Environmental Aspects of Oil Shale Power Production

131
Environmental Aspects of Oil Shale Power Production ALAR KONIST PRESS THESIS ON MECHANICAL ENGINEERING E74

Transcript of Environmental Aspects of Oil Shale Power Production

Environmental Aspects ofOil Shale Power Production

ALAR KONIST

P R E S S

THESIS ON MECHANICAL ENGINEERING E74

TALLINN UNIVERSITY OF TECHNOLOGY Faculty of Mechanical Engineering Department of Thermal Engineering

Dissertation was accepted for the defence of the degree of Doctor of Philosophy in Engineering on May 2, 2013 Supervisors:

Dr. Tõnu Pihu, Lead Research Scientist, Department of Thermal Engineering of TUT

Dr. Indrek Külaots, Senior Research Scientist, Department of Thermal Engi-neering of TUT / Senior Research Engineer and Lecturer, School of Engineer-ing, Brown University, US

Opponents:

Dr. Jaan Tehver, EnPro Engineers Bureau Ltd, Project Manager, Estonia

Professor, Ron Zevenhoven, Department of Chemical Engineering, Thermal and Flow Engineering Laboratory, Åbo Akademi University, Turku Finland

Defence of the thesis: June 26, 2013 at 11:00 Room No.: VI-441 Tallinn University of Technology, Ehitajate tee 5, Tallinn, Estonia Declaration: Hereby I declare that this doctoral thesis, my original investigation and achievement, submitted for the doctoral degree at Tallinn University of Tech-nology has not been submitted for any academic degree. Alar Konist Copyright: Alar Konist, 2013 ISSN 1406-4758 ISBN 978-9949-23-489-9 (publication) ISBN 978-9949-23-490-5 (PDF)

MEHHANOTEHNIKA E74

Põlevkivienergeetikakeskkonnatehnilised aspektid

ALAR KONIST

5

CONTENTS

LIST OF ORIGINAL PUBLICATIONS ................................................... 6 INTRODUCTION ...................................................................................... 7 NOMENCLATURE ................................................................................... 9 1.  LITERATURE REVIEW ................................................................. 10 

1.1.  Oil shale ..................................................................................... 10 1.2.  Oil shale reserves ....................................................................... 13 1.3.  Commercial use of oil shales ..................................................... 15 1.4.  Estonian oil shale ....................................................................... 15 1.5.  Oil shale combustion model ...................................................... 17 1.6.  Estonian oil shale combustion ................................................... 19 1.7.  Environmental impact of Estonian oil shale based power production ............................................................................................. 21 

2.  EXPERIMENTAL METHODS ....................................................... 24 2.1.  General ....................................................................................... 24 2.2.  Oil shale and biomass co-combustion in a CFB boiler ............. 24 2.3.  Oil shale pulverized firing ......................................................... 25 2.4.  Oil shale low-temperature vortex combustion ........................... 25 2.5.  Emissions and trace metals from different combustion technologies .......................................................................................... 26 

3.  RESULTS AND DISCUSSION ...................................................... 28 3.1.  Combustion of oil shale and wood chips ................................... 28 3.2.  Chemical composition of ash .................................................... 28 3.3.  Ash balance ................................................................................ 29 3.4.  PF and CFB boiler heat balance ................................................ 29 3.5.  Flue gas ...................................................................................... 29 3.6.  Specific consumption and emission of an energy unit .............. 30 

CONCLUSIONS ...................................................................................... 32 REFERENCES ......................................................................................... 34 LIST OF AUTHOR'S PUBLICATIONS ................................................. 39 ABSTRACT ............................................................................................. 41 KOKKUVÕTE ......................................................................................... 42 ORIGINAL PUBLICATIONS ................................................................. 43 CURRICULUM VITAE ........................................................................ 125 ELULOOKIRJELDUS ........................................................................... 127 

6

LIST OF ORIGINAL PUBLICATIONS

This thesis is based on the following papers, which are referred to in the text by their Roman numerals. The papers are reprinted by the generous permission of the publishers and presented at the end of the thesis:

Paper I. Konist, A., Pihu, T., Neshumayev, D., Külaots, I. Low grade fuel – oil shale and biomass co-combustion in CFB boiler. Oil Shale, 30/2S, 2013, xx - xx. Article in press.

Paper II. Konist, A., Pihu, T., Neshumayev, D., Siirde, A. Oil shale pulverized firing: boiler efficiency, ash balance and flue gas composition. Oil Shale, 30/1, 2013, 6 - 18.

Paper III. Pihu, T., Konist, A., Neshumayev, D., Loosaar, J., Siirde, A., Parve, T., Molodtsov, A. Short-term tests on firing oil shale fuel applying low-temperature vortex technology. Oil Shale, 29/1, 2012, 3 - 17.

Paper IV. Parve, T., Loosaar, J., Mahhov, M., Konist, A. Emission of fine par-ticulates from oil shale fired large boilers. Oil Shale, 28/1S, 2011, 152 - 161.

Paper V. Loosaar, J., Parve, T., Konist, A. Environmental impact of Estonian oil shale CFB firing. Proceedings of the 20th International Confer-ence on Fluidized Bed Combustion. Xi'an, China, May 18-20, 2009, 422-428.

Paper VI. Arro, H., Pihu, T., Prikk, A., Rootamm, R., Konist, A. Comparison of ash from PF and CFB boilers and behaviour of ash in ash fields. Proceedings of the 20th International Conference on Fluidized Bed Combustion. Xi'an, China, May 18-20, 2009, 1054-1060.

Author's personal contribution

The contribution of the author to the papers included in the thesis is as follows:

Paper I, II The main author of the paper. Participating in planning and con-ducting the experiments. Participating in interpretation of the re-sults. Major role in writing.

Paper III, IV Participating in planning and conducting the experiments. Partici-pating in interpretation of the results and writing the paper.

Paper V, VI Participating in planning and conducting the experiments. Partici-pating in writing the paper.

7

INTRODUCTION

Energy is part of our everyday life. We depend on energy, but we rarely notice it. As long as there are no blackouts, we normally do not think about energy. Oil shale (OS) is Estonia’s primary energy resource for achieving energy independ-ency. Approximately 90% of the electricity consumed is produced from oil shale [1-3]. Estonian oil shale belongs to the low-grade fuel group. The total moisture content of the oil shale burned at power plants is 11–15%, and its heating value as received fuel is 8–11 MJ/kg (LHV) [4, 5, Paper III]. The ash content in oil shale can be above 50% [6]. Estonian oil shale is known as a difficult-to-burn fuel because of its specific nature. The high alkali and chlorine content of oil shale ash has caused significant corrosion and fouling problems in existing pul-verized firing (PF) units, resulting in decreased availability of boilers. Gaseous emissions, such as CO2, SO2 and particulates, have been relatively high from these PF units. In 2004, the circulating fluidized bed (CFB) combustion technol-ogy was implemented for Estonian oil shale reducing significantly the above-mentioned problems and emissions. Still, the carbon dioxide emissions remained higher compared to conventional coal fired units. Therefore, until the beginning of the year 2011, oil shale was considered a fading energy resource in open mar-kets.

The Daiichi nuclear power plant disaster in Fukushima has raised major questions regarding the future energy mix and the role of nuclear energy in many countries all over the world. In Europe, several countries have started to revise their energy policies. For example, Germany has made a decision to phase out nuclear power generation in the near future. The central pillars of the new ener-gy policy will be renewable energy and energy efficiency with the additional emphasis on the maximum utilization of existing fossil fuel power plants. In the near future, there seems to be no good alternative to coal-based power for meet-ing the energy demand. The International Energy Agency noted in its recent report [7] that future energy perspectives and research activities should be fo-cused on HELE (high efficiency low emissions) coal energy and on bioenergy production. Hence, coal and biomass co-combustion is one of the viable options [8]. Estonia has no coal reserves but has an unconventional fuel, namely, oil shale. Energy production from oil shale should be made more environmentally friendly by implementing new technologies. Therefore, it has to be known where technology development stands today and what the emissions and other factors concerning oil shale power production are.

Because fossil fuels are back in the power production business, numerous studies have focused on clean coal technologies, flue gas cleaning systems and co-combustion opportunities.

It is assumed that for Estonia biomass and oil shale, co-combustion can be the quickest, easiest and cheapest way to reduce the environmental impact of oil shale power production [9]. This statement was confirmed in Paper I. Estonia is applying two different combustion technologies for OS power produc-tion: PF and CFB technologies. Modification of PF technology for OS is essen-

8

tial. A recent study describing PF and vortex combustion (VC) technologies [10, 11] is presented in Papers II and III. Certain of the results concerning CFB tech-nology and CFB boiler reliability are presented in the following articles [12-17].

The purpose of this thesis is to determine the existing situation at oil shale fired power plants by presenting the boiler efficiencies, ash flows, ash chemical compositions, specific emissions, fine particulates, trace metals and ash behavior in ash fields of the different combustion technologies [Papers I-VI]. This type of comparative and complex study for Estonian oil shale is unique. This thesis re-views the data from conducted in-situ tests and compares them with previous information. The chemical compositions of the ash formed by the different com-bustion technologies are compared. The changes in the emissions of all main polluting components in CFB firing compared to PF are analyzed and estimated. This analysis concerns the mass balance of trace metals in the initial fuel and in formed ash; the emissions of PCDD/F, PCB, PAH, and PM2.5/10; and conven-tional air emissions as NOx, SO2, CO2, CO, HCl, and TSP [Paper V].

The present work is based on in-situ experiments at full-scale OS firing boil-ers and at ash fields, where the ash is deposited. All analyses are based on inter-national standards.

The objective of this thesis is to determine

the efficiencies for different boiler types; the specific emissions and ash chemical compositions from different OS

firing utility boilers; the fine particulates and emission levels from different OS firing industrial

boilers; the trace metals from different OS firing utility boilers; the OS ash behavior at ash fields.

9

NOMENCLATURE

CFB circulating fluidized bed (combustion technology) FC fixed carbon HELE high efficiency low emissions HI hydrogen index IM inert material LHV lower heating value, MJ/kg MCR maximum continuous rating OI oxygen index OM organic matter OS oil shale PAH polycyclic aromatic hydrocarbons PCB polychlorinated biphenyls PCDD/F dioxins and furans PF pulverized firing (combustion technology) PM particulate matter PP power plant TOC total organic carbon TSP total suspended particulates VC vortex combustion Ash types: BT bottom/furnace ash INTREX internal heat exchanger ash SH-RH convective superheater and reheater ash ECO economizer ash APH air preheater ash ESP I electrostatic precipitator field No. 1 ash ESP II electrostatic precipitator field No. 2 ash ESP III electrostatic precipitator field No. 3 ash ESP IV electrostatic precipitator field No. 4 ash Equations:

stoichiometric coefficient of oxidation stoichiometric coefficient of decarbonation

fr quantity of carbon oxidized into CO and/or CO2 gas iteration number

kCO2 extent of carbonate decomposition (ECD) liquid

10

1. LITERATURE REVIEW

1.1. Oil shale

Oil shales are diverse fine-grained sedimentary rocks that contain a refractory organic material, commonly called kerogen that can be refined into higher calo-rific fuels or used for generating steam and electricity in direct combustion [5, 18-20]. Oil shales result from the contemporaneous deposition of fine-grained mineral debris and organic degradation products derived from the breakdown of biota. The conditions required for the formation of oil shales include the early development of anaerobic conditions, abundant organic productivity, and a lack of destructive organisms. Oil shales were most likely deposited in bodies of wa-ter that were either marine or fresh-water. The depositional environment is esti-mated to be lakes, deltaic swamps or isolated marine basins. The prevailing cli-mate during deposition is similar to that favorable for coal formation. Oil shales can be classified as the “composites” of tightly bound organics and inorganics [21]. The general composition of oil shales is presented in Figure 1.

Figure 1. General composition of oil shales [21]

The organic matter in oil shale includes the remains of algae, spores, pollen, plant cuticle and the corky fragments of herbaceous and woody plants, and other cellular remains of lacustrine, marine, and land plants. These materials are es-sentially composed of nitrogen, hydrogen, carbon, oxygen, and sulfur. In certain type of oil shales, the organic matter is described as amorphous (bituminite). Most of the organic matter in oil shale is insoluble in organic solvents. Today, there is no lower limit on the sapropelic organic matter percentage for oil shales that has been unanimously accepted. The lower limit varies from 5 to 10% and the upper limit from 60 to 70% [22]. The organic matter of oil shale (which is the source of liquid and gaseous hydrocarbons) typically has a higher hydrogen and lower oxygen content than lignite and bituminous coal [23]. However, it has been shown that kerogen predominates in organic matter, and the chemical form or composition of the kerogen may vary extensively from deposit to deposit. This variation is observed because of changes in the amounts of oxygen, hydro-gen and organic carbon. Oil shales can be classified according to their kerogen

Oil shale

Inorganic matrix

Quartz

Feldspars

Clays (mainly illite and chlorite)

Carbonates (calcite and dolomite)

Pyrite and other minerals

Bitumens (soluble in CS2)

Kerogens (insoluble in CS2)

(containing U, Fe, V, Ni, Mo)

11

type using the van Krevelen diagram [24, 25]. The van Krevelen graphic in Fig-ure 2 A shows the kerogen type within a solid fossil fuel through thermal evolu-tion paths as a function of the atomic H/C versus O/C ratios of the kerogen of the burial depths on the deposit. Thus, the kerogen type is classified as a func-tion of the oxygen, carbon and hydrogen content of the fossil fuels [26]. The modified van Krevelen diagram in Figure 2 B with dispersed kerogen consists of hydrogen index (HI) versus oxygen index (OI) plots generated from the pyroly-sis and TOC analysis of the whole rock [27].

Figure 2. (A) Atomic H/C versus O/C diagram based on elemental analysis of kerogen and (B) HI versus OI diagram based on Rock-Eval pyrolysis of whole rock can be used

to describe the type of organic matter in source rocks. TAI, thermal alteration index [28]. The type IV (inertinite) pathway is not shown.

The HI versus OI data can be generated more rapidly than the atomic H/C versus O/C data for van Krevelen diagrams. The relative hydrogen content in

12

kerogen (atomic H/C, HI) generally corresponds to the oil-generative potential. A higher hydrogen content corresponds to a higher oil yield. Oil and gas (CH4) are more enriched in hydrogen compared to kerogen. During thermal maturation, the generation of these products causes the kerogen to become depleted in hy-drogen and relatively enriched in carbon. During metagenesis and catagenesis, all kerogens approach graphite in composition (almost pure carbon) near the lower left portion of both diagrams in Figure 2 [27].

There are four principal types of kerogens found in coals and sedimentary rocks, which are defined using either atomic H/C versus O/C or HI versus OI diagrams (see Figure 2). These types are divided as follows [27]: Type I Immature type I kerogens are oil prone. These kerogens have high H/C (>1.5) and low O/C (<0.1) atomic ratios, as shown in Figure 2, and generally a low sulfur content. The type I kerogens yield a larger amount of extractable or vola-tile compounds upon pyrolysis. These kerogens are dominated by liptinite macerals. Vitrinites and inertinites can be present in lesser amounts. Type I kerogens appear to be derived from the extensive bacterial reworking of lipid-rich algal organic matter, though not always (e.g., Eocene Green River For-mation). Major contributors to type I kerogens can be Botryococcus and similar lacustrine algae and their marine equivalents, such as Tasmanites. Type II Immature type II kerogens are oil prone (e.g., Jurassic of Saudi Arabia). They have high H/C (1.2-1.5) and low O/C atomic ratios compared to types III and IV. Type II kerogens generally have a higher sulfur content compared to other kerogens. Type II kerogens are also dominated by liptinite macerals [27]. Type II S kerogens (e.g., Miocene Monterey Formation) have a high sulfur content (e.g., 8-14 wt. %; atomic ratio S/C > 0.04) and seem to generate petroleum at a lower thermal maturity than other type II kerogens [29, 30]. Type III Immature type III kerogens have low H/C (<1.0) and high O/C (<0.3) atomic ratios. These kerogens are gas prone because they yield some hydrocarbon gas but little oil during maturation. Type III kerogens yield less gas than types I and II. Type III kerogen is composed from liptinite macerals that may represent only a small portion of the kerogen. Some type III kerogen thick deltaic deposits have generated substantial oil (e.g., Mahakam Delta in Indonesia, U.S. Gulf Coast, and offshore West Africa). Type IV Type IV kerogen, also called "dead carbon," has very low H/C (approximately 0.5-0.6) and low to high O/C (<0.3) atomic ratios. Type IV kerogens are domi-nated by inertinite macerals that generate little to no hydrocarbons during matu-ration. Type IV kerogens can be derived from other kerogen types that have been reworked or oxidized [31].

Another option to characterize the kerogen types of oil shale is by their depo-sitional history, including the organisms from which they were derived [32]. Major factors that determine the extent and nature of the organic and mineral

13

content and relative quality of any deposit are the age and depositional history [26].

Bitumen in oil shale is the fraction of the organic matter that is soluble in or-ganic solvents. Most bitumen is generated by cracking (thermal dissociation) of the kerogen, but small amounts of bitumen originate from the lipid components in once-living organisms [27].

The mineral content of oil shales usually contains large amounts of inert min-eral matter (60–90%). The mineral matter of some oil shales is composed of carbonates, including siderite, dolomite and calcite, with lesser amounts of alu-minosilicate minerals. Silicates including quartz, feldspar, and clay minerals are dominant, and carbonates are a minor component in other types of oil shales, [23]. The extent and nature of the inorganic materials mainly depend on the dep-ositional conditions and the characteristics of the host rock. For instance, the well-known Green River oil shale contains mainly carbonates with quartz, feld-spars and illite, while typical oil shales contain primarily clay minerals [26].

1.2. Oil shale reserves

Oil shales are found in more than 44 countries [20]. There are over 600 known deposits [33], which range from early Palaeozoic to Cenozoic in age. The re-serves of oil shale in the world are immense, exceeding the total resources of all other solid fuels (coal, lignite, brown coal). The most resources are found in the USA (72%), Brazil (5.4%), Jordan (4.2%), Morocco (3.5%) and Australia (2.1%) [22]. The estimated total world oil shale resource increased from 411 to 690 billion tons in 2010. This estimate should be taken as the lower limit be-cause numerous deposits are still largely unexplored, and a number of countries are not reported [19, 34].

The properties of oil shale depend strongly on the deposit. It is difficult to find two analogous oil shales, mainly because of their extremely variable deposi-tion conditions, as well as post-sedimentation alterations. Furthermore, the com-position and quality of oil shales also vary within the limits of one deposit. De-pending on the character of the deposit, there could be considerable variations among the results obtained by an analysis of different samples taken from the same deposit [22]. The typical properties of certain important oil shales are out-lined in Table 1 [24]. These deposits are characterized by their age, the organic carbon of the organic matter, and the oil yield. The H/C atomic ratio of kerogen evaluates the quality of organic matter in source rocks.

14

Table 1. Properties of several important oil shale deposits [26]

The gross heating value of oil shales on a dry-weight basis ranges from 2.1 to

16.8 MJ/kg of rock. The high-grade kukersite oil shale of Estonia, which fuels several power plants, has a heating value of approximately 8.0 to 9.2 MJ/kg. By

15

comparison, the heating value of lignitic coal ranges from 14.7 to 19.3 MJ/kg on a dry, mineral-free basis [19].

1.3. Commercial use of oil shales

Today, five countries in the world are commercially mining oil shale. Estonia has an annual output of 15 million tons, China of 10 million tons, Brazil of 2.5 million tons, Russia of 1.3 million tons and Germany of 0.3 million tons. The total oil shale output amounts in Table 2 are given in millions of tons based on 2007/2008 data. Australia is left out because they have stopped oil shale utili-zation. The total amount of oil shale utilized in Australia from 1999 to 2003 was 1 million tons [20].

Table 2. World’s total oil shale output until 2008 in millions of tons

Country Estonia China Russia Brazil Germany Total Mining started 1916 1930 1934 1980 1943 Cumulative 1026.0 630.0 227.3 49.5 11.3 1944.1

Estonia’s oil shale output is the largest in the world. Most of the oil shale, approximately 12 million tons yearly, is used for power generation, and approx-imately 2 million tons are used for retorting to produce shale oil. Oil shale in China and Brazil is mainly utilized for retorting. German oil shale is utilized for power generation and for cement production.

1.4. Estonian oil shale

Estonian oil shale, kukersite, is a low-grade fuel, approximately 33% of which contains mainly kerogenous organic matter. The oil shale’s chemical composi-tion is presented in Table 3 [35].

Table 3. Average elemental composition of Estonian oil shale distributed between organic, sandy-clay and carbonate fractions, wt% (dry matter). Ca/S* is the molar ratio. The sandy-clay part is composed of clay minerals, quartz and feldspars [35]

16

The oil shale deposits in Estonia are of national and regional importance, be-ing the world’s largest exploited deposit of oil shale. Mining started in 1916, and there has been continuous exploitation since 1919. The reserves of the deposit are completely explored. At present, approximately one billion tons of oil shale has been mined. According to the present assessment, the total amount of re-sources is five billion tons [36, 37]. The oil shale bed is not homogeneous but has a complicated structure that consists of oil shale layers of different qualities that lie alternately with limestone interlayers. The maximum bed thickness oc-curs in the Jõhvi–Kohtla-Järve area. To the west, south and east, the thickness of the oil shale layers, as well as the thickness of the entire bed, decrease. The total thickness of the payable bed in the Estonian field is 2.5–3.2 m; oil shale layers account for 1.8–2.6 m, and limestone layers account for 0.6–0.7 m. The payable oil shale layers in the Estonian field are located to the east of Kadrina, extending to the Narva River. Further to the east, the total thickness of the oil shale bed in the Leningrad field is 1.6–1.9 m, of which 1.0–1.3 m is oil shale. On the north-ern coast of Estonia, the oil shale layers outcrop onto the earth’s surface. To the south, in the direction of Peipsi Lake, the depth of the bed increases by 3.5 m/km [38, 39]. Figure 3 shows the general profile of the Estonian oil shale field and the average heating values of the layers. The capital letters mark the oil shale layers, beginning with the lowest layer. The payable layers are A–F [39].

Layer Average

Thickness m

Heating value, Qbd

MJ/kg

H 0.17 15.1 G/H 0.23 G 0.28 16.3 F/G 1.1 F 0.91 7.5–10.0 E/F E 0.39 15.1 D/E 0.13 2.9 D 0.13 13.4 C/D 0.24 0.6 C 0.31 10.6 B/C 0.1 2.9 B 0.61 16.8 A/B 0.13 1.3 A 0.07 10.4 A'/A 0.04 2.9 A' 0.19 17.3

Figure 3. Profile of Estonian oil shale bed and the characteristics of oil shale layers [39]

17

Estonian kukersite oil shale seams contain organic matter, carbonate and clastic materials in various proportions. The carbonate material consists mainly of pore-filling micritic carbonate mud together with a variable content of fine to coarse skeletal debris. The carbonate content (mainly calcite) ranges in different kukersite seams from 20 to 70%, and the organic matter content varies from 10–15% to 50–60%. The clastic matrix is composed mainly of silt-size quartz and illite, and the minor clastic minerals are feldspars and chlorite. Pyrite is a rather common authigenic mineral in kukersite oil shale [40]. The organic matter of Estonian oil shale (kerogen) represents a mixture of high-molecular poly-functional organic compounds, the detailed structure of which is still being stud-ied [36]. The molar ratio of Ca to S is typically greater than 5 and can be as high as 10. This property means that the fuel itself contains the excess Ca needed to capture the SO2 that evolves during firing. As a disadvantage, the ash content remaining after power generation is approximately 45% on a dry mass basis. Today, approximately 5–7 million tons of oil shale ash is produced annually, and more than 90% of the same ash is wet deposited in the ash fields next to the oil shale fired power plants.

In fact, Estonia has two different oil shales: kukersite and graptolitic argillite, also known as Dictyonema argillite or Dictyonema shale. The latter is a dark, blackish- or greyish-brown fine grained radioactive claystone with a low organic matter content (15 to 20%) and heating value (4.2–6.7 MJ/kg). Argillite is the thickest shale (more than 4 m), and there are an estimated 60 billion tons of it [41]. Argillite contains several rare elements, including molybdenum (up to 600 g/t), vanadium (up to 1,200 g/t) and uranium (up to 300–400 g/t). From 1948 to 1977, uranium ore was processed at Sillamäe in NE Estonia for the pro-duction of uranium [42]. Some 250,000 tons of ore were unearthed, and more than 60 tons of uranium compounds were produced. This processing waste still poses a threat to environment. Later, the Sillamäe plant switched to processing imported raw material [22].

1.5. Oil shale combustion model

Despite oil shale’s complex chemical composition and kinetic behavior, experi-mental evidence suggests that a mechanism consisting of only a few global reac-tions would capture the most important characteristics of the combustion process [43]. A six-step mechanism for oil shale is suggested to describe the thermal decomposition [44]. The presence of a wide variety of minerals in the oil shale matrix significantly complicates its thermal behavior. As a consequence, a varie-ty of reactions is brought about by the application of heat under an oxidative atmosphere on the oil shale samples. In general, the following reactions can potentially exist for oil shale [43]:

water vaporization; dry matter volatilization – conversion of organic matter into volatile

matter and fixed carbon; volatile matter dissociation into bitumen and gases;

18

volatile matter oxidation; fixed carbon oxidation; carbonate mineral decomposition into solid residue and gases.

Based on research results presented in [44], a four-step mechanism for oil shale combustion is proposed [43] and is shown in Eqs. (2)–(5). The overall reaction is given in Eq. (1). Inert materials that are present in the kinetic mecha-nisms are not taken into consideration in the estimation process.

(1)

(2)

(3)

21 1

4

1 (5)

The three main constituents of OS that decompose are organic matter, fixed carbon and carbonates. Consequently, the major breakdown mechanism in OS is the scission of the atomic bonds available in their compounds. The devolatilization reaction of organic matter (OM), Eq. (3), releases oil (bitumen), CO, CO2, and light hydrocarbons represented by HC, leaving fixed carbon (FC) in the solid matrix. In the oxidation reaction, Eq. (4), the FC is oxidized, releas-ing CO and CO2. In Eq. (5), the decarbonation reaction, the carbonate consid-ered is essentially CaCO3, which decomposes into quick lime and additional CO2. The process of drying is described by the approach that represents a heter-ogeneous reaction between liquid water and vapor, Eq. (2). Solid residue re-mains as an inert material (IM), Eq. (6) [43].

The combustion behavior of oil shale shifts from homogeneous to heteroge-neous during the entire combustion process. During the low-temperature stage, the combustible matter is made up of volatiles. In the high-temperature stage, the combustible matter includes fixed carbon and residual volatiles [45].

Homogeneous combustion stage (280 – 500 °C) In a mathematical model of OS homogeneous combustion, the following as-sumptions are made:

(a) During combustion stage, large amounts of mineral matter may help the particles of oil shale maintain their original size [46].

(b) The diffusion rates and combustion volatiles within OS are infinite. The combustion reaction is controlled by the pyrolysis rate of the volatile matter.

(c) The distribution of the volatile matter within a particle is uniform. (d) The Nusselt number of convective heat transfer between the solid phase

and the gas phase is equal to 2 according to the experimental results of [47-49]. The homogeneous combustion process has been mathematically modeled on the basis of these assumptions, where the model includes four equations: the energy equation of the gas phase, the energy equation of the solid phase, the kinetic

19

equation and the particle density equation [50]. The pyrolytic heat value of vola-tile matter is also considered in the energy equation because of the high content of volatile matter [45].

Heterogeneous combustion stage (620 – 730 °C) In a mathematical model of OS heterogeneous combustion, the following as-sumptions are made:

(a) During combustion, large proportions of ash may help the particles of oil shale maintain their original size [46].

(b) Volatile matter and carbonates pyrolytic heat is negligible. (c) CO2 should be the main product of carbon combustion because the tem-

perature is not high. It is assumed that the heterogeneous reaction is of first order and that the combustion form of char is described as C + O2 = CO2.

(d) The temperature distribution inside the solid particle is uniform. (e) The solid particles are heated only by the reaction heat from the volatile

combustion. The heterogeneous combustion process has been modeled on the basis of the-

se assumptions, where the heterogeneous combustion model includes four equa-tions: the kinetic equation of a heterogeneous reaction, the kinetic equation of a homogeneous reaction, the energy equation of a solid phase and the particle density equation [50]. The inner surface area of a fuel particle is notably im-portant for char combustion based on previous experimental results [51] because the devolatilization in the low-temperature stage makes an OS particle multi-porous. Therefore, the inner area of particle, as one of the reaction interfaces, should be considered in the kinetic equation of a heterogeneous reaction [45].

1.6. Estonian oil shale combustion

Oil shale volatile matter and char combustion can occur concurrently in a system consisting of particles of different size because the particle size influences the heating rate and the release intensity of volatiles. Oil shale burning in the pulver-ized oil shale flame requires no more than 15 to 20 percent of the total burning-out time, despite the high volatile matter content. The remainder of the time is required for char combustion. Approximately 80 to 90 percent of the total heat in fuel is released in the zone of volatile matter combustion. Oil shale char burns in a kinetically controlled low-temperature regime. The density of combustible matter is uniform in a particle, and oxygen has free access to the inside of a par-ticle. The particle size does not affect the combustion kinetic rate. The combus-tion rate decreases over time because of changes in the active pore sizes within the particle [5].

Oil shale burned in power plants has the following proximate characteristics: Wi

r = 11–13%, Ar = 45–57%, CO2 = 16–19%, and Qir = 8.3–8.7 MJ/kg [6].

There are three common combustion technologies that have been used for the combustion of oil shale: (1) grate firing, (2) pulverized firing and (3) fluidized bed combustion [5]. Fluidized bed combustion is typically divided into three modes: (a) bubbling fluidized bed, (b) circulating fluidized bed and (c) pressur-ized fluidized bed. During the 1980s, an attempt was made for modified low-

20

temperature pulverized firing called Vortex combustion, which was tried again in year 2010, but this technique did not give the presumed results [Paper III].

Long-term experience in oil shale usage has proven that [18] 1. Regardless of the combustion technology, a special boiler has to be designed and constructed for oil shale combustion. 2. The direct combustion of OS for power production is more reasonable. 3. Low-temperature combustion is a preferable technology for oil shale-based power production. CFB combustion at atmospheric pressure is a good example.

Initially, Estonian oil shale was used as a fuel in locomotives. Thereafter, more and more lump oil shale was burned in industrial boilers [6, 52].

The utilization of oil shale for power production in Estonia started at the be-ginning of the 1920s, when the first lump oil shale was fired on grate. The key problem with firing oil shale rich in volatile matter is ensuring soot-free combus-tion. This issue was successfully solved by designing a special type of grate. Soon, the exploitation of fine oil shale started as well [18]. An important mile-stone in the history of the oil shale power industry was the start of oil shale fir-ing at the Tallinn Power Plant in 1924. The electrical capacity of the Tallinn Power Plant was 23 MW. This year can be considered the start of the oil shale power industry. The latest designs of oil shale grate-fired boilers were character-ized by a furnace completely covered with waterwall tubes; evaporator tube bundles with large heat-delivery surface areas were located at the tubes’ exits. Grate firing lost its importance because of its limited capacities and low steam parameters [5].

The next stage was the introduction of oil shale PF technology. The first power plant using oil shale PF technology was the Kohtla-Järve Power Plant. This plant was commissioned in 1949 and had the designed electrical capacity of 48 MW. The Ahtme Power Plant began operation in 1951 and had an electrical capacity of 75.5 MW. Steam boilers at these power plants were slightly modified because the medium-pressure boilers were initially designed for the PF of coal or brown coal combustion [6].

From 1959 to 1965, the first high-pressure PF boilers, TP-17, were launched at the Balti Power Plant (BPP). They were specially designed for firing oil shale. TP-17 was equipped with four direct flow corner burners. The steam pressure was 9.8 MPa and the steam production 190 t/h. TP-17 was soon followed by TP-67, in which front wall-fixed turbulent burners were used. The steam pres-sure was 13.8 MPa and the steam production 280 t/h [18]. The designed electri-cal capacity of the BPP was 1624 MW. The first power unit at the Eesti Power Plant (EPP) was inaugurated in 1969 and had a steam pressure of 13.8 MPa and a steam production of 320 t/h [18]. The designed capacity of the power plant was 1610 MW. In Estonia, a total of 42 PF oil shale boilers, including TP-17, TP-67 and TP-101, were launched at oil shale power plants in 1959-1973 [53]. During the PF of oil shale, the temperature in the furnace can reach 1350 to 1400 °C [Paper III].

Oil shale-fired pulverized furnaces and grate-fired furnaces have high-temperature corrosion, environmental pollution and slag-bonding problems [54].

21

Oil shale-fired bubbling fluidized beds have scale-up problems regarding the boiler capacity and a high carbon content in the fly ash. Several specialists rec-ommend burning oil shale in a CFB boiler, which produces a satisfactory com-bustion efficiency and low NOX and SO2 emissions [45].

Based on previous research, at the beginning of 2004, a power unit with an electrical capacity of 215 MW with two CFB boilers was put into operation at the EPP. Months later, a power unit of the same type was put into operation at the BPP. The units are designed to produce 90 kg/s of superheated steam at a pressure of 13.1 MPa and a temperature of 540 °C and reheat steam at 2.7 MPa pressure. The load range is from 40 to 100% of the maximum continuous rating (MCR) [55]. During CFB firing, the temperatures are lower compared to PF. The temperature in the furnace during fluidized bed combustion is between 750 and 850 °C, and the typical temperature is below 800 °C.

1.7. Environmental impact of Estonian oil shale based power pro-duction

Today, approximately 5–7 million tons of oil shale ash is formed annually by PF and CFB combustion boilers. Currently, less than 10% of the oil shale ash has a beneficial utilization in the construction material industry (e.g., making Portland cement and gas-concrete), in the road construction industry (stabilization of roadbeds) and in agriculture (e.g., liming of acid soils). The relatively high cal-cium sulfate content in CFBC ash limits its utilization in the construction mate-rial industry and in road construction. The rest of the oil shale ash is wet depos-ited in the ash fields next to the power plants. In total, more than 280 million tons of ash has been deposited in ash fields since the 1950s. The transport and deposition of these large amounts of ash are managed hydraulically at low ash-water ratios of approximately 1:20. The total area of settling ponds and open return flow channels of the ash handling systems is 1,312,000 m2 BPP and 3,014,000 m2 EPP [56]. Experience with ash field exploitation has indicated that the ash binds water at approximately 0.6–0.7 m3 per ton of ash. The water in the ash fields is lost because of evaporation but is also gained because of precipita-tion. The average atmospheric precipitation in Estonia is 550–750 mm per year. Approximately half of it is lost because of evaporation [35].

The properties of the PF ash stored at ash fields have been investigated in [57, 58]. The changes in the properties of moistened PF ash in laboratory condi-tions have been investigated in [59]. The results of XRD analyses show in X-ray spectra the peaks belonging to the portlantite, α-quartz, calcite and ettringite. The ash field material also contains small extents of several silicates, Ca-aluminates and other minerals. The differences in the CFB and PF ash properties have been investigated earlier. It was found that ashes formed in boilers operat-ing by different combustion technologies differ significantly by their chemical and phase composition as well as by their surface properties [60]. The introduc-tion of CFB combustion has caused several important changes in the mineralogi-cal composition and properties of oil shale ash. The reason is that the CFB boiler furnace firing temperature is approximately 600 °C lower than in the PF coun-

22

terpart, resulting in weaker fuel mineral decomposition and lower novel mineral formation intensity during combustion. In this case, the ash sintering tendency is substantially weaker than that observed in PF ash. The measured compressive strength of oil shale ash from the CFB boiler ESP is 4.4 N/mm2. The compres-sive strength of oil shale ash from the PF boiler ESP is approximately fourfold higher – 15.3 N/mm2. The corresponding specific surface areas (Blane method) were 4,533–9,806 cm2/g and 707–3,966 cm2/g [Paper VI].

The ash properties and behavior at the ash fields have changed because of the low combustion temperature in the CFB boiler. The formation of novel minerals with binding properties in CFB ash is much lower compared to PF ash, in which solidification is low. Because of lower temperatures compared to PF boilers, the fuel mineral decomposition and novel mineral formation occurs at a lower rate in CFB boilers. Furthermore, the CFB ash contains less β-2CaO·SiO2 and CaO in free form and in less of a glassy phase. The low activity of the CFB ash might be the main reason for the inefficient solidification processes in the ash fields. The obtained data confirmed that if the share of PF ash decreases, there is a need to alter the ash storage technology/methods [Paper VI]. Dry handling of ash in powerplants is the key to find the future utilization markets for this vast amount of ash still landfilled in Estonia. Wet removal of ash poses a threat to Estonian environment and removes the ability to beneficially use this, perhaps valuable, byproduct of power generation

In these ash fields, the highly alkaline wet ash and ash transportation water continue to absorb CO2 from the atmosphere. Therefore, these OS ash fields act as CO2 sponges by capturing some of the released CO2 back from the atmos-phere. This process is independent of power plant load. The dynamics and the extent of CO2 capture from the atmosphere by OS ashes formed in PF and CFBC boilers were investigated in [56]. The baseline data for the further calculations were taken from the sampling and determination of the CO2 content in the ash field material. The chemical analysis results of ash samples drilled out at the site are normalized to water- and CO2-free ash content. The difference of the CO2 content (ΔCO2) in the ash field material from the total boiler ash CO2 content shows the amount of CO2 captured from the surrounding atmosphere [56].

The emitted quantities of CO2 from the PF and CFB boilers were estimated based on an average heating value of 8.45 MJ/kg. The CO2 absorption coeffi-cients in the ash field in the case of CFB technology have been calculated to be 0.07 t and in the case of PF technology 0.03 t per ton of fuel. On the ash field, the ash of the CFB boiler binds 8.1% and the PF boiler ash 3.2% from the emit-ted CO2. The tests of CO2 absorption by alkali water showed that the total sur-face of settling ponds can absorb up to 50 thousand tons of CO2 annually. Con-sidering the share of the PF and CFB firing technologies used in the Estonian oil shale power plants and taking into account the total surface area of the sediment ponds, the quantity of CO2 that could be absorbed is approximately 5–6% of the emitted CO2 [56, 61].

Besides CO2, the main air pollutants formed during the combustion of oil shale are sulfur dioxide (SO2), nitrogen oxides (NOx) and solid particles. Never-

23

theless, the most substantial greenhouse gas emitted to atmosphere is carbon dioxide (CO2). The concentration of air pollutants in flue gas depends primarily on the combustion technology and the burning regime, while the emission of solid particles is determined by the efficiency of fly ash capturing devices.

One of the biggest environmental impacts of oil shale PF is a high SO2 emis-sion (despite the high calcium to sulfur [Ca/S] molar ratio in the fuel). The molar ratio of Ca to S is typically greater than 5 and can be as high as 10. This means that the fuel itself contains the excess Ca needed to capture all the SO2 that is emitted during firing [35]. The flue gas of the typical oil shale PF boiler contains more than 1,500 mg/Nm3 of SO2 in spite of the binding of 80% of fuel sulfur by the ash in the boiler. The sulfur captured by the ash depends on the following parameters: the composition of the fuel, particle size distribution, the tempera-ture regime (i.e., temperature profile in the gas pass of the boiler, combustion technology), the oxygen partial pressure in the flue gas and the duration of the sulphation process [62]. A high SO2 emission in a PF boiler is mainly caused by the formation of calcium compounds of low reactivity in the high temperature medium in the furnace. These sintered compounds, which contain calcium oxide (CaO), have a low sulfur capturing capability [5]. The average particulate con-tent in flue gas is approximately 1,500–2,000 mg/Nm3. Currently, the power plants are equipped with new electrostatic precipitators, and the particulate con-tent in flue gas is under 100 mg/Nm3 [39]; with fabric filters, the content of par-ticulates is less than 2 mg/Nm3. The NOx content in flue gas is between 300–400 mg/Nm3 for the PF technology.

The environmental impact of CFB is lesser than that of PF. A lower tempera-ture in oil shale CFB firing favors the capturing of sulfur. The concentration of SO2 in the flue gas is almost negligible because almost 100% of the sulfur is bound by the free CaO in the ash [13]. Therefore, there is no need to add sorbent (limestone) into the fluidized bed for sulfur capture. This reaction is one of the key advantages of oil shale CFB combustion [5].

A comparative study of the fly ash originating from CFB combustion and the PF technology conducted by Kahru and Põllumaa showed that CFB fly ash was less toxic than that of PF [33]. Thus, a complete transfer to CFB technology will reduce (a) the atmospheric emission of hazardous trace elements and (b) the fly ash toxicity to aquatic organisms compared to PF technology [63].

Oil shale combustion in the circulating fluidized bed entails further opportu-nities for development. Reducing CO2 emissions requires looking for new solu-tions. CFB combustion allows the burning of oil shale together with coal, wood chips and peat without a major modification of the boiler. The BPP has achieved success in the co-combustion of oil shale and wood chips. The new 300 MW power unit under construction will enable co-burning oil shale with up to 50% biomass [18].

24

2. EXPERIMENTAL METHODS

2.1. General

Full-scale experiments were conducted on high-pressure CFB and PF boilers. Tests were conducted according to international standards. The major goal of the tests was to determine the boiler efficiencies, flue gas composition, solid particu-lates and chemical composition of the ashes from different types of boilers.

Because many modifications have been made to the PF boiler flue gas clean-ing systems during the last decade, the ash distribution data at different ash dis-charge ports were obtained. This enables the chemical composition of the total ash flow going to the ash fields to be evaluated.

2.2. Oil shale and biomass co-combustion in a CFB boiler

The major goal of OS and biomass co-combustion in CFB boiler tests was to perform the analyses of ash and flue gas as well as to determine the boiler effi-ciency. The tests were carried out with the following fuel shares (as the thermal input): 85% OS and 15% wood chips.

During the tests, analyses of the fuel, ash and flue gas were performed. Fuel samples were taken on a daily basis. The ash samples were taken from several ports located in the furnace chamber, INTREX, super-/reheater (SH, RH), econ-omizer (ECO), air preheater (APH) and from all four fields of the electrostatic precipitator (ESP). The sampling points are shown in Figure 4. The ash was taken from the dry flow to ensure the representativeness of samples. To deter-mine the mass division (total suspended particulates PM10 and PM2.5), samples of fly ash were taken after the ESP. The samples were used to determine the detailed chemical composition of the ash.

