some gold maybe lattice-bound (Fig. 14b).

P-T and metallurgical constraints

Deditius et al. (2014) attributed the different gold solubilitiesobserved in arsenical pyrite to the higher formation tempera-tures of orogenic deposits (400–300 °C) relative to those ofCarlin-type deposits (240–180 °C). Fluid temperatures in themain ore body at Mt Charlotte are estimated at 410–440 °Ccooling to 350 °C during ascent in the quartz-vein stockwork(Mueller 2015). In the Golden Mile, the fluids of both theearly Fimiston and late Oroya hydrothermal systems cooledwith time from peaks of 420 ± 30 °C to about 300 °C. Oreformation at about 10-km depth in the Archean was followedby slow terrane uplift (e.g., Mueller et al. 2020; this issue).Although all three gold deposits at Kalgoorlie formed at sim-ilar P-T conditions, the metallurgical properties of the pyriticores differ considerably.

The Mt Charlotte ore is free-milling and 90% of the totalgold is recovered by a simple grinding, pyrite flotation, andcyanide leach process (Haycraft 1979). Most gold forms 5–15 μm grains filling fractures in pyrite or attached to itsboundary with gangue. Minor inclusions (< 15 μm) containpyrrhotite, chalcopyrite, tellurides and rare native gold.

Fig. 12 Log fO2 versus pH diagram showing sulfide-oxide-telluride-V-silicate phase relations (adapted from Spry and Scherbart 2006). Fluidconditions are 300 °C, ΣS = 0.01 mol, ΣV = 0.001 mol, Au and Te con-centrations are 1 ppb. These conditions were calculated for the Tuvuatuepithermal Au-Te-V deposit, Fiji (Spry and Scherbart 2006)

Miner Deposita

Tellurides account for less than 1% of the total gold in thedeposit (Clout et al. 1990). Our results are consistent withthese data. Elements substituting for Fe (Ni, Co) or S (As) inthe pyrite lattice (e.g., Ramdohr 1980; Michel et al. 1994;

Reich et al. 2005) have geometric means of 81–145 ppmand few analyses below detection (1–15%), whereas goldand silver have a low mean values (0.16–0.22 ppm) and aremostly below detection (69–88%; Table 1).

Fig. 14 Trace element scatterplots of pyrite ICP-MS analysesfrom Kalgoorlie according tomineral assemblage (a, b) com-pared to pyrite analyses from 60orogenic gold deposits (ESMTable 4). Values below detectionare imputed and shown as opensymbols. a Gold content versus100*Te/(Te + As) ratio plotted forreduced and oxidized assem-blages of the Golden Mile(Fimiston and Oroya) and MountCharlotte deposits. The dotted redline separates Te-rich from Te-poor deposits (Belousov et al.2016). b Gold versus arsenicconcentration in pyrite fromreduced and oxidized mineralassemblages at Kalgoorlie.Solubility curves are from Reichet al. (2005) and Deditius et al.(2014). c Gold content versus100*Te/(Te + As) ratio plotted fororogenic deposits worldwide. dGold versus arsenic concentrationin pyrite from Te-rich and Te-poororogenic deposits worldwide

Fig. 13 Trace element scatter plots of pyrite ICP-MS analyses accordingto Kalgoorlie mineralization styles. Values below detection are shown asopen circles. aAu content versus 100*Te/(As+Te) plot separating Te-richfrom Te-poor mineralization at the dividing line defined by Belousovet al. (2016). In the diagram, the open circles represent imputed valuesfor Te only, Au only and for both. b Au versus As concentration in

hydrothermal pyrite. Solubility limits separating nanoparticles fromlattice-bound gold are shown for Carlin and epithermal deposits (Reichet al. 2005) and for orogenic deposits (Deditius et al. 2014). The opencircles represent the imputed values for Au, as arsenic was above detec-tion in > 94% of all spots analyzed (Table 1)

Miner Deposita

In the giant Golden Mile deposit, 80–85% of the total goldoccurs in refractory Fimiston pyrite (Travis et al. 1971), whichwas roasted after flotation until 2015. At present, the pyriteconcentrate is treated in ultra-fine grinding mills before cya-nide leaching (www.superpit.com.au/about/mineral-processing). Gold recovery after ultra-fine grinding is 82–83% (Q4 mine statistics 2018; www.barrick.com).According to Travis et al. (1971), “most of the gold intelluride-free ore occurs as small globules 0.5-20 μm in diam-eter included in or marginal to the pyrite. Mineragraphic stud-ies correlated with cyanide extraction tests indicate that verylittle, if any, of the total gold is in solid solution with pyrite.”Our results indicate that Ni, Co, and As again have the highestgeometric means (55–140 ppm) and few analyses below de-tection (0.4–6.4%), whereas Au, Ag and Te have low meanvalues (0.77–1.16 ppm) and many analyses below detection(29–56%; Table 1). As spiky sections in the ICP-MS spectra(e.g., Figure 7b) were selectively excluded from quantitativeanalysis, we interpret the Au and Ag values in Fimiston pyriteas background caused by dispersed nanoparticles (< 0.1 μm)or by lattice-bound gold. However, micron-sized inclusions ofnative gold and Au-Ag tellurides (e.g., Mueller et al. 2020),detected as sharp Au and Ag peaks are present in about 50%of ICP-MS our spectra, probably contribute up to 83% to theFimiston gold budget.

Telluride-rich Oroya ore overprints Fimiston minerali-zation in many lodes of the Golden Mile but also formsseparate Au-Te ore bodies in late reverse shear zones(Mueller 2017). However, it was always processed togeth-er with Fimiston ore in the same mill. Detailed mineral-ogical studies of Oroya-style ore indicate that most goldoccurs in free native grains and in Au-Ag-Sb tellurides(Mueller and Muhling 2019; Mueller et al. 2020, thisissue). Most Oroya pyrite contains inclusions of both na-tive gold and tellurides, as also indicated by the results ofthis study (Fig. 14b). The lattice-bound elements Ni, Co,and As again have the highest geometric means (105–201 ppm) and few analyses below detection (0.4–3.6%;Table 1). Elements related to nano- and micron-sized in-clusions (Au, Ag, Te) have mean values of 0.92–2.82 ppmand 17–50% of analyses below detection (Table 1).Antimony is unusually enriched in Oroya pyrite (mean:11 ppm; 10% BDL) and might be partly substituting forarsenic in the pyrite lattice.

Conclusions

1. The linear mixed effect (LME) modeling of LA-ICP-MStrace element analyses of 75-μm spots in pyrite indicatesno systematic differences between the Fimiston, Oroyaand Mt Charlotte mineralization styles at Kalgoorlie but

shows a clear effect of assemblages defined by co-existingminerals on pyrite composition.

2. The random effects introduced by sampling are large andmay be a major reason for d i ff icu l t i es inconstraining differences due to mineralization style.Therefore, such effects should be taken into accountin the design of all future studies of mineral traceelement signatures.

3. The selection of smooth sections in the LA-ICP-MS spec-tra for quantitative analysis, and the elimination of peakscaused by micron-sized mineral inclusions forced by theprocessing software, indicates generally elevated values(50–300 ppm) of lattice-bound elements (Co, Ni, As) inall Kalgoorlie pyrites, and variations in elements (Au, Ag,Te) attributed to dispersed nano-sized inclusions.

4. Mt Charlotte pyrite has particularly low mean values ofAu and Ag (< 0.2 ppm) coupled with a large number ofanalyses below detection (69–88%). As 90% of the MtCharlotte gold is recovered by a simple grinding and cy-anide leach process, these “clean pyrite” results are con-sistent with the free-milling properties of the ore.

5. Fimiston refractory pyrite is typically associatedwith the strongly oxidized assemblage hematite-magnetite, and forms arsenical pyrite with up to6.5 wt% arsenic. In the Au-As discrimination dia-gram, these pyrite plot above and below the goldsolid solution line of Deditius et al. (2014) suggest-ing some lattice-bound gold. However, the “lattice-bound” gold detected in the smooth sections of theLA-ICP-MS spectra may also be due to dispersednanoparticles given that 83% of all gold is micron-sized and liberated by ultra-fine grinding.

6. Oroya pyrite is mostly associated with the moderatelyoxidized assemblage V-muscovite-Au-Te, and to a lesserextent with the reduced assemblage pyrite-pyrrhotite.These pyrites plot in the telluride-rich field of orogenicgold deposits, and above the solid solution line ofDeditius et al. (2014) suggesting native gold inclusions,a result consistent with abundant free gold and Au-Agtellurides documented in mineralogical studies of this ore.

Acknowledgments This research would not have been possible without apostgraduate scholarship from CONACYT (Consejo Nacional deCiencia y Tecnología, Mexico). Samples, discussion and support fromAndreas Mueller are greatly appreciated. The authors would like to ac-knowledge technical support at the Centre for Microscopy,Characterization and Analysis (CMCA), at the University of WesternAustralia. The GeoHistory Facility instruments in the John de LaeterCentre, Curtin University, were funded by an Australian GeophysicalObserving System grant provided to AuScope Pty Ltd. by the AQ44Australian Education Investment Fund program. The NPII multi-collector was funded by the Australian Research Council LIEF program(LE150100013). Discussion and comments from Daniel Gregory,Michael Tedeschi, Jessica Bogossian and Bertrand Rottier are equallyacknowledged. Discussion and previous data compilations from Manuel

Miner Deposita

Keith, Daniel Gregory, Ivan Belousov, Michael Tedeschi and CarolinKresse were most valuable to compare the results of our study to thosefrom other orogenic gold deposits.

References

Bateman R, Hagemann SG (2004) Gold mineralisation throughout about45Ma of Archaean orogenesis: protracted flux of gold in the GoldenMile, Yilgarn craton, Western Australia Mineralium Deposita 39:536–559 doi:https://doi.org/10.1007/s00126-004-0431-2

Bateman RJ, Hagemann SG, McCuaig TC, Swager CP (2001) Protractedgold mineralization throughout Archaean orogenesis in theKalgoorlie camp,Yilgarn Craton,Western Australia: structural, min-eralogical, and geochemical evolution. Geological Survey ofWestern Australia, Record 2001/17, pp 63–98

Bates DM, Bolker B,Walker S (2015) Fitting linearmixed-effects modelsusing lme4. J Stat Softw 67:1–48

Bauer ME, Burisch M, Ostendorf J, Krause J, Frenzel M, Seifert T,Gutzmer J (2019) Trace element geochemistry of sphalerite in con-trasting hydrothermal fluid systems of the Freiberg district,Germany: insights from LA-ICP-MS analysis, near-infrared lightmicrothermometry of sphalerite-hosted fluid inclusions, and sulfurisotope geochemistry. Mineral Deposita 54:237–262. https://doi.org/10.1007/s00126-018-0850-0

Belousov I, Large R, Meffre S, Danyushevsky L, Steadman J,Beardsmore T (2016) Pyrite compositions fromVHMS and orogen-ic Au deposits in the Yilgarn Craton,Western Australia: implicationsfor gold and copper exploration. Ore Geol Rev 79:474–499. https://doi.org/10.1016/j.oregeorev.2016.04.020

Champion DC, Cassidy KF (2007) An overview of the Yilgarn Cratonand its crustal evolution. In: Bierlin FP Knox-Robinson CP (eds).Proceedings of Geoconferences (WA) Inc. Kalgoorlie 07’Conference. Geoscience Australia Record 2007/14, pp. 13–35

Champion DC, Sheraton JW (1997) Geochemistry and Nd isotope sys-tematics of Archaean granites of the Eastern Goldfields, YilgarnCraton, Australia: implications for crustal growth processes.Precambrian Res 83:109–132

Claoué-Long JC, Compston W, Cowden A (1988) The age of theKambalda greenstones resolved by ion-microprobe: implicationsfor Archaean dating methods. Earth Planet Sci Lett 89:239–259.https://doi.org/10.1016/0012-821X(88)90175-6

Clark ME (1980) Localization of gold, Mt Charlotte, Kalgoorlie,WesternAustralia. B.Sc. (Hns.) thesis, the University of Western Australia

Clout JMF (1989) Structural and isotopic studies of the Golden Milegold–telluride deposit, Kalgoorlie, WA. Monash University, PhDthesis

Clout JMF, Cleghorn JH, Eaton PC (1990) Geology of the Kalgoorliegoldfield. In: Hughes FE (ed) Geology of the mineral deposits ofAustralia and Papua New Guinea. Melbourne, Australasian Inst minMetall, monograph 14, pp 411–431

Czarnota K, Champion DC, Goscombe B, Blewett RS, Cassidy KF,Henson PA, Groenewald PB (2010) Geodynamics of the easternYilgarn Craton Precambrian Research 183:175–202 doi:https://doi.org/10.1016/j.precamres.2010.08.004

Deditius AP, Utsunomiya S, RenockD, Ewing RC, Ramana C, Becker U,Kesler SE (2008) A proposed new type of arsenian pyrite: compo-sition, nanostructure and geological significance. GeochimCosmochim Acta 72:2919–2933. https://doi.org/10.1016/j.gca.2008.03.014

Deditius AP, Utsunomiya S, Reich M, Kesler SE, Ewing RC, Hough R,Walshe J (2011) Trace metal nanoparticles in pyrite. Ore Geol Rev42:32–46

Deditius AP, ReichM, Kesler SE, Utsunomiya S, Chryssoulis SL,WalsheJ, Ewing RC (2014) The coupled geochemistry of Au and As inpyrite from hydrothermal ore deposits. Geochim Cosmochim Acta140:644–670. https://doi.org/10.1016/j.gca.2014.05.045

Ding L et al (2011) A LA-ICP-MS sulphide calibration standard based ona chalcogenide glass. Mineral Mag 75:279–287. https://doi.org/10.1180/minmag.2011.075.2.279

Dmitrijeva M, Metcalfe AV, Ciobanu CL, Cook NJ, Frenzel M, KeyserWM, Johnson G, Ehrig K (2018) Discrimination and variance struc-ture of trace element signatures in Fe-oxides: a case study of BIF-mineralisation from the Middleback ranges, South Australia. MathGeosci 50:381–415. https://doi.org/10.1007/s11004-018-9734-1

Dunga J (2015) Hydrothermal alteration mineralogy, texture and zoningat the Union Club open pit in the Mt. Percy gold deposit, GoldenMile, Western Australia. MSc thesis, the University of WesternAustralia

Finucane KJ (1948) Ore distribution and lode structures in the KalgoorlieGoldfield. Proceedings of the Australasian Institute of Mining andMetallurgy 148:111–129

FranchiniM,McFarlane C,Maydagan L, ReichM, Lentz DR, Meinert L,Bouhier V (2015) Trace metals in pyrite and marcasite from theAgua Rica porphyry-high sulfidation epithermal deposit,Catamarca, Argentina: Textural features and metal zoning at theporphyry to epithermal transition. Ore Geol Rev 66:366–387.https://doi.org/10.1016/j.oregeorev.2014.10.022

FrenzelM, Hirsch T, Gutzmer J (2016) Gallium, germanium, indium, andother trace and minor elements in sphalerite as a function of deposittype—a meta-analysis. Ore Geol Rev 76:52–78. https://doi.org/10.1016/j.oregeorev.2015.12.017

Frenzel M, Bachmann K, Carvalho JRS, Relvas JMRS, Pacheco N,Gutzmer J (2019) The geometallurgical assessment of by-prod-ucts—geochemical proxies for the complex mineralogical deport-ment of indium at Neves-Corvo. Portugal Mineralium Deposita 54:959–982. https://doi.org/10.1007/s00126-018-0849-6

Godefroy-Rodríguez M, Hagemann S, LaFlamme C, Fiorentini ML(2018) The multiple sulphur isotope architecture of the Golden miledeposit, Western Australia Mineralium Deposita doi:https://doi.org/10.1007/s00126-018-0828-y, 1, 26

Golding LY (1978) Mineralogy, geochemistry and origin of theKalgoorlie gold deposits, Western Australia. PhD thesis,University of Melbourne

Gregory DD et al (2016) Trace element content of pyrite from the KapaiSlate, St. Ives Gold District, Western Australia. Econ Geol 111:1297–1320. https://doi.org/10.2113/econgeo.111.6.1297

Gregory DD et al (2019) Distinguishing ore deposit type and barrensedimentary pyrite using laser ablation-inductively coupledplasma-mass spectrometry trace element data and statistical analysisof large data sets. Econ Geol 114:771–786. https://doi.org/10.5382/econgeo.4654

Guillong M, Meier DL, Allan MM, Heinrich CA, Yardley BWD (2008)SILLS: a matlab-based program for the reduction of laser ablationICP–MS data of homogeneous materials and inclusions vol 40.Laser ablation ICP–MS in the Earth Sciences: Current Practicesand Outstanding Issues. Mineralogical Asssociation of Canada,British Columbia

Harbi H (1997) Origin of the stockwork mineralisation at Kalgoorlie,Western Australia. PhD thesis, the University of Western Australia

Haycraft JA (1979) Estimation of gold ore reserves at Mt. Charlotte,Kalgoorlie, Western Australia: estimation and statement of mineralreserves, Australasian Institute of Mining and Metallurgy, SydneyBranch, October 1979, Proceedings, p. 155–165

Keith M, Smith DJ, Jenkin GR, Holwell DA, Dye MD (2018) A reviewof Te and Se systematics in hydrothermal pyrite from precious metaldeposits: Insights into ore-forming processes. Ore Geol Rev 96:269–282. https://doi.org/10.1016/j.oregeorev.2017.07.023

Kusebauch C, Oelze M, Gleeson SA (2018) Partitioning of arsenic be-tween hydrothermal fluid and pyrite during experimental sideritereplacement. Chem Geol 500:136–147. https://doi.org/10.1016/j.chemgeo.2018.09.027

Miner Deposita

Larcombe COG (1913) The geology of Kalgoorlie (Western Australia),with special reference to the ore deposits. Australasian Institute ofMining and Engenieering, Melbourne Monograph, 315 pp

Large RR, Maslennikov VV, Robert F, Danyushevsky LV, Chang Z(2007) Multistage sedimentary and metamorphic origin of pyriteand gold in the giant Sukhoi log deposit, Lena gold province.Russia Economic Geology 102:1233–1267. https://doi.org/10.2113/gsecongeo.102.7.1233

Large RR et al (2009) Gold and trace element zonation in pyrite using alaser imaging technique: implications for the timing of gold in oro-genic and Carlin-style sediment-hosted deposits. Econ Geol 104:635–668. https://doi.org/10.2113/gsecongeo.104.5.635

Lefcheck JS (2016) piecewiseSEM: piecewise structural equation model-ling in r for ecology, evolution, and systematics methods in ecologyand. Evolution 7:573–579

Lindgren W (1906) Metasomatic processes in the gold deposits ofWestern Australia. Econ Geol 1:530–544

Longerich HP, Jackson SE, Günther D (1996) Inter-laboratory note. Laserablation inductively coupled plasma mass spectrometric transientsignal data acquisition and analyte concentration calculation. JAnal At Spectrom 11:899–904

Lungan A (1986) The structural controls of the Oroya shoot: implicationsfor the structure of the Kalgoorlie region, Western Australia. B.Sc(Hns) thesis, the University of Western Australia

Michel D, Giuliani G, Olivo RG, Marini OJ (1994) As growth bandingand the presence of au in pyrites from the Santa Rita gold veindeposit hosted in Proterozoic metasediments,Goias State. BrazilEconomic Geology 89:193–200. https://doi.org/10.2113/gsecongeo.89.1.193

Mikucki E, Heinrich C (1993) Vein-and mine-scale wall-rock alterationand gold mineralisation in the Archaean Mount Charlotte deposit,Kalgoorlie, Western Australia. Australian Geological SurveyOrganisation, Record 54:135–140

Morey AA, Tomkins AG, Bierlein FP,Weinberg RF, DavidsonGJ (2008)Bimodal distribution of gold in pyrite and arsenopyrite: examplesfrom the Archean Boorara and Bardoc shear systems, YilgarnCraton, Western Australia. Econ Geol 103:599. https://doi.org/10.2113/gsecongeo.103.3.599

Mueller AG (1990) The nature and genesis of high- and medium-temperature Archaean gold deposits in the Yilgarn block, WesternAustralia, including a specifics study of scheelite-bearing skarnddeposits. PhD thesis, the University of Western Australia

Mueller AG (2015) Structure, alteration, and geochemistry of theCharlotte quartz vein stockwork, Mt Charlotte gold mine,Kalgoorlie, Australia: time constraints, down-plunge zonation, andfluid source. Mineral Deposita 50:221–244. https://doi.org/10.1007/s00126-014-0527-2

Mueller AG (2017) Structural setting of Fimiston- andOroya-style pyrite-telluride-gold lodes, Paringa South mine, Golden Mile, Kalgoorlie:1. Shear zone systems, porphyry dykes and deposit-scale alterationzones. Mineral Deposita:1–31. https://doi.org/10.1007/s00126-017-0747-3

Mueller AG (2018) Paragonite-chloritoid alteration in the Trafalgar faultand Fimiston- andOroya-style gold lodes in the Paringa South mine,Golden Mile, Kalgoorlie: 2. Muscovite-pyrite and silica-chlorite-telluride ore deposited by two superimposed hydrothermal systems.Mineral Deposita:1–34. https://doi.org/10.1007/s00126-018-0813-5

Mueller AG, Muhling JR (2013) Silver-rich telluride mineralization atMount Charlotte and Au–Ag zonation in the giant Golden Miledeposit, Kalgoorlie, Western Australia. Mineral Deposita 48:295–311. https://doi.org/10.1007/s00126-012-0425-4

Mueller AG, Muhling JR (2019) Early pyrite and late telluride mineral-ization in vanadium-rich gold ore from the Oroya Shoot, Paringasouth mine, Golden Mile, Kalgoorlie: 3. Ore mineralogy, Pb-Te(Au-Ag) melt inclusions, and stable isotope constraints on fluid

sources Mineralium Deposita doi:https://doi.org/10.1007/s00126-019-00876-6

Mueller AG, Harris LB, Lungan A (1988) Structural control ofgreenstone-hosted gold mineralization by transcurrent shearing: anew interpretation of the Kalgoorlie Mining District, WesternAustralia. Ore Geol Rev 3:359–387

Mueller AG, Hagemann SG, McNaughton NJ (2016) Neoarchean oro-genic, magmatic and hydrothermal events in the Kalgoorlie-Kambalda area, Western Australia: constraints on gold mineraliza-tion in the Boulder Lefroy-Golden Mile fault system. MineralDeposita:1–31. https://doi.org/10.1007/s00126-017-0747-3

Mueller AG, Hagemann SG, Brugger J, Xing Y, Roberts MP(2020) Early Fimiston and late Oroya Au-Te ore, ParingaSouth mine, Golden Mile, Kalgoorlie: 4. Mineralogical andthermodynamic constraints on gold deposition by magmaticfluids at 420-300°C and 300 MPa. Mineral Deposita. https://doi.org/10.1007/s00126-019-00939-8

Neall FB (1985) The application of thermodynamics to the study of twoArchean hydrothermal gold deposits in Western Australia. PhD the-sis, the University of Western Australia

Nickel EH (1977) Mineralogy of the ‘green leader’ gold ore atKalgoorlie, Western Australia Australia. Australasian Institute ofMining and Metallurgy Monograph 263:9–13

Peterson EC, Mavrogenes JA (2014) Linking high-grade gold minerali-zation to earthquake-induced fault-valve processes in the Porgeragold deposit, Papua New Guinea. Geology 42:383–386. https://doi.org/10.1130/G35286.1

Phillips GN (1986) Geology and alteration in the Golden Mile,Kalgoorlie. Econ Geol 81:779–808

Phillips GN, Gibb H (1993) A century of gold mining at Kalgoorlie. vol45. Economic Geology Research Unit, Key Centre in EconomicGeology, James Cook University of North Queensland

Pitcairn IK, Olivo GR, Teagle DA, Craw D (2010) Sulfide evolutionduring prograde metamorphism of the Otago and Alpine Schists,New Zealand. Can Mineral 48:1267–1295. https://doi.org/10.3749/canmin.48.5.1267

R Core Team (2019) R: a language and environment for statistical com-puting. R Foundation for Statistical Computing, Vienna, Austria.Accesed 07 August 2019

Ramdohr P (1980) The ore minerals and their intergrowths, Vol. 1 andVol. 2. Oxford, Pergamon, 1207 pp.

Rasmussen B, Mueller AG, Fletcher IR (2009) Zirconolite and xenotimeU–Pb age constraints on the emplacement of the Golden MileDolerite sill and gold mineralization at the Mt Charlotte mine,Eastern Goldfields Province, Yilgarn Craton, Western Australia.Mineral Deposita 157:559–572. https://doi.org/10.1007/s00410-008-0352-7

Reich M, Kesler SE, Utsunomiya S, Palenik CS, Chryssoulis SL, EwingRC (2005) Solubility of gold in arsenian pyrite. GeochimCosmochim Acta 69:2781–2796. https://doi.org/10.1016/j.gca.2005.01.011

Rempel K, Stanley CJ (2016) IMA 2015-119 vol 80. Mineral Mag.https://doi.org/10.1180/minmag.2016.080.081

Román N, Reich M, Leisen M, Morata D, Barra F, Deditius AP (2019)Geochemical and micro-textural fingerprints of boiling in pyrite.Geochim Cosmochim Acta 246:60–85. https://doi.org/10.1016/j.gca.2018.11.034

Shackleton JM, Spry PG, Bateman R (2003) Telluride mineralogy of thegolden mile deposit, Kalgoorlie, Western Australia. CanMineral 41:1503–1524. https://doi.org/10.2113/gscanmin.41.6.1503

Spence-Jones CP, Gawen RTJ, Boyce AJ, Hill NJ, Sangster CJS (2018)Tellurium, magmatic fluids and orogenic gold: an early magmaticfluid pulse at Cononish gold deposit. Scotland Ore GeologyReviews. https://doi.org/10.1016/j.oregeorev.2018.05.014

Spry P, Scherbarth N (2006) The gold–vanadium–tellurium association atthe Tuvatu gold–silver prospect, Fiji: conditions of ore deposition.

