Evolution of the Stellar Mass Function in Multiple-Population ...

12
Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 25 September 2018 (MN L A T E X style file v2.2) Evolution of the Stellar Mass Function in Multiple-Population Globular Clusters Enrico Vesperini 1 , Jongsuk Hong 2,1 , Jeremy J. Webb 3,1 , Franca D’Antona 4 and Annibale D’Ercole 5 1 Department of Astronomy, Indiana University, Bloomington, IN, 47401, USA 2 Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Lu 5, HaiDian District, Beijing 100871, China 3 Department of Astronomy and Astrophysics, University of Toronto, ON, M5S 3H4, Canada 4 INAF, Osservatorio Astronomico di Roma, I-00040 Monteporzio Catone (Roma), Italy 5 INAF, Osservatorio Astronomico di Bologna, I-40127 Bologna, Italy 25 September 2018 ABSTRACT We present the results of a survey of N -body simulations aimed at studying the effects of the long-term dynamical evolution on the stellar mass function (MF) of multiple stellar popula- tions in globular clusters. Our simulations show that if first-(1G) and second-generation (2G) stars have the same initial MF (IMF), the global MFs of the two populations are affected sim- ilarly by dynamical evolution and no significant differences between the 1G and the 2G MFs arise during the cluster’s evolution. If the two populations have different IMFs, dynamical effects do not completely erase memory of the initial differences. Should observations find differences between the global 1G and 2G MF, these would reveal the fingerprints of differ- ences in their IMFs. Irrespective of whether the 1G and 2G populations have the same global IMF or not, dynamical effects can produce differences between the local (measured at various distances from the cluster centre) 1G and 2G MFs; these differences are a manifestation of the process of mass segregation in populations with different initial structural properties. In dynamically old and spatially mixed clusters, however, differences between the local 1G and 2G MFs can reveal differences between the 1G and 2G global MFs. In general, for clusters with any dynamical age, large differences between the local 1G and 2G MFs are more likely to be associated with differences in the global MF. Our study also reveals a dependence of the spatial mixing rate on the stellar mass, another dynamical consequence of the multiscale nature of multiple-population clusters. Key words: globular clusters:general, stars:chemically peculiar. 1 INTRODUCTION The discovery of multiple stellar populations in globular clusters has revealed an extremely complex picture of the stellar content of these stellar systems (see e.g. Carretta et al. 2009a, 2009b, Piotto et al. 2015, Milone et al. 2017, Gratton et al. 2012 and references therein). Theoretical efforts aimed at answering any of the funda- mental questions concerning globular cluster formation, chemical and dynamical evolution must now take into account the implica- tions of the presence of multiple stellar populations and the new challenges posed by this discovery. Examples of some of the issues addressed in the literature include the study of the possible sources of processed gas out of which second-generation (hereafter 2G) stars formed (see e.g. Ven- tura et al. 2001, Decressin et al. 2007, de Mink et al. 2009, Bas- tian et al. 2013, D’Ercole et al. 2010, 2012, D’Antona et al. 2016, Denissenkov & Hartwick 2014), the gas and stellar dynamics dur- ing the phases of cluster formation and early evolution (see e.g. D’Ercole et al. 2008, 2016, Bekki 2011, 2017a, 2017b, Elmegreen 2017) and the possible paths leading to the presence of several dis- tinct 2G populations (see e.g. D’Antona et al. 2016, Bekki et al. 2017), the kinematical differences between different populations (Bellazzini et al. 2012, Richer et al. 2013, Bellini et al. 2015, 2018, Henault-Brunet et al. 2015, Mastrobuono-Battisti & Perets 2013, Cordero et al. 2017), differences in the dynamical effects on the bi- nary stars belonging to different populations (D’Orazi et al. 2010, Vesperini et al. 2011, Hong et al. 2015, 2016, Lucatello et al. 2015), the implications of different formation models for the contribution of globular cluster stars to the assembly of the Galactic halo (Ves- perini et al. 2010, Martell et al. 2010, 2011, Carretta 2016). One of the fundamental properties that characterizes a stel- lar population is its initial stellar mass function (hereafter IMF). c 0000 RAS arXiv:1803.02381v1 [astro-ph.GA] 6 Mar 2018

Transcript of Evolution of the Stellar Mass Function in Multiple-Population ...

Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 25 September 2018 (MN LATEX style file v2.2)

Evolution of the Stellar Mass Function in Multiple-PopulationGlobular Clusters

Enrico Vesperini1, Jongsuk Hong2,1, Jeremy J. Webb3,1, Franca D’Antona4

and Annibale D’Ercole51Department of Astronomy, Indiana University, Bloomington, IN, 47401, USA2Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Lu 5, HaiDian District, Beijing 100871, China3Department of Astronomy and Astrophysics, University of Toronto, ON, M5S 3H4, Canada4INAF, Osservatorio Astronomico di Roma, I-00040 Monteporzio Catone (Roma), Italy5INAF, Osservatorio Astronomico di Bologna, I-40127 Bologna, Italy

25 September 2018

ABSTRACTWe present the results of a survey of N -body simulations aimed at studying the effects of thelong-term dynamical evolution on the stellar mass function (MF) of multiple stellar popula-tions in globular clusters. Our simulations show that if first-(1G) and second-generation (2G)stars have the same initial MF (IMF), the global MFs of the two populations are affected sim-ilarly by dynamical evolution and no significant differences between the 1G and the 2G MFsarise during the cluster’s evolution. If the two populations have different IMFs, dynamicaleffects do not completely erase memory of the initial differences. Should observations finddifferences between the global 1G and 2G MF, these would reveal the fingerprints of differ-ences in their IMFs. Irrespective of whether the 1G and 2G populations have the same globalIMF or not, dynamical effects can produce differences between the local (measured at variousdistances from the cluster centre) 1G and 2G MFs; these differences are a manifestation ofthe process of mass segregation in populations with different initial structural properties. Indynamically old and spatially mixed clusters, however, differences between the local 1G and2G MFs can reveal differences between the 1G and 2G global MFs. In general, for clusterswith any dynamical age, large differences between the local 1G and 2G MFs are more likelyto be associated with differences in the global MF. Our study also reveals a dependence ofthe spatial mixing rate on the stellar mass, another dynamical consequence of the multiscalenature of multiple-population clusters.

Key words: globular clusters:general, stars:chemically peculiar.

1 INTRODUCTION

The discovery of multiple stellar populations in globular clustershas revealed an extremely complex picture of the stellar content ofthese stellar systems (see e.g. Carretta et al. 2009a, 2009b, Piottoet al. 2015, Milone et al. 2017, Gratton et al. 2012 and referencestherein). Theoretical efforts aimed at answering any of the funda-mental questions concerning globular cluster formation, chemicaland dynamical evolution must now take into account the implica-tions of the presence of multiple stellar populations and the newchallenges posed by this discovery.

Examples of some of the issues addressed in the literatureinclude the study of the possible sources of processed gas out ofwhich second-generation (hereafter 2G) stars formed (see e.g. Ven-tura et al. 2001, Decressin et al. 2007, de Mink et al. 2009, Bas-tian et al. 2013, D’Ercole et al. 2010, 2012, D’Antona et al. 2016,

Denissenkov & Hartwick 2014), the gas and stellar dynamics dur-ing the phases of cluster formation and early evolution (see e.g.D’Ercole et al. 2008, 2016, Bekki 2011, 2017a, 2017b, Elmegreen2017) and the possible paths leading to the presence of several dis-tinct 2G populations (see e.g. D’Antona et al. 2016, Bekki et al.2017), the kinematical differences between different populations(Bellazzini et al. 2012, Richer et al. 2013, Bellini et al. 2015, 2018,Henault-Brunet et al. 2015, Mastrobuono-Battisti & Perets 2013,Cordero et al. 2017), differences in the dynamical effects on the bi-nary stars belonging to different populations (D’Orazi et al. 2010,Vesperini et al. 2011, Hong et al. 2015, 2016, Lucatello et al. 2015),the implications of different formation models for the contributionof globular cluster stars to the assembly of the Galactic halo (Ves-perini et al. 2010, Martell et al. 2010, 2011, Carretta 2016).

One of the fundamental properties that characterizes a stel-lar population is its initial stellar mass function (hereafter IMF).

c© 0000 RAS

arX

iv:1

803.

0238

1v1

[as

tro-

ph.G

A]

6 M

ar 2

018

2 E.Vesperini et al.

The evolution of the stellar mass function (hereafter MF) of glob-ular clusters and its possible dependence on a variety of clusterparameters have been the subject of numerous observational stud-ies (see e.g. Piotto & Zoccali 1999, De Marchi et al. 2007, Paustet al. 2010, Webb et al. 2017, Sollima & Baumgardt 2017). On thetheoretical side many studies have focussed their attention on thepossible effects of internal dynamical evolution, mass segregation,and star loss on the evolution of the MF and the link between theIMF and the present-day mass function (hereafter PDMF) (see e.g.Vesperini & Heggie 1997, Baumgardt & Makino 2003, Trenti et al.2010, Webb & Leigh 2015, Webb & Vesperini 2016 and referencestherein).

As shown in a number of theoretical studies, mass segrega-tion can produce a significant dependence of the PDMF on the ra-dial distance from a cluster centre and, during a cluster’s dynamicalevolution, the preferential escape of low-mass stars flattens the low-mass end of the global MF. Establishing a connection between thePDMF and the IMF and disentagling the possible role of formationand dynamics in cluster-to-cluster differences in the PDMF and inthe radial variations of the PDMF inside individual clusters requiresa complete modeling of the dynamical effects on the stellar MF (seee.g. Webb & Vesperini 2016, Webb et al. 2017).

All the theoretical and observational studies of the globularcluster stellar MF have been carried out in the context of single-population clusters; the only observational study of the MF of mul-tiple populations has been carried out for NGC2808 by Milone etal. (2012a); the data of that investigation cover a narrow stellar massrange spanning different values of stellar masses for the three popu-lations identified at the time in NGC2808. With the advent of JWSTthe identification of multiple populations down to the bottom of themain sequence will allow for more comprehensive observational in-vestigations to be carried out leading to a detailed characterizationof the MF of different stellar populations.

On the theoretical side the discovery of multiple populationsraises new and fundamental questions: do different stellar popula-tions form with same IMFs? What are the effects of dynamical evo-lution on the global and the local (measured at different distancesfrom the cluster centre) stellar MF of different stellar populations?To address the first question, hydro simulations following in detailthe formation of individual stars are needed. In this paper we fo-cus instead on the second question. All multiple-population glob-ular cluster formation models agree that 2G stars should initiallybe more centrally concentrated than 1G stars (see e.g. D’Ercole etal. 2008, Decressin et al. 2007); a number of observational studieshave shown that in several Galactic clusters the initial differencesin the 2G and 1G spatial distributions predicted by formation mod-els have not been completely erased by dynamical evolution and2G stars are still more centrally concentrated than 1G stars (seee.g. Bellini et al. 2009, Lardo et al. 2011, Nataf et al. 2011, Car-retta et al. 2010, Johnson & Pilachowski 2012, Milone et al. 2012b,Cordero et al. 2014, Li et al. 2014, Simioni et al. 2016; see alsoDalessandro et al. 2014, Nardiello et al. 2015 for some examples ofclusters in which the populations are now completely mixed).

The effects of having a centrally concentrated 2G populationon the evolution of a cluster’s MF have yet to be considered. If therelative initial properties of the 1G and 2G populations leave an im-print on the PDMFs of globular cluster’s than future observationalstudies will be able to constrain the formation mechanism behindmultiple populations. The specific questions we will address in thispaper are the following: assuming that 2G and 1G stars form withthe same IMF, do differences in their initial spatial distributionslead to differences in the dynamical effects on their stellar MFs?

If we instead assume the 2G and 1G populations do not have thesame IMFs, are the initial differences in the MF gradually erasedby dynamical evolution or are they, to some extent, preserved in thePDMF?

The outline of the paper is the following. In section 2 we de-scribe our methods and initial conditions. In Section 3 we presentour results. In section 4 we conclude with a summary and discus-sion of our results.

2 METHODS AND INITIAL CONDITIONS

The results presented in this paper are based on N -body simula-tions run with the GPU-accelerated version of the code NBODY6(Aarseth 2003, Nitadori & Aarseth 2012). Clusters are assumed tomove on circular orbits in the host galaxy tidal field modeled as apoint-mass. For all the models studied the initial ratio of the half-mass radius to the Jacobi radius is equal to about 0.03-0.05. All oursimulations start with 50,000 stars and stars moving beyond a dis-tance from the cluster centre larger than two times the tidal radiusare removed from the simulation.

In all the systems explored, the 1G and 2G subsystems startwith the same total number of stars. For each subsytem the densityprofile is that of a King model (1966) with central dimensionlesspotential W0 = 7 but the 2G subsystem is initially concentratedwithin the inner regions of the 1G system; we have explored onemodel in which the initial ratio of the 3D half-mass radius of the 1Gpopulation to that of the 2G population (Rh,1G/Rh,2G) is equal to5, and one in which this ratio is equal to 10. Our initial conditionsdo not include primordial binaries; a study including primordialbinaries will be presented in a future paper.

To study the effects of initially identical IMFs, 1G and 2G starmasses are both distributed according to a Kroupa (2001) IMF be-tween 0.1 m� and 100 m� initially evolved to 11.5 Gyr using theMcLuster software (Kuepper et al. 2011) with the stellar evolutionmodels of Hurley et al. (2000) for a metallicityZ = 10−3 . Neutronstars and black holes are not retained in the cluster after this initialstellar evolution step. We refer to the models with a Kroupa (2001)IMF and Rh,1G/Rh,2G = 5 and Rh,1G/Rh,2G = 10, respectively,as K01R5 and K01R10.