Figure 4. Schematic diagram of CFB boiler system with sampling points [Paper I]

In the tests, the boiler efficiency was calculated. The temperature and compo-sition of the flue gas were measured before the ESP.

25

2.3. Oil shale pulverized firing

During pulverized firing, the major goal of the tests was to perform analyses of the ash and the flue gas, as well as to verify the data of the flue gas composition, ash balance and boiler efficiency obtained in the 1980s. The essential auxiliaries of the energy unit were registered. During the tests, analyses of the fuel, ash and flue gas were performed. Fuel samples were taken on a daily basis. The ash samples were taken from several ports located in the furnace chamber, SH, ECO and cyclone and from all three fields of the ESP. To determine the mass division (TSP PM10 and PM2.5), samples of the fly ash were taken before the induced draft (ID) fan. The sampling points are shown in Figure 5. The results of the sample analyses were averaged to reach a representative estimate. Furthermore, during the tests, the major process parameters of the boiler and unit as a whole were recorded using the plant’s standard data acquisition system to determine the unit’s electricity self-consumption. The temperature and composition of the flue gas were measured before the ID fan on both sides of the boiler. The analy-sis of the combustion gas was carried out from the ports behind the ESP. The same ports were used for taking fly ash samples to determine the division of the finest particles in the flue gas.

Figure 5. Schematic of PF boiler TP-101 with sampling points [Paper II]

The composition of the flue gas was determined applying an FTIR type ana-lyzer for wet gas at a temperature of 180 °C. The flue gas moisture content was also determined by a FTIR spectrometer.

2.4. Oil shale low-temperature vortex combustion

The full-scale experiments were carried out on a high-pressure boiler, TP-67, at the BPP. For the generation of a low-temperature horizontal vortex motion in the combustion chamber, a set of modifications were made for the tests. The modifi-cations included replacing the vortex burners that were located on the boiler wall at the lower row with direct-flow burners with a downward slope. The opening

26

of the combustion chamber throat along the entire width of the lower forced draft was performed by mounting two-stage deflection-nozzle devices.

The main parameters of the boiler were as follows: a boiler load (live steam) of 280 t/h, a live steam pressure of 13.8 MPa and a temperature of 515 °C.

During the experiments, samples of the bottom ash and fly ash from the iner-tia dust collectors after the SH and ECO and from the ESP first and second fields were taken from both the left and the right sides of the boiler. The sampling points are depicted in Figure 6.

Figure 6. Schematic of PF boiler TP-67 with sampling points (Paper III)

To determine the modified boiler ash balance, the ash mass flow rates in the ash discharge ports were found experimentally. The ash mass flow of the dust collectors located under the SH and ECO were determined by a slurry method that consisted of measuring the time required to fill the calibrated volume with slurry and measuring the slurry mass. The mass flow of the fly ash entering the ESP was obtained by measuring the fly ash content in the flue before the ESP. The flue gas analysis was performed after the ESP using the FTIR type gas ana-lyzer.

2.5. Emissions and trace metals from different combustion tech-nologies

Samples to determine PAH, PCCD/F, and trace metals were collected following the respective standards, CEN 1948:1999, parts 1-3; CEN 14385:2004. A quanti-tative determination of PCDD/PCDF, PCB and PAH was provided by the labor-atory of Ecochem a.s. in Prague.

Fine particulate (PM2.5/10) emissions were measured at the PF and CFB boiler types. There were no former data about these emissions from oil shale fired boilers. The high health risks related to the fine particulates in the air are well known, and stricter requirements on the control and reduction of these emissions are introduced at present. PM2.5/10 emissions were determined with a Johnas II type cascade impactor system from Paul Gothe GmbH. Sampling standards CEN 13284-1 and VDI 2066 were followed. Samples were fed into circular 50 mm quartz fiber filters of type MK 360 of Munktell (catching effi-ciency of 99.998 % at a cutsize of 0.3 µm).

27

Figure 7. General measuring setup (Paper IV).

1 – S-type Pitot tube, 2 – differential manometer, 3 – nozzle, 4 – Johnas II cascade impactor, 5 – heated sample probe, 6 – condensator, 7 – thermometer, 8 – suction pump, 9 – flow meter,10 – thermometer, 11 – O2 analyzer, 12 – thermocouple, 13 – gas analysis probe, 14 – FTIR gas analyzer.

The general measuring setup is shown in Figure 7. The sampling was per-formed from one point of the flue gas cross-section, which was chosen based on the flue gas velocity field determined beforehand for the whole cross-section [Paper V].

28

3. RESULTS AND DISCUSSION

3.1. Combustion of oil shale and wood chips

Typical Estonian oil shale and wood chips were used for tests. The fuel samples were analyzed in laboratories of the Department of Thermal Engineering (DTE) of Tallinn University of Technology and in power plant accredited laboratories. The fuel characteristics during different tests were averaged, and the results in Papers I-III are presented in Table 4. The variations in the OS composition con-firm that OS is not a homogeneous fuel.

Table 4. Estonian oil shale and wood chips fuel characteristics

Wood chips

Oil shale

Wir, moisture, as received fuel (%) 43.5 11.6 - 14.9

Qbd, heating value, dry fuel in calorimetric bomb (MJ/kg) 20.2 10.3 - 13.9

Qir, heating value, as received fuel (MJ/kg) 9.6 8.1 - 10.8

Ar, ash content, as received fuel (%) 1.6 42.6 - 49.1 (CO2)m

r, carbonate CO2 content, as received fuel (%) – 15.2 - 18.2

To obtain representative data and mean values, the duration of the full-scale tests should be as long as possible to minimize the fluctuations in the flue gas and the variations in the ash chemical composition.

3.2. Chemical composition of ash

The chemical composition of the ashes from different combustion technologies are presented in Table 3 in Papers I and II and in Tables 5 and 6 in Paper III. Comparing the ashes from different combustion technologies, a significant dif-ference in the CO2 and CaOfree content in the PF and CFB ash samples was ob-served. The extent of carbonate mineral decomposition was partial in the case of the CFB. The tests on the PF boiler indicated that the extent of carbonate de-composition (kCO2

) at full load was in the range of 0.92–0.97. At partial load, the decomposition was somewhat lower in the ashes of the super heater and econo-mizer, 0.85 and 0.87, respectively, and was substantially lower in the bottom ash, 0.59 [Paper II]. The tests on the CFB boiler indicated that the kCO2

was in the range of 0.74–0.88 in the convective part of the boiler and 0.51 in the bottom ash [Paper I]. This result confirms the impact of the combustion temperature on the decomposition of carbonate minerals. There was also a significant difference in the CaO content bound into novel minerals. The CaO bound by novel miner-als was significantly higher in the PF ashes than in the CFB ashes. At considera-bly higher furnace temperatures, approximately more than two times more CaO was bound into different ash minerals [Paper VI].

29

3.3. Ash balance

The ash balance for CFB can be estimated according to [2], where studies were conducted with conventional and enriched OS. The OS and biomass co-combustion ash balance in a CFB boiler should be the same as with the enriched OS because the ash input with fuel decreases. The ash balance for a PF boiler is presented in Fig. 2 in Paper II. The total share of ash from the furnace, SH and ECO is 51%. The results differ from those reported in [5] because four old ESPs have been replaced with three new ones. Furthermore, the pre-precipitator chamber before the cyclone has been removed. The VC ash balance is shown in Fig. 5 in Paper III. The figure shows that in spite of the coarsening of the ash particles, the share of the ash streams captured in the furnace (bottom ash) was smaller than expected compared to previous experiments on medium-pressure boilers. The bottom ash stream was approximately 23% of the total ash flow rate.

3.4. PF and CFB boiler heat balance

The heat balance and thermal efficiency estimations of the considered full-scale experimental study of the PF and CFB boilers were performed on the basis of the standard [64], applying the indirect method that takes into account the pecu-liarity of the oil shale as a fuel. The amount of heat released, the ash content and the amount of flue gas during the combustion of 1 kg of oil shale depend strong-ly on the endothermic and exothermic processes in the mineral part of the fuel [5]. These processes include the decomposition of calcite and dolomite, the oxi-dation of FeS2, the sulfating of CaO and the formation of new minerals. A more detailed description on the calculation of the amount of heat and the ash content is presented in [4]. It was found that the gross thermal efficiencies of the PF and CFB boiler were 86.4% and 88.8%, respectively [Paper I and II].

3.5. Flue gas

The flue gas analyses for PF and VC were performed behind the ESP before the induction of a draft fan. The results are presented in Table 7 in Paper III and in Table 10 in Paper II. Retrofitting the boiler to use VC technology did not result in a reduction of SO2 emissions, indicating an even weaker process of binding sulfur oxides in this furnace compared to PF. According to the test results pre-sented in Table 10 in Paper II, the share of the flue gas components depends on the boiler load changes. At partial load, the oxygen content in the flue gas is twice larger that at full load. At full load, the content of the other components in flue gas is substantially higher compared to that at partial load. For example, the content of SO2 at full load is approximately twice that at partial load. The mass division of fly ash after the ESP was determined in three tests at both boiler loads in Figure 3 in Paper II. As predicted, the content of the finest ash particles (<2.5 μm) is higher at a nominal load. The results are in agreement with the re-sults obtained in Paper IV.

30

The composition of the flue gas during biomass and OS co-combustion in a CFB boiler was determined before the ESP. The values of the average concen-tration of the flue gas are given in Table 7 in Paper I, where the OS and biomass firing test results are compared with the ones in [1]. We can conclude that co-combustion reduces CFB boiler emissions. The mass division of the fly ash after the ESP was determined in three parallel tests, shown in Figure 2 in Paper I. The content of the finest ash particles remained in the same limits when firing OS with biomass compared to pure OS firing, as shown in Fig. 5 in Paper IV. The significant influence of the oil shale firing mode on the shape of the fine ash particles was noticed from the SEM pictures of PM2.5 fractions at oil shale PF and CFB combustion in Figure 3 in Paper V. The ash particles from PF (<1400 °C) are overburnt (melted) and nicely round. Because of the much lower furnace temperatures in the CFB boiler (<850 °C), the ash particles have an ir-regular shape [Paper V].

The trace metal emission and distribution at OS PF and CFB firing are pre-sented in Table 1 in Paper V. The emissions were remarkably lower in CFB compared to PF. One of the reasons is the more efficient ESP-s installed at the CFB units, which decreased the trace element release with solid particles about twofold. Because of a similar temperature distribution at the tail of the CFB boiler, the emission of trace elements in the gaseous phase was at the same level as for PF.

Ten times lower level of Hg content in flue gases from CFB boiler if com-pared to PF system was unexpected. At flue gas temperature (~160 °C) most of the Hg is in elemental form (Hg0) in gas phase and the results for CFB and PF should be comparable. The reason for this discrepancy may be caused by differ-ent temperature regime and oxygen content. Hg reacts with oxygen and forms HgO. The HgO is bound by carbon contained in ash. Carbon content in the CFB boiler ash is higher compared to PF and therefore the Hg content in the flue gas is less, because Hg is bound with ash.

The elements’ relative enrichment factors were different from the former re-sults [65], which could be explained by the changes in the fly ash size distribu-tion. As usual, the enrichment occurs towards finer ashes. The enrichment factor is highest for the Cd and also for the PF ashes [Paper V].

3.6. Specific consumption and emission of an energy unit

The specific indicators of the fuel consumption and ash emission for PF and CFB, both per useful heat (MWhth) and gross electricity production (MWhe

br), are given in Table 5. The specific indicators of the fuel and ash were obtained experimentally for the first boiler of the energy unit. The results were assumed to be applicable for the second boiler as well. The specific indicators of the CO2, CO and SO2 emissions per gross electricity (kg/MWhe

br) are in Table 6. There are two values of the CO2 emission, one based on the sample measurements and the other calculated based on the fuel composition [Paper I and II].

The heat rate of the CFB unit, firing biomass with a thermal share of 15%, was 2.36 MWhth/MWhe

br, corresponding to a gross energy efficiency of 42.37%.

31

The heat rate of the PF unit was 2.49 MWhth/MWhebr, corresponding to a gross

energy efficiency of 40.16%.

Table 5. Specific indicators of the fuel consumption and ash emissions for PF and CFB

Indicator Firing technology

PF CFB* CFB

(OS+BIO)

Oil shale consumption per useful heat, kg/MWhth 489 441 375

Biomass consumption per useful heat, kg/MWhth - - 56

Ash formation per useful heat, kg/MWhth 223 217 182

Oil shale per electricity (gross), kg/MWhebr 1 219 1160 882

Biomass per electricity (gross), kg/MWhebr - - 132

Ash formation per electricity (gross), kg/MWhebr 555 570 428

* According to [1] with a power unit efficiency of 0.38 and an OS heating value of 8.4 MJ/kg.

Table 6. Specific emission indicators

Pollutant per electricity (gross), kg/MWhe

br PF CFB

CFB (OS+BIO)

CO2 1 974 872 788

CO2 2 1 066 923 927

CO 0.111 0.083 0.111

SO2 11.89 0 0 1 – calculation based on the measured percentage of CO2 with the calculated volume of dry gas; 2 – calculation based on the fuel composition.

The test with a biomass thermal share of 15% indicated that the specific emissions of SO2, CO and NOx remained the same or slightly decreased com-pared to [2], where only OS was fired with an LHV of 8.5 MJ/kg. The ash con-tent decreased by 16%, and the CO2 emissions were 14.6% lower. The specific emission of the SO2 in PF was 11.89 kg/MWhe

br, and for CFB, it is considered as zero [Papers I and II].

32

CONCLUSIONS

Full scale experiments and in-situ studies were conducted in EPP, BPP and at ash fields. The obtained results are summarized. Based on the tests, we can make the following conclusions:

VC technology did not result in the reduction of SO2 emissions. SO2 emissions during the experiments at the full boiler load varied within the range of 2,715–3,344 mg/Nm3, exceeding emissions of SO2 for the ex-isting PF technology and indicating an even weaker process of binding sulfur oxides in the furnace. Analysis of the bottom ash chemical com-position showed considerable increase in the amounts of unburned car-bon. Therefore, the retrofitting of PF units to VC was stopped.

The gross thermal efficiency of the PF boiler TP-101 was 86.4%. The specific consumption of oil shale per useful heat and gross electricity production was 0.489 t/MWhth and 1.219 t/MWhe

br, respectively. The same indicators for ash formation were 0.223 t/MWhth and 0.555 t/MWhe

br, respectively. The heat rate of the unit was 2.49 MWhth/MWhe

br, which corresponds to a gross energy efficiency of 40.16%. The average concentration of the NOx and SO2 emissions at stable load varied insignificantly. The tests at partial and full loads showed that the specific emissions of SO2, CO2, CO, NO and HCl at full load were higher, e.g., the content of SO2 was almost twice that at partial load.

During OS and biomass co-combustion, the gross thermal efficiency of the CFB boiler was 88.8%. The ash content decreased by 16%, and CO2 emissions were 14.6% lower. The content of the fine particles (<2.5 µm) of the ash after the ESP remained in the same limits as those in Paper IV. The specific consumption of oil shale per useful heat and gross elec-tricity was 0.375 t/MWhth and 0.882 t/MWhe

br, respectively. The specif-ic consumption of biomass per useful heat and gross electricity was 0.056 t/MWhth and 0.132 t/MWhe

br, respectively. The same indicators for the total ash formation were 0.182 t/MWhth and 0.428 t/MWhe

br, re-spectively. The heat rate of the unit was 2.36 MWhth/MWhe

br, corre-sponding to a gross energy efficiency of 42.37%.

It was found that in the case of oil shale CFB firing, the relative share of very small (<2.5 µm) particulates is higher because of the very efficient milling effect of the relatively soft minerals of oil shale in the CFB fur-nace. To study the emission, the mass distribution of the CFB boiler ash between different separation points along the flue gas duct (ash mass balance) was determined, and analyses of the sampled ashes were pro-vided.

With the introduction of CFB firing at Estonian oil shale power plants, the environmental impact of oil shale power production decreased sig-nificantly. There was a decrease not only in conventional air pollutants but also trace metals, PAH and dioxins/furans. Therefore, the content of

33

toxic compounds is not limiting the possible utilization of CFB ash in agriculture and the industry.

The relative enrichment of trace metals towards smaller ash fractions (flying ash versus landfilled total ash) takes place, as was found in for-mer studies.

The PAH concentrations in the flue gas of the CFB boiler are at least several times lower than in PF boilers. The benzo(a)pyrine content re-mains below 11 ng/Nm3 (6% O2) in CFB firing. The PCDD/F and PCB air emissions of oil shale firing CFB boilers are very low, that is, below 20 mg per year.

The PM10 relative content in the emissions of oil shale boilers (PF and CFB) is significant, forming over 80% TSP. The PM2.5 share from TSP is higher in the case of the CFB boiler, exceeding 50%. The absolute values are lower for the CFB boilers.

The share of solid particles with a size over 10 µm tends to increase in correlation with the TSP content.

Today, the sediment ponds and ash field of oil shale power plants absorb approximately 5–6% of the emitted CO2.

34

REFERENCES

1. Plamus, K., Soosaar, S., Ots, A., Neshumayev D. Firing Estonain oil shale of higher quality in CFB boilers - environmental and economic impact. Oil Shale, 2011, vol. 28, no. 1S, pp. 113-126.

2. Plamus, K., Ots, A., Pihu, T., Neshumayev, D. Firing Estonian oil shale in CFB boilers - ash balance and behaviour of carbonate minerals. Oil Shale, 2011, vol. 28, no. 1, pp. 58-67.

3. Raukas, A., Siirde, A. New trends in Estonian oil shale industry. Oil Shale, 2012, vol. 29, no. 3, pp. 203-205.

4. Kuusik, R., Uibu, M., Kirsimäe, K., Mõtlep, R., Meriste, T. Open-air deposition of Estonian oil shale ash: formation, state of art, problems and prospects for the abatement of environmental impact. Oil Shale, 2012, vol. 29, no. 4, pp. 376-403.

5. Ots, A. Oil Shale Fuel Combustion. Tallinn: Tallinn University of Technology, 2006, 833 p.

6. Ots, A. Estonian oil shale properties and utilization in power plants. Energetika, 2007, vol. 53, no. 2, pp. 8-18.

7. International Energy Agency (IEA), Technology roadmap: high-efficiency, low-emissions coal-fired power generation. IEA, Paris, 2012, 42 p.

8. Lüschen, A., Madlener, R. Economic viability of biomass cofiring in new hard-coal power plants in Germany. Biomass and Bioenergy, 2013, In Press.

9. Roos, I., Soosaar, S., Volkova, A., Streimikene, D. Greenhouse gas emission reduction perspectives in the Baltic States in frames of EU energy and climate policy. Renewable and Sustainable Energy Reviews, 2012, vol. 16, no. 4, pp. 2133-2146.

10. Konist, A., Pihu, T., Neshumayev, D., Siirde, A. Oil shale pulverized firing: boiler efficiency, ash balance and flue gas composition. Oil Shale, 2013, vol. 30, no. 1, pp. 6-18.

11. Pihu, T., Konist, A., Neshumayev, D., Loosaar, J., Siirde, A., Parve, T., Molodtsov, A. Short-term tests on firing oil shale fuel applying low-temperature vortex technology. Oil Shale, 2012, vol. 29, no. 1, pp. 3-17.

12. Arro, H., Prikk, A., Pihu, T. Combustion of Estonian oil shale in fluidized bed boilers, heating value of fuel, boiler efficiency and CO2 emissions. Oil Shale, 2005, vol. 22, no. 4S, pp. 399-406.

13. Hotta, A., Parkkonen, R., Hiltunen, M., Arro, H., Loosaar, J., Parve, T., Pihu, T., Prikk, A., Tiikmaa, T. Experience of Estonian oil shale combustion based on CFB technology at Narva Power Plants. Oil Shale, 2005, vol. 22, no. 4S, pp. 381-398.

35

14. Pihu, T., Arro, H., Prikk, A., Rootamm, R., Konist, A. Corrosion of air preheater tubes of oil shale CFB boiler. Oil Shale, 2009, vol. 26, no. 1, pp. 5-12.

15. Suik, H., Pihu, T., Molodtsov, A. Wear of fuel supply system of CFB boilers. Oil Shale, 2008, vol. 25, no. 2, pp. 209-216.

16. Suik, H., Pihu, T. Warranty reliability of CFB boiler burning oil shale. Oil Shale, 2009, vol. 26, no. 2, pp. 99-107.

17. Parve, T., Loosaar, J., Mahhov, M., Konist, A. Emission of fine particulates from oil shale fired large boilers. Oil Shale, 2011, vol. 28, no. 1S, pp. 152-161.

18. Talumaa, R. Developments of oil shale combustion technologies for power production in Estonia. Oil Shale, 2012, vol. 29, no. 4, pp. 303-305.

19. Dyni, J. R. Geology and resources of some world oil-shale deposits. Oil Shale, 2003, vol. 20, no. 3, pp. 193-252.

20. Qian, J., Yin, L., Wang, J., Han, F., Li, S., He, Y. Oil shale – petroleum alternative. Beijing: China Petrochemical Press, 2010, 625 p.

21. Yen, T. F., Chilingar, G. V. Chapter 1 Introduction to Oil Shales. Developments in Petroleum Science, 1976, vol. 5, pp. 1-12.

22. Raukas, A., Punning, J.-M. Environmental problems in Estonian oil shale industry. Energy & Environmental Science, 2009, vol. 2, pp. 723-728.

23. Dyni, J. R. Geology and resources of some world oil-shale deposits: Scientific Investigation Report 2005-5294, U.S. Geological Survey. Reston, Virginia, 2006, 42 p.

24. Tissot, B. P., Welte, D. H. Petroleum formation and occurrence. New York: Springer-Verlag, 1984, 699 p.

25. Forsman, J. P. Geochemistry of kerogen. Organic Chemistry. New York, Pergamon Press, 1963, pp. 163-172.

26. Altun, N. E., Hiçyilmaz, C., Hwang, J.-Y., Suat Bağci, A., Kök, M. V. Oil shales in the world and Turkey: Reserves, current situation and the future prospects: A review. Oil Shale, 2006, vol. 23, no. 3, pp. 211-227.

27. Peters, K. E., Cassa, M. R. Applied Source Rock Geochemistry. The petroleum system – from source to trap. L. B. Magoon and W. G. Dows, Eds., AAPG Memoir, 1994, no. 60, pp. 93-120.

28. Jones, R. W., Edison, T. A., Microscopic observations of kerogen related to geochemical parameters with emphasis on thermal maturation. Low temperature metamorphism of kerogen and clay minerals. SEPM Pacific Section, Los Angeles. 1978, pp. 1-12.

29. Baskin, D. K., Peters, K. E. Early generation characteristics. AAPG Bulletin, 1992, vol. 76, pp. 1-13.

30. Orr, W. L. Kerogen/asphaltene/sulfur relationships in sulfur-rich Monterey oils. Organic Geochemistry, 1986, vol. 10, pp. 499-516.

36

31. Demaison, G. J., Holck, A. J., Jones, R. W., Moore, G. T. Predictive source bed stratigraphy; a guide to regional petroleum occurrence. Proceedings of the 11th World Petroleum Congress, London, 1983, pp. 17-29.

32. Hutton, A. C. Classification, organic petrography and geochemistry of oil shale. Proceedings of the 1990 Eastern Oil Shale Symposium, Lexington, 1991, pp. 163-172.

33. Kahru, A., Põllumaa, L. Environmental hazard of the waste streams of oil shale industry: an ecotoxicological review. Oil Shale, 2006, vol. 23, no. 1, pp. 53-93.

34. World Energy Council, Survey of Energy Resources 2010. Oil Shale, World Energy Council, London, 2010, 608 p.

35. Pihu, T., Arro, H., Prikk, A., Rootamm, R., Konist, A., Kirsimäe, K., Liira, M., Mõtlep, R. Oil shale CFBC ash cementation properties in ash fields. Fuel, 2012, vol. 93, pp. 172-180.

36. Veiderma, M. Estonian oil shale - Resources and usage. Oil Shale, 2003, vol. 20, no. 3S, pp. 295-303.

37. Teedumäe, A., Raukas, A. The possibility of integrating sustainability into legal framework for use of oil shale reservs. Oil Shale, 2006, vol. 23, no. 2, pp. 119-124.

38. Aarna, A. Oil Shale (in Estonian). Tallinn: Valgus, 1989, 144 p.

39. Arro, H., Prikk, A., Pihu, T. Calculation of qualitative and quantitative compositionof Estonian oil shale and its combustion products. Part 1. Calculation on the basis of heating value. Fuel, 2003, vol. 82, pp. 2179-2195.

40. Bauert, H., Kattai, V. Kukersite oil shale. Geology and mineral resources of Estonia. A. Raukas, A. Teedumäe, Eds., Tallinn, Estonian Academy Publishers, 1997, pp. 313-327.

41. Petersell, V. Dictonema argillite. Geology and mineral resource of Estonia. A. Raukas, A. Teedumäe, Eds., Tallinn, Estonian Academy Publishers, 1997, pp. 327-331.

42. Barnekow, U., Jakubick, A. T., Paul, M. Stabilization and decommissioning of the Sillamae Radioactive Tailings Pond. Tailings and mine waste 2003, Vail, 2003, pp. 487-496.

43. Bazelatto Zanoni, M.-A. B., Massard, H., Martins, M. F. Formulating and optimizing a combustion pathways for oil shale and its semi-coke. Combustion and Flame, 2012, vol. 159, no. 10, pp. 3224-3334.

44. Martins, M. F., Salvador, S., Thovert, J.-F., Debenest, G. Co-current combustion of oil shale – Part 2: Structure of the combustion front. Fuel, 2010, vol. 89, no. 1, p. 133–143.

45. Jiang, X. M., Han, X. X., Cui, Z. G. Progress and recent utilization trends in combustion of Chinese oil shale. Progress in Energy and Combustion Science, 2007, vol. 33, p. 552–579.

37

46. Al-Otoom, A. Y., Shawabkeh, R. A., Al-Harahsheh, A. M., Shawaqfeh, A. T. The chemistry of minerals obtained from the combustion of Jordanian oil shale. Energy, 2005, vol. 30, no. 5, pp. 611-619.

47. Hayhurst, A. N. The mass transfer coefficient for oxygen reacting with a carbon particle in a fluidized or packed bed. Combustion and Flame, 2000, vol. 121, no. 4, pp. 679-688.

48. Imai, T., Murayama, T., Ono, Y. Estimation of convective heat transfer coefficients between a spherical particle and fluid at lower Reynolds number. Journal of Iron and Steel Research, International, 1995, vol. 35, no. 12, pp. 1438–1443.

49. Sheng, C. D., Yuan, J. W., Xu, M. H., Ma, Y. Y. Ignition model of pulverized-coal cloud heated by radiation. Journal of Combustion Science Technology, 1996, vol. 2, no. 1, pp. 38-45.

50. Han, X. X., Jiang, X. M., Cui, Z. G. Mathematical model of oil shale particle combustion. Combustion Theory Model, 2006, vol. 10, no. 1, pp. 145–154.

51. Zajdlik, R., Jelemensky, L., Remiarova, B., Markos, J. Experimental and modelling investigations of single coal particle combustion. Chemical Engineering Science, 2001, vol. 56, no. 4, pp. 1355-1361.

52. Kattai, V., Saarde, T., Savitski, L. Estonian oil shale: geology, resources, mining (in Estonian), Tallinn: Akadeemia Trükk, 2000, 248 p.

53. Pihu, T., Arro, H., Prikk, A., Parve, T., Loosaar, J. Combustion experience of Estonian oil shale in large power plants. International conference on Oil Shale: Recent trends in oil shale, Amman, 2006, pp. 1-13.

54. Paist, A. Present and future of oil shale based energy production in Estonia. Oil Shale, 2011, vol. 28, no. 1S, pp. 85-88.

55. Jantti, T., Eriksson, T., Hotta, A., Hyppa, T., Nuortimo, K. Circulating Fluidized-Bed Technology Toward Zero CO2 Emissions. Foster Wheeler Ltd., Varkaus, 2007, 21 p.

56. Pihu, T., Arro, H., Prikk, A., Konist, A., Uibu, M., Kuusik, R. Reducing of carbon dioxide emissions at oil shale ash deposition. International Oil Shale Symposium, Tallinn, 2009, pp. 49-50.

57. Arro, H., Prikk, A., Pihu, T. Research of Balti Power Plant's ash fields (in Estonian), Tallinn University of Technology, Tallinn, 2002, 84 p.

58. Kespre, T. Mineralogy of Eesti Power Plant's oil shale ash plateau sediments (In Estonian), University of Tartu, Tartu, 2004, 46 p.

59. Kuusik, R., Paat, A., Veskimäe, H., Uibu, M. Transformations in oil shale ash at wet deposition. Oil Shale, 2004, vol. 21, no. 1, pp. 27-42.

60. Kuusik, R., Uibu, M., Kirsimäe, K. Characterization of oil shale ashes formed at industrial-scale CFBC boilers. Oil Shale, 2005, vol. 22, no. 4S, pp. 407-419.

38

61. Konist, A., Pihu, T. Reducing CO2 emissions with oil shale circulating fluidized bed boiler ash. The 21st international conference on Fluidized Bed Combustion, Naples, 2012, pp. 1117-1122.

62. Ots, A. Formation and emission of compounds affecting environment. Oil Shale, 2005, vol. 22, no. 4S, pp. 499-535.

63. Blinova, I., Bityukova, L., Kasemets, K., Ivask, A., Käkinen, A., Kurvet, I., Bondarenko, O., Kanarbik, L., Sihtmäe, M., Aruoja, V., Schvede, H., Kahru, A. Environmental hazard of oil shale combustion fly ash. Journal of Hazardous Materials, 2012, Vols. 229-230, pp. 192-200.

64. EVS-EN 12952-15:2003, Water-Tube Boilers and Auxiliary Installations. Part 15. Acceptance Tests.

65. Aunela-Tapola, L., Frandsen, F., Häsänen, E. Trace metal emissions from the Estonian oil shale fired power plant. Fuel Processing Technology, 1998, vol. 57, no. 1, pp. 1-24.

39

LIST OF AUTHOR'S PUBLICATIONS

1. Konist, A., Pihu, T., Neshumayev, D., Külaots, I. Low grade fuel – oil shale and biomass co-combustion in CFB boiler. Oil Shale, 30/2S, 2013, xx - xx. Article in press.

2. Konist, A., Pihu, T., Neshumayev, D., Siirde, A. Oil shale pulverized firing: boiler efficiency, ash balance and flue gas composition. Oil Shale, 30/1, 2013, 6 - 18.

3. Pihu, T., Arro, H., Prikk, A., Rootamm, R., Konist, A., Kirsimäe, K., Liira, M., Mõtlep, R. Oil shale CFBC ash cementation properties in ash fields. Fuel, 93, 2012, 172 - 180.

4. Konist, A., Pihu, T. Reducing CO2 emissions with oil shale CFB boiler ash. Proceedings of the 21th International Conference on Fluidized Bed Combus-tion. Naples, Italy, June 3-6, 2012.

5. Pihu, T., Konist, A., Neshumayev, D., Loosaar, J., Siirde, A., Parve, T., Molodtsov, A. Short-term tests on firing oil shale fuel applying low-temperature vortex technology. Oil Shale, 29/1, 2012, 3 - 17.

6. Parve, T., Loosaar, J., Mahhov, M., Konist, A. Emission of fine particulates from oil shale fired large boilers. Oil Shale, 28/1S, 2011, 152 - 161.

7. Suik, H., Pihu, T., Konist, A. Catastrophic wattage of tubes in fluidized bed boiler. Oil Shale, 28/1S, 2011, 162 - 168.

8. Pihu, T., Arro, H., Prikk, A., Rootamm, R., Konist, A. Corrosion of air preheater tubes of oil shale CFB boiler. Part I. Dew point of flue gas and low-temperature corrosion. Oil Shale, 26/1, 2009, 5 - 12.

9. Arro, H., Pihu, T., Prikk, A., Rootamm, R., Konist, A. Comparison of ash from PF and CFB boilers and behaviour of ash in ash fields. Proceedings of the 20th International Conference on Fluidized Bed Combustion. Xi'an, Chi-na, May 18-20, 2009, 1054-1060.

10. Loosaar, J., Parve, T., Konist, A. Environmental impact of Estonian oil shale CFB firing. Proceedings of the 20th International Conference on Flu-idized Bed Combustion. Xi'an, China, May 18-20, 2009, 422-428.

11. Loosaar, J., Parve, T., Konist, A. Emissions from Estonian oil shale PF and CFB firing. In: Book of abstracts: International Oil Shale Symposium. Tal-linn, Estonia, June 8-11, 2009.

12. Pihu, T., Arro, H.; Konist, A., Kuusik, R., Prikk, A., Uibu, M. Reducing of carbon dioxide emissions at oil shale ash deposition. In: Book of abstracts: International Oil Shale Symposium. Tallinn, Estonia, June 8-11, 2009.

13. Konist, A., Parve, T., Loosaar, J. Tallinnan TKK Lämpötekniikan laitos. Päästömittaukset 2006. In: XVI Valtakunnalliset Päästömittaajapäivät, Lah-ti, Finland, April 12-13, 2007, 1 - 11.

40

ACKNOWLEDGEMENTS The thesis is based on the work carried out at the Department of Thermal Engi-neering of Tallinn University of Technology and also at the Eesti and Balti Pow-er Plants. Financial support for the research was provided by the Eesti Energia Narva Power Plants, the Estonian Ministry of Education and Research (SF0140024s07) and the Estonian Science Foundation (Grant No 8782).

I would like to express my deepest gratitude to the supervisors PhD Tõnu Pihu and PhD Indrek Külaots for their guidance and valuable advice. Especially to Tõnu who dealt with my thesis in our extremely tight time schedule. Also, I am grateful to Professor Andres Siirde who has taught me that simply words won’t do your research work. Special thanks to PhD Jüri Loosaar, PhD Dmitri Neshumayev, Teet Parve and Maaris Nuutre for their time and help. I am most grateful to Sulev Soosaar who has improved the linguistical quality of the thesis. Also, I am most grateful for Toomas Tiikma scholarship.

I would like to thank my family – Kaspar and Reelika for their constant sup-port and encouragement during my thesis writing.

41

ABSTRACT

Oil shale is Estonia’s primary energy resource for achieving energy independen-cy. Approximately 90% of the electricity consumed is produced from oil shale. Oil shale is the primary contributor to air pollution and waste. To reduce the environmental impact of oil shale power production and to increase the reliabil-ity of boilers, different combustion technologies have been introduced and modi-fied at various times. Different combustion technologies – pulverized firing (PF) and circulating fluidized bed (CFB), are currently utilized at oil shale-fired pow-er plants. An attempt was made to use vortex combustion (VC) technology, but this effort did not result in success. The present work is based on in-situ experi-ments at full-scale oil shale firing boilers and at ash fields, where the ash is de-posited. All analyses are based on international standards.

The goal of this thesis is to analyze the existing situation at Estonian oil shale fired power plants by determining the boiler efficiencies, ash flows, ash chemi-cal compositions, specific emissions, fine particulates, trace metals and ash be-havior in ash fields of different combustion technologies. The thesis presents a detailed review of the data obtained from the conducted in-situ tests and com-pares it with previous results. The chemical compositions of the ash formed by different combustion technologies are compared. An analysis and an estimation of the changes in the emission of all of the primary polluting components in CFB firing compared to PF are presented. This analysis includes the mass bal-ance of the trace metals in the initial fuel and in formed ash; the emissions of PCDD/F, PCB, PAH, and PM2.5/10; and conventional air emissions, such as NOx, SO2, CO2, CO, HCl, and TSP.

It was found that the heat rate of the CFB unit, firing biomass with a thermal share of 15%, was 2.36 MWhth/MWhe

br, corresponding to a gross energy effi-ciency of 42.37%. The heat rate of the PF unit was 2.49 MWhth/MWhe

br, corre-sponding to a gross energy efficiency of 40.16%.

The test with a biomass thermal share of 15% showed that the specific emis-sion of SO2, CO and NOx remained the same or decreased slightly compared to the conventional firing of OS with an LHV of 8.5 MJ/kg. The ash content de-creased by 16%, and the CO2 emissions were 14.6% lower.

The specific emission of SO2 in PF was found to be 11.89 kg/MWhebr, and

for CFB, it is considered as zero. The PAH concentrations in the flue gas of the CFB boiler were at least several times lower than in PF boilers. The ash of the CFB boiler at the ash field bound 8.1% of the emitted CO2, and the PF boiler ash bound 3.2% of the emitted CO2.

With the introduction of CFB firing at Estonian oil shale power plants, the environmental impact of oil shale power production has decreased significantly, not only in terms of conventional air pollutants but also with trace metals, PAH and dioxins/furans and ash as a CO2 absorber. The co-combustion of oil shale with biomass in a CFB boiler decreases the environmental footprint of OS power production even more.

42

KOKKUVÕTE

Üle 90% Eestis tarbitavast elektrienergiast toodetakse põlevkivist. Põlevkivi on madala kütteväärtusega tuharikas kütus, mida kasutatakse nii tolmpõletus- kui ka ringleva keevkihiga kateldes. Põletustehniliselt erinevad need katlad üksteisest märgatavalt. Erinevad põlemistemperatuurid ja kütuse ettevalmistus erinevates katlatüüpides on ühed olulisemad tegurid, mis mõjutavad tekkiva tuha ja suitsu-gaaside koostist.

Käesoleva doktoritöö eesmärk on uurida erinevatel põletustehnoloogiatel tekkivaid õhu- ja tuhaheitmeid ning tuha käitumist tuhaväljal. Selleks teostati tööstuslikud katsed erinevat tüüpi kateldel ja viidi läbi uuringud tuhaväljadel. Saadud tulemuste põhjal saab hinnata põlevkivienergeetika keskkonnamõju ja erinevate põletustehnoloogiate jätkusuutlikkust pidevalt karmistuvates keskkon-natingimustes. Doktoritöö peamised tulemused on järgnevad:

Tolmpõletuskatla rekonstrueerimine madalatemperatuurse keeriskoldega katlaks ei anna vajalikke tulemusi. Vääveldioksiidi heitmed pigem isegi suurenevad.

Tolmpõletuskatla TP-101 kasutegur oli 86,4% ning kütuse- ja tuha eri-kulud olid vastavalt 1,219 t/MWhe

br ja 0,555 t/MWhebr.

Ringleva keevkihiga katla kasutegur põlevkivi ja biokütuse koospõletu-sel oli 88,8% ning kütusekulud olid vastavalt põlevkivi kulu 0,882 t/MWhe

br ja biokütuse kulu 0,132 t/MWhebr ning tuha eriteke oli

0,428 t/MWhebr.

Ülipeente tuhaosakeste (<2,5 µm) osakaal keevkihtpõletusel on võrrel-des tolmpõletuskatlaga suurem, kuna ringluse tõttu hõõrduvad tuhaosa-kesed omavahel.

Raskemetallide osakaal on keevkihtpõletusel võrreldes tolmpõletusega märgatavalt vähenenud ega põhjusta tuhakasutusele piiranguid.

Polüaromaatsete süsivesinike kontsentratsioon keevkihtkatlas on võrrel-des tolmpõletuskatlaga märgatavalt vähenenud.

Ülipeente tuhaosakeste PM10/2,5 summaarne osakaal on keevkihtpõle-tusel võrreldes tolmpõletusega väiksem.

Elektrifiltrite efektiivsus mõjutab otseselt ülipeente tuhaosakeste kont-sentratsiooni.

Tuhaväljad seovad 5–6% elektrijaamade emiteeritavast süsihappegaa-sist.

