Effects Of Anaerobic Digestion And Aerobic Treatment On The

27
Effects Of Anaerobic Digestion And Aerobic Treatment On The Reduction Of Gaseous Emissions From Dairy Manure Storages Ruihong Zhang1, Jeffery A. McGarvey2, Yanguo Ma1, Frank M. Mitloehner3 (1. Biological and Agricultural Engineering Department, University of California, Davis, CA, USA; 2. US Department of Agriculture, Agricultural Research Service, Foodborne Contaminants Research Unit, Albany, CA, USA; 3. Animal Science Department, University of California, Davis, CA, USA) Abstract: Effects of anaerobic digestion and aerobic treatment on the reduction of gaseous emissions from dairy manure storages were evaluated in this study. Screened dairy manure containing 3.5% volatile solids (VS) was either anaerobically digested or aerobically treated prior to storage in air-tight vessels. Anaerobic digestion was carried out using a mesophilic anaerobic sequencing batch reactor operated at a hydraulic retention time of 20 days and an organic loading rate (OLR) of 1 gVS/L/day. Aerobic treatment was achieved using an aerobic reactor operated at a hydraulic retention time (HRT) of 10 days and an OLR of 2 gVS/(L·d). The treated manure was put into the storage on a daily basis for a period of 180 days. All the gases produced during this period were captured and analyzed for methane, carbon dioxide and volatile organic compounds (VOCs). Untreated manure was stored and analyzed in the same way as the treated manure and used as a control for comparison. The results show that low amounts of gases were produced during the first 84 days of storage in both treated and untreated manure, but increased significantly after this time point. The generally expected positive impacts of anaerobic and aerobic treatment on the reductions of methane and VOCs were confirmed in this study. However, the effects of anaerobic and aerobic treatment varied over the time of storage, especially for VOCs. The results of this study indicate that to achieve significant reductions in VOC emission the storage time of anaerobic digester or aerobic reactor effluent should be limited to no more than 100 days. Key words: anaerobic digestion, aerobic treatment, methane, volatile organic compounds, dairy manure 1 | BAYU FIRDAUS 075524221 Tugas Pengendalian Emisi Gas Buang

Transcript of Effects Of Anaerobic Digestion And Aerobic Treatment On The

Effects Of Anaerobic Digestion And Aerobic Treatment On TheReduction Of Gaseous Emissions From Dairy Manure Storages

Ruihong Zhang1, Jeffery A. McGarvey2, Yanguo Ma1, Frank M.Mitloehner3

(1. Biological and Agricultural Engineering Department, University ofCalifornia, Davis, CA, USA;

2. US Department of Agriculture, Agricultural Research Service, FoodborneContaminants Research Unit, Albany, CA, USA;

3. Animal Science Department, University of California, Davis, CA, USA)

Abstract: Effects of anaerobic digestion and aerobictreatment on the reduction of gaseous emissions from dairymanure storages were evaluated in this study. Screened dairymanure containing 3.5% volatile solids (VS) was eitheranaerobically digested or aerobically treated prior tostorage in air-tight vessels. Anaerobic digestion wascarried out using a mesophilic anaerobic sequencing batchreactor operated at a hydraulic retention time of 20 daysand an organic loading rate (OLR) of 1 gVS/L/day. Aerobictreatment was achieved using an aerobic reactor operated ata hydraulic retention time (HRT) of 10 days and an OLR of 2gVS/(L·d). The treated manure was put into the storage on adaily basis for a period of 180 days. All the gases producedduring this period were captured and analyzed for methane,carbon dioxide and volatile organic compounds (VOCs).Untreated manure was stored and analyzed in the same way asthe treated manure and used as a control for comparison. Theresults show that low amounts of gases were produced duringthe first 84 days of storage in both treated and untreatedmanure, but increased significantly after this time point.The generally expected positive impacts of anaerobic andaerobic treatment on the reductions of methane and VOCs wereconfirmed in this study. However, the effects of anaerobicand aerobic treatment varied over the time of storage,especially for VOCs. The results of this study indicate thatto achieve significant reductions in VOC emission thestorage time of anaerobic digester or aerobic reactoreffluent should be limited to no more than 100 days.