In addition we have explored the evolution of three systems inwhich the IMF 1G stars with masses between 0.1 m� and 0.5 m�has a power-law index, α, equal to 1.0, 0.8, and 0.5 (for a Kroupa(2001) IMF α for stars between 0.1 and 0.5 m� is equal to 1.3)while 2G stars have a standard Kroupa (2001) IMF. We refer tothese simulation as K01R5a1, K01R5a08, and K01R5a05. Finallywe have also studied the evolution of a cluster in which 2G starswith masses between 0.1m� and 0.5m� are distributed accordingto a IMF with a power-law index equal to 0.5 while 1G stars have aKroupa (2001) IMF; we refer to this simulation as K01R5-2ga05.For these additional simulations we have adopted a ratio of the 1Gto the 2G half-mass radius (Rh,1G/Rh,2G) equal to 5.

In order to characterize the evolution of the stellar MF, wefit the MF of main sequence stars between mmin and mmax witha power-law function dN/dm ∝ m−α and use a maximum-likelihood calculation (see e.g. Trenti et al. 2010) to calculate α.We report the time evolution of α for a few different pairs of valuesfor (mmin,mmax): (0.1, 0.5)m�, (0.3, 0.8)m�, (0.5, 0.8)m�.Hereafter we refer to the power-law index α as the slope of the MFand we indicate the values of α for the three mass ranges explored,respectively, as α0.1−0.5, α0.3−0.8, α0.5−0.8. All the simulationswere run until about 80 per cent of the initial mass was lost.

c© 0000 RAS, MNRAS 000, 000–000

Mass function evolution 3

0 5 10 15 20 25 30

−1.

2−

1.0

−0.

8−

0.6

−0.

4

t trh(0)

α 0.1

−0.5 0 5 10 15 20 25 30

−0.

08−

0.04

0.00

t trh(0)

α 1G

−α 2

G

0 5 10 15 20 25 30

−2.

0−

1.5

−1.

0−

0.5

t trh(0)

α 0.5

−0.8 0 5 10 15 20 25 30−

0.10

0.00

0.10

0.20

t trh(0)

α 1G

−α 2

G

0 5 10 15 20 25 30

−1.

5−

1.0

−0.

50.

0

t trh(0)

α 0.3

−0.8 0 5 10 15 20 25 30

−0.

100.

000.

050.

10

t trh(0)

α 1G

−α 2

G

Figure 1. Time evolution of the slope of the global MF for 2G stars (blueline), 1G stars (red line) and all stars (black line) for the K01R5 model.The top panel shows the evolution of the slope of the MF for stars withmasses between 0.1m� and 0.5m�; the middle panel shows the evolutionof the slope of the MF for stars with masses between 0.5m� and 0.8m�;the lower panel shows the evolution of the slope of the MF for stars withmasses between 0.3m� and 0.8m�. The insets show the time evolution ofthe difference between the slope of the MF of 1G stars and that of 2G starsfor the mass range corresponding to each panel. Time is shown in units ofthe initial half-mass relaxation time of the entire system.

0 10 20 30 40 50

−1.

2−

1.0

−0.

8−

0.6

−0.

4

t trh(0)

α 0.1

−0.5 0 10 20 30 40 50

−0.

12−

0.08

−0.

040.

00

t trh(0)

α 1G

−α 2

G

0 10 20 30 40 50

−2.

0−

1.5

−1.

0

t trh(0)

α 0.5

−0.8 0 10 20 30 40 50

−0.

20−

0.10

0.00

t trh(0)α 1

G−

α 2G

0 10 20 30 40 50

−1.

5−

1.0

−0.

5

t trh(0)

α 0.3

−0.8 0 10 20 30 40 50−

0.15

−0.

050.

050.

15

t trh(0)

α 1G

−α 2

G

Figure 2. Same as Figure 1 but for the model K01R10

3 RESULTS

3.1 Evolution of the global mass function

We start the presentation of our results by comparing the evolu-tion of the slope of the global 1G and 2G MF for the K01R5 andK01R10 models. In Fig. 1 we show the time evolution (with timenormalized to the initial half-mass relaxation time of the entire sys-tem) of α0.1−0.5, α0.3−0.8, and α0.5−0.8 for the 1G and the 2G

c© 0000 RAS, MNRAS 000, 000–000

4 E.Vesperini et al.

1.0 0.8 0.6 0.4 0.2

−1.

2−

1.0

−0.

8−

0.6

−0.

4−

0.2

Mtot(t) Mtot(0)

α 0.1

−0.5

1.0 0.8 0.6 0.4 0.2

−1.

2−

1.0

−0.

8−

0.6

−0.

4

Mtot(t) Mtot(0)

α 0.1

−0.5

Figure 3. Evolution of α0.1−0.5 for 2G stars (blue line), 1G stars (red line)and all stars (black line) as a function of the fraction of the total initial massremaining in the cluster for the K01R5 model (top panel) and the K01R10model (bottom panel).

populations for the simulation K01R5. In all cases, the evolution ofthe slopes of the global MFs of the 1G and the 2G is very similarand only negligible differences between the MF of the 1G and the2G populations arise during the cluster evolution. In Fig. 2 we plotthe time evolution of α0.1−0.5, α0.3−0.8, α0.5−0.8 , for the modelK01R10 and show that this conclusion does not depend on the ini-tial concentration of the 2G population.

To understand the small differences in the evolution of the 1Gand 2G MFs, it is important to first consider how the MF of a sin-gle population cluster evolves. A number of studies in the literature(see e.g. Vesperini & Heggie 1997, Baumgardt & Makino 2003,Trenti et al. 2010) have shown that the evolution of the slope ofthe global MF is correlated with the amount of star loss due totwo-body relaxation (notice, however, that a cluster early expan-sion triggered, for example, by mass loss due to stellar evolutionor primordial gas expulsion can result in a significant loss of starswithout affecting the slope of the cluster MF; such early episode ofstar loss may leave no fingerprint in the slope of the MF).

In Fig.3 we plot α0.1−0.5 as a function of the fraction of theinitial cluster mass remaining in the cluster,M(t)/M(0), and show

1.0 0.8 0.6 0.4 0.2

−1.

2−

1.0

−0.

8−

0.6

−0.

4−

0.2

M2G(t)/M2G(0), M1G(t)/M1G(0), Mtot(t)/Mtot(0)

α 0.1

−0.5

0 5 10 15 20 25 30

0.2

0.4

0.6

0.8

1.0

t trh(0)

M(t)

M(0

)

Figure 4. Evolution of α0.1−0.5 for 2G stars (blue line), 1G stars (red line)and all stars (black line) as a function, respectively, of the fraction of thetotal initial mass remaining in 2G stars, 1G stars an all stars for the K01R5model. The inset shows the time evolution of the total mass in 2G stars (blueline), 1G stars (red line) and all stars (black line) (each normalized to itsinitial value). Time is expressed in units of the initial half-mass relaxationtime of the entire cluster. In the main panel, dashed segments join the threelines at the few selected times shown as black filled dots in the inset.

that this correlation holds also for multiple-population clusters. Onthe other hand, as shown in Fig. 4, the relationship between theslope of the MF and the mass loss of each population is different forthe 1G and the 2G populations. The 2G subsystem is initially morecompact and tidally underfilling than the 1G system; this impliesthat the 2G system can develop a larger degree of mass segregationbefore starting to lose stars and that a given amount of star loss willlead to a stronger flattening of the MF than that occurring for a lesssegregated system losing the same fraction of mass (see e.g. Trentiet al. 2010 for differences in the evolution of α versusM(t)/M(0)for filling and underfilling single-population clusters). The smalldifferences between the evolution of α for 1G and 2G stars can beunderstood in terms of the slight differences in the star loss rate ofthe two populations. The two populations do not lose stars at thesame rate; as already shown in previous studies (see e.g. D’Ercoleet al. 2008, Decressin et al. 2008, Vesperini et al. 2013), also duringthe cluster long-term evolution there is a preferential loss of 1Gstars. The slower rate at which the 2G system loses stars is in partcompensated by the stronger dependence of α onM(t)/M(0). Theinterplay beween the different star loss rates and the evolution ofα for the two populations is illustrated in Fig.4: on the lines forthe 1G and the 2G populations we have also plotted a few pointscorresponding to the same value of time. At any given time, thecluster has lost a larger number of 1G stars than 2G stars but themore rapid evolution of α for the 2G population compensates thisdifference and results in a similar evolution for the MF of the twopopulations.

This point is further illustrated in Fig. 5 in which we show thetime evolution of the 2G-to-1G number ratio for all stars and forstars in different ranges of mass. Fig 5 implies that if a globularcluster starts its long-term evolution with a 2G-to-1G number ratioindependent of stellar mass and the same IMF for 1G and 2G stars,star escape due to two-body relaxation will produce only small dif-

c© 0000 RAS, MNRAS 000, 000–000

Mass function evolution 5

0 5 10 15 20 25 30

1.0

1.1

1.2

1.3

1.4

1.5

t trh(0)

N2G

N1G

0 10 20 30 40 50

1.0

1.1

1.2

1.3

1.4

1.5

t trh(0)

N2G

N1G

Figure 5. Time evolution of the ratio of the total number of 2G stars to thetotal number of 1G stars with masses in the range (0.1m�-0.3m�; greenline), (0.3m�-0.6m�; orange line), and (0.6m�-0.85m�; black lines)for the K01R5 model (top panel) and the K01R10 model (bottom panel).Time is expressed in units of the initial half-mass relaxation time of theentire cluster.

ferences in the 2G-to-1G number ratio for different stellar massranges.

3.2 Evolution of the local mass function

In the previous subsection we have shown that differences in thespatial distribution of 1G and 2G stars do not lead to significantdifferences in the evolution of the two populations’ global MF. Adirect observational measure of the global MF, however, is chal-lenging and observational studies often can only determine the lo-cal MF within some specific range of distances from the clustercentre. As a cluster evolves, the effects of two-body relaxation leadto the segregation of the more massive stars toward the cluster’s in-ner regions while the outer regions become increasingly dominatedby low-mass stars: this implies that the local slope of the MF is, in

general, different from the global one. Here we explore the impli-cations of the differences in the spatial distributions of 1G and 2Gstars for the evolution of their local MFs.

In Fig. 6 we show the time evolution of the difference be-tween the 1G and 2G values of α0.1−0.5, α0.3−0.8, and α0.5−0.8

measured at various 3D and 2D distances from the cluster centre.While, as discussed in the previous subsection, the global MFs ofthe two populations remain very similar to each other during the en-tire cluster’s evolution, the locally measured slopes of the MFs maybe characterized by significant differences. The initial differencesin the 1G and 2G spatial distributions imply that the relaxationtimescale for the 2G subsystem is shorter than that of the 1G systemand the process of segregation of more massive stars towards the in-ner regions and diffusion of lighter stars towards the outer regionsproceeds more rapidly for 2G stars. The evolution of the differencesbetween the 1G and 2G local MFs is therefore driven by the differ-ences in the initial structural properties of the two populations andclosely connected with the evolution towards complete mixing oftheir spatial distributions. The initial differences in the spatial dis-tributions of the two populations imply that a given region of thecluster might be populated by 1G and 2G stars in different ways:for example, the intermediate and outer cluster’s shells are initiallypopulated mainly by 1G stars and only later become increasinglypopulated with 2G stars as they gradually diffuse towards the outerregions and mix with 1G stars. The 2G stars diffusing in the outerregions and gradually mixing with the 1G population formed thereare initially dominated by low-mass stars as two-body relaxationdrives massive stars towards the inner regions while low-mass starsmigrate outwards: this implies that the local MF of 2G stars in thecluster’s outer regions is steeper than that of the 1G and explains theinitial increase in the difference between the 1G and 2G local slopeof the MF in the intermediate and outer shells shown in Fig. 6 (seethe panels corresponding to the shells limited by the (45%-65%)and (75%-90%) lagrangian radii).

The plots in Fig. 6 illustrate that care will be needed in theinterpretation of future observations of the local MF of multiplepopulations: observed differences in the local slope of the MF maybe associated with differences in the global MF of 1G and 2G stars(see section 3.3 below) or, as is the case in the simulations pre-sented here, to the dynamics of populations with different initialspatial distributions. As we will further discuss in the next section,the extent of the observed difference between the local 1G and 2GMF may provide an indication on whether they are due only to dy-namical effects or also to differences between the global MFs. Fig.6illustrates this point for some specific mass ranges and lagrangianshells. In order to make a stronger connection to observational stud-ies, the extent of the differences in the MF explored in future ob-servations will require an analysis focussing on the specific massrange and distances from the cluster centre covered by the observa-tions.

3.3 Stellar populations with different IMFs

In the previous sections we have assumed that the 1G and 2G pop-ulations form with the same IMF. While this may be a reasonableassumption, it is possible that the two populations might actuallybe characterized by different IMFs. In this section we explore theevolution of the MF of clusters in which 1G and 2G stars do nothave the same IMF. Specifically, we study three systems with a 1Gslope for stars with masses between 0.1m� and 0.5m� initiallyequal to α0.1−0.5= 1.0, α0.1−0.5= 0.8, and α0.1−0.5= 0.5 (forthe 2G population we keep the standard slope of the Kroupa 2001

c© 0000 RAS, MNRAS 000, 000–000

6 E.Vesperini et al.

−0.

40.

00.

4

t trh(0)

α 0.1

−0.5(1

G)−

α 0.1

−0.5(2

G)

t trh(0)

(a[le

nz, 8

] − a

[lenz

, 13]

)

t trh(0)

(a[le

nz, 9

] − a

[lenz

, 14]

)α 0

.1−0

.5(1

G)−

α 0.1

−0.5(2

G)

t trh(0)

(a[le

nz, 1

0] −

a[le

nz, 1

5])

0 5 10 15 20 25 30t t (0)

(a[le

nz, 1

1] −

a[le

nz, 1

6])

t trh(0)

−0.

40.

00.