Miner Deposita

Mineral Petrol 87:171–186. https://doi.org/10.1007/s00710-006-0128-6

Spry PG, Chryssoulis SL, Ryan GC (2004) Process mineralogy of gold:gold from telluride-bearing ores the journal of the minerals. Metals& Materials Society 56:60–62. https://doi.org/10.1007/s11837-004-0185-4

Steadman JA, Large RR, Meffre S, Olin PH, Danyushevsky LV, GregoryDD, Holden P (2015) Synsedimentary to early diagenetic gold inblack shale-hosted pyrite nodules at the Golden mile deposit,Kalgoorlie, Western Australia. Econ Geol 110:1157–1191. https://doi.org/10.2113/econgeo.110.5.1157

Stillwell FL (1931) The occurrence of telluride minerals at Kalgoorlie.Proceedings of the Australasian Institute of Mining and Metallurgy84:115–190

Sung Y-H, Brugger J, Ciobanu C, Pring A, Skinner W, Nugus M (2009)Invisible gold in arsenian pyrite and arsenopyrite from a multistageArchaean gold deposit: sunrise dam, Eastern Goldfields Province,Western Australia. Mineral Deposita 44:765. https://doi.org/10.1007/s00126-009-0244-4

Swager C (1989) Structure of Kalgoorlie greenstones-regional deforma-tion history and implications for the structural setting of the GoldenMile gold deposits

Tomich SA (1959) The Oroya shoot and its relationship to other flatlyplunging ore pipes at Kalgoorlie. Proceedings of the AustralasianInstitute of Mining and Metallurgy 190:113–124

Travis GA, Woodall R, Bartram GD (1971) The geology of theKalgoorlie goldfield. In Glover JE (ed) Symposisum on Archeanrocks. Geological Society of Australia, Special Publication 3:175–190

Van den Boogaart KG, Tolosana-Delgado R (2013) Analyzing composi-tional data with R vol 122. Springer. doi:https://doi.org/10.1007/978-3-642-36809-7

Velásquez G, Béziat D, Salvi S, Siebenaller L, Borisova AY, PokrovskiGS, Parseval P (2014) Formation and deformation of pyrite andimplications for gold mineralization in the El Callao District,

Venezuela. Econ Geol 109:457–486. https://doi.org/10.2113/econgeo.109.2.457

Vielreicher NM, Groves DI, Snee LW, Fletcher IR, McNaughton NJ(2010) Broad synchroneity of three gold mineralization styles inthe Kalgoorlie Gold Field: SHRIMP, U-Pb, and 40Ar/39ArGeochronological evidence. Econ Geol 105:187–227. https://doi.org/10.2113/gsecongeo.105.1.187

Ward J, Mavrogenes J, Murray A, Holden P (2017) Trace element andsulfur isotopic evidence for redox changes during formation of theWallaby gold deposit,Western Australia. Ore Geol Rev 82:31–48.https://doi.org/10.1016/j.oregeorev.2016.11.011

White RW, Powell R, Phillips GN (2003) A mineral equilibria study ofthe hydrothermal alteration in mafic greenschist facies rocks atKalgoorlie, Western Australia. J Metamorph Geol 21:455–468.https://doi.org/10.1046/j.1525-1314.2003.00454.x

Wilson SA, Ridley WI, Koenig AE (2002) Development of sulfide cali-bration standards for the laser ablation inductively-coupled plasmamass spectrometry technique. J Anal At Spectrom 17:406–409.https://doi.org/10.1039/B108787H

Winter B (2013) Linear models and linear mixed effects models in R withlinguistic applications arXiv preprint arXiv:13085499

WittWK, CassidyKF, Lu Y, Hagemann S (2017) The tectonic setting andevolution of the 2.7 Ga Kalgoorlie-Kurnalpi rift, a world-classArchean gold province Mineralium Deposita doi:https://doi.org/10.1007/s00126-017-0778-9

Woodall R (1965) Structure of the Kalgoorlie goldfield. In: Andrew J (ed)Geology of Australian ore deposits 8th Commonwealth Min MetallCongress, Melbourne, pp 71–79

Xing Y, Brugger J, Tomkins A, Shvarov Y (2019) Arsenic evolution as atool for understanding formation of pyritic gold ores. Geology 47:335–338. https://doi.org/10.1130/g45708.1

Publisher’s note Springer Nature remains neutral with regard to jurisdic-tional claims in published maps and institutional affiliations.

Miner Deposita

Electronic Supplementary Material (ESM)

Laser ablation IPC-MS trace element systematics of hydrothermal pyrite in gold deposits of the Kalgoorlie District, Western Australia

Marcelo Godefroy-Rodríguez

Centre of Exploration Targeting, School of Earth Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

Corresponding author: [email protected]

Max Frenzel

Helmholtz-Zentrum Dresden Rossendorf, Institute Freiberg for Resource Technology, Chemnitzer Str. 40, 09599 Freiberg, Germany

Steffen G. Hagemann

Centre of Exploration Targeting, School of Earth Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

Submitted to Mineralium Deposita, 17th of April 2019

Content

ESM Table 1. Table of samples used for this study. The table contains details on samples locations (local mine grid), mine or drill hole where the sample was acquired, gold grade (when available), host rock, mineralization styles, alteration zonation (for Mount Charlotte) and redox assemblage.

ESM Table 2. LA-ICP-MS imputed data set for the Golden Mile deposit. Refer to ESM 1 for sample, lithology, location and geological classification. Supplied as separate Excel spreadsheet. Each value below detection is set (imputed) at the limit of detection, which varies between analytical spots.

ESM Table 3. Summary of pyrite analyses for elements with more than 50% of data below the detection limit.

ESM Figure 1. Kapai Slate drill core sample and SEM images (sample UP74) of pyrite with LA-ICP-MS analyses. The Au, As and Te values in ppm are also indicated in ablated pits (white circles). A Core photo of Kapa Slate, pyrite is bedding parallel with partially oxidized bands due to surface exposure. B-E Reflected light and BSE images of syngenetic sulfides with location of LA-ICP-MS analyses.

ESM Figure 2. Photographs and reflected light maps of epoxy mounts used for LA-ICP-MS analyses.

ESM Appendix 1. Example of R script employed for statistical analysis

Electronic Supplementary Material: Separate Excel spreadsheets (Excel .xlsx files)

ESM Table 2. LA-ICP-MS imputed data set for the Golden Mile deposit. Refer to ESM 1 for sample, lithology, location and geological classification. Supplied as separate Excel spreadsheet. Each value below detection is set (imputed) at the limit of detection, which varies between analytical spots.

ESM Table 4. Compilation of trace element pyrite data (LA-ICP-MS) from 65 orogenic gold deposits in 14 countries, including published data sets from Belousov et al., (2016) and Keith et al. (2017). The DOI of each reference is listed in the table.

Mine Sample Au (g/t) Host Rock Min. Style Stage Zone #Spots Assemblage Drill Hole/ Level Easting [m] Northing [m] RL [m] Golden Mile 52258A 0.1 GMD Fimiston I - 4 Py-Hem±Mag ENGD010 19134.00 48590.00 -534.00Golden Mile 52166 8.8 GMD Fimiston I - 10 Py-Hem±Mag Level 20 19235.00 47397.00 -667.00Golden Mile GBM 95 0.03 GMD Fimiston II - 9 Py-Hem±Mag BM05969 18985.07 47738.28 -339.71Golden Mile GBM 96 1.52 GMD Fimiston II - 13 Py-Hem±Mag BM05969 18982.86 47736.21 -341.46Golden Mile LV29 1.55 GMD Fimiston II - 13 Py only BM05773 19387.99 47950.00 -373.75Golden Mile PAR-7 4.7 GMD Fimiston II - 2 Py-Hem±Mag Paringa 6L 19605.00 49120.00 -227.00Golden Mile GBM 76 0.03 GMD Fimiston II+III - 20 Py-Hem±Mag BM06032 18985.89 47724.57 -361.74Golden Mile LGX 30 GMD Fimiston II+III - 30 Py-Ttr & Py Pit Sample 19156.00 48417.00 -240.00

Mt Percy UP26A 1.51 HLS Fimiston III - 3 Py only KND0261 19492.19 53631.63 -184.53Golden Mile 52183 180 GMD Fimiston III - 4 Py only ENGD010 19490.00 48770.00 -244.00Golden Mile 52287 45.4 GMD Fimiston III - 6 Py only ENGD010 19141.00 48590.00 -550.00Golden Mile LSGD001-2 2.3 GMD Fimiston III - 10 Py-Hem±Mag LSGD001 19478.00 47090.00 -180.00Golden Mile LV31 7.19 GMD Fimiston III - 18 Py only BM05773 19432.45 47974.45 -388.45Golden Mile LV45 5.52 GMD Fimiston III - 12 Py only BM05346 19425.43 47937.66 -386.14Golden Mile LV56 0.02 GMD Fimiston III - 18 Py-Hem±Mag BM05771 19451.76 47950.00 -360.97Golden Mile SH-GM157 - GMD Fimiston III - 15 Py-Hem±Mag ADGD1 19624.95 46731.26 -270.56Golden Mile SH-GM175b - GMD Fimiston III - 1 Py-Hem±Mag ADGD1 19583.32 46660.73 -201.08Golden Mile SH-GM175 - GMD Fimiston III - 2 Py-Hem±Mag ADGD1 19621.71 46725.77 -265.16Golden Mile KL-1 6.6 GMD Fimiston III - 17 Py only Paringa 4L 19708.00 49270.00 -166.00

Mt Percy UP35 305 HLS Fimiston III - 2 Py only KND0261 20676.36 53630.29 -199.34Mt Percy UP25A 1.51 HLS Fimiston III - 5 Py-Gsd±Gn KND0261 20430.64 53631.65 -184.27Mt Percy UP32 6.21 HLS Fimiston III - 3 Py-Gsd±Gn KND0261 19341.35 53630.47 -197.43

Golden Mile 52263 0.02 GMD Fimiston IV - 2 Py-Hem±Mag Level 20 19240.00 47410.00 -667.00Golden Mile GBM 59 5.64 GMD Fimiston IV - 18 Py only BM05988 18832.27 47739.51 -396.89Golden Mile OR9 2.83 PB Oroya I - 22 Py only BM05389 18962.86 48483.70 -410.30Golden Mile OR25 - PB Oroya II - 4 Py-Ccp±Sph BM05501 19635.17 48508.43 -307.29Golden Mile OR4 48.5 PB Oroya II - 5 Py-Apy BM05389 18972.62 48480.35 -406.89Golden Mile OR5 135 PB Oroya II - 37 Py-Po BM05389 18984.37 48476.32 -402.79Golden Mile OHW-8b 48 PB Oroya II - 18 Py only Paringa 7L 19793.00 49070.00 -258.00Golden Mile OHW-23 48 PB Oroya II - 7 Py only Paringa 7L 19793.00 49070.00 -258.00

Golden Mile OR20 0.62 PB Oroya II - 19Py-Ccp±Sph &

Py only BM05518 19622.51 48433.69 -371.00

Golden Mile OR7 0.4 PB Oroya II - 24 Py-Ccp±Sph BM05389 19641.00 48968.00 -370.00Golden Mile BLF-6b - PB Oroya II+III - 15 Py only Paringa 11L 19658.87 48195.84 -402.25

Golden Mile OR15 3 PB Oroya II+III - 75Py-Ccp±Sph &

Py only BM05584 19620.71 48131.82 -399.25

Golden Mile BFL-11c 120 PB Oroya II+III - 19 Py only Paringa 11L 18942.20 48490.80 -417.52Golden Mile OR3 28.7 PB Oroya II+III - 18 Py-Te-V BM05389 18973.33 48480.11 -406.65Golden Mile OR11 7.1 PB Oroya III - 16 Py-Te-V BM05389 19641.00 48967.00 -370.00Mt Charlotte 490C - GMD Mt. Charlotte II Distal 4 Py only Level 5 - - -168.00Mt Charlotte 483C - GMD Mt. Charlotte II Intermediate 7 Py only Level 5 - - -168.00Mt Charlotte 490B - GMD Mt. Charlotte II Intermediate 8 Py-Ccp±Sph Level 5 - - -168.00Mt Charlotte MC22/109744 - GMD Mt. Charlotte II Intermediate 6 Py-Po Level 22 19933.00 52970.00 -673.00Mt Charlotte 483A - GMD Mt. Charlotte II Proximal 17 Py only Level 5 - - -168.00Mt Charlotte 490A - GMD Mt. Charlotte II Proximal 10 Py only Level 5 - - -168.00Mt Charlotte MC31/109752 - GMD Mt. Charlotte II Proximal 7 Py-Po Level 22 19965.00 53005.00 -673.00Mt Charlotte MC23/109745 - GMD Mt. Charlotte II Proximal 6 Py only Level 22 19930.00 52970.00 -673.00Mt Charlotte MC3/109740 - GMD Mt. Charlotte II Proximal 6 Py-Ccp±Sph Level 22 19952.00 53055.00 -673.00Mt Charlotte MC5/109741 - GMD Mt. Charlotte II Proximal 8 Py only Level 22 19951.00 53052.00 -673.00

Mt Percy UP24 1.4 QFP Mt. Charlotte II Proximal 6 Py only KND0261 19134.06 53631.76 -183.14Mt Percy UP23 2.19 QFP Mt. Charlotte II Proximal 4 Py only KND0261 19113.97 53631.85 -182.10Mt Percy UP63 0.19 QFP Mt. Charlotte II Proximal 4 Py only KND0240 20437.05 54187.46 -114.23

Mt Percy UP 58 0.001 DCB Mt. Charlotte II Proximal 11Py-Gsd±Gn &

Py only KND0329 21037.66 53952.81 -264.49

Mt Percy UP 76 0.001 KS Syngenetic Syngenetic - 13 Py only KND0329 20685.74 53620.91 -282.98Mt Percy UP74 0.06 KS Syngenetic Syngenetic - 13 Py only KND0329 20990.08 54208.35 -277.88Mt Percy UP75 0.05 KS Syngenetic Syngenetic - 7 Py only KND0329 20989.76 54211.43 -281.28

ESM Table 1. Table of samples used for this study. The table contains details on samples locations (local mine grid), mine or drill hole where the sample was acquired, gold grade (when available), host rock, mineralization styles, alteration zonation (for Mt. Charlotte) and assemblage.

Host rock: Hannan's Lake Serpentinite (HLS), Devon Consols Basalt (DCB), Kapai Slate (KS), Paringa Basalt (PB), Golden Mile Dolerite (GMD) and Quartz Feldspar Porphyry (QFP).

#Spots: LA-ICP-MS spot analyses per sample. Mineral abbreviations: Pyrite (Py), Pyrrhotite (Po), Chalcopyrite (Ccp), Sphalerite (Sph), Galena (Gn), Gersdorffite (Gsd), Hematite (Hem), Magnetite (Mag), Tellurides (Te) and V-rich muscovite (V). Coordinates are in mine grid. Reduced Level (RL) is below the water tank on Mount Charlotte.

ESM Table 2. LA-ICP-MS imputed data set for the Golden Mile deposit. Refer to ESM 1 for sample, lithology, location and geological classification. Supplied as separate Excel spreadsheet. Sample #Spot Deposit Style Stage/Zone Redox V Cr Mn Co Ni Cu As Se Mo Ag Sn Sb Te W Au Tl Pb Bi

ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppmMaximum Limit of Detection 46.0 42.3 41.0 1.1 13.8 6.7 14.0 13.0 16.4 1.1 5.2 4.3 9.3 8.1 2.2 3.0 5.4 0.9Median Limit of Detection 0.68 2.91 4.11 0.26 1.13 0.61 0.80 13.78 0.97 0.12 0.40 0.50 1.31 0.44 0.12 0.15 0.31 0.05

52183 52183 - 3 Golden Mile Fimiston III Py-Ttr 42.0 7.6 14.3 6.0 1165.4 7.4 963.6 69.9 3.9 0.2 1.0 0.6 9.3 0.9 1.1 0.3 0.7 0.152183 52183 - 4 Golden Mile Fimiston III Py 29.6 7.7 15.4 225.4 598.2 1.4 164.1 62.5 2.1 0.1 0.6 0.5 6.5 0.4 0.7 0.1 0.5 0.152183 52183 - 5 Golden Mile Fimiston III Py 46.0 9.1 18.3 151.1 610.5 2.6 104.1 79.3 3.4 2.2 0.8 0.6 6.6 0.6 7.0 0.2 0.6 0.152183 52183 - 7 Golden Mile Fimiston III Py 400.1 6.8 13.6 1317.4 590.1 1602.3 244.7 61.6 2.7 86.6 0.7 2.0 45.3 0.5 168.2 0.2 16.4 0.3

52285A 52285A - 1 Golden Mile Fimiston I Py-Hem 24.3 6.8 30.1 303.9 15.0 83.7 195.0 63.6 3.1 0.8 0.8 13.0 2.6 26.4 2.7 0.3 29.2 0.752285A 52285A - 2 Golden Mile Fimiston I Py-Hem 13.0 4.7 9.0 14.3 49.7 9.9 172.4 40.0 1.4 0.1 0.4 0.9 0.4 0.2 0.2 0.1 0.5 0.052285A 52285A - 3 Golden Mile Fimiston I Py-Hem 29.4 8.7 16.6 0.6 3.9 1.9 7.6 73.4 3.2 0.2 0.8 0.7 0.8 0.7 0.5 0.2 0.6 0.152285A 52285A - 5 Golden Mile Fimiston I Py-Hem 17.0 5.0 9.8 57.5 79.5 7.4 109.5 42.4 1.5 0.1 0.4 0.4 0.4 0.3 0.2 0.1 0.3 0.052287 52287 - 1 Golden Mile Fimiston III Py 17.0 9.3 16.7 38.4 5.4 2.1 4.1 83.9 4.4 0.3 1.1 1.1 1.0 0.9 0.6 0.3 0.8 0.152287 52287 - 2 Golden Mile Fimiston III Py 19.5 8.3 14.9 21.9 8.9 2.1 31.8 78.9 4.3 0.3 1.2 1.0 2.3 0.9 0.6 0.4 0.9 0.152287 52287 - 3 Golden Mile Fimiston III Py 15.7 7.0 12.6 34.1 4.1 16.2 54.0 65.5 3.3 0.2 0.9 0.7 0.7 0.7 0.6 0.2 1.8 3.452287 52287 - 4 Golden Mile Fimiston III Py 24.9 8.4 15.3 172.7 5.3 321.3 107.5 80.3 4.8 2.7 1.3 11.8 3.7 1.0 10.4 0.4 27.5 13.652287 52287 - 5 Golden Mile Fimiston III Py 55.6 12.2 21.7 1330.0 8.6 36.5 107.8 117.4 7.5 3.9 1.8 3.5 4.1 1.5 6.5 0.5 16.1 6.852287 52287 - 6 Golden Mile Fimiston III Py 32.1 8.7 16.1 1860.7 11.1 291.2 107.1 448.4 5.2 11.7 1.2 12.3 18.4 1.0 29.6 0.4 70.0 38.3

BLF-11c BLF-11c - 1 Golden Mile Oroya III Py 1.8 6.8 7.7 103.6 67.6 1.1 2.4 18.4 2.0 1.9 1.0 2.6 0.9 0.8 1.0 0.4 7.0 0.1BLF-11c BLF-11c - 10 Golden Mile Oroya III Py 5.6 5.4 6.2 185.9 593.2 4.4 1.7 15.8 1.6 0.3 0.9 4.6 1.1 0.8 0.3 0.3 18.0 0.1BLF-11c BLF-11c - 11 Golden Mile Oroya III Py 4.4 5.4 6.3 171.0 550.9 0.9 1.7 15.4 1.2 0.2 0.8 5.0 0.8 0.6 0.2 0.2 8.7 0.1BLF-11c BLF-11c - 12 Golden Mile Oroya III Py 5.6 5.9 6.8 377.8 1079.9 1.0 1.9 17.5 1.5 0.2 0.8 154.5 0.9 0.8 0.3 0.9 23.5 0.1BLF-11c BLF-11c - 13 Golden Mile Oroya III Py 4.7 6.7 7.9 271.9 766.0 1.3 1.6 20.7 2.4 0.3 1.2 16.6 1.2 1.0 0.4 0.4 6.4 0.1BLF-11c BLF-11c - 14 Golden Mile Oroya II Py 2.4 8.0 9.4 136.2 1525.1 1.5 1.7 24.7 2.9 0.4 1.4 3.7 1.4 1.4 0.4 0.4 42.1 0.2BLF-11c BLF-11c - 15 Golden Mile Oroya II Py 0.7 3.9 4.7 129.9 1711.1 0.6 1.2 10.7 0.6 0.1 0.3 3.1 0.5 0.3 0.1 0.1 25.3 0.0BLF-11c BLF-11c - 16 Golden Mile Oroya II Py 0.9 4.2 4.9 177.0 2223.2 2.3 1.3 12.3 0.8 0.2 0.5 3.6 0.7 0.4 0.2 0.3 43.3 0.1BLF-11c BLF-11c - 17 Golden Mile Oroya II Py 0.7 3.9 4.6 118.0 1927.1 0.6 1.4 10.4 0.6 0.1 0.3 0.8 0.5 0.3 0.1 0.2 6.8 0.1BLF-11c BLF-11c - 18 Golden Mile Oroya II Py 3.2 10.5 11.8 181.8 1833.6 1.9 26.8 33.2 4.2 0.5 2.0 2.1 1.8 1.9 0.6 0.7 4.9 0.2BLF-11c BLF-11c - 19 Golden Mile Oroya II Py 5.1 7.6 11.3 208.6 2412.7 2.0 1.4 18.5 4.4 0.5 2.4 1.4 1.2 1.8 0.9 0.7 3.8 0.2BLF-11c BLF-11c - 2 Golden Mile Oroya III Py 1.2 5.2 6.0 104.0 61.1 9.0 2.3 13.9 1.4 3.2 0.7 199.6 2.1 0.6 1.9 0.2 76.4 0.1BLF-11c BLF-11c - 3 Golden Mile Oroya III Py 1.9 7.4 8.1 88.7 50.1 1.9 2.3 20.9 2.5 0.3 1.2 0.9 2.4 1.1 0.4 0.4 6.7 0.1BLF-11c BLF-11c - 4 Golden Mile Oroya III Py 4.3 12.5 13.8 92.2 46.0 2.5 1.8 40.6 5.9 1.8 2.1 1.6 2.1 2.9 0.8 1.0 14.0 0.3BLF-11c BLF-11c - 5 Golden Mile Oroya III Py 2.3 8.0 9.0 300.9 55.3 1.4 9.6 23.6 3.0 0.3 1.5 1.0 1.4 1.4 0.4 0.6 1.1 0.2BLF-11c BLF-11c - 6 Golden Mile Oroya III Py 2.0 9.3 10.8 520.7 36.5 1.8 138.5 26.2 2.4 0.3 1.2 7.7 6.1 1.1 0.4 0.4 9.8 0.1BLF-11c BLF-11c - 7 Golden Mile Oroya III Py 2.0 6.2 6.9 258.2 42.1 1.2 99.4 19.0 2.4 0.3 1.1 0.7 1.2 1.1 0.4 0.5 0.9 0.1BLF-11c BLF-11c - 8 Golden Mile Oroya III Py 5.2 4.3 5.1 316.3 863.2 0.7 1.9 10.9 0.8 0.1 0.4 71.4 0.5 0.3 0.1 0.4 34.9 0.1BLF-11c BLF-11c - 9 Golden Mile Oroya III Py 5.3 4.3 5.2 249.4 672.2 0.6 1.8 11.4 0.5 0.9 0.4 21.1 0.6 0.3 0.1 0.1 12.7 0.0BLF-6b BLF-6b-1 - 1 Golden Mile Oroya II Py 2.4 12.1 14.8 427.2 4443.2 1.8 4.5 72.4 2.6 0.3 1.6 1.6 2.2 1.4 0.4 0.4 1.1 0.2BLF-6b BLF-6b-1 - 10 Golden Mile Oroya III Py 2.0 7.3 8.6 172.6 98.6 1.2 358.2 48.9 2.3 0.3 1.5 0.8 1.6 1.3 0.4 0.5 0.9 0.1BLF-6b BLF-6b-1 - 11 Golden Mile Oroya III Py 1.7 6.3 7.4 409.4 29.8 1.0 155.9 41.6 1.9 0.2 1.3 0.6 1.4 1.0 0.3 0.4 0.7 0.1BLF-6b BLF-6b-1 - 12 Golden Mile Oroya II Py 3.4 12.3 14.4 89.2 129.7 3.8 139.4 82.3 4.3 0.5 2.1 2.8 2.5 1.8 0.6 0.8 8.6 0.2BLF-6b BLF-6b-1 - 13 Golden Mile Oroya II Py 3.5 9.2 227.4 2.0 12.9 2.7 107.2 71.8 5.1 0.6 3.1 1.3 2.7 2.4 0.7 0.9 7.3 0.3BLF-6b BLF-6b-1 - 14 Golden Mile Oroya II Py 2.3 7.7 8.9 2.6 48.3 1.4 123.6 53.6 3.1 0.4 1.8 4.3 1.8 1.4 0.4 0.5 9.5 0.2BLF-6b BLF-6b-1 - 15 Golden Mile Oroya II Py 2.3 7.4 8.6 2.9 64.8 1.8 126.4 53.4 2.9 0.4 1.9 6.7 1.8 1.4 0.4 0.6 79.9 0.2BLF-6b BLF-6b-1 - 2 Golden Mile Oroya II Py 3.3 15.8 19.0 435.5 4338.5 2.4 5.1 98.8 3.5 0.5 1.7 2.0 3.1 1.7 0.6 0.7 1.9 0.2BLF-6b BLF-6b-1 - 3 Golden Mile Oroya II Py 3.3 15.4 18.3 429.3 4485.4 2.5 4.6 95.9 3.4 0.5 2.2 1.9 2.4 1.6 0.6 0.7 1.3 0.2BLF-6b BLF-6b-1 - 4 Golden Mile Oroya II Py 2.3 10.4 12.4 410.5 4082.9 1.6 3.7 66.1 2.7 0.3 1.4 1.3 2.2 1.2 0.4 0.5 3.9 0.1BLF-6b BLF-6b-1 - 5 Golden Mile Oroya II Py 27.4 16.6 19.0 387.3 4041.6 3.0 3.4 116.8 6.3 0.8 2.6 2.1 4.1 3.0 0.9 1.3 5.2 0.4BLF-6b BLF-6b-1 - 6 Golden Mile Oroya II Py 11.1 36.0 41.0 389.6 4879.9 6.4 7.3 256.4 16.4 1.9 5.1 4.3 9.2 8.1 2.2 3.0 5.4 0.9BLF-6b BLF-6b-1 - 7 Golden Mile Oroya II Py 3.2 11.6 13.6 352.4 3532.2 2.0 2.9 75.7 3.7 0.5 2.6 1.3 2.6 2.0 0.6 0.8 1.4 0.2BLF-6b BLF-6b-1 - 8 Golden Mile Oroya II Py 6.8 19.7 22.8 498.0 5418.0 4.0 4.2 150.0 10.1 1.2 6.0 2.6 5.6 4.8 1.3 1.8 5.6 0.6BLF-6b BLF-6b-1 - 9 Golden Mile Oroya II Py 3.8 15.2 18.0 409.1 4064.9 2.4 3.8 99.8 4.8 0.6 3.1 1.7 3.1 2.3 0.7 0.8 4.1 0.3GBM76 GBM76 - 10 Golden Mile Fimiston II Py-Hem 0.6 1.5 2.4 63.0 28.5 17.3 91.6 12.6 0.5 0.5 0.3 1.5 0.1 0.2 0.3 0.1 2.1 0.0GBM76 GBM76 - 11 Golden Mile Fimiston II Py-Hem 0.6 1.6 49.1 173.8 174.1 1.3 186.4 12.7 0.4 0.1 0.3 0.3 0.0 0.2 0.1 0.1 0.2 0.0GBM76 GBM76 - 12 Golden Mile Fimiston II Py-Hem 1.2 1.8 676.1 86.8 27.6 17.1 75.0 14.8 0.5 0.1 0.4 1.0 0.1 0.2 0.1 0.1 1.2 0.0GBM76 GBM76 - 13 Golden Mile Fimiston II Py-Hem 0.6 1.4 3.7 10.1 7.0 34.2 249.8 11.4 0.4 0.0 0.3 4.6 0.0 0.2 0.1 0.1 4.3 0.0GBM76 GBM76 - 14 Golden Mile Fimiston II Py-Hem 0.6 2.0 3.1 636.6 247.0 0.5 167.0 17.3 0.8 0.1 0.5 0.3 0.0 0.4 0.1 0.1 0.3 0.0GBM76 GBM76 - 15 Golden Mile Fimiston II Py-Hem 1.0 2.4 188.1 18.8 10.2 1.5 29.2 21.7 1.0 0.1 0.7 0.4 0.1 0.5 0.1 0.2 0.4 0.1GBM76 GBM76 - 16 Golden Mile Fimiston II Py-Hem 0.8 1.6 24.8 47.4 15.2 10.4 148.1 12.3 0.4 0.1 0.3 4.0 0.0 0.2 0.1 0.1 2.9 0.0GBM76 GBM76 - 3 Golden Mile Fimiston III Py-Hem 94.0 6.2 3.6 4055.5 534.1 270.5 6331.0 3.2 0.9 2.8 0.6 66.6 0.0 0.3 0.6 0.8 6.0 0.1GBM76 GBM76 - 4 Golden Mile Fimiston II Py-Hem 6.2 1.7 6.7 117.1 27.1 24.3 425.9 2.0 0.5 0.2 0.2 1.5 0.0 0.1 0.1 0.4 0.5 0.0GBM76 GBM76 - 5 Golden Mile Fimiston II Py-Hem 0.5 1.7 62.7 16.8 7.8 6.1 63.0 15.4 0.6 0.1 0.4 0.7 0.5 0.3 0.1 0.1 0.5 0.0GBM76 GBM76 - 6 Golden Mile Fimiston II Py-Hem 1.5 2.2 54.7 21.9 11.7 7.6 68.8 20.6 0.9 0.1 0.6 2.6 0.0 0.4 0.1 0.1 2.0 0.0GBM76 GBM76 - 7 Golden Mile Fimiston II Py-Hem 0.6 1.2 1.9 48.9 23.3 14.1 144.4 17.8 0.3 0.0 0.2 0.8 0.0 0.1 0.2 0.0 0.6 0.0GBM76 GBM76 - 8 Golden Mile Fimiston II Py-Hem 2.8 1.6 27.6 615.6 375.3 74.3 331.5 12.9 0.5 0.2 0.3 11.6 0.0 0.2 0.2 0.1 5.6 0.0GBM76 GBM76 - 9 Golden Mile Fimiston II Py-Hem 0.5 1.4 12.9 31.1 8.5 4.4 15.9 10.9 0.4 0.0 0.2 0.5 0.1 0.2 0.0 0.1 0.3 0.0GBM96 GBM96 - 1 Golden Mile Fimiston II Py-Hem 24.3 2.5 4.2 632.4 452.1 125.8 2745.6 14.7 0.9 3.2 0.5 1.3 0.1 0.4 8.5 0.6 3.6 0.0GBM96 GBM96 - 10 Golden Mile Fimiston II Py-Hem 1.7 2.9 14.6 2592.8 935.2 90.8 427.6 74.2 6.0 2.4 0.8 3.2 39.9 0.6 3.1 0.7 7.6 0.1GBM96 GBM96 - 11 Golden Mile Fimiston II Py-Hem 2.2 2.2 11.9 1301.6 394.3 64.9 281.9 66.7 1.5 13.4 0.3 5.6 7.1 0.3 14.2 0.2 12.4 0.1GBM96 GBM96 - 12 Golden Mile Fimiston II Py-Hem 1.8 2.4 42.0 2248.8 1073.0 119.1 151.4 103.2 9.2 2.9 0.4 3.9 2.7 0.3 3.6 0.7 10.2 0.1GBM96 GBM96 - 3 Golden Mile Fimiston II Py-Hem 15.1 4.7 14.9 562.5 105.6 153.9 2814.6 11.7 0.6 5.4 0.4 4.8 0.0 2.3 4.3 1.4 6.5 0.0GBM96 GBM96 - 4 Golden Mile Fimiston II Py-Hem 43.6 6.9 14.1 462.6 215.1 87.0 4544.3 21.3 1.2 5.1 0.7 7.0 0.1 2.1 7.2 3.4 9.9 0.1GBM96 GBM96 - 5 Golden Mile Fimiston II Py-Hem 24.6 6.4 2.7 562.9 141.7 3109.2 5968.1 12.7 0.6 20.4 0.4 63.8 0.0 5.6 5.9 2.6 7.4 0.0GBM96 GBM96 - 6 Golden Mile Fimiston II Py-Hem 28.5 2.8 6.8 333.5 677.0 140.5 6887.4 19.6 0.8 5.8 0.5 1.9 0.0 1.0 69.3 1.1 5.3 0.0GBM96 GBM96 - 7 Golden Mile Fimiston II Py-Hem 49.8 2.3 2.5 356.5 1320.2 155.6 2090.6 19.9 0.7 4.7 0.4 1.3 0.0 0.3 9.9 0.1 4.7 0.0GBM96 GBM96 - 8 Golden Mile Fimiston II Py-Hem 9.1 2.3 13.2 162.8 140.4 72.7 1839.5 12.2 0.7 2.9 0.4 1.5 0.0 1.1 5.7 1.1 3.7 0.0GBM96 GBM96 - 9 Golden Mile Fimiston II Py-Hem 16.7 2.8 2.6 344.6 392.6 1792.1 8981.1 16.4 0.6 13.6 0.4 11.3 0.0 4.0 44.7 2.0 9.0 0.1