43

ORIGINAL PUBLICATIONS

45

PAPER I

������������ ������ ������������������� ���������������������� ���������� ������� ����� � !"�#��#�$%���&'�()*��!��+!��,-.�/0123�453,�6�-7,�891,3�1:2�;7-<188��=-6=-<;58>7-:�7:�=4;�;-7,30�?@?A�BCDEFGHIJKL�GMDN�OEPNHIJL��QREGAE�DSFPNR?TSUHIJL�EDQASB�BV@?CGFHWJ��HIJ�QXYIZ[\X][�_�GXZ\Ia�S]bc]XXZc]bL�GIaac]]�N]cdXZec[f�_�GXg]abf�� BYac�hhiL�hhjhk�GIaac]]L�Se[]cI��HWJ�Fg^a�_�S]bc]XXZc]bL�lZm]�N]cdXZec[fL�hnk�PYX�F[ZXX[L�OZdcoX]gX��� A oX�EeaI]oL�NF?�pkqhk��� rstuvwxuy�z{|}~�����{�|�}�}��|����}����{������{|�}���{���������~���������|�~�����������������������~�|{���|������{��~�������|������������|��}��������������������~�|{�������{���}~��}������}���������|���~}�}�����}����������}{|�����������z~���������������~�|{������}��|����|�z�{|���~�����|���}�������~|{��z����~���������������������{�~|{��~���{�{�}����|��}�|��~�����} �|�{|{�}��}���{������~����} �{{��}¡�} ��{|�}~��~�|�������¡{����������}������}��|����|����������|�{|{�������}~���|����|�~} �~����}������}��¢��££¤���¥�¦�|§�����|������} �{{�|��� ����~��|�}����¤��©���~��|����ª���� �~|{��{��{� ���{���} �|������~������� ������}||} ��{���«¬�­z®�{����¡§�����|����°�­°����}~} ������z�����~������������|����±�°���~����} ������}��������{�}��|�������|�}{|�|����������|�|}���z��������|�²�~��� ���{�}�������{���}����|�� �~�~��|��� �{{�����{�}~��|}|���{�{��~�������|�����|�{����£��~��������������|�²�~���|���|���z���������{��~���{�{���{�����}� ����|�|���z���~��|��±~���{�{�}��|������ ������} �}{�|�}~�}���{����{���������}�|������{���������}~{� �|�}~�}��}���{����������{��������|��~����}{{�����|����|��������}�~���~��}|����|���~}¡��}~} ���������|���{|��{���|�� �~�������«|���{��}�~��|��|�}���{������~����} �{{��}¡�} ��{|�}~�������������� �{{�}~�����¦�³¤��~���{���}� �|�}~�����³¤����~��} ��������|���}~¡��~|�}~���}���{����������} ��{|�}~���������� �{{�}~{��� ��~����~�|����� �|{�}���£¥£� �§¬ ¥���}|���{�{��~�������|�����|�{����£��~������������~}|����~����} ������|}��}~��~|�}~���}���{�������������~������������}������������~������~��~����{���{����|������~��|��{�²~}�~�|��|��~���{��}���}����~����} �{{��}¡�} ��{|�}~��|�������{�{��������}���}���{������~����} �{{��}¡�} ��{|�}~���~�����}~{��������{����������}�|�}~��~��~���¡|�� �{}��|�}~��}��������~��|����~���}~ �~|���� ���|�}��}���{����¡��{����}������}���|�}~���µ¶·¹vºt»�}���{�������} �{{��}¡�} ��{|�}~��������£§�����{���} ¡�}{�|�}~������ �{{�}~������|�}~���������������������������������������������������K�¼ZZXeY]oc]b�I½[ Z¾�X¿\Ica������²}~�{|À||������

��������������� ������������������������ ����!��" !#�$%&'���� �(#)*�+�,,�-.!�/��/0.)��,.#!�+.#��������.��1.#�2)�2#)��#�3�4"#�"�5"� !6 !�� �+�-"!�)��#�-���#����,�%&� �"�" ��- .�#+���5��,�- ���-�))������ �+�,�.!��5�2)�0!#7�����2.!(#)�8#+�,�)��5�$9:'�.����;�)#�.!���5����+#-)# �#+� ( �! 0�!��*3�< �#�.��#7�������;�#�2#-� !!*�&%=� �+�2 )��-.! �#�#7������;�" (#�0##��"�5"3�&��-#���������� � !7����>?@��,�#!#-�)�-��*����2)�+.-#+�,)�7�%&�AB;�=C;��"#�-�/-�70.�������,�0��7 ��� �+�%&�- ��0#��"#�1.�-6#��;�# ��#��� �+�-"# 2#���D *����)#+.-#��"#�#�(�)��7#�� !��72 -���,�%&/0 �#+�2�D#)�2)�+.-�����AE;�FC3������� �����72!#7#����5��D��+�,,#)#���-�70.�������#-"��!�5�#��,�)�%&/0 �#+�2�D#)�2)�+.-����G�9:� �+�-�)-.! ���5�,!.�+�8#+�0#+�$H:I'��#-"��/!�5�#�3�J�)#-#�����.+*�+#�-)�0��5�9:� �+�(�)�#K�-�70.�������#-"��!�5�#�� )#�2)#�#��#+����AL;�MC3�&�7#��,��"#�)#�.!����,��#�������H:I��#-"��!�5*� �+�H:I�0��!#)�)#!� 0�!��*� )#�2)#�#��#+����ANOB=C3�P���"#�%&�H:I�0��!#)�;�,�.!��5� �+�-�))������2)�0!#7������"#�-��(#-��(#��.2#)"# �#)��" (#�0##��2)#(#��#+�0*� �- )#,.!�-"��-#��,��"#���# 7��#7/2#) �.)#�,�)�# -"��.2#)"# ���5��� 5#� �+�0*�.���5�#,,#-��(#�"# ���.), -#�-!# ���5�7#�"�+�3�PQ4R�S��.2#)"# �#)�� )#�.�#+� ���"#�! ����.2#)/T)#"# ���5��� 5#;� �+�)#,) -��)*�!��#+��#2 ) ��)�� ���"#��#-��+��.2#)"# ���5��� 5#;� !!�D��5�!�D#)���# 7��#72#) �.)#����0#�.�#+����-��(#-��(#��.2#)/T)#"# �#)�$&U;�RU'��#-������D"#)#��"#�)��6��,�"�5"/�#72#) �.)#�-�))����������"#�"�5"#��3�4"#�#K�����5�H:I�0��!#)��.�#�2�#.7 ��-�,.#!�,##+��5�D��"�7 �*�,##+��5�2�����;�)#�.!���5����5��+�,.#!�7�K��5� �+�2)�(�+��5�, (�) 0!#�-��/+�������,�)��.!,.)�0��+��5�����"#�!�D#)�,.)� -#3�&%=�#7����������-����+#) 0!*�)#+.-#+�+.#�����"#���"#)#���!�7#����#�-���#����,���!��" !#� �";�D"�-"�, (�)���.!,.)�- 2�.)#����H:I�-��+������3�&%=� �+�Q%K�#7�������� )#�)#+.-#+�0*�>>@� �+�E?@;�)#�2#-��(#!*;�D"�!#�2 )��-.! �#�#7�������+#-)# �#+���5��,�- ��!*�-�72 )#+�����"#��!+�9:�.�����D��"�!�D#)�#,,�-�#�-*�#!#-�)��� ��-�2)#-�2�� ��)��$�&9'3�4"#��72)�(#+�#,,�-�#�-*� �+�+#-)# �#+�- )0�� �#�+#-�72�����������H:I�" ��+#-)# �#+��"#�H%=�#7�������2#)�2)�+.-#+�2�D#)�.����0*��# )!*�=F@�AVC3�4"#�- )#,.!�H:I�0��!#)�+#��5��" ��)#��!(#+�2)�0!#7��)#! �#+������!��" !#�-�70.�����;� �+������5����,���5��,�- ���,�.!��5��)�-�))�������,�"# ��#K-" �5#)��" (#��--.))#+�����"#�H:I�0��!#)�� ��Q )( �9�D#)�9! ���3�&��!!;� �)�2)#/"# �#)�-�))������" ��0##������-#+����H:I�.����;�0.�����" ��0##��- .�#+�0*�����!�D��#72#) �.)#�� ���"#� �)�2)#"# �#)�$J9U'���!#�;�D"�-"�" ��0##�� ���2#) ���� !�, .!��A>C3�P72)�(#+� ( �! 0�!��*;�!�D#)�7 ���#� �-#�-����� �+�"�5"#)�#,,�-�#�-*��,�H:I�.�����" (#���5��,�- ��!*��72)�(#+��"#�.���W��#-���7�-�3�J--�)+��5�����"#�2#),�)7 �-#��#���;��"#��#��#,,�-�#�-*��,�H:I�.��������EVOE>@;�D"#)# ������"#�9:�.���������������"#�) �5#��,�=>OE?@3�U�5"#)�#,,�-�#�-*�D ���0� ��#+�0*��72!#7#����5�"�5"#)�!�(#� �+�)#"# ����# 7��#72#) �.)#;�)#+.-��5�,!.#�5 ��"# ��!���#��0*� 22!*��5�0#��#)�-���)�!��,�#K-#��� �)� �+�)#+.-��5��"#�,!.#�5 ���#72#) �.)#� ���"#��.�!#�3�

������������ ������������������������ ������������������������ ������� �!"#�"$"%&���'& ���$��$$"%"��%(�")' �*�)����%�)�!�$ �)�����+�,� �%& -��&���.�%�)'�!"�"���&�.��"#�� �!/+$&�"��� &���./ "�#�012�%�)-/!�"��3������$$�%���$�,�"%��"!�&-�/��456�789:#�� �;<�%�)'& �.�,"������!��"��=1� �'� ��.�-(�>���&����&+5�?@A5�B�%����!�/."�!�'�"����/����&��/�"+"C&�"����$�-"�)&!!�$/�+!�"��012�-�"+� !�)&(�%&/!���'� &�"��&+�' �-+�)!3�!/%��&!�&##+�)� &�"��3�.�'�!"��$� )&�"��3�&�.�%� �!"���?DEFDGA5�>�,�*� 3�!/%��' �-+�)!�%&��-��+")"��.�,"���' �'� �-�"+� �.�!"#�3�!/"�&-+��-�"+� ��'� &�"��3�&+�� �&�"*��-�.�)&�� "&+!�� �&.."�"*�!3�&�.�)�!���$$�%�"*�+(�-(�%�H%�)-/!�"���,"���%�&+�� �'�&����&��%&��%&'�/ ��' �-+�)&�"%��+�)���!�$ �)�-"�)&!!9,&!��!5�I"�%��JI�'�,� �.�012�/�"�!��&*��-����%& �$/++(�.�!"#��.����&*�".�!/%���'� &�"��&+�' �-+�)!3�JI�&�.�-"�)&!!�%�H%�)-/!�"���"��012�!��)!�����)�!��' �)"!"�#��'�"������ �./%��������*" ��)���&+�")'&%���$�JIH-&!�.�'�,� �' �./%�"��5�K���%/ ����'&'� �.�&+!�,"�������!�/.(��$�JI�&�.�-"�)&!!�%�H%�)-/!�"���"��&�012�-�"+� �,"���D;<��$�-"�)&!!���� )&+�%��� "-/�"��5�= �*"�/!�!�/."�!����%�&+�&�.�-"�)&!!�%�H%�)-/!�"���'�"����/����&��L4<�"!������'�")/)�&)�/��3�,�"%��%&��-��-/ ���"��&�012�-�"+� �,"���/��$�++�,"�#�. &,-&%:!5�M$�����-"�)&!!�%��� "-/�"���"!��"#�� 3�����-�"+� ���� )&+��$$"%"��%(�.�% �&!�!3�NJO�&�.����� �$+/��#&!�%�)'�����!��O%��.�����&++�,�.���*" ��)���&+�+�#"!+&�"���+")"�!�&�.���� ���&*��-�������"%�.�' �-+�)!�,"�����&�"�#�!/ $&%��$�/+"�#�?D@A5�K���&")��$���"!�'&'� �"!����"�*�!�"#&��������$$�%���$�JI�&�.�-"�H)&!!�%�H%�)-/!�"������012�-�"+� ���� )&+��$$"%"��%(3��)"!!"��!3�."!� "-/H�"����$�'& �"%/+&���)&��� 3�&!��%��)"%&+�%�)'�!"�"���&�.�0JL� �./%�"��5�PQ�RSTUVWXUYZ[\�]UZ_T�K���)&� �#�&+��$���!�!�,&!����%& (��/��&�&+(!�!��$�&!��&�.�$+/��#&!3�&!�,�++�&!����.��� )"�������-�"+� ��$$"%"��%(5�K�����!�!�,� ��'� $� )�.�,"�������$�++�,"�#�$/�+�!�& �!�a&!��$���� )&+�"�'/�bc�@;<��$�JI�&�.�D;<��$�,��.�%�"'!5�JI�,&!��$�%+&!!�=E�a'& �"%+��!"C��4F64�))b�$ �)�����!% ���"�#�-�$� ���� "%�)����$ �)��"./��'��H'"��)"��5�d��.�%�"'!�$ �)�!��)�,��.�&�.�- &�%��!�,� ��/!�.�&!�����-"�)&!!�$/�+5�K���)&"��%�& &%�� "!�"%!��$�����$/�+!�/!�.�& ��' �!����.�"��K&-+��D5�K���)&"��%�& &%�� "!�"%!��$�����-�"+� �./ "�#�������!�!�& ��#"*���"��K&-+��L5�K���*& "&�"��!��$�!��&)�' �!!/ ��&�.�)&!!�$+�,�./ "�#�&++���!�!�& ��!��,��&!�,�++5�M��%&��-��!������&������*& "&�"��!�& ��!)&++� ���&������)& #"�&+�*&+/�!�#"*���"������!�&�.& .�eN�DLf;LHD;�aL44Eb�?DfA5�g[h\U�iQ�j_U\�kl[V[kZUVW]ZWk]�� d��.�%�"'!� J"+�!�&+��d" 3�)�"!�/ �3�&!� �%�"*�.�$/�+3�<� 6E5;� DL5m�n-.3���&�"�#�*&+/�3�. (�$/�+�"��%&+� ")�� "%�-�)-3�789:#� L45L� DD5E�n" 3���&�"�#�*&+/�3�&!� �%�"*�.�$/�+3�789:#� �f5m� �@5f�� 3�&!��%������3�&!� �%�"*�.�$/�+3�<� �D5m� 6f5D�a0JLb) 3�%& -��&���0JL�%������3�&!� �%�"*�.�$/�+3�<� F� D@5L�

��������������� ������������������������������������������������ �!"#$%&�$"'()�*+,-� ./012�3$%4,&#4'$�$"'(�"5�67#,)�*+%� 89219�:,%';�,%;<%&',6&%�=$#>%?@6<%&-%',%(A)�BC� 0D/1.?0D012�:,%';�<&%@@6&%�=$#>%?@6<%&-%',%(A)�*E'� 8.1F.?.18G�E&%@@6&%�>'&#',#"7�"5�$#>%�@,%';)�H� I1F�:,%';�;'@@�5$"J�=$#>%?@6<%&-%',%(A)�KL?@� FG190?2G1.�*'@@�5$"J�>'&#',#"7�"5�$#>%�@,%';)�H� .1G�M$6%�L'@�,%;<%&',6&%�='5,%&�3:EA)�BC� 82F��� N6&#7L�,-%�,%@,@�,-%�'7'$O@%@�"5�56%$)�'@-�'7(�5$6%�L'@�J%&%�4'&&#%(�"6,1�P-%�$"4',#"7�"5�<"&,@�=8Q9A�5"&�4"$$%4,#7L�@';<$%@�#@�@-"J7�#7�M#L1�81�M6%$�@';<$%@�J%&%�,'K%7�"7�('#$O�'>%&'L%�R'@#@1�P-%�'@-�@';<$%@�J%&%�,'K%7�5&";�@%>%&'$�<"&,@�$"4',%(�#7�,-%�56&7'4%�4-';R%&)�STPU3V)�@6<%&W?&%-%',%&�=:X)�UXA)�%4"7";#Y%&�=3CZA)�'7(�'#&�<&%-%',%&�=[EXA)�'7(�5&";�'$$�5"6&�5#%$(@�"5�,-%�%$%4,&"@,',#4�<&%4#<#,',"&�=3:EA1�:';<$%@�"5�5$O�'@-�5"&�(%,%&;#7#7L�,-%�;'@@�(#>#@#"7�=,",'$�@6@<%7(%(�<'&,#46$',%@�E*8I�'7(�E*.10A�J%&%�,'K%7�'5,%&�,-%�3:E1�P-%�@';<$%@�J%&%�6@%(�5"&�(%,%&;#7#7L�'�(%,'#$%(�4-%;#4'$�4";<"@#,#"7�"5�'@-%@1�S7�,-%�5&';%�"5�,-%�,%@,@�,-%�R"#$%&�%55#4#%74O�J'@�4'$46$',%(�'@�J%$$1�P-%�&%@6$,@�"5�@';<$%�'7'$O@%@�J%&%�'>%&'L%(�,"�&%'4-�'�&%<&%@%7,',#>%�%@,#;',%1�[$@")�(6&#7L�,-%�,%@,@�,-%�;'\"&�<&"4%@@�<'&';%,%&@�"5�,-%�R"#$%&�'7(�67#,�'@�'�J-"$%�J%&%�&%4"&(%(�6@#7L�,-%�<$'7,]@�@,'7('&(�(','�'46#@#,#"7�@O@,%;1�P-%�,%;<%&',6&%�'7(�4";<"@#,#"7�"5�5$6%�L'@�J%&%�;%'@6&%(�R%5"&%�,-%�3:E1�P-%�,",'$�"5�9�'@-�@';<$%@�J%&%�,'K%7�5&";�@%>%&'$�<"&,@�$"4',%(�#7�,-%�56&7'4%)�STPU3V)�@6<%&�-%',%&)�3CZ)�'7(�[EX)�'7(�5&";�'$$�5"6&�5#%$(@�=3:E8)�3:E.)�3:ED�'7(�3:E/A�"5�,-%�3:E1�P-%�'@-�J'@�,'K%7�5&";�,-%�(&O�5$"J�,"�%7@6&%�,-%�&%<&%@%7,',#>%7%@@�"5�@';<$%@1���

�M#L1�81�CM!�R"#$%&�@';<$#7L�<"#7,@1�

������������ ������������������������ ������������������������ ��������� !"!�#$�$�%��&�!�'�!�(�))"�*�#%+�$)#,�+���!�,-�"�&�-#)+!�.�$#)��+���/012�����(#,-#!"+"#��#$�$�%��&�!�'�!�*�+�),"��*��--� "�&����3�45�+ -������ 6�)�$#)�'�+�&�!7��+���+�,-�)�+%)��#$�89:�;<2�����$�%��&�!�,#"!+%)��(#�+��+�'�!���!#�*�+�),"��*�. ���3�45�!-�(+)#,�+�)2�3� ��!��!�,-��!�'�)��+�=����$+�)�+���/01�+#�*�+�),"���+���*">"!"#��#$�$"��!+�-�)+"(��!�?1@8:���*�1@A2BC�"��$�%��&�!2�DE�FGHIJKH�LMN�NOHPIHHOQM�DERE�SIGJ�T�QOJ�HULJG�����#"��!�����!�,-��!�'�)������ 6�*�"��+�����.#)�+#)"�!�#$�+���V�-�)+,��+�#$����),���/�&"���)"�&�?V�/C�#$�����"���W�">�)!"+ �#$���(��#�#& ���*�X112������#(�����.#)�+#) �#$�X11�*�+�),"��*�+���*�"� ��>�)�&�����+"�&�>��%����*�,#"!+%)��(#�+��+�?Y")C�#$�+���Z0�%!�*2�����V�/���.#)�+#) �-�)$#),�*�+���%�+",�+����*�-)#[",�+������ !�!�#$�'##*�(�"-!���*�Z02����.���8�-)�!��+!�+������+"�&�>��%�!�*�+�),"��*�"����(��#)",�+)"(�.#,.�?\.*C���*��!�)�(�">�*�$%���?\")C�(��(%��+�*�. �&���)���,#"!+%)��(#�+��+2��DE]E�UG�PUG_OPLJ�PQ_ QHOKOQM�Qa�LHU�HL_ JGH�����!�,-��!�'�)��+�=����+��#,"����?8::bC�.#"��)��#�*�?!+��,�$�#'�)�+���.#%+�c8d�+e�C2�����(#,-#!"+"#��#$��!��?�+�98B�;<C�"!�-)�!��+�*�"����.���c2������"+)#&���(#�+��+�"���!��!�,-��!�'�!�.��#'�*�+�(+"#���","+2�LfJG�DE�gUG_OPLJ�PQ_ QHOKOQM�Qa�LHUh�i�� 3%)��(��4j�5/k 0l� /<Z� m1l�/01�8 /01�A /01�c�/01�d�<ZA� A82:c� B2Bd� B2:n� d2on� d2cc� d2dn� d2AA� c2po� p28c�<�?<ZAC� B2pd� 82B8� 82cn� 82A9� 8289� 82AA� 828B� 82:c� 82nd�<���,� B2nc� 82B:� 82cn� 82cc� 828n� 82Ao� 828p� 828:� 82nA�0���,� c2nn� p2c9� c29d� c2:n� d28d� A2Ac� A2co� A2cc� A2Bn�0Zc�+#+��� n2n9� 892oB� n2o:� p2pc�8:2cB� B2o� B2n9� B29c� o2d9�0!%�-��+�� c2cp� p2:d� c2B8� A2n:� c29d� A2A:� A2An� A2c:� A2o:�0Zc�!%�-��+�� 92dc� 8p2o:� 92p9� p2Ad� n2o8� B2B:� B2pc� B2pB� o2B:�0!%�-�"*�� :2oA� :2cd� :2cc� :28n� :2c:� :2:c� :2:p� :2:c�q:2:8�0"ZA� p2A8� 8:2Ap� A929A�cA2:n�Ap2oA�cd2Bo�cB2cp�co289�c:2dc�3�AZc� A2po� c2A8� d2dc� d2p9� d29A� d2np� d2nc� B2c:� B2c:�m�AZc� c28A� c29p� n2Ao� 92d9� p28p� n2on�8:2pA�882o:�882c9�<�Z� Bc2A:� B928o� dA2op�co2Ac�d:28:�c82o9�c829B�c:2A8�c:2cB�<�Z$)��� 8B2oB� Ao2nc� 8o2:o�8d29d�8p2dd�8c2pn�8A2BA�8:2c:� c2o:�@&Z� 82A8� 82pn� :298� d2cd� c2dA� c2od� c2Bp� d2::� c2Ad�rAZ� :2BA� :2nB� A2B9� c28n� A2dB� c2op� c2po� d2:o� c2dB�j�AZ� :28p� :28c� :2Ac� :2dp� :2AB� :2A9� :2c� :2An� :2Ap�<�� :28o� :2Ad� :2cB� :2dp� :2co� :2dB� :2dd� :2p8� 82dd�s#!!�#��"&�"+"#��98B�t< A82A� o28:� B2A:� B28:� d2c:� d2o:� d2d:� d2d:� 8:2:��

��������������� �� �������������������������������������� �����������!����"��������� ������� ������������������#������������"����������� �����$��������������� ��!��"��%&'���"�(�)*+,�-./01�23�-41�156176�89�:.;/87.61�<=71;.0>�?1:8<@8>=6=87�ABCDEF�����G�� ���H������������ ������&"��� &"������IJ�KLM�GNOKN L%P� QRN� LGR�S�LGR�*�LGR�T�LGR�#��'IP�U�PG� V,WS� V,XX� V,XW� V,XY� V,XX� V,X#� V,XW� V,XY� V,Z#��PG�X,W� V,#Z� V,[Z� V,Z[� V,XV� V,XW� V,X*� V,XT� V,X#� V,XS��PG�SS,S� V,YX� V,[Z� V,X*� V,XT� V,XX� V,X*� V,XT� V,XW� V,ZV���������������������������������������������������������� ��������\]%P*����������������������������������H�����V,WS_V,XX,�����$��H������!���H��������$����V,Z*_V,ZW�$����"���H����������������������������(�R���"�������,�)*+,����������H�PG�$��������������������H�PG�$������H����������H�!��"�a������������������������������� �����������������,�&�������������b��H������������"�]�����������$��������������,�������W� �������������"�]������������������������������������������"�����a�IJ�KLMa��" ��������a��������b��a����� �������������LGR�S_#,�&������ ������a� ��!��"�����"�������%&'������H������a�$�����PG�$������������H�!��"�����X,W�����SS,S�cde]H�$���"���a����������H�!���)*+,�-./01�f3�gh0B�?17>=6i�89�.>4�908j>k�lm:<n�����G�� ���H������������ ������&"��� &"������IJ�KLM�GNOKN L%P� QRN� LGR�S�LGR�*�LGR�T�LGR�#��'IP�U�PG�S,WVT� S,*XY� V,[VX V,Z[S� V,[S[� V,Y[X� V,YXS� V,W#T� V,#S*��PG�X,W� S,#XT� S,*X� V,ZXZ V,YYX� V,X#S� V,YW*� V,YYY� V,WY#� V,#TS��PG�SS,S� S,Y#Z� S,T� V,ZWX V,ZS� V,X#S� V,W[X� V,WYW� V,WSW� V,##Z���n3n3�g8=01;�41.6�/.0.7:1���������������������������������������(��������������������������������"��O�������� ������������"�(��������%&'��������$���� ��������������������������������������)S[+��(�����������������������]��H����������"�������� ����������"����������������������"��,��������"�������������������a�������������������"��H������"����"���H�����"���������S�]H���������������� ����������H�(����������������������������������� �����������]��H� �������������������� ������������"���)W+,������� �������������"������������ �������������������������������a��������������&�G*a��"������H����%�P��������������������$���������,�Q��������������������� ����������������"������������������"�������

������������ ������������������������ ������������������������ �������� !� �����"!�#�$�%�&��'()*+�,�-"$� &���#.$!�/���-������%�0�.$-!�1!2!���.�$.� !%+�3.$!�/������ !� �4%25�/��67�8/98/7�1���#�$�%����#�..�1�:��; <=�% , > ? @A A ,?( ,?(B(+CB(( (D+ED)F E+E(B( B+)B B+GGCE E+(GFH 7IJ K K K KL K KM N O NN O N NP QR S ��1�!2!�AL�&��%!�$.#$2&T� &���!##&�&!��5�4U+�V+E+C�&��'BG*6W�,?(I �&�� �!�!X !� ��#���2"��� !�-&�!2�.�%!��-U��& &���'(B*W�,K 7�YK 7�?K 7�ZK 7�[K 7� (\]K ��2!���2"��7��5%2�/!�7��X5/!�7��& 2�/!�7��$.#$2���%���2"��� !���2"���%&�X&%!���� !� ��&��#$!.7�2!�U!� &0!.57�8/98/+�3.$!�/���0�.$-!�4%25�/��67�-E98/7�1�����.�$.� !%����#�..�1�:��; <=�% , > ? @A A ,?(,?(V+VGE) ()+GH(F (+DF(F )+HGGHB )+DVBH( (+DE(C )+C)G +^ IK K K KL K KM N O NN O N NP QR S ��,�2"���%&�X&%!���� !� �4%25�/��67�8/98/7�1���#�$�%����#�..�1�:��; <),?( , > ?A A ,?( ,?(E+DDGG )+)BHE )+))((B )+))B )+))BH +IJ K K KL K KM N ON O N NP QR S ��_..���.�$.� &����#�2��!� �"�.���!�1!2!�-�%!�#�2���2-�.����%& &���:�2�a�)�b,7�c2�a�B)B�E(C�d�+�e�!�"�&.!2�!##&�&!��5�� ���-&��.�.��%�����2%&�/� �� �!�f@�� ��%�2%�1���VV+Vg�4e�".!�D6+�hijkl�mn�opqklr�lssqtqlutv�w !-� x�.$!�� 8y� g�z{|}�~���}� � �>!� �#2�-�#$!.���-"$� &��� (DD�DCF� GD+)�d�5�&��.��!� ��#�#$!.�� BBBV� )+F�w�U$ ��!� ��#���-"$� &����&2�� B)�BEE� E+D�hp�ik� (HH�G)C� B))+)���{�����{|}��|�|�~}�� (FC�DVG� ������1& ��#.$!�/���� (C�D()� G+E������%$!� ��$�"$2�!%�#$!.�4,?6�� C� )+)��� �-�����.����� ED)C� B+E�3.5�����.����� GBE� )+E������%$!� ��2�%&� &���� VCF� )+E�hp�ik� E)�GGH� BB+(�z{|}�{��~�~{����� � VV+V����n�n��k�l��i��e�!���-U��& &����#�#.$!�/���1���%! !2-&�!%�"!#�2!� �!�fAd+�e�!�0�.$!���#��0!2�/!�����!� 2� &����#�-���2�!-&��&���/��!���2!�/&0!��&��e�".!�H7�U2!��!� &�/�#�2���-U�2&�����.���?A���%�"&�-����#&2&�/� !� �2!�$. ���" �&�!%�"5�

��������������� �������������������������������������� �����!���"���#���$�������%&'�"�#��$���#��#�����()*+,�-.�/012,134)3501�06�7)51�80++93)13:�51�6+9,�;):�*,604,�<=>�?@A�BCD�&��������� %EFG�H� %EG��IJK�L� KEMG��IJK�L NEFG��IJK�L��ENO'PE� �L�Q� FRSLR� �TRSFRR� R��EN�Q�U� �T�T� FRSTU� FRR� �U�R��EN������ ���F� FRSTU� FRR� �U�R���V �����������W�W#�����X�$�#������W�W�Y��� ���I�� �$�Z#� �#���������#[#�#���\�]�RJF�U��W��$�� ��_N��#�����#�X�$�����#��#����$��W�W����I������X��#�#����V ��W�Y��� ��������"�����I ��"Y�� ��W#��������#����W�� ��_N�����������$�����G�#��#����#�����#����� ����"#�����#$��V ��������#[#�#����W�W�Y��� ��W��$�� ��_N��Z�������$�#����#��� $���X�$������������\&#I��F��V �����������W�W#������� �X�$�#�����$���#����#��� ��������#�#���Z ���W#$#�I�EN�Z#� �"#���������X�$������X�$��EN�W#$#�I���F�����

�&#I��F��&�Y��� �������#��$#"��#����W��$�_N����.a.�=8,25652�201:9783501�)1b�,75::501�06�3c,�,1,4;d�9153�NX��#W#�������W��Z�#��#����$���W�W���������� G�%EFG�%E�����NEF���#��#����"�� �X�$����W��� ����\]� � �����I$���������$#�#�Y�X$�����#���\]� �"$��$��I#[���#��V�"���Q��V ���X��#W#��#��#����$���W�W���������� �X�$�X$�����#�����#���"��#�����MX�$#�������Y�W�$�� ��W#$���"�#��$��W�� �����$IY���#��Z�$�������������"���XX�#��"������� ���������"�#��$����Z�����P��V�"���e�� �$���$���Z��[�������W�%EF���#��#���S�"�����������X��������$������G�������������������� ��"��#���W�W�������X��#�#����V �� ����$�����W�� ����#��Z���F�Lf�]� � J]� �"$G���$$��X���#�I����� ��I$�������$IY��WW#�#���Y��W�TF�LgH��

������������ ������������������������ ������������������������ �������� �!"�#$%$#�$&'$#�()*+�)%�%,���#)&+,-"($)&��&'��+.��-$++$)&+�/01234567� 8025� 94:;<�=2:�>?4:<�360>;@A5260�A<7�;><B;:�?<45� CDEF?5?� GHI�J26@4>>�360>;@A5260�A<7�;><B;:�?<45� CDEF?5?� IK�L>?�B67@45260�A<7�;><B;:�?<45� CDEF?5?� MNO�=2:�>?4:<�A<7�<:<3572325P�QC76>>R� CDEF?<S7� NNO�J26@4>>�A<7�<:<3572325P�QC76>>R� CDEF?<S7� MGO�L>?�<@2>>260�A<7�<:<3572325P�QC76>>R� CDEF?<S7� TON��������U �!"�#$%$#��-$++$)&�$&'$#�()*+�V6::;5405� V<7�;><B;:�?<45W�ECDXF?5?� V<7�<:<3572325P�QC76>>RW�ECDXF?<S7�Y=O�M� GGT� HNN�Y=O�O�� GZG� ZOH�Y=�� [\[TI� [\MMM�]=O�� [� [��M��34:3;:45260�S4><1�60�@<4>;7<1�A<73<054C<�6B�Y=O�_25?�34:3;:45<1�6:;@<�6B�17P�C4>a�O��34:3;:45260�S4><1�60�B;<:�36@A6>25260\�b �c)&#�,+$)&+�d?<�1454�B76@�<eA<72@<054:�5<>5>�3601;35<1�60�YfJ�S62:<7�2012345<�5?45�5?<�5?<7@4:�C76>>�<BB232<03P�6B�5?<�S62:<7�2>�NN\Ng\�h<C47120C�<@2>>260�2056�427W�5?<�4<74C<�3603<05745260�6B�Y=W�i=e�401�]=O�45�>54S:<�:641�472<1�20>2C02B23405:P\�d?<�5<>5�_25?�S26@4>>�5?<7@4:�>?47<�6B�MIg�>?6_<1�5?45�5?<�>A<32B23�<@2>>260�6B�]=OW�Y=�401�i=e�7<@420<1�5?<�>4@<�67�>:2C?5:P�1<37<4><1�36@A47<1�_25?�5?<�4:;<>�7<A675<1�SP�V:4@;>�<5�4:\�20�jOk�_?<7<�60:P�=]�_4>�B27<1�_25?�lm9�6B�N\I�XnDEC\�d?<�4>?�3605<05�_4>�1<37<4><1�SP�MKg�401�Y=O�<@2>>260>�_<7<�MT\Kg�:6_<7\�d?<�3605<05�6B�B20<�A47523:<>�Qo�O\I�p@R�6B�4>?�4B5<7�5?<�q]V�7<@420<1�20�5?<�>4@<�:2@25>�36@A47<1�56�5?<�7<>;:5>�6S5420<1�SP�V47<�<5�4:\�jMOk\�d?<�>A<32B23�360>;@A5260�6B�62:�>?4:<�A<7�;><B;:�?<45�401�C76>>�<:<3572325P�_4>�[\GHI�5DXF?5?�401�[\NNO�5DXF?<S7W�7<>A<352<:P\�d?<�>A<32B23�360r>;@A5260�6B�S26@4>>�A<7�;><B;:�?<45�401�C76>>�<:<3572325P�_4>�[\[IK�5DXF?5?�401�[\MGO�5DXF?<S7W�7<>A<352<:P\�d?<�>4@<�201234567>�B67�5654:�4>?�B67@4r5260�_<7<�[\MNO�5DXF?5?�401�[\TON�5DXF?<S7W�7<>A<352<:P\�d?<�?<45�745<�6B�5?<�;025�_4>�O\GK�XF?5?DXF?<S7W�3677<>A60120C�56�5?<�C76>>�<0<7CP�<BB232<03P�6B�TO\GHg\�d?<�5<>5�7<>;:5>�<036;74C<1�=]�401�S26@4>>�36r36@S;>5260�20�4�YfJ�S62:<7\�d?<7<B67<�411252604:�S26@4>>�B<<120C�>P>5<@�?4>�S<<0�20>54::<1�_?23?�4::6_>�2037<4>20C�S26@4>>�>?47<�;A�56�I[g�6B�5?<7@4:�20A;5\�V7<:2@2047P�5<>5�7<>;:5>�2012345<�5?45�5?<7<�2>�06�<BB<35�60�B6;:20CW�?6_<<7W�S62:<7�<BB232<03P�@4P�1<37<4><W�S;5�25�@420:P�1<A<01>�60�B;<:�@62>5;7<�3605<05�QS4><1�60�;0A;S:2>?<1�1454�SP�d\�V2?;�<5�4:\R\�

��������������� ������������������������ !"�#$%� $��&$ "�'!(�"#�"���%" ''�#'�) $* �+#,�$�+( -"%� -.��%/�01 ((2�"#�3$4�5 1-�6�1-78$*9�:�*�(#/;�-"�3 - &�$4�<1"�#!"��1%�%!//#$"�"�1%�/$#7�0"�0#!(.�-#"�� *��=��-�0 $$1�.�#!"4���>?@?>?AB?C�D4�+( ;!%9�E49�F##% $9�F49�G"%9�H49�)�%�!; 2�*9�:4�I1$1-&�J%"#-1 -�#1(�%� (��#'��1&��$�K! (1"2�1-�LIM�=#1(�$%�N��-*1$#-;�-" (� -.��0#-#;10�1;/ 0"4�OPQ�RSTQUV�WXDD9�YZ[DF\9�DD]NDW4��W4�+( ;!%9�E49�G"%9�H49�+1�!9��49�)�%�!; 2�*9�:4�I1$1-&�J%"#-1 -�#1(�%� (��1-�LIM�=#1(�$%�N� %��= ( -0�� -.�=�� *1#!$�#'�0 $=#- "��;1-�$ (%4�OPQ�RSTQUV�WXDD9�YZ[D\9�_Na4��]4�bc%0��-9�H49�3 .(�-�$9�54�J0#-#;10�*1 =1(1"2�#'�=1#; %%�0#'1$1-&�1-�-�,�� $.d0# (�/#,�$�/( -"%�1-�e�$; -24�fPghTii�Tjk�fPgUjUlmnV�*#(4�1-�+$�%%9�WXD]4��o4�5##%9�p49�F##% $9�F49�6#(q#* 9�H49�F"$�1;1q�-�9�:4�e$��-�#!%��& %��;1%%1#-�$�.!0"1#-�/�$%/�0"1*�%�1-�"���M ("10�F" "�%�1-�'$ ;�%�#'�Jr��-�$&2� -.�0(1; "��/#(1024�sUjUtu�Rviwu�xjUlmu�sUyuV�WXDW9�z{[o\9�WD]]NWDo4��_4�E#-1%"9�H49�+1�!9��49�)�%�!; 2�*9�:49�F11$.�9�H4�G1(�%� (��/!(*�$1|�.�'1$1-&}�=#1(�$��''101�-029� %��= ( -0�� -.�'(!��& %�0#;/#%1"1#-4�OPQ�RSTQUV�WXD]9�~�[D\9�ND4��4�+1�!9��49�E#-1%"9�H49�)�%�!; 2�*9�:49�b##% $9��49�F11$.�9�H49�+ $*�9��49�3#(#."%#*9�H4�F�#$"d"�$;�"�%"%�#-�'1$1-&�#1(�%� (��'!�(� //(21-&�(#,d"�;/�$ "!$��*#$"���"�0�-#(#&24�OPQ�RSTQUV�WXDW9�Y�[D\9�]NDa4��a4�H$$#9��49�+$1qq9�H49�+1�!9��4�L#;=!%"1#-�#'�J%"#-1 -�#1(�%� (��1-�'(!1.1|�.�=�.�=#1(�$%9��� "1-&�* (!��#'�'!�(9�=#1(�$��''101�-02� -.�LGW��;1%%1#-%4�OPQ�RSTQUV�WXX_9�YY[oF\9�]��NoX4��4��#"" 9�H49�+ $qq#-�-9�549��1("!-�-9�349�H$$#9��49�b##% $9��49�+ $*�9��49�+1�!9��49�+$1qq9�H49��11q; 9��4�J�/�$1�-0��#'�J%"#-1 -�#1(�%� (��0#;=!%"1#-�= %�.�#-�LIM�"�0�-#(#&2� "�) $* �+#,�$�+( -"%4�OPQ�RSTQUV�WXX_9�YY[oF\9�]DN]�4���4�+1�!9��49�H$$#9��49�+$1qq9�H49�5##" ;;9�549�E#-1%"9�H4�L#$$#%1#-�#'� 1$�/$��� "�$�"!=�%�#'�#1(�%� (��LIM�=#1(�$4�+ $"�p4�:�,�/#1-"�#'�'(!��& %� -.�(#,d"�;/�$ "!$��0#$$#%1#-4�OPQ�RSTQUV�WXX�9�Y{[D\9�_NDW4��DX4�F!1q9��49�+1�!9��49�3#(#."%#*9�H4�<� $�#'�"���'!�(�%!//(2�%2%"�;�#'�LIM�=#1(�$%4�OPQ�RSTQUV�WXX9�Y�[W\9�WX�NWD4��DD4�F!1q9��49�+1�!9��4�< $$ -"2�$�(1 =1(1"2�#'�LIM�=#1(�$�=!$-1-&�#1(�%� (�4�OPQ�RSTQUV�WXX�9�Y{[W\9���NDXa4��DW4�+ $*�9��49�b##% $9��49�3 ��#*9�349�E#-1%"9�H4�J;1%%1#-�#'�'1-��/ $"10!( "�%�'$#;�#1(�%� (��'1$�.�( $&��=#1(�$%4�OPQ�RSTQUV�WXDD9�YZ[DF\9�D_WNDD4��D]4��!/ 9�34�p-"�$ 0"1#-�#'�'!�(%�1-�0#d'1$1-&�1-�IML4��vUQV�WXX_9�Z�[DX\9�D]DWND]D�4��Do4�6 ;*!q 9�:49�+1"� $#!(1%9�349�H(�*1|#%9�e49�5�/#!%q#!9�J49�+�-" $19�:4�H%���''�0"%�.!$1-&�0#;=!%"1#-�#'�(1&-1"��=1#; %%�=(�-.%�1-�'(!1.1|�.�=�.4�sUjUtu�xjUlmuV�WXX�9�~�[DW\9�W WNWaD4��

������������ ������������������������ ������������������������ ��������� !"�#�"�#$% &'$($"�)��*�"�+�(,--"�.�"�+!-'"�/��)��0���-1-'�23-4%��5�&�3�6-'!47�&22(�&8 �%��2(-6!8%�&� �5�(3&%!�4�6$(!47�8�95!(!47��5�8�&'�&46�,!�3&����:;<=�>?@A<BBC�D<AEF@=CG�HIIJ"�KLMJN"���OPQ���R����R��*&�$"�S�"�*$%'-("�/�"�T-�4"�U��0��*!�3&���8�95!(!47��2%!�4���4�% -�-3!��!�4��(-6$8%!�4�&46�-'-8%(!8!%V�7-4-(&%!�4�8��%��!4�8�&'95!(-6�2�W-(�2'&4%���X<F<YC�ZF<?[CG�HI��"�\]M�N"�HPHQHPP������0 �"�U�"�_41&''"��"�+&$22!4-4"�/��a�((��!1!%V��5�5'$-�7&�-��6$(!47�8�95!(!47�a !4-�-�,!�3&���W!% �8�&'�&%�5'$!6!�-6�,-6�8�46!%!�4���:;<=�>?@A<BBC�D<AEF@=CG�HI�b"�cLd"�PHQPP����P��S(�4�,!�"�U�� -�!45'$-48-��5�,!�3&���8�98�3,$�%!�4��4�,�!'-(�5�$'!47�&46�-55!8!-48V��:;<=G�HIIR"�edMON"�OOQOPI����J��_#f9_g��HJ�H9��hHIIbh�ijk<?lD;m<�n@o=<?B�jFp�q;ro=oj?s�tFBkj==jko@FBC�>j?k�uvC�qAA<wkjFA<�D<BkBC��HI��g-� $3&V-1"���"�x%�"�0�"�S&(1-"��"�S! $"��"�S'&3$�"��+�"�S(!yy"�0��a�3,$�9%!�4��5�*&'%!8��!'�� &'-��!4�,�!'-(��W!% �5'$!6!z-6�,-6�8�3,$�%!�4��>@Y<?�D<AEF@=@[s�jFp�ZF[oF<<?oF[G�HI��"�{{|�N"�bPHQbP����H���0((�"�)�"�S(!yy"�0�"�S! $"���a&'8$'&%!�4��5�}$&'!%&%!1-�&46�}$&4%!%&%!1-�8�392��!%!�4��5�_�%�4!&4��!'�� &'-�&46�!%��8�3,$�%!�4�2(�6$8%���S&(%����a&'8$'&%!�4��4�% -�,&�!���5� -&%!47�1&'$-��:;<=G�HIIb"�e~M�PN"�H�JQH�J������>?<B<Fk<p�ms��.-8-!1-6��

59

PAPER II

������������ ������ ����������������� ���������������������� ���������� ����� ����� �� !�"��"�#$���%&�'()�� ��* ��+,-�./0-1�23-415,617�8,5,9:;�<+,-15�188,=,19=>?�0./�<0-09=1�097�8-31�:0.�=+@2+.,A,+9�BCBD�EFGHIJKL�JMGN�OHPNL�QRHJDH�GSIPNRBTSUL�BGQDSI�IHHDQS��QVWXYZ[V\Z�]�J_VY[X�S\ab\VVYb\aL�JXb\\�N\bcVYdbZe�]�JVf_\]]ae�ggh�E]Wb�IZiL�ggjgk�JXb\\L�SdZ]\bX��� lmnopqros�tuv�wxwvy�wyvzv{|z�x{x}~zvz�����x|x���|x�{v���y�����}�zux}v�w�}�vy��v����y�{��|vz|z��xyy�v����|�x|�|uv��vz|�����vy��}x{|�������|ux|��z�wxy|����x{��z|�{�x{�w��vy����wx{~��xy�x����vy��}x{|z���������{v���~�x�z|x|v����wx{~��vz|���{vy��x�����tuv�|vz|z��vyv���{���|v��x|�|������}vy�}�x�z�����������|�u��x{������������|�u���{�|uv�t���������}vy����y�{��v�wvy��v{|z�zx�w}vz������||���x{���}~�xzuvz��y����{vy|�x���z|���}}v�|�yz�x�|vy�|uv�z�wvy�uvx|vy������x{��v��{����vy��� ¡�¢�xz��v}}�xz��}~�xzu��y���|uv�v}v�|y�z|x|���wyv��w�|x|�y����������|uv���yz|¢�zv��{��x{��|u�y����v}�z��vyv�|x£v{���{x}~z�z����|uv��xz�zx�w}v�|x£v{�x|�|uv�����v��|��xz�wvy��y�v���tuv�xzu���z|y���|��{�x|�����vyv{|�xzu���z�uxy�v�w�y|z��xz���|x�{v����{x}~z�z����|uv�xzu��uv���x}����w�z�|��{��xz��xyy�v����|��tuv�zwv��������{z��w|��{������}�zux}v�wvy��zv��}�uvx|�x{���y�zz�v}v�|y���|~�wy����|��{��xz����{��x{���|uvy�|v�u{��v��{������uxyx�|vy�z|��z��vyv��v|vy��{v���tuv�|vz|z�x|�wxy|�x}�x{��{���{x}�}�x�z�zu��v��|ux|�|uv�v��zz��{�����¡�¢� ¡�¢� ¡¢��¡�x{��� }�x|�{���{x}�}�x���vyv�vzzv{|�x}}~�u��uvy��tuv���{|v{|������{v�xzu�wxy|��}vz��¤����¥���x�|vy�|uv������xz�u��uvy�x|�{���{x}�}�x������¦vz�}|z����x{x}~z�z��x{�zvy�v�xz�x��xz�z���y���|�yv�yvzvxy�u�x{���v�v}�w��v{|�wy�§v�|z���}z�¢�|uv~��x{��v��zv��|���v���v��uv|uvy�|����{|�{�v��wvyx|��{�������{�|z���©ª«¬­p®n���}�zux}v¢�w�}�vy��v����y�{�¢����}vy�v�����v{�~¢�xzu��x}x{�v¢��}�v��xz����w�z�|��{��°±�,²³µ¶·³¹µ²�SVdZb�S\VYabX�BI�bd�SdZ]\bXºd�VX»b\a�X\»�]\V�]�Z_V�[]dZ�dba\bbfX\Z�W]¼VY�aV\VYXZb\a�f][WX\bVd�b\�Z_V�½XZbf�YVab]\i�J_V�f][WX\e�]¼\d�Z¼]�W]¼VY�WX\Zd�b\�Z_V�cbfb\bZe�]�GXYcX�fbZe�¾�Z_V�½XZb�O]¼VY�OX\Z�¿½OOÀ�X\»�Z_V�SVdZb�O]¼VY�OX\Z�¿SOOÀL�¼_bf_�XYV�Z_V�ÁbaaVdZ�]b�d_XV�bYV»�W]¼VY�WX\Zd��������������������������������������������������KÂ]YYVdW]\»b\a�XÃZ_]YÄ�VÅ[Xb�x}xy�£�{�z|Æ||��vv�

��������������� ������������������������������������������������������������� ���� !"#�$%&�'()*+�,-./�0(1$�(2�3('&)�3*4#$1�5#"$1�4)&�641&+�(#�35*7&)"8&+�2")"#9�:;<=�$&>%#(*(9?�'%">%�%41�6&&#�433*"&+�1"#>&�$%&�-@AB1/�C#�$%&�?&4)�DBBE�$%&�>")>5*4$"#9�2*5"+"8&+�6&+�:F<G=�$&>%#(*(9?�'41�15>>&1125**?�"H3*&IH&#$&+�2()�("*�1%4*&�>(H651$"(#/�J"#>&�$%&#�4�*($�(2�1$5+"&1�%47&�6&&#�>(#I+5>$&+�$(�+&1>)"6&�$%"1�$&>%#(*(9?�4#+�+&$&)H"#&�$%&�3(1"$"7&�4#+�#&94$"7&�413&>$1�)&94)+"#9�("*�1%4*&�>(H651$"(#/�J(H&�(2�$%&�)&15*$1�>(#>&)#"#9�$%&�F<G�$&>%#(*(9?�4#+�6("*&)�)&*"46"*"$?�4)&�3)&1&#$&+�"#�,DK-L./�M7&#�$%(59%�F<G�"1�$%&�6&1$�474"*46*&�$&>%#(*(9?N�$%&�51&�(2�$%&�;<�$&>%#(*(9?�"1�1$"**�#&&+&+�$(�H&&$�$%&�&#&)9?�+&H4#+�+5)"#9�$%&�3&)"(+�(2�$)4#1"$"(#�2)(H�;<�$(�F<G/�O$�$%&�14H&�$"H&N�+5&�$(�1$)">$&)�&#7")(#H&#$4*�)&P5")&H&#$1�$%&)&�"1�4�#&&+�$(�"#1$4**�&P5"3H&#$�$(�)&+5>&�15*3%5)�4#+�#"$)(9&#�&H"11"(#1/�Q&13"$&�$%&�24>$�$%4$�#5H&)(51�$%&()&$">4*�4#+�&R3&)"H&#$4*�1$5+"&1�+&1>)"6&+�"#�,-A.�%47&�6&&#�+&7($&+�$(�$%&�("*�1%4*&�;<�$&>%#(*(9?N�1$"**�4�*($�(2�74*546*&�"#2()H4$"(#�"1�H"11"#9/�C#�4++"$"(#�$(�;<�4#+�F<G�>(H651$"(#�$&>%#(*(9"&1�(2�("*�1%4*&�4*1(�4#�4$$&H3$�'41�H4+&�$(�433*?�$%&�7()$&R�>(H651$"(#�:SF=N�'%">%�>(#1"1$1�"#�$%&�9&#&)4$"(#N�"#�$%&�*('&)�34)$�(2�$%&�25)#4>&N�(2�4�>")>5*4$()?�H($"(#�(2�$%&�941�)&*4$"7&�$(�$%&�%()"8(#$4*�4R"1�:$%&�%()"8(#$4*�7()$&R=�6?�)&4))4#9"#9�$%&�9&(H&$)?�(2�$%&�>(H651$"(#�4")�"#T&>$"(#�4#+�$%&�25&*�2&&+"#9�"#$(�$%&�>(H651$"(#�>%4H6&)/�O�+&$4"*&+�+&1>)"3$"(#�(2�$%&�&22()$�$(�433*?�$%&�SF�$(�("*�1%4*&�>4#�6&�2(5#+�"#�,-U./�V(�>(H34)&�F<G�4#+�;<�$&>%#(*(9"&1N�"#>*5+"#9�$%&�&22">"&#>"&1�(2�+&15*3%5)"84$"(#N�$%&�3)&1&#$�1"$54$"(#�'"$%�;<�6("*&)�&H"11"(#1N�41%�64*4#>&�4#+�6("*&)�&22">"&#>?�%4+�$(�6&�+&$&)H"#&+�"#�+&$4"*N�6($%�4$�34)$"4*�4#+�#(H"#4*�*(4+1/�C#�$%&�2)4H&�(2�$%&�)&1&4)>%�("*�1%4*&�2")"#9�$&1$1�'&)&�3&)I2()H&+�(#�$%&�6("*&)�V;I-B-�(2�$%&�M;;W1�&#&)9?�5#"$�X(/�L/�C#�$%&�&#&)9?�5#"$�'"$%�4�>434>"$?�(2�DBB�0Y&�$%&�35*7&)"8&+�>(H651$"(#�$&>%#(*(9?�"1�433*"&+/�V%&�V;I-B-�6("*&)�%41�2(5)�2*5&1�4#+�"$1�1$&4H�(5$35$�"1�ZDB�$[%�'"$%�34)4IH&$&)1�(2�-E�0;4�4#+�LEB[LEB�\F/�J(H&�(2�$%&�>%4)4>$&)"1$">1�$%4$�4)&�4$$)"65$&+�$(�$%"1�$&>%#(*(9?�"#>*5+&�$&H3&)4$5)&1�41�%"9%�41�-ZLBK-EBB�\F�'"$%"#�$%&�>(H651$"(#�>%4H6&)N�$%&�(>>5))&#>&�(2�)&+5>"#9�4$H(13%&)&�8(#&1�"#�$%&�25)#4>&�4#+�$%&�2"#&�34)$">*&�2)4>$"(#�(2�$%&�9)(5#+�25&*N�65$�4*1(�1"9#"2">4#$�2&4$5)&1�(2�$%&�$%&)H4*�>(#7&)1"(#�(2�$%&�H"#&)4*�34)$�(2�("*�1%4*&/�]�_abcdebfghi�jbgkla�V%&�H4T()�9(4*�(2�$&1$1�'41�$(�>4))?�(5$�$%&�4#4*?1&1�(2�41%�4#+�2*5&�941N�41�'&**�41�7&)"2?�+4$4�(6$4"#&+�"#�$%&�-@mB1�K�2*5&�941�>(H3(1"$"(#N�41%�64*4#>&�4#+�6("*&)�&22">"&#>?/�V%&�$&1$1�'&)&�>(#+5>$&+�'"$%�$%&�("*�1%4*&�(2�>*411�;Z�:34)$">*&�1"8&�BKEB�HH=�2)(H�$%&�1>)&&#"#9�6&2()&�&#)">%H&#$�2)(H�M1$(#"4�4#+�S")5�H"#&1N�4#+�;E�:BKZBB�HH=�25&*�2)(H�$%&�M1$(#"4�H"#&/�V%&�H4"#�>%4)4>$&)"1$">1�(2�$%&�6("*&)�+5)"#9�$%&�$&1$1�4)&�9"7&#�"#�V46*&�-/�V%&�74)"4$"(#1�(2�1$&4H�3)&115)&�4#+�H411�2*('�+5)"#9�4**�$&1$1�4)&�3)&1&#$&+�41�'&**/�C$�>4#�6&�1&&#�$%4$�$%&�74)"4$"(#1�4)&�1H4**&)�$%4#�$%&�H4)9"#4*�74*5&1�9"7&#�"#�$%&�1$4#+4)+�MSJIMX�-D@LDI-L�:DBBZ=�,-m./�

��������������� ������������������������������������ !� "#$�%#&�&'#(� )'!%*#&�&'#(�+'%& $�&'#(,�-.�/� 01023��� 41526���7& 8�$%8#&�&'#(�'9�:*%�,�-. � 033234� 0;4256�<� #!�� != $#�:$ �>&%? @A:= $/ #� (B,�CD� 50623@53;2E� 53E2;@503�<� #!�=$ AA:$ �>&%? @A:= $/ #� (B,�-"#� 042FG@0234� 042;0@423G�"$ AA:$ �?#$%#�%'*�'9�&%? �A� #!,�H� 32E� 324�<� #!�!#AA�9&'I�>&%? @A:= $/ #� (B,�JK@A� 6624G� E523E@F62;1�-#AA�9&'I�?#$%#�%'*�'9�&%? �A� #!,�H� 624� 025�L&: �K#A�� != $#�:$ �>#9� $��/ �7<"B,�CD� 0E0� 0;3��� M:$%*K��/ �� A�A��/ � AA *�%#&�#:N%&%#$% A�'9��/ � * $KO�:*%��I $ �$ K%A� $ (2�P/ ��'�#&� & 8�$%8%�O�:A �'9��/ �#:N%&%#$O� Q:%=! *��'9��/ �:*%��I#A�04241�-.�>0424HB�#��=#$�%#&�&'#(�#*(�0526F�-.�>E23HB�#��*'!%*#&�&'#(2�M:$%*K��/ �� A�A��/ �#*#&OA A�'9�9: &,�#A/�#*(�9&: �K#A�I $ �8#$$% (�':�2�P/ �&'8#�%'*�'9�='$�A�9'$�8'&& 8�%*K�A#!=& A�%A�A/'I*�%*�L%K2�02�L: &�A#!=& A�I $ ��#J *�'*�(#%&O�#? $#K �R#A%A2�SA/�A#!=& A�I $ ��#J *�9$'!�A ? $#&�='$�A�&'8#� (�%*��/ �9:$*#8 �8/#!R $,�A:= $�/ #� $�><TB,� 8'*'!%U $�>7DVB�#*(�8O8&'* ,�#*(�9$'!�#&&��/$ �9% &(A�'9��/ � & 8�$'A�#�%8�=$ 8%=%�#�'$�>7<"B2�<#!=& A�'9�9&O�#A/�9'$�( � $!%*%*K��/ �!#AA�(%?%A%'*�>�'�#&�A:A= *( (�=#$�%8:&#� A�"-03�#*(�"-425B�I $ ��#J *�R 9'$ ��/ �9&: WK#A�9#*2�S&&�#A/�A#!=& A�I $ ��#J *�9$'!�R'�/�A%( A�>S�X�& 9��#*(�+�X�$%K/�B�'9��/ �R'%& $2�P/ �A#!=& A�I $ �:A (�9'$�( � $!%*%*K�#�( �#%& (�8/ !%8#&�8'!='A%�%'*�'9�8O8&'* �#*(�7<"�#A/ A,�%*8&:(%*K��/ �8'*� *��'9�D#V9$ �#*(�DV48#$R'*#� 2�M:$%*K��/ �� A�A��/ � & 8�$%8%�O�:A �'9��/ �#:N%&%#$O� Q:%=! *��'9��/ �:*%��#*(�R'%& $� 99%8% *8O�I $ �8#&8:&#� (�#A�I &&2�P/ �$ A:&�A�'9�A#!=& �#*#&OA A�I $ �#? $#K (��'�$ #8/�#�$ =$ A *�#�%? � A�%!#� 2�S&A',�(:$%*K��/ �� A���/ �!#Y'$�=$'8 AA�=#$#! � $A�'9��/ �R'%& $�#*(�:*%��#A�#�I/'& �I $ �$ 8'$( (�:A%*K��/ �=&#*�ZA�A�#*(#$(�(#�#�#8Q:%A%�%'*�����L%K2�02�+'%& $�P"W030�X�A#!=&%*K�='%*�A2�

��������������� ������������������������������������������������������������� ���� !"#"$%&�%'()*+',�$-�.%$%/&+'%�$0%�1'+$2"�%*%3$/+3+$#�"%*453-'"1&6$+-'7�80%�$%&6%/($1/%�('.�3-&6-"+$+-'�-4�4*1%�,("�9%/%�&%("1/%.�)%4-/%�$0%�4*1%�,("�%:0(1"$�4('�-'�)-$0�"+.%"�-4�$0%�)-+*%/7�80%�$%"$�($�6(/$+(*�;<=>?�@A<B�$C0�-4�6/+&(/#�"$%(&D�)-+*%/�*-(.�9("�3-'.13$%.�4+/+',�-+*�"0(*%�4/-&�$0%�E+/1�&+'%7�F1/+',�$0%�'-&+'(*�;A==>?�@GA=�$C0D�*-(.�$%"$�$0/%%�H(/+%$+%"�-4�-+*�"0(*%�"166*+%.�4/-&�E+/1�('.�I"$-'+(�&+'%"�9%/%�1"%.7�80%�"(&6*%"�-4�)-$$-&�('.�4*#�("0�4/-&�)-$0�)-+*%/�"+.%"�9%/%�$(J%'�($�'-&+'(*�('.�6(/$+(*�*-(."7�80%�$-$(*�-4�AK�("0�"(&6*%"�9%/%�$(J%'�4/-&�"%H%/(*�6-/$"�*-3($%.�+'�$0%�41/'(3%L�"16%/�0%($%/L�%3-'-&+M%/�('.�3#3*-'%L�('.�4/-&�(**�$0/%%�4+%*."�-4�$0%�%*%3$/-"$($+3�6/%3+6+$($-/�;INOAL�INOP�('.�INOGD7�80%�("0�9("�$(J%'�4/-&�$0%�./#�4*-9�$-�%'"1/%�/%6/%"%'$($+H%�"(&6*%"7��QRSR�TUVWUXYZYU[�U\�\]_�aX�80%�('(*#"+"�-4�3-&)1"$+-'�,("�9("�3(//+%.�-1$�($�)-$0�*-(."�('.�$0%�"(&6*%�9("�$(J%'�4/-&�$0%�6-/$"�)%0+'.�$0%�INO7�80%�4*-9�-4�3-&)1"$+-'�,("�4/-&�$0%�)-+*%/�+"�.+H+.%.�+'$-�$9-�6(""%"�('.�.+/%3$%.�+'$-�$9-�INO"�;4+*$%/"�b�;/+,0$D�('.�c�;*%4$DD7�d("�"(&6*%"�4-/�('(*#"%"�9%/%�$(J%'�4/-&�)-$0�"+.%"�-4�$0%�)-+*%/�("�$0%�3-&6-"+$+-'�-4�4*1%�,("�('.�("0�&(""�4*-9"�+'�$0%"%�.13$"�(/%�.+44%/%'$L�("�(�/1*%7�80%�&%("1/%&%'$"�+'�)-$0�6(""%"�9%/%�&(.%�.1/+',�A<�&+'1$%"7�b*"-L�$0%�4*-9�"6%%.�9("�&%("1/%.�6%/+-.+3(**#�('.�$%&6%/($1/%�3-'$+'1-1"*#7�80%�"(&%�6-/$"�9%/%�1"%.�4-/�$(J+',�4*#�("0�"(&6*%"�$-�.%$%/&+'%�$0%�.+H+"+-'�-4�$0%�4+'%"$�6(/$+3*%"�;OeA=�('.�OeP7<D�+'�4*1%�,("7�80%�3-&56-"+$+-'�-4�4*1%�,("�9("�.%$%/&+'%.�(66*#+',�('�f8gh�$#6%�('(*#M%/�4-/�9%$�,("L�($�(�$%&6%/($1/%�-4�AB=�ij7�80%�4*1%�,("�&-+"$1/%�3-'$%'$�9("�(*"-�.%$%/&+'%.�)#�(�f8gh�"6%3$/-&%$%/7�kR�l_X]ZX�a[m�mYXnXXYU[�kRSR�o_]�p�UY]�Xqa]_�80%�-+*�"0(*%�"(&6*%"�9%/%�('(*#M%.�+'�*()-/($-/+%"�-4�$0%�F%6(/$&%'$�-4�80%/&(*�I',+'%%/+',�;F8ID�-4�8(**+''�r'+H%/"+$#�-4�8%30'-*-,#�('.�IOO7�80%�*-3(*�*()-/($-/#�-4�IOO�.%$%/&+'%.�$0%�.(+*#�(H%/(,%�0%($+',�H(*1%�('.�&-+"$1/%�3-'$%'$�s+/7�80%�F8I�*()-/($-/#�&(.%�$0%�1*$+&($%�('.�6/-:+&($%�('(*#"+"�-4�$0%�"(&%�"(&6*%"7�8()*%�P�6/%"%'$"�$0%�0%($+',�H(*1%"�.%$%/&+'%.��tau]_�QR�vY]�Xqa]_�nqawanZ_wYXZYnX�� O(/$+(*�*-(.� x-&+'(*�*-(.�s+/L�>� AP7y� AA7K�z).L�e{CJ,� A=7|� A=7G�z+/L�e{CJ,� B7<� B7A�b/L�>�� }}7G� }<7B�;j~PD3/L�>� AK7y� Ay7P�

��������������� ����������������������������������� �����������!�������"�#������������!����������������$�%&��&�����#�'��!��������������������&������������������(���������"��&������$��)*+*�,-.�/-.01/23�/4054617148�49�26-�62053.6�%&�����(���� ������:������� ��������������;����������<==>?�@A<=��B&������(��������C=>?�@<CD��B&�$�%&�����(���������E�E!���������&�����D<C�FG�����(��H����������%�����A$�%&�������#����������������&����(���� ������� ����������������$�,2I3.�)*�J-.01/23�/4054617148�49�26-K�L�� M���N��B&�O!������ PQ� RGS� G"����� RPT�<� RPT�U� RPT�A�<CD� <D$V<� V$AW� C$X<� <$XU� <$W=� <$Y=� =$XA�GSU� A<=� U$WV� <$<=� U$DV� <$=D� <$WD� <$YW� <$<D�<CD� C$<=� U$=<� <$W<� =$CU� =$YY� =$AD� =$UC�G��GSU�� A<=� =$VA� =$A=� =$VD� =$UX� =$YW� =$Y=� =$AU�<CD� C$V<� U$=A� <$CD� =$A<� =$AY� =$UC� =$<D�G����� A<=� =$VU� =$U<� =$WD� =$<X� =$AC� =$UC� =$<W�<CD� <$=X� <$VC� <$VU� <$YU� U$C<� U$DD� A$V=�P����� A<=� =$DA� <$CA� <$VX� =$XD� U$AV� U$VC� A$YU�<CD� U$VA� Y$AD� Y$A=� A$CW� W$UD� V$U=� X$UC�PSA������� A<=� U$=D� A$DA� Y$YD� U$YC� C$XA� W$DD� D$CC�<CD� <$=U� <$VC� <$VY� <$YY� U$YY� U$VW� A$WC�P�!�(&���� A<=� =$VX� <$C<� <$VV� =$XY� U$UV� U$WW� A$UY�<CD� U$CC� Y$AD� Y$AC� A$W=� W$<=� W$X=� X$<A�PSA��!�(&���� A<=� <$XD� A$VW� Y$Y<� U$AC� C$WV� W$WY� D$=X�<CD� <U$XX� <W$UC� U=$=<� UA$VV� AY$Y<� AW$=U� Y<$AU�P�SU� A<=� UY$CD� UD$AY� UW$YU� UD$VY� AC$CC� AV$=A� AV$XD�<CD� Y$WW� A$CD� Y$==� <$CD� <$A=� <$YV� <$<W�O�USA� A<=� A$DC� Y$=C� Y$<V� Y$<<� A$XA� Y$=D� A$XV�<CD� C$XD� X$VA� <<$CY� <Y$YC� <D$=<� U<$UY� U=$AY�Z�USA� A<=� <Y$V=� D$C=� W$DC� V$CX� X$UU� D$DX� <<$AA�<CD� CV$VY� CX$=D� CD$CY� CV$U<� AW$=Y� AA$YW� UD$=<�G�S� A<=� CA$AD� YW$VW� YC$VC� YC$V=� AA$AV� UD$XW� UY$WV�<CD� <W$Y<� UC$=V� <X$YC� UA$Y=� <U$UD� <=$CA� W$DU�G�SE���� A<=� <X$VX� <Y$AC� <C$==� <V$A<� <=$AC� X$WA� W$UD�<CD� =$X=� U$XC� <$=Y� U$=U� <$YC� <$=X� U$=Y�[#S� A<=� C$A=� C$UV� W$YU� W$D<� A$AW� Y$AW� A$<=�<CD� <$<W� <$WX� <$VA� <$XA� Y$<=� C$C<� V$YX�\US� A<=� <$X=� U$U<� U$<X� <$XC� C$UC� C$CY� V$<X�<CD� =$UY� =$<D� =$<D� =$U<� =$AY� <$DX� =$CW�]�US� A<=� =$UY� =$UY� =$UU� =$<X� =$AD� =$Y<� =$YV�<CD� =$UU� =$<W� =$<W� =$<W� =$UU� =$Y=� =$CY�G�� A<=� =$<=� =$<Y� =$<A� =$<D� =$YU� =$AA� =$C=�<CD� <X$==� V$X=� W$U=� U$==� <$Y=� <$V=� <$D=�M��������#������N�D<C�G� A<=� A$==� <$UC� U$X=� =$X=� <$D=� <$W=� <$V=��

��������������� ������������������������������������������������������������� ���� !!"#$%&�'(�)#*$+,�-+,.&,.�/,�#01�0#23%&0�456789:;�:<:;=>8>?�@� 4:;9A;:B6C?�@�D:7E;8<F�EG8<B�HG8;6I�;G:C?�BJ5� 4KL� 46;67� 4K9:IM� 4GIF�NOP� NPQRN� OQRN� OQNS� SQTN�UAI<:96� VNS� LQTR� SQRL� SQRV� SQSN�NOP� RQVT� LQSV� LQSN� SQSL�DAE6I�56:B6I� VNS� NQNS� SQLN� SQVS� SQSR�NOP� OQWN� NQOP� NQTN� X�Y9G<G78Z6I� VNS� LQPR� SQTP� SQRP� X�NOP� NQWL� SQVN� SQOL� X�4=9;G<6� VNS� NQSP� SQNW� SQLW� X�NOP� NQTS� SQV[� SQ[[� X�YD\�N� VNS� NQTP� SQVO� SQ[T� X�NOP� NQ[S� SQLO� SQVP� X�YD\�L� VNS� NQ[T� SQLO� SQ[S� X�NOP� SQWV� SQNP� SQLO� X�YD\�V� VNS� NQNP� SQNT� SQVL� X���]56�9G<B6<B�G�GIF:<89�9:IMG<�8<�:>5�>:7E;6>�8>�F8_6<�8<�]:M;6�[�:<C�B56�6B6<B�G�9:IMG<:B6�78<6I:;>�C69G7EG>8B8G<�8<�_:I8GA>�:>5�>:7E;6>�8>�EI6a>6<B6C�8<�]:M;6�OQ��"#$%&�b(�"1&�&c.&,.�+d�-#*$+,#.&�2/,&*#%0�e&-+23+0/./+,�fg)hij���HG8;6I�;G:C� UAI<:96� Dk� Y4K� 4=9;G<6 YD\�N� YD\�L� YD\�V���\:IB8:;�� SQOW� SQPO� SQPR� SQWT� SQWO� SQWO� SQWT���lG78<:;�� SQW[� SQWR� SQWL� SQWR� SQWO� SQWO� SQWT���]56�9G<B6<B�G�I66�;876�m4:KI66n�8<�:>5�>:7E;6>�B:o6<�IG7�_:I8GA>�86;C>�G�B56�YD\�p:>�TXNL@Q�4G<>8C6I8<F�B56�8;B6I�M:;:<96�B56�9G<B6<B�p:>�NSQN@�:B�A;;�;G:C�:<C�NNQP@�:B�E:IB8:;�;G:CQ�]56�9G<B6<B�G�GIF:<89�9:IMG<�8>�;Gp�:>�8>�B=E89:;�G�B56�EA;_6I8Z6C�9G7MA>B8G<�G�G8;�>5:;6Q�]56�B6>B>�8<C89:B6C�B5:B�B56�6B6<B�G�9:IMG<:B6�78<6I:;>�C69G7EG>8B8G<�mo4KLn�:B�B56�<G78<:;�;G:C�8>�8<�B56�I:<F6�G�SQWLXSQWRQ�qB�B56�E:IB8:;�;G:C�B56�C69G7EG>8B8G<�8>�>G76p5:B�;Gp6I�8<�:>56>�G�B56�>AE6I�56:B6I�:<C�69G<G78Z6I�X�SQPO�:<C�SQPR?�I6>E69B8_6;=?�:<C�8>�>AM>B:<B8:;;=�;Gp6I�8<�MGBBG7�:>5�mSQOWnQ�]56�>8Z6�C8>BI8MAB8G<�G�:>5�8>�EI6>6<B6C�8<�]:M;6�TQ�]56�I6>8CA6�rLSSS�G�B56�MGBBG7�:>5�G<�B56�>86_6�p8B5�:<�:E6IBAI6�G�LSSS�s7�:B�B56�E:IB8:;�;G:C�p:>�G<;=�SQSO@Q�]56I6�:I6�<G�>8F<889:<B�C86I6<96>�8<�9G7EG>8B8G<�M6Bp66<�:>56>�IG7�B6>B>�:B�<GI7:;�:<C�E:IB8:;�;G:C>Q�DB8;;?�B56�58F56I�_:I8:M8;8B=�G�B56�:>5�IG7�B56�E:IB8:;�;G:C�B6>B�9:<�M6�<GB896CQ�q;>G?�B56�76C8:<�>8Z6�G�B56�:>5�>:7E;6>�B:o6<�IG7�B56�AI<:96?�>AE6I�56:B6I�:<C�69G<G78Z6I�:B�B56�A;;�;G:C�8>�;:IF6I�9G7E:I6C�BG�B56�E:IB8:;�;G:C�:>5Q�

��������������� �������������������������������� ��!����"�#��!�$�%�����&���&�������'()*+,(-�'./0� 12*3(4�325+-�678� 9,4:5;(� <,=(4�8(56(4�>;2:2?*@(4� AB;32:(�CDE� CFGFF� HGIJ� CGKJ� L�KGDKK� MCK� CFGMM� CGCC� KGFF� L�CDE� JIGKJ� DGEI� JGKH� KGKF�KGMDD� MCK� JHGFI� CHGNN� MGKJ� KGCF�CDE� DHGNJ� MNGNK� JFGJI� FGEM�KGCEK� MCK� ICGHN� DKGNE� CEGKI� IGIE�CDE� INGEF� IJGJC� FHGMD� CHGCN�KGCJD� MCK� HDGIJ� IIGEN� MMGIN� JJGMD��� 924�;8545;6(4*@*:O�5)8()�5:+�P24�+45Q*:O�,=�5:�5)8�R535:;(�68(�R,3S�5:+�5OO4(O56(�+(:)*6*()�2P�5)8()�Q(4(�+(6(4?*:(+G�T5R3(�H�=4()(:6)�68(�5OO4(O56(�+(:)*6*()�+(6(4?*:(+�P24�5)8()�P42?�68(�),=(4�8(56(4-�(;2:2?*@(4-�;B;32:(�5:+�><U�CG�V:�24+(4�62�2R65*:�=,4(�5)8�)5?=3()�5:+�(/;3,+(�68(�P533*:O�2P�5)8�+(=2)*6)�P42?�8(56*:O�),4P5;()�5P6(4�5,62?56*;�;3(5:*:O�Q8(:�5)8�)5?=3*:O�Q5)�=(4P24?(+-�68(�5)8�)5?=3()�Q(4(�)*(W(+�,)*:O�5�M�??�)*(W(�R(P24(�+(6(4?*:56*2:�2P�+(:)*6BG�T8(�?5))�)854(�2P�68(�)*(W(+�=546*;3()�Q5)�JLCIXG�������Y��Z[[��[������ ���\��!�����<5?=3*:O�=2*:6� ](:)*6B-�-�O7;?M�<,=(4�8(56(4�� JGDH�>;2:2?*@(4�� JGIK�AB;32:(�� JGHC�><U�C�� JGIM��� T8(�5OO4(O56(�+(:)*6*()�Q(4(�,)(+�62�()6*?56(�68(�5)8�?5))�P32QG�T8(4(�Q5)�:2�W54*56*2:�2P�5OO4(O56(�+(:)*6B�56�+*PP(4(:6�R2*3(4�325+)G�T8(4(P24(-�68(�5W(45O(�+(:)*6*()�54(�=4()(:6(+�RB�5)8�6B=(�.T5R3(�H0G�T8(�R,3S�+(:)*6*()�+(6(4?*:(+�RB�68(�]T>�35R245624B�54(�O*W(:�*:�T5R3(�EG�������_����a��� ���\��!�����!��b�"�[c$%d�<5?=3*:O�=2*:6� U546*53� e2?*:53�9,4:5;(�.R2662?�5)80� CGJMK� CGCJE�<,=(4�8(56(4� CGJKC� CGJKN�>;2:2?*@(4� CGJHF� CGMMD�AB;32:(� CGFJK� CGDFI�><U�C� CGKEI� CGCJK�><U�J� KGNFD� KGNDM�><U�M� KGECH� KGHNF��d�d��Z������� $��T8(�?(682+�R5)(+�2:�=,3=�.5�?*/�2P�5)8�5:+�Q56(40�Q5)�5==3*(+�62�+(6(4?*:(�68(�?5))�P32Q�2P�5)8�P42?�68(�),=(4�8(56(4-�(;2:2?*@(4-�;B;32:(�5:+�><U�

��������������� ������������������������������������������������������������� ���� !"#$%&'(�)�*+�,-�./%�0%*/+'�'%(12$3%'�$4�'%*5$&�$4�6)78�$41&9'%(�*/%�'%*%20$45:*$+4�+#�5(/�#&+;�25*%�3<�0%5(92$4=�>9&>�?+&90%�54'�05((-�./%�5(/�05((�#&+;(�;%2%�'%*%20$4%'�#+2�(50>&%(�*5@%4�#2+0�94'%2�*/%�(9>%2�/%5*%2(A�%1+4+0$B%2(�54'�1<1&+4%A�54'�#2+0�CDE�#$%&'(�)�*+�,�5*�>52*$5&�54'�4+0$45&�&+5'(-�./%�(50>&%(�;%2%�*5@%4�*;$1%�5*�3+*/�&+5'(�54'�*/%�05((�#&+;�;5(�'%*%20$4%'�$4�%?%2<�(50>&%�>+$4*�*/2%%�*$0%(-�./%2%#+2%A�*/%�15&19&5*%'�?5&9%�+#�*/%�#&+;�$(�*/%�0%54�+#�($F�0%5(92%0%4*(-�./%�2%(9&*(�;%2%�9(%'�#+2�'25;$4=�9>�*/%�5(/�35&541%-�./%�5(/�$4>9*�$4*+�*/%�3+$&%2�;5(�15&19&5*%'�+4�*/%�35($(�+#�*/%�#9%&�#&+;�3<�5>>&<$4=�54�$4'$2%1*�35&541%�0%*/+'-�./%�50+94*�+#�#92451%�5(/�;5(�15&19&5*%'�(93*251*$4=�*/%�*+*5&�?+&90%�+#�5(/�+#�(9>%2�/%5*%2(A�%1+4+0$B%2(A�1<1&+4%�54'�5&&�*/2%%�#$%&'(�+#�CDE�#2+0�*/%�?+&90%�+#�3+$&%2�$4>9*�5(/-�./%�5(/�35&541%�5*�4+0$45&�&+5'�$(�>2%(%4*%'�$4�G$=-�H-�./%�*+*5&�(/52%�+#�5(/�#2+0�*/%�#92451%A�(9>%2�/%5*%2(�54'�%1+4+0$B%2(�$(�I)J-�./%�2%(9&*(�'$##%2�#2+0�*/+(%�2%>+2*%'�$4�6)K8�3%159(%�#+92�+&'�CDE(�/5?%�3%%4�2%>&51%'�;$*/�*/2%%�4%;�+4%(-�L&(+A�*/%�>2%:>2%1$>$*5*+2�1/503%2�/5(�3%%4�2%0+?%'�3%#+2%�*/%�1<1&+4%-�� MNOP QOR MOR PMOS NTOQ SOU POPVOVSOVPVOVPSOVNVOVNSOVQVOVQSOVMVOVMSOV WXYZ[\] _ \a bc\daZ] `e�P `e�N `e�Qfghi�j �G$=-�H-�L(/�35&541%�5*�4+0$45&�&+5'-��klml�nopqrs�truv�wuquxyr�z4�*/%�#9&&:(15&%�%F>%2$0%4*5&�(*9'<�/%5*�35&541%�54'�*/%205&�%##$1$%41<�%(*$05*$+4(�+#�*/%�.E:){)�3+$&%2�;%2%�05'%�+4�*/%�35($(�+#�*/%�(*54'52'�6)|8�3<�9($4=�*/%�$4'$2%1*�0%*/+'�*5@$4=�$4*+�511+94*�*/%�(>%1$#$1�1/5251*%2$(*$1(�+#�+$&�(/5&%�5(�5�#9%&-�./%�50+94*�+#�/%5*�2%&%5(%'A�5(/�1+4*%4*�54'�#&9%�=5(�50+94*�'92$4=�1+039(*$+4�+#�+$&�(/5&%�'%>%4'�(*2+4=&<�+4�*/%�%4'+*/%20$1�54'�%F+*/%20$1�>2+1%((%(�*5@$4=�>&51%�$4�*/%�0$4%25&�>52*�+#�*/%�#9%&�6)K8-�./%(%�>2+1%((%(�$41&9'%�*/%�'%1+0>+($*$+4�+#�15&1$*%�54'�'+&+0$*%A�+F$'5:*$+4�+#�G%DHA�(9&#5*$+4�+#�}5~�54'�#+205*$+4�+#�4%;�0$4%25&(-�L�0+2%�'%*5$&%'�'%(12$>*$+4�+#�*/%�15&19&5*$+4�+#�/%5*�50+94*�54'�5(/�1+4*%4*�154�3%�#+94'�$4�678-�}+039(*$+4�#&9%�=5(�05((�54'�?+&90%�54'�1523+4�'$+F$'%�25*$+�*+�#9%&�05((�;%2%�15&19&5*%'-�G+2�15&19&5*$+4(�*/%�#+&&+;$4=�%�95*$+4(�;%2%�9(%'��

��������������� ��������������������������������� ��!��" #$%� & ' ( )* * &(+ &(+�+,-�++ +.,/.01 /,/+�+ �,0� �,22-/ /,+213 �45 6 6 6 67 6 68 9 : 99 : 9 9; <= > ��?@����&6��A6 ��(6��B6��C6�� +DE6 �����F��G%H��@���%��H��%I���H��HJK�%��H����������H��F��G%H�K��F��G%H��J%IJ���F%HK�HK��JH�����������L�FKJM������� ��N�*7�J��K@�����JFJ�HF��%����������JO�KJ%H��L,�P,/,-�JH�Q�PR�N�&(+4 �J��K@���IK�HK�%��F��G%H�K���JH�������F%�L%�JKJ%H�Q�2RN�+�����������M%�����������������/ ��!��" #$%� & ' ( )* * &(+&(+P,P2/0 +0,23+1 +,.1+1 0,3223� 0,.P�3+ +,./+- 0,-02 ,S 46 6 6 67 6 68 9 : 99 : 9 9; <= > ��/��F��G%H��J%IJ���F%HK�HK���KJ%�K%������������������������ ��!��" #0&(+ & ' (* * &(+ &(+/,..22 0,0�3/ 0,00++� 0,00� 0,00�3 ,45 6 6 67 6 68 9 :9 : 9 9; <= > ��T���@��K�G���HF��F��F���KJ%H��?����������%��H%�����F%H�JKJ%H�!�U��V�0�W&��X��V��0��/+-�Y�,�TFF%��JH��K%�K@���G%M�Z��HKJ%H���[\*Z[)��K�H�����K@��G%J�������JFJ�HF���K�H%�JH����%���?���P.,1]���G���2�,�_abc�de�fghbci�cjjhkhclkm� \�����nK��� �o� ]�pcq�hlrsq� � �'��K���%�������F%�G��KJ%H� +.1�-22��� 23,+�Y@��JF���@��K�%�������� P1.� 0,/�nHL�K�@��K�%��F%�G��KJ%H��J��� .�1/��� +,1�[��FK�%�K�KJF�L��FJLJK�K%��� 1/+� 0,+�_gqb� +3+�/0P��� �00,��tucjsb�vcq�krkhqm� +/-�+//��� �w%���?JK@����������� /+�/.0��� ��,2�w%�������K%��HG��H���������&(��� /0�� 0,0�x%KK%����@��%���� +�232��� �,��y�����@��%���� 0�� 0,0�w%�������K%����J�KJ%H�� ��303��� 0,.�_gqb� /3�03.��� �/,.�pcq�cjjhkhclkm�� � P.,1��ze{e�|bsc�}u�@��F%�L%�JKJ%H�%�����������?�����K���JH�����K���K@��[*Y������yJ�,���,�T��JKJ%H������K@��[YY�L���%HH������������K@�����������%I���H�F%HK�HK���K���K@���J��L��@��K��,�@���M������F%HF�HK��KJ%H�%����~%����J��J%H������������JM�H�JH��G����0,�

��������������� ������������������������������������������������������������� ���� !"