4

t trh(0)

α 0.1

−0.5(1

G)−

α 0.1

−0.5(2

G)

t trh(0)

(a[le

nz, 8

] − a

[lenz

, 13]

)

t trh(0)

(a[le

nz, 9

] − a

[lenz

, 14]

)α 0

.1−0

.5(1

G)−

α 0.1

−0.5(2

G)

t trh(0)

(a[le

nz, 1

0] −

a[le

nz, 1

5])

0 10 20 30 40 50t t (0)

(a[le

nz, 1

1] −

a[le

nz, 1

6])

t trh(0)

−0.

50.

00.

51.

0

t trh(0)

α 0.3

−0.8(1

G)−

α 0.3

−0.8(2

G)

t trh(0)

(a[le

nz, 8

] − a

[lenz

, 13]

)

t trh(0)

(a[le

nz, 9

] − a

[lenz

, 14]

)α 0

.3−0

.8(1

G)−

α 0.3

−0.8(2

G)

t trh(0)

(a[le

nz, 1

0] −

a[le

nz, 1

5])

0 5 10 15 20 25 30t t (0)

(a[le

nz, 1

1] −

a[le

nz, 1

6])

t trh(0)

−0.

50.

00.

51.

0

t trh(0)

α 0.3

−0.8(1

G)−

α 0.3

−0.8(2

G)

t trh(0)

(a[le

nz, 8

] − a

[lenz

, 13]

)

t trh(0)

(a[le

nz, 9

] − a

[lenz

, 14]

)α 0

.3−0

.8(1

G)−

α 0.3

−0.8(2

G)

t trh(0)

(a[le

nz, 1

0] −

a[le

nz, 1

5])

0 10 20 30 40 50t t (0)

(a[le

nz, 1

1] −

a[le

nz, 1

6])

t trh(0)

−1.

00.

01.

02.

0

t trh(0)

α 0.5

−0.8(1

G)−

α 0.5

−0.8(2

G)

t trh(0)

(a[le

nz, 8

] − a

[lenz

, 13]

)

t trh(0)

(a[le

nz, 9

] − a

[lenz

, 14]

)α 0

.5−0

.8(1

G)−

α 0.5

−0.8(2

G)

t trh(0)

(a[le

nz, 1

0] −

a[le

nz, 1

5])

0 5 10 15 20 25 30t t (0)

(a[le

nz, 1

1] −

a[le

nz, 1

6])

t trh(0)

−1.

00.

01.

02.

0

t trh(0)

α 0.5

−0.8(1

G)−

α 0.5

−0.8(2

G)

t trh(0)

(a[le

nz, 8

] − a

[lenz

, 13]

)

t trh(0)

(a[le

nz, 9

] − a

[lenz

, 14]

)α 0

.5−0

.8(1

G)−

α 0.5

−0.8(2

G)

t trh(0)

(a[le

nz, 1

0] −

a[le

nz, 1

5])

0 10 20 30 40 50t t (0)

(a[le

nz, 1

1] −

a[le

nz, 1

6])

t trh(0)

Figure 6. Time evolution of the difference between the 1G and the 2G slope of the mass function in the mass range (0.1-0.5)m� (top row), (0.3-0.8)m�(middle row), (0.5-0.8)m� (bottom row) in shells at different distances from the cluster centre for the K01R5 model (lefth-hand panels) and the K01R10(right-hand panels). The five panels in each figure correspond, from the top to the bottom panel of each figure, to 3D (black points and red lines) and 2D (cyanlines) radial shells limited by the following lagrangian radii (0%-10%), (10%-25%), (25%-45%), (45%-65%), (75%-90%). Red lines show the rolling means(calculated using 10 points) of the difference between the 1G and 2G MF slopes calculated in 3D lagrangian radii shells and t/trh(0); cyan lines show therolling means (calculated using 10 points) of the difference between the 1G and 2G MF slopes calculated in 2D lagrangian radii shells and t/trh(0). Time isexpressed in units of the initial half-mass relaxation time, trh(0) of the entire cluster.

c© 0000 RAS, MNRAS 000, 000–000

Mass function evolution 7

IMF α0.1−0.5= 1.3) and one system in which the 1G populationhas a Kroupa (2001) IMF and the 2G’s IMF slope for stars withmasses between 0.1m� and 0.5m� is equal to 0.5.

We emphasize that, at this stage, neither observational nor the-oretical star formation studies provide any guidance about whetherthe IMF of the two populations might actual differ and the possibleextent of these differences; a complete study of this issue withoutany indication of plausible choices for the 1G and 2G IMFs wouldtherefore require a much more extensive survey of simulations ex-ploring a broad range of possible choices for the IMFs of the twopopulations. Here we provide a much more limited initial study:the goal of the four simulations presented is to carry out an initialexploration of 1) how differences in the MFs of two populationsmight evolve as a result of the effects of a cluster dynamical evolu-tion and 2) of the extent to which memory of the initial differencesis preserved during a cluster’s evolution.

Figure 7 shows the time evolution of the global α0.1−0.5 andα0.3−0.8 of the 1G and the 2G populations for the four cases stud-ied here: both the MF of the 1G and the 2G populations flatten asa result of the preferential loss of low-mass stars but the systemsretain some memory of the initial differences in the IMFs of thetwo populations during the entire cluster evolution. Combining theresults shown in this figure with those of section 3.1, we concludethat should observations reveal different global 1G and 2G MFs,this would have to be a relic of differences in the IMF rather thanthe consequence of the effects of dynamical evolution.

Fig.8 shows the time evolution of the local valuesof α0.1−0.5(1G)-α0.1−0.5(2G), α0.3−0.8(1G)-α0.3−0.8(2G), andα0.5−0.8(1G)-α0.5−0.8(2G) (for the K01R5a05 and K01R5-2ga05models): there are significant differences in the local MF of 1G and2G stars at all distances from the cluster centre and for the entirecluster evolution. For these models differences between the 1G and2G MF are present both in the local and in the global MF but, asalready pointed out in section 3.2, we emphasize again that cau-tion is needed in the interpretation of differences in the local MFas these can be present also for systems in which the 1G and the2G populations have the same global MF. We point out, however,that in dynamically old clusters significant differences between thelocal 1G and 2G MFs are present only in those systems in whichthe 1G and 2G populations do not form with the same global IMF.We will further discuss this point in section 3.5.

3.4 Spatial mixing of 1G and 2G stars

The differences in the evolution of the slope of the local MF mea-sured at various distances from the cluster centre are a conse-quence of the effects of mass segregation in the 1G and 2G sub-systems which have different initial structural properties and relax-ation timescales. In the initially more compact 2G subsytem, masssegregation proceeds more rapidly than the more extended 1G sys-tem. Another imprint of these differences in the structure and re-laxation timescales of the two subsystems is found in the spatialmixing process.

In Fig. 9 we show the evolution of the ratio of the 1G to the 2G3D half-mass radius, Rh,1G/Rh,2G as a function of the fraction ofthe initial mass remaining in the cluster for the K01R5 system. Thisfigure shows the evolution ofRh,1G/Rh,2G calculated using all thestars in the systems along with the evolution of Rh,1G/Rh,2G forstars in three different mass ranges. The evolution ofRh,1G/Rh,2G

for the entire cluster shows that, in agreement with the results ofVesperini et al. 2013 (see also Miholics et al. 2015), the two popu-lations are mixed by the time the system has lost about 60 per cent

of its initial mass (as already pointed out in Vesperini et al. 2013,we reiterate that here we refer to the mass loss due to two-bodyrelaxation; any additional mass loss occuring early in the clusterevolution is not included here).

A new interesting aspect of the mixing process in multi-mass systems is however illustrated by the time evolution ofRh,1G/Rh,2G for stars with different masses. Fig. 9 clearly showsthat the spatial mixing rate depends on the stellar mass: low-massstars mix more rapidly than more massive stars and for the mostmassive bin considered Rh,1G/Rh,2G even undergoes an initial in-crease. Although the dependence of the mixing rate on the stel-lar mass is not strong (and probably difficult to detect observa-tionally), this figure shows an interesting dynamical manifestationof the multiscale structure of multiple-population clusters and themore rapid manifestation of the effects of segregation in the 2Gsubsystem: 2G massive stars rapidly sink toward the inner regionsof the cluster leading to an initial increase in the difference betweenthe 2G and 1G massive stars spatial distribution; on the other hand,2G low-mass stars mix more rapidly as they migrate out of the innerregions towards the cluster outer regions.

3.5 Spatial mixing and the evolution of the mass function

We conclude our analysis with a few remarks concerning the rela-tionship between the evolution of the local and global MF of 1Gand 2G stars and a cluster’s dynamical evolution towards spatialmixing of 1G and 2G populations.

Fig.10 shows the evolution of the difference between the2G and the 1G local values of α0.1−0.5 (top panel) andα0.3−0.8 (bottom panel) measured between the (three-dimensional)45 and the 65 per cent lagrangian radius versus Rh,1G/Rh,2G forall the models studied in this paper. This figure illustrates the linkbetween the different manifestations of mass segregation and spa-tial mixing. As the cluster evolves towards complete spatial mixing,the difference in the local slope of the 1G and 2G MF initially in-creases and then decreases again late in the cluster evolution whenthe two populations are completely mixed. We point out that dur-ing part of a cluster evolution the local slopes of the MFs of the1G and the 2G population may differ from each other both in sys-tems in which the two populations are characterized by the sameglobal mass MF (K01R5 and K01R10) and for systems in whichthe two populations have different IMFs (K01R5a1, K01R5a08,K01R5a05, and K01R5-2ga05).

An interesting point to emphasize here concerns the guidanceprovided by Fig.10 in how differences in the global MF of 1G and2G stars might be identified. As shown in this figure, for dynami-cally old systems that have already reached (or are close to) com-plete mixing, differences in the local slopes of the 1G and 2G MFsare present and non-negligible only in systems that started withdifferent 1G and 2G global IMFs (although care must be used inconsidering possible differences due to noise). Observations of dif-ferences in the local MF in dynamically old and spatially mixedsystems may therefore represent a powerful tool to reveal differ-ences in the 1G and 2G global IMFs and PDMFs. We point outthat, as clearly shown in Fig.10, the extent of these differences inthe local MFs depends on the mass range explored and its relation-ship with the mass range for which the PDMFs and the IMFs ofthe two populations differ from each other. This figure also showsthat, irrespective of the cluster’s dynamical age, large differencesbetween the 1G and the 2G local MFs are more likely to be foundin systems in which the two populations did not have the same IMF.

These points are further illustrated in Fig. 11. In the two pan-

c© 0000 RAS, MNRAS 000, 000–000

8 E.Vesperini et al.

0 5 10 15 20 25 30 35

−1

01

2

t trh(0)

α 0.1

−0.5 0 5 10 15 20 25 30 35

0.28

0.32

0.36

0.40

t trh(0)

α 1G

−α 2

G

0 5 10 15 20 25 30 35

−2.

0−

1.5

−1.

0−

0.5

0.0

0.5

1.0

t trh(0)

α 0.3

−0.8 0 5 10 15 20 25 30 35−

0.10

0.00

0.05

0.10

t trh(0)

α 1G

−α 2

G

0 5 10 15 20 25 30 35

−1

01

2

t trh(0)

α 0.1

−0.5 0 5 10 15 20 25 30 35

0.30

0.35

0.40

0.45

0.50

t trh(0)

α 1G

−α 2

G

0 5 10 15 20 25 30 35

−2.

0−

1.5

−1.

0−

0.5

0.0

0.5

1.0

t trh(0)

α 0.3

−0.8 0 5 10 15 20 25 30 35

0.10

0.20

0.30

t trh(0)

α 1G

−α 2

G

0 10 20 30

−1

01

2

t trh(0)

α 0.1

−0.5 0 10 20 30

0.70

0.80

0.90

1.00

t trh(0)

α 1G

−α 2

G

0 10 20 30

−2.

0−

1.5

−1.

0−

0.5

0.0

0.5

1.0

t trh(0)

α 0.3

−0.8 0 10 20 30

0.0

0.2

0.4

0.6

t trh(0)

α 1G

−α 2

G

0 5 10 15 20 25 30 35

−1

01

2

t trh(0)

α 0.1

−0.5 0 5 10 15 20 25 30 35

−1.

0−

0.9

−0.

8−

0.7

−0.

6

t trh(0)

α 1G

−α 2

G

0 5 10 15 20 25 30 35

−2.

0−

1.5

−1.

0−

0.5

0.0

0.5

1.0

t trh(0)

α 0.3

−0.8 0 5 10 15 20 25 30 35−

0.65

−0.

55−

0.45

t trh(0)

α 1G

−α 2

G

Figure 7. Time evolution of the slope of the global mass function for 2G stars (blue line), 1G stars (red line) and all stars (black line) for, from top to bottompanels, the K01R5a1 (first row), K01R5a08 (second row), and K01R5a05 (third row), and K01R5-2ga05 (fourth row) models. The panels on the left-handcolumn show the evolution of the slope of the mass function for stars with masses between 0.1m� and 0.5m�; the panels on the right-hand colums show theevolution of the slope of the mass function for stars with masses between 0.3m� and 0.8m�. The insets show the time evolution of the difference betweenthe slope of the mass function of 2G stars and that of 1G stars for the mass range corresponding to each panel. Time is expressed in units of the initial half-massrelaxation time of the entire cluster.

c© 0000 RAS, MNRAS 000, 000–000

Mass function evolution 9

0.0

1.0

2.0

t trh(0)

α 0.1

−0.5(1

G)−

α 0.1

−0.5(2

G)

t trh(0)(a[1

:nm

ax, 8

] − a

[1:n

max

, 13]

)

t trh(0)(a[1

:nm

ax, 9

] − a

[1:n

max

, 14]

)α 0

.1−0

.5(1

G)−

α 0.1

−0.5(2

G)

t trh(0)(a[1

:nm

ax, 1

0] −

a[1

:nm

ax, 1

5])

0 10 20 30t t (0)(a

[1:n

max

, 11]

− a

[1:n

max

, 16]

)

t trh(0)

−2.