Key words: anaerobic digestion, aerobic treatment, methane,volatile organic compounds, dairy manure

1 | BAYU FIRDAUS 075524221 T u g a s P e n g e n d a l i a n E m i s i G a s B u a n g

DOI: 10.3965/j.issn.1934-6344.2008.02.015-020

Citation: Ruihong Zhang, Jeffery A. McGarvey, Yanguo Ma,Frank M. Mitloehner. Effects of anaerobic digestion andaerobic treatment on the reduction of gaseous emissions fromdairy manure storages. Int J Agric & Biol Eng. 2008; 1(2):15-20.

1. IntroductionAnaerobic digestion and aerobic treatment have been used, orare being adopted, on livestock farms to provide treatmentfor animal manure prior to storage. These methodologies havethe potential to significantly reduce.

Received date: 2008-10-15 Accepted date: 2008-12-12Biographies: Ruihong Zhang, PhD, Professor, BiologicalandbAgricultural Engineering Department, University ofCalifornia, Davis, USA; Jeffery A. McGarvey, Microbiologist,USDA, ARS, Foodborne Contaminants Research Unit, Albany, CA,USA; Yanguo Ma, Post Doctoral Scholar, Biological andAgricultural Engineering Department, University ofCalifornia, Davis, USA; Frank M. Mitloehner, AssociateProfessor & Cooperative Extension Specialist, Animal ScienceDepartment, University of California, Davis, USA.

Corresponding author: Ruihong Zhang, Biological andAgricultural Engineering Department, University ofCalifornia, Davis, One Shields Avenue, Davis, CA 95616, USA.Phone: 530-7542-9530; Fax: 530-752-2640. Email:[email protected] gaseous emissions from manure managementsystems. Previous research evaluating the air quality impactof anaerobic digestion and aerobic treatment technologies onanimal manure focused mainly on odor control. Theeffectiveness of aeration on odor control for various typesof animal manure has been well documented in theliterature[1,2]. Previous research results[3-5] haveindicated that anaerobically treated manure had lower odorintensity than untreated manure. Zhang et al.[6] evaluatedthe odor characteristics of untreated and anaerobicallytreated swine and dairy manure over a three-month anaerobicstorage period and found that untreated manure had strongodors with high concentrations of volatile fatty acids(VFAs), hydrogen sulfide (H2S) and methyl mercaptan (CH3SH)

2 | BAYU FIRDAUS 075524221 T u g a s P e n g e n d a l i a n E m i s i G a s B u a n g

in the emitted gases, while anaerobically digested manurehad lower odors, VFAs and low or no detectable sulfur gases.Most of the research regarding volatile organic compound(VOCs) emissions from confined animal feedingoperations hasbeen focused on compounds associated with odors [7]. Howeverbesides causing odors, VOCs also contribute to the formationof ozone by reacting withnitrogen oxides in the air in the presence of sunlight[8].The vast majority of confined animal feeding operations inCalifornia are located in the San Joaquin Valley which is inextreme nonattainment of current state and federal ozonestandards. Reducing the emissions of VOC from livestockoperations is an important task with respect to thereduction in ozone formation, as well as odor control.Several recent studies on the measurement of VOC emissionsfrom dairies have been reported in the literature[8-11]. Inlight of the increased need for greenhouse gas emissionreduction, it is important to quantify the effects ofvarious treatment technologies for the reduction of methaneand nitrous oxide.

Gaseous emissions from animal manure occur in twomajor steps: the production of gas in the manure and therelease of the gas from the manure. In the present studyfocus was put on the production of methane and VOCs fromtreated and untreated manure during storage, as theproduction of the gasses was directly correlated to theemission of the gases. Reductions in the mass production ofgasses in manure storage translate directly into thereductions in their emission. The objectives ofthis study were to determine and compare the total massproduction of methane and VOCs during the storage of treatedand untreated dairy manure, and to assess the impact ofanaerobic digestion and aerobic treatment technologies forthe reduction of gaseous emissions from manure storages. Asa reference, the production of carbon dioxide from thestored manure (treated and untreated) was also measured andwas presented. The changes in microbial populations withinthe manure storages as a result of manure treatment viaanaerobic digestion and aerobic treatment were also examinedand have been presented in a recent article by McGarvey etal.[12]. For this study, the gases produced from theanaerobic treatment processes were collected and combustedfor energy production. The gases produced from the aerobic

3 | BAYU FIRDAUS 075524221 T u g a s P e n g e n d a l i a n E m i s i G a s B u a n g

treatment process were released into the atmosphere. Theimpact of the gases released during the anaerobic or aerobictreatment processes was not the focus of this study.