#$%& $%&'() *() ($+,)'($+-&(,+()'(,+$&(,+&&'(-+()&.%/ ,.%& $%0--%$ &)%) &%.&/%. ,.%1 &%/)%)$)%)-)%)/)%)23456�78�9:;�<9=>4?@6:A�BC D4C6

EFG�HGIJGH�KL�LKMI�NGHNH�OGIG�PGILKIQGR�SN�TKNF�UKQJUSV�SUR�PSINJSV�VKSRW�EFG�NGHN�IGHMVNH�XESTVG�YZ[�JURJ\SNG�NFSN�NFG�HFSIG�KL�LVMG�]SH�\KQPKUGUNH�RGPGURJU]�KU�TKJVGI�VKSR�\FSU]GHW�N�PSINJSV�VKSR�NFG�K_]GU�\KUNGUN�JU�LVMG�]SH�JH�NOJ\G�NFSN�SN�LMVV�VKSRW�N�LMVV�VKSR�NFG�\KUNGUN�KL�KNFGI�\KQPKUGUNH�JU�LVMG�]SH�JH�HMTHNSUNJSVV�FJ]FGI�SH�\KQPSIGR�NK�NFSN�SN�PSINJSV�VKSRW�aKI�G_SQPVGb�NFG�\KUNGUN�KL�cde�SN�LMVV�VKSR�JH�SPPIK_JQSNGV�NOJ\G�NFSN�SN�PSINJSV�VKSRW�fghij�klm�nopqjprsgrtop�ou�vgtp�woiixrgpry�tp�uixj�zgy�gurjs�r{j�|}~�����������KJVGI�VKSR� deb��� �deb��� �db�PPQ��db�PPQ�cdeb�PPQ� ��Vb�PPQ���SINJSV� YeW�� YeW�� Y�We� Y��W�� ���W�� ��W����KQJUSV� �WY� YeW�� eeW�� YZ�W�� YZ��WY� �ZWe���EFG�\KUNGUN�KL�LJUGHN�PSINJ\VGH�KL�LV�SHF�NK]GNFGI�OJNF�JNH�QSHH�RJ�JHJKU�X��YZ�eW�[�SLNGI�NFG��c��JH�SU�JQPKINSUN�JURJ\SNKI�KL�LVMG�]SH�\KQPKHJNJKUW�EFJH�JH�NFG�LV�SHF�NFSN�\SUUKN�TG�\SM]FN�T�NFG�LJUSV�HG\NJKU�KL�NFG��c��SURb�SH�S�IGHMVNb�JH�GQJNNGR�JUNK�NFG�SQTJGUN�SJIW�EFG�QSHH�RJ�JHJKU�KL�LV�SHF�SLNGI�NFG��c��OSH�RGNGIQJUGR�JU�NFIGG�NGHNH�SN�TKNF�TKJVGI�VKSRH�XaJ]W��[W�H�PIGRJ\NGRb�NFG�\KUNGUN�KL�LJUGHN�SHF�PSINJ\VGH�X�eW���Q[�JH�FJ]FGI�SN�UKQJUSV�VKSRW��������������������� ���aJ]W��W�aV�SHF�QSHH�RJHNIJTMNJKU�SLNGI��c�W�#$%& $%&'() *() $)+()'$)+$&$(+$)'$(+,&$$+$)'$$+,&&$%/ -,%$ -%$-/%- -/%) 1%&-0%1 --%1 &%/)%)$)%)-)%)/)%)2

3456�78�9:;�<9=>4?@6:A�BC D4C6N�PSINJSV�VKSR�N�UKQJUSV�VKSR�

��������������� ������������������������������� ��������������!�����"#$������%&'()*)(�+,--�*./0�)12)(,3/4-�/*�*5'.�,12�,-67�89:7�89�,12�%9:�'+)--)/1-�;/36�&'4�5-'*5.�6',3�<=>636?�,12�@4/--�'.'(34)()3A�&4/25(3)/1�<=>6';4?�,4'�@)B'1�)1�C,;.'�DDE�C6'�-&'()*)(�)12)(,3/4-�/*�*5'.�,12�,-6�&'4�&4/25(3)/1�51)3�/;3,)1'2�'F&'4)+'13,..A�*/4�36'�*)4-3�;/).'4�/*�36'�51)3�0'4'�,--5+'2�3/�;'�,&&.)(,;.'�*/4�36'�-'(/12�;/).'4�,-�0'..E�G1�C,;.'�D:�36'4'�,4'�30/�B,.5'-�/*�36'�89:�'+)--)/1�H�;,-'2�/1�-,+&.'�+',-54'+'13-7�,12�(,.(5.,3'2�/1�36'�;,-)-�/*�*5'.�(/+&/-)3)/1E�C6'�6',3�4,3'�/*�36'�51)3�0,-�:EIJ�=>636K=>6';47�(/44'-&/12)1@�3/�36'�@4/--�'1'4@A�'**)()'1(A�/*�ILEDMNE�O�PQ��RR������������� �����"��������Q��������������� ���!�����������G12)(,3/4� S1)3� T,.5'�9).�-6,.'�(/1-5+&3)/1�&'4�5-'*5.�6',3� @KU>636� IVJ�W-6�*/4+,3)/1�&'4�5-'*5.�6',3� @KU>636� ::X�9).�-6,.'�&'4�'.'(34)()3A�<@4/--?� @KU>6';4� D:DJ�W-6�'+)--)/1�&'4�'.'(34)()3A�<@4/--?� @KU>6';4� YYY��O�PQ��RZ���������������������� �����"��[/..53,13� ['4�5-'*5.�6',37��U@K=>636� ['4�'.'(34)()3A�<@4/--?7�U@K=>6';4�89:�D� XJD� J\I�89:�:� I:V� DLMM�89� LELIY� LEDDD�%9:� IE\\� DDEVJ��D�8,.(5.,3)/1�;,-'2�/1�+',-54'2�&'4('13,@'�/*�89:�0)36�(,.(5.,3'2�B/.5+'�/*�24A���@,-E�:�8,.(5.,3)/1�;,-'2�/1�*5'.�(/+&/-)3)/1E�]�����Q�������C6'�2,3,�*4/+�36'�'F&'4)+'13,.�3'-3-�(/125(3'2�/1�36'�6)@6_&4'--54'�[�;/).'4�C[_DLD�)12)(,3'�36,3�36'�@4/--�36'4+,.�'**)()'1(A�/*�36'�;/).'4�)-�VMEINE�a'@,42)1@�'+)--)/1�)13/�,)47�36'�,B'4,@'�(/1('134,3)/1�/*�b9F�,12�%9:�'+)--)/1-�,3�-3,;.'�./,2�B,4)'2�)1-)@1)*)(,13.AE�C6'�3'-3�,3�&,43),.�,12�1/+)1,.�./,2-�-6/0'2�36,3�36'�-&'()*)(�'+)--)/1�/*�%9:7�89:7�897�b9�,12�c8.�,3�*5..�./,2�0,-�'--'13),..A�6)@6'47�'E@E�36'�(/13'13�/*�%9:�0,-�,.+/-3�30)('�36,3�,3�&,43),.�./,2E�W.-/7�36'�(/13'13�/*�*)1'�&,43)(.'-�<d:EY�e+?�/*�,-6�,*3'4�36'�f%[�0,-�6)@6'4�,3�1/+)1,.�./,2E�g54)1@�36'�3'-37�36'�2)-34);53)/1�/*�36'�,-6�,+/513�,3�2)**'4'13�;/).'4�./(,3)/1-�0,-�'F&'4)+'13,..A�/;3,)1'2E�C6'�;/33/+�,12�f%[�,-6'-�,4'�36'�+,)1�(/134);53/4-�3/�36'�,-6�*./0E�C6'�'F&'4)+'13,.�4'-5.3-�-6/0�36,3�36'�&4'-'13�-)35,3)/1�2)**'4-�*4/+�36'�2'-)@1'2�/1'�,-�*/54�/.2�f%[-�6,B'�;''1�

��������������� ������������������������������������������������������������� ���� !"#$%&'($)�*+,-�,-#$$�.$*�/.$0�'.)�,-$�%#$1%#$(+%+,',/#�(-'23$#�-'0�3$$.�#$2/4$)�3$5/#$�,-$�(6(&/.$7�8-$�0%$(+5+(�(/.092%,+/.�/5�/+&�0-'&$�%$#�90$59&�-$',�'.)�:#/00�$&$(,#+(+,6�%#/)9(,+/.�*'0�;7<=>�,?@A-,-�'.)�B7CB>�,?@A-$3#D�#$0%$(,+4$&67�8-$�0'2$�+.)+(',/#0�5/#�'0-�5/#2',+/.�*$#$�;7CCE�,?@A-,-�'.)�;7FFF�,?@A-$3#7�8-$�-$',�#',$�/5�,-$�9.+,�*'0�C7<>�@A-,-?@A-$3#D�*-+(-�(/##$0%/.)0�,/�,-$�:#/00�$.$#:6�$55+(+$.(6�/5�<;7BGH7�8-$�#$09&,0�/5�'.'&60+0�'#$�'�://)�3'0+0�5/#�59,9#$�#$0$'#(-�'.)�)$4$&/%12$.,�%#/I$(,07�J&0/D�,-$6�('.�3$�90$)�,/�)$(+)$�/.�,-$�59,9#$�/%$#',+/.�/5�KL�9.+,0�',�M'#4'�KK7�NOPQRSTUVWUXUQYZ�8-$�'9,-/#0�'#$�:#',$59&�,/�,-$�0,'55�/5�M'#4'�KKD�'.)�$0%$(+'&&6�,/�@#7�['+.�\$+.I]#4D�$4$&/%2$.,�@'.':$#D�5/#�09%%/#,�+.�('##6+.:�/9,�,-+0�%#/I$(,7���_ a _ bc d�B7�e++#)$D�J7�f+&�0-'&$�g�h&/3'&�0/&9,+/.�/#�%'#,�/5�,-$�%#/3&$2i�jkl�mnolpD�C;;=D�qrsCtD�C;BgC;C7�C7�J##/D�u7D�v//0''#D�w7D�f,0D�J7D�K+-9D�87D�K#+xxD�J7D�[90-$&I9xD�K7D�u+&,9.$.D�@7D�u/,,'D�J7D�K'#xx/.$.D�[7D�K$&,/&'D�y7�L+#+.:�z0,/.+'.�/+&�0-'&$�+.�{L|�3/+&$#07�}.�~��������n���������p�p��pD�@'6�CBgC<D�C;;GD�\+$..'D�J90,#+'D�K'#,�}}7�E7�J##/D�u7D�K#+xxD�J7D�K+-9D�87�{'&(9&',+/.�/5�{fC�$2+00+/.�5#/2�{L|�3/+&$#0�/5�/+&�0-'&$�%/*$#�%&'.,07�jkl�mnolpD�C;;GD�q�s<tD�EFGgEGF7�<7�J##/D�u7D�K#+xxD�J7D�K+-9D�87�{/2390,+/.�/5�z0,/.+'.�/+&�0-'&$�+.�5&9+)+�$)�3$)�3/+&$#0D�-$',+.:�4'&9$�/5�59$&D�3/+&$#�$55+(+$.(6�'.)�{fC�$2+00+/.07�jkl�mnolpD�C;;FD�qqs<etD�E>>g<;G7�F7�J##/D�u7D�K+-9D�87D�K#+xxD�J7D�[//,'22D�[7D�y/.+0,D�J7�{/2%'#+0/.�/5�'0-�5#/2�KL�'.)�{L|�3/+&$#0�'.)�3$-'4+/9#�/5�'0-�+.�'0-�5+$&)07�}.�~��������n����p���o�k��ol�����p�p��p�����l�k�k�p���p���������k��D�@'6�B=gC;D�C;;>D��+'.�{+,6D�{-+.'D�C;B;D�K'#,��D�B;F<gB;G;7�G7�u/,,'D�J7D�K'#xx/.$.D�[7D�u+&,9.$.D�@7D�J##/D�u7D�v//0''#D�w7D�K'#4$D�87D�K+-9D�87D�K#+xxD�J7D�8++x2'D�87�z�%$#+$.($�/5�z0,/.+'.�/+&�0-'&$�(/2390,+/.�3'0$)�/.�{L|�,$(-./&/:6�',�M'#4'�K/*$#�K&'.,07�jkl�mnolpD�C;;FD�qqs<etD�E=BgE>=7��7�M$0-92'6$4D�7D�f,0D�J7D�K'#4$D�87D�K+-9D�87D�K&'290D�y7D�K#+xxD�J7�{/2390,+/.�/5�|'&,+(�/+&�0-'&$0�+.�3/+&$#0�*+,-�5&9+)+�$)�3$)�(/2390,+/.7�~��p���p�n��l����o������k�pp�k��D�C;BBD���sFtD�E=CgE=F7�=7�K'#4$D�87D�v//0''#D�w7D�@'--/4D�@7D�y/.+0,D�J7�z2+00+/.�/5�5+.$�%'#,+(9&',$0�5#/2�/+&�0-'&$�5+#$)�&'#:$�3/+&$#07�jkl�mnolpD�C;BBD�q sBetD�BFCgBGB7�>7�K+-9D�87D�J##/D�u7D�K#+xxD�J7D�[//,'22D�[7D�y/.+0,D�J7�{/##/0+/.�/5�'+#�%#$1-$',$#�,93$0�/5�/+&�0-'&$�{L|�3/+&$#7�K'#,�}7�$*�%/+.,�/5�5&9$�:'0�'.)�&/*1,$2%$#',9#$�(/##/0+/.7�jkl�mnolpD�C;;>D�q¡sBtD�FgBC7�

��������������� ���������������������������������� ���!"�����#"$��%��&�'�()�*��+(��(�+�������"��(�,&-�.+��"'��/�����.���(0"��(1�."��$�+�'�+2�0�'.+(��"���("'�����345�67859��:�����;<=�>��?@/AB�������������������C++���'��C������������!"�����#"$��%��&�'�()�*��+(��(�+�������"�+2���)�"'�D�����#��(�,&-�.+��"'��/�"($�'+(�"(�����(1�"0+(+��0���E�0���345�67859��:�����;<=�C>����F/�:A���:��C��G��H��������� ���I+�+1��+$�����J"�'�+2���"�2�"����EE�#��#��"��+2�,&-�.+��"'���345�67859��:��@��;K=:>��:�L/:�A���F��C��G��H��������� ��J�''�(�#�'"���.����#�+2�,&-�.+��"'�.�'(�()�+�������"��345�67859��:��L��;M=:>��LL/��B���N��C��G��H��������� ����+(��������,�����'+E��0�O����)"�+2���."���(�2���1�P"1�."1�.+��"'��345�67859��:�����;<=�C>���A:/�A@���?����'�����(�G#������C��'1"������Q�1���R���C��.��(�G#�����I���"����0����+1"��+2��O+SE���"�2�+O���+�1"1�O������)����(1��"�$#�E�'��0�"���+��(��#P"�,&-�E'+S0"��"���345�67859��:�����;<=�C>���AL/�@����A����������345�67859�TU95�VWXYUZ[4W\�� ����((��:��A��@FF�EE���B�������� ����+(���������!"�����#"$��%���]++���'�����C��'1"��������'$"�� ���I+�+1�S�+$�����C�+'�S�"'���"����+(�2�'�()�+�������"�2�"���EE�#�()��+OS�"�E"'���'"�$+'�"_��"0�(+�+)#��345�67859��:��:��;=�>��F/�B���@��*aCS*!��:L?:S�?b:��F��c8[9defUY9�gW459dZ�8\h�iUj4548dk�l\Z[8558[4W\Z����'���?���00"E��(0"� "������L���''+��H����'�GG������������ ��,��0�����+(�+2�D��������$"��(1�D��(������$"�0+�SE+����+(�+2�*��+(��(�+�������"��(1�����0+�.����+(�E'+1�0������'�����,��0�����+(�+(���"�.�����+2��"���()�$���"��TU95��:��F��<;=�@>��:�BL/:�L?����Q"0"�$"1���#�N��:��:��

75

PAPER III

������������� ��������������������� �������������������������������������� ������� !�"��"�#$���%&�'()�� ��* ��+,-./0/1.2�/1+/+�-3�45.536�-57�+,871�4917�8::7;536�7-<0/12:1.8/9.1�=-./1>�/1?,3-7-6;�@A�BCDEFGHIJ�KA�LMNCO@FGHJ�PA�NQODERKSQTFGHJ�UA�VMMOKKWFGHJ�KA�OCCWPQFGHJ�@A�BKWTQFGHJ�KA�RMVMP@OMTFXH��FGH�PYZG[\]Y\�_�@aY[]Gb�QcdYY[dc�� @Gbbd �EdeY[fd\g�_�@Yha_b_cg�� iij�L_Zbd�O\AJ�@Gbbd �iikilJ�Qf\_dG�FXH�QYf\d�B_mY[�BbG\�� BM�n_o�ipqJ�NG[eG�liqqiJ�Qf\_dG��� rst�uvtwtxy�uzutv�uv{|}~tw�t�utv}�txyz��~zyz��v{��ws{vy�ytv��������w�z�t�t�utv}�txyw�{��z�s}�s�uvtww�vt�u��|tv}�t~��}v}x��������{}�tv��r�������}v}x��{}��wsz�t�z�ytv�z�vtyv{�}y�y{��wt�|{vyt���{���wy}{x������yt�sx{�{����rst�twwtx�t�{�����yt�sx{�{����{xw}wyw�{��yst��txtvzy}{x��zy�z��{�tv�uzvy�{��yst���vxz�t��{��z��}v���zy{v���{y}{x�{���zw�vt�zy}|t�y{�yst�s{v}�{xyz��z�}w��s{v}�{xyz��|{vyt������vtzvvzx�}x��yst��t{�tyv��{��yst��{���wy}{x�z}v�}x�t�y}{x�zx~�yst���t���tt~}x��}xy{�yst��{���wy}{x��sz��tv��rst�ytwyw��tvt��{x~��yt~�zy�ysvtt��{}�tv��{z~w�����������y�s������������y�s��zx~�����������y�s�����v}x��yst�t�utv}�txyw����t��wz�u�tw�{��z}v�w{�}~w�}x�yst��{x~�}y�zx~�wz�u�tw�{���{yy{��zws�zx~�����zws��v{��}xtvy}z�~�wy��{��t�y{vw�z�ytv�yst�w�utv�stzytv�� ¡��zx~�t�{x{�}�tv��¢�£���zw��t���zw�����zws��v{��yst�t�t�yv{wyzy}��uvt�}u}yzy{v��¢ ���{��yst��}vwy�zx~�wt�{x~��}t�~w���tvt�yz¤tx��v{���{ys�yst��t�y�zx~�yst�v}�sy�w}~tw�{��yst��{}�tv��rst��zw�zxz��w}w��zw�utv�{v�t~�zy�yst�¢ ��t�}y��¥y��zw�zyyt�uyt~�y{��tzw�vt�yt�utvz�y�vt�~}wyv}��y}{x�}x�yst��{���wy}{x��sz��tv��rt�utvzy�vt��tzw�vt�txyw�}x�yst���vxz�t��w}x��zx�}x�vzvt~�ystv�{�tytv�ws{�t~�yszy�yst��z�}����yt�utvzy�vt�~}~�x{y�t��tt~������¦���zx~�ystvt��zw�w�}�sy�yt�utvzy�vt�x{x�x}�{v�}y��z�v{ww�yst��{���wy}{x��sz��tv����v}x��yst�ytwyw��yst�zws�~}wyv}��y}{x�zy�~}��tvtxy��{}�tv�zws�~}w�szv�t�u{vyw��zw�{�yz}xt~��§xz��w}w�{��yst��{yy{��zws��st�}�z���{�u{w}y}{x�ws{�t~�z��{xw}~tvz��t�}x�vtzwt�}x�yst�z�{�xy�{���x��vxt~��zv�{x�zx~��zv�zw}yt� u��rst�vtyv{�}y�{��yst��{}�tv�y{��wt����yt�sx{�{���~}~�x{y�vtw��y�}x�z�vt~��y}{x�}x�yst�z�{�xy�{�� £��t�}ww}{xw��}x~}�zy}x��zx�t|tx��tz¤tv�uv{��tww�{���}x~}x��w��us�v�{�}~tw�}x�yst���vxz�t�zw��{�uzvt~�y{������5©ª«¬­®©«��K\�\aY�Z[YfY\�\d]YJ�]_[Y�\aG�°q±�_�\aY�YbYh\[dhd\g�Z[_²³h\d_�d�Qf\_dG�df�cYY[G\Y²�Xg�X³[dc�_db�faGbY�³YbJ�G²�]_f\�_�\adf�YbYh\[dhd\g�cYY[G\d_�df��������������������������������������������������I��_[[YfZ_²dc�G³\a_[µ�Y¶]Gdb��yu}s�·wyz���yy��tt�

�������������� ����������������������������� �!�"#�����$%�&�'�����!#��"#���"!����!�"��!#�!������!!�� �!���!��!#���!�"#�����$(���"�������!�'����!��������#��#����)*+,-).,,�/0�1�!#���!#��"�' ��!����"#�' ��(�!#���""�����"���������"�����!'�2��#�������������!#�������"������!#����������!�"������"!������������������(�������������"��!�$�"#���"!������!#��!#��'���"�������������!#��'����������!���������#���(�1#�"#�1��������!����$������!����!�����������!�������'�!��������"������������!#�� ������#��!�!�������������"��%�3�������$(��!��������� ���!����"������!#��������!�������'�!��������!#����!�����"������������!#��#��!�!�������������"��(�!#���������'�����'��!����!#�����������"���"$(� $���"��������!#��!�'����!�������!#��"�' ��!����"#�' ��(���"��������!#��"�����2����������!�"������"!�������!#�����������������!����!#�����'�!�����������"�����!'�2��#�������������!#�������"�%�4���"��"��!����!�������!��"�' ��!����!�"#�����$�!#�!�'�5����!������ ���!����"������!#��!�'����!��������!#��"�' ��!����"#�' ������!#����12!�'2����!�������!�6�"�' ��!�����78 �'�!#��(�!#�� ���"�����"���������1#�"#�1��������!����������� $�9������������$!�"#��"���:��!�!�!�����"���� ���!����1�!#�;�4�8<=:�����'���$�8��!����>����������=�� ����:��!�!�!��� �?)@%�=#�������"�����!#���"�' ��!����!�"#�����$�"�����!�����!#��������!���(��!�����1������!����!#�������"�(������"��"���!��$�'�!�������!#����������!����!��!#��#������!����6����#������!������!�6 � $�������������!#�����'�!�$����!#��"�' ��!����������A�"!��������!#�����������������!��!#��"�' ��!����"#�' ��%�=#������"��������1������������"!�������!#��'�6�'�'�!�'����!����������1�!#���!#�������"�(�1#�"#��B��������!#��#��!����6����!�� �!����������"�������!#��#��!�� ����!���%�C���!��'��!�����"��"���!��������!#�����!�"�������!#�������"�(�!#��"�����2����������!�"������"!�������!#�������"����� �����%�=#������!�����2�"�����6����'��!��������!�6�"�' ��!����!�"#�����$������������#������������1����"����"!������!#������$�D,�����!#��'����'2��������� ������><E2D+2*F���!�!#��G#!'��=#��'�����1�������!��H�!���� �����&���!�$���1�������!��I����� %�=#��'�������������#���� �������������$����"�� ����?)-),@%�C������!#����"���!��"!�������!#�� ������(�!#��"�' ��!����������A�"!��������"!�������!#������!���'���!��� �������1���"#�����(�����!#�������������!#����1������"�������!�1����'���!���1�!#���!#�������������!#��"�' ��!����"#�' ���!#���!%�=#�����������������������!#�������1�����"����������'�IF,�J�)K%+-LM�!��IF,�J�.M-K,%�=��'���!����!#��!�'����!�������!#�������"�� ���1�))M,�/0(�!#���6"����������1#�"#�������!�������!������"�!�������!#��������������"����������!#�����'�!�������!��#!�$� �����������!�(���������!�������#��!������!����1������!���������!#����1������!����!#��"�' ��!����"#�' ��%�=������"��!#����������1�������!#���"���'������H84 ����!#������������������!���!#��"����"!����������#��!��(������"����$����������#��#2!�'����!������#�"����"!���1���'���!��%�=#���������'��!��'�����������!#����"���!��"!����#������!����"������!#��'�6�'�'���'������!��'�"���"�!$����'�)K%D-)M%,�5�N�����!��L)%,-L)%D�5�N������!����"������!#�� �����O��!#��'�������"���"$������� ����'�MK%,-MK%+P����!��MM%,-F,%MP�����!��!#����"���������!#�����������!�'����2!�����!�!#�� ��������!��!%�&�'��!�������$(���"���������������������!����!#���$������� ������"�� ������!#�� �!!�'���#�1����� ������Q�!#�$�1����"������ $�

���������������� ������������� ����������������������������������������� ���� !"#�$%�&$'()!�(*$%�+$#� ",�%"$+�)#�& !���*)#!$"�-)+�(./012��!)% !3���"($#%�43#()!&+$#� ",�*#$"� (!(*���*)�,56��"(!% &�#$7,� !"#�$%� !���"(!��!�(*%),+�)#8'$ !,9'$#"$% ��8 !���7(��('$%�2$%*()!&�(7�"$)%�&79���("")##�!"�(*���#�&)" !3$�'(%+��#�:(!�% !���*)#!$"�5;%&�%"# 7�&+#�< ()%,9=>/?8$"('+$#$� <�$!$,9% %(*���"��' "$,"('+(% � (!(*���*,9$%���$�2$%(7�$ !�&)% !3���& **�#�!�*)�,"('7)%4� (!��"�!(,(3 �%, @�AB$!&CD%�(2�&��$����"(!��!�(*���$%�"('4+(!�!�%��$�$#�'(%�+#(!��(%),+�$� (!8%)"�D$E$!&F3E8$#�!�$#,9 &�!� "$, !���* !�+$#� ",�*#$"� (!$!& !���"($#%�+$#� ",�*#$"� (!5G��!)% !3CD*(#* # !3"($#%�43#()!&*)�,8!(!(� "�$7,� !"#�$%� !���#�,$� <�HIE"(!��!� !���* !�+$#� ",�*#$"� (!#�,$� <��(���"(!��!� !���"($#%�*#$"� (!2$%(7%�#<�&2��!���'�& $!& $'���#J%(*���*,9$%�2$% !"#�$%�&56��#$� ((*���HIE !"$%�(*���<(#��K"('7)%� (!2$%$++#(K '$��,9I5I$�J%L.>M'82��#�$%*(#AB �#�$"��&$<$,)�(*$++#(K '$��,9N5.OP5>M'$%J% !"#�$%�&)+�(IQOIRM'56��"(!% &�#$7,� !"#�$%� !���"�,(# !�"(!��!�-D,LI5.QON5RI01 !���* !�*#$"� (!(*���*,9$%�)% !3CD2$%*()!&�(7�%�<�#$,� '�%� 3��#��$!���"(##�%4+(!& !3"(!��!�-D,L/5I/O/5./01=I?)% !3AB5S!���(+ ! (!(*���$)��(#%8�� %& **�#�!"�2$%"$)%�&79"�$!3 !3���$�'(%+��#�(*���"('7)%� (!"�$'7�#-���("")##�!"�(*���#�&)" !3$�'(%+��#�:(!�%15T)7%�U)�!�,9 !>VR>8���#�"(!%�#)"� (!(*���� 3�4+#�%%)#�7( ,�#6A4>W$�X$,� A(2�#A,$!��()%�CD��"�!(,(392$%+�#*(#'�&=>?5YK+�# 4'�!�%%�(2�&��$�&)# !3����!� #�+�# (&(*���(+�#$� (!(*���7( ,�#7�*(#����+,$!!�&(<�#�$),8���3$%��'+�#$�)#�%$,(!3���*,)�3$%+$��8$%2�,,$%���%��$'��'+�#$�)#�%8#�'$ !�&%�$7,�2 ��()����$++, "$� (!(*��$��#$!%*�#%)#*$"�",�$! !3&�< "�% !���*)#!$"�$!&%)+�#��$��#5S!��!% <�&�+(% �*(#'$� (!(!�����$� !3%)#*$"�%"(),&7��K+,$ !�&$%*(,,(2%=>?5S� %@!(2!��$����"��' "$,"('+(% � (!(*���$%���$�*(#'%&)# !3( ,%�$,�"('7)%� (! %& **�#�!�*(#���<$# ()%$%�+$#� ",�*#$"� (!$,3#()+%Z���'(%�"��' "$,,9$"� <�"('+(!�!�%$#�"(!�$ !�&2 �� !���* !�%�$%�+$#� ",�*#$"� (!5;%CD��"�!(,(39)%�%"($#%�43#()!&*)�,$!&���#� %%�#(!3#�,$� (!%� +7��2��!*#$"� (!$,"('+(% � (!%(*���*)�,$!&���$%�*(#'�&8���#� %$&�"#�$%� !���*#$"� (!(*+$#� ",�%��$�"(!�$ !"��' "$,,9$"� <�"('+(!�!�%$!&$! !"#�$%� !���*#$"� (!(* !�#�+$#� ",�%��$��$<�$&�%�#)"� <��**�"�(!&�+(% �*(#'$� (!5T '),�$!�()%,98���"($#%�+$#� ",�*#$"� (!(*���$%�8��� !"#�$%�&*,)�3$%<�,(" �9��$�("")#%2 ��*(#'$� (!$,(!3���*,)�3$%+$%%"#(%%4%�"� (!%2 ��$� 3�,9!(!)! *(#'*,(2$!&���& %�# 7)� (!(*���*,94$%�+$#� ",�%�$<�% 3! * "$!�,9 !��!% * �&����#(% <�2�$#+#("�%%5B(#�K$'+,�8 !���"$%�(*���'�& )'4+#�%%)#�7( ,�#XH[4W.4NVB8$*��#N./�(*"(!� !)()%(+�#$� (!$�$'�$!7( ,�#,($&(*I/5.@3\%8$'$3! �)&�(*2�$#(*����"(!(' :�#�)7�%(*$++#(K '$��,9/5PO/5Q''2$%(7%�#<�&56��+#�%�!�+$+�#+#(< &�%�K+�# '�!�$,&$�$*#('$%�(#�4��#'8*),,4%"$,���%�(*$� 3�4+#�%%)#�7( ,�#86A4QW8* # !3( ,%�$,�$*��##�"(!%�#)"4

�������������� ���� ��������� ����������������������� � ����� ���� �����������������!�"����"��#����"��$!%&�'�����" �"��(�#��$��� ������"���) (�(�"����*++,-*+.+��/01234526789������ ���!�������:��"���� ��� � ����"���� ���;�� ��� ����'�"����""��(��� ����������!�"����"��#����"<��$!%&<�� � ���=�� ��$�'�"�$��� <�'������������ �(������� �"��>� �����?..@������#����"����� ��������"���#����"!��A����'�"A��BCD"�����D� �������AEF�(��������(�����#����������"� ���������� ���%+��������������"��� �"��� � ���#����"��"����� ����'�G�#����"����(�B��;��� ���F�*,+� H�<���;��� �����"����"����(� ����"� �"��-�.I�,�J$����(�K.K�L�<�"����� �;������������'�"���� ����;�����B)M�F�� ��������������(���� ��� ��"�����:��"�!��� ��'���� ����"�:��� ����.+�&&�JNHA�O� ���� �(��(��������������"��! �"�� ������������!"����;�(�#������"���"�;�(�(������#���.������ �������������������" �"��(�#�� ������� ���"������� "��� ���������#�"� �"�����" ���#� �"�� ��� "��� �"�� � ���#����"� ��������� �������������'�(� �� � �����"����P�(���� �� ��B"�(���(� ��Q*�R�%SF�� � ���TQ*���(�UQ:� �"� ���("��������'�"�����"�:��� ����*+V&���HU�I���(�II,���HU�I<�"����� �;�����W�� ����"�������(�����<� ���#����"�B����X����.F�'����Y�����(�'� ��;�" �:�#�"��"�� �� ��"������ �(���� ��� "�� ������������ '��(� �"�� �"�'��""����!��� �<�'� �� ��"�#�"��"����������"�'������ ��������"���(�#�� ��"�JJ�!.K++!*K.+!&IK������"������<�'�������;���������� �����"� �"�� � ������;�"�P�(� ����� � ���"��� �� ��W���((� ���� �������#�� ��������#�"<� ���#����"����� '��;�" ����� ������������������ ��� �"� �(�'� ��'<����'����� �������������� �������"���� �"����;��������� �(����� ��'��� ������"����� ����(�����������(�"������ ���������������� ����� ����������P�"���(� �����"���Z[\]�_�a7bc42c�d49�ef892�gf838g7234e74ge�d6�86�h8ei32g24j2ck�l8e4e�$�"��� �"� �����<�' S���"#��<��"� *K�,&�M�("����<�M"� I�Im�Q:����<�Q"� m�&%�U� "����<�U"� +�+K�Q"������������"<�T�"� +�I�$�"� ���������"<���"���� �<�T�"� +�V.�T����� ��������"<�T�"� +�+V�����"���<���� +�.m�J���"�����"#���(��:�(�<��Q*"� .*�V���""�� �(�������� �� <�n��"� I%�*,��"�� ���'� �"<�o�"� +�K%�J��� �"�<�o�"� .m�V��� ��p� .++��p�-�(������ ���� ���������� ��������"�#�������� ���������(�(���� �����""�� �(�������� �� �

���������������� ������������� ����������������������������������������� ���� �!"��#$� %&'" �!%���� �!"��(" �)*+�,!-�!---�*%"-%&"."/.0 !&&�*-10 !&&�*2(*.0!"�'.&" �*�)"-%'�.)" �3.%*��)�.&"(!&'0 !&&�*$(*.0!"�'.&" ��%, "-%'�4" !"0.&&�0"" �"!%*.)" �3.%*��/%" "/.�*�0"�.-"!"%0���50%�%"!".�-16784(" �*�)"678!&'" ��%, "678��*!"%9�"." �)�.&".)" �3.%*��#6!0 678%-0.&&�0"�'"." �%&'+0�''�!)")!&3:"/.0 !&&�*-1*�)"!&'�%, "0 !&&�*-(-%;%*!�*:'�&."�'��*!"%9�"." �)�.&".)" �3.%*��4#2;.��'�"!%*�''�-0�%�"%.&(%&0*+'%&," �'�-%,&)�!"+��-!&'" ��;!*0 !�!0"��%-"%0-.)" �0.&-%'���'3.%*��0!&3�).+&'%&<=>#?.�,�&��!"%.&.)*./5"�;���!"+�� .�%@.&"!*9.�"�A;."%.&%&" �0.;3+-"%.&0 !;3��(!-�".);.'%)%0!"%.&-/���;!'�#B �;.'%)%0!"%.&-%&0*+'�'���*!0%&," �9.�"�A3+�&��-" !"/���*.0!"�'!"" �*./���.//%" '%��0"5)*./3+�&��-/%" !'./&/!�'-*.��#B �.��&%&,.)" �0.;3+-"%.&0 !;3��" �.!"!*.&," ��&"%��/%'" .)" �*./��).�0�''�!)"/!-���5).�;�'3:;.+&"%&,"/.5-"!,�'�)*�0"%.&5&.@@*�'�9%0�-#C%" " �!%;.).3"!%&%&,!0.!�-�5,�.+&')�!0"%.&.))+�*)��'%&,%&"." �*./���./.)3+�&��-(" � !;;��5;%**-��!�!".�/!-;.'%)%�'#B �).�0�''�!)")!&0!�!0%":/!-%&0��!-�'3:3+%*'%&,+�" �)!&/ ��*3*!'�-!&'%&-"!**%&,!;.���./��)+*;.".�#B �"�-"-/���0.&'+0"�'!"" ���3.%*��*.!'-DEFG1HIF"J 4(KEG1=LF"J 4!&'HFFG1M=F"J 4#B �-!;�*%&,.)�+*9��%@�')+�*)�.;" �!%�5-.*%'-0.&'+%"--+��*:%&,)+�*"." ����*!0�''%��0"5)*./3+�&��-.)" �*./��3+�&���./1/%" !;.'%)%�'-.*%'-��!�!".�4!&'"." �.�%,%&!*9.�"�A3+�&��-.)" �+�����.//!-���).�;�'".'�"��;%&�" ��!�"%0*�-%@�'%-5"�%3+"%.&#B �-!;�*%&,/!-���).�;�'3:;�!&-.)!NBO'�-%,&-!;�*%&,'�9%0�/%" !0.3�!5":����.3� �!'/%" !&%&&��'%!;�"��.)LI;;#B ���.3�/!-�P+%���'/%" !;!&+!*-:-"�;!**./%&," ��P+!*%@!"%.&.)" �9�*.0%"%�-%&" �0 !&&�*.)" ���.3�!&'%&" ��+*9��%@�')+�*0.&'+%"'+�%&," �-!;�*%&,1%-.Q%&�"%0-!;�*%&,4#B �)+�*-!;�*�-/���"!Q�&.9��" �0�.---�0"%.&.)" �!%�5-.*%'-0.&'+%"!""�&�.%&"-" !"/���'��%9�'3:'%9%'%&," �0.&'+%"R-0�.--5-�0"%.&!*!��!%&".0.&0�&"�%0(�P+!*!��!�%&,-!&'!0�&"�!*0%�0*�#S+�%&," ��A���%;�&"-(-!;�*�-.)3."".;!- !&')*:!- )�.;" �%&��"%!'+-"0.**�0".�-!)"��7T!&'6UV(!-/�**!-)�.;" �678.)" �)%�-"!&'-�0.&')%�*'-(/���"!Q�&)�.;3." " �*�)"!&'" ��%, "-%'�-.)" �3.%*��#B �!- -!;�*%&,*.0!"%.&%-- ./&%&?%,#H#O&!''%"%.&(" �%-.5Q%&�"%0)*:!- -!;�*�-)�.;" �)*+�,!-�!--!)"��" �28!&'3�).��" �678/���.3"!%&�'#B.'�"��;%&�" �;.'%)%�'3.%*��!- 3!*!&0�(" �!- ;!--)*./�!"�-%&" �!- '%-0 !�,��.�"-/�����0�%9�'�A���%;�&"!**:#B �!- ;!--)*./.)" �'+-"0.**�0".�-*.0!"�'+&'��" �7T!&'6UV/���'�"��;%&�'3:!-*+��:;�" .'" !"0.&-%-"�'.);�!-+�%&," �"%;���P+%��'".)%**" �0!*%3�!"�'9.*+;�3:-*+��:!&'%&" �-+3-�P+�&"'�"��;%&!"%.&.)" �-*+��:;!--#B �;!--)*./.)" �)*:!- �&"��%&,%&"." �678/!-.3"!%&�'3:;�!-+�%&," �)*:!- 0.&"�&"%&" �)*+�,!-�!--3�).��" �678W" �;�!-+��;�&"-/������).�;�'+-%&,!&6;�-MXII1NBB56&��,:Y"'4!00.�'%&,".?%&&%- -"!&'!�'7?7MXII#B �3."".;!- )*./;!--/!-

�������������� ������������������������ ����������� ������������ � ��!����"�������������������� ��"��� �#���$�������������������� �% �"�&� �'(

�)*+,�-.�/01234567�8390�:30;�4<�2=0�>4370?�@ABCD.�� �1671E76209�68�2=0�93<<0?0510�F02;005�2=0�24267�68=�G688�<74;�0520?35H�3524�2=0�F4370?�;32=�<E07I�;=31=�;68�9020?G3509�2=?4EH=�2=0�3593?012�=062�F676510�4<�2=0�F4370?I�659�2=0�24267�<7J�68=�G688�<74;.��@=0�H68�6567J838�;68�K0?<4?G09�F42=�35�2=0�?3H=2�<7E0�H68�9E12�62�2=0�70<2�L/A�0M32�659�35�2=0�70<2�<7E0�H68�9E12�62�2=0�?3H=2�L/A�0M32�E835H�2=0�NB@OP�2JK0�H68�6567JQ0?�RS68G02�TUBVWWWX.�TE?35H�2=0�20828I�65�6220GK2�;68�G690�24�G068E?0�2=0�20GK0?62E?0�938B2?3FE2345�35�2=0�14GFE82345�1=6GF0?.�@=0�G068E?0G0528�;0?0�K0?<4?G09�FJ�65�35<?6?09�2=0?G4G020?�RYZW[I�Y3\?453582?EG052X�4K0?6235H�35�2=0�] _�6F84?K2345�F659.�A?34?�24�2=080�20828I�K6?67707�G068E?0G0528�4<�2=0�<76G0�20GK0?62E?0�35�2=0�<E?5610�4<�6�F4370?�2=62�;68�<3?35H�437�8=670�G690�;32=�2=38�35<?6?09�2=0?G4G020?�659�6�8E12345�KJ?4G020?�=6:0�8=4;5�2=62�2=0�8K012?67�<76G0�0G3883:32J�35�2=0�] _�6F84?K2345�F659�38�17480�24�E532J.��abcdeb�fgh�hibjcbbikg�lamnaofecoa�hibeoipceikg�ig�eqa�rcogfja�@=0�G068E?0G0528�4<�2=0�<76G0�20GK0?62E?0�35�2=0�<E?5610�;0?0�K0?<4?G09�62�<3:0�93<<0?052�1?488B80123458�6745H�2=0�=03H=2�4<�2=0�F4370?�R800�N3H8.�_BVX�35�2=0�<4774;35H�741623458s�62�t�G�45�2=0�70<2�659�?3H=2�83908�4<�2=0�<E?5610I�62�u_�G�35�2=0�70<2�?06?�14?50?I�62�uC�G�45�2=0�?06?�;677I�62�_W�G�45�2=0�70<2�659�?3H=2�83908�659�45�2=0�10520?�4<�2=0�<?45267�;677�659�62�_V�G�45�2=0�70<2�K6?2�4<�2=0�<?45267�;677.�@=0�<3?82�G068E?0G0528�62�<E77�7469�=6:0�8=4;5�2=62�2=0�H68�20GK0?62E?0�35�2=0�70<2�EKK0?�K6?2�4<�2=0�<E?5610�:47EG0�;68�83H53<316527J�=3H=0?�2=65�2=0�14??08K45935H�:67E08�<4?�42=0?�G068E?35H�K43528.�@=0�G6M3GEG�20GK0?62E?0�4F263509�;68�uvDW�w]�659�:6?309�;32=35�2=0�?65H0�<?4G�u_DWxuvDW�wy.��z�=3H=�545E53<4?G32J�4<�2=0�20GK0?62E?0�<3079�6745H�2=0�<E?5610�;392=�;68�4F80?:09.�O5�8EF80{E052�0MK0?3G0528I�6<20?�2=0�?014582?E12345�206G�K0?B<4?G09�84G0�6993234567�F4370?�69|E82G0528I�2=0�G6M3GEG�20GK0?62E?0�;68�901?06809�659�54�745H0?�0M100909�uu}W�w]I�659�2=0�20GK0?62E?0�9382?3FE2345�6745H�2=0�<E?5610�1?488�8012345�;68�G4?0�E53<4?G.�

���������������� ������������� ����������������������������������������� �

��� !"#$%&$'()*'$+,-)',.*),/0,0)1$2*'0(3$()4556./,7$'7/(+"��� 8 #$%&$'()*'$+,-)',.*),/0,0)1$2*'0(3$()9:6./,7$'7/(+"

��������������

������������������������������� !��!��"��#��!�$�����%&'�� �(���( ������)*+,�-*./0*12/*34�54567.*.�38�82,695.:�54-�5.:�;5..�863<�15654=,��"������(��� #���$ �������>����?������������ !��!�(@���� #��"����(>���?���#��(��#����� �"���� ��#�����!���!��!� ��#����������� �����������!�����!����(��A��B�����$(�����"����"����������C!�#�$�!����##���!$����!��"��#��(�#��$�� !�(�$ �� ��D�� !���"�������!������$(����������� #��"��#��(��!����!C��"��( E���� E����!�����!$��������@�A�%D# (�F��!���"�����$�!��C����������GA&&� !��"�����>��E��"���C�������$�!C� #��A&&�H���!$��������@����� I�����(@�J�K������F��!��$���!C��!$�����!C����$�!��C��� #�$ �����#��(������$(������$ �������� �#�!��������$(����L���!C�$ ����DC� �!��#��(�����(�����!�$"�!C�!C��"��#��$�� !�(�$ �� ���� !� #��"��� �� ���!��#(@���"���M�������(��NO��P��$ �������� ��"��QL���$"! ( C@������#�((�� �(���( ���M"���F�����!��I���(�F��"����"������$(��#��$�� !�(�$ �� ���� !� #��"��QL�� �(����QDJ&J��������OF����$�!�������!�#� �����(��N��"�����C!�#�$�!����"������$(��$ ����!�!C� $$�����!���##���!��� �(���( $��� !�����RSTUV�W��X05=/*3456�=3;Y3.*/*34�5/�Z[[\�13*6,0�635-�Q��������� ] ��#����������� �� !� ��#����������� ��]����!������$(�����������_�F�H�� ��&aA&&� N%a%&�b��>����������G&F�'� cda%K� NAacA�b��>����������GA&&F�'� Ncacd� JaA�

���������������� ������������� ����������������������������������������� ����� !"#$%&'()*+&,'*-.*/)()*+*0(12&/1&(3)002%2+(&/13)/'1&%42.*%(/&(56678*),2%,*&39:;:<=>=; ?@>>@<:AB CDE=;B=:>=; FG@H@<IJ=; FC9KLI=MNO=NI:H:ABE:;>IGM=NI:<=>=;P<QR< STTUKVTT WTTUWXT YZTUWYT YVU[V\CI=]=;=AIND=ZTQ_ ZV\ ZV\ KVUWTCI=]=;=AIND=YTTQ_ XTUZT aTUXT aVUXV WUSO=NI:HNI:<=>=;bc9dKTKe@IM=;fP<QR<YTTUWTT KXT ZV KTUKYCI=]=;=AIND=bc9dKTKe@IM=;fZTQ_ XX XT VV CI=]=;=AIND=bc9dKTKe@IM=;fYTTQ_ VS [V KV \U]:MD=A:;=@e>:IH=Neg=h>;:E@M:>IHi O@;=>B:H:>j@dL@MNIHG;=:A=IH>B=<=NI:H:ABE:;>IGM=NI:<=>=;P<j:A@eA=;]=NkcB=;=AIND=XTTT@Le@>>@<:AB@H>B=AI=]=jI>B:H:E=;>D;=@LXTTTR<]:;I=NjI>BIH>B=;:Hi=L;@<TkVU[_QN=E=HNIHiDE@H@HjBIGBAIN=@L>B=e@IM=;LD;H:G=>B=:ABA:<EM=j:A@e>:IH=NL;@<kl;=M:>I]=IHG;=:A=IH>B=G@:;A=L;:G>I@H:HN:N=G;=:A=IH>B=LIH=L;:G>I@H@L>B=:ABB:AMIm=Mge=G@<=@H=@L>B=<:IHL:G>@;A;=ADM>IHiIH>B=;=NDG>I@H@L>B=;:>=@LN=E@AI>L@;<:>I@H@HB=:>IHiAD;L:G=AkcBIAGB:Hi=B:A:MM@j=NL@;:HIHG;=:A=IH>B=e@IM=;G:E:GI>gL;@<YZT>nB>@WYT>nBkcB=G@:;A=E:;>IGM=L;:G>I@HIHG;=:A=jI>B>B=AI<DM>:H=@DAIHG;=:A=@L>B=LMD=i:AE:AA]=M@GI>gND=>@e@>B>B=IHG;=:A=IH>B=e@IM=;M@:N:HN>B=GB:Hi=IH>B=G@<eDA>I@H:I;;=iI<=G:HG:DA=>B=IH>=HAILIG:>I@H@L>B==;@AI]=j=:;E;@G=AA@H>B=B=:>IHiAD;L:G=Ao>B=E:;>A>B:>:;=<@A>ADAG=E>IeM=>@j=:;:;=>B=>De=A@L>B=FpqkrB=H;=NDGIHi>B=e@IM=;M@:N>@>B=<IHI<D<bVT_@L;:>=NM@:NQKST>nBfQ:HIHG;=:A=IH>B=<=NI:HE:;>IGM=ANI:<=>=;P<@L>B=e@>>@<:AB:HN>B=LI;A>LI=MNAFC9LMg:ABj:A@eA=;]=NbA==c:eM=[fksHG@H>;:A>Q:AMIiB>N=G;=:A=IH>B=<=NI:HNI:<=>=;@L>B=LMg:AB=AG@MM=G>=NL;@<>B=Ct:HNFpqNDG>Aj:AL@DHNkcB=;=ADM>A@L>B=:ABe:M:HG=@L>B=G@HAIN=;=N;=G@HA>;DG>=Ne@IM=;DHN=;:LDMMM@:NbKTT_QWYT>nBf:;=N=EIG>=NIHuIikVku;@<uIikVQI>G:He=A==H>B:>IHAEI>=@L>B=G@:;A=HIHi@L>B=:ABE:;>IGM=AQ>B=AB:;=@L>B=:ABA>;=:<AG:E>D;=NIH>B=LD;H:G=be@>>@<:ABfj:AA<:MM=;>B:H=hE=G>=NG@<E:;=N>@>B=E;=]I@DAMgG@HNDG>=N=hE=;I<=H>A@H<=NID<dE;=AAD;=e@IM=;A>B:>j=;=N=AG;Ie=NIHsH>;@NDG>I@HA=G>I@HkcB=e@>>@<:ABA>;=:<j:AL@DHN>@e=:EE;@hI<:>=MgYW_@L>B=>@>:M:ABLM@j;:>=ksH>B=:eA=HG=��� !vk$%&'()*+&,'*-.*/)()*+*0(12&/1&(3)002%2+(&/13)/'1&%42.*%(/&(w678*),2%,*&39:;:<=>=; ?@>>@<:AB CDE=;B=:>=; FG@H@<IJ=; FC9KLI=MNO=NI:HNI:<=>=;P<QR< ZTTUKVTT YYTUYaT YXTUWTT ZTUKYTCI=]=;=AIND=ZTQ_ ZV\ Z[\ VYUSaCI=]=;=AIND=YTTQ_ ZVUZa STUSa aTUaX KXUYT\U]:MD=A:;=@e>:IH=Neg=h>;:E@M:>IHi

�������������� �������������

���������� �� �� ��!"#$%&'(#�%)*�%+,-.&)/�0 �1234�56�7��������89�:�;��<�=>��;>?@�>�A����=>88<;<A������=>�B��;C<�D�;����������E�?�>9<;�9��=6����8�;<9>�?9<�=����>A���<�9>�<;��@;<�B�AB<;A>AC���<�������;<���=>��;>?@�>�A����=>88<;<A������=>�B��;C<�9�B��>�A���8���<���@=><=�?�>9<;�@�>AC�!F��<B�A�9�CGH�>��B�@9=�?<�����<=��A���<�?��>���8�<ID<;>�<A��9�=�����������<;<�:������9>C���=<B;<��<�>A���<�?����������89�:�;��<��8�<;���<�;<�;�8>���8���<�?�>9<;����@�<�J���<B�A�9�CG6�7A�<K<A����99<;����@A���8�����9�����:���=>�B��;C<=�>A���<�>A<;�>������B�99<B��;��9�B��<=�>A���<�����A=��� �=@B��L�ME��A=���EH�;<�D<B�>K<9G6�N�<;<8�;<H���<���>A�D�;���8���<�����9����H��DD;�I>���<9G���EH�:���<A�;�>A<=�?G���<�89@<�C�����;<����A=�B�99<B�<=������<���!6��O@;>AC���<�D;<�<A��<ID<;>�<A��H��A����<�D��:�����=<�����?��>A��������@A��=>��;>?@�>�A�����=>88<;<A��?�>9<;�9�B��>�A�������<�?�>9<;��>A>�@��9��=�P��EH������Q���8�9>K<���<��R6�O@<����>A�BB@;�B><��>A�=<�<;�>A>AC���<�89G�����B�A�<A��<A�<;>AC���<���!����>AB;<��<=�C���K<9�B>�><�H���<�<�=�����;<�A���D;<�<A�<=��<;<6���:<K<;H��BB�;=>AC������<�<�=���H��A�>AB;<��<�:����?�<;K<=�>A���<����@A����8�?�����������A=�89G�����=>�B��;C<=����>A<;�>������B�99<B��;��9�B��<=�>A���<�����A=��� �=@B��6��S*#+'T%$�T,+U,)'&',.�,V�&*#�%)*�N�<�;<�@9����8���<�B�<�>B�9��A�9G�>���8���<��������=>88<;<A��=>�B��;C<�9�B�W�>�A�������?�>9<;�9��=��8������Q��P���ER��A=������Q��P��ER��;<��@���;>X<=�>A�N�?9<�����A=��6�7A�9GX>AC���<�B�<�>B�9�B��D��>�>�A��8���<�?����������:�<A�8>;>AC��>9����9<�?G��DD9G>AC�J���<B�A�9�CG����:����B�A�>=<;�?9<�>AB;<��<�>A���<����@A���8�@A?@;A<=�B�;?�AH�:�>B��:���B�@�<=�?G���<��<D�;��>�A��8���<�B��;�<;H�@A?@;A<=�D�;�>B9<����;�@C����<�8@;A�B<���;�����D<A>AC6�7��>CA>8>B�A��>AB;<��<�>A���<����@A���8���;B��>�<��@9D�@;��D�>A���<�?���������H������D;�?�?9G�=@<������<��BB@;;<AB<��8�;<=@B>AC������D�<;<�X�A<��>A�B��?@��>�A�B���?<;H�:����9����?�<;K<=6�N�<��>�@9��A<�@����>A�<A�AB<��8���9�:<;��<�D<;��@;<�>A���<�8@;A�B<�:>�����<�8<<=>AC��8�B��;�<WC;�@A=�8@<9�;<�@9�<=�>A���9�:<;�=<C;<<��8�=<B��D��>�>�A��8�B�;?�A��<��>A<;�9��>A���<�8@;A�B<����B��D�;<=������<�!F��<B�A�9�CG6�7����8@99�?�>9<;�9��=H���<�<I�<A���8���<�B�;?�A��<��>A<;�9�=<B��D��>�>�A�:����DD;�I>���<9G�Y� ��Z��6[�6��F;���N�?9<�����A=��H�>��B�A�?<��<<A��������<�B�A�<A���8�B��D�A<A���B�@�>AC���@9D���>�AH���@B������� ��A=�\�� H��>A���<�8>A<;��8;�B�>�A��8���<�������

������������� ���������������������

�����������������������������������

���������� !�"��"�#$��

�%&�'()�� ��* �� +,-./�01�23456789�7:5;

:<6=6:>�:?�=34�8<3�8=�@6??4A4>=�8<3�@6<738AB4�;:A

=<�8=�CDDE�F:694A�9:8@�GHIHJKLKI�MNLLNJ�HOP

Q� IRSPL�ORTKQ� ULV�MNLLNJ�HOPQ� WKXL�ORTKQ� ULV�YZ[KI� PKHLKIQ�IRSPL� ORTKQ�ULV�YZ[KI� PKHLKIQ�WKXL� ORTKQ�ULV�\]NNJR_KIQ� IRSPL�ORTKQ� ULV�\]NNJR_KIQ� WKXL�ORTKQ� ULV�\YG��XRKWTQ� IRSPL�ORTKQ� ULV�\YG��XRKW TQ �WKXL�ORTKQ� ULV�\YG�a�XRKWTQ� IRSPL�ORTKQ� ULV�\YG�a�XRKWTQ� WKXL�ORTKQ� ULV�bc a�adefagd

e�hdifjd�idgfjdk�idifjdi�

jdk�adefjdl�adgfadk�adlfade�

adk�ade�b KW�hdehfldg

�mdllfkdi�ldhifdai�ldkifd�

da�ldekfdlk�ldgjfldgl�ldjifldje�

ldgg�ldjm�Y KW�ldkmfldh

a�ldmefldkm�djlfdeh�degfdhj�

del�djhfdjm�admjfadie�adgefadje�

adjk�idg�Yc iLNLHW�dhefadi

l�adifdhe�idjifidgi�idjmfidki�

idke�idkifidkl�kdfedmm�gdgifgdi�

gdm�kdhl�Y O�ldjgfldi

h�ldeaflde�djlfdeg�deefdhj�

dea�djhfdgl�adkefadia�admlfadja�

adjj�adhl�Y [�ldiaflde

i�ldiifldak�ldli�ldl�

f�f�ldlhfldli�ldli�

ldli�ldag�YRc a�jdgjfd

aa�mdalfmdikaidkafaadjajdjfaidl�

aldka�aadeafaadkildkefahdaeaedkkfakdm

ajdmj�agdem�nK ac i�ideefidg

a�adjhfidm�edefjdeg�edlfjde�

jdeg�jdklfjdgh�jdjkfjdkh�jdalfjdgg�

jdja�jdlk�oW ac i�jdmmfldj

l�edgfjdeg�gdjmfedmk�gdkafedkk�

jda�jdggfeda�`dmafkdjj�kdifkdkg

�edjm�gdeg�

bHc�eadjefeldia�jedgmfejdljeida

fejdlgedggfeldkheedma�eedmlfeldmh

jmdhkfjidlmjhdiafjjdaeldai�jgdlk�

bHc XIKK�edekfgdlg�mdegfgdgk�ajdjh

fajdaaaedlm���h

djefjdgamdafedei��

pSc�adegfidmg�dkhfidaa�de

fadgg�idjafjd�adgm�idlgfgdka�

ldeafjdga�idlgfjdma�adjh�adlh�

q ac�ldgfldj�ldgfldj�adlm

fad�adlfidgj�dgj�dgfdm�l

dmefidal�idlifidlk�adj�idak�

rH ac�dakfdl�djfdka�ldm

fldal�ldmfadam�ldm�ldgfldg�

ldafldal�ldaaflda�ldm�ldai�

sKHL�WNOO�aedfilde�aidgfaldi�idm

fjdm�idifjdk�jdh�adjfjdi�

adhfadg�adfad�adm�adi�

� � � � � � � ��tuvwxyz{w|�z{}x}�v~���w�~������tu��{���{��������~���v�yz{|�{w�x�w{��vwx{��z{�u~v�v��� ���������������������

�������������� ����������������������

��� ��!��"� �������� �#�""�$�! �����#�����$%����$

��� �&'(�)����$����#�*+,+-./.,�01//1-�+234

� ,563/�257.4� 8/9�01//1-�+234� :.;/�257.4� 8/9�<=>.,�3.+/.,4� ,563/�257.4� 8/9�<=>.,�3.+/.,4� :.;/�257.4�8/9?@1A1-5B.,4� ,563/�257.4� 8/9�?@1A1-5B.,4� :.;/�257.4� 8/9�?<*�C�;5.:74� ,563/�257.4� 8/9�?<*�C�;5.: 74 �:.;/�257.4� 8/9�?<*�D�;5.:74� ,563/�257.4� 8/9�?<*�D�;5.:74� :.;/�257.4�8/9

�EF D�GCHI�GJHJ�CKHC�

CGHG�CKHC�CGHI�LHM�

MHN�IHK�IHD�

�E .:�CLHLG�CCHNN�IHJI�

GHMK�IHCL�GHMC�DHJI�

CHOC�CHCN�CHJJ�

�< .:�CHCL�CHCL�CHKN�

DHCJ�DHCL�CHNL�DHKN�

DHIK�DHOI�GHJ�

�<F G/1/+:�DHNG�DHNG�GHNO�

KHDM�KHIG�IHNG�MHIO�

MHCG�LHCJ�LHKJ�

�< 2�JHGG�JHKJ�CHKN�

DHCK�DHCD�DHJJ�DHIO�

DHIJ�DHOC�DHNI�

�< >�JHOI�JHML�P�

P�JHJK�P�JHCC�

JHJK�JHJG�JHJM�

�<5F D�LHNK�OHNN�CIHNI�

CLHDG�CGHCG�CGHOG�DJHKK�

CNHLL�DLHMO�DLHMC�

�Q. DF G��DHID�GHOC�

GHNL�GHON�GHGL�IHDI�

DHCG�IHIL�IHMG�

�R: DF G��KHIL�IHKM�

IHGJ�GHMM�LHCO�IHDG�

CGHJN�KHKM�KHIO�

�E+F�ILHJ�KJHKI�INHOM�

KDHCG�KJHDD�KIHCC�KJHIL�

MGHIN�IGHGO�IDHLL�

�E+F ;,..�DHJ�KHML�DJHND�

DGHN����

DGHMN���

�S6F�DHIN�GHLJ�DHJJ�

�IHLN�DHKN�GHGL�

IHIG�DHLG�DHLO�

�T DF�JHOK�JHND�CHON�

CHGI�CHGL�CHCN�CHKK�

CHND�DHMI�DHNC�

�U+ DF�JHCN�JHCD�JHCK�

JHCG�JHCG�JHCK�JHCG�

JHCN�JHDJ�JHDC�

�V.+/�:122�ICHG�GIHJ�CIHL�

CGHM�CKHK�CGHG�LHM�

MHO�IHM�IHJ�

� � � ��� � � � � �������������

���������������� ������������� ����������������������������������������� ���� !"#$%&' ()*+,-./01,2345)6/ 1.4)26-1)24*5/)1.4789231.4:,-4/);<,35)6/ 1.4:+:*/34/)0/2*46=9>?&?231.4:,-4/)9@A2-,BB6/C2 ,14*+1.4-, 4)/61.4;<,359@14:.3/*/D24-EF/G4H46(1.4:/31431/)IDJG,-)/K351/04-/ 4G.,1*/G46�/3,H46,D4#&LA(,351.4:/31431/)M"JG,-)/K351/04.2D.46�/3,H46,D4#&LA)/61.4;<:/ B,6451/1.49@14:.3/*/D+ENOPQRSTSUSOVTWT=.464-K*1-/)1.4)*K4D,-,3,*+-2-B46)/6 4504.2351.478904)/641.4235K:12/3/),56,)1),3231G/5K:1-,152))464310/2*46*/,5-,64B64-4314523=,0*4XEY1:,304-4431.,11.46416/)21/)1.40/2*461/K-4;<14:.3/*/D+5253/164-K*123,645K:12/3/)8J"4 2--2/3-(2352:,123D,34H43G4,Z46B6/:4--/)023523D-K*B.K6/C254-231.2-)K63,:4:/ B,6451/1.49@E=.2-*,:Z:/K*5B,612,**+044CB*,23450+1.4)/**/G23D64,-/3-E[-1.47-1/32,3/2*-.,*4233,1K642-.4146/D434/K-)K4*(5K623D1.4B6/:4--/)/2*-.,*4BK*H462\23D,35-4B,6,123D(1.46452-1620K12/3/)1.4)K4*:/ B/3431-0+B,612:*4)6,:12/3-/::K6-]1.4-K*B.K6� /-1)/6 -A*/:,14-G21.231.4)2346B,612:*4)6,:12/3(G.464,- /*4:K*4-B,612:2B,123D231.4B6/:4--/)023523D-K*B.K6/C254-(2E4E(1.4)644*2 4<,J)644(*/:,14G21.23:/,6-46B,612:*4)6,:>12/3EK623D1.4)K4*B,612:*4-4B,6,12/3B6/:4--1.,1/::K6-23,H/614C:/ >0K-12/3:., 046(1.4*2D.146B,612:*4-(:/31,2323D /-1*+1.4/6D,32::/ B/>3431-/))K4*�/6D,32:-K*B.K623B,612:K*,6A(,351.4)2346B,612:*4-(:/3>-2-123D/)1.4-,35+:*,+B,61/)1.4)K4*� ,6:,-21423B,612:K*,6A(,644316,23450+1.4D,--164, 231/1.45264:1>)*/G_41(0+B,--23D1.464:26:K*,12/3H/614C\/341.,1)/6 -231.4*/G46B,61/)1.4)K63,:4E[-,64-K*1(1.4<,J:/3143154:64,-4-23_K-11.,1\/34G.4641.4 /52)2:,12/3/)-K*B.K6/C254-/::K6-5K623D:/ 0K-12/3E[55212/3,**+(1.4645K:12/323-K*B.K6:,B1K641.,1/::K6-0+2 B*4 43123D;<2-/0H2/K-*+:,K-450+1.4:/,6-4323D/)1.4,-.B,612:*4-(G.2:.1.43.,H4,- ,**46-B4:2)2:-K6),:4,64,:/ B,6451/1.4,-.1.,1)/6 -5K623D9@E=.4-B4:2)2:-K6),:4,64,abcdefghWTTWiUTijklmnolpSUqrlSsqWjjQtQUsuiWOQtOiSqT7CB462 4313K 046 @*K45K:1 v/2*46*/,5(1w. xJC( Dwx y�zLJ"A 8J" Dwx y�zLJ"A <J Dwx y�zLJ"A7CB? 789[(62D.1:.,334* ?z& y?" y#{# {y&7CB" 789[(62D.1:.,334* ?z& %## ?X&X %&E?7CBy 789[(62D.1:.,334* ?z& yz" """# "#E#7CB% 789v(*4)1:.,334* ?z& y|? ?|X? "zE"7CB# 789v(*4)1:.,334* "%& y{% "y?% ?yE#7CBz 789[(62D.1:.,334* "%& yX" "%|& |E|7CBX 789v(*4)1:.,334* y"& y"X y?z% &E&7CB{ 789[(62D.1:.,334* y"& yyz "X?# ?E?7CB| 789[(62D.1:.,334* y"& yy% y&{y &E"7CB?& 789v(*4)1:.,334* y"& y&" yy%% &Ey

�������������� ������������������������������������������������������������������������������������������ �!�����"!#$��%������&����������������������������'�������������(�����"!#������������������������������������������������'�������#)*+,--..��'/0�-�1���&�������23��������!#4$�%�����������������������'����5�����0!5��������������&��������������'����������&�����������������������66��5����������������������$�7���������������������������(��������������������0!5����������$�89:;<=>?9:>�%���6�������6�6���6���������56�������������������������@����(��&��@�������56�����������������������������������'�@6����&���AB��������%A@2)��6������'�������������(����&���C ���������'�$��%�����������������������������&���C ���������'������������������������������������������5��&��������&�&���&�6&�������&6����-#D��/�$�%������6����&�������&�������(������������6���������&���'������������������������(�����������������5��&�����6����&���������������&���������������5�����**+D�E �1������������������������������4$�"��'������6����&������&��@�����������������������&��������������������������(������������6����&�������������������������������������'������������������5�����*DD,*+D�E $�%��������'�����������@'��&����&������&����������������'��'������������@����������6���������������������������������(��������������������@��������������������������������6������������������F��������������$�%��������&��GHDDD�������������������������������������6���&������HDDD�I�����������������������'�����D$+,.3(���6�����'����������������������������������������6��������������������$�J�������&���'�����������������������������&��1+D3��������������(�*2D��/�4(���������������������������6�����������������F�����������������������������������������K"A���������������������$�L����������(������'���������������������������������������������������������������������"M�����K !��&���������������&��$�N&���'����������(������������&���������������&���������������������������������������������56��������������������$�%���������������������������&����������66��5��������#-3���������������������������$�"����������&�����������������������������'��������������������������������������������"M�����K !��&����1O3�����*-3(����6��������4$�%��������(����������6��������������������(��66��5��������++3(������������������������&��'�������������������������������K"A$�7��������������������������������������6�������������������������@�����������������������������&�������&��&��������������������������"6$�7�����&��������������(������5�������������������������������6����������������&�����������66��5��������P !#�Q�D$H.$��%�����������������������������&���C ���������'�������������&�������������&���������"!#����������(����������'������������P���6����������������'��&�6�&���5�������������&���������6������������AB���������'�$�%���"!#�

���������������� ������������� ����������������������������������������� ���� !" ! �#$%&'(")!�*+,-.)/#' 0!1""23"#'$" !4%!%5/&&6�'&"#&�%)7%#'")8'!1' !1"#% 0"�5+9:;<==>>$0?@$=A"2�"")' 0"$'44'� 4�5B*+5�#!1""2'4!' 0CD!"�1 �&�0E% )' )'�%!' 0% "7" 8"%F"#3#��"44�56' )' 04/&31/#�2')"4' !1"5/# %�"GHIJIHIKLIM:GNOPQRSTPUVGW�8XY"$3"#%!/#"D'#' 0�5*'&B1%&"G<W" ' 0#%)Z[ "#0�'()%!A:\]9' _/44'% G+GabcUdG*'&B1%&"D/"&e�$6/4!'� G<Y%&&' Z["4!'[ "#0'%fBA+gg-A]==33G=GabcUdhUijTkkUdhUdjjlUmhUNOPQRSTPUVhUnlPloTpqUrGf ' 7"4!'0%!'� �55&EX%41�1"$'�%&��$3�4'!'� ' 7�#!'�%&6/# ' 0�5�'&X41%&"??Y#% 4%�!'� 4�5Y%&&' C�&E!"�1 '�%&s 4!'!/!"G:\99GB"#'"4fA@�G>:-GCG\:<:gg' _/44'% G>GabcUdhUijTkkUdhUdjjlUmhUNOPQRSTPUVhUnlPloTpqUrGf ' 7"4!'0%!'� �5�'&X41%&"$' "#%&$%!!"#�� 7"#4'� ' 7�#!'�%&6/# ' 0??Y#% 4%�!'� 4�5Y%&&' C�&E!"�1 '�%&s 4!'!/!"G:\99GB"#'"4fA@�G>:-GCG9\<]>' _/44'% G;GabcUdhUijTkkUdhUdjjlUmhUNOPQRSTPUVhUnlPloTpqUrGD&EX%410#%' ��$3�4'X!'� ' 7�#!'�%&6/# ' 0�5�'&X41%&"??Y#% 4%�!'� 4�5Y%&&' C�&E!"�1 '�%&s 4!'!/!"G:\99GB"#'"4fA@�G>:-GCG];<\g' _/44'% G-GabcUdhUijTkkUdhUdjjlUmhUNOPQRSTPUVhUnlPloTpqUrGAtpqOpqkTPUuGY1" %!/#"�5%41)"3�4'!4� !1"!/6"4�5�� 7"�!'7"4/3"#X1"%!"#' 7�#!'�%&6/# ' 0�5�'&X41%&"??Y#% 4%�!'� 4�5Y%&&' C�&E!"�1 '�%&s 4!'!/!"G:\99GB"#'"4fA@�G>:-GCG:g\<::-' _/44'% G9GilvwjxPbcwoUyhUNOPQRSTPUVhUnlPloTpqUrhUzRcxkloUuhUrxj{xvpqTkUrhUabcUdhUdjjlUmhUijTkkUdGB!/)E% )'$3#�7"$" !�5&�8X!"$3"#%!/#"7�#!"25'#' 0�5�'&41%&"' $")'/$X3#"44/#"6�'&"#4??Y#% 4%�!'� 4�5Y%&&' C�&E!"�1 '�%&s 4!'!/!"G:\99GB"#'"4fA@�G>:-GCG-;<9]' _/44'% G]GijTkkUdhUuPSwjvxPPUnhU|lOxjbUNhUNOPQRSTPUVG}%4!%0"�54�#"" X4/3"#1"%!"#!/6"4' !1"&�8X!"$3"#%!/#"7�#!'�%&5/# %�"6E8%!"#4��!X6&�8' 0??Y#% 4%�!'� 4�5Y%&&' C�&E!"�1 '�%&s 4!'!/!"G:\]gGB"#'"4fA@�G>]=GCG\\<:g9' _/44'% G\GijTkkUdhUtqpqOpqkTPUuGf418"%#' 0�58%!"#X"�� �$'("#!/6"4�56�'&"#~��X9;X=\XD8'!17�#!"25/# %�"%##% 0"$" !??Y#% 4%�!'� 4�5Y%&&' C�&EX!"�1 '�%&s 4!'!/!"G:\]:GB"#'"4fA@�G;g+GCG:\<+]' _/44'% G:gGabcUdhUijTkkUdhUdjjlUmhUNOPQRSTPUVhUnlPloTpqUrG* !1" %!/#"�5%41)"3�4'!4� 5/# %�"3&%!" 4' 7�#!"25'#' 0�5�'&41%&"??Y#% 4%�!'� 4�5Y%&&' C�&E!"�1 '�%&s 4!'!/!"G:\99G4"#'"4fA@�G>:-GCG:g:<:g]' _/44'% G::GiTqOU|hUdjjlUmhUijTkkUdhU�wcqOvxRwoU�hUzllcxxjU�hUixjowU|hUnlPTcbUdhUNllbxvvUNhU�OObjwUrhUd�OowwUNG~�'&"#@�G+-!1"#$%&!"4!%!~%&!'C�8"#C&% !G<_"4"%#�1#"3�#!�5Y�YA+g:gG]g33' [4!� '% G_"�"'7")�%E:]A+g::

93

PAPER IV

�������������� ������������������������ ����������������������������������������� ������� !"�#��#�$%���&'�()*��!��+!��,-.//.01�02�2.1,�3456.78946,/�250-�0.9�/:49,�2.5,;�945<,�=0.9,5/�>?�@ABCDEF�G?�HIIJAABF�K?�KALLICF�A?�MINOJ>��PQRSTUVQWU�XY�>ZQTVS[�DW\]WQQT]W\F�>S[[]WW�W]_QT]Ua�XY�>QbZWX[X\a�ccd�MXR[]�JU?F�>S[[]WW�ccecfF�DUXW]S�� ghijjiklj�km�miln�opqristuprnj�km�vqpwn�xyz{|�plw�xy}~�mqkh�wimmnqnlr�kiu�j�pun������ok�nq�ouplr��xx���kiunqj��nqn�jrtwinw{�xtu�nqi�nw��x���plw�siqstuprilv�mutiwi�nw��nw��������kiunqj��tqlilv�kiu�j�pun���ikhpjj�plw�qnrkqr�vpj��nqn�il�njrivprnw{�xpqrisun�nhijjiklj�mqkh�����kiunqj��nqn�mktlw�rk��n��nq��miln{���nq��~��km�nhirrnw�opqristuprn�hprrnq��pj�il�r�n�ji�n�qplvn�km�xy}~�plw��~��~��tlwnq�r�n�ji�n�km�z{|��h{��ijrqi�trikl�km�miln�opqrisunj����ji�n��pj�mktlw�rk��n�wnonlwilv�kl����miqilv�hkwn��x��kq�����{��r�����miqilv�hkwn�r�n�j�pqn�km�r�n�milnjr�mqpsrikl�xyz{|��pj��iv�nq�r�pl�r�pr�pr�x��miqilv�hkwn{���n�wijrqi�trikl��pqinw�pr�r�n�jphn�r�on�km�wimmnqnlr�x���kiunqj��wnonlwilv�kl�r�n�nmmisinls��km��kiunq�mutn�vpj�sunplilv�j�jrnh�plw��putn�km�rkrpu�jtjonlwnw�opqristuprnj��nhijjikl����x�{�.������������AbbXT�]W\�UX��]YYQTQWU�U �]Q�¡c¢�Y]WQ�RSTU]b [SUQ�£@Kf?¤�SW��@Kc¥¦�]W�UZQ�SV§]QWU�S]T�RTQQWU�QT]X �ZQS[UZ�T]�� Q�UX�UZQ]T�S§][]Ua�UX�RS�UZTX \Z�UZQ�Z VSW�TQR]TSUXTa�XT\SW��]TQbU[a�UX�UZQ�[ W\�XT�Q_QW�§[XX�?�LSTVY [WQ�XY�UZQ�Y]WQ�RSTU]b [SUQ�]�bS Q��§a��]YYQTQWU�ZS©ST��bXVRX W��£ZQS_a�VQUS[F�bSTb]WX\QW]b�bXVRX W�F�QUb?¦�]WUQ\TSUQ��]WUX�RSTU]b[Q?�P]YYQTQWU�X TbQ�¡f¢�bXWY]TV�S�]\W]Y]bSWU�bXTTQ[SU]XW�§QUªQQW�@K�[Q_Q[�]W�UZQ�SV§]QWU�S]T�SW��VXTUS[]Ua?�AWXUZQT�]VRXTUSWU�YQSU TQF�VS]W\�Y]WQ�RSTU]b[Q�SW�SUUTSbU]_Q�TQQSTbZ� §«QbUF�]�UZQ]T�UTSW§X W�STa�QYYQbU�¬�UZQ�S§][]Ua�UX�RTQS��XW�[XW\��]USWbQ?�­Q]�Q�VXUXT�_QZ]b[Q�SW��[XbS[�RX[[ U]XW�X TbQF�YST�[ST\Q®bS[Q�bXV§ U]XW� U][]U]Q�£USU]XWSTa�QV]]XW�X TbQ¦�STQ�R[Sa]W\�]VRXTUSWU�TX[Q�]W�UZQ� S[]Ua�XY�UZQ�SV§]QWU�S]T?�PQR]UQ�TQWX_SUQ��Q[QbUTXUSU]b�RTQb]R]USUXT�£DJ@¦F�@@�bXV§ U]W\�DUXW]SW�IJ�STQ�U][[�TQVSTS§[Q�QV]UUQT�XY�X[]��RSTU]b [SUQ�£S§X U�df°¥�UXW�]W�f¥¥±²f¥c¥¦�¡³¢F�]©Q��]UT]§ U]XW�XY�UZQQ�QV]]XW�ªS� WWXªW� WU][�[SUQ[a?�TXV�§Q\]WW]W\�XY�f¥¥µ�TQ[Q_SWU�]W_QU]\SU]XW�SU��]YYQTQWU�IJ�Y]TQ��§X][QT�ªQTQ�USTUQ�F�UZQ�TQ [U�XY�ªZ]bZ�STQ�WXª�TQRXTUQ�?��������������������������������������������������E�¶XTTQRXW�]W\�S UZXT·�Q®VS][�ropq�n jri{rrt{nn�

����������������� ���������� ������������� ���� ������ �� �������� !"�#$%&�'%"�&!#(�"�$)*+�,-.�/0123456�1.7-89�4/�:0/.9�85�7-.�2;45<423.�8=�4120<7485>�,-.�1.7-89�4/�9./465.9�=8;�/70<?�1.0/@;.1.57/�07�/7074850;A�.14//485�/8@;<./>�,-.�1.7-89�0338B/�6;0C41.7;4<�9.7.;14507485�8=�<85<.57;07485/�8=�DEFG�059�DEH>I�.14//485/>��DE�<85<.57;07485/�B.;.�1.0/@;.9�B47-�J8-50/�KK�<0/<09.�4120<78;>�,-.�/70590;9/�LMN�FOHPQRF�059�STK�HGUU�B.;.�=8338B.9�VQW�IX>�DEFG�059�DEH>I�10//�<85<.57;07485/�0;.�9.7.;145.9�:A�/4Y.R/.3.<74C.�/.20;07485�8=�60/R:8;5.�20;74<3./�:0/456�85�94==.;.57�45.;740�8=�20;74<3./>�Z3@.�60/�4/�4/8?45.74<033A�/@<?.9�4578�7-.�<0/<09.�4120<78;>�,-.�4120<78;�/.20;07./�20;74<3./�0:8C.�0�/2.<4=4<�0.;89A5014<�9401.7.;>�,-.�0.;8/83�4/�0<<.3.;07.9�45�0�58YY3.�059�7-.5�9.=3.<7.9�:A�[G\>�D0;74<3./�B47-�6;.07.;�0.;89A5014<�9401.7.;/�0;.�587�0:3.�78�=8338B�7-.�=38B�345./�8=�7-.�60/�9@.�7-.�10//�45.;740>�,-.A�0;.�/.20;07.9�85�7-.�<833.<7485�2307.>�T@;456�/0123456�7-.�20;74<3./�0;.�94C49.9�4578�7-;..�=;0<7485/�B47-�0.;89A5014<�9401.7.;/�6;.07.;�7-05�FG�]1W�:.7B..5�FG�]1�059�H>I�]1W�059�/1033.;�7-05�H>I�]1>�K5R/70<?�/0123456�B0/�2;8C49.9�4/8?45.74<033A�=;81�7-.�85.�28457�8=�7-.�=3@.�60/�9@<7W�@/@033A�:.=8;.�7-.�=3@.�60/�=05W�B.;.�=3@.�60/�7.12.;07@;./�;.1045�45�7-.�34147/�8=�FQGHGG�\L�_Z46>�F>�,-.�85.R28457�/0123456�B0/�;.0/850:3.�:.<0@/.�8=�;.3074C.3A�-46-�,aD�<85<.57;07485/�059�7-.;.=8;.�34147.9�741.�8=�/0123456>�,-.�/0123456�28457�38<07485�B0/�<-8/.5�=;81�7-.�18/7�-8186.5.8@/�;.6485�8=�7-.�C.38<47A�=4.39�:0/.9�85�6;49�1.0/@;.1.57�����bcde�fe�g.5.;03�1.0/@;456�/.7@2>�h��aR7A2.�D4787�7@:.W�i��94==.;.5703�10581.7.;W�j��58YY3.W�k��J8-50/�KK�<0/<09.�4120<78;W�l��-.07.9�/0123.�2;8:.W�m��<859.5/078;W�n��7-.;181.7.;W�o��2@12W�p��=38B�1.7.;Whq��7-.;181.7.;W�hh��rH�0503AY.;W�hi��7-.;18<[email protected]�hj��60/�0503A/4/�2;8:.W�hk��Z,Ks�60/�0503A/.;>�

���������������� �������������������������������������������������� !��"������#�����$$���%��&������������'�()*�&&!��������+��#����%����������+��%�,����������������%���������������������������'���%����-���������&+�����+����&+�������.�&+��%�����������&�������%�'!������%����&�/�0����/�1�2&3���%���&+�������&���,�������&� /����4/�&��������5���#���-�����6������%��������,�����+����%����,��������������&+����6�,���������%����������������������������789:;<=�5������%����&����������������&����%�����&+�������������������&����>?����$���#�����������@��-������'+��@A3(/�,�������%�������&+������5������%��@A3(/����������#����'�������������/�3�B&�+������������#�����������CC�CC1D��E��+�����������������������,���������%��������������#������'����������,���������%��+����F(/�GH�����������&�����������������&+������������������I��������%�������������������������������������,�������%����,����%���%����F/0�GH��"�����%�'���6���������,���������%����%�������������������F ������6����������#���,�������J���������%�������,�����������������������,���%�������&����>����'������#�������,���������������'����/�F�&������%�#����'�)�/�/F�&�!���K;=:�LMN;O:=�PQR�:P<S;:=�5�������������������������&������&�����,������%����&�����&�����������������������+�����������6����������'�+�������%�����#����T.�E@��&��������,���������#���U(V��5���E@ �0���%�E@F/��&���������������,�������%�%����������&���������+��������EE���%��������������2��������W&�������J�������'��2WJ!���"����������������,���������%�������,�����������'+�6�����+�,�����������������������%��+��������&�%����������&���������������+����������5�������������������,����������%��������%����������'+������T.>����%�#�������,�����%%���������,��%'�#��&������%�������������������&�����T.�+����������������'��@�����������������,����������%������������E��#��������'+��5E�F/F����W�����EE��5����������������T.���%�#��&�����I@!���>���������������E@��&��������,������%��%����.����&X��EE����E��#��������'+��5E�30�U*V��"�����������������&+������������T.�H�I���%�E��#�����������������'�����������������1//�GH���%�F4//�GH6����+�������'��Y;=Z9:=�PQR�R8=OZ==8LQ�[�+��%���#����'������,����������%�����������E��#���������������������������#����'����������&+�����&����%6��+��������-�������%��������������+����#�������������������#���������������� !��.�����>+�������&+�����,�����+����%������&�����,�'����&�������&��+�����������������%�����"���������������'�����%�,���%����&���%����������&+���������������������%������������&+�����+��������������,����������������3!��5������������������������������%����%������������6���%�����%��%�%������������������+����%�&������&�������&����%�#���,�0D������������������$��

����������������� ���������� ������������� ���� ������ �� ��������� !"#�$%&!'�()�*+,�-%��.#%�!���%&�� /%&0�&!'��!"�%"���� !"�!��&��1%��2��� �&%#�34()�*+56��7%�/�� �� !"�!���%#.&�#�'�#�7 17%�6�$%&!'�()8� "��7�����#%,�9"�!/%�/ %'�!���7%��%#.&�#�!���&&��%#�#����:��/��;;�$! &%�#� #�1 /%"� "�< 1,�=,�9�>. �%��&%����!��%&�� !"�$%�'%%"�?@;�/�&.%��"A�# B%�A #�� $.� !"�!��2��� �.&��%#���"�$%�#%%"� "��7%�A �1��+,�?7%�2�!2!�� !"�!��&��1%��2��� �&%#��� �CDE�FDG� CDFCHDI�CJDJCFDK� CIDK CHDG�CIDH�

K�LK�MK�GK�CK�FK�JK�

L� M GNOPQ�ROSTUOVWTOXYZ�[\SS�]�� � LKMDF_LKMDFaQST�bX �cdef�g,�h%2�!A.� $ & �0��%#�����;<�$! &%��?;()(�:!�i-6�j@;�k,���

\ V l R L M G CLCLJLEMKmQnXlOToZ�[pS

N\[qnOYr�qXUT N\[qnOYr�qXOYT�LEDK_MKDKLJDK_LEDKLCDK_LJDKaQST�qXOYT_lG

�cdef�s,�<&.%�1�#�/%&!� �0�� %&A��"A��7%��%#��2! "��&!��� !"�A.� "1��%2�!A.� $ & �0��%#�,�

���������������� �������������������������� ���� ��� ��� ��� ��� �������������������� ��!"#�$!%&'!()&!*+���,%%�

��� � -���.�/��0�.�1*��2-��31*��2�.�/��31*��20�.�3 �4567�89�:;<=�>;?@A;BC@;DE�FBG�HI??J�DK�@L=�=H;??;DE�DK�M:N�KADH�O?@DE;IE�P:�K;A=>�BD;Q=A?9���;ERA=I?=?�RDERCAA=E@QG�S;@L�M:N�=H;??;DE9�T@�C?CIQ�M:N�=H;??;DE�AI@=?�FUVWW�HXYZH[J�@L=�HI??�DK�KAIR@;DE?�N\]W�IE>�N\V9�;?�_W �IE>�a b�A=?c=R@;d=QG9�T@�QDS=A�M:N�RDER=E@AI@;DE?�Fe]WW�HXYZH[Jb�@L=�?LIA=�DK�N\]W�;ERA=I?=?�=fcDE=E@;IQQG�@D�_ �IE>�@LI@�DK�N\V9�@D�W 9�gE�I>>;@;DE�@D�@L=�;HcIR@DA�H=I?CA=H=E@?�IK@=A�@L=�O:N�RDQQ=R@;DE�DK�?DQ;>�cIA@;RQ=?b�I@�@L=�;EQ=@�DK�DE=�hij�BD;Q=A�O:N�SI?�cADd;>=>9�NIA@;RQ=�?;<=�>;?@A;BC@;DE�DK�@L=�RDQQ=R@=>�?IHcQ=�SI?�IEIQG?=>�C?;EX�@L=�H=@LD>�DK�QI?=A�>;KKAIR@;DEY?RI@@=A;EX�IE>�?IHcQ=�>AG�>;?c=A?;DE9�T?�I�A=?CQ@�>I@I�BI?=>�DE�RDHcIA;?DE�DK�?;<=�>;?@A;BC@;DE�DK�KQG�I?L�cIA@;RQ=?�I@�@L=�;EQ=@�IE>�DC@Q=@�DK�O:N�IE>�A=QI@;d=�RQ=IE;EX�=KK;R;=ERG�DK�O:N�IA=�cA=?=E@=>�;E�MIBQ=�]�klm9�ML=�@A=E>?�DK�cIA@;RQ=�?;<=�>;?@A;BC@;DE�;E�i;X9�a�IE>�N\�RDER=E@AI@;DE?�I@�@L=�;EQ=@�IE>�DC@Q=@�DK�O:N�FMIBQ=�]J�?LDS�@LI@�=Q=R@AD?@I@;R�cA=R;c;@I@DA?�HD?@�=KK;R;=E@QG�RQ=IE�KQC=�XI?=?�KADH�QIAX=A�P:�KQG�I?L�cIA@;RQ=?9�O:N�=KK;R;=ERG�I@�RQ=IE;EX�KQC=�XI?�KQDS�KADH�cIA@;RQ=?�DK�@L=�?;<=�n]W�oH�;?�p[�@;H=?�L;XL=A�@LIE�KADH�cIA@;RQ=?�qV9�oH9�M=?@?�I@�@SD�>;KK=A=E@�hij�BD;Q=A?�?LDS=>�Q;@@Q=�dIA;I@;DE?�Fe J�;E�?;<=�>;?@A;BC@;DE�DK�@L=�K;E=?@�cIA@�FN\V9J�DK�M:N�=H;??;DE?9�ML=?=�>;KK=A=ER=?�A=HI;E=>�;E�@L=�Q;H;@?�DK�CER=A@I;E@G�IRRDA>;EX�@D�A=c=I@IB;Q;@G�@=?@�IE>�RIE���rst7�u9�vwxyz�{|}~y��x|~���|~�y�x�~�|�z�w�~x�~�w���v��w�������wyx�}�NIA@;RQ=�?;<=b�oH�:IHcQ;EX�QDRI@;DE�� �E;@� qV9� V9�]W� n]W� MD@IQ�O:N�;EQ=@� XYZH[b�p �PV� �9l� VV9� V_9l� pW9]�O:N�DC@Q=@� HXYZH[�p �PV� V]9[� ]�9]� ]9[� [_9��OKK;R;=ERG�DK�O:N� � __9_�Vp� __9__Va� __9___p� __9__[a�

����������������� ���������� ������������� ���� ������ �� ��������� !�"��#�$% �& �&'()!�($��('%�*!�(+�*�&'(),�$ �%�! ++%#��)"�$��"')-.�/0��&�!&�"�123��('%�*!��*��($�&0��!�4��&#+�,�� &�&0�#��*��%(��&�"��&�"'$$�*�)&�+(5�*�!&�&'()!.�1(4+�*'!()�($�!'6��"'!&*'� &'()�($�/78��4'!!'()!�$*(4�82�9/8:;:<��)"�123��('%�*!�*�=��%!�&0�&�&0��4�!!�!0�*��($�$')��+�*&'�%�!�98>?.@<�'!���( &�:;A�0'-0�*�')�&0����!��($�123��('%�*�92'-.�@<.�1(4� !&'()��()"'&'()!�')�123��)"�82�$ *)���!,�&�4+�*�& *��"'!&*'� &'()��)"�*�!'"�)���&'4�!�')�-�!�+�!!�!��*��=�*#�"'$$�*�)&.�B&�82��('%�*!��%!(�C78D!�5'&0�%(5�*��$$'�'�)�#��*�� !�"�*�! %&')-�')�4(*��%�*-��+�*&'� %�&�!��&�&0��C78�( &%�&��)"�%(5�*�4�!!�!0�*��($�8>?.@�$*��&'().�10�)-�!�')�82��('%�*�%(�"��)"��(D$'*')-�($�E7�5'&0�*�&(*&�-�!�9!0�*��($�-�!�F:;A�($�&0�*4�%���+��'&#<�0�=��%'&&%���$$��&�()�!'6��"'!&*'� &'()�($�/78��4'!!'()!�92'- *�!�G,�H<.�/78��4'!!'()�=�% ��'&!�%$�'!�%(5�*��&��(D$'*')-�5'&0�*�&(*&�-�!,����� !��($�%(5�*��!0�%(�"�&(�&0���('%�*.�I)�&0����!��($�%(5�*��('%�*�%(�"!�&0��=�%(�'&'�!�($�$% ��-�!�!�*�4�')��%4(!&�&0��!�4�,��)"�!4�%%�*��!0��4( )&!�')��('%�*�"(�)(&�0�=���)#�!'-)'$'��)&��$$��&�()�/78��4'!!'()!.�/0��82��('%�*!��*���J '++�"�5'&0�(%"�$�!0'()�"�$ �%K�'*��()&*(%�!#!&�4�5'&0�%'4'&�"�+(!!'�'%'&'�!�&(�*�- %�&���(4� !&'()�9 )D�()&*(%%�"��'*�+�)�&*�&'()<.�/78��4'!!'()!��)"�&0�'*�!'6��"'!&*'� &'()��&��(D$'*')-�($�C!&()'�)�E7��)"�3>��!�!�5" !&�5�!�')=�!&'-�&�"��&�&0���('%�*�/8L@��J '++�"�5'&0�&0*��D$'�%"�C78!�($�7'%%�4M��88.��� �NOP� QRSTOP UQRSV WW WXY� YZ SV

P�OP�QP�YP�WP�SP�[P�

\]_�]abc]deb]fgh�ijaa�k �

\]_�lcjmb]fgnopqo

�rstu�v.�7'6��"'!&*'� &'()�($�!(%'"�+�*&'� %�&�!��4'!!'()�D�123�=�*! !�82��('%�*!.��

���������������� ��������������������

���� ��� ����������������� !"#�$����%!��&'!��(��)�%%�*� +���,�-��.�,� �/012�34�56789:;<�=9><�?9=879@A89BC�BD�EF5�<G9==9BC�68�5H�@B9;<7�?9DD<7<C8�;B6?=4��� �

����� ������������������������I��J���������

K#� K#LM�%N'��#�$����%!��&'!��(��)�%%�* �

�����������J��������������

O#P��)QRS)� ����*K ��.�,�.��O#P �/012�T4�5UV4W�6C?�5UXY�BD�5H�@B9;<7�68�ZF�6C?�7<8B78�[6=�:B\D979C[4���U<6=A7<G<C8=�]<7<�G6?<�68�:BG@A=89BC�BD�DBA7�?9DD<7<C8�DA<;=�_A7<�ZF�8a7<<�G9b8A7<=�BD�ZF�]98a�]BB?c�dUe�]98a�8a<�G6==�=a67<�BD�dU�BD�We�XY�6C?�XW�_<7�:<C8e�7<=_<:89f<;c4�H7BG�8a<�7<=A;8=�BD�8a<=<�8<=8=�gH9[4�hi�DB;;B]=�8a68�8a<�<G9==9BC�BD�EF5�?<:7<6=<=�]98a�8a<�9C:7<6=<�BD�8a<�=a67<�BD�dUe�8a<�DA<;�]98a�;<==�6=a�:BC8<C84�Ea<�6f<76[<�6=a�:BC8<C8�BD�8a<�DA<;�6=�7<:<9f<?�]6=�jkl�DB7�ZF�ghXW�mni�6C?�V4hl�DB7�dU�gWWY�mni4�F9><�?9=879@A89BC�BD�8a<�<G988<?�=B;9?�_6789:;<=�9=�oA98<�=9G9;67�DB7�6;;�:6=<=�gH9[4�hi4�U6pB798c�BD�8a<�_6789:;<=�G6==�gWYqWWli�7<G69C=�@<8]<<C�=9><=�BD�V4W�6C?�XY�rGe�8a<�=a67<�BD�_6789:;<=�@<;B]�V4W�rG�9=�8a<�C<b8�9C�8a<�7B]�gkWqjYli4�Ea<�=a67<�BD�8a<�;67[<=8�_6789:;<=�gsXY�rGi�9=�8a<�=G6;;<=8��gXYqXWli4�Ea<�87<C?�BD�8a<�=;9[a8�D6;;�BD�8a<�5UV4W�D76:89BC�]98a�6??989BC�BD�dU�]6=�CB89:<?4�

����������������� ���������� ������������� ���� ������ �� ���������������� ��!��"��#��$��%������

&'� &'(!)�*+ &'(��)�*+ &'(�!)�*+,-./'01.�2034506-40789�:;33�) �

�<����<�� �<��"�<��$�<�����<�����<��� �<��

='>9�:?@A:� �

B����:0C578�<!D����:0C578�E�<!�:0C578='>�FGHI�JK�LMNOONPQ�RQS�ONTU�SNOVWNXYVNPQ�PZ�OP[NS�\RWVN][UO�RV�_�RQS�a�]PbZNWNQcK���dO�R�WUOY[V�R�]PQ][YONPQ�RXPYV�ONMN[RW�ONTU�SNOVWNXYVNPQ�PZ�UMNOONPQ�PZ�OP[NS�\RWVN]Y[RVUO�ZWPM�ef�XPN[UWO�gehi�RQS�ge�jkj�lNVm�VmU�ORMU�g_e�nR[YU�]RQ�XU�SWRlQK�oPM\RWNOPQ�PZ�UMNOONPQO�ZR]VPWO�PZ�ZNQU�\RWVN][UO�PZ�_�RQS�OP[NS�ZYU[O�YOUS�NQ�pdqr_�MPSU[�NO�cNnUQ�NQ�gRX[U�s�tuv�wv�jkxK�oUWVRNQ[y�VmU�ZR]VPWO�SU\UQS�PQ�]PMXYOVNPQ�]PQSNVNPQO�R[OP�NQ�VmU�]ROU�PZ�PVmUW�OP[NS�ZYU[Ov�RQS�\WUOUQVUS�NQ�gRX[U�s�ZNcYWUO�RWU�VmU�RnUWRcUO�PZ�nUWy�SNZZUWUQV�SRVRK�qQ�VmRV�OUQOU�gRX[U�s�NO�mRnNQc�PQ[y�RQ�N[[YOVWRVNQc�\YW\POUK�qV�ZP[[PlO�ZWPM�gRX[U�s�VmRV�easKi�UMNOONPQO�RV�_�ZNWNQc�RWU�mNcmUW�VmRQ�RV�]PR[�ZNWNQcv�WUMRNQNQc�RV�VmU�ORMU�[UnU[�lNVm�VmU�lROVU�ZYU[v�XYV�RWU�MY]m�[PlUW�VmRQ�VmPOU�ZPW�XNPMROOK�LMNOONPQ�PZ�eajk�RV�_�ZNWNQc�NO�mNcm�RQS�RV�VmU�ORMU�[UnU[�RV�]PbZNWNQc�lNVm�XNPMROOK��z{|I�}K�~���������������������������������������������������������������������������������� eRWVN][U�ONTU�ZWR]VNPQ�_P[NS�ZYU[� easKi� sKi�jk��M� eajk� �jk��M�oPR[� jh� hw� is� ����UWNnUS�]PR[� hk� �k� uk� hk�NPMROO� wh� h� w�� ���ROVU� �k� hk� wk� jk�N[�OmR[U��ef�� hk�iw� �k�ik� �k�wi� i�sk�N[�OmR[U��of�� ii��i� hh��h� w��w�� s����

���������������� �������������������������� �!" �#�!��$%&#���'����(��)!���� �����������*��+�#�"��,��-�� -����!#��./01�� �)��2��"�13,435��"'��-���!#��.63��!����-�"�735��"��-���� ��!#�8 8���9%��*��8� �:;/33��(<=�>?0���@����� ���"�9%��*��8���"*!�*� ���������*���"���� ���"��-��#�"� ��#�����!"�:�./01?��"'�'����� ���"��-���!�� � ��#�����!"�:A63�B�?0�9-�� -����!#��"�����'�����#�����!"�:/01,63�B�?� ��+ ����! ��8"�-�"(�'0���C%������" �#�8��(� �#�!��D������� �!*���63�B���!����##����"��+��-�"�#�!��D������� �8"'���/01�B�0���.� �D����"��(��!#��.63�� ��-�� ����#!���E��"'�FEG�)!���� �)8��D����"��(��!#��./01�� �-�(-���#!��FEG�)!���� 0���F!&#���"(�C �!"��"�$%��"'�#8�� �2��-��!2���� -��!"��"��:G.��"'����!���(� ?��� 8�� ��"��!2���9%����� �!"H�)8��'!� �"!���-�"(��������*�� -��� �!#��./01��"'��.�630����./01��"'��.63��!������� �!" �#�!�����(��$%�)!���� ���"�)��� ������'�)� �'�!"���(8����9%����� �!"���� 8����"� �!#� �D������)!���� ��"'�����*�"���� � -��� �!#�#�����!" 0�I�J��K�LMNLOL�P��Q8�-!� ��RD�� ��-����(�����8'���!�C �!"��"�C"*��!��"����S"*� ���"��F�"����:TST?H��!�C� ���C"��(���=��*���!2������"� �U�'0��"'�%�����V���!2������"��U�'0�#!���-��#�"�"����� 8DD!����"'����-"������ � ��"���!#�����+�"(�!8��#���"(��� � 0���WXYXWXZ�X[�60�\����-��� ] �!#�D�����8������������#�!���!"(&��"(�����" )!8"'��+�����D!��8��!"0�!�"��_\$<F!"*�"��!"�9� ]�E!����!"��-��\����-�Q D��� �!#�Q����!��8��!"0�/0�\����-�� D��� �!#�����D!��8��!"�2��-�D�����8�����������H�!!"���"'�"���!(�"�'�!R�'�0�a�D!���!"���_\$�2!�]�"(�(�!8D0�F!D�"-�(�"H�_\$�a�(�!"���$##����#!��C8�!D�H�/33>�:'!�8��"��Cba<3><13c/4dd?0�Q*����)���#�!�e�-��De<<�2220�8�!02-!0�"�<'!�8��"�<�f737f0D'#�H����� �'�6�$��!)���/3310�>0�C"*��!"��"����a�D!���!#�C� ���C"��(���U�'0�Q*����)���#�!�e�-��D e<<2220��"��(��0��<�"<�"*� �!�< ����0�c0�FC=�6>/dc&6�%����!"��+� !8������� �!" �,�@������"���!"�!#��!2���"(���� ��!"��"�����!"�!#�'8 ��,������6e�.�"8���(��*�����������-!'0�10�g8�'���"��h@S�/344������630�������8��������������� 8����"��,�@8 ����� 8��&��"���"�#�!2�"(�(� � �,�.�� 8����"��!#��.63��"'��./01���� �!" ���� ����!"��+� !8��� �)+���D����!"����-!'0�40�ijjkllmn�opn�qlmrsn�tpn�ujvwkxn�y0�C"*��!"��"����S�D����!#�C �!"��"�$���%-����FEG�E���"(�<<���!���'�"( �!#��-��/3�-�S"���"���!"���F!"#���"���!"�E�8�'��'�G�'�F!�)8 ��!"e�/3�-�S"���"���!"���F!"#���"���!"�E�8�'��'�G�'�F!�)8 ��!"H�

����������������� ���������� ������������� ���� ������ �� ��������� �!�"�� �#�$�%&'(% �())*�+�,-. �/0 �1���2 �30 �1��4 ��0 �5-4 �10�6.78090������:�;8��2�-��<��=.>8�?$�@>.88+AB>��2.> �())*0�@0�C(('C(&0��D0�E.?.>F���?�4��4G�84H�7�B�>?�I-H�?.8�@#(0J���7�@#%)����GH-.�2�8.8�G>4F�4�H�8��H.�K4�H.>8��?�L�>=��@4M.>�@H��?8�5?70�;;<�;NE�O.B4>?8 �%**&'()%)0�&0�PQRRST�UVT�WSXYYQZ[ZT�\VT�P]R_Z[ZT�VT�UXXQT�PVT�aQQbSSXT�cVT�WSXd[T�eVT�W]f_T�eVT�WX]YYT�UVT�e]]YgST�e0�NhB.>�.�I.�4G�N8?4�����4�H�8��H.�I4FK-8?�4��K�8.7�4���ij�?.I��4H42$��?�L�>=��@4M.>�@H��?8�++�k�H�A��H.0�())J0�l4H0�(( �L40�CA0�@0�m&%'m*&0�*0�n]oo_ST�pVT�PQYY]Z[ZT�cVT�W__bR]Z[ZT�PVT�q]rW]X]sT�WVT�cQY]Z][g]T�c0�i��.�@�>?�IH.�NF�88�4�8�G>4F�j�4F�88���7�3.�=$�i-.H�k�H��4FK-8?�4��M�?�4-?�NGG.I?�=.�i�H?>�?�4��6jtk@kO90�'�l;;�;.I���I�H�O.8.�>I���.�?>.�4G�i��H��7 �<��=.>8�?$�4G�u-4B�4 �())D0�%)0�i-.H�I4FK-8?�4�����8?�?�4��>$�84->I.80�NF�88�4��G�I?4>8�G4>�84H�7�G-.H80�v=��Hw�KH.�G>4F:��??B:++MMM0���8�0�I0�?+x>���8+@#+74I8+74I-F.�?�?�4�0�?FH�0���O.I.�=.7�E.I.FK.>�m �()%)�

105

PAPER V

����������������� ������������� � ������������������������������ !"#$% &$'()* #%"+,&-.& #.&-/)"++.&&0&.1 #2.$3'() 4*&'+'-3/5'!+.667/66869/)"++.&&/,2$'&.":����;�<=>?@AB?CDB@CEFGHCIFIGEJKL>GMAB@DCCMLACDB@CNCMLGOP@LGM>BQ@CMCIRCL>KB?>MECFCMECMKSBMECKGMGNSOGIGTCIUVSCBI@WXLLAC@BNCL>NCG>?@AB?CFGHCIF?BML@CN>@@>GM@@L>??R>TCLACD>RRC@L@ABICGOP@LGM>BM@LBL>GMBIS@GJIKCFG??JL>GMYABT>MR@>RM>O>KBML>NFBKLLGLACCMT>IGMNCMLWZABM[@LGLAC>MLIGEJKL>GMGOG>?@AB?C?BIRC@KB?C\] O>I>MRYICEJKL>GMGOLACLGLB?CMT>IGMNCMLB?>NFBKLHB@BKA>CTCE>M?B@LSCBI@W_CLB>?CE>MOGINBL>GMBDGJLCN>@@>GM@OIGN \] FGHCIJM>L@HB@KG??CKLCEEJI>MR@CTCIB?IC@CBIKAFIGCKL@>M?B@LSCBI@WZACFBFCIICT>CH@LA>@MCHEBLBBMEKGNFBIC@>LH>LAOGINCI>MOGINBL>GMWXMB?S@>@BMEC@L>NBL>GMGOKABMRC@GOKABIRC@GOB??NB>MFG??JL>MRKGNFGMCML@BL\] O>I>MRKGNFBICELGOGINCIFJ?TCI>aCEO>I>MRbc]dBICFIC@CMLCEWeLKGMKCIM@NB@@DB?BMKCGOLIBKCNCLB?@>M>M>L>B?OJC?BME>MOGINCEB@AYCN>@@>GM@GOc\__f]Yc\ YcXgYchiYjfkVYF?J@KGMTCML>GMB?B>ICN>@@>GM@B@l=mYn=iY\=iY\=Yg\?YZncWPRW>LHB@OGJMEGJLYLABLLACIC?BL>TC@ABICGOTCIS@NB??boiYjpNdFBIL>KJ?BLC@>@A>RACI>MKB@CGOG>?@AB?C\] O>I>MRYHABLKGJ?EDCCmF?B>MCEH>LATCISCOO>K>CMLN>??>MRCOOCKLGOIC?BL>TC?S@GOLN>MCIB?@GOG>?@AB?CBL\] OJIMBKCWeMIC?BL>GMGOCN>@@>GM@LJE>C@B?@GNB@@E>@LI>DJL>GMGO\] DG>?CIB@ADCLHCCME>OOCICML@CFBIBL>GMFG>ML@B?GMRLACO?JCRB@EJKLbB@ANB@@DB?BMKCdHB@ECLCIN>MCEBMEBMB?S@C@GO@BNF?CEB@AC@HCICFIGT>ECEWZA>@>MOGINBL>GM>@>NFGILBMLOIGNLACFG>MLGOT>CHGODCLLCIJMECI@LBME>MRGOLACINGKACN>KB?FIGKC@@C@BMECN>@@>GMOGINBL>GM>M\] DG>?CIYH>ECIICJ@CGOLACB@AC@GO\] JM>LW��qr��s�<G>?@AB?CY\]YCN>@@>GMYB@AYchiWj�����tu�����XOLCILAC@LBILJFGOMCH\] DG>?CI@E>OOCICMLLC@L@BMENCB@JICNCML@HCICKBII>CEGJLBLE>OOCICMLG>?@AB?CO>ICEDG>?CI@EJI>MR?B@LLHGSCBI@WXLlBITBFGHCIF?BML@LHGLSFC@GODG>?CI@HCICLC@LCEvFJ?TCI>aCEO>ICEbc]dZckVkBME]G@LCIwACC?CIikjhwC\] DG>?CI@WZCKAM>KB?@FCK>O>KBL>GM@BMEEC@KI>FL>GM@GOLAC@CDG>?CI@KBMDCOGJME>M=L@biVVUdBMEgGLLBCLB?WbiVVjdWhG@LGOLC@L@HCICFIGT>ECEGM?SBL\] DG>?CI@Y@>MKCLACICHB@B?BK[GO>MOGINBL>GMBDGJLLAC@CDG>?CI@CN>@@>GM@W C@>ECLACNCB@JICNCMLGOGIE>MBISB>ICN>@@>GM@H>LA]Zex@FCKLIGNCLCIbn=iYl=mYli=CLKWd@BNF?C@OGILACECLCIN>MBL>GMcXgYc\\_f]YLIBKCNCLB?@HCICKG??CKLCEOG??GH>MRIC@FCKL>TC@LBMEBIE@y\Plkz{|}kzzzYFBIL@ky~�\Plk{~|j}iVV{W�JBML>LBL>TCECLCIN>MBL>GM@GOc\__fc\_]Yc\ YcXgBMEghHCICFIGT>ECEBL?BDGIBLGISGOPKGKACNBW@W>McIBRJCDSJ@>MRe\cyhnYe\cy=PnYgx�\fgxhnBMEXXnW]>MCFBIL>KJ?BLC@CN>@@>GM@bchiWjfkVdCN>@@>GM@HCICNCB@JICEBLDGLALSFCGODG>?CI@YDCKBJ@CMGOGINCIEBLBBDGJLLAC@CCN>@@>GM@OIGNG>?@AB?CO>ICEDG>?CI@Cm>@LWXLLAC@BNCL>NCA>RAACB?LAI>@[@IC?BLCELGO>MCFBIL>KJ?BLC@>MB>IBICHC??[MGHMBMENGIC@LI>KLECNBME@GMKGMLIG?BMEICEJKL>GMGOLA>@CN>@@>GM@BIC>MLIGEJKCEMGHBEBS@WchiWjfkVCN>@@>GM@HCICECLCIN>MCEH>LA�GAMB@eeLSFCKB@KBEC>NFBKLGI@S@LCNOIGNcBJ?�GLAC�NDgWXL@BNF?>MR@LBMEBIE@\Plk~i|{ykBME�_eiVUUHCICOG??GHCEWnBNF?>MRHB@FIGT>ECELGLACK>IKJ?BIjVNN�JBILaO>DICO>?LCI@LSFCh�~UVGOhJM[LC??bKBLKA>MRCOO>K>CMKSGOzzWzz|�BLKJL@>aCGOVW~pNdWZAC@BNF?>MRHB@FIGT>ECEOIGNGMCFG>MLGOLACO?JCRB@KIG@@@CKL>GMYHA>KAHB@KAGG@CEDB@CEGMO?JCRB@TC?GK>LSO>C?EECLCIN>MBL>GMDCOGICABMEOGILACHAG?CKIG@@@CKL>GMW]GILACTCI>O>KBL>GMGOLGLB?@G?>EFBIL>K?C@bZncdKGMKCMLIBL>GMNCB@JICEH>LAKB@KBEC>NFBKLGIOIGNGMCFG>MLYFBIIB?C?NCB@JICNCML@GOZncOIGNLACkUFG>ML@GOLACHAG?CKIG@@@CKL>GMHCICFIGT>ECEW���u������������X@AKGMLCMLGOP@LGM>BMG>?@AB?C>@TCISA>RAb�jV�dW_JI>MRG>?@AB?CKGNDJ@L>GMB@A>@ICNGTCEOIGN@CTCIB?b|dFGIL@B?GMRLACRB@EJKLW]GILACNBLCI>B?DB?BMKCGOB@ABME>L@KGNFGMCML@B@AO?GH@OIGNLAC@CFGIL@HCICNCB@JICEBMEIC@FCKL>TCB@A@BNF?C@HCICBMB?S@CEOGILACKGNFGMCML@JMECI>MLCIC@LWeMLAC\] DG>?CILACNG@LGOB@Ab�jV�d>@ICNGTCEDSLACeO>C?EGOPncWZAC@ABICGOLACDGLLGNB@A>@LACMCmL>MLACGIECIYOGIN>MR~�W{�BMEizW~�GOLACLGLB?B@ABNGJML>MO>I>MRKGMTCML>GMB?b|Wjh�f[RdBME

����������������� ������������� � ����� ����������������� !"#$%�&'�(&�)*�&'��'+��,�-�&.� �#��$/0123 45678095:0;8<0=>80?@?AB/C=?065<7;DA6?EFG7;;H5<I5@8;2J7KB?@95@80?@76?06;D765A>56LJ=KM@<0ID5:?06;D765A>56NOPQRSRTPUVRSWVVWXYPYZZWVTOW[\TWXY]*���#,�','(��'(+&��#'_�����,��)%�,����,����(,�%�%)'+���)��+%&&*,(�,'_%�&��� %��,%���#%))&*�#('�' (���% +%���,'(��a%�&���+%b��*��,$a('��%+��(,�%�+(�(�,��')%�a(�"#�%*����)%�(,�%�b('�(��)*&&.+�%-�������'*&,'%) %��,%���#%),�(��,�%�(&#('�%*'+%&&*,(�,'(,� �a%�&��)%���_���_��_��c_���_��&_���_����,%,(&'%&��+(�,��&�'$��(����,��'(��(�#�('��,��,��(&��(�.�*���#+��-�%*',�','(��+*a&�'�������%,,(��,(&�_�dd�$�]�,����(,�%�%),�(���&���,'��,��)&*�#('�'%)� �*��,#(-��c+��,����'*&,��%+(���#b�,�)%���'��&(�,�','(,� *��,'�*��&(��,(&�_�ee�_�eefg��,'��,(&�_�ee�$_,����''�%�'b��� *��&%b����(a&��$� ��',%)(&&�,�'�c+&(����b�,�,���))��,%) *�� %���))�����,���'��',(&&��(,� �*��,'_b���������('��,�(���&���,��&�('�b�,�'%&��+(�,��&�')%�(a%*,,b%%����'����(*'�%)'��&(�,�+��(,*����',��a*,�%�(,,��,(�&%),��� �a%�&����''�%�%),�(���&���,'��#('�%*'+�('���(��(,,��'(�&�-�&('���('�%)� ��*��&%b���%-���d,��'$��'*&,%)�#�%�,��,��)&*�#('�'��,���������('�%)� �a%�&��b('*��c+��,���,)&*�#(',�+��(,*���h�id%�$ %',%)�#'�%*&�a���#('�%*'+�('�(��,����'*&,'���('�%)� �(��� '�%*&�a��%+(�(a&�����(*'�%)-��.&%b�%����,�(,�%�',�� �('*����,���%��(�a�,����('%�%),��'��'���+(��.��&���,'��&(,�-������� ��,)(�,%�'�a.����j�_�ee�$�(&�*&(,��%�,��a('�'%)��b�(,((��(&'%��))����,)�% ,��)%�����'*&,'�*��&(�(+%&(��,�(&�_�eef$_b�����%*&�a��c+&(����b�,���(�#�'��)&.('�'�k���',��a*,�%��'*'*(&_��������,�',("��#+&(��,%b(��')����('��'���������,)(�,%��'��#��',)%�,����('�,b('(&'%)%�� ('��'��&'�(&�+%b��+&(�,'(��)����#(a%*,�� �&&�%�,%�'%)%�&'�(&�+��.�(��'(��'*&,�i �&&�%�,%�'%)('��')%���_b�����' %',&.�ledm$&(��)�&&��(,('�)��&�'�nopqrs ntourvrwoqxrvyxxyz{o{||yxwtyp}wyz{owzyqx~oqr����yty{��rqowy�rr{tyu~vr{w�ouwztz�n���qrvr{w �t��q}r�ox����v������ �vyxxyz{�ouwzt�v���� �rtx}xwzwoqox~z���� �rtx}xzyqx~oqrow��& �i�� i�e ��� d��' ��� ��� ��d d���( ���� ��� ��e d���� ��� d�� ���� ����% ��� d�� d�e d�i�� ��� ��� ��i ����* ���� ��� ��� ����# d�� d�d� ��� d�d��� ���e ��� d�� d���% d�� d�� d�d� d�d��� ��e ��� ���� ����a ��f ��� d�e d���� ��_� d�i e�� d�e

������������ ���� ������������������������������������������������� �������������� !��"# $%&�"�'�$�(#(')*+,��&�"� -#.'�/�0�12304&56789: ,& 11 ("'�$�(#2&04;< !�#1/1�(����1%('=>? !�#1/1( �1%�����+>@� ABCD EFB EFB �F�F@� EGF� HFH EFE �FEI� AEC� �FD EDFE �F�FI� DEFE EJFD �F� �FKI� AECB �FD �FB �FEL EF� �FD �FK �FBM �FE EFD EBFG �FHN� �GFH E�FD EFG �FBN� EFJ �FG EFK �F�F����������O������������������������������������ ������P������� ������P����� ������������� ������F����� ��Q������P��R��� ���� ������������FF���������������� ������������������������ �����������O ���FS�� ��������OC�������������� ���O � �O��T�����R����C������������������ ����P��O��������� �����C�Q�������� �������� ������������P��������������������������R�����P�Q����������Q��U��Q���������V����������������������FW�������O������������������ �������������������� �R������������� ����P��O�������������� ���T����������� ����P��O���R������� �������F)�X��7 )#�$�&����1 "��"Y' ���Y�(����1%('=>?/" �=(&Z("�"� =("��"�&04[0 =(&Z("�"� =("��"�&04[0 =(&Z("�"� =("��"�&04[0\� EJ��� ]� �H� I� A�CD\ GF� ]� �FD I� EK��� GB � BF� I� �F��� �FE �� BB L �FB�� �F� @� AEC� M �FJ�� �D @� EFD N� BE�� KF� @� EJ� N� GFDI ������������������������_�������O��Q��������Q����������������������������������� ��������Q��� �C������������� �������O������C�Q���������������FW������������ � � ���������Q����������� ������������� ���R�������������� ���Q���������� ����O���� ��������������������F�������a� �����������������bQ�������O� � ������Q ��������F��F� I����������������c�����������P������������� �����T��������O������_� ���P����������� �������d_�V���� ����� �������

����������������� ������������� � ����� ���������������������� !"#$%���&&�'(&�)*+,-./)0+12/0)03-1+-1040/+5� 6.750/1+38+-� �237-9-:.6.750/1;:0/0*/.47808-.<738.2-0)7117.31.<<730*+/-7,501-.+7/+38=0-)./073<./)+-7.3+6.2-0)7--081.578*+/-7,50117>0871-/762-7.3?�@073<./)+-7.371300808<./-@0*2/*.10.<0)7117.373403-./A+38<./*5+3373=)0+12/01.</082,-7.3.<<730*+/-7,5010)7117.31?�3+55,+101-@0)+73*+/-.<-@0,.550,-081+)*5019BCDE;,.3171-08</.)<730*+/-7,501605.:FDG)9 7=?H;?�@0/05+-740,.3-03-.<��FD:+1@7=@0/73,+10.<� �6.750/?51.-@01@+/0.<40/A<730*+/-7,501:7-@-@017>0605.:�?�G)9���?�;:+1@7=@0/73� �6.750/0)7117.31?�@71/0125-,+3600I*5+7308+-<7/1-:7-@87<<0/03-,.31-/2,-7.3.<���+-� �9�<70581;+38� 9H<70581;237-1J62-,+360+51.-@0/0125-.<40/A0<<7,703-)75573=0<<0,-.<� �<2/3+,0?--@71*.73-+51..-@0/<+,-./1<.55.:73=</.).751@+50<7/73=).809� ./� �;+38*/.6+65A/0125-73=-.���0<<7,703,[email protected])03-7.3089�.--+J?0-?+5?J�DD�;KLM7<<0/03-+1@5.+8+--@07350-.<���N+-� +6.2-FJ�-7)01@7=@0/-@+3+-� �OL�0/A87<<0/03-1@+*0.<<5A+1@*+/-7,501J01*0,7+55A<730.3019 7=?H;OL�0/A87<<0/03-<520=+1,.)*.17-7.3N73,+10.<� ���+6.2-FDDD+38��I+6.2-F?�-7)01@7=@0/?���+61.52-00)7117.31</.)� �+38� 6.750/187<<0/1040/+5-7)01J80*03873=.3���,.31-/2,-7.3J,.387-7.3+38.*0/+-73=*+/+)0-0/1?���,.3,03-/+-7.31+-� �237-+/0)+735A605.:�D)=P�)H?�3,+10.<� 237-14+/7+-7.3.<���4+520171)2,@@7=@0/J/0)+7373=73-@0/+3=0.<FDDN��D)=P�)H? /.)-@0,.)*+/71.3.<-@0/0125-1.<-01-1:7-@4+/A73=.*0/+-73=*+/+)0-0/1+380<<7,703,A.<���30I-,.3,5217.31,+360)+80?�7=@0/���,.3,03-/+-7.31+-� 6.750/1<520=+101,.//01*.38-.@7=@0/1@+/01.<*+/-7,25+-01:7-@17>0.40/FDG)?�?=?+-,.3,03-/+-7.3��D)=P�)H-@01@+/0.<*+/-7,25+-01QFDG)71+6.2-HDE+38���?�80,/0+101-.��E?�-)0+31J-@+--@01@+/0.<��FD71/0)+7373=+5).1--@01+)0+17-71735.:0/���,.3,03-/+-7.31?M01,/760860@+47.2/.<,@+3=0173*+/-7,5017>0871-/762-7.3.<0)7--081.578*+/-7,501*/.401J-@+-���71)./00<<7,703-73,+-,@73=*+/-7,501:7-@17>0.40/FDG)9�+650H;?�-7173-0/01-73=-.)03-7.3J-@+--@0/05+-7401@+/0.<*+/-7,501:7-@17>060-:003�J�+38FDG)/0)+731+**/.I7)+-05A-.-@050405.<�DE73+55-01-1J3.-80*03873=.3<+,-./1)03-7.30860<./0?

RSTUV WSXYZ[\]S_aSbcSdeZSe\f__gYahYe_]fe iYjSYkdlY\SY dfSa_dmSgfaShmY_ZnopUq]lad\dSm_ifmYbdSmYa_nRrgcmjYaSXYlSaSeTstRurhSahcmfYlmcSSXYbYlSaSeT

������������ ���� ������������������������������������������������������������������������� ��������������� � ���������� ������������������������������ ��� ���������� �!"������������� ��������������������#�����$%!& �� ��������������#'(�����%����)���������������������!& ��*��� ���� ��+�������������������������������#,-"���%� ����������� �)���������� ���!./0123 4/5678129:796570;67<=7=>1?/9@<><719@/12>752:ABC0<712502><52/=:/>625DE4E/FG17=H1<8/67<= I=76 4/56781297J2 .<6/1KLMN LONPQR SQR�������� TU�$V�WX� Y!YY ��!�" �Z!Y� "Z!Z�������� W ($!� $Y!" �Z!Y (��!���������� �TU�$�WX� �(!$ (Y!( (!$ $Z!Y��������� W "$!" �$V( $!� (����������������� W ZZ!ZY�� ZZ!ZZ�� ZZ!ZZZ� ZZ!ZZ$�[\] _ abca_de���������fg#��fh(�%����������������������#&�����%+������ ��+��� ������� �����������V+ �� ���������� ����������� � ������������������������������������������������� � ���������������!�!!����������#�%�����������������������+((�TU�$#�WX�%��������+�� �������������$�h-Z�TU�$�����������������#i���������!(Z-�Vf�����i!����!V(ZZ"%!�������+�� ��������������fg������������������������������� #&�����%!./012j 4kl7=>1;2H/929/=:7=6<6/1/9@<>ABC0<7125B1;2H/9 .<6/1/9@=HmnF3 FHmoHU�� ������ (Y-� �!$f����� ������ ,(�-Y ,�V�"f����� ���� ,�� �!����������� ,�$ �!�-�� ����� ���� ,�-$ �!�$f�� ������ ,�$ ,�V����������� ��� ,(( ,�V�-������� (- �!�YY�����#�%��� ������ ,(( ,�V���� ����� ,(( ,�V�$Y�����#�%�������� ��� ,(( ,�V��������#*%�������� ��� ,(( ,�V��Y������#�%������ ,(( ,�V�(�p������#�V %��� ������ ,(( ,�V�(������#V V�%�������� ,(( ,�V�(Y������#(V�V$h��%������ ,(( ,�V�$��fg�� �!Y�q ����������������������#�%��������������� ����������+�r�$��T*#i���������!(Z-�Vf�����i!��!��!V(ZZ"%V� ��� �����������������������,(��T*!& ��������������������+���fg������������������ �������������������+�� �������������V������������)�������������� �V����+����� �������� ��#s���t!����!V���"%!p�����������������u�������������������������������������)�)��������)�������������������������������������� ���#�����"%! �������������������+���)�����+���� �����������u���� ������v��)�������� ��������#�h&�w(!�Y��TU�$���WX�%+������Y�������+��� ��� ��������������� �+��������������������h�!(�TU�$���WX�#p�x��&�y�����TY�T��%!y�����+�����������������ppT�+�������������� ������������������ !