0−

1.0

0.0

t trh(0)

α 0.1

−0.5(1

G)−

α 0.1

−0.5(2

G)

t trh(0)

(a[1

:nm

ax, 8

] − a

[1:n

max

, 13]

)

t trh(0)

(a[1

:nm

ax, 9

] − a

[1:n

max

, 14]

)α 0

.1−0

.5(1

G)−

α 0.1

−0.5(2

G)

t trh(0)

(a[1

:nm

ax, 1

0] −

a[1

:nm

ax, 1

5])

0 5 10 15 20 25 30 35

t t (0)

(a[1

:nm

ax, 1

1] −

a[1

:nm

ax, 1

6])

t trh(0)

−0.

50.

51.

5

t trh(0)

α 0.3

−0.8(1

G)−

α 0.3

−0.8(2

G)

t trh(0)(a[1

:nm

ax, 8

] − a

[1:n

max

, 13]

)

t trh(0)(a[1

:nm

ax, 9

] − a

[1:n

max

, 14]

)α 0

.3−0

.8(1

G)−

α 0.3

−0.8(2

G)

t trh(0)(a[1

:nm

ax, 1

0] −

a[1

:nm

ax, 1

5])

0 10 20 30t t (0)(a

[1:n

max

, 11]

− a

[1:n

max

, 16]

)

t trh(0)

−1.

0−

0.5

0.0

0.5

t trh(0)

α 0.3

−0.8(1

G)−

α 0.3

−0.8(2

G)

t trh(0)

(a[1

:nm

ax, 8

] − a

[1:n

max

, 13]

)

t trh(0)

(a[1

:nm

ax, 9

] − a

[1:n

max

, 14]

)α 0

.3−0

.8(1

G)−

α 0.3

−0.8(2

G)

t trh(0)

(a[1

:nm

ax, 1

0] −

a[1

:nm

ax, 1

5])

0 5 10 15 20 25 30 35

t t (0)

(a[1

:nm

ax, 1

1] −

a[1

:nm

ax, 1

6])

t trh(0)

−1.

00.

01.

0

t trh(0)

α 0.5

−0.8(1

G)−

α 0.5

−0.8(2

G)

t trh(0)(a[1

:nm

ax, 8

] − a

[1:n

max

, 13]

)

t trh(0)(a[1

:nm

ax, 9

] − a

[1:n

max

, 14]

)α 0

.5−0

.8(1

G)−

α 0.5

−0.8(2

G)

t trh(0)(a[1

:nm

ax, 1

0] −

a[1

:nm

ax, 1

5])

0 10 20 30t t (0)(a

[1:n

max

, 11]

− a

[1:n

max

, 16]

)

t trh(0)

−1.

00.

01.

0

t trh(0)

α 0.5

−0.8(1

G)−

α 0.5

−0.8(2

G)

t trh(0)

(a[1

:nm

ax, 8

] − a

[1:n

max

, 13]

)

t trh(0)

(a[1

:nm

ax, 9

] − a

[1:n

max

, 14]

)α 0

.5−0

.8(1

G)−

α 0.5

−0.8(2

G)

t trh(0)

(a[1

:nm

ax, 1

0] −

a[1

:nm

ax, 1

5])

0 5 10 15 20 25 30 35

t t (0)

(a[1

:nm

ax, 1

1] −

a[1

:nm

ax, 1

6])

t trh(0)

Figure 8. Same as Fig. 6 for the model K01R5a05 (left-hand panels) and K01R5-2ga05 (right-hand panels).

c© 0000 RAS, MNRAS 000, 000–000

10 E.Vesperini et al.

1.0 0.8 0.6 0.4 0.2

12

34

56

M(t) M(0)

Rh1

GR

h2G

Figure 9. Evolution of the ratio of the 1G to the 2G 3D half-massradius, Rh,1G/Rh,2G, as a function of the initial mass remaining inthe cluster for the K01R5 model. The grey line shows the evolution ofRh,1G/Rh,2G calculated using all the stars in the system. The green lineshows Rh,1G/Rh,2G for stars with masses between 0.1 m� and 0.3 m�,the orange line shows Rh,1G/Rh,2G for stars with masses between 0.3m� and 0.6 m�, and the black line shows Rh,1G/Rh,2G for stars withmasses between 0.6 m� and 0.85 m�.

els of this figure we plot the differences between the slope of the1G and 2G MF measured in a 3D shell between the 45 and the65 per cent lagrangian radii versus the difference of the globalslopes of the 1G and 2G MFs for stars with masses in the range(0.1 − 0.5)m� (top panel) and (0.3 − 0.8)m�. Although as dis-cussed above and shown in Fig.10, dynamically old and spatiallymixed clusters are those for which differences in the local globalslope of the 1G and 2G MF are more similar to each other, thetop panel of Fig.11 shows that when we focus on the specific stel-lar mass range (0.1-0.5)m� for which the 1G and 2G IMFs dif-fered, the difference between the local slopes of the 1G and 2GMFs always provides a good indication of the differences in theglobal IMFs and PDMFs (we emphasize that the individual val-ues of the MF slopes undergo a significant evolution as a clusterloses mass but the difference of the slopes does not vary signifi-cantly; see Fig.7). The bottom panel of Fig.11 shows that in themass range (0.3-0.8)m� the difference between the local slopesof the 1G and 2G MFs undergoes a larger variation during a clus-ter’s evolution than the difference between the global MF slopes. Inthis case dynamically old and spatially mixed clusters are those forwhich differences in the local 1G and 2G MF slopes more closelyresemble the differences in the global slopes of the 1G and 2G MFs(the density map in the inset is included to provide an indication ofwhich regions of this plane are more likely to be populated duringthe evolution of the models presented in this paper).

We finally emphasize that, of course, dynamically young clus-ters that have not suffered any significant loss of stars and for whichinternal mass segregation has not altered the local MF slope alsoprovide ideal targets for observations aimed at shedding light onthe 1G and 2G global IMF from observations of the local PDMF.

2 4 6 8 10

−1.

0−

0.5

0.0

0.5

1.0

Rh1G Rh2G

α 0.1

−0.5(1

G)−

α 0.1

−0.5(2

G)

2 4 6 8 10

−0.

50.

00.

51.

0

Rh1G Rh2G

α 0.3

−0.8(1

G)−

α 0.3

−0.8(2

G)

Figure 10. Evolution of the difference between the 1G and 2G slope of theMF in the mass range (0.1-0.5)m� (top panel) and (0.3-0.8)m� (bottompanel) measured in a 3D shell between the 45 per cent and 65 per cent la-grangian radius as a function of the ratio of the 1G to the 2G half-massradius, Rh,1G/Rh,2G for the K01R5 model (red line), K01R10 (orangeline), K01R5a05 (blue line), K01R5a08 (cyan line), K01R5a1 (green line),K01R5-2ga05 (purple line).The values plotted are the rolling means (calcu-lated using 10 points) of Rh,1G/Rh,2G and of the difference between theslope of the 1G and 2G MF.

4 CONCLUSIONS

The stellar MF is one of the fundamental properties characteriz-ing a stellar population. A number of previous observational andtheoretical investigations have explored the stellar MF of globu-lar clusters, but the discovery of multiple stellar populations has

c© 0000 RAS, MNRAS 000, 000–000

Mass function evolution 11

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●

●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●

●●●●●●

●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●

●●●●●●

●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●●●●●●

●●●●●

●●●●●

●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●

●●●●●●

●●●●●●

●●●●●●●●●●

●●●

●●●●●●●●●●

●●●●●●●

●●●●●●●●●●●

●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●

●●

●●●●●●●●

●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●

●●●●●●●●●

●●

●●●●●

●●●

●●●●●●●

●●

●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●

●●●●

●●●●●●●●●●●

●●●

●●●●●●●●●●

●●

●●●

●●●●●

●●●●●

●●●●

●●●●●

●●●●●●●●●●●●●●●

●●●●●

●●●●●●●

●●●●●●●●

●●

●●

●●●

●●●●

●●●

●●●●

●●

●●●●

●●●●●

●●●●

●●●●

●●●●●●●●●

●●●●●

●●

●●●

●●●●

●●

●●●●●

●●

●●

●●●●●●

●●●●●●

●●●●

●●

●●

●●●●●●●

●●

●●●●

●●

●●

●●●●●●●●●

●●●

●●●●

●●●●●●●

●●●●●

●●

●●●●

●●●●

●●●●●●●

●●●●●●●●●●●●

●●●●

●●●●

●●

●●●●●

●●

●●

●●

●●●●●●●

●●

●●●●●●●

●●●●●●●●

●●

●●●

●●

●●●●

●●

●●

●●●

●●

●●

●●●●●

●●

●●●●●

●●●●

●●

●●

●●●

●●

●●●

●●

●●●●●

●●

●●●●

●●●

●●

●●

●●

●●●

●●

−1.0 −0.5 0.0 0.5 1.0

−1.

0−

0.5

0.0

0.5

1.0

α1G − α2G

α 1G(4

5−

65)−

α 2G(4

5−

65)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●

●●

●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●

●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●

●●

●●●●●●●

●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●

●●●

●●

●●●●

●●●●●

●●●●

●●●●●●●●●●●●

●●●●●●●

●●●

●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●

●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●

●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●

●●

●●●

●●●●●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●

●●●●●●●●●●

●●

●●●●●

●●

●●●●

●●●

●●●●●

●●●●

●●

●●●●●●●●●

●●●●●●●●

●●●●●

●●●●●●●●●●●

●●●●●●

●●●●●●●●●●

●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●

●●●●

●●●●●●

●●●●●●●

●●●

●●●●●●●●●●●●●

●●●●●●●●

●●●●●●

●●

●●●●●

●●●●●●●●

●●

●●●

●●●●●

●●

●●●●●●●

●●●●●●●●

●●●●●●●●

●●

●●●

●●●

●●

●●●●

●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●

●●●●

●●●●

●●●●

●●

●●●●

●●●●

●●●●●●●●●●

●●●●●

●●

●●●

●●●●●●●

●●●●●●●●●●●●

●●●●●

●●

●●●

●●●●●●

●●

●●●●●●

●●

●●●●●

●●●●●

●●●

●●●●

●●●●●●●●●●

●●●●●●

●●●

●●

●●●●●

●●●

●●●●●●

●●

●●

●●●

●●

●●

●●●

●●●

●●

●●●

●●●●

●●●●●●●●●●●

●●

●●●●●●●●

●●●●●●●●●●●

●●●

●●

●●●●●●●

●●●

●●●●●●●●

●●

●●●●●

●●●●

●●●●●

●●

●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●

●●

●●●●●

●●

●●●●●●

●●●●

●●

●●●

●●●●

●●●

●●●

●●

●●

●●●●●●●

●●●●●●●

●●●●

●●●●●●●●●●

●●●●

●●●●

●●●●●

●●●●●●●●●●●

●●

●●●

●●●

●●●

●●

●●●●●●●●●●●

●●●●

●●●

●●●●●●●

●●●

●●●

●●●

●●

●●

●●●

●●

●●

●●

●●

●●●●

●●

●●

●●●

●●●●●

●●●

●●

●●●●●●

●●●●

●●

●●●●●●

●●

●●●●●

●●●

●●●

●●●●●

●●●●

●●●

●●

●●

●●

●●●●●

●●●●●

●●●

●●●●●●

●●●●●●●

●●

●●●●●●●●

●●

●●

●●●

●●●

●●

●●

●●●

●●

●●●●●●●

●●●●

●●●●●●

●●●●●●●●●●

●●

●●●●

●●

●●

●●●

●●

●●●●●●

●●●

●●

●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●

●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●

●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●●●●●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●●