2. Materials and methods

2.1 Experimental set-up and designThe experimental set-up as shown in Figure 1 was used

to provide the anaerobic or aerobic treatment of dairymanure prior to the storage and to compare the treatedmanure with the untreated manure for their gaseous emissionsover a six-month storage period. System 1 was designed toprovide anaerobic treatment prior to the manure storage.System 2 was used as a control for System 1. System 1employed an anaerobic digester with a 4L working volume,operated at (35+1),with a hydraulic retention time (HRT) of20 days, and a volatile solids (VS) loading rate of 1g/(L·d). The digester was operated as a completely mixeddigester, mixed for three minutes every hour and was fedwith 200 mL prepared dairy manure once a day after 200 mLeffluent was removed. In System 2 (control for System 1),the same amount of untreated manure was pumped into thestorage vessel each day as in System 1. System 3 wasdesigned to provide aerobic treatment prior to the manurestorage. System 4 was used as the control for System 3.System 3 employed an aerobic reactor with a 2 L workingvolume operated at room temperature (20± 2), with a five dayHRT, and a dissolved oxygen concentration of 2 mg/L. Theaerobic reactor was fed once a day with 400 mL prepareddairy manure after 400 mL effluent was removed. Compressedair was supplied into the reactor via air diffusion stonesinstalled at the bottom of the reactor at a rate controlledto maintain the DO at 2 mg/L, which was monitored using a DOprobe and meter. In System 4 (control for System 3), thesame amount of untreated manure was pumped into the storagevessel each day as in System 3. The conditions of bothanaerobic digestion and aerobic reactor were designed toreduce the VS in the dairy manure by approximately 40% basedon previous research by Li and Zhang[13,14]. The actualperformance of the anaerobic digester and aerobic reactorshowed an average of 55% and 43% of VS reduction,

4 | BAYU FIRDAUS 075524221 T u g a s P e n g e n d a l i a n E m i s i G a s B u a n g

respectively, in the dairy manure over a six month period ofoperation.

Over a six month period, all four systems were fedfrom the same dairy manure prepared in the laboratory fromfresh manure collected from the UC Davis dairy farm. Thefresh manure was mixed with water and screened with a sievewith openings of 2 mm×2 mm to remove large particles,diluted with water to achieve the desired TS content of4.4%, and placed into a feed tank maintained at 4. The TS of4.4% was chosen because it is similar to the level observedin manure collected on a typical commercial dairy usingflush and scrap waste removal systems.

Figure 1 Experimental set-up for dairy manure treatmentstudy

The treated and untreated control manures were placedin separate 80 L storage vessels. All four storage vesselswere sealed air tight, and flushed filled with nitrogen gasto create an anaerobic environment similar to thoseencountered in anaerobic waste ponds found on commercialdairies. During the experiment, a 10 L tedlar bag wasconnected to the top of each storage vessel through a ventport to collect all of the gasses emitted from the waste.The gas volume in the bag and the headspace of the storagevessel were measured weekly. At the time of measurement, thetwo volumes were added to arrive at the total gas phasevolume. Gas samples were analyzed for the concentrations ofmethane, carbon dioxide and VOCs. The mass of a particulargas (e.g., methane) present in the gas phase was calculatedby multiplying the total gas phase volume by theconcentration of that gas (e.g., methane). At the time ofmeasuring the gas phase volumes, liquid volume in the