KL-1 KL-1 - 1 Golden Mile Fimiston III Py 2.3 4.0 7.5 2938.4 401.9 23.2 83.3 28.5 2.8 0.4 1.6 1.2 2.3 1.2 0.4 0.5 1.0 0.2KL-1 KL-1 - 10 Golden Mile Fimiston III Py 1.3 2.7 5.3 221.3 2113.2 10.0 18.0 17.8 1.6 0.3 0.9 1.2 1.4 0.7 0.2 0.2 3.9 0.1KL-1 KL-1 - 11 Golden Mile Fimiston III Py 1.8 3.2 6.3 34.8 387.5 27.3 15.1 22.9 2.0 0.5 1.2 1.0 1.8 0.9 0.3 0.4 2.5 0.1KL-1 KL-1 - 12 Golden Mile Fimiston III Py 1.4 2.8 5.4 19.9 369.0 214.9 53.1 19.0 1.7 0.5 1.0 2.0 1.5 0.9 0.2 0.3 10.9 0.1KL-1 KL-1 - 13 Golden Mile Fimiston III Py 2.0 3.6 6.9 84.8 733.4 8.7 4.9 25.8 2.5 0.3 1.5 0.8 2.0 1.1 0.4 0.5 2.4 0.2KL-1 KL-1 - 15 Golden Mile Fimiston III Py 1.3 2.7 5.3 121.8 630.6 106.2 108.1 18.3 1.5 15.0 1.0 6.4 6.9 0.6 11.2 0.3 3.9 0.2KL-1 KL-1 - 16 Golden Mile Fimiston III Py 2.9 5.3 10.2 207.5 1080.9 999.6 77.8 36.8 3.5 29.4 2.0 4.0 16.7 1.5 28.5 0.6 9.1 0.5KL-1 KL-1 - 17 Golden Mile Fimiston III Py 2.6 3.9 7.6 279.6 1355.8 219.9 41.4 30.0 3.5 15.1 1.9 0.9 8.3 1.4 14.4 0.6 2.6 0.3KL-1 KL-1 - 18 Golden Mile Fimiston III Py 3.8 6.5 12.4 138.2 1229.6 126.0 22.4 46.5 4.6 12.9 2.8 1.4 8.4 2.0 11.5 0.8 6.0 0.3KL-1 KL-1 - 2 Golden Mile Fimiston III Py 1.5 3.1 6.0 417.9 389.8 32.0 34.1 20.7 1.8 0.5 0.9 0.8 1.7 0.7 0.3 0.2 0.7 0.1KL-1 KL-1 - 3 Golden Mile Fimiston III Py 1.5 2.5 4.9 118.1 385.0 76.1 51.5 16.5 1.2 18.1 0.8 2.6 8.6 0.5 16.1 0.2 13.1 0.3KL-1 KL-1 - 4 Golden Mile Fimiston III Py 7.2 5.5 12.7 200.7 408.1 2190.1 132.2 33.9 2.1 27.8 1.4 7.0 19.5 5.6 24.8 0.4 20.6 0.9KL-1 KL-1 - 5 Golden Mile Fimiston III Py 2.1 2.6 5.0 37.5 416.1 7.3 0.9 16.6 1.3 0.3 0.8 0.6 1.3 0.9 0.3 0.2 2.6 0.1KL-1 KL-1 - 6 Golden Mile Fimiston III Py 3.1 4.9 9.3 30.0 434.7 5.4 109.4 36.4 4.3 0.5 2.3 1.2 3.1 1.9 0.6 0.7 2.0 0.2KL-1 KL-1 - 7 Golden Mile Fimiston III Py 2.5 4.2 8.0 196.9 2171.1 9.5 15.7 29.4 3.3 1.5 1.9 1.0 2.5 1.4 0.7 0.5 2.5 0.2KL-1 KL-1 - 8 Golden Mile Fimiston III Py 3.2 6.1 11.9 43.8 330.8 7.5 47.4 40.4 4.2 0.5 2.4 1.3 3.4 1.8 0.6 0.7 3.3 0.2KL-1 KL-1 - 9 Golden Mile Fimiston III Py 2.2 4.6 8.9 74.9 2370.5 59.0 49.2 31.1 2.7 1.7 1.7 1.8 2.8 1.2 1.1 0.5 6.8 0.2LGX LGX - 1 Golden Mile Fimiston II Py-Ttr 1.1 7.3 7.7 48.7 4.6 1.7 0.5 25.6 1.6 0.6 0.6 0.6 0.0 0.5 0.1 0.2 1.8 0.1LGX LGX - 10 Golden Mile Fimiston II Py 0.1 1.2 11.5 39.7 3.9 2741.5 0.1 20.8 0.2 27.3 0.5 1.0 0.0 0.5 32.9 0.1 9.1 0.0LGX LGX - 11 Golden Mile Fimiston III Py-Ttr 0.1 0.1 7.1 6.8 2.5 0.2 0.1 13.8 0.2 0.2 0.3 0.1 0.0 0.2 0.1 0.1 0.1 0.0LGX LGX - 12 Golden Mile Fimiston III Py-Ttr 0.1 1.2 9.1 15.8 10.0 0.5 0.0 19.0 0.0 0.2 0.4 0.1 0.0 0.3 0.0 0.1 0.2 0.0LGX LGX - 13 Golden Mile Fimiston III Py-Ttr 0.1 1.2 11.0 0.7 17.2 1.7 0.1 17.3 0.2 1.7 0.5 0.2 0.0 0.4 0.2 0.1 1.4 0.0LGX LGX - 14 Golden Mile Fimiston III Py-Ccp 0.0 1.2 9.1 43.1 4.8 0.5 0.1 18.2 0.2 0.2 0.6 0.2 0.0 0.3 0.0 0.1 1.3 0.0LGX LGX - 15 Golden Mile Fimiston II Py 0.1 0.1 18.6 72.0 4.6 0.9 0.1 16.5 0.0 0.1 0.3 0.3 0.0 0.8 0.2 0.2 0.3 0.1LGX LGX - 18 Golden Mile Fimiston II Py 7.1 2.5 23.3 78.0 21.3 4003.6 5099.0 29.3 0.9 105.9 0.5 38.9 2.1 0.5 265.0 1.0 13.7 0.1LGX LGX - 2 Golden Mile Fimiston II Py-Ttr 0.2 5.9 15.4 16.6 1.0 30.1 0.1 8.7 0.8 1.8 0.6 5.6 0.8 0.2 0.6 0.4 8.8 0.0LGX LGX - 3 Golden Mile Fimiston II Py-Ttr 0.2 42.3 4.9 51.8 5.8 2.2 0.1 17.9 2.9 18.5 0.5 0.3 2.1 0.4 6.5 0.1 0.9 0.0LGX LGX - 4 Golden Mile Fimiston II Py-Ttr 0.1 1.2 4.7 24.0 2.9 32.3 0.1 9.4 2.4 4.6 0.2 6.1 0.0 0.3 2.2 0.7 5.6 0.0LGX LGX - 5 Golden Mile Fimiston III Py-Ttr 0.1 1.2 4.7 3.7 1.7 0.3 0.1 10.9 12.6 0.0 0.3 0.2 0.0 0.2 0.0 0.1 0.1 0.0LGX LGX - 6 Golden Mile Fimiston III Py-Ttr 0.1 0.3 6.1 4.0 1.8 0.3 0.1 14.4 0.0 0.1 0.4 0.2 0.0 0.3 0.0 0.1 0.2 0.0LGX LGX - 7 Golden Mile Fimiston III Py-Ttr 0.1 1.2 6.8 12.2 4.7 0.4 0.1 26.7 0.2 0.1 0.5 0.2 0.0 0.4 0.0 0.1 0.2 0.0

ESM Table 2. LA-ICP-MS imputed data set for the Golden Mile deposit. Refer to ESM 1 for sample, lithology, location and geological classification. Supplied as separate Excel spreadsheet. Sample #Spot Deposit Style Stage/Zone Redox V Cr Mn Co Ni Cu As Se Mo Ag Sn Sb Te W Au Tl Pb Bi

ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppmMaximum Limit of Detection 46.0 42.3 41.0 1.1 13.8 6.7 14.0 13.0 16.4 1.1 5.2 4.3 9.3 8.1 2.2 3.0 5.4 0.9Median Limit of Detection 0.68 2.91 4.11 0.26 1.13 0.61 0.80 13.78 0.97 0.12 0.40 0.50 1.31 0.44 0.12 0.15 0.31 0.05

LGX LGX - 8 Golden Mile Fimiston III Py-Ttr 0.1 1.2 8.3 4.5 5.3 0.8 0.1 24.0 0.2 0.1 0.3 0.2 0.0 0.4 0.0 0.1 0.2 0.0LGX LGX - 9 Golden Mile Fimiston III Py-Ttr 0.1 1.2 8.7 19.5 7.7 0.4 0.1 27.6 0.0 0.1 0.3 0.2 0.0 0.4 0.0 0.1 0.2 0.0

LSGD001 LSGD001 - 1 Golden Mile Fimiston III Py-Hem 0.6 1.7 5.7 472.2 187.5 2.0 263.9 13.5 0.4 0.1 0.4 0.2 0.0 0.2 0.1 0.1 0.2 0.0LSGD001 LSGD001 - 11 Golden Mile Fimiston III Py-Hem 4.6 1.9 3.1 1.6 21.3 342.5 2022.6 31.8 0.6 6.0 0.4 28.0 0.8 0.6 101.2 2.1 6.5 0.0LSGD001 LSGD001 - 12 Golden Mile Fimiston III Py-Hem 20.8 2.9 4.5 1.1 22.0 442.7 2142.6 37.6 0.9 12.5 0.8 61.9 1.0 0.3 299.6 4.0 5.8 0.0LSGD001 LSGD001 - 13 Golden Mile Fimiston III Py-Hem 15.8 3.4 130.9 10.5 37.9 355.7 7344.8 43.1 1.3 20.8 0.9 14.9 1.2 0.6 1875.5 0.4 4.7 0.1LSGD001 LSGD001 - 15 Golden Mile Fimiston III Py-Hem 5.1 2.0 3.1 20.6 76.0 846.7 7464.1 61.7 0.6 5.2 0.4 27.2 0.5 0.3 124.3 0.4 3.8 0.0LSGD001 LSGD001 - 3 Golden Mile Fimiston III Py-Hem 5.4 2.5 14.2 99.2 268.7 144.6 6460.9 17.8 0.5 1.0 0.4 111.6 0.0 0.2 4.8 3.1 3.1 0.0LSGD001 LSGD001 - 4 Golden Mile Fimiston III Py-Hem 12.4 2.2 98.3 328.0 206.5 73.1 6800.8 11.5 0.6 0.4 0.4 6.9 0.0 0.2 5.8 1.1 3.2 0.0LSGD001 LSGD001 - 5 Golden Mile Fimiston III Py-Hem 2.4 2.0 2.2 121.7 214.8 6.2 9922.7 11.3 0.6 0.1 0.4 6.0 0.0 0.3 5.3 0.1 1.4 0.0

LV31 LV31 - 1 Golden Mile Fimiston III Py 1.5 1.6 10.9 175.1 37.6 14.1 519.0 8.4 0.6 0.2 0.3 7.7 0.0 0.3 0.7 1.0 0.8 0.0LV31 LV31 - 10 Golden Mile Fimiston III Py 2.7 1.6 63.0 678.6 21.6 65.4 215.5 7.7 0.4 0.5 0.6 46.3 0.0 3.6 2.9 6.4 3.0 0.0LV31 LV31 - 11 Golden Mile Fimiston III Py 2.0 1.3 19.5 160.8 18.0 11.1 190.7 6.0 0.3 0.1 0.3 19.6 0.0 0.2 2.9 1.9 1.4 0.0LV31 LV31 - 15 Golden Mile Fimiston III Py 5.8 1.6 4.5 36.0 7.0 40.9 5406.6 2.5 0.4 2.5 0.3 43.0 0.0 1.0 22.8 6.2 2.5 0.0LV31 LV31 - 2 Golden Mile Fimiston III Py 1.7 1.8 6.5 306.0 35.1 48.6 1302.7 11.4 0.9 1.0 0.4 15.4 0.0 0.5 1.9 2.1 4.5 0.1LV31 LV31 - 3 Golden Mile Fimiston III Py 1.7 2.2 4.6 64.1 11.1 288.2 3190.2 12.5 0.9 0.7 0.5 39.4 0.0 0.4 9.4 1.7 11.6 0.1LV31 LV31 - 4 Golden Mile Fimiston III Py 1.1 1.9 58.9 81.7 7.4 28.2 1529.3 10.2 0.7 1.4 0.3 13.7 0.0 0.5 9.6 1.6 3.7 0.0LV31 LV31 - 5 Golden Mile Fimiston III Py 2.1 1.6 124.6 169.1 58.0 4.3 74.1 9.2 0.6 0.2 0.3 2.8 0.0 0.3 0.6 0.4 2.3 0.0LV31 LV31 - 6 Golden Mile Fimiston III Py 2.0 1.7 23.5 283.2 44.3 12.6 33.1 8.6 0.6 0.6 0.5 7.7 0.0 0.3 1.5 0.9 1.4 0.0LV31 LV31 - 7 Golden Mile Fimiston III Py 1.2 1.2 3.1 273.8 11.9 9.7 96.2 5.7 0.3 0.3 0.3 8.9 0.0 0.2 2.5 0.9 1.0 0.0LV31 LV31 - 8 Golden Mile Fimiston III Py 5.2 1.3 10.7 410.9 17.7 22.8 214.1 6.7 0.4 0.4 0.4 18.8 0.0 0.7 2.2 3.1 2.8 0.0LV31 LV31 - 9 Golden Mile Fimiston III Py 6.8 2.5 33.5 562.0 23.5 26.8 201.4 13.2 0.9 1.1 0.5 16.4 0.0 0.5 3.9 2.6 6.6 0.1

52166 M1_52166 - 1 Golden Mile Fimiston I Py-Hem 0.6 1.7 3.2 884.4 53.2 174.3 4613.1 14.4 0.6 0.9 0.4 26.4 2.7 0.3 0.6 0.6 66.5 3.752166 M1_52166 - 10 Golden Mile Fimiston I Py-Hem 0.7 2.0 32.1 687.7 27.8 105.6 4640.6 15.7 0.5 0.8 0.3 48.7 2.5 0.2 0.6 1.7 100.5 7.352166 M1_52166 - 2 Golden Mile Fimiston I Py-Hem 1.0 1.8 24.0 943.8 52.9 243.3 4226.1 19.1 0.8 1.7 0.3 41.5 8.2 0.2 1.6 1.7 120.5 5.252166 M1_52166 - 3 Golden Mile Fimiston I Py-Hem 0.7 1.6 59.8 647.3 35.4 979.6 842.3 17.9 0.5 1.2 0.3 12.1 2.1 0.2 0.6 0.1 60.5 5.652166 M1_52166 - 4 Golden Mile Fimiston I Py-Hem 0.8 2.5 11.2 808.1 51.6 2743.3 4158.0 26.4 0.7 3.5 0.5 33.8 3.3 0.4 1.0 0.9 105.7 8.652166 M1_52166 - 5 Golden Mile Fimiston I Py-Hem 0.6 1.9 22.3 699.5 22.8 597.6 4900.4 14.2 1.0 1.2 0.3 8.5 4.0 4.2 1.2 0.1 45.7 2.852166 M1_52166 - 6 Golden Mile Fimiston I Py-Hem 1.2 1.8 5.8 748.9 13.6 384.4 6250.7 14.6 0.6 2.3 0.4 56.9 3.3 0.7 1.1 2.4 95.7 2.252166 M1_52166 - 7 Golden Mile Fimiston I Py-Hem 1.0 1.5 97.3 736.6 47.2 100.2 4517.6 21.4 0.4 0.7 0.3 24.2 1.8 0.2 0.4 0.7 56.9 7.152166 M1_52166 - 8 Golden Mile Fimiston I Py-Hem 1.1 2.5 126.7 995.6 17.0 155.8 4434.4 23.9 0.9 1.4 0.5 47.6 8.9 0.3 1.3 2.7 119.5 5.952166 M1_52166 - 9 Golden Mile Fimiston I Py-Hem 1.8 2.0 90.5 741.9 21.7 213.3 3018.2 37.5 0.6 2.0 0.4 34.1 13.2 0.3 2.2 1.7 113.2 2.7

LSGD001 M1_LSGD001 - 1 Golden Mile Fimiston III Py-Hem 16.8 6.6 6.7 110.5 255.7 40.7 3985.5 29.7 1.1 0.5 0.8 20.1 2.4 0.5 2.4 0.4 12.7 0.1LSGD001 M1_LSGD001 - 3 Golden Mile Fimiston III Py-Hem 9.6 7.5 3.4 153.6 354.5 84.2 8091.1 19.6 0.8 0.4 0.5 7.8 1.6 0.9 2.7 0.6 6.8 0.0

LV31 M1_LV31 - 1 Golden Mile Fimiston III Py 4.6 2.5 78.8 132.2 36.6 12.2 176.8 21.9 0.9 0.3 0.6 18.5 2.7 0.6 1.4 2.0 1.4 0.0LV31 M1_LV31 - 2 Golden Mile Fimiston III Py 4.5 3.0 143.3 147.9 47.6 13.1 138.6 28.2 1.3 0.9 0.8 8.6 10.5 0.7 3.6 0.9 6.1 0.1LV31 M1_LV31 - 3 Golden Mile Fimiston III Py 1.7 3.3 33.0 95.7 33.7 5.4 63.0 28.6 1.2 0.2 0.7 9.4 2.4 0.6 0.3 1.0 1.0 0.1LV31 M1_LV31 - 4 Golden Mile Fimiston III Py 4.9 3.5 134.2 202.0 22.2 12.8 239.4 31.1 1.4 0.3 0.9 18.8 3.3 0.6 3.8 1.5 2.0 0.1LV31 M1_LV31 - 5 Golden Mile Fimiston III Py 4.1 4.7 215.3 159.1 32.9 12.5 165.4 43.5 1.5 0.2 1.0 21.9 3.1 1.3 1.0 1.9 1.1 0.1LV31 M1_LV31 - 6 Golden Mile Fimiston III Py 3.9 3.2 128.7 251.5 15.0 5.3 181.1 27.7 1.0 0.2 0.6 13.1 1.8 2.3 0.5 1.0 1.0 0.1LV56 M1_LV56-1 - 1 Golden Mile Fimiston III Py-Hem 1.6 1.9 7.6 364.6 152.4 1413.3 2810.0 17.8 0.7 0.8 0.5 16.2 2.6 0.4 1.8 0.3 11.7 0.1LV56 M1_LV56-1 - 10 Golden Mile Fimiston III Py-Hem 14.7 2.3 4.2 235.6 181.7 309.0 2961.1 0.4 1.4 1.2 0.5 48.2 7.9 14.5 23.3 7.8 12.7 0.1LV56 M1_LV56-1 - 11 Golden Mile Fimiston III Py-Hem 11.2 1.4 2.7 630.2 431.6 308.0 2888.8 0.4 0.5 1.8 0.2 119.2 9.6 4.3 13.5 9.8 56.6 0.2LV56 M1_LV56-1 - 12 Golden Mile Fimiston III Py-Hem 10.2 3.1 5.6 950.8 143.8 365.3 4851.6 0.4 1.5 1.2 0.4 45.7 5.8 1.0 25.9 6.1 19.6 0.1LV56 M1_LV56-1 - 13 Golden Mile Fimiston III Py-Hem 3.0 1.6 4.2 626.4 261.3 1314.6 1824.6 0.4 0.6 1.2 0.2 46.0 5.0 1.6 2.9 0.6 21.5 0.1LV56 M1_LV56-1 - 14 Golden Mile Fimiston III Py-Hem 7.0 2.0 8.1 665.5 200.7 5249.0 1265.5 0.4 0.8 1.3 0.2 37.1 5.1 3.5 1.9 0.2 24.1 0.1LV56 M1_LV56-1 - 15 Golden Mile Fimiston III Py-Hem 21.1 1.9 3.6 541.9 221.6 876.3 5531.7 0.4 0.8 1.6 0.3 60.8 10.2 14.2 53.7 9.1 38.3 0.2LV56 M1_LV56-1 - 3 Golden Mile Fimiston III Py-Hem 3.9 2.3 3.4 218.7 89.6 100.2 3678.3 22.7 1.0 1.2 0.4 27.9 3.6 0.5 3.6 3.6 17.9 0.1LV56 M1_LV56-1 - 4 Golden Mile Fimiston III Py-Hem 4.8 2.1 3.1 383.5 120.3 439.5 2443.4 20.1 0.9 0.8 0.4 18.2 2.0 3.8 1.0 0.3 7.5 0.0LV56 M1_LV56-1 - 5 Golden Mile Fimiston III Py-Hem 1.8 1.8 3.3 265.6 135.7 90.5 1403.7 0.4 1.2 0.3 0.4 7.8 1.8 0.8 4.2 0.7 8.7 0.0LV56 M1_LV56-1 - 6 Golden Mile Fimiston III Py-Hem 1.8 1.8 3.3 213.1 113.9 138.2 1981.2 0.4 1.1 0.5 0.4 14.0 1.8 0.9 4.6 1.1 9.4 0.0LV56 M1_LV56-1 - 7 Golden Mile Fimiston III Py-Hem 2.3 1.8 3.6 495.7 203.8 1252.4 1680.3 0.4 1.2 0.7 0.4 39.8 2.5 1.4 3.4 1.6 10.7 0.1LV56 M1_LV56-1 - 8 Golden Mile Fimiston III Py-Hem 6.4 1.5 3.1 267.6 183.3 301.1 3593.7 0.4 0.5 0.8 0.1 52.0 4.7 6.0 10.5 5.6 10.0 0.1LV56 M1_LV56-1 - 9 Golden Mile Fimiston III Py-Hem 10.2 2.1 7.9 507.0 335.9 374.1 3471.9 0.4 1.1 1.3 0.4 81.2 6.0 6.6 17.2 5.1 23.2 0.1LV56 M1_LV56-2 - 2 Golden Mile Fimiston III Py-Hem 1.4 2.2 5.4 110.3 138.1 262.3 8706.2 0.4 0.9 1.1 0.4 16.6 1.3 0.8 22.0 0.8 0.3 0.0LV56 M1_LV56-2 - 3 Golden Mile Fimiston III Py-Hem 1.6 1.8 9.4 82.2 99.5 470.5 6508.0 0.4 1.1 1.1 0.4 9.7 1.3 1.0 13.4 0.7 0.8 0.0LV56 M1_LV56-2 - 4 Golden Mile Fimiston III Py-Hem 1.0 1.9 3.7 965.3 454.5 13.1 122.0 0.4 1.0 0.1 0.3 1.4 1.1 2.0 0.2 0.1 1.0 0.0LV56 M1_LV56-2 - 5 Golden Mile Fimiston III Py-Hem 14.5 2.2 121.0 409.3 435.1 801.5 2540.2 0.4 1.0 2.0 0.4 53.7 7.2 4.4 19.7 4.2 34.3 0.1UP23 M10_UP23 - 1 Mt. Percy Mt.Charlotte Intermediate Py 1.5 5.0 6.0 196.7 555.1 1.1 253.6 14.4 2.9 0.3 1.6 0.7 4.0 1.3 0.3 0.5 0.8 0.1UP23 M10_UP23 - 2 Mt. Percy Mt.Charlotte Intermediate Py 2.0 6.1 6.9 111.3 199.3 1.4 216.7 18.8 4.0 0.4 2.3 0.9 5.6 1.8 0.4 0.6 1.3 0.2UP23 M10_UP23 - 3 Mt. Percy Mt.Charlotte Intermediate Py 0.9 3.2 4.1 144.9 255.3 1.1 278.2 8.8 1.3 0.5 0.8 0.4 2.0 0.6 0.2 0.2 0.4 0.1UP23 M10_UP23 - 4 Mt. Percy Mt.Charlotte Intermediate Py 0.9 3.4 4.3 18.0 286.6 0.7 153.7 9.0 1.5 0.2 0.9 0.5 2.3 0.7 0.2 0.3 1.5 0.1