●●●●●●●●●

●●●●●

●●●●●

●●●●●●●

●●●●●●

●●●●

●●

●●

●●

●●●●●●●●

●●

●●●●

●●●●●

●●●●●●

●●●

●●●●●●

●●●●●●

●●●●●●●●●

●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●

●●●●●●

●●●●●●

●●

●●●

●●●

●●●●●●

●●●●

●●●

●●●

●●

●●●●●

●●●●●

●●●●●●●

●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●

●●●

●●●●

●●●●

●●

●●●●●●●●

●●●●●●●

●●

●●●●●●●●●

●●

●●●●●●●●●●

●●●

●●●●●●●●●●

●●

●●●●

●●

●●●

●●●●●●●

●●●

●●

●●

●●●

●●

●●●●●●●

●●●

●●●●●●

●●

●●

●●●●●●●●

●●

●●

●●●●●

●●

●●●

●●●

●●●●●●●●●●

●●●

●●

●●

●●●

●●●●●●●●●●

●●●

●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●

●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●●●

●●●

●●●

●●●●●●

●●●●●●●●

●●

●●●●●●

●●●●●●●

●●

●●●●

●●●

●●●●

●●

●●●

●●●●●

●●●●

●●●●●●

●●

●●●

●●

●●

●●

●●●

●●●●

●●

●●●

●●●●●

●●

●●

●●

●●●

●●

●●●

●●●

●●●

●●

●●●

●●

●●●

●●

●●

●●●●

●●●

●●●

●●●

●●

●●●●●●

●●

●●

●●●●●●●

●●●●●●●

●●●

●●●●

●●●

●●●●

●●●●

●●

●●●●●●

●●●

●●

●●

●●●

●●

●●●

●●●●

●●●●●●●●●●

●●

●●●

●●●●

●●

●●

●●

●●

●●

●●●●●●●●

●●●

●●●●●

●●

●●●●●●●●

●●●●

●●●●●●●●

●●

●●

●●

●●●

●●●●●

●●

●●

●●●

●●

●●

●●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●

●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●

●●

●●

●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●

●●●●●

●●●●●●●●●●●

●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●

●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●●●

●●●●●●●●●

●●●●●●●

●●●●●

●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●

●●●●●●●●●

●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●

●●●●●●●

●●●

●●●

●●●●●●●●●●

●●●●●●

●●●

●●

●●●●●

●●●

●●●●●●●●●●●●●●●●

●●●

●●●●●●

●●

●●●●●●●●●●

●●●●●●

●●●●●

●●●●

●●●

●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●

●●

●●

●●●●●●●●

●●

●●●●●

●●●●

●●

●●●●●

●●●●●●●●●

●●●●●●●●

●●●

●●●●●●●●●●●

●●●

●●●●●●

●●●●●●

●●●●●●●●●●

●●●●●●●●●

●●

●●

●●●●

●●

●●●

●●●●●●●●●

●●

●●●●●●

●●

●●●●●●●●

●●

●●

●●●●

●●●●●●

●●●●

●●

●●●●

●●

●●

●●●●●●●●

●●●●●●●●

●●

●●●●

●●●

●●●●●●●●●●

●●

●●●

●●

●●●●

●●●

●●●●●●●●●

●●

●●●

●●●●●

●●

●●●●

●●●●

●●●

●●

●●●

●●●

●●●●●

●●●●

●●●

●●●●●●

●●●●●●

●●●●

●●●●

●●

●●

●●

●●

●●●●

●●●

●●

●●●●

●●

●●●●

●●

●●●

●●●●

●●

●●

●●●

●●●●●

●●●

●●

●●

●●

●●●

●●

●●●●●●

●●●●

●●●

●●

●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●

●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●

●●●●

●●

●●●●●●●●●●●●●●●

●●

●●●●●

●●●●●●

●●●●●●●●●●

●●●●●●●●

●●

●●●●●●

●●●●●●●

●●●●●●●●

●●●●●●

●●●

●●●●●●●●●●●

●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●

●●●●●

●●●●●●

●●●●

●●●●●

●●●●●

●●

●●●●●●

●●●●

●●●

●●●

●●●●●●

●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●

●●●

●●●

●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●

●●●

●●●●●●

●●●●●

●●●●●●●●●●

●●●●

●●●●

●●●●●

●●●

●●

●●

●●●

●●

●●●

●●

●●

●●●●●●●

●●

●●●●●●

●●●●●●

●●●●●

●●●●

●●●●●●●●

●●

●●●●●●●

●●

●●●●●●

●●●●●

●●

●●●

●●●●●

●●●●●●●

●●

●●

●●●

●●●

●●●

●●●●●●●●●●

●●●●

●●●●●

●●●

●●●●●●●●●

●●

●●

●●

●●●

●●●●●●●

●●

●●●●●

●●

●●

●●●

●●

●●●

●●●

●●●

●●●

●●●

●●

●●●●●●

●●

●●

●●

●●●

●●

●●●●●●●

●●●

●●●

●●●

●●●●●●

●●●●

●●●●

●●

●●●●

●●●

●●●●

●●

●●

●●●

●●●

●●

●●●●●

●●●●●●●●●●●●●●

●●

●●●●●●●

●●●●●

●●●●●

●●●

●●●●●

●●

●●●

●●●

●●●

●●●●●

●●

●●●

●●

●●

●●●

●●

●●

●●●

●●●●●

●●●●

●●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●

●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●

●●●●●

●●●●●●●●●●●●

●●●●

●●●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●

●●●●●●

●●●

●●●●●●●●●●

●●●●●●●

●●

●●

●●●●●●

●●●●●●●

●●●●●

●●●●●●●●●●●●●●

●●●●

●●●●●●

●●●●●●●●●●●

●●●

●●●●●●●●

●●●

●●●●●

●●●●●

●●●●●●●●

●●●●●●●●●●●●

●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●

●●●●

●●●●●●●●●

●●●●

●●●●

●●●●

●●

●●●●

●●●

●●●●●●●●

●●●●●●●●

●●●

●●●●●●●●●●●

●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●

●●●●

●●●●●

●●●●

●●●●●●

●●●●

●●●●●●●●

●●●●●

●●

●●●

●●●●●●●

●●●●●●●●●●

●●●●

●●●●

●●

●●

●●●

●●●

●●●●●

●●●●

●●●

●●●

●●●●

●●

●●●●●●

●●

●●●●●●●●●●

●●●●●●

●●

●●

●●●●●

●●

●●●●

●●

●●

●●

●●●

●●

●●●●●●●

●●

●●●●●

●●●●●

●●

●●●

●●

●●●●

●●●

●●●●●●

●●●●●

●●●

●●●●●●

●●●●●●

●●

●●●●

●●●●●●●

●●●

●●

●●●●

●●●

●●●●●●

●●

●●●

●●●●●●●

●●●●●

●●●●●●●

●●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●●●●●●●●

●●●

●●●●

●●

●●●●

●●

●●●●●

●●

●●●●●

●●●

●●●

●●●

●●●

●●●●

●●

●●●

●●

●●●

●●●●

●●●●

●●

●●

●●●●

●●●

●●●●

●●●

●●●

●●●

●●

●●●●

●●

●●●

●●

●●

●●●●●

●●●

●●●●

●●●●●

●●●

●●

●●●

●●●●

●●●

●●●

●●●

●●

●●

●●

●●●

●●●●●●●●

●●●

●●

●●●

●●●

●●●●

●●●

●●●●●●

●●●●

●●●●

●●●●

●●●●●

●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●

●●●●

●●●●●

●●●●

●●●●●●

●●●●●●●

●●●●●●●●●●●●●●

●●●●

●●●

●●●●

●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●

●●

●●

●●●●●●●●●●

●●

●●●●●

●●

●●●●●●●●●●●●●●●●●●●●

●●●

●●●●

●●●

●●●●●●●

●●●●●●●

●●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●

●●●

●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●

●●

●●●●●●●

●●●●●●●●●●

●●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●

●●●●●●●●●●

●●●●●

●●●●

●●●●

●●●

●●●●

●●

●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●

●●●●

●●●●●

●●●

●●●●●●

●●●●●●●●●●●●●●●●●

●●●●

●●●●●

●●●

●●

●●●●●

●●●

●●●

●●

●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●

●●●●●

●●●●●●●●●

●●●

●●●●●●

●●●●●●

●●●●●●●●●

●●●●●●●●●●●●

●●●

●●●●●

●●●●●●●

●●

●●●

●●●●●

●●●●●●●●●●●●

●●●●●●

●●●●

●●●●

●●●●●●●●●●●●●●●

●●●●●

●●

●●●●●●●●●●●●

●●●●●●●

●●●

●●●●●●

●●●●●●●

●●

●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●

●●●●●

●●●●●●●

●●●

●●●●●●●●●

●●●●●●●

●●●

●●

●●●●

●●

●●

●●

●●

●●●●

●●●●●●●●

●●

●●●●

●●●

●●●

●●

●●●●●

●●

●●

●●●●●●●

●●

●●●

●●

●●●●

●●●

●●●●

●●●●●

●●

●●●

●●●●●●●

●●●

●●●●●●

●●●●●●

●●●

●●●●●

●●

●●●●●●●

●●●●●●

●●●●●●●●

●●

●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●

●●●●●●●●

●●

●●

●●

●●

●●●

●●●●●●

●●●●●

●●●

●●●●●●

●●

●●●

●●●

●●

●●

●●●●●●●

●●●●●

●●●●●

●●

●●●●●●●●●●

●●●

●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●

●●

●●

●●●●●●

●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●

●●●●●

●●

●●●

●●

●●

●●

●●

●●

●●●●●

●●●●

●●●●●

●●●●

●●●●

●●●

●●

●●

●●●●●●●●●●●●●

●●●●●

●●●●●●

●●●

●●

●●●●●

●●●

●●●

●●●●●●

●●

●●●●

●●●●●●●●

●●●●●●●

●●

●●

●●●●●●●

●●

●●●●

●●●●●●●

●●●●●●●●●●●●

●●●

●●●●●

●●●

●●

●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●

●●

●●●●●●●●●

●●

●●●●●●

●●●●●●●●●

●●●

●●

●●

●●●●●●

●●

●●●

●●●

●●●●●

●●

●●●●●

●●●

●●●●

●●●

●●●●●

●●●

●●

●●●●●●●●

●●

●●●●

●●●

●●●●●

●●

●●●

●●●●

●●

●●

●●●

●●●

●●

●●●●●

●●●

●●

●●●

●●●

●●

●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●

●●●

●●●

●●●●●●

●●

●●●

●●●●

●●●●●●●●●●●

●●●

●●●●●●●

●●●●●●●●●

●●

●●

●●

●●●

●●

●●●●●●

●●

●●●●

●●

●●●●●●●●

●●

●●●●

●●●●●●

●●●●●●●●●●

●●

●●●●●●●●●

●●

●●●●

●●

●●

●●

●●●

●●●

●●●

●●

●●●●●●●●●●●●●

●●

●●

●●●

●●●

●●

●●●●

●●

●●●

●●●●

●●●

●●●●●

●●

●●●

●●●

●●●

●●●●●●

●●●

●●●●●

●●

●●

●●

●●●

●●●●●

●●●

●●●

●●

●●

●●

●●●●

●●

●●●●●●●●

●●●●●●●

●●

●●

●●●

●●

●●●●●●

●●●●

●●●

●●●●●

●●●●●●●

●●●●●

●●

●●

●●

●●●●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●●

●●●●●●●●●

●●●●●

●●●●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●●●●●●●●●●●●

●●

●●

●●

●●●●●●

●●●●

●●

●●●●

●●

●●

●●

●●●

●●●●

●●●●●●

●●

●●●

●●●

●●●●●●

●●●●

●●

●●●

●●●

●●

●●●

●●

●●

●●●●●●

●●●

●●●

●●●●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●●●

●●

●●

●●

●●

●●●●

●●●●●

●●

●●●●●

●●

●●

●●●

●●●

●●

●●

●●

●●●

●●●●●●

●●●●●●●●

●●●●

●●

●●●

●●●

●●●

●●●

●●●●●●

●●

●●

●●●

●●

●●

●●●

●●●

●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●

●●●

●●●

●●

●●●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●●

−1.0 −0.5 0.0 0.5 1.0

−1.

0−

0.5

0.0

0.5

1.0

α1G − α2G

α 1G(4

5−

65)−

α 2G(4

5−

65)