5 | BAYU FIRDAUS 075524221 T u g a s P e n g e n d a l i a n E m i s i G a s B u a n g

storage vessel was also measured. The concentrations of theindividual gases in the liquid phase were determined usingHenry’s Law, assuming equilibrium between the liquid and gasphases. The mass of the gas (e.g., methane) in the liquidphase was calculated by multiplying the liquid volume by theconcentration in the liquid. The masses in the liquid andgas phases were added together to provide the total mass ofthe gas at the time of measurement. The amount of gasproduced over the period of measurement was calculated bysubtracting the mass at the previous measurement time fromthe mass at the current measurement time. The cumulativemass of a particular gas at a given time is normalized basedon the amount of TS in the dairy manure that was fed intothe system. The performance of the anaerobic digester andthe aerobic reactor were monitored by taking samples fromthe influent and effluent of each reactor twice acweek over,six month period and analyzed for TS, VS and BOD5 using thestandard methods[15] . The biogas production in theanaerobic digester was measured daily using a wet tip meter(http://wettipgasmeter.com/) and measured weekly for methaneand hydrogen using a gas chromatograph equipped with thermalconductivity detector.

2.2 Chemical analysisThe methane and carbon dioxide contents of the gas

samples were measured using a GC/TCD (5890 Hewlett-PackardCompany, Wilmington, DE, USA). An Alltech carbosphere 80/100column with dimensions of 6’×1/8’SS was used. Helium wasused as a carrier gas at a flow rate of 82 mL/min. Thetemperatures of the oven, injector and detector were 100ºC,120ºC and 120ºC, respectively. The concentrations of VOCs inthe gas samples were determined using the GasChromatography/Mass Spectrometry (GC/MS) system whichconsisted of a Varian CP-3800 Gas Chromatograph with built-in high performance sample concentrators and the VarianSaturn 2200 Ion Trap Mass Spectrometer (Varian, Inc., PaloAlto, CA, USA). The system meets the exact requirements forthe US EPA TO-14 and TO-15 Methods[15]. The samples weretrapped on a cryotrap at -130 and then purged with ultrapureN2 to flush any sample remaining in the tubing or valvingonto the cryotrap. After purging, the cryotrap was rapidlyheated

6 | BAYU FIRDAUS 075524221 T u g a s P e n g e n d a l i a n E m i s i G a s B u a n g

to 200 to transfer/desorb the contents and retrap them onthe cryo-focus trap at -130. The cryo-focus trap was rapidlyheated up to 200℃ to inject the sample onto a CP-Select 624CB capillary column (60 m×0.32 mm× 1.8 μm). Helium was usedas the carrier gas inconstant flow mode at 2.0 mL/min. The GC oven temperatureprogram was as follows: initial temperature -30 hold 5 min;ramp 5/min to 200ºC. The GC/MS was calibrated using a TO-15calibration mix of 62 components with each at 100 ppb fromScott Specialty Gases (Plumsteadville, PA, USA). The liquidsamples taken from the feed tank, effluent from theanaerobic digester and the aerobic reactor, and the storagevessels were measured for total solids (TS), volatile solids(VS) and suspended solids (SS), biochemical oxygen demand(BOD5), and other elements as shown in Table 1 usingStandard Methods (APHA, 1995). All thereported as theaverage.

3. Results and discussion

The TS and BOD5 of influents and effluents from thereactors (anaerobic digester and aerobic reactor) are shownin Table 1. The results of other analyses (nutrients andmicrobial populations) are presented in McGarvey et al.[12].Aerobic treatment resulted in a 32% TS reduction, a 43% VSreduction and a 77% BOD5 reduction in the dairy manure.Anaerobic treatment resulted in a 43% TS reduction, a 55% VSreduction and an 87% BOD5 reduction as compared to the feedmanure. The biogas yield of anaerobic digester was measuredto be 0.32 L/gVS fed and average methane content in thebiogas was 64.3%.