UP25A M10_UP25A - 1 Mt. Percy Fimiston III Py-Gn-Gdf 3.0 3.1 44.7 1056.3 2802.6 160.2 1744.3 12.7 1.1 50.7 0.7 44.2 150.5 0.5 5.0 0.3 710.2 7.1UP25A M10_UP25A - 2 Mt. Percy Fimiston III Py-Gn-Gdf 3.0 4.7 17.3 662.3 2567.5 358.6 1970.1 17.7 2.8 9.5 1.2 44.7 124.9 1.3 5.8 0.5 707.2 6.4UP25A M10_UP25A - 3 Mt. Percy Fimiston III Py-Gn-Gdf 4.6 7.1 35.5 906.8 2402.3 210.9 2385.7 16.7 1.8 9.1 0.8 37.4 97.1 0.8 3.1 0.3 93.8 5.1UP25A M10_UP25A - 4 Mt. Percy Fimiston III Py-Gn-Gdf 3.0 4.5 44.6 919.1 3268.5 131.9 1743.9 15.0 1.6 9.6 0.7 55.7 146.0 0.7 3.9 0.4 115.4 8.4UP25A M10_UP25A - 5 Mt. Percy Fimiston III Py-Gn-Gdf 2.4 4.6 33.3 952.8 4200.8 250.5 2862.4 16.9 2.4 11.5 1.1 69.6 135.4 1.1 3.1 0.7 322.3 8.4UP26A M10_UP26A - 1 Mt. Percy Fimiston III Py 1.5 5.6 7.3 399.9 2182.0 1.2 2055.9 19.3 2.4 0.3 1.1 0.9 3.8 1.1 0.3 0.4 0.8 0.1UP26A M10_UP26A - 2 Mt. Percy Fimiston III Py 0.9 3.2 4.0 406.8 1583.6 3.1 1727.2 10.9 1.4 1.6 0.6 0.7 4.7 0.7 0.1 0.3 12.1 0.1UP26A M10_UP26A - 3 Mt. Percy Fimiston III Py 0.6 2.4 3.2 225.5 841.9 0.5 631.7 7.3 0.9 0.1 0.4 0.4 1.3 0.3 0.1 0.1 0.3 0.0UP32 M10_UP32 - 1 Mt. Percy Mt.Charlotte Proximal Py-Gn-Gdf 1.0 3.0 4.0 320.8 2830.5 1630.6 666.5 44.8 1.2 2.9 0.6 3.3 85.9 0.6 2.5 0.2 4.9 0.4UP32 M10_UP32 - 2 Mt. Percy Mt.Charlotte Proximal Py-Gn-Gdf 1.6 5.2 4.1 250.0 3012.2 1622.7 1216.0 44.2 1.1 34.7 0.6 3.9 179.3 0.5 10.2 0.2 6.8 0.5UP32 M10_UP32 - 3 Mt. Percy Mt.Charlotte Proximal Py-Gn-Gdf 5.2 4.2 5.3 144.1 2383.7 821.6 960.7 49.2 2.1 2.7 1.0 3.5 200.6 1.0 1.9 0.4 5.8 0.4UP76 M10_UP76 - 1 Mt. Percy Syngenetic N/A Py 0.9 3.4 4.3 19.1 112.7 1.9 103.3 14.6 1.5 1.9 0.7 0.6 2.3 0.7 0.2 0.2 10.9 1.4UP76 M10_UP76 - 10 Mt. Percy Syngenetic N/A Py 0.8 3.4 4.6 6047.5 137.1 6.9 550.8 18.1 1.0 0.8 0.5 2.0 2.9 0.5 0.1 0.2 15.6 3.4UP76 M10_UP76 - 11 Mt. Percy Syngenetic N/A Py 1.5 5.0 6.3 5.2 178.6 1.1 203.2 20.9 1.8 0.2 0.9 1.0 2.7 0.9 0.2 0.4 15.2 1.5UP76 M10_UP76 - 12 Mt. Percy Syngenetic N/A Py 1.2 2.1 2.7 114.2 513.4 1286.1 305.7 19.7 0.5 2.7 0.3 1.0 8.2 0.2 0.1 0.1 13.9 6.3UP76 M10_UP76 - 13 Mt. Percy Syngenetic N/A Py 0.8 2.0 2.6 7786.7 50.6 0.7 556.8 15.3 0.5 0.1 0.2 0.3 1.1 0.2 0.0 0.1 7.4 1.9UP76 M10_UP76 - 14 Mt. Percy Syngenetic N/A Py 1.1 3.6 4.5 8.8 1149.2 0.7 714.7 16.3 1.1 0.2 0.6 0.6 1.9 0.5 0.1 0.2 1.9 1.1UP76 M10_UP76 - 15 Mt. Percy Syngenetic N/A Py 1.4 4.0 4.8 46.4 126.5 7.0 116.0 14.1 1.8 1.2 0.9 1.2 2.7 0.8 0.2 0.4 8.0 2.7UP76 M10_UP76 - 2 Mt. Percy Syngenetic N/A Py 0.9 3.7 4.7 9.2 1876.9 0.7 1166.5 29.9 1.4 0.2 0.7 0.5 2.3 0.7 0.2 0.2 0.5 0.1UP76 M10_UP76 - 3 Mt. Percy Syngenetic N/A Py 0.9 3.5 13.6 574.0 674.5 503.7 257.1 34.5 1.4 2.5 0.6 0.5 13.6 0.6 0.2 0.2 7.6 4.0UP76 M10_UP76 - 4 Mt. Percy Syngenetic N/A Py 1.0 2.5 3.3 96.4 535.1 1.3 298.2 22.0 1.0 0.1 0.4 0.3 10.2 0.4 0.1 0.2 1.6 0.9UP76 M10_UP76 - 5 Mt. Percy Syngenetic N/A Py 0.8 3.3 4.3 25.8 214.2 2.0 190.7 19.7 0.8 0.1 0.4 0.4 4.1 0.3 0.1 0.1 7.8 3.4UP76 M10_UP76 - 6 Mt. Percy Syngenetic N/A Py 1.0 3.7 4.8 4.1 71.5 1.5 91.5 13.7 1.6 0.2 0.8 0.5 2.5 0.8 0.2 0.3 0.7 0.3UP76 M10_UP76 - 7 Mt. Percy Syngenetic N/A Py 1.7 5.5 11.1 248.5 601.4 3946.4 328.0 36.9 1.9 3.6 0.9 0.9 13.8 0.9 0.2 0.3 21.7 11.0UP24 M11_UP24 - 1 Mt. Percy Mt.Charlotte Proximal Py 20.4 11.8 5.1 27.2 380.7 2.2 1351.7 14.3 1.8 0.2 0.9 5.9 3.0 49.4 0.2 0.3 18.1 0.3UP24 M11_UP24 - 2 Mt. Percy Mt.Charlotte Proximal Py 2.7 4.2 5.3 810.5 194.8 2851.4 106.1 13.3 1.5 6.2 0.7 4.8 8.1 0.6 0.9 0.2 75.2 5.5UP24 M11_UP24 - 3 Mt. Percy Mt.Charlotte Proximal Py 11.7 3.3 4.2 190.9 210.3 0.6 1411.8 10.6 1.1 0.1 0.5 2.2 3.0 9.2 0.1 0.2 1.5 0.1UP24 M11_UP24 - 4 Mt. Percy Mt.Charlotte Proximal Py 0.8 2.2 2.9 130.0 414.4 0.4 724.9 8.4 0.5 0.1 0.2 0.3 1.0 0.2 0.1 0.1 0.3 0.0UP24 M11_UP24 - 5 Mt. Percy Mt.Charlotte Proximal Py 7.1 4.7 4.1 653.8 618.9 1708.1 362.8 10.6 1.2 4.7 0.5 9.0 7.1 17.2 0.8 0.2 52.5 3.2UP24 M11_UP24 - 6 Mt. Percy Mt.Charlotte Proximal Py 1.7 5.0 6.0 58.0 75.3 1.0 2256.2 17.5 2.2 0.3 1.1 0.8 3.5 1.1 0.3 0.4 4.8 0.1UP35 M11_UP35 - 1 Mt. Percy Fimiston III Py 30.4 34.2 128.8 77.4 617.9 736.7 2794.5 34.5 3.4 1.2 1.7 10.4 99.7 1.5 10.9 0.6 14.1 0.2UP35 M11_UP35 - 2 Mt. Percy Fimiston III Py 184.6 16.6 17.4 313.8 1044.0 2304.7 3611.2 51.9 1.3 1.3 0.6 6.1 300.7 0.6 14.9 0.4 12.6 0.1UP58 M11_UP58 - 1 Mt. Percy Mt.Charlotte Intermediate Py 13.1 77.0 17.9 1135.6 805.0 3.2 431.4 33.8 0.9 0.3 0.4 7.5 1.9 0.4 0.1 0.2 31.7 1.5UP58 M11_UP58 - 10 Mt. Percy Mt.Charlotte Intermediate Py-Gn-Gdf 2.2 6.9 8.8 443.9 2532.6 11.3 1900.2 32.8 4.9 0.5 2.6 1.3 6.8 2.3 0.5 0.7 4.2 0.3UP58 M11_UP58 - 11 Mt. Percy Mt.Charlotte Intermediate Py-Gn-Gdf 1.3 5.1 7.1 458.1 2861.3 1869.9 3220.4 30.6 2.7 0.4 1.5 0.9 3.9 1.3 0.3 0.4 3.4 0.5UP58 M11_UP58 - 2 Mt. Percy Mt.Charlotte Intermediate Py 4.6 69.3 9.4 884.5 544.9 0.8 208.8 23.9 0.8 0.1 0.4 0.8 1.4 0.4 0.1 0.2 7.6 0.6UP58 M11_UP58 - 3 Mt. Percy Mt.Charlotte Intermediate Py 22.2 93.9 38.2 338.7 266.5 3.0 173.8 29.0 0.7 0.1 0.4 3.1 1.2 0.3 0.1 0.1 21.7 2.0UP58 M11_UP58 - 4 Mt. Percy Mt.Charlotte Intermediate Py 1.4 4.0 5.2 153.3 2618.7 126.1 2273.7 19.7 1.7 0.2 0.9 0.6 2.7 0.8 0.2 0.3 2.9 0.5UP58 M11_UP58 - 5 Mt. Percy Mt.Charlotte Intermediate Py 24.9 196.3 71.1 2593.7 483.5 4.3 384.1 27.0 0.8 0.2 0.4 3.6 1.7 0.3 0.1 0.1 21.5 2.2UP58 M11_UP58 - 6 Mt. Percy Mt.Charlotte Intermediate Py 49.8 162.4 86.4 80.1 725.0 4.4 379.1 21.5 0.7 0.2 0.7 4.9 2.0 0.4 0.1 0.1 27.3 3.4UP58 M11_UP58 - 7 Mt. Percy Mt.Charlotte Intermediate Py 0.8 2.4 3.2 131.9 1231.9 0.4 391.4 36.5 0.7 0.1 0.4 0.3 1.3 0.3 0.1 0.2 0.3 0.0UP58 M11_UP58 - 8 Mt. Percy Mt.Charlotte Intermediate Py 0.7 3.0 4.1 152.9 517.4 0.8 125.2 31.9 1.4 0.2 0.7 0.6 1.8 0.6 0.2 0.2 0.5 0.1UP58 M11_UP58 - 9 Mt. Percy Mt.Charlotte Intermediate Py-Gn-Gdf 1.1 4.1 5.5 62.6 319.6 1.1 85.8 39.8 2.3 0.3 1.3 0.8 3.4 1.0 0.3 0.3 1.1 0.1UP63 M11_UP63 - 1 Mt. Percy Mt.Charlotte Intermediate Py 6.2 52.5 4.8 130.4 1722.7 3.3 316.5 14.1 1.9 0.2 0.9 16.5 2.7 43.3 0.2 0.3 17.5 1.9UP63 M11_UP63 - 2 Mt. Percy Mt.Charlotte Intermediate Py 5.6 69.0 7.5 243.0 2116.0 5.1 8.5 24.6 3.9 3.5 1.8 6.9 4.9 8.8 0.4 0.5 19.2 8.6UP63 M11_UP63 - 3 Mt. Percy Mt.Charlotte Intermediate Py 0.9 3.0 4.3 11.3 1948.4 2.5 370.8 10.6 1.2 0.1 0.6 0.4 1.7 0.8 0.1 0.1 2.2 0.1UP63 M11_UP63 - 4 Mt. Percy Mt.Charlotte Intermediate Py 1.1 6.3 5.8 303.6 2516.1 0.9 485.2 15.3 1.6 0.2 0.9 2.3 2.5 2.0 0.2 0.3 3.1 0.2

ESM Table 2. LA-ICP-MS imputed data set for the Golden Mile deposit. Refer to ESM 1 for sample, lithology, location and geological classification. Supplied as separate Excel spreadsheet. Sample #Spot Deposit Style Stage/Zone Redox V Cr Mn Co Ni Cu As Se Mo Ag Sn Sb Te W Au Tl Pb Bi

ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppmMaximum Limit of Detection 46.0 42.3 41.0 1.1 13.8 6.7 14.0 13.0 16.4 1.1 5.2 4.3 9.3 8.1 2.2 3.0 5.4 0.9Median Limit of Detection 0.68 2.91 4.11 0.26 1.13 0.61 0.80 13.78 0.97 0.12 0.40 0.50 1.31 0.44 0.12 0.15 0.31 0.05

157 M12-157 - 1 Golden Mile Fimiston III Py-Hem 3.9 7.3 11.0 1417.3 110.3 1.6 28.4 15.7 2.8 0.3 1.8 1.0 1.0 1.1 0.7 0.5 1.1 0.2157 M12-157 - 10 Golden Mile Fimiston III Py-Hem 2.7 5.6 8.7 215.3 195.2 1.2 83.2 11.8 2.1 0.2 1.3 0.7 0.7 0.9 0.5 0.3 0.8 0.1157 M12-157 - 11 Golden Mile Fimiston III Py-Hem 1.4 4.2 6.7 166.1 247.1 0.7 45.3 8.5 0.9 0.1 0.7 0.4 0.4 0.3 0.2 0.2 0.4 0.1157 M12-157 - 12 Golden Mile Fimiston III Py-Hem 1.9 5.2 8.0 197.7 235.8 0.9 101.8 10.3 1.1 0.2 0.8 0.5 0.6 0.5 0.3 0.2 0.6 0.1157 M12-157 - 13 Golden Mile Fimiston III Py-Hem 2.6 5.6 8.7 167.0 334.0 1.2 56.7 12.5 1.7 0.2 1.2 0.6 0.7 0.7 0.5 0.3 0.7 0.1157 M12-157 - 14 Golden Mile Fimiston III Py-Hem 4.0 7.0 10.6 1105.9 215.4 1.6 30.6 16.4 3.2 0.4 2.0 0.9 1.1 1.4 0.8 0.5 1.3 0.2157 M12-157 - 15 Golden Mile Fimiston III Py-Hem 2.8 6.7 10.5 163.9 275.0 1.3 47.0 13.2 1.6 0.2 1.1 0.7 0.8 0.8 0.5 0.3 0.8 0.1157 M12-157 - 2 Golden Mile Fimiston III Py-Hem 3.8 6.7 10.2 61.0 269.9 1.6 17.8 15.4 3.5 0.4 1.8 1.0 1.0 1.2 0.7 0.6 1.2 0.2157 M12-157 - 3 Golden Mile Fimiston III Py-Hem 1.8 4.8 7.6 47.2 67.9 0.9 14.3 9.7 1.1 0.2 0.7 0.6 0.5 0.4 0.3 0.2 0.5 0.1157 M12-157 - 4 Golden Mile Fimiston III Py-Hem 2.7 5.2 8.0 221.9 204.3 1.2 65.7 11.8 2.4 0.3 1.3 0.7 0.7 0.8 0.5 0.4 0.9 0.1157 M12-157 - 5 Golden Mile Fimiston III Py-Hem 3.0 6.1 9.5 1180.6 51.8 1.4 101.6 13.7 2.5 0.3 1.5 0.8 0.8 1.0 0.6 0.4 1.0 0.1157 M12-157 - 6 Golden Mile Fimiston III Py-Hem 4.3 7.3 11.0 110.5 233.9 1.8 2.9 17.1 3.7 0.4 2.1 1.0 1.2 1.4 0.9 0.6 1.4 0.2157 M12-157 - 7 Golden Mile Fimiston III Py-Hem 3.6 7.1 10.9 119.9 160.8 1.6 27.3 15.8 3.0 0.4 1.7 0.9 1.0 1.2 0.6 0.4 1.1 0.2157 M12-157 - 8 Golden Mile Fimiston III Py-Hem 3.9 6.7 10.3 1.1 17.5 1.6 19.8 15.2 2.8 0.3 1.8 0.8 1.0 1.2 0.7 0.5 1.1 0.2157 M12-157 - 9 Golden Mile Fimiston III Py-Hem 10.8 16.7 24.9 490.2 464.7 4.2 99.7 40.7 9.3 1.1 5.2 2.4 2.6 3.4 1.9 1.5 3.5 0.5175 M12-175 - 1 Golden Mile Fimiston III Py-Hem 9.3 7.0 10.4 2685.5 134.7 1466.3 862.7 17.0 4.1 1.6 2.1 537.1 1.2 1.5 1.2 11.5 268.5 0.2175 M12-175 - 2 Golden Mile Fimiston III Py-Hem 61.5 6.8 10.0 6269.2 195.1 1150.8 433.0 16.2 3.9 3.6 2.2 462.9 1.0 6.5 1.7 9.4 355.5 0.7

175B M12-175B - 1 Golden Mile Fimiston III Py-Hem 91.2 6.2 10.9 309.1 307.2 824.7 3825.2 12.7 2.2 2.9 1.2 1209.9 0.8 3.7 6.9 102.3 150.4 0.1UP74 M13-UP74 - 1 Mt. Percy Syngenetic N/A Py 4.4 11.4 15.5 12.4 76.3 2.4 4.5 34.9 5.0 0.6 3.0 1.7 2.2 2.3 0.7 0.9 5.4 0.3UP74 M13-UP74 - 3 Mt. Percy Syngenetic N/A Py 2.3 6.5 9.0 2.6 201.7 1.9 2.3 19.3 2.7 0.3 1.6 2.2 1.2 1.1 0.4 0.5 9.2 0.4UP74 M13-UP74 - 4 Mt. Percy Syngenetic N/A Py 3.6 10.5 14.5 348.8 75.6 35.2 2.0 31.3 3.5 0.5 2.7 2.5 1.8 1.8 0.6 0.7 13.0 0.4UP74 M13-UP74 - 5 Mt. Percy Syngenetic N/A Py 2.3 6.4 9.0 267.1 83.0 6.8 3.3 19.8 2.5 0.3 1.8 5.9 1.2 1.3 0.4 0.4 24.6 1.7UP74 M13-UP74 - 6 Mt. Percy Syngenetic N/A Py 2.4 8.0 11.5 248.2 59.9 6.6 2.2 23.3 2.1 0.8 1.5 11.5 1.3 1.1 0.4 0.4 44.3 2.4UP74 M13-UP74 - 7 Mt. Percy Syngenetic N/A Py 2.3 6.4 8.9 208.8 37.5 1.9 3.9 20.7 2.7 0.3 1.6 2.2 1.2 1.1 0.4 0.5 11.5 0.6UP74 M13-UP74 - 8 Mt. Percy Syngenetic N/A Py 2.8 6.8 9.3 242.3 32.5 7.4 1.8 22.8 3.3 0.4 2.2 10.1 1.4 1.5 0.5 0.6 28.0 0.5UP74 M13-UP74(1) - 1 Mt. Percy Syngenetic N/A Py 1.3 2.6 5.8 370.4 258.9 2000.4 181.2 111.1 1.4 19.1 3.2 50.9 1.5 0.6 0.2 0.7 79.7 0.3UP74 M13-UP74(1) - 2 Mt. Percy Syngenetic N/A Py 2.3 4.1 9.2 134.9 281.0 3918.2 73.4 179.5 2.4 27.6 4.5 14.2 2.3 1.1 0.4 0.4 99.4 1.0UP74 M13-UP74(1) - 3 Mt. Percy Syngenetic N/A Py 1.4 4.8 6.8 80.2 215.1 2368.6 1.1 13.7 1.4 10.7 3.2 6.0 0.8 0.7 0.2 0.2 41.7 0.4UP74 M13-UP74(1) - 4 Mt. Percy Syngenetic N/A Py 3.2 7.7 10.6 92.4 191.6 3215.9 1.5 24.4 3.7 39.5 4.3 14.4 1.6 1.6 0.5 0.6 100.2 0.7UP74 M13-UP74(1) - 5 Mt. Percy Syngenetic N/A Py 2.4 7.0 9.6 484.2 664.1 5282.7 1.4 21.5 2.6 33.4 5.5 23.4 1.3 1.2 0.4 0.5 184.0 1.2UP74 M13-UP74(1) - 6 Mt. Percy Syngenetic N/A Py 4.4 10.3 13.8 199.9 669.7 7218.4 1.2 34.7 5.5 21.7 5.4 9.1 2.2 2.4 0.8 0.9 105.4 0.8UP75 M13-UP75 - 10 Mt. Percy Syngenetic N/A Py 1.4 5.8 6.7 107.9 335.1 1.0 2.2 16.8 2.1 0.2 1.0 0.8 0.9 0.8 0.3 0.3 4.0 0.1UP75 M13-UP75 - 4 Mt. Percy Syngenetic N/A Py 1.8 5.7 8.1 268.1 1053.7 1.1 0.8 17.1 1.9 0.2 1.8 1.1 1.1 22.1 0.3 0.3 21.1 0.2UP75 M13-UP75 - 5 Mt. Percy Syngenetic N/A Py 1.4 4.8 6.9 235.0 795.8 1.0 0.7 13.9 1.2 1.0 0.9 1.2 0.7 25.7 0.2 0.2 27.0 1.1UP75 M13-UP75 - 6 Mt. Percy Syngenetic N/A Py 2.1 6.7 9.5 151.7 532.7 1.3 0.8 20.0 2.3 0.3 1.5 7.3 1.1 33.0 0.4 0.4 6.8 0.5UP75 M13-UP75 - 7 Mt. Percy Syngenetic N/A Py 1.3 4.7 6.7 174.5 594.6 0.8 0.7 13.4 1.1 0.3 0.9 0.5 0.8 25.2 0.2 0.2 2.2 0.2UP75 M13-UP75 - 8 Mt. Percy Syngenetic N/A Py 3.6 8.8 12.3 224.0 669.3 2.0 0.6 29.1 4.2 0.5 2.7 1.1 1.8 1.9 0.7 0.7 11.1 0.2UP75 M13-UP75 - 9 Mt. Percy Syngenetic N/A Py 2.3 8.1 9.2 158.4 513.0 1.5 2.5 23.4 2.8 1.0 1.5 1.2 1.4 1.4 0.4 0.5 29.4 2.8