●●●●

●●●●●●●●●

●●

●●

●●●●

●●

●●●●●●

●●●●●●

●●

●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●

●●●●●●

●●●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●

●●●●●

●●●●●●●●

●●●●●

●●

●●●

●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●

●●●●●●●

●●●

●●●●●

●●●●●●●●

●●●●

●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●

●●●●●

●●

●●●●●●●

●●

●●●

●●

●●●●●●●

●●●

●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●

●●●●●

●●●●

●●●●●●●●●●●●●

●●

●●●●●●●

●●

●●

●●●●●

●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●

●●

●●●●●

●●●●

●●●●●●

●●●●

●●

●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●

●●●●

●●●

●●●●●●●●●●●●●●●●●●●●

●●●●

●●●

●●

●●●

●●●●

●●

●●●

●●●●

●●●

●●

●●●●●●●

●●●

●●●●●●●●●●●

●●●●●●

●●

●●

●●●●●

●●

●●●●●

●●

●●●●

●●●

●●

●●●●●●●●●●●●●

●●●●●●

●●●●●●●●

●●

●●●

●●●

●●●

●●

●●●

●●●

●●●

●●●●●●●

●●●●●●●●●●●●

●●●●●●

●●●

●●

●●

●●●●●

●●●●

●●●●

●●●●●●●●●

●●●●●●●●●●●●

●●●●

●●●●●

●●●●

●●●●●●

●●

●●

●●●●●

●●

●●

●●

●●●●

●●●●●●●●

●●

●●●●●●●●●●

●●

●●●●●●●

●●

●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●

●●

●●●●●●●●

●●●●●

●●

●●●●●●●●●●

●●●

●●

●●●●●

●●●

●●●●●●

●●●●●●●●●●●●●●

●●●

●●

●●●●●●●●

●●

●●●●

●●

●●●

●●

●●●●●●●

●●●●●●

●●●●

●●●●

●●●●●●●

●●●●

●●●●●●●

●●●

●●●●●●

●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●

●●●

●●●

●●●●●●

●●●●●●●

●●

●●●●●

●●

●●●●

●●●●

●●

●●●●●●●●

●●

●●

●●●●●●

●●●

●●●●●

●●●●●

●●●●●●●●●●

●●●●●●

●●●●

●●●●●

●●●●

●●●●●●●

●●●

●●●●●●

●●●●

●●

●●

●●●●●

●●

●●●

●●●●●

●●●●●●

●●●●●●

●●●●●

●●●

●●●●●●

●●●●●●●●

●●●

●●●

●●●●●●●

●●●

●●●●●●●●

●●

●●●●●●●

●●●●●●●●●

●●●●

●●

●●●●●●

●●●●●●

●●●●●●

●●

●●●●●●●

●●●

●●●

●●

●●

●●

●●●●●●●●

●●●●●●●●●

●●●●●●

●●

●●●●●

●●

●●●●●●●●●●

●●●

●●

●●●●

●●

●●●●●

●●●●●●●●●●●●●●●●

●●

●●●●

●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●

●●●

●●●●

●●●●●●●

●●●●●

●●

●●

●●●●●●●●●

●●●

●●

●●●

●●●●

●●

●●●

●●●●

●●●●

●●●●●

●●●●

●●●●●●●●●●●

●●

●●

●●●●●●

●●

●●●●●●●●

●●

●●●●●

●●

●●●●●●●

●●

●●●●●●●●●●●●●

●●

●●●●●

●●●●●

●●●

●●●

●●●●●

●●●●

●●●●●●●

●●●●

●●●

●●●●●

●●●●

●●●

●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●

●●●

●●●●

●●●●

●●

●●

●●●●●●

●●●●●●●●●●

●●●●●●

●●●●●●●

●●●●●●●●

●●

●●●

●●●●●

●●

●●●●●

●●●

●●

●●●●●●

●●

●●●

●●●●●●

●●

●●●●

●●●

●●●●●●●●●

●●●●●●●●●

●●

●●●●●●●●

●●●

●●

●●●●●●●●●●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●●●●●●●●●●

●●●●

●●●

●●●●●●●

●●●

●●●

●●

●●●●●

●●●●●●●●●

●●●●●

●●●●

●●●●●

●●●●

●●●●●

●●

●●

●●●●●

●●●●

●●

●●●

●●●●

●●●●●

●●

●●●●●

●●●●●

●●

●●●

●●●

●●●

●●●

●●●

●●●●●●●

●●

●●

●●

●●●●

●●

●●

●●●

●●●●●●

●●●●

●●●●●●●●●●●

●●●●●●

●●●●

●●●●

●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●

●●●●●●

●●●●

●●●●●●●

●●

●●●●●●

●●●

●●●●

●●●●●●

●●●

●●●●

●●●●●●

●●

●●●●●●●●●●

●●●

●●●●●

●●

●●

●●

●●●●●

●●●●●

●●●●●●●●

●●●●●●

●●●●●●●

●●●●●●●●●●●●●●●●●

●●●

●●●●

●●

●●●

●●●●

●●●●●●●●●●●

●●●

●●●●●●

●●●●●●●●●●●●●

●●●●●●●●

●●

●●

●●●●●●●●●●●

●●●●●●●●●

●●

●●●

●●●

●●●●●●●

●●

●●

●●●●●●●●●

●●

●●

●●●●●●●●

●●●●●●●●

●●

●●●

●●●●●●●●●●

●●●

●●●

●●●

●●●●

●●●

●●●

●●

●●●●●●

●●

●●●●●●●●

●●●●●

●●●●●●●●

●●

●●

●●●

●●●

●●

●●●●

●●●●

●●●●●

●●●●●●

●●●

●●●●●●

●●●●

●●

●●

●●●●●●●

●●

●●●

●●●●●●

●●●

●●

●●●●●

●●●

●●●●●●

●●●

●●●●

●●●

●●●●

●●●●

●●●

●●●

●●

●●●●●●●●●●

●●

●●

●●

●●●●●●

●●●

●●●●●

●●●●●●

●●●●●

●●●●●●●●

●●

●●●●●●●●●●●

●●

●●●●●●●

●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●

●●●●

●●●

●●●●●●●●

●●●●●●

●●

●●●●●●

●●●

●●

●●●●●

●●●●●●●

●●●

●●

●●●●●●

●●●●●●

●●●●●●

●●

●●●●

●●●●

●●

●●●●

●●●●

●●●

●●●●●●

●●

●●●

●●●●●●●●

●●●●●●●●●

●●●●●●●

●●

●●

●●●●●

●●●

●●●

●●●●●●●

●●

●●

●●●

●●

●●●●●

●●●

●●●

●●

●●●●●

●●●●●●●●●●●●●●●

●●●

●●

●●

●●

●●●

●●

●●

●●●

●●

●●

●●●●

●●●●●●●

●●●●

●●●●●●●

●●●●●

●●●●

●●●●●●●

●●●●●●●●●

●●●

●●●

●●

●●

●●●●●

●●●●

●●●

●●

●●●●●●●●●

●●●●●

●●●●

●●

●●

●●●

●●

●●

●●

●●

●●●

●●

●●●●●●●●●●●

●●●

●●●●

●●●

●●

●●

●●

●●

●●●●●●●

●●

●●

●●

●●

●●

●●

●●●●●

●●●●●●●●●

●●●●

●●

●●●●●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●●●

●●●●●

●●

●●

●●●

●●

●●

●●●●

●●

●●●●●●

●●●●

●●●

●●●

●●

●●

●●

●●

●●●

●●●

●●●●

●●●

●●

●●

●●●

●●●

●●●

●●●

●●●

●●●●●

●●●

●●●

●●

●●●

●●

●●●

●●●●

●●

●●●●●

●●●

●●●

●●●●●●●●

●●

●●●●

●●

●●

●●

●●

●●●●●●●●●●

●●

●●●●●●●●

●●●●●●●●●

●●

●●●

●●●●●

●●●●

●●●

●●

●●

●●●●

●●

●●

●●

●●●

●●●●●

●●

●●

●●●●

●●●

●●

●●●

●●●

●●●●

●●

●●

●●●

●●

●●

●●●●●●●

●●●

●●●●●

●●

●●●●●●

●●

●●●●●

●●

●●●●

●●●

●●●

●●●

●●

●●●●

●●●●

●●●

●●●●●

●●

●●

●●●●

●●●●

●●

●●

●●●

●●

●●

●●●

●●●

●●●●

●●●

●●

●●

●●●●

●●●●

●●●●

●●●●●●●●

●●●

●●

●●●

●●●

●●●●

●●●●●●●●

●●●

●●●

●●●

●●●●

●●

●●

●●●●

●●

●●●●

●●

●●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●●

●●●●●

●●

●●

●●

●●

●●●

●●●●

●●

●●●

●●●●●

●●●

●●

●●●●

●●●

●●●

●●

●●

●●●●

●●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●●

●●●●●●●

●●

●●

●●●

●●●●

●●●●●

●●●

●●●●●●●●●

●●

●●●

●●●●

●●

●●●

●●

●●

●●●●●●

●●●

●●●●●●

●●●

●●

●●

●●

●●

●●●●●●

●●

●●●

●●●●

●●

●●●●●

●●●

●●

●●●

●●●

●●●

●●●

●●●

●●

●●

●●●

●●●

●●

●●●

●●●

●●

●●

●●

●●

●●●●●

●●●

●●

●●●

●●●

●●

●●●●

●●●

●●

●●●

●●●

●●

●●●●●

●●

●●●●

●●●●

●●●●●

●●

●●●●●●●

●●

●●●

●●

●●

●●

●●●

●●

●●●●●

●●

●●●

●●●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●●●

●●●

●●

●●

●●●

●●●●●●●●●

●●●

●●●●●●●●

●●●

●●

●●

●●

●●

●●●

●●●

●●

●●

●●●

●●●

●●

●●●

●●

●●

●●●

●●●●●

●●●●●

●●●●●●●●●

●●●●

●●●

●●

●●●●●

●●

●●●

●●

●●

●●●●●

●●●

●●

●●●

●●●

●●

●●●●

●●

●●●

●●●●

●●●

●●●●●

●●●●

●●

●●●●●●

●●

●●

●●●●●

●●●●●●

●●●●

●●

●●●●

●●●●●

●●●●●●●●

●●●●●●

●●

●●

●●●●●●

●●●

●●

●●

●●●●●●●●

●●●●●●●●●●●

●●●●●●●●

●●●●●

●●●●●●●●●

●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●

●●

●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●

●●●●●

●●●●●●●●●

●●●

●●●●

●●●●●●

●●●●

●●●●●●●

●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●●●

●●●●●

●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●

●●●●●●

●●●●

●●

●●●●●●●

●●●●●●●

●●●●●●

●●●●●●●

●●●

●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●

●●

●●●●●

●●●

●●

●●●●●●●

●●●

●●●●●●●

●●●

●●●●●●●

●●●●●●●●●●

●●●

●●●●●●

●●●

●●●●●

●●●

●●●●●●

●●●●●●●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●

●●●●●●●

●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●

●●●●

●●●

●●●●●●

●●●●●●●●●●●●

●●●●●●●

●●

●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●

●●●

●●●

●●

●●●●

●●●●●●●●●●●●

●●●●●●●●●●

●●●●

●●●●

●●●●●●

●●

●●●●●

●●

●●●●●●●

●●●●●●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●

●●●

●●●

●●●●

●●●

●●●●●●●

●●●●●●●●

●●●●●●●●●●●

●●●●●●

●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●●●●●

●●●●

●●●●●

●●

●●●●●

●●

●●●

●●●

●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●

●●

●●

●●

●●●●●●●

●●●●●●●●

●●

●●●●●●●

●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●

●●●●●●●●●●●

●●●

●●●●●●●●●●●●

●●●●●●●●

●●●●●

●●●●●●

●●

●●●●●●

●●●●●●●●●●

●●

●●●●●●

●●●

●●●●●●●

●●●●●

●●

●●●

●●

●●●●●●●●●

●●

●●●

●●●●●

●●●●●●●

●●●

●●●●●

●●●●●

●●●

●●●

●●●●●●

●●●●●●●

●●●●●●●

●●●●

●●●●●●

●●●●

●●●●●●●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●●

●●●●●●●●●

●●●●●●●●●

●●

●●●●●

●●●

●●

●●●●●●●●

●●

●●●●●

●●

●●●●

●●●●●●

●●●●

●●●●●●

●●●●●

●●●●●●●●●●

●●●●●●

●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●

●●●●●●

●●●

●●●●

●●●●●●●●

●●

●●●●

●●●●●●●●●●

●●●●

●●●●●●

●●●

●●●●●●●

●●●●●●●●●●●

●●●●●●

●●●

●●

●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●

●●●

●●

●●

●●●

●●●●●

●●

●●●●●

●●●●●●●●●●●

●●●

●●●●●

●●●

●●●●

●●●●●

●●●●●

●●

●●●●●●●

●●

●●●●●

●●●●●

●●

●●●●

●●

●●●●

●●●●

●●●

●●

●●●●●●

●●

●●●●●●

●●

●●

●●●

●●●●

●●

●●

●●●●●●

●●●●

●●●

●●

●●●●

●●●

●●

●●●●●●

●●●

●●●●

●●●

●●

●●●●

●●●●

●●●●

●●●●●

●●●●●●

●●●●●●

●●●

●●●●

●●●

●●●●●●●

●●●●●●

●●●●●●

●●●●

●●●●

●●●●

●●●●

●●●

●●

●●

●●●●●

●●●

●●

●●

●●●

●●●

●●

●●●●●●

●●●●●●●●

●●●

●●●●●●●

●●

●●●●●●●●●●●●

●●●●

●●

●●

●●●●●●●●

●●

●●●●

●●●●●●

●●●●●●●●●●

●●●

●●●●

●●●

●●

●●●

●●●

●●

●●

●●●

●●●●●

●●

●●

●●●

●●●●

●●

●●

●●

●●●●●

●●

●●●

●●●●●●●

●●

●●●

●●●●●●

●●●●

●●●

●●●●●●

●●●

●●●●●●●

●●●●●

●●

●●●

●●●●

●●●●●●●●●

●●●

●●

●●●

●●●

●●●

●●

●●

●●

●●●●●●

●●

●●

●●

●●

●●●●●●●

●●

●●●

●●●●

●●

●●

●●

●●

●●●●

●●●●

●●

●●

●●●

●●

●●●●●

●●

●●●●●●●●●●

●●●●

●●●

●●

●●●●●●

●●●

●●●●●●

●●●●

●●●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●●

●●●●

●●

●●●●

●●●

●●●

●●●●●●

●●

●●●●●●

●●●●●●

●●

●●●●

●●●

●●

●●●●●

●●●●

●●

●●●●

●●●●●

●●

●●●●●●●●●

●●

●●

●●●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●

●●●

●●

●●●

●●●●

●●

●●

●●

●●●●●

●●

●●

●●●●

●●●

●●

●●

●●

●●●

●●

●●●●

●●

●●●●

●●●

●●●

●●●●●●●●

●●

●●●●

●●●●●●

●●

●●●

●●●

●●●

●●●●●●●

●●

●●

●●

●●●●

●●●●

●●

●●●

●●●●●●●●●●●

●●●●

●●●

●●●●

●●

●●●

●●

●●

●●

●●●●●

●●

●●●

●●

●●

●●●●

●●●

●●

●●●

●●

●●●

●●●

●●●●

●●●

●●

●●●

●●

●●

●●

●●●●●●

●●●

●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●

●●

●●●

●●

●●●●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●

●●●●●●●●●

●●●●●●●●●●

●●●●●

●●●●●●●●●●

●●

●●●

●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●

●●●●●●

●●●

●●●●

●●●

●●●

●●●●●●●

●●

●●●●●

●●●

●●●

●●●

●●

●●●●

●●

●●●

●●●●●●●●●●●●●●●●

●●●●●●●

●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●

●●●●●●●

●●●

●●●

●●

●●●●●

●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●

●●●

●●

●●●●●

●●●●●●

●●●●●●●

●●●●●●●

●●●●

●●●

●●●●●●●●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●●●●●

●●●●●●●

●●●●●●●●●●

●●

●●●●●

●●●●●●●●●●

●●●●●●

●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●

●●

●●●●

●●●

●●

●●●

●●●●●

●●●●●

●●

●●●

●●●

●●

●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●

●●●●

●●●●●●

●●●●●●●●

●●

●●●●●●●●

●●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●●●●

●●

●●●●●●●●●●●●●●

●●

●●●●●

●●●●●●●

●●

●●●●●●●●

●●●●

●●●●●●●●●

●●●●●●●●●●

●●●●●●●

●●●●●●●●