Table 1 Chemical analysis results of the feed and effluentof

anaerobic and aerobic treatment reactors (values in thetable

are averages of 12 measurements)

Parameter

TS/mg·L-1 44,000 25,000 30,000

7 | BAYU FIRDAUS 075524221 T u g a s P e n g e n d a l i a n E m i s i G a s B u a n g

Dairy manure used asfeed

Anaerobicreact

Aaerobicreact

VS/mg·L-1 35,200 15,900 20,100

BOD5/mg·L-1 14,900 1,900 3,500

The cumulative productions of methane, carbon dioxideand VOCs over time during the storage of treated anduntreated manure are shown in Figures 2, 3, and 4,respectively. Gas production was reported as mg gas per gramof total solids in the dairy manure feed material and wascalculated from the total cumulative amount of gas producedover the period divided by the total amount of total solidsin the manure that was fed into the system. The data showthat the productions of methane and carbon dioxide were lowduring the first 84 days; however, after this time point gasproduction increased quickly. Among the 51 VOCs included inthe standard method of US EPA TO-15[16], the followingcompounds were detected in the gas samples taken from themanure storage vessels: acetone, 2-propanol, chloromethane,acetaldehyde, ethyl acetate, benzene, toluene, methyl iso-butyl ketone, trans-1,3-Dichloropropene, and 2-Hexanone. Themajor compounds emitted were acetone, 2-propanol,acetaldehyde, benzene and toluene. Also many other VOCcompounds were likely produced from the dairy manure, butwere not analyzed in this study. The reduction in the amountof gasses produced (methane, carbon dioxide, and VOCs) fromthe dairy manure storage after 112 and 180 days as a resultof analysis was performed in duplicate and

8 | BAYU FIRDAUS 075524221 T u g a s P e n g e n d a l i a n E m i s i G a s B u a n g

Figure 4 Cumulative VOCs production during storage oftreated

and untreated manure

aerobic or anaerobic treatment, compared to their respectivecontrols (untreated manure storage), are shown in Table 2.Generally speaking, anaerobic treatment was more effectivethan aerobic treatment for the reduction of methane and VOCsproduction from manure storages. However, the effects ofanaerobic and aerobic treatments varied over time; forexample, after 112 days the anaerobic digester effluentstorage had 63.13% less methane while the aerobic digester

9 | BAYU FIRDAUS 075524221 T u g a s P e n g e n d a l i a n E m i s i G a s B u a n g

effluent storage had 22.26% increase in methane production.The latter was not expected but may be explained by the factthat the aerobic reactor effluent contained more VS than theeffluent of anaerobic digester. It is also plausible thatthe release of organic compounds from the breakdown ofaerobic bacterial cells formed in the aerobic reactorcontributed to the methane production. The VOC productionsfrom the anaerobic and aerobic effluent storages are 74.05%and 73.98% lower, respectively, than those produced in theuntreated manure storages (controls). Therefore, significantreductions in the production of methane and VOCs from themanure storage were achieved as a result of anaerobictreatment prior to storage. Significant reductions in VOCproduction from the manure storage were achieved as a resultof aerobic treatment, but an increase in methane productionfrom the manure storage was observed toward the 180 daystorage.

After 180 days, the anaerobic digester effluentstorage continued to show significantly less methaneproduction (70.31%) and the aerobic reactor effluent storageshowed a 24.58% reduction, as compared to the untreatedmanure storage (control). However, both the anaerobicdigester and aerobic reactor effluent storages experiencedsignificant production increases in VOC during the periodfrom 112 to 180 days, diminishing the effects of thesetreatments. Compared to untreated manure storages(controls), anaerobic digestion and aerobic treatmentresulted in 17.27% and 5.26% reductions in the cumulativeproduction of VOCs in the storages. The increased productionof VOCs after 112 days could be due to the decomposition ofcomplex organic compounds in the dairy manure that were notdegraded in the treatment reactors. This indicates thatthere is a need for limiting the storage time of manureafter anaerobic and aerobic treatment if significant VOCsreductions are desired.