GBM76 M2_GBM76 - 1 Golden Mile Fimiston II Py-Hem 22.8 9.9 2.6 4803.0 1676.2 382.7 5434.7 11.1 0.3 35.6 0.2 96.0 49.1 0.1 19.5 2.8 236.4 1.0GBM76 M2_GBM76 - 2 Golden Mile Fimiston II Py-Hem 28.2 12.3 3.2 4765.9 1625.0 377.5 4873.8 16.5 0.6 34.7 0.3 84.7 44.5 0.3 18.7 2.4 218.3 0.9GBM76 M2_GBM76 - 3 Golden Mile Fimiston II Py-Hem 17.4 5.7 5.2 3885.7 1566.8 314.2 5575.0 13.5 0.4 26.6 0.2 74.2 35.5 0.2 13.4 2.9 189.6 0.8GBM76 M2_GBM76 - 4 Golden Mile Fimiston II Py-Hem 24.7 10.2 2.8 3674.1 1586.4 250.1 4430.8 14.3 0.4 25.6 0.2 54.7 31.3 0.2 12.8 1.7 159.6 0.7GBM76 M2_GBM76 - 5 Golden Mile Fimiston II Py-Hem 14.7 5.6 3.1 3751.9 1811.0 243.4 5521.4 14.6 0.5 25.2 0.2 58.9 31.8 0.2 12.6 1.1 166.3 0.7GBM76 M2_GBM76 - 6 Golden Mile Fimiston II Py-Hem 26.4 10.1 3.3 3480.5 1551.0 232.1 4848.2 14.2 0.4 23.7 0.2 55.4 31.4 0.2 11.8 1.7 157.1 0.7GBM95 M2_GBM95 - 1 Golden Mile Fimiston II Py-Hem 3.9 3.4 5.5 84.4 34.4 91.6 1257.3 26.9 1.5 0.4 0.7 6.1 2.0 0.6 0.2 0.2 4.8 0.1GBM95 M2_GBM95 - 2 Golden Mile Fimiston II Py-Hem 16.1 5.0 180.5 123.8 66.7 146.4 2481.7 17.1 0.8 0.3 0.4 9.9 1.2 0.3 0.1 0.1 8.2 0.0GBM95 M2_GBM95 - 3 Golden Mile Fimiston II Py-Hem 7.1 2.3 28.5 205.5 86.8 26.7 1477.4 14.4 0.6 0.3 0.3 3.7 2.6 0.2 0.2 0.1 3.8 0.0GBM95 M2_GBM95 - 4 Golden Mile Fimiston II Py-Hem 5.4 2.1 45.1 239.3 75.2 48.1 1284.4 13.8 0.5 3.0 0.3 4.3 10.1 0.3 1.3 0.1 7.8 0.0GBM95 M2_GBM95 - 5 Golden Mile Fimiston II Py-Hem 7.0 3.1 68.6 200.4 81.8 27.8 1642.3 22.3 1.1 3.3 0.4 4.6 11.1 0.4 0.8 0.2 9.8 0.1GBM95 M2_GBM95 - 6 Golden Mile Fimiston II Py-Hem 11.6 3.8 139.5 189.9 69.0 74.0 1638.0 19.7 1.0 3.9 0.5 7.7 11.9 12.4 1.0 0.2 9.8 0.1GBM95 M2_GBM95 - 7 Golden Mile Fimiston II Py-Hem 5.6 2.6 54.3 153.4 47.1 41.7 2228.4 15.4 0.5 4.6 0.2 3.4 13.9 0.2 1.3 0.1 7.4 0.1GBM95 M2_GBM95 - 8 Golden Mile Fimiston II Py-Hem 19.7 9.8 199.6 256.1 53.2 40.0 1623.5 17.4 1.0 3.4 0.3 8.0 11.5 0.3 1.1 0.1 11.8 0.0GBM95 M2_GBM95 - 9 Golden Mile Fimiston II Py-Hem 19.7 5.1 213.3 177.9 85.0 38.7 1864.5 19.6 1.0 4.6 0.5 8.5 12.9 0.4 1.4 0.1 10.9 0.0GBM96 M2_GBM96 - 1 Golden Mile Fimiston II Py-Hem 26.0 23.0 26.2 532.1 355.2 3315.9 8243.7 35.0 2.2 55.7 0.9 201.0 83.1 0.8 54.8 9.7 13.8 0.1GBM96 M2_GBM96 - 2 Golden Mile Fimiston II Py-Hem 22.2 24.3 3.7 363.7 402.1 2697.3 8521.8 22.1 1.1 46.5 0.5 175.5 86.6 0.4 59.3 11.7 13.1 0.1

LV29 M2_LV29 - 1 Golden Mile Fimiston II Py 0.7 2.9 3.8 6.2 1.1 3.7 2.5 22.0 1.1 0.1 0.2 0.7 1.9 0.4 0.1 0.1 0.3 0.1LV29 M2_LV29 - 10 Golden Mile Fimiston II Py 0.4 2.9 4.3 88.7 5.0 80.0 7.5 17.0 0.9 0.1 0.5 2.6 1.6 0.4 0.1 0.2 0.5 0.1LV29 M2_LV29 - 11 Golden Mile Fimiston II Py 0.4 2.2 3.2 88.2 9.1 38.1 4.9 17.3 0.5 0.1 0.4 2.5 1.0 0.3 0.1 0.1 0.7 0.0LV29 M2_LV29 - 12 Golden Mile Fimiston II Py 1.3 1.6 7.4 182.4 8.2 130.4 20.2 14.8 0.3 0.3 0.2 2.1 3.8 0.1 0.4 1.2 1.0 0.1LV29 M2_LV29 - 13 Golden Mile Fimiston II Py 2.2 2.3 11.6 154.6 5.9 54.6 17.0 13.0 0.7 0.2 0.4 1.7 1.7 0.3 0.2 0.4 1.6 0.3LV29 M2_LV29 - 2 Golden Mile Fimiston II Py 0.4 1.8 2.7 16.0 1.1 14.1 2.0 16.2 0.5 0.1 0.3 2.3 0.8 0.3 0.1 0.1 0.2 0.0LV29 M2_LV29 - 3 Golden Mile Fimiston II Py 0.3 2.3 3.3 17.8 1.0 18.5 0.8 13.4 0.7 0.1 0.4 1.1 1.0 0.4 0.1 0.1 0.3 0.0LV29 M2_LV29 - 4 Golden Mile Fimiston II Py 0.4 2.4 3.7 60.9 1.5 193.3 1.4 13.3 0.5 0.1 0.4 3.0 1.0 0.3 0.1 0.4 0.4 0.0LV29 M2_LV29 - 5 Golden Mile Fimiston II Py 1.1 4.0 5.6 107.0 2.0 24.8 14.1 24.0 1.5 0.2 0.9 1.8 2.3 0.8 0.2 0.4 0.6 0.1LV29 M2_LV29 - 6 Golden Mile Fimiston II Py 0.4 2.9 4.1 48.4 1.9 120.6 4.2 17.5 1.1 0.1 0.6 1.5 1.5 0.5 0.2 0.2 0.4 0.1LV29 M2_LV29 - 7 Golden Mile Fimiston II Py 0.5 2.5 3.6 66.7 1.8 60.1 6.1 15.4 1.0 0.1 0.6 1.7 1.5 0.4 0.1 0.2 0.4 0.1LV29 M2_LV29 - 8 Golden Mile Fimiston II Py 0.9 2.4 3.4 136.0 6.6 26.4 28.1 14.1 1.1 0.3 0.4 1.6 6.3 0.4 0.6 0.1 2.2 0.1LV29 M2_LV29 - 9 Golden Mile Fimiston II Py 1.0 1.9 2.8 133.1 4.6 20.2 31.6 11.0 0.6 0.2 0.3 0.7 5.7 0.3 0.4 0.1 1.2 0.1

52263 M3_52263 - 1 Golden Mile Fimiston IV Py-Hem 0.7 2.5 3.5 144.4 2.2 2342.2 2842.0 15.5 0.8 4.3 2.2 196.4 1.5 0.4 4.3 0.1 672.2 0.852263 M3_52263 - 2 Golden Mile Fimiston IV Py-Hem 0.8 2.6 11.9 1288.6 3.1 836.3 5880.8 16.7 19.7 2.0 0.8 91.3 1.5 0.4 12.0 0.2 284.5 0.6GBM59 M3_GBM59 - 1 Golden Mile Fimiston IV Py 0.4 2.6 3.7 41.1 16.5 0.8 2.0 14.3 0.7 0.1 0.4 0.3 1.3 0.4 0.1 0.1 0.4 0.0GBM59 M3_GBM59 - 10 Golden Mile Fimiston IV Py 0.8 3.1 4.1 171.8 25.0 1.5 8.9 21.1 1.4 0.2 0.6 0.6 1.9 0.6 0.2 0.2 0.4 0.1GBM59 M3_GBM59 - 11 Golden Mile Fimiston IV Py 0.7 2.4 3.4 30.2 5.8 2.7 24.9 15.0 1.0 0.1 0.4 0.4 1.5 0.4 0.1 0.2 0.8 0.1GBM59 M3_GBM59 - 12 Golden Mile Fimiston IV Py 1.5 3.8 5.1 123.0 15.0 9.2 8.0 28.6 2.1 0.2 0.7 0.7 1.8 2.0 0.2 0.3 0.6 0.1GBM59 M3_GBM59 - 13 Golden Mile Fimiston IV Py 0.7 3.2 4.5 584.2 12.2 5.0 752.1 17.1 0.9 1.9 0.3 3.2 6.0 0.4 1.3 0.1 8.5 0.4GBM59 M3_GBM59 - 14 Golden Mile Fimiston IV Py 0.7 2.1 3.0 110.7 17.0 2.3 164.7 11.3 0.4 0.3 0.2 0.4 1.3 0.2 0.5 0.1 0.6 0.0GBM59 M3_GBM59 - 15 Golden Mile Fimiston IV Py 0.7 1.8 2.6 2071.7 30.8 0.3 710.3 12.4 0.2 0.0 0.1 0.2 0.6 0.1 0.1 0.0 0.1 0.0GBM59 M3_GBM59 - 16 Golden Mile Fimiston IV Py 0.7 2.4 3.4 434.2 13.9 4.5 400.5 12.4 0.6 0.2 0.3 0.5 1.3 0.2 0.2 0.1 0.7 0.0GBM59 M3_GBM59 - 17 Golden Mile Fimiston IV Py 0.8 3.1 4.2 23.5 8.3 2.5 3.9 18.1 0.9 0.2 0.5 0.4 1.7 0.4 0.4 0.2 2.7 0.0GBM59 M3_GBM59 - 18 Golden Mile Fimiston IV Py 0.6 2.1 2.9 54.3 16.0 0.4 1.9 11.9 0.5 0.1 0.2 0.3 1.0 0.3 0.1 0.1 0.2 0.0GBM59 M3_GBM59 - 2 Golden Mile Fimiston IV Py 0.5 3.3 4.7 44.1 13.8 8.0 2.1 20.4 1.1 0.7 0.6 0.5 2.7 0.5 0.7 0.2 5.7 0.1GBM59 M3_GBM59 - 3 Golden Mile Fimiston IV Py 0.6 3.0 52.6 20.9 8.6 0.9 1.8 17.4 0.8 0.1 0.5 0.5 1.5 0.5 0.2 0.1 3.3 0.0GBM59 M3_GBM59 - 4 Golden Mile Fimiston IV Py 0.4 2.8 4.1 138.3 63.5 0.6 0.6 17.7 1.0 0.1 0.4 0.4 1.5 0.5 0.2 0.1 0.3 0.0GBM59 M3_GBM59 - 5 Golden Mile Fimiston IV Py 2.6 2.3 3.4 1.7 3.0 0.5 1.1 12.8 0.7 0.1 0.4 0.3 1.1 7.2 0.1 0.1 0.4 0.0GBM59 M3_GBM59 - 6 Golden Mile Fimiston IV Py 0.5 3.0 4.4 159.1 36.8 0.6 8.7 17.2 0.8 0.1 0.4 0.3 1.4 0.4 0.1 0.1 0.4 0.1GBM59 M3_GBM59 - 7 Golden Mile Fimiston IV Py 0.7 4.0 5.6 32.5 11.8 2.8 4.5 25.5 1.8 0.8 1.0 0.5 2.6 0.8 1.3 0.3 2.1 0.1GBM59 M3_GBM59 - 8 Golden Mile Fimiston IV Py 0.4 1.7 11.4 163.4 26.5 13.1 53.3 9.7 0.5 0.3 0.2 0.6 4.1 0.2 0.3 0.1 6.6 0.0GBM59 M3_GBM59 - 9 Golden Mile Fimiston IV Py 0.7 2.4 3.2 216.1 17.6 0.5 82.4 14.2 0.8 0.1 0.4 0.5 1.1 0.3 0.1 0.1 0.2 0.0

LGX M4_LGX - 1 Golden Mile Fimiston II Py 0.7 2.6 3.6 116.8 7.2 6.8 121.4 16.3 1.0 0.5 0.4 0.3 2.4 0.4 0.7 0.2 3.2 0.0LGX M4_LGX - 10 Golden Mile Fimiston II Py 3.4 2.2 9.2 8.3 10.9 50.9 405.4 13.7 0.7 4.7 0.4 3.9 11.4 0.7 5.1 0.1 7.4 0.0LGX M4_LGX - 11 Golden Mile Fimiston II Py 1.5 3.2 4.4 55.8 15.4 50.0 705.0 22.4 1.4 10.3 0.7 3.4 14.5 0.6 12.0 0.2 6.1 0.1LGX M4_LGX - 12 Golden Mile Fimiston III Py 0.7 1.8 2.6 50.1 29.7 0.3 20.8 21.1 0.2 0.0 0.2 0.2 0.6 0.1 0.0 0.0 0.1 0.0LGX M4_LGX - 13 Golden Mile Fimiston III Py 0.7 2.1 3.1 14.7 20.2 0.3 19.8 27.0 0.4 0.0 0.2 0.2 0.8 0.2 0.1 0.1 0.1 0.0LGX M4_LGX - 2 Golden Mile Fimiston II Py 2.3 2.7 3.7 136.4 4.9 16.0 142.4 17.4 1.0 6.2 0.5 6.0 8.8 0.5 4.3 0.6 6.1 0.0LGX M4_LGX - 3 Golden Mile Fimiston II Py 2.8 3.6 24.4 72.5 2.9 52.1 340.4 23.6 1.5 5.8 0.8 9.3 9.3 0.7 4.3 1.4 5.5 0.1LGX M4_LGX - 4 Golden Mile Fimiston II Py 7.0 2.5 39.2 128.0 10.5 33.6 401.6 14.2 0.9 5.4 0.4 11.0 12.7 0.3 7.3 1.4 7.0 0.0LGX M4_LGX - 5 Golden Mile Fimiston II Py 1.0 3.8 5.3 37.8 24.1 0.7 44.5 27.2 1.1 0.2 0.6 0.4 2.2 0.5 0.1 0.2 0.4 0.1LGX M4_LGX - 6 Golden Mile Fimiston II Py 0.7 2.9 4.1 1.6 13.4 0.5 17.2 23.8 0.8 0.1 0.4 0.3 1.5 0.3 0.1 0.1 0.3 0.0LGX M4_LGX - 7 Golden Mile Fimiston II Py 0.7 1.7 2.4 21.9 27.2 0.3 19.6 24.6 0.2 0.0 0.1 0.2 0.6 0.1 0.0 0.0 0.1 0.0LGX M4_LGX - 8 Golden Mile Fimiston II Py 0.7 2.3 3.3 12.2 24.7 0.4 18.7 30.4 0.3 0.1 0.2 0.2 1.0 0.1 0.1 0.1 0.2 0.0LGX M4_LGX - 9 Golden Mile Fimiston II Py 15.5 1.8 11.9 61.4 17.1 93.9 1108.8 9.7 0.3 13.6 0.2 17.2 27.7 0.2 17.6 0.6 14.3 0.0LV45 M4_LV45 - 1 Golden Mile Fimiston III Py 3.1 2.1 2.9 110.0 54.1 6.0 21.8 14.8 0.6 0.1 0.3 1.0 4.0 3.4 0.2 0.1 0.6 0.0LV45 M4_LV45 - 10 Golden Mile Fimiston III Py 6.2 4.3 6.0 64.8 7.0 53.5 179.6 27.1 1.7 0.4 0.8 6.3 12.7 0.5 0.6 0.2 7.8 0.1LV45 M4_LV45 - 11 Golden Mile Fimiston III Py 0.8 1.8 2.6 9.7 4.3 132.8 134.6 13.4 0.4 1.0 0.2 2.1 13.9 0.2 2.1 0.1 3.7 0.0LV45 M4_LV45 - 12 Golden Mile Fimiston III Py 1.0 2.2 3.0 52.8 3.2 23.6 162.2 13.4 0.7 0.3 0.4 1.9 10.5 0.3 0.6 0.1 2.9 0.0LV45 M4_LV45 - 2 Golden Mile Fimiston III Py 41.5 2.8 3.9 228.3 51.4 41.2 143.2 16.7 0.9 0.6 0.5 1.6 7.8 3.1 1.5 0.1 2.9 0.0LV45 M4_LV45 - 3 Golden Mile Fimiston III Py 5.7 2.4 5.4 141.2 21.5 59.2 85.6 13.9 0.8 1.0 0.3 2.3 14.1 2.1 2.6 0.1 2.6 0.1LV45 M4_LV45 - 4 Golden Mile Fimiston III Py 1.9 2.2 3.3 176.6 45.0 6.7 39.5 12.6 0.5 0.3 0.2 0.8 5.4 1.7 0.3 0.1 0.6 0.0LV45 M4_LV45 - 5 Golden Mile Fimiston III Py 4.4 4.4 6.0 164.8 49.5 4984.1 40.7 25.1 1.1 1.3 0.6 1.6 3.8 4.1 0.4 0.2 1.8 0.1

ESM Table 2. LA-ICP-MS imputed data set for the Golden Mile deposit. Refer to ESM 1 for sample, lithology, location and geological classification. Supplied as separate Excel spreadsheet. Sample #Spot Deposit Style Stage/Zone Redox V Cr Mn Co Ni Cu As Se Mo Ag Sn Sb Te W Au Tl Pb Bi

ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppmMaximum Limit of Detection 46.0 42.3 41.0 1.1 13.8 6.7 14.0 13.0 16.4 1.1 5.2 4.3 9.3 8.1 2.2 3.0 5.4 0.9Median Limit of Detection 0.68 2.91 4.11 0.26 1.13 0.61 0.80 13.78 0.97 0.12 0.40 0.50 1.31 0.44 0.12 0.15 0.31 0.05