●●●●

●●●●●●●●●●

●●

●●●●●●

●●●●

●●●

●●●●●●●●●●●●●●●●

●●●●●

●●●●

●●●●

●●●●●●●

●●●

●●●●●

●●

●●●●●●

●●●

●●●●●●●

●●●

●●●●●

●●●

●●

●●●●●●

●●●●

●●

●●●

●●●●●●

●●●●●●●●●●

●●●●●●●●●●●

●●●●●

●●●

●●●●●●●●

●●●●●●

●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●

●●●●●●●●●

●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●

●●●●

●●●●●●

●●●●

●●●●●●●●

●●●●●●●●●●

●●●●●●●●

●●●●●

●●●

●●●●●●

●●●●●●

●●●●

●●●

●●●●●●

●●●●

●●●●●●

●●●

●●●●●

●●●●●●●●●●

●●●●●●

●●●

●●

●●●●●●●●●●●●●

●●

●●●

●●

●●●●●

●●●●●

●●●●●●●●●

●●

●●

●●●●●●●●

●●●●●●●●

●●●●●

●●●●

●●●●●●

●●●●●●●●

●●●●●●●●●●

●●

●●●●●

●●●●●●●●●●●●●●●●●●

●●

●●●

●●●

●●

●●●●●●●●●●●

●●●

●●

●●●

●●●●

●●●

●●●●●

●●●

●●●

●●●●

●●●

●●●●●●●●

●●●●●●●

●●●

●●

●●●

●●●●●●

●●●

●●●●●●●

●●●

●●●●

●●●●

●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●

●●

●●●●●●

●●

●●●

●●●●●●

●●●●●●●

●●●●

●●●●●●

●●

●●●●

●●

●●●●●

●●

●●●

●●

●●●●

●●●●●●

●●

●●●●●

●●●●

●●

●●

●●●●●●

●●

●●●●●●●

●●●●●●●●●

●●

●●●

●●●●●

●●●●

●●●●●●

●●

●●

●●●●●●●

●●●●●

●●●●●

●●

●●●

●●●

●●

●●

●●●●●●●

●●

●●●●●●

●●●

●●●

●●

●●●●●

●●●●

●●●

●●

●●

●●●●●●

●●●●●●●●

●●●●

●●

●●

●●●●●

●●●●●●●●●

●●●

●●

●●

●●●●●●

●●●●●●

●●●●●●●●

●●●

●●

●●●

●●●

●●●

●●●

●●

●●●●●●●●

●●●●●●

●●●

●●●

●●●●●●

●●●

●●

●●

●●●●●●●

●●●●●●

●●●●

●●●

●●●●●●●●●

●●

●●●

●●

●●●●●●

●●●●

●●

●●●●

●●

●●

●●●●●

●●

●●●●

●●

●●●●

●●

●●

●●

●●●●●●●●●●●●●●

●●

●●●●

●●●

●●

●●

●●

●●●

●●●●●●

●●

●●

●●

●●●●●●●●●●

●●●

●●

●●

●●

●●

●●●●

●●●●●

●●●●●

●●

●●

●●●

●●●

●●●

●●●●●●

●●

●●●●●●●●●●●●

●●●●●

●●●●●

●●●

●●

●●

●●

●●

●●●●

●●●●●

●●

●●●●●●

●●

●●●●

●●

●●

●●●

●●

●●

●●●●●●

●●

●●

●●

●●

●●

●●●

●●●

●●

●●●

●●●●●●

●●●

●●

●●●

●●●

●●

●●

●●●

●●

●●●●●●●

●●

●●●●

●●

●●

●●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●●

●●

●●

●●

●●

●●

●●●

●●●●

●●●●

●●●●●

●●●●

●●●●

●●●

●●

●●●●●●●●

●●

●●

●●●●

●●

●●

●●

●●●

●●●●

●●

●●●

●●●●

●●

●●●●

●●●●

●●●

●●

●●

●●

●●

●●●●

●●

●●●●●

●●

●●●

●●●●●

●●●

●●

●●●

●●●

●●

●●

●●●

●●

●●

●●●●

●●●●

●●

●●

●●●●●

●●●

●●●

●●

●●●●●

●●

●●

●●●

●●●●●

●●●

●●●●●●

●●

●●●

●●●

●●●

●●

●●●●

●●

●●

●●●●●●

●●

●●

●●●

●●

●●

●●●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●

●●●

●●●

●●●

●●●●●

●●●●●

●●●●●●●●●●●●●●●●

●●●●

●●●●●●

●●●●●●●

●●●●●●●●●●

●●●●●●

●●●●●●●●●

●●

●●

●●●●●

●●●●●●●

●●●●●●

●●

●●●●●●

●●●●●●●●●●●●

●●●●

●●●●●●

●●●●

●●●●●●●

●●●

●●●●●●

●●●●●●

●●●●●●●●●●

●●●●●●●

●●●●●●●●●

●●●●●●●

●●

●●●

●●●●●●

●●

●●●●

●●●●●●●●●●

●●●

●●●●●●●●

●●

●●●●●

●●●

●●●

●●●

●●●●●●●●●●●●●

●●●●●

●●●●●

●●

●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●●

●●●●●●●●●●●

●●●

●●●

●●●●●●●●●●●●●●

●●●●●●●●

●●●

●●●●●●●●●●

●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●

●●●

●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●●

●●

●●●●●

●●●●

●●●●●●●

●●

●●●●●

●●

●●●●●●●

●●●

●●●●

●●

●●●

●●●●●●●●

●●●●●

●●

●●●●●●

●●●

●●●●●●●

●●●●●●●●●●

●●

●●●●●●●●●●

●●●●●●●●●●●●●●

●●●

●●●●●●●

●●●●●●

●●●●

●●●

●●●●●

●●

●●●●●●●

●●●●●●●●●●●

●●●●

●●

●●●●

●●●●●●

●●

●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●

●●●●●

●●●●●

●●●●●

●●

●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●

●●

●●●●

●●●

●●

●●

●●●

●●●●

●●●

●●●

●●

●●

●●●●●●●●

●●●●

●●●

●●●

●●●

●●●●●●●

●●

●●●●

●●●

●●

●●

●●●●●●●●●●●●●●

●●

●●●

●●●●●

●●

●●●

●●●●●●●●●●●●●

●●●●●

●●●●●

●●●●

●●●

●●●●●

●●

●●●●●●

●●●●●●●

●●●●●●●●

●●●●●●●●●

●●●

●●

●●●●

●●

●●●●●●●●

●●●●

●●●●●●

●●

●●●●●●●●●●●

●●

●●●

●●●●●

●●●●

●●●●

●●●

●●●●●●●

●●●●●●●●●●

●●

●●●

●●

●●●

●●●

●●

●●

●●●

●●

●●

●●●

●●●

●●

●●●●

●●●●

●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●

●●●

●●●●●●●●●

●●

●●●●●●●●●●

●●●●●●

●●●

●●●●●●

●●●●●●●●●●

●●●

●●●●●●●

●●●●●●●●

●●●●●●

●●●●●

●●●●●●●●●

●●●●●●●●●●

●●●●

●●

●●●●●●●●

●●●●●

●●●●

●●●●●●●●

●●●

●●●

●●●

●●

●●●

●●●●●●●●●●●

●●●●

●●●●●●●●●

●●●

●●●●●●

●●●

●●●●●

●●

●●●●●

●●●●●●●●●●

●●●

●●●

●●●

●●●●

●●●

●●●●●●●

●●

●●●●●●

●●●

●●

●●●●●●●●

●●

●●●●●●●●●●●●

●●

●●●●●●●●●

●●●

●●●●●●

●●●

●●●●●●●●●

●●●●

●●

●●●●

●●●●●

●●●●●●●●●●●●●

●●●●

●●●

●●●●●

●●

●●●●●●

●●●

●●●●

●●●

●●●

●●●●●

●●

●●●

●●●●●●●●●●●●●●●

●●●●●

●●●●

●●●●●

●●●

●●●●●

●●●●●●●●●●

●●●●●●●●●

●●●●

●●●●

●●

●●

●●

●●●

●●

●●●

●●●

●●●●●●

●●●

●●●●●●●●●●●●●

●●●●●●●

●●●●●

●●●

●●●

●●●●●

●●

●●●●●●●●

●●●●

●●●●

●●●●●●

●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●

●●

●●●●

●●

●●

●●

●●●●

●●●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●

●●●

●●●

●●●

●●●

●●●●●

●●

●●●

●●●

●●

●●●

●●●

●●

●●●●●

●●●●●

●●●

●●●

●●

●●●●●

●●

●●

●●●●

●●●●●

●●●●

●●

●●

●●●●●●●●●●●●

●●●●

●●●●●●●●●

●●●●

●●

●●●

●●●●●●

●●

●●

●●

●●●

●●●●●

●●

●●

●●●

●●●●

●●

●●

●●

●●●

●●

●●

●●●●●●●●●

●●●●●

●●

●●●●

●●●●

●●

●●●

●●

●●●

●●●●●●●●

●●●●●●●

●●●

●●●

●●

●●●●

●●

●●●●●

●●

●●

●●●●●

●●

●●●

●●

●●●●

●●●

●●

●●

●●●●

●●●●●●

●●●●

●●●●●

●●

●●●●

●●●●●

●●●●●●

●●●

●●●●●●

●●●

●●●●●●

●●

●●●●

●●

●●

●●●●●●●●●●●

●●●

●●●●

●●

●●

●●●

●●●●

●●●

●●

●●

●●

●●●

●●●

●●

●●●

●●

●●

●●●●●●●

●●

●●●●

●●●●

●●

●●●

●●●●●

●●●●

●●

●●

●●●

●●●●

●●●

●●

●●

●●●

●●●

●●●●●●●

●●●●●●

●●

●●

●●●●●

●●

●●●

●●

●●

●●

●●●●

●●●

●●

●●●

●●

●●

●●●●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●●●

●●●

●●

●●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●●

●●●

●●●

●●

●●

●●●●●●

●●

●●

●●●

●●

●●

●●●●●

●●●●

●●●●●●

●●

●●●

●●●

●●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●

●●

●●

●●●●●

●●

●●●●●●●●●

●●

●●

●●●

●●

●●●

●●●●

●●●●

●●

●●●

●●●

●●●●

●●●●●●●

●●●

●●

●●

●●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●●●●●

●●

●●

●●

●●

●●

●●

●●●●●●●

●●

●●●

●●

●●

●●

●●

●●

●●●●●

●●

●●

●●

●●●●●●●●●●

●●

●●

●●

●●

●●●

●●

●●

●●●●●●●●●

●●●●●

●●

●●●●●●●●●●●●●

●●●●●

●●●●

●●●●

●●●●●●●●●●

●●●●●●●●●●●

●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●

●●

●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●

●●

●●●●

●●●●●

●●●

●●●●●●

●●

●●●●●●●●●

●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●

●●●

●●●●●●●

●●

●●

●●●●●●●●

●●●●●

●●

●●

●●●●●

●●

●●●

●●

●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●

●●

●●

●●

●●●●●●

●●●●●●●●●●

●●●●●

●●●●●

●●●●●●●●●

●●

●●●●●●

●●●

●●●●●●●●

●●

●●●●●●●●●

●●●

●●●●●●●●

●●●●

●●●●●

●●●●

●●●●●

●●●●●●●●●●●●●

●●●

●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●

●●

●●●

●●●●

●●●

●●●●●●●

●●●

●●●●●●●

●●●●●●●

●●

●●●●●●

●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●

●●

●●●

●●●

●●●●●●●●

●●●●●●

●●●●●●●●

●●

●●●●●●●●

●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●

●●

●●

●●●●●●●

●●●●●●●●●●

●●●●●

●●●●●●●●●

●●●

●●●●●●●●●●

●●●

●●●●●●●●

●●●●●●●

●●●●

●●●

●●

●●●●●●●

●●●●●●

●●

●●●●●●●●●●

●●●●●●●●

●●●●●

●●●

●●●●●

●●

●●●●●

●●

●●●●●

●●

●●●

●●●●

●●

●●●●

●●●

●●

●●

●●●●

●●●●

●●●

●●

●●●●●●●●●

●●●●

●●●●

●●●●●●

●●

●●●●

●●

●●

●●●

●●●●●●●

●●●●●

●●●●●●●●●●

●●

●●●●●

●●●●

●●●

●●●●●●●

●●●●●●●●

●●●●●

●●●●●●●●●●

●●●●

●●

●●●●●●●●●

●●●●

●●●●●●●●●●

●●●

●●●●●●

●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●

●●

●●

●●●●

●●●

●●

●●●●●

●●●●●

●●●●●●

●●

●●

●●●●●

●●

●●

●●●●●●●

●●

●●

●●

●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●

●●●●

●●●●●

●●

●●

●●●●●

●●●●

●●●●●●

●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●

●●●

●●●●●

●●●●

●●●●●●●●●●

●●●●●●●●

●●●

●●●●

●●●●●●

●●●

●●

●●●

●●

●●●●●

●●

●●●

●●

●●●●

●●●●●●●●●

●●●●●

●●●●●

●●

●●●●●

●●●●

●●●●

●●

●●●●

●●

●●●●●

●●●●

●●●

●●

●●●●●

●●●

●●●●●●

●●●●

●●

●●●

●●●●

●●●●●

●●

●●●●●●●

●●

●●●●

●●

●●

●●

●●●●

●●

●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●

●●

●●

●●

●●●●

●●●●●●●

●●●●

●●●●

●●

●●

●●●●●●●

●●

●●●●●

●●●●

●●

●●

●●●

●●●●●●

●●●●

●●

●●●

●●●●

●●●●

●●

●●●

●●●

●●●

●●

●●●

●●●●●

●●●

●●●●●

●●

●●●●

●●●●●

●●

●●

●●●

●●●●●

●●●

●●●

●●●●●

●●●

●●●●●●

●●●

●●

●●

●●

●●

●●●●●

●●

●●●●

●●

●●●●●

●●

●●●●●

●●●●

●●

●●●●

●●●

●●

●●

●●●●

●●

●●●●●

●●●●●

●●●●●

●●●●●●●●

●●●

●●

●●

●●●

●●●●●●●●

●●

●●●

●●

●●

●●

●●

●●●

●●●●●

●●

●●●●●●

●●●●●

●●●●●●●●●●

●●●

●●●●

●●●●

●●●●

●●

●●

●●

●●

●●

●●●●

●●●●

●●●

●●●

●●●●●

●●●

●●

●●●●●●

●●

●●●●●●●●

●●●●

●●●

●●

●●

●●

●●

●●●●●

●●

●●

●●●●●

●●●●●

●●

●●

●●●●●

●●●●●●●●

●●●

●●

●●●●●●

●●

●●●

●●●●●●●

●●●●

●●●●●

●●●●●●●●●

●●●●●●●●●

●●

●●

●●

●●

●●

●●●●

●●●

●●●

●●●●●

●●●

●●●

●●

●●

●●●●●

●●

●●●

●●

●●

●●●●

●●

●●●●

●●

●●●●●

●●●

●●●

●●●●●

●●

●●

●●●●●●

●●●

●●

●●

●●●

●●

●●●●

●●●

●●●

●●●

●●●●●

●●●

●●●●

●●

●●●

●●

●●●

●●

●●

●●

●●

●●●●

●●

●●

●●

●●

●●●●●●●

●●●●●●●●●●

●●

●●●●●

●●

●●●

●●●●●●●

●●

●●●

●●●●

●●

●●

●●

●●●●

●●

●●●

●●●●

●●●

●●

●●

●●●

●●

●●

●●

●●

●●●

●●●●●●

●●

●●

●●

●●●

●●●●

●●

●●

●●

●●●●

●●

●●●

●●●●

●●

●●●●

●●

●●

●●●

●●●●

●●

●●●●●●●

●●

●●●●●

●●●●

●●

●●

●●●

●●

●●●

●●

●●●

●●

●●●

●●

●●●

●●

●●●●

●●

●●

●●●

●●

●●

●●●●

●●

●●●

●●

●●●●●●●●●

●●●

●●

●●

●●●●●

●●

●●

●●●

●●

●●●

●●●

●●

●●●

●●

●●

●●

●●●●

●●●

●●●

●●

●●●

●●●●

●●●●●●●

●●

●●●

●●●

●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●

●●●●●●

●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●

●●●●

●●●●●

●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●

●●

●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●

●●

●●●●●●●●●●

●●●●

●●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●

●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●

●●●●

●●●●●●

●●

●●●

●●●●●

●●●●

●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●

●●●●●●●

●●●

●●

●●●●●●●

●●●

●●●●●●●

●●●

●●●

●●●●●●●

●●●

●●●●●●●●

●●●●●●●●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●

●●●

●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●

●●

●●●

●●●●

●●●●●●●●●●

●●●●●●●●

●●

●●●●●●●

●●●●●●●●●

●●●●●

●●●

●●●●●●

●●●