10 | BAYU FIRDAUS 075524221 T u g a s P e n g e n d a l i a n E m i s i G a s B u a n g

4. Conclusions

The effects of anaerobic and aerobic treatment on theproduction of methane, carbon dioxide, and VOCs in manurestorages were evaluated in this study. Generally speaking,very small amounts of gases were produced during the first84 days of storage in both treated and untreated manurestorages, with most of the gases being produced afterwards.The results of this study showed the positive impact ofanaerobic and aerobic treatment on the reductions of methaneand VOCs, except that the aerobically treated manure showedhigher methane production in the storage than the controlunder the period of 98-140 days. This effect of aerobictreatment on the methane emissions needs to be furtherinvestigated. The effects of anaerobic and aerobic treatmentvaried with time during the storage, especially for VOCs.The results of this study indicate that to achievesignificant reductions in VOC emissions from aerobic andanaerobically treated waste, the storage time for theeffluent under the tested conditions should be limited toapproximately 100 days.

AcknowledgementsThis research was supported in part by a research grant fromthe California Environmental Protection Agency, State WaterResources Control Board, and the Merced County Department ofEnvironmental Health, by the U.S. Department of Agriculture,Agricultural Research Service, National Program 108, and bythe Agricultural Experiment Station at the University ofCalifornia, Davis.

[References]1. Zhang R H, Dugba P N, Bundy D S. Laboratory study of

surface aeration of anaerobic lagoons for odor control

11 | BAYU FIRDAUS 075524221 T u g a s P e n g e n d a l i a n E m i s i G a s B u a n g

of swine manure. Transactions of the ASAE, 1997; 40(1):185 -190.

2. Westerman P W, Zhang R H. Solid-liquid separation ofanimal waste for odor control and nutrient management.Applied Engineering in Agriculture, 1997; 13(5): 657-664.

3. Welsh F W, Schudelte D D, Kroeker E J, Lapp H M. Theeffect of anaerobic digestion upon swine manure odors.Canadian Agricultural Engineering, 1977; 19:122-126.

4. Pain B F, Misselbrook T H, Clarkson C R, Rees Y J. Odorand ammonia emissions following the spreading ofanaerobically-digested pig slurry on grassland.Biological Wastes, 1990; 34(3): 259-267.

5. Vetter H, Steffens G, Schropel R. The influence ofdifferent processing methods for slurry upon itsfertilizer value on grassland. In: Proceedings of anInternational Symposium of the European GrasslandFederation onAnimal Manure on Grassland and Fodder Crops– Fertlizer or Waste. Wageningen, The Netherlands,September 1987, pp. 73-86. (G. Van Der Meer, R.J. Unwin,T.A. Van Dijk, and G.C. Ennik, eds.), Martinus NijhoffPublishers, Boston, MA, USA. ISBN: 90-247-3568-8.

6. Zhang R H, Tao J, Dugba P N. Evaluation of two-stageanaerobic sequencing batch reactor systems for animalwastewater treatment. Transactions of the ASAE, 2001;43(6): 1795-1801.

7. Sweeten J M, Jacobson L, Heber A J, Schmidt D, LorimorJ, Westerman P, et al. Odor mitigation for concentratedanimal feeding operations: White Paper andrecommendations. 2001. White Paper prepared for NationalCenter for Manure and Animal Waste Management, NorthCarolina State University, Raleigh, NC, USA.

8. Shaw S L, Mitloehner F M, Jackson W A, DePeters E,Holzinger R, Fadel J, et al. Volatile organic compoundemissions from dairy cows and their waste as measured byproton transfer reaction - mass spectrometry.Environment, Science and Technology, 2006; 41: 1310 -1316.

9. Hobbs P J, Webb J, Mottram T T, Grant B, Misselbrook T.Emissions of volatile organic compounds originating fromUK livestock agriculture. Journal of the Science of Foodand Agriculture, 2004; 84: 1414-1420.

12 | BAYU FIRDAUS 075524221 T u g a s P e n g e n d a l i a n E m i s i G a s B u a n g

10. Rabaud N E, Ebeler E, Ashbaugh L L, Flocchini R G.Characterization and quantification of odorous and non-odorous volatile organic compounds near a commercialdairy in California. Atmospheric Environment, 2003; 37:933–940.

11. Sunesson A, Gullberg J, Blomquist G. Airborne chemicalcompounds on dairy farms. Journal of EnvironmentalMonitoring, 2001; 3: 210-216.