LV45 M4_LV45 - 6 Golden Mile Fimiston III Py 4.7 2.9 3.9 205.2 46.6 54.2 37.7 20.1 1.6 1.0 0.6 1.8 7.5 5.8 2.3 0.2 3.1 0.1LV45 M4_LV45 - 7 Golden Mile Fimiston III Py 2.5 3.8 5.3 63.4 8.8 16.5 184.8 23.8 1.4 0.6 0.7 1.5 16.5 0.6 1.0 0.2 2.9 0.1LV45 M4_LV45 - 8 Golden Mile Fimiston III Py 0.7 2.5 3.5 17.5 4.1 25.8 179.6 16.2 0.9 0.5 0.4 2.5 18.5 0.4 0.8 0.1 5.0 0.1LV45 M4_LV45 - 9 Golden Mile Fimiston III Py 0.8 2.7 3.8 13.5 3.6 45.1 129.4 15.6 0.8 0.6 0.4 2.2 20.5 0.4 1.3 0.1 4.2 0.0OR3 M5_OR3-1 - 1 Golden Mile Oroya III Py-Te-V 0.6 2.4 8.7 340.5 303.6 18.5 29.8 16.7 0.8 3.0 0.5 15.8 25.1 0.4 2.3 5.5 11.4 0.3OR3 M5_OR3-1 - 10 Golden Mile Oroya III Py-Te-V 1.6 3.5 9.3 498.9 804.4 48.9 122.2 18.2 1.4 3.5 0.6 11.3 143.8 0.6 4.1 8.4 43.4 0.5OR3 M5_OR3-1 - 11 Golden Mile Oroya III Py-Te-V 6.5 2.8 8.0 251.3 210.3 45.2 61.7 13.0 0.7 7.7 0.5 30.9 83.5 0.3 8.0 5.0 89.7 1.6OR3 M5_OR3-1 - 12 Golden Mile Oroya III Py-Te-V 8.0 3.9 13.5 410.7 472.0 61.1 309.0 18.6 1.3 9.7 0.3 28.3 147.5 0.6 12.4 8.0 27.1 2.0OR3 M5_OR3-1 - 13 Golden Mile Oroya III Py-Te-V 42.8 2.5 20.1 784.5 579.4 56.5 153.5 11.7 0.8 124.9 0.4 85.3 168.3 0.4 35.7 5.6 124.7 4.6OR3 M5_OR3-1 - 14 Golden Mile Oroya III Py-Te-V 35.0 2.9 14.5 1091.1 1204.0 53.1 844.3 13.7 1.0 104.8 0.5 208.1 114.2 0.5 61.2 9.5 350.7 13.9OR3 M5_OR3-1 - 15 Golden Mile Oroya III Py-Te-V 1.6 3.4 28.7 607.9 615.2 91.0 85.7 15.7 1.1 4.6 0.8 22.5 22.9 0.4 1.9 8.8 31.3 1.0OR3 M5_OR3-1 - 16 Golden Mile Oroya III Py-Te-V 2.4 3.8 13.1 156.1 170.0 17.4 1055.1 20.0 1.5 10.9 0.3 26.6 44.0 0.8 9.3 1.3 77.3 2.3OR3 M5_OR3-1 - 17 Golden Mile Oroya III Py-Te-V 8.4 3.5 14.4 1140.6 1541.8 78.7 365.3 18.1 1.5 198.9 0.5 100.0 48.6 0.9 206.4 13.8 124.8 5.6OR3 M5_OR3-1 - 18 Golden Mile Oroya III Py-Te-V 0.5 2.9 5.2 23.2 132.8 0.9 287.1 15.4 1.2 0.1 0.3 0.4 24.9 0.5 0.2 0.2 0.4 0.1OR3 M5_OR3-1 - 2 Golden Mile Oroya III Py-Te-V 33.1 2.3 17.7 624.3 776.6 38.3 239.7 12.9 0.9 45.1 0.5 40.0 275.6 0.4 55.9 5.0 374.1 7.1OR3 M5_OR3-1 - 3 Golden Mile Oroya III Py-Te-V 40.9 2.7 17.2 1181.3 852.7 30.6 366.5 8.4 0.4 62.8 0.4 227.5 72.3 0.2 37.4 17.3 315.7 13.8OR3 M5_OR3-1 - 4 Golden Mile Oroya III Py-Te-V 9.9 7.4 68.3 999.6 1114.3 42.5 363.9 21.7 2.1 38.6 0.7 125.6 149.4 1.0 18.9 12.8 223.7 4.9OR3 M5_OR3-1 - 5 Golden Mile Oroya III Py-Te-V 19.3 2.7 14.4 965.5 937.9 48.4 291.5 13.4 1.1 77.6 0.3 194.1 36.7 0.5 60.7 18.9 163.0 9.2OR3 M5_OR3-1 - 6 Golden Mile Oroya III Py-Te-V 28.9 2.2 18.7 695.4 724.4 44.9 243.7 10.1 0.6 52.9 0.3 65.4 10.9 0.3 61.5 7.2 67.7 4.7OR3 M5_OR3-1 - 7 Golden Mile Oroya III Py-Te-V 113.1 7.9 23.7 641.8 640.3 40.7 427.3 11.9 0.7 50.2 0.4 56.2 63.7 0.3 49.7 4.9 53.6 4.2OR3 M5_OR3-1 - 8 Golden Mile Oroya III Py-Te-V 0.7 2.2 12.7 182.1 175.1 31.5 46.5 9.9 0.6 2.3 0.6 22.6 162.4 0.3 1.8 5.9 13.4 0.5OR3 M5_OR3-1 - 9 Golden Mile Oroya III Py-Te-V 0.6 1.8 10.5 296.0 210.8 59.4 23.2 8.4 0.5 1.0 0.4 5.6 182.4 0.2 0.6 5.7 6.4 0.2OR9 M5_OR9 - 1 Golden Mile Oroya I Py 3.4 4.1 4.6 119.0 1042.5 189.3 1578.6 18.6 0.9 0.6 0.5 34.9 8.0 6.2 0.9 0.5 79.0 0.2OR9 M5_OR9 - 10 Golden Mile Oroya I Py 77.7 13.8 12.2 1483.8 952.5 1216.6 585.4 9.1 0.8 5.3 0.4 159.8 182.4 0.4 8.6 3.7 80.5 1.4OR9 M5_OR9 - 11 Golden Mile Oroya I Py 18.3 10.2 64.2 1525.3 698.4 2448.1 634.5 15.9 1.2 2.6 0.6 110.6 143.8 2.2 4.6 7.4 60.6 0.6OR9 M5_OR9 - 12 Golden Mile Oroya I Py 9.6 8.9 24.8 1325.3 741.1 144.2 1490.0 13.8 1.2 1.0 0.5 92.5 83.5 4.7 2.2 2.7 79.8 0.4OR9 M5_OR9 - 13 Golden Mile Oroya I Py 16.2 3.4 20.5 922.2 724.3 833.0 398.9 6.9 0.6 2.7 0.3 115.3 147.5 0.3 6.1 8.4 70.8 0.7OR9 M5_OR9 - 14 Golden Mile Oroya I Py 127.9 11.5 187.2 543.3 530.8 48.7 414.2 12.3 0.8 4.9 0.4 132.6 168.3 0.4 7.0 2.0 61.3 1.5OR9 M5_OR9 - 15 Golden Mile Oroya I Py 4.6 3.0 83.5 274.1 553.0 265.2 1720.7 10.3 1.0 1.3 0.5 104.8 114.2 0.4 2.0 0.5 25.5 0.3OR9 M5_OR9 - 16 Golden Mile Oroya I Py 1.9 3.1 5.0 100.3 493.3 127.4 1306.9 14.3 1.6 0.9 0.8 42.0 22.9 8.6 1.5 0.2 29.6 0.2OR9 M5_OR9 - 17 Golden Mile Oroya I Py 2.9 6.6 185.5 143.2 238.9 116.0 2124.8 7.8 0.7 1.1 0.3 91.3 44.0 7.6 2.3 0.8 41.4 0.3OR9 M5_OR9 - 18 Golden Mile Oroya I Py 1.9 5.2 29.0 243.7 285.7 1037.9 2992.2 11.4 1.0 1.1 0.5 98.6 48.6 7.5 2.1 0.9 66.3 0.4OR9 M5_OR9 - 19 Golden Mile Oroya I Py 1.6 2.4 2.9 169.6 380.7 226.0 2752.6 7.1 0.5 0.9 0.3 66.0 24.9 10.8 1.3 0.7 35.4 0.2OR9 M5_OR9 - 2 Golden Mile Oroya I Py 4.1 5.8 3.6 197.0 492.9 242.4 1866.1 13.5 0.6 1.2 0.3 64.6 25.0 13.6 0.9 0.4 20.8 0.6OR9 M5_OR9 - 20 Golden Mile Oroya I Py 2.3 2.7 4.6 114.4 565.2 192.3 1008.1 11.1 0.7 1.0 0.4 42.1 24.3 10.5 1.6 0.2 17.3 0.2OR9 M5_OR9 - 21 Golden Mile Oroya I Py 1.9 6.4 3.5 83.9 671.5 39.6 498.9 9.4 0.9 0.2 0.4 39.5 1.4 9.4 0.1 0.3 28.2 0.2OR9 M5_OR9 - 3 Golden Mile Oroya I Py 9.5 2.5 7.6 564.2 333.3 398.2 385.4 11.4 0.6 2.4 0.3 57.5 74.0 0.2 2.8 3.8 24.1 0.5OR9 M5_OR9 - 3 Golden Mile Oroya I Py 9.5 2.5 7.6 564.2 333.3 398.2 385.4 11.4 0.6 2.4 0.3 57.5 74.0 0.2 2.8 3.8 24.1 0.5OR9 M5_OR9 - 4 Golden Mile Oroya I Py 6.6 2.6 4.5 191.0 264.0 27.5 145.1 10.0 0.8 1.6 0.4 55.7 72.3 0.4 3.6 7.5 23.6 0.5OR9 M5_OR9 - 5 Golden Mile Oroya I Py 13.9 6.4 10.2 1163.5 988.8 1312.4 1512.5 19.2 1.8 3.5 0.7 119.8 149.4 0.8 6.1 4.5 51.6 1.0OR9 M5_OR9 - 6 Golden Mile Oroya I Py 7.0 2.3 4.0 250.2 181.7 231.3 122.6 20.2 0.6 0.9 0.3 28.4 36.7 0.3 1.9 3.6 11.4 0.2OR9 M5_OR9 - 7 Golden Mile Oroya I Py 0.9 2.9 3.6 111.8 176.0 216.1 1003.9 8.2 0.7 0.8 0.3 28.8 10.9 1.8 0.7 0.3 12.5 0.2OR9 M5_OR9 - 8 Golden Mile Oroya I Py 29.8 4.9 10.8 889.7 431.2 86.2 366.4 7.7 0.7 1.7 0.4 51.0 63.7 2.4 2.8 2.3 32.9 0.4OR9 M5_OR9 - 9 Golden Mile Oroya I Py 29.3 7.0 8.4 495.0 582.6 364.2 394.4 14.4 1.0 3.5 0.6 127.5 162.4 0.7 6.7 5.3 53.6 1.1OR11 M6_OR11 - 10 Golden Mile Oroya III Py 24.0 25.4 14.1 372.9 263.5 472.4 99.0 29.7 1.7 1.8 0.7 23.4 17.9 9.6 0.6 0.3 42.6 0.4OR11 M6_OR11 - 11 Golden Mile Oroya III Py 6.9 6.4 7.1 208.7 223.3 35.7 13.7 28.3 2.7 0.3 0.8 3.8 3.6 1.8 0.3 0.4 17.8 0.2OR11 M6_OR11 - 12 Golden Mile Oroya III Py 34.7 61.1 14.7 447.0 280.2 164.0 501.9 20.1 1.5 6.2 0.8 105.8 40.4 11.3 3.0 1.0 523.0 0.9OR11 M6_OR11 - 13 Golden Mile Oroya III Py 19.7 33.1 14.5 318.1 238.3 122.7 540.6 12.6 0.9 1.1 0.5 61.7 1.5 5.8 0.5 0.9 384.1 0.5OR11 M6_OR11 - 14 Golden Mile Oroya III Py 12.9 32.1 5.9 211.0 247.5 361.0 30.9 22.4 2.0 1.2 1.0 9.9 6.1 5.5 0.3 0.3 39.1 0.4OR11 M6_OR11 - 15 Golden Mile Oroya III Py 14.7 14.2 10.0 227.3 170.6 188.5 213.5 23.7 1.6 1.0 0.9 55.6 2.8 7.7 0.3 0.6 321.8 0.6OR11 M6_OR11 - 16 Golden Mile Oroya III Py 18.9 50.8 7.8 620.7 198.6 91.9 511.5 26.5 2.2 1.6 1.1 51.0 15.0 2.2 1.0 0.6 225.2 0.6OR11 M6_OR11 - 17 Golden Mile Oroya III Py 18.7 18.3 7.6 114.5 111.1 132.6 30.6 23.5 1.6 0.6 0.8 6.2 9.6 6.9 0.2 0.3 24.8 0.4OR11 M6_OR11 - 18 Golden Mile Oroya III Py 11.0 9.0 7.0 212.0 156.5 74.7 191.8 22.0 1.7 1.4 0.8 30.5 8.9 5.4 0.8 0.3 144.1 0.4OR11 M6_OR11 - 19 Golden Mile Oroya III Py 12.3 65.9 58.7 96.2 96.1 171.5 62.3 26.7 1.7 0.8 0.9 13.0 7.7 2.5 0.3 0.4 35.8 0.4OR11 M6_OR11 - 20 Golden Mile Oroya III Py 29.2 5.4 4.9 448.1 1091.8 2.8 1232.6 17.4 1.4 1.6 0.7 4.4 6.5 3.9 0.6 0.2 5.6 0.2OR11 M6_OR11 - 21 Golden Mile Oroya III Py 4.3 12.6 5.2 58.8 99.4 57.2 23.3 18.8 1.8 0.3 0.7 3.8 2.8 1.2 0.2 0.3 11.2 0.1OR11 M6_OR11 - 22 Golden Mile Oroya III Py 5.4 4.7 5.9 170.6 323.7 26.0 318.7 21.1 1.8 0.3 0.9 3.7 4.2 1.1 0.3 0.3 9.9 0.1OR11 M6_OR11 - 7 Golden Mile Oroya III Py 32.1 14.1 14.2 148.9 129.7 25.5 47.0 54.0 5.4 1.1 2.4 12.4 11.0 10.8 0.5 0.8 12.9 0.3OR11 M6_OR11 - 8 Golden Mile Oroya III Py 8.9 11.7 5.3 265.6 205.3 90.4 332.2 16.3 1.1 0.6 0.5 31.6 1.7 3.4 0.3 0.3 168.1 0.4OR11 M6_OR11 - 9 Golden Mile Oroya III Py 6.9 33.9 175.5 217.0 124.6 151.7 317.0 20.6 1.5 2.2 0.7 34.1 20.9 5.7 1.1 0.2 88.0 0.4OR15 M6_OR15 - 1 Golden Mile Oroya II Py-Ccp-Sph 0.7 3.2 4.3 269.6 267.0 43.9 64.5 13.2 0.8 0.3 0.5 27.6 1.5 0.3 0.1 0.1 15.3 0.2OR15 M6_OR15 - 10 Golden Mile Oroya II Py-Ccp-Sph 16.4 2.9 3.9 64.9 92.0 40.8 80.0 13.8 3.5 4.9 0.5 26.6 18.8 0.3 2.1 0.1 16.9 0.4OR15 M6_OR15 - 11 Golden Mile Oroya II Py-Ccp-Sph 0.5 2.6 3.7 68.5 86.8 55.0 18.1 13.7 0.9 0.3 0.5 35.8 1.3 0.3 0.1 0.1 0.5 0.0OR15 M6_OR15 - 12 Golden Mile Oroya II Py-Ccp-Sph 0.9 4.3 5.7 7.2 10.0 32.2 2.2 24.8 1.8 0.2 1.0 3.1 2.4 0.8 0.2 0.2 0.7 0.1OR15 M6_OR15 - 13 Golden Mile Oroya II Py-Ccp-Sph 0.6 2.7 3.6 14.8 68.0 28.6 11.2 15.3 1.0 0.5 0.7 4.7 1.7 0.5 0.3 0.2 2.9 0.1OR15 M6_OR15 - 14 Golden Mile Oroya II Py-Ccp-Sph 7.8 3.2 6.0 376.4 370.3 56.2 230.4 16.2 2.2 12.9 0.7 55.3 41.1 0.6 6.2 0.2 39.7 0.9OR15 M6_OR15 - 15 Golden Mile Oroya II Py-Ccp-Sph 0.7 2.5 3.4 69.3 128.1 43.3 819.3 14.0 0.9 1.5 0.6 5.7 4.7 0.4 5.0 0.1 11.4 0.2OR15 M6_OR15 - 16 Golden Mile Oroya II Py-Ccp-Sph 2.3 2.3 3.6 68.5 84.6 37.9 54.0 11.2 0.6 3.1 0.4 27.2 11.6 0.3 2.5 0.1 11.6 0.2OR15 M6_OR15 - 17 Golden Mile Oroya II Py-Ccp-Sph 0.8 2.7 3.7 259.1 409.5 55.8 298.4 15.2 1.0 7.7 0.6 49.7 25.3 0.5 6.0 0.2 53.7 0.8OR15 M6_OR15 - 18 Golden Mile Oroya II Py-Ccp-Sph 0.6 2.8 3.7 7.2 42.6 84.9 17.0 13.9 0.7 0.7 0.5 6.6 3.8 0.4 0.5 0.1 2.2 0.1OR15 M6_OR15 - 19 Golden Mile Oroya II Py-Ccp-Sph 0.8 3.6 4.9 2.3 11.6 3.4 8.5 19.7 1.1 0.3 0.7 5.1 2.8 0.5 0.4 0.2 1.7 0.1OR15 M6_OR15 - 2 Golden Mile Oroya II Py-Ccp-Sph 0.6 2.6 3.5 161.2 95.9 15.5 18.3 9.3 0.6 0.3 0.3 38.9 0.8 0.2 0.1 0.1 5.1 0.0OR15 M6_OR15 - 20 Golden Mile Oroya II Py-Ccp-Sph 4.9 6.0 8.1 65.5 50.5 30.3 34.9 34.8 14.2 12.2 1.4 10.7 21.1 1.2 2.2 0.3 8.6 0.2OR15 M6_OR15 - 21 Golden Mile Oroya II Py-Ccp-Sph 0.6 3.1 4.1 25.1 44.6 80.3 31.0 15.4 0.9 1.1 0.6 15.1 4.7 0.5 0.7 0.1 4.2 0.1OR15 M6_OR15 - 22 Golden Mile Oroya II Py-Ccp-Sph 1.7 3.1 5.5 74.4 143.2 36.9 107.2 15.2 0.8 3.8 0.5 51.8 24.4 0.4 3.0 0.1 30.4 0.7OR15 M6_OR15 - 23 Golden Mile Oroya II Py-Ccp-Sph 15.5 3.0 6.8 100.6 133.8 40.7 100.3 13.4 0.8 24.0 0.4 41.3 34.9 0.3 3.7 0.1 26.5 0.6OR15 M6_OR15 - 24 Golden Mile Oroya II Py-Ccp-Sph 0.9 2.5 3.5 38.1 116.4 81.1 45.3 10.9 0.4 4.3 0.2 19.2 14.3 0.3 1.9 0.1 14.0 0.3OR15 M6_OR15 - 25 Golden Mile Oroya II Py-Ccp-Sph 1.6 3.4 4.6 37.5 65.6 79.5 38.8 12.5 1.1 1.5 0.5 8.0 5.8 0.5 0.8 0.2 4.8 0.1OR15 M6_OR15 - 26 Golden Mile Oroya II Py-Ccp-Sph 5.5 2.9 4.0 151.7 259.7 30.1 182.1 10.1 18.0 23.8 0.4 39.1 30.2 0.3 3.6 0.1 26.0 0.6OR15 M6_OR15 - 27 Golden Mile Oroya II Py-Ccp-Sph 2.4 2.0 4.2 138.8 178.3 56.6 94.7 7.5 0.9 29.9 0.3 45.2 55.9 0.3 5.1 0.1 27.4 0.7OR15 M6_OR15 - 28 Golden Mile Oroya II Py-Ccp-Sph 0.9 2.4 3.2 665.4 1285.6 36.3 520.2 9.8 0.8 2.3 0.4 67.2 14.9 0.3 3.2 0.1 44.6 0.5OR15 M6_OR15 - 29 Golden Mile Oroya II Py-Ccp-Sph 3.9 3.7 5.1 54.1 114.0 34.2 98.7 12.9 1.1 4.7 0.5 47.9 27.6 0.4 2.4 0.2 28.2 0.9OR15 M6_OR15 - 3 Golden Mile Oroya II Py-Ccp-Sph 0.9 1.8 2.5 263.8 431.8 40.9 976.8 6.5 0.3 2.2 0.2 35.0 13.8 0.2 9.1 0.1 36.9 0.5OR15 M6_OR15 - 31 Golden Mile Oroya II Py-Ccp-Sph 0.6 2.3 3.1 9.3 28.2 45.0 12.6 9.4 0.9 0.6 0.4 2.9 1.4 0.4 0.2 0.1 1.3 0.0OR15 M6_OR15 - 32 Golden Mile Oroya II Py-Ccp-Sph 0.7 2.1 2.9 6.9 52.2 47.4 12.4 7.6 0.4 0.4 0.3 6.4 1.4 0.2 0.1 0.1 1.5 0.0OR15 M6_OR15 - 33 Golden Mile Oroya II Py-Ccp-Sph 1.2 3.3 4.5 81.7 170.0 36.5 190.3 11.2 0.7 10.3 0.4 43.1 25.5 0.4 3.2 0.2 29.6 0.6OR15 M6_OR15 - 4 Golden Mile Oroya II Py-Ccp-Sph 2.6 3.1 3.8 225.8 128.7 23.1 330.6 14.0 1.2 3.6 0.6 17.6 8.1 0.5 2.1 0.2 79.4 0.5OR15 M6_OR15 - 5 Golden Mile Oroya II Py-Ccp-Sph 1.1 4.7 6.7 337.4 206.9 42.2 460.4 24.8 1.7 2.3 0.9 72.0 14.9 1.0 5.9 0.3 32.0 0.4OR15 M6_OR15 - 6 Golden Mile Oroya II Py-Ccp-Sph 0.6 2.4 3.4 96.5 92.7 19.7 146.1 11.5 0.7 0.7 0.4 4.7 3.1 0.3 0.3 0.1 44.4 0.3OR15 M6_OR15 - 7 Golden Mile Oroya II Py-Ccp-Sph 0.9 4.2 5.8 17.8 19.5 12.6 3.7 23.0 1.6 0.2 0.9 8.8 2.5 0.8 0.2 0.3 0.7 0.1OR15 M6_OR15 - 8 Golden Mile Oroya II Py-Ccp-Sph 0.6 2.9 4.1 26.1 39.9 17.4 21.7 14.7 0.9 0.3 0.5 10.5 4.3 0.4 0.2 0.1 1.6 0.1OR15 M6_OR15 - 9 Golden Mile Oroya II Py-Ccp-Sph 4.4 1.9 2.8 73.3 64.8 22.5 52.4 9.2 0.5 1.9 0.2 16.8 8.6 0.2 1.2 0.1 13.4 0.2OR20 M6_OR20 - 1 Golden Mile Oroya II Py-Po 4.8 10.8 6.5 1201.2 562.5 69.8 259.0 18.5 1.6 16.7 0.8 87.5 40.5 0.8 5.0 1.6 112.2 0.9OR20 M6_OR20 - 2 Golden Mile Oroya II Py-Po 2.6 5.2 8.4 649.3 296.2 32.2 116.7 10.9 1.0 1.8 0.5 41.9 11.0 0.4 0.9 1.8 43.2 0.4OR20 M6_OR20 - 3 Golden Mile Oroya II Py-Po 5.8 6.9 4.1 614.2 272.8 95.4 147.3 19.0 0.9 11.7 0.5 47.7 27.4 0.5 4.2 0.6 104.9 0.4OR25 M6_OR25 - 1 Golden Mile Oroya II Py-Ccp 0.4 2.1 5.2 6.2 19.4 12.8 8.8 9.1 0.5 0.1 0.4 2.7 24.3 0.3 0.1 3.9 0.6 0.0OR25 M6_OR25 - 2 Golden Mile Oroya II Py-Ccp 0.4 2.0 5.5 21.3 47.3 6.6 14.1 9.2 0.5 0.2 0.4 9.5 1.4 0.2 0.2 4.6 2.2 0.0OR25 M6_OR25 - 3 Golden Mile Oroya II Py-Ccp 0.4 2.0 5.8 33.1 55.7 4.6 16.4 9.0 0.5 0.1 0.5 12.9 25.1 0.2 0.2 4.3 2.8 0.0OR25 M6_OR25 - 4 Golden Mile Oroya II Py-Ccp 0.5 3.4 7.0 61.0 93.8 8.1 25.2 15.7 1.1 0.3 0.5 23.8 275.6 0.4 0.3 4.6 5.8 0.1OR4 M7_OR4 - 1 Golden Mile Oroya II Py-Apy 4.6 3.9 45.2 33.9 97.4 2.7 1270.9 25.3 0.6 0.1 0.3 1.2 1.0 0.3 0.1 0.1 7.9 0.0OR4 M7_OR4 - 2 Golden Mile Oroya II Py-Apy 3.0 3.2 37.9 369.2 171.7 22.4 862.1 25.9 1.3 6.7 0.6 6.1 147.0 0.5 0.5 0.2 238.2 2.7OR4 M7_OR4 - 3 Golden Mile Oroya II Py-Apy 6.6 2.5 11.0 29.9 67.1 67.9 3426.7 62.3 0.7 0.2 0.4 4.1 1.4 0.4 0.1 0.1 23.5 0.0OR4 M7_OR4 - 4 Golden Mile Oroya II Py-Apy 2.4 2.5 33.4 66.6 108.2 6.7 1569.9 39.7 0.8 4.9 0.4 4.1 23.3 0.4 1.1 0.1 29.2 0.7OR4 M7_OR4 - 5 Golden Mile Oroya II Py-Apy 4.7 5.8 21.3 22.9 77.0 9.3 1297.7 40.9 1.8 0.3 0.6 6.6 2.7 0.8 0.2 0.3 28.1 0.1OR5 M7_OR5-1 - 1 Golden Mile Oroya II Py-Po 3.3 3.1 19.5 573.6 744.5 24.5 356.3 8.1 0.5 1.7 0.3 49.1 29.5 0.2 1.2 1.1 28.9 0.5OR5 M7_OR5-1 - 2 Golden Mile Oroya II Py-Po 2.3 3.7 5.7 384.7 829.2 25.6 389.1 15.6 1.7 1.6 0.8 40.6 21.5 0.7 1.1 0.4 39.0 0.4OR5 M7_OR5-1 - 3 Golden Mile Oroya II Py-Po 4.5 2.8 13.4 787.9 1163.4 43.3 257.8 11.5 1.0 2.8 0.5 69.7 71.5 0.4 2.1 0.7 105.4 1.1OR5 M7_OR5-1 - 4 Golden Mile Oroya II Py-Po 0.6 2.5 3.5 141.8 358.9 5.0 93.5 9.1 0.7 0.4 0.3 9.2 5.1 0.3 0.2 0.9 6.2 0.1OR5 M7_OR5-1 - 5 Golden Mile Oroya II Py-Po 2.1 3.0 4.0 228.8 279.3 9.5 138.4 11.3 0.9 0.5 0.5 17.0 8.9 0.4 0.5 1.6 7.3 0.2

ESM Table 2. LA-ICP-MS imputed data set for the Golden Mile deposit. Refer to ESM 1 for sample, lithology, location and geological classification. Supplied as separate Excel spreadsheet. Sample #Spot Deposit Style Stage/Zone Redox V Cr Mn Co Ni Cu As Se Mo Ag Sn Sb Te W Au Tl Pb Bi

ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppmMaximum Limit of Detection 46.0 42.3 41.0 1.1 13.8 6.7 14.0 13.0 16.4 1.1 5.2 4.3 9.3 8.1 2.2 3.0 5.4 0.9Median Limit of Detection 0.68 2.91 4.11 0.26 1.13 0.61 0.80 13.78 0.97 0.12 0.40 0.50 1.31 0.44 0.12 0.15 0.31 0.05