Figure 11. Difference between the 1G and 2G slope of the MF in the massrange (0.1-0.5)m� (top panel) and (0.3-0.8)m� (bottom panel) measuredin a 3D shell between the 45 per cent and 65 per cent lagrangian radius asa function of the difference between the 1G and 2G slope of the global MFin the same mass range for the K01R5 model (red points), K01R10 (orangepoints), K01R5a05 (blue points), K01R5a08(cyan points), K01R5a1(greenpoints), K01R5-2ga05 (purple points).The values plotted are the rollingmeans (calculated using 10 points). The inset in the bottom panel showsthe density map of the same data shown in the main panel.

raised many new challenges including a number of key questionsconcerning the MF, its possible dependence on the formation his-tory of 1G and 2G stars as well as possible variations in the extentof the dynamical effects on the 1G and 2G MFs. In this paper wehave presented the results of a suite of N-body simulations aimedat studying the effects of dynamical evolution on the stellar MF inmultiple-population globular clusters.

Different formation models of multiple stellar populations allagree that second-generation (2G) stars should form in the inner-most regions of a more spatially extended first-generation (1G)

cluster. We have explored the implications of the differences in theinitial structural properties of the 1G and the 2G populations for theevolution of their stellar mass function (MF). Our simulations showthat if 1G and 2G stars form with the same IMF, the global MFs ofthe two populations are affected similarly by dynamical evolutionand mass loss: both the 1G and the 2G global MFs flatten as a resultof the preferential escape of low-mass stars and no significant dif-ferences between the 1G and the 2G MFs arise during the cluster’sevolution (see Figs.1-2).

The differences in the initial structure of the 1G and 2G popu-lations imply that until complete spatial mixing the two subsystemsare characterized by different relaxation timescales and, therefore,that mass segregation proceeds at different rates for the two sub-systems. As a consequence of the multiscale nature of the multiple-population cluster, even if the global MFs of the two populationsare similar, differences in the local (measured in shells at given ra-dial distances from the cluster centre) MFs may arise during thecluster evolution (see Fig. 6). Differences in the local MFs, there-fore, are not necessarily a manifestation of an actual difference inthe global MFs of the two populations, but may rather reveal one ofthe consequences of the internal dynamical evolution of two sub-systems with different initial structural properties.

Our simulations show that another consequence of the multi-scale nature of multiple-population clusters is that 1G-2G spatialmixing rate depends on the stellar masses (see Fig.9): low-massstars mix more rapidly than more massive stars. We confirm the re-sults of our previous study concerning the link between the degreeof spatial mixing and the amount of mass lost due to the effects ofinternal relaxation (Figs.3-4).

If the 1G and the 2G populations do not form with the sameIMF, the dynamical effects on the evolution of the MF do not erasethe initial MF differences during most of the cluster’s evolution(see Fig.7). Should observations reveal a difference between theglobal 1G and the 2G MFs this would have to be a relic of theformation/early dynamical history of the cluster rather than an ef-fect of the cluster’s long-term dynamical evolution. The differencesbetween the local 1G and 2G MFs are in this case due both to dy-namical effects and the actual differences in the global MFs of thetwo populations. Such differences in the local MFs are in generalnon-negligible also late in the evolution when the two populationsare close to complete spatial mixing (Figs.10-11). Indeed obser-vations of the local 1G and 2G MFs in dynamically old and spa-tially mixed clusters can reveal the presence of differences (or lackthereof) between the 1G and 2G global MFs. More in general, largedifferences between the local 1G and 2G MFs are likely to be as-sociated with differences between the 1G and 2G global MFs forclusters with any dynamical age. In a future study we will furtherextend the analysis presented here to include primordial binaries;in particular we will explore the implications of the preferentialdisruption of 2G binaries (Vesperini et al. 2011, Hong et al. 2015,2016) on the evolution of the MF taking into account the effects ofunresolved binaries on the MF slope.

As the observational investigation of multiple stellar popula-tions continues, it will be important to include in future observa-tional studies of multiple stellar populations a significant investe-ment in observations aimed at studying the MF of different pop-ulations. Future JWST observations may further extend the iden-tification of multiple populations down to the bottom of the mainsequence, lead to a detailed characterization of multiple popula-tions’ MF, and provide key observational constraints to understandthe possible role of the formation history and dynamical evolutionin shaping the present-day MF.

c© 0000 RAS, MNRAS 000, 000–000

12 E.Vesperini et al.

ACKNOWLEDGMENTS

This research was supported in part by Lilly Endowment, Inc.,through its support for the Indiana University Pervasive Technol-ogy Institute, and in part by the Indiana METACyt Initiative. TheIndiana METACyt Initiative at IU is also supported in part by LillyEndowment, Inc. Support from grant HST-AR-13273.01-A is ac-knowledged. Support for Program number HST-AR-13273.01-Awas provided by NASA through a grant from the Space TelescopeScience Institute, which is operated by the Association of Univer-sities for Research in Astronomy, Incorporated, under NASA con-tract NAS5-26555. JH acknowledges support from the China Post-doctoral Science Foundation, Grant No. 2017M610694.

REFERENCES

Aarseth, S.J., 2003, Gravitational N-Body Simulations, Cam-bridge University Press

Bastian, N.; Lamers, H. J. G. L. M.; de Mink, S. E.; Longmore, S.N.; Goodwin, S. P.; Gieles, M., 2013, MNRAS, 436, 2398

Baumgardt, H., Makino, J., 2003, MNRAS, 340, 227Bekki, K., 2011, MNRAS, 412, 2241Bekki, K., 2017a, MNRAS, 467, 1857Bekki, K., 2017b, MNRAS, 469, 2933Bekki, K., Jerabkova, T., Kroupa, P., 2017, MNRAS, 471, 2242Bellazzini, M.; Bragaglia, A.; Carretta, E.; Gratton, R. G.; Lu-

catello, S.; Catanzaro, G.; Leone, F., 2012, A&A, 538, A18Bellini, A., et al. 2009, A&A, 507, 1393Bellini, A. et al. 2015, ApJ, 810, L13Bellini, A. et al. 2018, ApJ, 853, 86Carretta, E., et al. 2009a, A&A, 505, 117Carretta, E., Bragaglia, A., Gratton, R., & Lucatello, S., 2009b,

A&A, 505, 139Carretta, E., Bragaglia, A., D’Orazi, V., Lucatello, S., Gratton, R.

G., 2010, A&A, 519, A71Carretta, E. 2016, (arXiv:1611.04728)Cordero, M. J.; Pilachowski, C. A.; Johnson, C. I.; McDonald, I.;

Zijlstra, A. A.; Simmerer, J., 2014, ApJ, 780, 94Cordero, M. J.; Hnault-Brunet, V.; Pilachowski, C. A.; Balbinot,

E.; Johnson, C. I.; Varri, A. L., 2017, MNRAS, 465, 3515Dalessandro, E. et al. 2014, ApJ, 791, L4D’Antona, F.; Vesperini, E.; D’Ercole, A.; Ventura, P.; Milone, A.

P.; Marino, A. F.; Tailo, M., 2016, MNRAS, 458, 2122Decressin, T., Meynet, G., Charbonnel, C., Prantzos, N., & Ek-

strom, S. 2007, A&A, 464, 1029Decressin, T., Baumgardt, H., Kroupa, P., 2008, A&A, 492, 101De Marchi, G., Paresce, F., Pulone, L., 2007, ApJ, 656, L65de Mink, S.E., Pols, O.R., Langer, N., Izzard, R.G., 2009, A&A,

507, L1Denissenkov, P. A., Hartwick, F. D. A., 2014, MNRAS, 437, L21D’Ercole, A., Vesperini, E., D’Antona, F., McMillan, S. L. W.,

Recchi, S., 2008, MNRAS, 391, 825D’Ercole, A., D’Antona F., Ventura P. , Vesperini E., McMillan

S.L.W., 2010, MNRAS, 407, 854D’Ercole, A., D’Antona, F., Carini, R., Vesperini, E., Ventura P.,

2012, MNRAS, 423, 1521D’Ercole, A., D’Antona, F., Vesperini, E., 2016, MNRAS, 461,

4088D’Orazi, V., Gratton, R., Lucatello, S., Carretta, E., Bragaglia, A.,

Marino, A. F., 2010, ApJ, 719, L213Elmegreen, B., 2017, ApJ, 836, 80

Gratton, R., Carretta, E., Bragaglia, A., 2012, A&ARv, 20, 50Henault-Brunet, V.; Gieles, M.; Agertz, O.; Read, J. I., 2015, MN-

RAS, 450, 1164Hong, J., Vesperini, E., Sollima, A., McMillan, S.L.W., D’Antona,

F., D’Ercole, A., 2015, MNRAS, 449, 629Hong, J., Vesperini, E., Sollima, A., McMillan, S.L.W., D’Antona,

F., D’Ercole, A., 2016, MNRAS, 457, 4507Hurley, J. R.; Pols, O. R., Tout, C. A., 2000, MNRAS, 315, 54Johnson, C., Pilachowski, C., 2012, ApJ, 754, L38King, I.R., 1966, AJ, 71, 64Kuepper, A., Maschberger, T.; Kroupa, P.; Baumgardt, H., 2011,

MNRAS, 417, 2300Kroupa, P., 2001, MNRAS, 322, 231Lardo, C., Bellazzini, M., Pancino, E., Carretta, E., Bragaglia, A.,

Dalessandro, E., 2011, A&A, 525, A114Li, C. et al. 2014, ApJ, 790, 35Lucatello, S.; Sollima, A.; Gratton, R.; Vesperini, E.; D’Orazi, V.;

Carretta, E.; Bragaglia, A., 2015, A&A, 584, A52Martell,S.L., Grebel, E.K., 2010, A&A, 519, A14Martell, S.L., Smolinski, J. P., Beers, T. C., Grebel, E. K, 2011,

A&A, 534, 136Mastrobuono-Battisti, A., Perets, H.B., 2013, ApJ, 779, 85Miholics, M., Webb, J.J., Sills, A., 2015, MNRAS, 454, 2166Milone, A., et al. 2012a, A&A, 537, A77Milone, A., et al. 2012b, ApJ, 744, 58Milone, A., et al. 2017, MNRAS, 464, 3636Nardiello, D.; Milone, A. P.; Piotto, G.; Marino, A. F.; Bellini, A.;

Cassisi, S., 2015, A&A, 573, A70Nataf, D. M.; Gould, A.; Pinsonneault, M. H.; Stetson, P. B., 2011,

ApJ, 736, 94Nitadori, K., & Aarseth, S. J. 2012, MNRAS, 424, 545Paust et al., 2010, AJ, 139, 476Piotto, G., Zoccali, M., 1999, A&A, 345, 485Piotto, G. et al., 2015, AJ, 149, 91Richer, H. B.; Heyl, J.; Anderson, J.; Kalirai, J. S.; Shara, M. M.;

Dotter, A.; Fahlman, G. G.; Rich, R. ., 2013, ApJ, 771, L15Simioni, M.; Milone, A. P.; Bedin, L. R.; Aparicio, A.; Piotto, G.;

Vesperini, E.; Hong, J., 2016, MNRAS, 463, 449Sollima, A., Baumgardt, H., 2017, MNRAS, 471, 3668Trenti, M., Vesperini, E., Pasquato, M., 2010, ApJ, 708, 1598Ventura, P., D’Antona, F., Mazzitelli, I., Gratton, R., 2001, ApJ,

550, L65Vesperini, E.. Heggie, D.C., 1997, MNRAS, 289, 898Vesperini, E., McMillan, S. L. W., D’Antona, F., D’Ercole, A.,

2010, ApJ, 718, L112Vesperini, E., McMillan, S. L. W., D’Antona, F., D’Ercole, A.,

2011, MNRAS, 416, 355Vesperini, E., McMillan, S. L. W., D’Antona, F., D’Ercole, A.,

2013, MNRAS, 429, 1913Webb, J.J., Leigh, N.W.C., 2015, MNRAS, 453, 3278Webb, J.J., Vesperini, E., 2016, MNRAS, 463, 2383Webb, J.J., Vesperini, E.; Dalessandro, E.; Beccari, G.; Ferraro, F.

R.; Lanzoni, B., 2017, MNRAS, 471, 3845

c© 0000 RAS, MNRAS 000, 000–000