12. McGarvey J, Miller WG, Zhang R, Ma Y, Mitloehner F M.Bacterial population dynamics in dairy waste duringaerobic and anaerobic treatment and subsequent storage.Applied Environmental Microbiology, 2007; 73: 193-202.

13. Li X, Zhang R H. Aerobic treatment of dairy wastewaterwith sequencing batch reactor systems. BioprocessBiosystem Engineering, 2001; 25(2002): 103-109.

14. Li X, Zhang R H. Integrated anaerobic and aerobictreatment of dairy wastewater with sequencing batchreactors. Transactions of the ASAE, 2002; 47(1): 235-241.

15. APHA. Standard methods for the examination of waterand wastewater. 18th ed. Washington DC: American PublicHealth Association. 1998.

16. US EPA. Compendium Method TO-15. Determination ofVolatile Organic Compounds (VOCs) in Air Collected inSpecially Prepared Canisters and Analyzed by GasChromatography/Mass Spectrosmetry (GC/MS). EPA/625/R-96/010b. Cincinnati, OH: Center for EnvironmentalResearch Information, Office of Research andDevelopment, US Environmental Protection Agency. 1999.

13 | BAYU FIRDAUS 075524221 T u g a s P e n g e n d a l i a n E m i s i G a s B u a n g

Pengaruh Pencernaan Anaerob Dan Pengolahan Aerobik DiPengurangan Emisi Gas Dari Kotoran Penyimpanan

Ruihong Zhang1, Jeffery A. McGarvey2, Yanguo Ma1, Frank M.Mitloehner3

1 USA. Hayati dan Jurusan Teknik Pertanian, Universitas California, Davis, CA,; 2 US Department of Agriculture, Jasa Penelitian Pertanian, Foodborne

Kontaminan Research Unit, Albany, CA, USA;3. Peternakan Departemen, University of California, Davis, CA, USA)

Abstrak: Pengaruh pencernaan anaerob dan pengolahan aerobikpada pengurangan emisi gas dari kotoran susu penyimpanandievaluasi dalam penelitian ini. Susu disaring pupuk yangmengandung volatile padatan% 3,5 (VS) adalah baik dicernaanaerobik atau aerobik diperlakukan sebelum penyimpanandalam-ketat kapal udara. Pencernaan anaerob dilakukanmenggunakan reaktor batch anaerob sequencing mesofilikdioperasikan pada waktu retensi hidrolik dari 20 hari danorganik loading rate (OLR) dari 1 gVS L hari / /. perlakuanaerobik dicapai menggunakan reaktor aerobik beroperasi padahidrolik retensi waktu (HRT) dari 10 hari dan OLR dari 2 gVS/ (L · d). Kotoran yang diolah dimasukkan ke penyimpananpada harian dasar untuk jangka waktu 180 hari. Semua gasyang dihasilkan selama periode ini ditangkap dan dianalisisuntuk metana, karbon dioksida dan senyawa organik yang mudahmenguap (VOC). Pupuk tidak diobati disimpan dan dianalisisdalam cara yang sama seperti pupuk diperlakukan dandigunakan sebagai kontrol untuk perbandingan. Hasil

14 | BAYU FIRDAUS 075524221 T u g a s P e n g e n d a l i a n E m i s i G a s B u a n g

penelitian menunjukkan bahwa jumlah rendah gas diproduksiselama 84 hari pertama penyimpanan baik dan tidak diobatipupuk diobati, tapi meningkat secara signifikan setelahtitik waktu. Dampak positif yang diharapkan pada umumnya danperlakuan aerobik anaerobik pada pengurangan metana dan VOCadalah dikonfirmasi dalam penelitian ini. Namun, efek daripengolahan anaerobik dan aerobik bervariasi selama waktupenyimpanan, terutama untuk VOC. Hasil penelitian inimenunjukkan bahwa untuk mencapai pengurangan yang signifikandalam emisi VOC penyimpanan saat reaktor digester anaerobikatau aerobik limbah harus dibatasi tidak lebih dari 100hari.