����������������� ������������� � ����� ��������� ������� !��"#$%&%'�()���*%&�+(,'% �,-�$.�����$�&�,�$ / ', ��"�%'��$ ���%'��$01*)��'*)�$�,��23455�6789:;:<=�>��?@AB��CCD EAFGBHAIJK LMDNAJA@AOEPQREG STSSS�>��?@AB��CCD IUUGBHAIJKV LMDNAJA@AOEPQREG WTXWY STS>ST�ZRJK@OEEGK��CCD OJ�SS[\]RUAPPOHEG M Y�TS YT[�>��?@AB���EAFGBHAIJK LMDNAJA@AOEPQREG ST����>��?@AB���IUUGBHAIJK LMDNAJA@AOEPQREG [T�Y[RJK@OEEGK���OJ�SS[\]RUAPPOHEG M ZT�_;ab:<�>��?@AB��CCD EAFGBHAIJK UMD�]Xc[d��e ST[ZZ�>��?@AB��CCD IUUGBHAIJK UMD�]Xc[d��e YT��� XTY��>fTW�WOBG]OPPOAJPA@��CCD OJ�SS[\]RUAPPOHEG M STSYf STYXZ�>��?@AB���EAFGBHAIJK UMD�]Xc[d��e ST�WS�>��?@AB���IUUGBHAIJK UMD�]Xc[d��e STX[SOBG]OPPOAJPA@���OJ�SS[\]RUAPPOHEG M STSS�AFGBHAIJKRJKIUUGBHAIJKRBGEGgGEPKG@OJGKOJCOBGhNOgG�SS�D[ZD��RJK�SS�D�SD��VhREhIERNGKHRPGKAJKGNGhNOAJEO]ONgREIGP>REEhAJNGJNPBG]ROJHGEAFKGNGhNOAJEO]ONPcOJRgGBRMG>XJMDiMe�j-�k/1lj-1mONQOJNBAKIhNOAJA@� �@OBOJMRN�PNAJORJAOEPQREGUAFGBUERJNPGJgOBAJ]GJNREO]URhNA@AOEPQREGUAFGBUBAKIhNOAJKGhBGRPGKPOMJO@OhRJNEn\hAJPOKGBOJMJANAJEnhAJgGJNOAJREROBUAEEINRJNP\HINREPANBRhG]GNREP\��RJKKOAOJPD@IBRJPT�AOhhA]UAIJKPEAFhAJNGJNOPJANEO]ONOJMUAPPOHEGINOEOoRNOAJA@� �RPQOJRMBOhIENIBGRJKOJKIPNBnT�GERNOgGGJBOhQ]GJNA@NBRhG]GNREPNAFRBKPP]REEGBRPQ@BRhNOAJPc@EnOJMRPQgGBPIPERJK@OEEGKNANRERPQeNRiGPUERhGEOiGONREPAFRP@AIJKAINOJ@AB]GBPNIKOGPT��hAJhGJNBRNOAJPOJNQG@EIGMRPA@� �HAOEGBRBGRNEGRPNPGgGBRENO]GPEAFGBNQRJOJ� HAOEGBPT�GJoAcReUnBOJGhAJNGJNBG]ROJHGEAFYYJMD�]Xc[d��eRN� �@OBOJMT��CCD RJK���ROBG]OPPOAJPA@AOEPQREG@OBOJM� �HAOEGBPRBGgGBnEAFRJKBG]ROJHGEAF�S]MUGBnGRBT��YSBGERNOgGhAJNGJNOJG]OPPOAJPA@AOEPQREGHAOEGBPc� RJK� �eOPPOMJO@OhRJN\@AB]OJMAgGBWSdA@���T���TfPQRBG@BA]���OPQOMQGBOJhRPGA@� �HAOEGBGhGGKOJMfSdTHPAEINGgREIGPRBGEAFGB@ABNQG� �HAOEGBPT�QGPQRBGA@PAEOKURBNOhEGPFONQPOoGAgGBYSp]NGJKPNAOJhBGRPGOJhABBGERNOAJFONQ���hAJNGJNT�NUBAgGPNQRN���OP]ABGG@@OhOGJNOJhRNhQOJMERBMGBURBNOhEGPTq�r-jskt�utvt-�1�QGRINQABPRBGMBRNG@IE@AB@OJRJhOREPIUUABNRJKhA>AUGBRNOAJA@NQOPFABiHn�RBgR�AFGB�ERJNPNKTRJK�PNAJORJ�JgOBAJ]GJNRE�GPGRBhQ�GJNBGTwt�twt-�t1IJGER\T\�xPxJGJ\�T\yOJJIJGJ�T\RBzRgRyT\�GQNAJGJT\�RE]OiRJMRP�T\GPiGER{T\AAPRRB{T|�]OPPOAJP@BA]�PNAJORJAOEPQREGUAFGBUERJNP\�OE�QREG\�Y�\�A�\YZZf\UUTY[f>Y�WTIJGER>�RUAER\TGNRET|�BRhG]GNREG]OPPOAJP@BA]�PNAJORJAOEPQREG@OBGKUAFGBUERJN\ IGE�BAhGPPOJM�GhQJAEAMn\�Af�\YZZW\UUTY>��TAAPRRB\{TGNRET|�GEGRPGA@NAOhRJKhRBhOJAMGJOhhA]UAIJKPKIBOJMNQGHIBJOJMA@�PNAJORJAOEPQREGOJOJKIPNBOREHAOEGBPcOJ�IPPORJe\�BRJPRhNOAJPA@�REEOJJ�AEnNGhQJOh�JPNONING\�Af��\YZW�\UUTfZ>�YT�ANNR\T\�RBiiAJGJ\�T\�OENIJGJ\�T\BBA\�T\AAPRRB\{T\�RBgG\�T\�OQI\�T\�BOii\T\�OOi]R\�T|�UGBOGJhGA@�PNAJORJAOEPQREGhA]HIPNOAJHRPGKAJ� �NGhQJAEAMnRN�RBgR�AFGB�ERJNP\�OE�QREG\���\�A��\�SSf\UUTX[Z>XWYTyOBPA\}T\RzR\�T\}BH\�T|�AEnhnhEOhRBA]RNOhQnKBAhRBHAJPc��eOJRPQ@BRhNOAJPA@AOEPQREGhA]HIPNOAJ|@EIOKOoGKHGKgGBPIPUIEgGBOoGK@OBOJM\�OE�QREG\���\�A��\�SSf\UUTfX�>f��T�hQEGOhQGB\�T\�AANP\�T\{GJPGJ\TT\�GB]RJJ\T\�ABKOi\T|COAOJG]OPPOAJ@BA]NFAAOEPQREG@OBGKUAFGBUERJNPOJ�PNAJOR\�OE�QREG\���\�A��\�SSf\UUTf[X>f�YT

������������ ���� ������������������������������������������������������������� ����!�� ���"�#$���%����� ����&������������������������������������������������� ������������%�'��%�����(��) �����*��+���*,,-�%%�*�,.*�-�(��$#(�� �����������������/���/�����$)�0����������1�%%�1*.1��2��3�!�#0������������� � ���������.�����%�'��%����������������0�� ����&�+�4,�*,,��%%�*,,.�*5�6�!/�0��/����7517/�(�08//9!(�/$+�$!��$2/+0$+6(�08/�(9+�������6�������������� ���������������'���

115

PAPER VI

�������������������� �������� ����������������������������������������������������������� �!"#$%&'"(&)*+,"%'$-.(/0(""%0(/1+$--0((2(03"%40&5)*+"6,()-)/517789)#-0:&;177<7=+$--0((1.4&)(0$�> ���?�@ABCDEFGHICJCKLDMKMLNODHPQKCPMRSTLHRMUMTVUPCWNOHXCDOJURLTIMDMRYJHKUJHMJTZUJCURP[\G HILZCWHMJCDTUDCHILZCKMDKQJULMRYIJQMPMTCPWCP]_aBUDMCLNbcR[FFdUOODHeMVULCJNfb\VMJJMHRLHRTHIUTZXUTUKgQMDCPUTUWNODHPQKLHIQTMRYHMJTZUJCIHDCRCDYNODHPQKLMHRbhOODHeMVULCJNib\VMJJMHRLHRTHILZULXUTUTZIDHV _ WHMJCDTbjQKZUTZMTPCOHTMLCPMRUTZIMCJPTWNVCURTHIZNPDHUTZDCVHBUJbhTZIMCJPVULCDMUJODHOCDLMCTZUBCQRPCDYHRCKZURYCTUTUDCTQJLHI _ UTZPCOHTMLMHRkLZCUTZIMCJPTQDIUKCMTRHLTLUWMJMTMRYlLZCUTZMTRHLWCKHVMRYOCLDMIMCPURPMTQRTQMLUWJCIHDWQMJPMRYPUVTRCCPCPIHDLZCZNPDHLCKZRHJHYNUOOJMKULMHRbmZCURUJNLMKUJDCTCUDKZXUTPCPMKULCPLHPCLCDVMRMRYLZCDCUTHRTIHDLZMTPMIICDCRLUTZIMCJPWCZUBMHQDHIUTZIDHV _ URPOQJBCDMTCPIMDMRY]n_aWHMJCDTWUTCPHRKZURYCTHIUTZODHOCDLMCTbHVOUDULMBC _ URPn_UTZTLQPMCTXCDCKHRPQKLCPoKZCVMKUJURUJNTMTlTQDBCNTXMLZpqDUNPMIIDUKLHVCLCDT]prsaURPTKURRMRYCJCKLDHRVMKDHTKHOCT]jStalTLQPNHIWMRPMRYODHOCDLMCTbHLLHVURPCJCKLDHTLULMKODCKMOMLULHDUTZXUTTKDQLMRMTCPlXMLZMLTLNOMKUJDHQYZCDURPIMRCDOUDLMKJCTlUKKHDPMRYJNbjQKZUTZLNOCTKHVODMTCLZCODCPHVMRURLKQDDCRLUTZPCOHTMLKHRLCRLMRUTZIMCJPTbmZCUTZTUVOJCTXCDCLUuCRIDHVWHMJCDTHILZC UJLMnHXCDnJURLbmZCSTLHRMURHMJTZUJCVMRCDUJOUDLKHRTMTLTVUMRJNHILZCIHJJHXMRYVMRCDUJToKUJKMLCvvbFGlPHJHVMLCiEb\GlgQUDLwxbdGlHDLZHKJUTCiFb\GlZNPDHVQTKHBMLCxbfGbmZCTCVMRCDUJTKHVODMTCEibyG HILZCVMRCDUJOUDLURPMLTZHQJPWCRHLCPLZULfyb\G HILZULUDCVMRCDUJTMRLZCKUDWHRUKCHQTOUDLURP[dbxG kMRLZCLCDDMYCRCHQTOUDLbzZCRHMJTZUJCMTIMDCPlLZCDVUJPCKHVOHTMLMHRHILZCTCVMRCDUJTHKKQDMRLHTMVOJCDKHVOHQRPTlKHQOJCPXMLZBHJULMJMTULMHRHITHVCKHVOHQRPTURPIHDVULMHRHIRHBCJVMRCDUJTlURPLZCDCUDCKZURYCTMRLZCVMRCDUJOZUTCTLULCUTXCJJbmZCUTZWMRPMRYODHOCDLMCTURPWCZUBMHQDMRUTZIMCJPTPCOCRPHRLZCTCKZURYCTlLZCCeLCRLHIXZMKZMTPCLCDVMRCPWNLZCIMDMRYLCVOCDULQDCMRLZCWHMJCDIQDRUKCbmZCKHVOUDULMBCTLQPMCTMRPMKULCLZULLZCMRLDHPQKLMHRHILZC _ VCLZHPHIIMDMRYZUTKUQTCPTCBCDUJMVOHDLURLKZURYCTMRLZCVMRCDUJHYMKUJKHVOHTMLMHRURPODHOCDLMCTHIHMJTZUJCUTZbmZCDCUTHRWCZMRPLZMTMTLZULLZC _ WHMJCDIQDRUKCIMDMRYLCVOCDULQDCMTUOODHeMVULCJNfFF{ JHXCDLZURMRLZCn_KHQRLCDOUDLlDCTQJLMRYMRXCUuCDIQCJVMRCDUJPCKHVOHTMLMHRURPJHXCDRHBCJVMRCDUJIHDVULMHRMRLCRTMLNPQDMRYKHVWQTLMHRbmZCUTZTHJMPMIMKULMHRLCRPCRKNMTMRLZMTMRTLURKCTQWTLURLMUJJNJCTTLZURLZULHWTCDBCPMRn_UTZbmZCKHVODCTTMBCTLDCRYLZHILZCCJCKLDHTLULMKODCKMOMLULHDUTZLCTLTUVOJCTIDHV _ WHMJCDTXUTvbv|}VV[~IDHVn_WHMJCDTki\by|}VV[lLZCKHDDCTOHRPMRYTOCKMIMKTQDIUKCUDCUov\yyqExFfKV[}YURPdFdqyEffKV[}YbmZCHWLUMRCPPULUKHRIMDVTLZCRCCPLHUJLCDLZCUTZTLHDUYCLCKZRHJHYNb������� oCTLHRMURHMJTZUJCUTZlOQJBCDMTCPIMDMRYlKMDKQJULMRYIJQMPMTCPWCPKHVWQTLMHR����������mZCCTTCRLMUJKZURYCMRODHOCDLMCTHIUTZIMCJPVULCDMUJXZMJCLZC _ HMJTZUJCUTZMTTLHDCPlKUQTCPLZCPCVURPLHURUJNwCLZCPMIICDCRLWCZUBMHDHITLHDCPn_URP _ UTZCTbmZCKZCVMTLDNURPVMRCDUJHYNHI _KHUJUTZCTURPLZCWCZUBMHDHIKHUJUTZqXULCDTNTLCVXZMJCPCOHTMLCPUDCLZHDHQYZJNMRBCTLMYULCP]hRLZHRNCLUJbl[FF[~hRLZHRNCLUJbl[FFyabmZCODHOCDLMCTHIn_UTZCTTLHDCPULUTZIMCJPTUDCCUDJMCDMRBCTLMYULCP]hDDHCLUJbl[FF[~�CTODCl[FFvabmZCKZURYCMRODHOCDLMCTHIVHMTLCRCPn_UTZCTMRJUWHDULHDNKHRPMLMHRTUDCUJTHMRBCTLMYULCP]�QQTMuCLUJbl[FFvabmZCDCTQJLTHIprsURUJNTCTTZHXULpqDUNTOCKLDULZCOCUuTWCJHRYMRYLHLZCOHDLJURLMLCl�qgQUDLwlKUJKMLCURPCLLDMRYMLCbmZCUTZIMCJPVULCDMUJKHRLUMRTUJTHMRTVUJJCeLCRLToTCBCDUJTMJMKULCTlUqUJQVMRULCTURPHLZCDVMRCDUJTbmZCTZHDLHBCDBMCXUWHQLWCZUBMHDHIIQCJVMRCDUJTMRKHVWQTLMHRODHKCTTURPIHDVULMHRHIRHBCJVMRCDUJTURPWMRPMRYODHOCDLMCTHIUTZMTYMBCRWCJHX]QLLCLUJbliEfd~HMuHBUliEdv~QPRMuHBCLUJbliEdiabUDWHRULCVMRCDUJTbmZCPCKHVOHTMLMHRODHKCTTCTTLUDLULLCVOCDULQDCTWCJHXxFF{ URPPCOCRPHR A[OUDLMUJODCTTQDCMRIJQCYUTb_HDVCP]UAltYA�U_CAaTLUNMRUTZIDCCHeMPCTURP A[BHJULMJMwCbsCKHVOHTMLMHRHIPHJHVMLC]UtY]Aya[aHKKQDTMRLXHTLCOTotY]AyaPCKHVOHTCULJHXCDLCVOCDULQDCTURP

�������������������� �������� ��������������������� ���������������������� ����!��"#$���%��&�'()��*'&���+�)'� '"���'&�����,��-�"�#./�&�*'�0��"1�&+�#2��&� *'�0��"*�)�!"�'(0'3����� ����!��"�&(!�&�)�����'���0#1-��2�#4!���5����-�+'�"&'�+�)'� '"��&(!�&�)� �')�""�"1*!���6!&+���' '06�'� ��))��&��"�&)�6"��0"��!)�!��789:!���5)��&��"�'���;9:!���5���/�<�#���-���&06� ���"�&'�0"��0��"��&('��'(;9:!���5#����')0�"��=-�>�0-��>2���-�)��&��"�'���"�&�+�&���?.��<�1�&+�)'� '"���'& �')�""��('��"0�!)����=-�>�0-��>@���-�13��0����-"� �����"�&('��'(��'� �'!"���-'�)��"�'*�0���#$�� ��"�&)�'(0����))�0�����"���������0+�)'� '"���'&'('���')0�"�#��)�"��� ��"�&��+�&'�0"��0��"�!")'A���#���-�<�1�*"'�*�+3�����&+1*��3��&@���&+/��<�1)�6"��03���������0��"�+#�&������ ����!����&��B���'�1-��<��+� �&+�&�'&���)'� '"���'&'(��)�"�1&'A�0)�6"��0"���('���+# ��3��&�1����&+�1���<�1���0�:!�+ ��"�*���&"#����������� ����!��"1)'�!&+!���0-���1�!00������0-��>-���-�1�&+�0�""6"!*"��&)�('��#'A�0��&���0"�&+*�&+�&� �' �����"'(�"�#�&�'(�'���)��A�'�0"��0���&���0 ���+�)'� '"���'&)'� '&�&��"���13��)����)�"3������-�&+'������&���0"+�)'� '"���'&)'� '&�&�"#$��*�&+�&� �' �����"'(�"����*�"�)�006)�!"�+*689-���>���-�&+���1*!��0"'��1�01�C����-)0�""6 ��"�)'&��&��&�"��?��D�#�&�++���'&1���&'&"'0!*0���"�+!�'(�"��&�6+�')�0'��)�)�+)'&���&")'� '!&+"��A�&�&'*�&+�&� �' �����"1*!��& ��"�&)�'(������-�&+3����*���A�0�,�*�&+�&��������0#$�����+�&�&� �')�""'(�"�)'&���&�&�(�������"�""')����+3���('�����'&'(�����#$�������A�&�)'&��)�3���3������6+����'&���A�"���������-�&+���)��'&3�����-(�'������A�"�����#$��'����*�&+�&��������0"�&�"���A�3����*�&+�&� �' �����"3��0� ����(��+��6+�'*�&+�&��������0"�#$��"��������0"��6 ����(6��A�&�&')'&��)�3������1�0"'!&+�����3����#$��"0�),�&�&�(�)�'�'(�"���&���0"�6+����'&�"����)'&��&�'(������-�&+����@�&3����13��)��"" �)�(�)�'����"����&" '��3�����=�" ��1-��@�#$��+�((���&)�"�&� �&+��"� �' �����"����&A�"������+���0����=!!"�,���01-����#$������'+"!"�+�'+������&��"� �' �����"3���)����)�0�&�06"�"1E��1����&+ �$����'+('�+������&���'&'(���" �)�(�)"!�(�)����������#$���"� �' �����"�&+*���A�'����"�(��0+"��"*��&)��&��+*�)�!"�'(0'3)'�*!"��'&��� ����!��"�&� *'�0���?2��'�0'3��)'� ���&���#'�����'&'(&'A�0��&���0"3���*�&+�&� �' �����"�&� �"��"�!)�0'3��)'� ���&��'��"�7"'0�+�(�)���'&�"0'3# �)�!"�'(0'3����� ����!��")'� ����'�*'�0��"1 ��"!��*06���(!�0��&���0"+�)'� '"���'&�&+&'A�0��&���0"('�����'& �')��+"��0'3�������&� *'�0��"#���"!��*06���� �"�)'&���&"0�""89-���>���-1�0"'����&(���('���&+0�"")0�""6 ��"�#�'3���)��A��6'(� �"������*�������&���"'&('��&�((�)��&�"'0�+�(�)���'& �')�""�"�&�"�(��0+"#FGHIJKGLMGNOFIHPQOM$���"�"�� 0�"3�����,�&(�'�*'�0���"�(0'3"��&'��&�00'�+R�*'�0��7(!�&�)�1"! ��������1�)'&'��5��1)6)0'&�1���(��0+"��7���S� *'�0��7*'��'��"�1 �����%)��&���'(�"�1"! ��������1�)'&'��5��1��� ��������1���(��0+"��7���#$��(!�&�)�T*'��'�9�&+����(��0+�"��"3���)�'"�&�"���&�&A�"������'&'*C�)�"1�"���6�� ��"�&�B�7B�D'(3�'0��"�"�'��+'&�"�(��0+"�&+���"�����0"')'��"��&+(�&��"�(��)��'&"#$��)'� '"���'&�&+ �' �����"'(�����"��"��"���*��3��&���"��3'�"��6 �"��&��'&�+*�('��#$����0���A���'!&�'(���"��"��"�""��00�&+������'0��"&'�+�)�"�A��&�"�"'0�+�(�)���'& �')�""'&�"�(��0+#'00'3�&��&A�"������'&����'+"3���!"�+R)����)�0�&�06"�"1E9��6+�((��)�'����61")�&&�&��0�)��'&��)�'")' 61+������&���'&'(*�&+�&� �' �����"�&+" �)�(�)"!�(�)�����#�&E���&�06"�"���('00'3�&� ��������"3���!"�+R"�� "�5��#�@<1���� ��"�� �#�"1�!*�)!���&�@���1�!*�A'0����@�,�1-U-�9@�<#�&+��� �')�""�&����"'(�3��� �),���VWXXYZ[\]_3�"!"�+#�&)�6"��0 ��"��+�&��(�)���'&���"'(�3��� �),��� abcdeVfggehijfakVhjhlh_dmnoVXpnq3�"!"�+#�&(!�&�)�T*'��'��"�E���&+����&�06"�"����"�3���+���&"�'&r���s�3�"!"�+#$��0����� ����)0�"3���"� �����+*6"��A�&�#��3�" ��"!��+�������0�����"� ����)0�"*���A�0�,�(�00���&�"��'����#$'�&A�"���������*�&+�&� �' �����"�&+"'0�+�(�)���'&,�&���)"'(�"��"1���)!*�"3���+���&"�'&"@�t@�t@����3�����+�(�'���� �"��93������%#$��)'� ��""�A�"���&���'(" �)���&"3�"+������&�+�(���/1�@1-�1-B�&+�2+�6"����&��&�!��+�&A��'&��&�#�"�" �)���&u"*!0,�&��A'0!��"��*0�&�""�3�"+������&�+!"�&��������0���)60�&+��"#$���% �&"�'&'( ����(��+" �)���&"3�"���"!��+�&3�����&+�&�!��+�&A��'&��&�! �'-B+�6"#� �)�(�)"!�(�)�����'(�"�3�"+������&�+!"�&� 0��&�����'+#

������������ ���� ����������������������������������������������������� !"��#$%%&�' ��&($)*+,-./0/1/023-34 ��5����������� �����������6�������������� ��7��89� ���������������� �6�����:��������������;9�������8<����=<� ������������������ ���:������������������� �������������� ���7������������������������������� ������84 �� ����������>�������������?���@A�������� �6�����7���������4�����8"BCDEF 'GEHIJBDBKBDLMENO'PQRSBTPRBUGEUVW%EUJXIYZINK QNZZNHBUG #UGOXNH�TOIED[&TPRCNIDEX 'PQRCNIDEX TPRCNIDEX 'PQRCNIDEX� ����������>�A�5� �\8]� ��8�� ��8] _\8�\���5_ �8�\ _8�� 8�� 8\\9��5_ 8�] 8_\ ��8� ��8\���5 ��8_� \8]� _]8�� �8]\��5: ��8�_ �_8\\ �8� \8_�a5 8 �8_ 8�] 8�_b�5 �8_� �8�� 8�\ 8c��5 �8�� �8�� �8�_ �8�A5_����� �8_ �_8\\ 8�� 8���5� �8� ��8]� �8]� �8�\�����������d��������������������7�������5���5 _8�] _\8� _�8\_ ��8\�5�a5 \8�� �8� 8]� 8\�5������ ��8�] `8] _�8\ ��8��e�5� �8]� �8_ �8]� �8\�f��������������5���6���� ���������5���� _8 ��8�� �8_ �8���5��� �8� ]8� �8_� �8\��5���� ��8�_ �_8\\ �8� \8_�ghij����k���k���� _�8 _\8� ��8� �8]���5�� �_8�\ ��8�� �8�� ��8�_����������������d��������������������7������;e�5�=7����������������<� ������� ���]]8�l������5���]�8l����a5��������7�����������5_���a�5_��7����:��>;9�������8<����=85��������5���a5���������� ���7�����������������5���������������������84 ��������������5_����:����;5�<����=�����>������d��7��� ���84��������� ��������������:��������������������7����� ����������������5��� �������m��5���������5�������:����4�����89������5����nopqqrstuqvrwxrwyquriz{r|}~wpi�wtz�ri��}tpq{r|}urghij����k���k���������:�������5�������<� ������ �6� �7����������5����������� ���:���������m��5��8���7����� �� �������������������������� ������<7����������������������������� �� ������7��7�����<����������>���������@�f����5��������������������������� ��7�����������:��84 ������������������������������5�������6 �� ����������:������:���������84 ���5�� ������������ ������������> � ��� �������� �89�����������> � ������������7��������77��d������>����� ���6���������5������������������� �������84 ���:�����������������>6�� ������7��7�����85�� ������� ����������>�� ���� ��������������>����:���������7��������7��������� �8���/2�-���/.��,+��2�����/1/023-34��������� �������������������7���������������������������� ��������� ������������������ <� �������������7���������>���7 ����� ��7��6��������������>��f����>�85�� �������?��>7������ ��������������� ��7�������?������;A�5�=<��������;��5=<

�������������������� �������� ��������������������� �������������������� !"#$��������%�� #&�$����'���(��)�*+� �� '��"&��,'� -.$�"'&���$�$�/�$�*�!��* �� �*/#�//�$� ���.'�������'���01� ���'� #/�$$���') *��*1�'!��()��)2!�&��,'� -.$�"'&���$�*/� �'!�$�1*$�� �� '�3��*1&�$��*��'!) ���0'�*/�*+�$/0$ �����1&�$��0$�'�!�4� #� (*/���5� #���� �* *3��1� �$��'&$*���#�#* �*+�$$����!� � �4*���$)2!�4� #� (#��$��'�'���� #���5�* �� �� '�1&��� #� �� '��"*/&��,')2!��* �� �*/����%6������� � �'!�'!�(!�$�*1&�$��*��'!)789:; <=>?@A?BB?CD@EFGHIJHKLJK:MHNO7PQA?8RJFSMANT7QA?8RJF����'!��()5�)2!�&��,'� -.$�"'&���$�'!*+�!���* �� �*/���5� /*$1*/U.V0�$�W� � �'!�''04'�� �����"!�(!�$�!� � �4*���$�'!)2!�/$����1��* �� �� �4*���$�'!�''�( �/��� ��"!�(!�$�*1&�$��*�4*���$�'!)789:X <=>?@YZT@8FKB@8JR[HKLJK:MHNO7PQA?8RJFSMANT7QA?8RJF\]_a_bcdae_edefaebghijek l mgfno2!�'&���/��'0$/����$�������*/� 4*���$����'!�'�''04'�� �����"4�((�$�!� �4*���$�'!�'p%���.qr�s�15t(� #���.�qss�15t(�*$$�'&* #� (�")2!����*/&*+#�$.��,�1���$���'+��!'�1�#� '��"#�&� #'*/1���$���/� � �''� #'!�&��'+���)� �$1���$���!�'4�((�$�!����)���u&��� '+!"�!������'�/���#'v�'!�'!�3�4�((�$���)2!�����''1����$+!� �!�&�$�����'�$�$�(0��$'!�&��'&!�$�����)wbgiknkx]df]dmb�'!'&���1� v'40�,� (�3*�01�'��4�� �''���*1&$�''�3�'�$� (�!� #'*��#�/�����* ,� ����'+�$�1��'0$�#)2!�'&���1� '+�$�1�#�*/�'!� #+���$�+��!*0��##� (� "/����$)2!�'1��!*#+�'�!*'� #0��*�!�� ��$�'�*/�'!4�!�3�*$� �'!/���#)� �*1&�$�'* �!�4� #� (����3��"*/�'!1*$��$+�$���'*#���$1� �#)2!�'*��#�/�����* #���'!*+�!���!�'&���1� '1�#�*/�4*���$����'!� #�"��* ��'!�u&� #�

������������ ���� ������������������������������������������������������������ ���������������� ������������������������� �� !" �������� ������������������� �#����������������������!$����� ����������������������������������� ������������#����������%��������������������������� �� &� �� ����� �����������'!" ������(��)�%������*�������%����+����������������� �������!,�� ������������������������������ �� ����'������ �%������-���������!$������ �������������(����������������#������ ��� ������������������ ����������������������#��! ����� ����������������'�����#�������������� ����������������� �������!" ������������� �� � ���������������������� � ����������������������������'���)�������#������ ������.��'�������'�!-/0�������!�/0���*!" ��������������������������������� �� �������#������ ������%������'� �������)1!1/0��� �����!+/0������������'*! �������������(������������������ �������#������ � ���������)��!+*!23456 7893:3;3<=>38?@3?A>3<B8;C2D=?:E2=BFBGA<3HA?B" ����������� �� ���� �� ���%���� �������#������ ���1��'!���� � ���� ��������#������ ���������%������'���!" ��������#������ ����������� �� ���������������#�����.��'�������������������!�������������������������������� �� ���������������'����������� ������������ ������!�#��� �� � ��������#������ �������������������������������� �� ��������� �'�������������� ������������ ���'!" ��������������������� ��� �������������� ��������������������� ������� �� !I����#��&���������������������������������������� �� �&� �������������������'������!" ��������������������������������������� ����������#��'������������!JKLMMNMOPQPKRSTMUNKSTVKTWXTYLVZ" �������� �I����'���� ��������������� �����������#��������� �������� �� ����� ��!,���� ������� ��������������������%����#��'� ����������������� ��������������������� �� ������������'!���������� �������� �#��������� ���[� ������������������� ���������������������#����#�������������������� �� �� !����������� � ���\����'���������� �#���������� ������� ���������#��������������� ���������������!" ��������� ������������)���������������������#��1��]�*� �����������������������������������������#�����������(��������������#��' � ������� �������������)���������������������������]�*!����������� ������������� ������� � �� ������ �� �)�����������������!�_�*!

�������������������� �������� ��������������������� ����

������������ ���� ������������������������������������������������������� !"��!#������������������� �$��������� �������������������������%������������� &��'� �� �$���������(��������� �������������� ����)����������� �������� ���� ���������������%���������%��%�����*+�������� ������������)��&�����������%�������(& �� � �������������&������������������%�����������$������������������*, �������&�� � ���&��������%��%��������� ���������������������)��� ����������������)��&��� ����������������� *+����� ������������������%����(& �� ���������� ���� ���� ��������������������)��� �����-.�/0 ��������������������1#�� (& �� %��%��������������� ���������������������)�������� ��� �������������*.�/,���������� ����������)�� ���������������������������1#����������� ���&�����&��������������� *.2/0 ��������3����� �������������$���������� �������� *,� ���$��������� �$�������%��%�����(� ��� ���� ���������$���������%������ ������ *.4/, %������5+6����)� �&� ����������1#�� ������������������������$���������� �����������1#�� *.7/0 ����%�������%���������������� �&���%��� ������������������� *0 �����%���������������������1#�� �&� ��� �� %���������������������������%����*8�������� %�����������������)% ��& �� �����$�������*.�/9 ���%��������� ������%��%�������$���)� ��%���������������'������(& �� �&� ����������1#�� ������������������� ������������ ������������������ *���������)������ %���������%���$������ ��������� ������ �����������1#�� %���������%���$������ &�� ��7���)*,��$���������������������������)#18����)�*#18% ��� �&� ����������� �%����������%��� �����%������� ������������ *:;<;:;��;!,�� ��)1*=*(����&���1*8*(6���'>*(>���',*0 ���������� �$����������� ?&����)���*9���8����������.����/%%*@@?���*,�� ��)1*=*(����)1*1*(�������=*(����&���1*8*(���&���#*,�$������ ������������ �������������� *9���8���������2.���2/%%*7�2?7��*,���(A*(���''(,*(�� �0*����*+����� ���������&�������B� �����*+����� ��%���(0������C��$����)��0�� ����).0C0/(����(D4%*��1������*,���(A*(���''(,*(�� �0*����*+��������$������������������������������ �����.���4E���7/*+����� ��%���(0C0(���7(4�%*��1������*,���(A*(���''(,*(�� �0*�3������������������������� ���%�&��%����*+����� ��%���(0C0(����(�D%*��1������*,���(A*(���''(,*(�� �(0*��������������3������������������������� ���%�&��%����*FF3��# ���(����(G��*�2*H�*4#%�����(%%*27�E2�7*���'�$�(,*#��������������������������*I�������(�@J4(���%*��+����*�����'�$(�*(K������(,*+�����������L������������������*8���&(�@J�(4DD%*��+����*����(M*(0��� �$(G*������������������'��*8���&(�@�J(2�4%*��+����*>�%��(0*8�������)��1�����&�������B��� ���� %�������������*8����B������ ��*0����C��$����)(0����(���4(4�%*��1������*>���'(+*(����(,*(G�'��N�(A*(C���(8*(0����������������� ���� ��&����%������*FF3��# ���(���4(G��*��*H�*�(%%*�JE4�*>���'(+*(C���(8*(>����N�(>*� ������������������� ���� ������������������E��������������*FF3��# ���(���7(G��*��*H�*4#%�����(%%*4�JE4�@*3�(,*3��# ����������������*0������(����(D22%*

125

CURRICULUM VITAE

1. Personal data

Name Alar Konist Date and place of birth 06.05.1985, Vinni Citizenship Estonian Marital status Cohabiting

2. Contact information

Address Ehitajate tee 5, 19086 Tallinn, Estonia Phone +372 56 480 478 E-mail [email protected]

3. Education

Educational institution Graduation year Education Tallinn University of Technology 2009 master`s degree Tallinn University of Technology 2008 bachelor`s degree Rakvere Secondary School 2004 secondary education

4. Language skills

Language Level Estonian native language C2 English fluent C1 Russian average B2 Finnish basic skills A2

5. Professional employment

Period Organisation Position

2009-present Tallinn University of Technology, Department of Thermal Engineering

research scientist

2006-2009 Tallinn University of Technology, Department of Thermal Engineering

engineer

126

6. Special courses

Period Educational or other organisation

2010 Internal quality control management in universities – spe-cial course organized by SA Archimedes

2009 Energy Auditing for Buildings – special course organized by Tallinn University of Technology Open University

7. Scientific work

Investigation of boiler heating surfaces fouling at Tallinn Powerplant;

Shale oil and power cogeneration process modeling;

Reduction of CO2 emission of CFB boiler by enrichment of combustion air with oxygen;

Oil shale power plants operational problems related to thermal engineering and environment protection.

8. Defended theses

Carbon Dioxide binding in ash fields. Master of Science thesis, TUT, Tallinn, 2008;

Usage and composition of biofuels. Bachelor thesis, TUT, Tallinn, 2007.

9. Main areas of scientific work

Natural sciences and engineering, energetic research

10. Other research projects

Subject Nr of Project Financing source Duration

Sustainable utilization of energy resources and pro-cess improvement in com-bustion facilities

SF0140024s07 Estonian Ministry of Education and Research

1.01.2007-31.12.2012

Reduction of CO2 emission of CFB boiler by enrich-ment of combustion air with oxygen

AR12003 National R&D program „Energy Technology Pro-gram,“ SA Archi-medes

1.01.2012-31.12.2014

127

ELULOOKIRJELDUS

1. Isikuandmed

Ees- ja perekonnanimi Alar Konist Sünniaeg ja -koht 06.05.1985, Vinni Kodakondsus Eesti

Perekonnaseis vabaabielus

2. Kontaktandmed

Aadress Ehitajate tee 5, 19086 Tallinn, Eesti Telefon +372 56 480 478 E-posti aadress [email protected]

3. Hariduskäik

Õppeasutus Lõpetamise aeg Haridus Tallinna Tehnikaülikool 2009 tehnikateaduste magistrikraad Tallinna Tehnikaülikool 2008 bakalaureusekraad Rakvere Gümnaasium 2004 keskharidus

4. Keelteoskus

Keel Tase Eesti keel emakeel C2 Inglise keel kõrgtase C1 Vene keel kesktase B2 Soome keel algtase A2

5. Teenistuskäik

Töötamise aeg Tööandja nimetus Ametikoht

2009-käesoleva ajani Tallinna Tehnikaülikool, Soojustehnika instituut

teadur

2006-2009 Tallinna Tehnikaülikool, Soojustehnika instituut

insener

128

6. Täiendusõpe

Õppimise aeg Täiendusõppe läbiviija nimetus

2010 Kõrgkooli sisemise kvaliteedikindlustamise protsess – SA Archimedes

2009 Hoonete energeetiline auditeerimine – TTÜ avatud üli-kool

7. Teadustegevus

Energiaressursside säästlik kasutamine ja protsesside täiustamine põletussead-metes;

Katla küttepindade saastumise põhjuste väljaselgitamine ja meetmete kavanda-mine saastumise vähendamiseks Tallinna Elektrijaamas;

Põlevkiviõli ja elektrienergia koostootmise mudelleerimine;

CO2 heitme vähendamine põlemisõhu hapnikurikkamaks muutmisega keevkiht-katlas;

Põlevkivielektrijaamade käiduga seotud soojustehniliste ja keskkonnaalaste probleemide lahendamine

8. Kaitstud lõputööd

Süsinikdioksiidi tagasisidumine tuhaväljadel. TM väitekiri, TTÜ, Tallinn, 2008.

Biokütuste koostis ja kasutamine. Bakalaureusetöö, TTÜ, Tallinn, 2007.

9. Teadustöö põhisuunad

Loodusteadused ja tehnika, energeetikaalased uuringud – T140.

10. Teadusprojektid

Teema Projekti number

Finantsallikas Kestus

Energiaressursside säästlik ka-sutamine ja protsesside täiusta-mine põletusseadmetes

SF0140024s07 HM sihtfinant-seerimine

1.01.2007-31.12.2012

CO2 heitme vähendamine põle-misõhu hapnikurikkamaks muutmisega keevkihtkatlas

AR12003 RP “Energia-tehnoloogia T&A toetami-ne,” SA Archimedes

1.01.2012-31.12.2014

129

DISSERTATIONS DEFENDED AT TALLINN UNIVERSITY OF TECHNOLOGY ON

MECHANICAL ENGINEERING

1. Jakob Kübarsepp. Steel-Bonded Hardmetals. 1992. 2. Jakub Kõo. Determination of Residual Stresses in Coatings &Coated Parts. 1994. 3. Mart Tamre. Tribocharacteristics of Journal Bearings Unlocated Axis. 1995. 4. Paul Kallas. Abrasive Erosion of Powder Materials. 1996. 5. Jüri Pirso. Titanium and Chromium Carbide Based Cermets. 1996. 6. Heinrich Reshetnyak. Hard Metals Serviceability in Sheet Metal Forming Operations. 1996. 7. Arvi Kruusing. Magnetic Microdevices and Their Fabrication methods. 1997. 8. Roberto Carmona Davila. Some Contributions to the Quality Control in Motor Car Industry. 1999. 9. Harri Annuka. Characterization and Application of TiC-Based Iron Alloys Bonded Cermets. 1999. 10. Irina Hussainova. Investigation of Particle-Wall Collision and Erosion Pre-diction. 1999. 11. Edi Kulderknup. Reliability and Uncertainty of Quality Measurement. 2000. 12. Vitali Podgurski. Laser Ablation and Thermal Evaporation of Thin Films and Structures. 2001. 13. Igor Penkov. Strength Investigation of Threaded Joints Under Static and Dynamic Loading. 2001. 14. Martin Eerme. Structural Modelling of Engineering Products and Realisa-tion of Computer-Based Environment for Product Development. 2001. 15. Toivo Tähemaa. Assurance of Synergy and Competitive Dependability at Non-Safety-Critical Mechatronics Systems design. 2002. 16. Jüri Resev. Virtual Differential as Torque Distribution Control Unit in Au-tomotive Propulsion Systems. 2002. 17. Toomas Pihl. Powder Coatings for Abrasive Wear. 2002. 18. Sergei Letunovitš. Tribology of Fine-Grained Cermets. 2003. 19. Tatyana Karaulova. Development of the Modelling Tool for the Analysis of the Production Process and its Entities for the SME. 2004. 20. Grigori Nekrassov. Development of an Intelligent Integrated Environment for Computer. 2004. 21. Sergei Zimakov. Novel Wear Resistant WC-Based Thermal Sprayed Coat-ings. 2004. 22. Irina Preis. Fatigue Performance and Mechanical Reliability of Cemented Carbides. 2004. 23. Medhat Hussainov. Effect of Solid Particles on Turbulence of Gas in Two-Phase Flows. 2005.

130

24. Frid Kaljas. Synergy-Based Approach to Design of the Interdisciplinary Systems. 2005. 25. Dmitri Neshumayev. Experimental and Numerical Investigation of Com-bined Heat Transfer Enhancement Technique in Gas-Heated Channels. 2005. 26. Renno Veinthal. Characterization and Modelling of Erosion Wear of Pow-der Composite Materials and Coatings. 2005. 27. Sergei Tisler. Deposition of Solid Particles from Aerosol Flow in Laminar Flat-Plate Boundary Layer. 2006. 28. Tauno Otto. Models for Monitoring of Technological Processes and Pro-duction Systems. 2006. 29. Maksim Antonov. Assessment of Cermets Performance in Aggressive Me-dia. 2006. 30. Tatjana Barashkova. Research of the Effect of Correlation at the Measure-ment of Alternating Voltage. 2006. 31. Jaan Kers. Recycling of Composite Plastics. 2006. 32. Raivo Sell. Model Based Mechatronic Systems Modeling Methodology in Conceptual Design Stage. 2007. 33. Hans Rämmal. Experimental Methods for Sound Propagation Studies in Automotive Duct Systems. 2007. 34. Meelis Pohlak. Rapid Prototyping of Sheet Metal Components with Incre-mental Sheet Forming Technology. 2007. 35. Priidu Peetsalu. Microstructural Aspects of Thermal Sprayed WC-Co Coat-ings and Ni-Cr Coated Steels. 2007. 36. Lauri Kollo. Sinter/HIP Technology of TiC-Based Cermets. 2007. 37. Andrei Dedov. Assessment of Metal Condition and Remaining Life of In-service Power Plant Components Operating at High Temperature. 2007. 38. Fjodor Sergejev. Investigation of the Fatigue Mechanics Aspects of PM Hardmetals and Cermets. 2007. 39. Eduard Ševtšenko. Intelligent Decision Support System for the Network of Collaborative SME-s. 2007. 40. Rünno Lumiste. Networks and Innovation in Machinery and Electronics Industry and Enterprises (Estonian Case Studies). 2008. 41. Kristo Karjust. Integrated Product Development and Production Technolo-gy of Large Composite Plastic Products. 2008. 42. Mart Saarna. Fatigue Characteristics of PM Steels. 2008. 43. Eduard Kimmari. Exothermically Synthesized B4C-Al Composites for Dry Sliding. 2008. 44. Indrek Abiline. Calibration Methods of Coating Thickness Gauges. 2008. 45. Tiit Hindreus. Synergy-Based Approach to Quality Assurance. 2009. 46. Karl Raba. Uncertainty Focused Product Improvement Models. 2009. 47. Riho Tarbe. Abrasive Impact Wear: Tester, Wear and Grindability Studies. 2009. 48. Kristjan Juhani. Reactive Sintered Chromium and Titanium Carbide-Based Cermets. 2009.

131

49. Nadežda Dementjeva. Energy Planning Model Analysis and Their Adapta-bility for Estonian Energy Sector. 2009. 50. Igor Krupenski. Numerical Simulation of Two-Phase Turbulent Flows in Ash Circulating Fluidized Bed. 2010. 51. Aleksandr Hlebnikov. The Analysis of Efficiency and Optimization of Dis-trict Heating Networks in Estonia. 2010. 52. Andres Petritšenko. Vibration of Ladder Frames. 2010. 53. Renee Joost. Novel Methods for Hardmetal Production and Recycling. 2010. 54. Andre Gregor. Hard PVD Coatings for Tooling. 2010. 55. Tõnu Roosaar. Wear Performance of WC- and TiC-Based Ceramic-Metallic Composites. 2010. 56. Alina Sivitski. Sliding Wear of PVD Hard Coatings: Fatigue and Measure-ment Aspects. 2010. 57. Sergei Kramanenko. Fractal Approach for Multiple Project Management in Manufacturing Enterprises. 2010. 58. Eduard Latõsov. Model for the Analysis of Combined Heat and Power Production. 2011. 59. Jürgen Riim. Calibration Methods of Coating Thickness Standards. 2011. 60. Andrei Surzhenkov. Duplex Treatment of Steel Surface. 2011. 61. Steffen Dahms. Diffusion Welding of Different Materials. 2011. 62. Birthe Matsi. Research of Innovation Capasity Monitoring Methodology for Engineering Industry. 2011. 63. Peeter Ross. Data Sharing and Shared Workflow in Medical Imaging. 2011. 64. Siim Link. Reactivity of Woody and Herbaceous Biomass Chars. 2011. 65. Kristjan Plamus. The Impact of Oil Shale Calorific Value on CFB Boiler Thermal Efficiency and Environment. 2012. 66. Aleksei Tšinjan. Performance of Tool Materials in Blanking. 2012. 67. Martinš Sarkans. Synergy Deployment at Early Evaluation of Modularity of the Multi-Agent Production Systems. 2012. 68. Sven Seiler. Laboratory as a Service – A Holistic Framework for Remote and Virtual Labs. 2012. 69. Tarmo Velsker. Design Optimization of Steel and Glass Structures. 2012. 70. Madis Tiik. Access Rights and Organizational Management in Implementa-tion of Estonian Electronic Health Record System. 2012. 71. Marina Kostina. Reliability Management of Manufacturing Processes in Machinery Enterprises. 2012. 72. Robert Hudjakov. Long-Range Navigation for Unmanned Off-Road Ground Vehicle. 2012.