OR5 M7_OR5-1 - 6 Golden Mile Oroya II Py-Po 0.6 2.3 3.2 133.6 104.8 12.3 21.6 8.5 0.8 0.2 0.3 1.5 1.1 0.2 0.1 0.9 2.0 0.0OR5 M7_OR5-1 - 7 Golden Mile Oroya II Py-Po 5.1 4.8 5.8 232.4 292.2 7.2 68.4 10.0 0.9 0.5 0.4 10.9 4.8 0.3 0.2 0.6 8.1 0.1OR5 M7_OR5-2 - 1 Golden Mile Oroya II Py-Po 6.0 6.7 7.6 276.4 567.4 38.2 234.6 10.1 0.7 2.7 0.4 67.8 48.0 0.3 2.5 0.8 48.2 0.7OR5 M7_OR5-2 - 2 Golden Mile Oroya II Py-Po 3.7 4.1 5.5 710.2 499.2 33.7 210.1 17.5 1.3 2.2 0.6 44.1 34.3 0.5 2.1 1.0 43.6 0.5OR5 M7_OR5-2 - 3 Golden Mile Oroya II Py-Po 9.4 9.6 6.9 333.6 684.3 39.8 318.6 21.6 1.3 3.7 0.6 94.8 71.5 0.7 3.2 0.7 73.5 1.0OR5 M7_OR5-2 - 4 Golden Mile Oroya II Py-Po 4.9 5.0 5.1 343.0 746.7 65.2 317.7 17.9 1.3 2.8 0.7 65.1 54.8 0.6 2.7 0.6 44.1 0.7OR5 M7_OR5-2 - 5 Golden Mile Oroya II Py-Po 2.3 2.4 6.1 482.5 722.6 52.8 394.2 13.3 0.7 1.8 0.3 29.5 21.7 0.3 1.4 1.0 21.5 0.3OR5 M7_OR5-2 - 6 Golden Mile Oroya II Py-Po 7.1 8.4 4.3 549.8 919.7 11.9 289.2 9.8 0.7 0.9 0.2 25.0 16.1 0.2 0.8 0.3 29.5 0.2OR5 M7_OR5-2 - 7 Golden Mile Oroya II Py-Po 0.8 2.4 3.3 108.4 168.5 13.7 31.2 9.4 1.3 0.3 0.2 6.7 3.7 0.2 0.3 0.5 15.5 0.1OR5 M7_OR5-2 - 8 Golden Mile Oroya II Py-Po 4.1 3.7 17.5 414.7 349.6 90.1 120.2 10.8 1.0 1.4 0.3 36.6 24.1 0.3 1.1 1.4 31.3 0.3OR7 M7_OR7 - 1 Golden Mile Oroya II Py-Ccp-Sph 4.2 4.2 33.4 445.6 200.3 105.8 167.9 26.6 1.5 1.1 0.7 61.8 14.1 0.7 0.8 9.6 39.3 1.4OR7 M7_OR7 - 10 Golden Mile Oroya II Py-Ccp-Sph 0.5 1.8 5.7 138.4 131.9 50.3 11.7 14.3 0.4 0.3 0.2 10.7 0.8 0.2 0.2 4.8 10.8 0.1OR7 M7_OR7 - 11 Golden Mile Oroya II Py-Ccp-Sph 0.4 2.3 3.3 165.4 90.9 40.2 14.7 9.5 0.8 0.2 0.4 6.6 1.3 0.3 0.1 1.9 5.6 0.0OR7 M7_OR7 - 12 Golden Mile Oroya II Py-Ccp-Sph 0.7 2.2 5.5 235.4 118.5 38.0 36.4 19.2 0.6 0.5 0.3 14.9 4.1 0.3 0.4 0.9 8.1 0.4OR7 M7_OR7 - 13 Golden Mile Oroya II Py-Ccp-Sph 0.8 2.5 6.0 286.2 153.6 25.0 45.7 13.3 0.6 0.6 0.3 21.0 6.8 0.2 0.6 2.0 10.1 0.6OR7 M7_OR7 - 14 Golden Mile Oroya II Py-Ccp-Sph 0.5 1.9 3.2 50.0 49.7 6.0 15.6 5.4 0.7 0.2 0.2 6.1 1.3 0.1 0.3 0.5 3.7 0.1OR7 M7_OR7 - 15 Golden Mile Oroya II Py-Ccp-Sph 1.0 4.9 28.7 632.7 281.8 179.2 208.6 17.5 2.2 0.9 0.9 38.4 12.6 1.0 0.9 0.6 35.4 1.4OR7 M7_OR7 - 16 Golden Mile Oroya II Py-Ccp-Sph 2.6 4.2 22.8 474.3 282.4 107.6 185.1 12.7 0.9 1.5 0.5 92.9 29.4 0.5 1.6 1.9 50.6 2.6OR7 M7_OR7 - 17 Golden Mile Oroya II Py-Ccp-Sph 1.1 2.8 5.9 645.8 408.9 33.3 206.5 9.8 1.2 1.9 0.5 106.7 32.8 0.5 3.0 2.1 64.0 3.2OR7 M7_OR7 - 18 Golden Mile Oroya II Py-Ccp-Sph 1.0 2.5 10.3 541.7 210.9 38.8 63.3 15.0 0.7 0.7 0.3 29.0 5.6 0.2 0.7 1.6 12.2 0.8OR7 M7_OR7 - 19 Golden Mile Oroya II Py-Ccp-Sph 2.0 3.5 11.3 769.6 507.0 35.4 273.3 13.6 1.1 3.9 0.6 209.7 70.2 0.5 5.4 2.3 145.9 6.2OR7 M7_OR7 - 2 Golden Mile Oroya II Py-Ccp-Sph 1.5 2.4 7.3 85.4 41.2 29.0 17.4 26.1 0.7 0.3 0.4 4.0 1.2 0.3 0.2 3.6 12.1 0.0OR7 M7_OR7 - 20 Golden Mile Oroya II Py-Ccp-Sph 0.4 2.4 3.5 253.2 82.9 32.4 11.7 11.8 0.8 0.3 0.4 3.6 1.3 0.4 0.2 0.9 0.5 0.0OR7 M7_OR7 - 21 Golden Mile Oroya II Py-Ccp-Sph 2.6 3.8 11.5 715.1 444.9 46.9 251.0 16.6 1.0 2.7 0.5 140.5 50.1 0.5 3.3 2.7 83.6 4.5OR7 M7_OR7 - 22 Golden Mile Oroya II Py-Ccp-Sph 1.5 4.1 16.2 323.6 172.5 41.4 56.7 27.3 1.1 0.6 0.5 25.3 4.5 0.5 0.4 1.0 12.9 0.5OR7 M7_OR7 - 23 Golden Mile Oroya II Py-Ccp-Sph 3.5 2.8 28.5 1157.4 568.7 244.4 245.4 25.3 0.9 1.8 0.4 100.0 28.9 0.4 1.8 2.6 74.8 2.8OR7 M7_OR7 - 24 Golden Mile Oroya II Py-Ccp-Sph 3.2 4.4 20.6 578.5 305.7 113.1 141.5 15.0 1.6 1.4 0.8 63.5 19.1 0.7 1.2 2.0 42.8 1.8OR7 M7_OR7 - 3 Golden Mile Oroya II Py-Ccp-Sph 3.5 5.2 18.1 225.4 112.8 54.4 75.1 22.9 1.5 0.8 0.7 29.1 5.3 0.6 0.4 8.3 13.6 0.6OR7 M7_OR7 - 4 Golden Mile Oroya II Py-Ccp-Sph 2.2 4.9 23.7 169.9 80.5 44.2 102.4 37.2 1.7 0.6 0.8 13.7 2.6 0.7 0.2 3.1 17.4 0.2OR7 M7_OR7 - 5 Golden Mile Oroya II Py-Ccp-Sph 1.9 3.4 18.0 108.1 49.7 34.0 17.4 45.7 0.7 0.6 0.4 5.5 1.4 0.3 0.2 6.0 36.7 0.0OR7 M7_OR7 - 6 Golden Mile Oroya II Py-Ccp-Sph 1.3 2.2 6.7 116.5 90.0 44.4 24.3 46.4 0.5 0.4 0.3 4.9 1.2 0.2 0.2 2.2 37.3 0.0OR7 M7_OR7 - 7 Golden Mile Oroya II Py-Ccp-Sph 3.5 4.0 181.0 730.8 305.9 35.9 378.9 16.6 1.0 0.8 0.6 43.7 11.2 0.5 0.9 4.8 27.9 1.0OR7 M7_OR7 - 8 Golden Mile Oroya II Py-Ccp-Sph 1.2 2.2 6.5 203.5 92.1 23.5 46.5 24.8 0.6 0.4 0.3 9.1 1.9 0.2 0.4 5.2 14.9 0.2OR7 M7_OR7 - 9 Golden Mile Oroya II Py-Ccp-Sph 1.1 2.6 19.5 160.2 113.5 28.0 44.8 29.0 1.2 0.4 0.5 8.4 1.8 0.5 0.2 1.4 27.8 0.2483A M8_483A - 1 Mt. Charlotte Mt.Charlotte Proximal Py 0.4 2.2 3.0 420.2 80.3 0.3 517.0 5.9 0.4 0.1 0.2 0.3 1.2 0.2 0.0 0.1 0.1 0.0483A M8_483A - 10 Mt. Charlotte Mt.Charlotte Proximal Py 0.4 2.2 2.9 16.4 112.1 0.3 311.6 5.3 0.2 0.0 0.2 0.2 0.7 0.2 0.0 0.1 0.1 0.0483A M8_483A - 11 Mt. Charlotte Mt.Charlotte Proximal Py 0.4 2.5 3.3 447.1 68.9 0.4 155.6 7.1 0.6 0.1 0.4 0.3 1.1 0.4 0.1 0.1 0.2 0.0483A M8_483A - 12 Mt. Charlotte Mt.Charlotte Proximal Py 0.4 2.8 3.6 0.5 39.7 0.5 393.8 8.0 0.9 0.1 0.5 0.4 1.4 0.4 0.1 0.1 0.3 0.0483A M8_483A - 13 Mt. Charlotte Mt.Charlotte Proximal Py 0.7 3.8 4.8 19.8 13.4 0.7 531.9 11.7 1.1 0.1 0.8 0.5 1.8 1.4 0.1 0.2 1.5 0.1483A M8_483A - 14 Mt. Charlotte Mt.Charlotte Proximal Py 0.6 3.5 4.4 5.1 6.6 0.7 314.2 11.2 1.3 0.1 0.9 0.4 2.3 0.7 0.2 0.2 0.4 0.1483A M8_483A - 15 Mt. Charlotte Mt.Charlotte Proximal Py 0.4 2.4 3.1 168.2 50.9 0.4 471.3 6.9 0.7 0.1 0.4 0.3 1.1 0.3 0.1 0.1 0.2 0.0483A M8_483A - 16 Mt. Charlotte Mt.Charlotte Proximal Py 0.6 3.6 4.6 28.1 53.6 0.7 453.7 11.3 1.3 0.1 0.9 0.5 1.9 0.7 0.2 0.2 0.4 0.1483A M8_483A - 17 Mt. Charlotte Mt.Charlotte Proximal Py 0.7 3.3 4.2 3.7 4.0 3.0 93.5 11.3 1.3 0.6 0.9 0.4 1.9 0.7 0.2 0.2 2.1 0.1483A M8_483A - 2 Mt. Charlotte Mt.Charlotte Proximal Py 0.4 2.9 3.7 47.5 40.4 0.5 448.3 8.8 0.8 0.1 0.6 0.4 1.4 0.4 0.1 0.1 1.9 0.1483A M8_483A - 3 Mt. Charlotte Mt.Charlotte Proximal Py 0.7 2.8 3.6 171.1 238.3 0.5 349.7 8.4 0.9 0.1 0.5 0.4 1.4 0.7 0.1 0.1 1.6 0.0483A M8_483A - 4 Mt. Charlotte Mt.Charlotte Proximal Py 0.4 2.9 3.8 12.6 17.0 0.5 353.7 7.9 0.7 6.8 0.5 0.4 1.0 0.3 0.6 0.1 0.9 0.0483A M8_483A - 5 Mt. Charlotte Mt.Charlotte Proximal Py 0.4 2.2 2.8 295.2 78.2 0.3 554.2 5.7 0.4 0.0 0.2 0.3 0.7 0.2 0.0 0.1 0.2 0.0483A M8_483A - 6 Mt. Charlotte Mt.Charlotte Proximal Py 0.5 3.3 4.2 131.4 104.7 0.6 563.0 10.6 1.1 0.1 0.7 0.4 1.7 0.5 0.1 0.2 0.4 0.1483A M8_483A - 7 Mt. Charlotte Mt.Charlotte Proximal Py 0.8 2.2 2.9 0.1 1.5 0.4 389.1 6.0 0.5 0.1 0.4 0.3 0.9 2.4 0.1 0.1 1.2 0.0483A M8_483A - 8 Mt. Charlotte Mt.Charlotte Proximal Py 0.3 2.0 2.6 50.3 82.8 0.3 256.7 5.3 0.3 0.0 0.2 0.2 0.6 0.1 0.0 0.1 0.1 0.0483A M8_483A - 9 Mt. Charlotte Mt.Charlotte Proximal Py 0.4 2.4 3.1 14.2 165.7 0.4 158.8 6.4 0.5 0.1 0.3 0.3 0.9 0.2 0.1 0.1 0.2 0.0483C M8_483C - 1 Mt. Charlotte Mt.Charlotte Intermediate Py 0.8 3.8 5.1 157.4 39.5 0.9 64.3 13.5 2.2 0.2 0.9 0.5 2.9 0.9 0.3 0.3 0.6 0.1483C M8_483C - 2 Mt. Charlotte Mt.Charlotte Intermediate Py 0.7 3.6 5.1 58.8 61.2 0.8 102.1 12.5 1.6 0.2 0.7 0.5 2.5 0.7 0.2 0.2 0.5 0.1483C M8_483C - 3 Mt. Charlotte Mt.Charlotte Intermediate Py 0.4 2.5 3.6 31.9 50.0 0.5 72.9 7.4 0.6 0.1 0.3 0.3 1.4 0.3 0.1 0.1 0.3 0.0483C M8_483C - 4 Mt. Charlotte Mt.Charlotte Intermediate Py 0.5 2.6 3.8 61.8 113.1 0.6 140.2 9.2 1.0 0.1 0.5 0.4 1.8 0.5 0.1 0.2 0.3 0.1483C M8_483C - 5 Mt. Charlotte Mt.Charlotte Intermediate Py 1.2 3.0 4.0 104.7 47.4 1.2 86.0 7.5 1.2 0.1 0.6 0.7 1.9 0.5 0.1 0.2 1.7 0.1483C M8_483C - 6 Mt. Charlotte Mt.Charlotte Intermediate Py 2.1 3.5 4.8 106.9 32.4 0.8 71.7 9.2 1.5 0.2 0.7 0.7 2.3 0.7 0.2 0.3 0.8 0.1483C M8_483C - 7 Mt. Charlotte Mt.Charlotte Intermediate Py 2.9 2.3 3.3 150.5 43.7 1.4 89.1 5.6 0.8 0.3 0.3 0.4 1.3 0.4 0.2 0.1 2.1 0.0490A M8_490A - 1 Mt. Charlotte Mt.Charlotte Proximal Py 2.2 6.1 4.5 1523.9 1095.8 0.7 1096.9 8.3 1.4 0.2 0.6 1.1 2.0 4.0 0.1 0.2 3.8 0.1490A M8_490A - 10 Mt. Charlotte Mt.Charlotte Proximal Py 1.7 5.3 6.8 190.0 905.7 1.3 865.0 15.1 3.2 0.6 1.4 0.8 4.3 1.5 0.3 0.5 0.9 0.2490A M8_490A - 2 Mt. Charlotte Mt.Charlotte Proximal Py 1.0 4.1 5.7 773.5 1028.5 0.8 836.5 9.9 1.5 0.2 0.8 0.7 2.5 0.8 0.2 0.2 2.2 0.1490A M8_490A - 3 Mt. Charlotte Mt.Charlotte Proximal Py 12.6 55.1 5.3 30.2 181.4 3.3 410.6 9.9 1.6 4.4 0.5 3.9 2.4 7.5 0.2 0.3 17.0 0.4490A M8_490A - 4 Mt. Charlotte Mt.Charlotte Proximal Py 5.2 14.9 5.5 188.2 2899.5 1.1 1515.1 10.9 2.0 0.2 0.9 1.8 2.8 4.2 0.2 0.3 10.2 0.1490A M8_490A - 5 Mt. Charlotte Mt.Charlotte Proximal Py 0.7 2.7 3.8 901.4 797.8 0.6 424.4 6.8 1.1 1.4 0.5 0.4 1.5 0.4 0.1 0.2 1.7 0.1490A M8_490A - 6 Mt. Charlotte Mt.Charlotte Proximal Py 0.8 3.1 4.2 1169.7 1767.1 0.6 973.9 7.9 1.2 0.1 0.6 0.5 1.9 0.6 0.1 0.2 0.4 0.1490A M8_490A - 7 Mt. Charlotte Mt.Charlotte Proximal Py 1.3 5.2 7.1 1030.5 2874.5 1.1 2020.0 13.6 2.2 0.3 1.0 0.8 3.4 1.0 0.2 0.4 1.9 0.1490A M8_490A - 8 Mt. Charlotte Mt.Charlotte Proximal Py 1.6 5.0 6.4 1040.6 1295.6 1.2 674.1 14.7 3.0 0.5 1.3 0.8 4.2 1.3 0.3 0.5 0.8 0.2490A M8_490A - 9 Mt. Charlotte Mt.Charlotte Proximal Py 34.0 98.2 61.7 1844.4 1273.5 7.9 1779.5 13.8 1.8 1.3 0.8 4.8 3.3 2.6 0.2 0.3 23.9 1.4490B M8_490B - 1 Mt. Charlotte Mt.Charlotte Intermediate Py-Ccp 0.5 2.0 2.8 369.3 483.8 0.4 474.8 4.4 0.4 0.1 0.2 0.3 0.8 0.2 0.1 0.1 0.2 0.0490B M8_490B - 2 Mt. Charlotte Mt.Charlotte Intermediate Py-Ccp 0.6 2.6 3.6 405.8 1175.6 0.5 671.5 6.4 0.9 0.1 0.4 0.3 1.5 0.4 0.1 0.1 0.3 0.1490B M8_490B - 3 Mt. Charlotte Mt.Charlotte Intermediate Py-Ccp 0.7 2.5 3.5 596.9 1305.3 0.7 765.7 6.1 0.8 0.1 0.4 0.4 1.4 0.4 0.1 0.1 1.5 0.0490B M8_490B - 4 Mt. Charlotte Mt.Charlotte Intermediate Py-Ccp 0.6 2.2 3.1 484.6 362.7 0.4 393.8 5.1 0.6 0.1 0.3 0.3 1.1 0.3 0.1 0.1 0.2 0.0490B M8_490B - 5 Mt. Charlotte Mt.Charlotte Intermediate Py-Ccp 0.9 2.9 3.9 881.3 3066.6 0.8 2252.9 7.3 1.2 0.1 0.5 0.4 1.7 0.5 0.1 0.2 1.3 0.1490B M8_490B - 6 Mt. Charlotte Mt.Charlotte Intermediate Py-Ccp 10.8 7.7 5.3 13.5 246.7 1.5 423.9 8.0 0.7 0.2 0.4 1.8 1.5 4.6 0.1 0.1 6.5 0.1490B M8_490B - 7 Mt. Charlotte Mt.Charlotte Intermediate Py-Ccp 1.2 4.0 5.1 584.0 1340.4 1.5 749.4 11.4 2.0 0.2 1.0 0.6 3.2 0.9 0.2 0.3 0.6 0.1490B M8_490B - 8 Mt. Charlotte Mt.Charlotte Intermediate Py-Ccp 1.7 7.3 5.6 557.8 5346.6 1.6 2485.9 16.1 2.0 0.2 1.4 1.1 2.9 5.6 0.2 0.3 3.6 0.1490C M8_490C - 1 Mt. Charlotte Mt.Charlotte Distal Py 0.4 2.4 3.2 2968.3 647.3 0.5 998.6 7.5 0.7 0.6 0.5 0.5 1.0 0.4 0.1 0.1 0.3 0.0490C M8_490C - 2 Mt. Charlotte Mt.Charlotte Distal Py 5.8 16.8 4.9 299.1 2393.3 2.6 740.3 13.4 1.6 0.6 1.1 1.7 2.4 3.2 0.2 0.2 5.6 0.3490C M8_490C - 3 Mt. Charlotte Mt.Charlotte Distal Py 1.1 4.6 5.9 557.7 3202.5 0.9 1114.0 15.6 1.6 0.2 1.0 0.8 2.4 1.2 0.2 0.3 2.5 0.1490C M8_490C - 4 Mt. Charlotte Mt.Charlotte Distal Py 1.2 4.4 5.2 120.1 3599.5 2.8 899.9 15.3 1.9 0.2 1.3 0.9 2.8 1.7 0.2 0.3 3.3 0.1

109740 M9_109740 - 1 Mt. Charlotte Mt.Charlotte Proximal Py-Ccp 0.4 2.4 3.1 14.5 4.7 0.6 2.7 14.1 0.4 0.0 0.3 0.2 0.7 0.2 0.0 0.1 0.1 0.0109740 M9_109740 - 2 Mt. Charlotte Mt.Charlotte Proximal Py-Ccp 0.3 2.2 2.8 11.4 2.6 0.4 1.1 19.3 0.4 0.0 0.3 0.2 0.7 0.2 0.0 0.1 0.1 0.0109740 M9_109740 - 3 Mt. Charlotte Mt.Charlotte Proximal Py-Ccp 0.4 2.3 3.0 75.5 14.9 0.3 2.4 44.0 0.3 0.0 0.3 0.2 0.6 0.2 0.0 0.1 0.2 0.0109740 M9_109740 - 4 Mt. Charlotte Mt.Charlotte Proximal Py-Ccp 0.4 3.1 3.9 57.0 11.7 4.1 11.2 33.0 0.7 0.5 0.5 3.2 10.8 0.3 0.3 0.1 15.0 1.0109740 M9_109740 - 5 Mt. Charlotte Mt.Charlotte Proximal Py-Ccp 0.4 2.5 3.3 49.0 10.5 0.3 1.9 42.6 0.5 0.1 0.3 0.3 0.9 0.2 0.1 0.1 0.2 0.0109740 M9_109740 - 6 Mt. Charlotte Mt.Charlotte Proximal Py-Ccp 0.4 2.5 3.4 22.3 8.4 0.4 6.3 38.3 0.5 0.1 0.4 0.3 21.3 0.3 0.1 0.1 0.2 0.0109744 M9_109744 - 1 Mt. Charlotte Mt.Charlotte Intermediate Py-Po 0.7 4.3 5.2 25.2 2.2 0.8 150.2 14.6 1.7 0.2 1.1 0.5 2.6 0.8 0.2 0.3 0.5 0.1109744 M9_109744 - 2 Mt. Charlotte Mt.Charlotte Intermediate Py-Po 0.4 2.5 3.1 16.2 0.9 0.4 96.3 7.0 0.7 0.1 0.5 0.3 1.1 0.3 0.1 0.1 0.2 0.0109744 M9_109744 - 3 Mt. Charlotte Mt.Charlotte Intermediate Py-Po 0.7 3.8 4.6 44.2 2.0 1.8 88.9 13.2 1.5 0.2 1.0 0.5 2.3 0.9 0.2 0.2 0.7 0.1109744 M9_109744 - 4 Mt. Charlotte Mt.Charlotte Intermediate Py-Po 1.2 6.4 7.9 182.4 3.6 1.3 309.1 22.2 2.7 0.3 1.9 0.9 4.2 1.4 0.3 0.4 1.0 0.1109744 M9_109744 - 5 Mt. Charlotte Mt.Charlotte Intermediate Py-Po 1.0 5.8 7.1 20.6 2.9 1.1 18.5 19.1 2.1 0.9 1.5 0.7 10.3 1.2 0.3 0.3 21.1 1.9109744 M9_109744 - 6 Mt. Charlotte Mt.Charlotte Intermediate Py-Po 0.7 4.4 5.5 23.0 2.0 0.8 69.1 13.9 1.6 0.2 0.9 0.5 2.4 1.0 0.2 0.2 0.9 0.2109752 M9_109752 - 1 Mt. Charlotte Mt.Charlotte Proximal Py-Po 1.2 3.3 4.2 139.9 1.6 5.0 100.3 10.7 1.1 0.1 0.8 0.4 1.9 0.7 0.1 0.2 0.4 0.1109752 M9_109752 - 2 Mt. Charlotte Mt.Charlotte Proximal Py-Po 0.4 3.1 4.0 1.4 0.9 0.5 137.4 8.5 0.5 0.1 0.5 0.3 1.1 0.3 0.1 0.1 0.3 0.0109752 M9_109752 - 3 Mt. Charlotte Mt.Charlotte Proximal Py-Po 0.8 4.7 5.8 49.1 3.5 25.3 57.8 16.2 1.6 0.2 1.1 0.6 2.8 1.3 0.2 0.3 1.5 0.1109752 M9_109752 - 4 Mt. Charlotte Mt.Charlotte Proximal Py-Po 0.8 4.9 6.0 51.3 2.5 1.0 63.7 17.4 1.8 0.2 1.1 0.6 2.9 1.0 0.2 0.3 0.6 0.1109752 M9_109752 - 5 Mt. Charlotte Mt.Charlotte Proximal Py-Po 1.5 8.4 10.3 38.0 4.3 1.6 74.9 28.0 3.5 0.4 2.2 1.0 5.1 1.9 0.4 0.5 3.0 0.2109752 M9_109752 - 6 Mt. Charlotte Mt.Charlotte Proximal Py-Po 0.4 3.0 3.8 13.1 1.1 0.5 126.9 8.8 0.7 0.1 0.5 0.3 1.2 0.4 0.1 0.1 0.3 0.0109752 M9_109752 - 7 Mt. Charlotte Mt.Charlotte Proximal Py-Po 1.1 3.9 4.9 106.7 2.0 1.0 35.0 10.5 1.7 0.2 1.1 0.8 2.6 0.8 0.2 0.3 0.5 0.1MC23 M9_MC23 - 1 Mt. Charlotte Mt.Charlotte Proximal Py 1.3 4.5 5.6 43.8 2.5 1.1 1.5 13.0 2.4 0.3 1.3 0.9 3.5 1.1 0.3 0.4 0.7 0.1MC23 M9_MC23 - 2 Mt. Charlotte Mt.Charlotte Proximal Py 0.7 2.8 3.6 42.3 1.2 0.6 1.4 6.9 1.0 0.1 0.6 0.5 1.7 0.4 0.1 0.2 0.3 0.1MC23 M9_MC23 - 3 Mt. Charlotte Mt.Charlotte Proximal Py 0.6 2.9 3.8 38.0 1.2 2.1 6.4 6.6 0.9 0.7 0.5 1.5 2.7 0.4 0.3 0.1 4.4 0.1MC23 M9_MC23 - 4 Mt. Charlotte Mt.Charlotte Proximal Py 3.9 2.8 3.8 59.6 1.6 1.1 1.6 6.5 0.8 0.1 0.4 0.4 1.3 0.3 0.1 0.1 1.2 0.0MC23 M9_MC23 - 5 Mt. Charlotte Mt.Charlotte Proximal Py 1.7 5.4 6.5 57.9 3.3 7.3 5.8 15.8 3.0 0.9 1.3 0.9 4.3 1.3 0.3 0.5 1.0 0.2MC23 M9_MC23 - 6 Mt. Charlotte Mt.Charlotte Proximal Py 0.6 2.4 3.3 43.1 1.1 0.4 3.4 5.5 0.5 0.0 0.3 0.3 0.8 0.2 0.1 0.1 0.3 0.0MC5 M9_MC5 - 1 Mt. Charlotte Mt.Charlotte Proximal Py 0.9 3.3 4.2 91.0 48.9 0.7 21.5 8.8 1.3 0.2 0.8 0.5 2.3 0.6 0.2 0.2 0.5 0.1MC5 M9_MC5 - 2 Mt. Charlotte Mt.Charlotte Proximal Py 0.5 2.3 3.0 83.1 74.4 0.4 21.4 4.8 0.4 0.1 0.2 0.3 0.8 0.2 0.1 0.1 0.2 0.0MC5 M9_MC5 - 3 Mt. Charlotte Mt.Charlotte Proximal Py 0.8 3.2 4.1 193.4 6.0 0.7 3.2 8.0 1.1 0.2 0.7 0.5 1.8 0.5 0.1 0.2 1.1 0.1MC5 M9_MC5 - 4 Mt. Charlotte Mt.Charlotte Proximal Py 2.4 3.3 4.2 106.9 4.6 1.7 9.6 10.6 1.4 0.2 0.8 0.6 7.9 0.5 0.1 0.2 4.3 0.1

ESM Table 2. LA-ICP-MS imputed data set for the Golden Mile deposit. Refer to ESM 1 for sample, lithology, location and geological classification. Supplied as separate Excel spreadsheet. Sample #Spot Deposit Style Stage/Zone Redox V Cr Mn Co Ni Cu As Se Mo Ag Sn Sb Te W Au Tl Pb Bi

ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppmMaximum Limit of Detection 46.0 42.3 41.0 1.1 13.8 6.7 14.0 13.0 16.4 1.1 5.2 4.3 9.3 8.1 2.2 3.0 5.4 0.9Median Limit of Detection 0.68 2.91 4.11 0.26 1.13 0.61 0.80 13.78 0.97 0.12 0.40 0.50 1.31 0.44 0.12 0.15 0.31 0.05

MC5 M9_MC5 - 5 Mt. Charlotte Mt.Charlotte Proximal Py 1.3 4.3 5.3 16.7 2.4 1.9 7.4 12.3 2.1 0.2 1.3 0.6 7.2 1.0 0.3 0.4 1.5 0.1MC5 M9_MC5 - 6 Mt. Charlotte Mt.Charlotte Proximal Py 2.1 4.7 6.0 32.1 9.8 0.9 1.5 12.3 1.7 0.2 1.0 0.7 2.8 0.8 0.2 0.3 0.7 0.1MC5 M9_MC5 - 7 Mt. Charlotte Mt.Charlotte Proximal Py 1.4 2.7 3.6 19.8 0.7 1.6 2.2 5.9 0.5 0.1 0.3 0.3 1.8 0.2 0.1 0.1 1.5 0.0MC5 M9_MC5 - 8 Mt. Charlotte Mt.Charlotte Proximal Py 1.4 3.8 5.0 59.9 2.7 7.8 5.3 10.2 0.9 0.6 0.6 0.5 3.7 0.5 0.4 0.2 2.2 0.1

OHW-23 OHW-23 - 2 Golden Mile Oroya II Py 14.6 22.2 24.2 86.3 13.8 4.8 1145.0 176.7 14.2 1.6 8.3 4.9 6.6 6.4 1.8 2.5 4.4 0.8OHW-23 OHW-23 - 3 Golden Mile Oroya II Py 2.4 9.5 11.1 42.8 10.5 1.5 1168.1 59.6 2.9 0.3 1.8 1.0 2.0 1.4 0.4 0.6 1.0 0.2OHW-23 OHW-23 - 4 Golden Mile Oroya II Py 2.6 10.9 12.7 9.1 6.9 1.7 367.8 69.4 3.1 0.5 2.2 5.0 2.3 1.6 0.5 0.6 4.9 0.4OHW-23 OHW-23 - 5 Golden Mile Oroya II Py 1.3 6.0 7.3 4.5 7.4 0.9 323.3 36.7 1.3 0.2 1.0 0.6 1.2 0.7 0.2 0.3 0.6 0.1OHW-23 OHW-23 - 6 Golden Mile Oroya II Py 3.8 12.9 14.9 3.0 6.1 2.2 69.9 90.0 5.3 0.6 3.2 1.3 3.2 2.5 0.7 0.9 1.8 0.3OHW-23 OHW-23 - 7 Golden Mile Oroya II Py 3.9 11.7 12.9 3.6 21.3 2.2 220.1 82.8 5.7 0.7 3.5 1.3 3.1 3.0 0.8 1.1 2.0 0.3OHW-23 OHW-23 - 8 Golden Mile Oroya II Py 1.7 6.3 7.4 7.3 24.7 1.1 222.6 43.0 2.1 0.3 1.2 1.0 1.4 1.0 0.3 0.4 0.9 0.1OHW-8b OHW-8b - 1 Golden Mile Oroya II Py 1.2 2.7 5.4 9.2 26.9 0.8 464.8 18.2 1.2 0.2 0.9 0.5 1.4 0.6 0.2 0.2 0.5 0.1OHW-8b OHW-8b - 10 Golden Mile Oroya II Py 2.4 3.7 8.0 127.5 179.3 2.5 2730.8 163.8 3.0 0.3 1.6 2.9 2.1 1.2 1.1 0.4 5.4 0.2OHW-8b OHW-8b - 11 Golden Mile Oroya II Py 1.0 2.4 5.4 50.7 95.2 0.7 1457.6 90.6 1.2 0.1 0.6 0.5 1.1 0.4 0.3 0.2 0.7 0.1OHW-8b OHW-8b - 12 Golden Mile Oroya II Py 2.1 3.8 8.6 12.9 58.2 1.2 1674.2 154.6 2.6 0.4 1.4 0.8 2.2 0.9 1.1 0.3 0.7 0.1OHW-8b OHW-8b - 13 Golden Mile Oroya II Py 2.1 2.9 6.3 9.5 50.7 4.2 2352.8 118.4 1.7 0.4 1.0 2.3 2.4 0.8 1.7 0.3 4.7 0.1OHW-8b OHW-8b - 14 Golden Mile Oroya II Py 2.1 3.7 8.3 4.2 43.7 1.3 2055.1 155.1 2.4 0.3 1.3 0.8 2.1 1.1 0.3 0.4 1.0 0.1OHW-8b OHW-8b - 15 Golden Mile Oroya II Py 1.9 3.1 6.7 30.9 78.7 12.0 2071.9 135.9 2.2 0.9 1.4 10.0 5.3 1.1 2.5 0.4 19.4 0.3OHW-8b OHW-8b - 16 Golden Mile Oroya II Py 2.7 4.1 9.2 5.8 42.0 1.9 2571.7 184.2 2.9 0.3 1.7 1.1 2.6 1.3 0.8 0.5 2.2 0.2OHW-8b OHW-8b - 17 Golden Mile Oroya II Py 28.4 5.7 12.3 1.1 1085.7 2.0 2888.4 254.0 5.0 0.9 2.5 5.6 7.6 2.2 1.2 0.7 6.3 0.3OHW-8b OHW-8b - 18 Golden Mile Oroya II Py 3.2 4.8 30.2 95.6 59.9 10.4 167.3 220.3 4.0 4.7 2.2 17.2 43.5 1.8 8.6 71.7 34.0 1.9OHW-8b OHW-8b - 2 Golden Mile Oroya II Py 1.1 2.7 5.3 44.6 90.6 7.9 1500.3 19.2 0.9 1.2 0.7 5.4 4.9 0.4 4.8 0.2 10.8 0.2OHW-8b OHW-8b - 3 Golden Mile Oroya II Py 3.8 5.4 11.4 16.7 32.0 3.0 2352.7 252.0 4.8 0.6 2.5 2.9 3.5 2.3 2.2 0.6 5.9 0.2OHW-8b OHW-8b - 4 Golden Mile Oroya II Py 1.3 3.0 6.9 10.8 24.4 0.9 1375.8 117.9 1.2 0.2 0.9 0.8 1.6 0.7 0.6 0.2 1.3 0.1OHW-8b OHW-8b - 5 Golden Mile Oroya II Py 1.5 2.9 6.3 66.5 55.1 4.1 1531.2 116.9 1.8 1.1 0.9 4.4 4.0 0.7 2.7 0.3 6.4 0.2OHW-8b OHW-8b - 6 Golden Mile Oroya II Py 3.0 4.9 10.6 17.5 70.7 1.6 3791.8 206.2 3.7 0.3 1.9 1.1 2.7 1.4 0.5 0.5 1.0 0.2OHW-8b OHW-8b - 7 Golden Mile Oroya II Py 1.8 3.3 7.3 18.6 45.0 5.0 2459.9 134.8 1.9 0.5 1.1 2.7 2.5 1.0 2.0 0.3 4.5 0.1OHW-8b OHW-8b - 8 Golden Mile Oroya II Py 2.0 3.2 6.9 1.3 152.4 1.1 783.9 141.9 2.4 0.3 1.3 0.7 2.0 1.1 0.3 0.4 0.8 0.1OHW-8b OHW-8b - 9 Golden Mile Oroya II Py 2.1 4.1 9.1 22.6 30.5 2.0 1450.9 161.5 2.4 0.3 1.3 2.8 2.6 1.0 0.8 0.4 3.7 0.1

OR15 OR15 - 1 Golden Mile Oroya II Py-Ccp 0.6 2.1 2.4 75.9 369.2 2.1 708.5 9.6 0.6 0.1 0.3 0.3 2.0 0.3 0.1 0.1 0.2 0.0OR15 OR15 - 10 Golden Mile Oroya II Py-Ccp 0.4 2.7 1.8 19.0 38.9 66.8 38.0 0.4 5.0 0.1 0.3 1.5 0.3 2.3 0.1 0.0 0.1 0.0OR15 OR15 - 11 Golden Mile Oroya II Py-Ccp 0.5 3.1 1.9 31.3 61.8 360.0 244.5 0.4 0.2 2.2 0.3 7.2 0.4 0.1 3.4 0.0 5.7 0.1OR15 OR15 - 12 Golden Mile Oroya II Py-Ccp 0.6 2.8 2.5 180.7 193.5 6.7 13.9 0.4 0.2 0.3 0.2 5.4 0.2 0.1 1.1 0.0 51.7 0.0OR15 OR15 - 13 Golden Mile Oroya II Py-Ccp 0.4 5.8 2.6 241.6 592.1 4.7 6.8 0.4 0.0 0.1 0.7 0.5 0.0 0.1 1.2 0.0 0.6 0.0OR15 OR15 - 14 Golden Mile Oroya III Py-Ccp 1.5 3.3 3.7 81.6 41.8 11.2 884.0 19.2 1.0 1.3 0.6 2.6 23.0 0.4 1.3 0.1 5.6 0.1OR15 OR15 - 15 Golden Mile Oroya III Py-Ccp 1.3 2.3 2.7 813.0 293.2 93.9 88.9 21.3 0.5 2.1 0.5 2.3 1.0 0.2 1.2 0.1 24.0 0.2OR15 OR15 - 16 Golden Mile Oroya III Py-Ccp 1.1 2.3 2.6 183.5 120.0 70.1 53.9 14.5 0.5 0.7 0.5 9.1 0.7 0.2 0.4 0.1 4.1 0.2OR15 OR15 - 17 Golden Mile Oroya III Py-Ccp 1.5 2.3 2.6 339.5 927.7 23.1 184.6 10.7 0.4 11.4 0.2 3.1 0.4 0.2 4.6 0.0 52.6 0.6OR15 OR15 - 18 Golden Mile Oroya III Py-Ccp 1.4 2.8 3.1 239.3 501.7 44.6 203.2 15.1 0.7 2.0 0.5 10.2 0.5 0.3 1.7 0.1 68.4 0.6OR15 OR15 - 2 Golden Mile Oroya II Py-Ccp 0.8 2.2 2.4 399.1 403.3 26.3 1160.4 4.9 0.8 3.5 0.3 2.8 206.1 0.3 12.9 0.1 2.8 0.1OR15 OR15 - 20 Golden Mile Oroya III Py-Ccp 1.4 2.3 2.6 648.8 606.9 68.4 1064.0 10.9 0.4 33.2 0.3 17.1 0.2 0.2 12.4 0.1 30.6 0.7OR15 OR15 - 22 Golden Mile Oroya III Py 57.5 3.8 4.1 137.5 267.2 274.4 801.1 23.7 1.6 36.9 0.9 0.0 0.4 0.8 35.2 0.2 9.1 0.3OR15 OR15 - 23 Golden Mile Oroya III Py 5.5 3.0 3.4 30.2 69.1 1091.2 4629.2 16.2 1.5 135.4 0.5 22.6 0.2 9.4 26.3 0.1 47.5 1.1OR15 OR15 - 24 Golden Mile Oroya III Py 10.6 3.0 3.4 136.7 209.9 144.4 373.0 16.9 0.8 39.7 0.5 7.6 0.2 7.7 8.8 0.1 25.1 0.4OR15 OR15 - 25 Golden Mile Oroya III Py 252.7 80.8 9.6 387.6 209.1 15.1 750.5 29.7 1.6 2.0 3.5 8.0 0.3 8.0 0.5 0.2 2.8 0.1OR15 OR15 - 26 Golden Mile Oroya III Py 4.9 2.5 7.4 30.4 245.4 29.5 471.9 31.2 0.5 10.0 0.3 0.5 0.1 0.2 18.4 0.1 4.5 0.0OR15 OR15 - 27 Golden Mile Oroya III Py 9.6 6.6 8.4 5.0 18.9 26.6 37.4 13.0 0.6 0.2 0.4 0.6 0.1 0.8 0.1 0.1 5.9 0.0OR15 OR15 - 28 Golden Mile Oroya III Py 11.3 6.0 2.4 26.5 53.4 65.1 422.0 12.3 0.6 0.2 0.4 0.9 0.0 1.7 0.1 0.1 6.3 0.0OR15 OR15 - 29 Golden Mile Oroya III Py 1.4 2.7 2.9 130.9 551.1 40.7 460.4 29.8 0.9 10.6 0.5 0.4 0.2 0.3 9.8 0.1 2.3 0.0OR15 OR15 - 3 Golden Mile Oroya II Py-Ccp 1.0 2.7 2.9 57.5 100.1 77.1 53.9 0.4 1.1 2.0 0.4 22.4 8.8 0.4 2.3 0.1 13.1 0.3OR15 OR15 - 30 Golden Mile Oroya II Py-Ccp 2.6 3.6 3.9 206.9 318.2 29.1 223.4 21.3 1.4 18.4 0.7 1.6 0.2 0.5 9.7 0.2 7.3 0.1OR15 OR15 - 31 Golden Mile Oroya II Py-Ccp 5.4 2.9 3.2 159.9 270.9 1215.0 2126.5 16.6 0.9 22.2 0.5 9.7 0.1 0.3 11.8 0.1 61.9 0.5OR15 OR15 - 32 Golden Mile Oroya II Py-Ccp 17.8 3.3 3.3 22.4 29.0 8.9 39.7 18.7 3.1 12.2 0.6 0.9 0.1 0.4 9.2 0.1 5.5 0.1OR15 OR15 - 33 Golden Mile Oroya II Py-Ccp 13.1 6.7 2.7 110.9 374.0 22.0 302.3 11.7 0.4 1.6 0.3 9.7 0.1 0.2 1.0 0.2 30.5 0.1OR15 OR15 - 34 Golden Mile Oroya II Py-Ccp 9.3 6.5 7.8 109.3 127.6 22.1 676.9 19.7 0.4 1.5 0.3 0.0 0.1 0.2 0.8 0.3 66.3 0.3OR15 OR15 - 35 Golden Mile Oroya II Py-Ccp 19.8 10.2 3.1 109.4 150.3 299.4 465.3 17.3 3.1 10.0 0.7 0.0 0.1 5.3 4.8 0.1 14.1 0.1OR15 OR15 - 36 Golden Mile Oroya II Py-Ccp 4.1 13.3 31.2 364.7 138.2 46.4 803.2 21.5 0.5 5.3 0.4 8.1 0.1 0.2 3.4 0.1 20.6 0.3OR15 OR15 - 37 Golden Mile Oroya II Py-Ccp 1.3 2.2 2.6 84.9 100.2 33.1 639.8 12.6 0.6 5.1 0.3 1.9 0.1 1.9 2.8 0.1 11.8 0.3OR15 OR15 - 38 Golden Mile Oroya II Py-Ccp 1.3 0.2 2.4 8.3 14.8 6.0 20.3 3.4 0.3 2.0 1.5 1.5 0.3 0.0 0.6 0.0 2.6 0.1OR15 OR15 - 39 Golden Mile Oroya II Py-Ccp 1.1 2.1 2.4 311.3 200.1 39.7 164.9 12.8 0.5 14.3 0.3 5.5 0.1 0.2 5.5 0.1 23.9 0.5OR15 OR15 - 4 Golden Mile Oroya II Py-Ccp 0.8 3.3 3.3 86.7 213.7 102.2 240.4 0.4 1.6 5.9 0.5 6.7 2.9 0.7 6.1 0.1 13.1 0.1OR15 OR15 - 40 Golden Mile Oroya II Py-Ccp 1.1 2.6 3.1 42.9 62.8 7.5 33.9 14.6 0.6 0.7 0.4 4.3 0.1 0.2 0.5 0.1 3.2 0.2OR15 OR15 - 41 Golden Mile Oroya II Py-Ccp 1.2 2.8 3.2 39.3 61.4 13.7 68.1 14.4 0.5 2.2 0.4 4.9 0.1 0.2 1.1 0.1 8.0 0.4OR15 OR15 - 42 Golden Mile Oroya II Py-Ccp 1.8 2.4 2.8 120.0 345.0 24.5 279.9 12.1 0.5 1.8 0.3 0.9 0.1 0.4 1.5 0.1 7.5 0.1OR15 OR15 - 43 Golden Mile Oroya II Py-Ccp 1.7 2.5 2.9 36.8 107.7 73.3 461.7 13.7 0.6 0.5 0.4 1.0 0.1 0.9 0.3 0.1 22.4 0.2OR15 OR15 - 44 Golden Mile Oroya II Py-Ccp 2.3 3.2 3.5 112.6 201.8 52.4 1649.6 20.0 1.1 6.2 0.7 1.4 0.1 0.6 8.0 0.2 6.7 0.2OR15 OR15 - 45 Golden Mile Oroya II Py-Ccp 7.0 2.5 2.8 96.3 360.7 88.5 895.1 14.9 1.3 5.7 0.4 2.3 0.1 3.2 3.1 0.1 15.9 0.2OR15 OR15 - 5 Golden Mile Oroya II Py-Ccp 1.0 2.2 5.6 426.7 183.4 108.3 114.7 1.7 1.0 0.8 0.3 17.5 0.9 0.4 0.8 0.0 38.5 0.2OR15 OR15 - 6 Golden Mile Oroya II Py-Ccp 0.7 2.0 2.3 131.2 72.6 61.7 12.7 1.2 0.6 0.3 0.2 2.9 0.5 0.2 0.2 0.0 1.3 0.0OR15 OR15 - 7 Golden Mile Oroya II Py-Ccp 0.6 2.9 2.4 96.5 109.7 84.1 87.2 1.4 1.6 1.9 0.2 11.8 0.7 0.7 1.5 0.0 7.9 0.2OR15 OR15 - 8 Golden Mile Oroya II Py-Ccp 0.8 2.9 2.4 47.8 86.2 71.0 47.8 0.4 2.0 0.4 0.4 6.3 0.7 0.8 0.6 0.0 3.6 0.1OR15 OR15 - 9 Golden Mile Oroya II Py-Ccp 0.5 2.6 2.0 74.2 45.5 104.8 52.4 0.8 1.9 0.2 0.2 3.7 0.3 0.7 0.3 0.0 1.6 0.1OR20 OR20 - 1 Golden Mile Oroya II Py-Po 0.5 1.3 4.1 128.7 38.6 18.4 14.9 12.1 0.4 0.4 0.2 6.3 2.9 0.2 0.1 0.9 1.7 0.1OR20 OR20 - 10 Golden Mile Oroya II Py-Po 3.7 11.0 11.9 778.7 206.2 16.6 89.4 22.3 0.5 1.6 0.2 31.5 0.2 0.2 0.9 0.6 32.9 0.3OR20 OR20 - 11 Golden Mile Oroya II Py-Po 4.0 3.7 19.2 933.5 1295.5 1551.1 98.4 31.2 1.6 2.3 0.8 27.0 0.3 0.6 0.4 0.4 28.0 0.1OR20 OR20 - 12 Golden Mile Oroya II Py-Po 5.1 13.6 47.3 439.0 115.2 14.1 53.3 15.9 1.2 1.8 0.3 23.2 0.5 0.2 0.7 0.7 20.4 0.2OR20 OR20 - 13 Golden Mile Oroya II Py-Po 1.6 3.7 4.9 336.9 144.3 26.8 73.0 18.2 0.7 3.3 0.3 32.9 1.3 0.2 1.0 1.6 33.9 0.4OR20 OR20 - 14 Golden Mile Oroya II Py-Po 5.5 3.5 14.7 418.7 485.1 31.8 107.9 30.7 0.8 1.7 0.4 35.1 0.8 0.4 0.9 0.7 44.0 0.2OR20 OR20 - 15 Golden Mile Oroya II Py-Po 7.8 6.9 205.1 360.9 1136.6 0.8 0.9 30.1 1.3 0.4 0.6 0.5 0.2 0.5 0.1 0.2 0.8 0.0OR20 OR20 - 16 Golden Mile Oroya II Py-Po 7.8 6.3 168.6 338.7 1186.3 0.8 1.0 1756.9 0.9 0.3 0.5 0.9 1.9 0.3 0.1 0.1 0.9 0.0OR20 OR20 - 2 Golden Mile Oroya II Py-Po 1.7 2.1 24.3 1791.4 682.4 236.0 204.1 21.9 1.1 9.2 0.5 55.5 297.0 1.8 4.0 1.4 44.3 0.5OR20 OR20 - 3 Golden Mile Oroya II Py-Po 3.8 4.7 24.4 1134.3 1013.9 36.0 133.9 11.1 0.5 8.9 0.2 80.8 0.7 0.1 1.8 0.9 54.5 0.8OR20 OR20 - 4 Golden Mile Oroya II Py-Po 3.9 6.8 25.3 848.6 664.1 49.2 263.6 21.0 0.8 26.1 0.4 181.1 0.9 0.3 5.6 1.7 115.8 2.1OR20 OR20 - 5 Golden Mile Oroya II Py-Po 0.6 2.1 3.3 73.7 49.5 14.0 21.3 36.6 0.8 0.3 0.4 25.1 0.5 0.4 0.1 0.6 4.4 0.1OR20 OR20 - 6 Golden Mile Oroya II Py-Po 0.8 1.7 2.7 42.1 46.0 27.9 1.1 14.8 2.4 0.1 0.3 1.6 0.0 0.3 0.1 0.1 0.4 0.0OR20 OR20 - 7 Golden Mile Oroya II Py-Po 0.6 1.6 2.5 14.7 30.0 16.5 1.7 38.3 0.5 0.1 0.3 10.5 0.0 0.2 0.0 0.1 0.4 0.0OR20 OR20 - 8 Golden Mile Oroya II Py-Po 0.6 2.2 9.4 16.1 777.2 1.2 117.3 20.7 1.0 0.1 0.5 2.0 0.1 0.4 0.1 0.1 2.5 0.1OR20 OR20 - 9 Golden Mile Oroya II Py-Po 0.6 1.4 2.2 124.1 50.1 27.8 20.3 11.0 8.2 0.6 0.2 8.2 0.0 0.2 0.2 1.2 1.5 0.1OR5 OR5 - 1 Golden Mile Oroya II Py-Po 6.8 1.5 2.0 671.0 3674.2 0.3 0.6 2.0 0.2 0.4 0.5 279.3 0.0 0.1 0.0 0.1 3.6 0.0OR5 OR5 - 10 Golden Mile Oroya II Py-Po 3.4 2.0 11.6 2726.1 715.5 36.0 1217.4 2.2 1.0 24.9 0.4 670.6 0.0 0.1 11.9 0.4 284.7 5.7OR5 OR5 - 11 Golden Mile Oroya II Py-Po 7.9 1.8 2.5 484.6 100.7 6.7 52.8 2.1 0.6 1.5 0.4 12.2 0.0 0.1 0.2 0.2 96.7 0.1OR5 OR5 - 12 Golden Mile Oroya II Py-Po 4.0 2.5 3.3 3139.0 737.4 37.1 1360.5 2.8 0.8 27.4 0.4 826.6 0.0 0.2 13.7 0.5 270.4 6.8OR5 OR5 - 13 Golden Mile Oroya II Py-Po 3.8 2.0 2.8 2546.7 730.8 32.0 799.7 2.3 0.8 22.7 0.3 634.2 0.0 0.1 9.2 0.5 326.0 4.9OR5 OR5 - 14 Golden Mile Oroya II Py-Po 3.9 1.7 5.2 253.9 74.4 2.0 51.1 1.8 0.4 0.4 0.3 9.9 0.0 0.1 0.2 5.3 3.4 0.1OR5 OR5 - 15 Golden Mile Oroya II Py-Po 4.1 2.1 2.8 353.5 80.6 3.4 122.7 2.2 0.4 0.2 0.2 22.5 0.0 0.1 0.1 5.0 1.6 0.0OR5 OR5 - 16 Golden Mile Oroya II Py-Po 5.1 1.7 3.0 303.1 161.7 5.5 163.8 1.8 0.3 1.0 0.3 32.9 0.0 0.1 0.4 6.1 5.8 0.2OR5 OR5 - 17 Golden Mile Oroya II Py-Po 4.1 1.7 2.4 277.3 69.9 3.6 95.8 1.7 0.4 0.3 0.3 14.0 0.0 0.1 0.0 5.3 0.9 0.0OR5 OR5 - 18 Golden Mile Oroya II Py-Po 4.6 2.3 3.1 298.9 88.8 7.6 97.4 2.6 0.6 0.9 0.5 26.6 0.0 0.2 0.3 5.9 4.5 0.1OR5 OR5 - 19 Golden Mile Oroya II Py-Po 6.6 2.0 5.8 143.3 174.4 4.3 73.8 2.1 0.4 2.4 0.4 44.2 0.0 0.1 0.9 6.1 14.3 0.3OR5 OR5 - 2 Golden Mile Oroya II Py-Po 6.8 1.6 2.2 123.3 768.4 1.6 0.6 2.0 0.2 0.5 0.6 34.7 0.0 3.4 0.0 0.1 0.6 0.0OR5 OR5 - 20 Golden Mile Oroya II Py-Po 4.8 1.8 2.5 189.1 49.4 8.6 44.6 1.9 0.3 0.7 0.3 18.0 0.0 0.1 0.2 6.9 0.9 0.0OR5 OR5 - 21 Golden Mile Oroya II Py-Po 5.1 1.7 3.0 1073.1 251.8 23.2 415.9 1.8 0.3 9.5 0.4 253.0 0.0 0.1 4.1 38.0 67.6 2.0OR5 OR5 - 22 Golden Mile Oroya II Py-Po 8.7 2.5 16.3 834.4 188.4 96.8 80.2 2.7 1.3 3.7 0.4 49.9 0.0 0.2 0.4 127.9 13.4 0.2OR5 OR5 - 3 Golden Mile Oroya II Py-Po 25.4 15.0 7.4 255.0 1548.3 0.4 0.6 3.0 0.3 0.2 0.5 20.5 0.0 2.6 0.0 0.1 1.2 0.0OR5 OR5 - 4 Golden Mile Oroya II Py-Po 3.0 1.5 4.4 318.8 141.0 24.4 40.6 2.0 0.3 0.8 0.5 12.7 0.0 0.1 0.2 2.6 2.4 0.1OR5 OR5 - 5 Golden Mile Oroya II Py-Po 4.5 1.6 4.9 265.2 183.6 12.1 42.3 2.1 0.3 0.3 0.5 10.0 0.0 0.1 0.1 2.0 3.4 0.0OR5 OR5 - 6 Golden Mile Oroya II Py-Po 8.7 3.7 8.5 362.2 739.4 29.4 142.2 2.3 0.5 1.8 0.6 48.3 0.0 0.2 0.6 3.1 20.1 0.3OR5 OR5 - 7 Golden Mile Oroya II Py-Po 28.8 8.1 7.4 1114.5 1557.5 38.9 323.8 2.8 0.7 4.1 0.6 105.9 0.0 0.2 1.8 1.4 43.6 0.9OR5 OR5 - 8 Golden Mile Oroya II Py-Po 18.4 5.9 3.5 320.7 512.5 21.3 145.5 2.5 0.4 2.2 0.5 45.2 0.0 0.3 1.1 1.2 19.4 0.4OR5 OR5 - 9 Golden Mile Oroya II Py-Po 16.1 4.3 5.7 106.6 638.7 0.3 0.6 2.0 0.4 0.3 0.6 40.5 0.0 3.1 0.0 0.2 0.4 0.0

PAR-7 PAR-7 - 2 Golden Mile Fimiston II Py-Hem 3.7 10.6 22.6 7933.3 2067.4 405.9 1076.4 82.4 26.2 30.3 3.0 8.0 5.0 2.6 0.7 1.0 38.3 2.5PAR-7 PAR-7 - 3 Golden Mile Fimiston II Py-Hem 3.6 12.4 274.3 132.3 69.2 4.8 154.4 83.3 4.0 0.5 2.7 1.2 2.9 2.1 0.6 0.8 2.3 0.3

ESM Table 3. Summary of pyrite analyses for elements with more than 50% of data below the detection limit.

Mineralisation Style Statistical Parameter Cr ppm Sn ppm W ppm Mn ppm Mo ppm Tl ppm Se ppmFimiston Median 2.60 0.46 0.48 7.61 0.94 0.34 16.74n =233 Geometric Mean 2.70 0.53 0.61 9.96 1.02 0.39 16.6523 samples 95 % PI 0.31-23.86 0.14-2 0.08-4.78 0.95-104.05 0.18-5.89 0.03-4.21 3.14-18.95

# BDL's 202 213 181 136 216 135 177Oroya Median 3.38 0.49 0.47 6.50 0.98 0.45 15.39n =279 Geometric Mean 4.18 0.57 0.61 7.54 1.10 0.54 15.5512 Samples 95 % PI 0.92-18.87 0.14-2.27 0.06-6.18 1.17-48.42 0.22-5.43 0.02-12.07 1.36-177.36

# BDL's 204 269 227 159 250 137 225Mount Charlotte Median 3.49 0.64 0.63 4.28 1.21 0.19 11.33n =107 Geometric Mean 4.71 0.65 0.75 4.97 1.12 0.18 12.3115 Samples 95 % PI 0.66-33.51 0.2-2.06 0.08-6.81 1.52-16.21 0.32-3.98 0.05-0.62 3.78-40.08

# BDL's 89 105 85 100 107 107 83Syngenetic (Kapai Slate) Median 5.03 1.46 1.06 8.06 1.90 0.36 20.73n =33 Geometric Mean 5.02 1.27 1.29 7.23 1.84 0.33 23.363 Samples 95 % PI 2.04-12.38 0.24-6.79 0.1-16.11 2.81-18.61 0.58-5.82 0.1-1.06 7.84-69.67

# BDL's 32 27 29 31 33 32 20Range LOD 1.18-42.29 0.15-5.19 0.08-8.11 1.78-41.04 0.19-16.36 0.05-2.99 0.44-12.98Median LOD 2.91 0.40 0.44 4.11 0.97 0.15 13.78

Limits of Detection for all LA-ICP-MS data y ( ) y are indicated in bold. The detection limit value was used to compute the median, geometric mean, standard deviation and a 95% Probability Intervals (PI). The range and medians of limits of detection (LOD) are included in the two buttom

ESM Figure 1: Kapai Slate drill core sample and SEM images (sample UP74) of pyrite with LA-ICP-MS analyses. The Au, As and Te values in ppm are also indicated in ablated pits (white circles). A Core photo of Kapa Slate, pyrite is bedding parallel with partially oxidized bands due to surface exposure. B-E Reflected light and BSE images of syngenetic sulfides with location of LA-ICP-MS analyses.

ESM Appendix 1: Example R code for Electronic Supplementary Material

Load required packages:

> library(piecewiseSEM)

> library(lme4)

Then assume we have a data.frame, Data, that contains both log-transformed concentration data (with imputed BDL values) and descriptive information (sample, deposit, stage/style, redox assemblage) for each measurement point. This data can be used to construct a complete LME model with the fixed and random effects discussed in the main text for each element X using the following command:

> Mdl <- lmer(X ~ Stage:Style + Redox + (1|Sample) + (1|Deposit), data=Data)

The object Mdl contains all relevant information on the fitted parameters. This information is accessible, for instance, via:

> summary(Mdl)

Note that the fitted parameters (fixed effects) are now expressed as additive differences between classes and will need to be back-transformed by exponentiation to yield the corresponding factor differences plotted in Figures x and y.

Specific p-values and estimates of R2 for the overall model, as well as different parts of the model can be derived as follows:

In order to derive p-values for the fixed effects, we need to first construct a series of models with different sets of explanatory variables:

> Mdl_0 <- lmer(X ~ Stage:Style + Redox + (1|Sample) + (1|Deposit), data=Data, REML=FALSE)

> Mdl_1 <- lmer(X ~ Redox + (1|Sample) + (1|Deposit), data=Data, REML=FALSE)

> Mdl_2 <- lmer(X ~ Stage:Style + (1|Sample) + (1|Deposit), data=Data, REML=FALSE)

The p-value for the factor Redox is then given by the comparison of Mdl_2 with Mdl_0 (cf. Winter 2013):

> anova(Mdl_2,Mdl_0)$`Pr(>Chisq)`[2]

And the p-value for the factor Stage:Style is given by the comparison of Mdl_1 with Mdl_0:

> anova(Mdl_1,Mdl_0)$`Pr(>Chisq)`[2]

The R2-value for the combined fixed effects is given by:

> rsquared(Mdl)$Marginal

While the total R2-value for the entire model is given by:

> rsquared(Mdl)$Conditional

R2-values for the different random effects can be estimated from the variance estimates for the random effects given in > summary(Mdl)