Kata kunci: anaerobic digestion, pengolahan aerobik, metan,senyawa organik yang mudah menguap, pupuk susu

DOI: 10.3965/j.issn.1934-6344.2008.02.015-020

Citation: Zhang Ruihong, Jeffery A. McGarvey, Yanguo Ma,Frank M. Mitloehner. Pengaruh pencernaan anaerob dan aerobikperlakuan pada pengurangan emisi gas dari kotoranpenyimpanan susu. Int J Agric & Eng Biol. 2008; 1 (2): 15-20.

1 PendahuluanPencernaan anaerobik dan pengobatan aerobik telah

digunakan, atau sedang diadopsi, pada peternakan ternakuntuk memberikan pengobatan untuk pupuk kandang sebelumpenyimpanan. Ini metodologi memiliki potensi untuk secarasignifikan mengurangi gas emisi dari sistem manajemen pupuk.Sebelumnya penelitian mengevaluasi dampak kualitas udarapencernaan anaerobik dan teknologi pengolahan aerobik dikotoran hewan difokuskan terutama pada kontrol bau. Theefektivitas aerasi pada pengendalian bau untuk berbagaijenis pupuk kandang hewan telah didokumentasikan dalamsastra [1,2] . Sebelumnya hasil penelitian [3-5] memilikimenunjukkan bahwa perlakuan pupuk anaerobik yang lebihrendah bau intensitas dari pupuk kandang tidakdiobati. Zhang et al. [6] dievaluasi karakteristik bau daritidak diobati dan diperlakukan anaerob kotoran babi dan sususelama periode tiga bulan penyimpanan anaerobik danmenemukan bahwa pupuk yang tidak diobati memiliki bau yang

15 | BAYU FIRDAUS 075524221 T u g a s P e n g e n d a l i a n E m i s i G a s B u a n g

kuat dengan tinggi konsentrasi asam lemak volatile (VFAs),hidrogen sulfida (H 2 S) dan metil merkaptan (CH 3 SH) dalamdipancarkan gas, sementara dicerna pupuk anaerobik telahrendah bau, VFAs dan rendah atau tidak ada gas sulfurterdeteksi. Sebagian besar penelitian tentang senyawaorganik volatil (VOC) emisi dari hewan terbatas makanoperasi telah difokuskan pada senyawa terkait dengan bau [7]. Namun selain menyebabkan bau, VOC juga berkontribusiterhadap pembentukan ozon dengan bereaksi dengan nitrogenoksida di udara di hadapan sinar matahari [8]. Sebagianbesar makanan hewan operasi terbatas di California terletakdi San Joaquin Valley yang dalam nonattainment ekstrimkeadaan saat ini dan federal ozon standar. Mengurangi emisiVOC dari operasi ternak merupakan tugas penting sehubungandengan pengurangan pembentukan ozon, serta kontrol bau.Beberapa studi terbaru pada pengukuran VOC emisi dari pabriksusu telah dilaporkan dalam sastra [8-11] . Mengingatpeningkatan kebutuhan pengurangan emisi gas rumah kaca,adalah penting untuk mengukur dampak berbagai teknologipengobatan pengurangan metan dan asam nitrat. emisi Gas darikotoran hewan terjadi pada dua langkah utama: produksi gasdalam kotoran dan pelepasan gas dari kotoran tersebut. Dalamstudi ini fokus diletakkan pada produksi metana dan VOC daridan tidak diobati pupuk dirawat selama penyimpanan, sebagaiproduksi gas secara langsung berhubungan dengan emisi gas.Penurunan massa produksi gas dalam penyimpanan pupukmenerjemahkan langsung ke dalam pengurangan emisimereka. Tujuan penelitian ini adalah untuk menentukan danmembandingkan massa total produksi metana dan VOC selamapenyimpanan susu tidak diobati pupuk dan diobati, dan untukmenilai dampak pencernaan anaerobik dan pengolahan aerobikteknologi untuk pengurangan emisi gas dari penyimpananpupuk. Sebagai referensi, produksi karbon dioksida daripupuk yang disimpan (dirawat dan tidak diobati) juga diukurdan disajikan. The perubahan populasi mikroba dalam kotoranpenyimpanan sebagai akibat perlakuan pupuk kandang melaluianaerobik pencernaan dan pengolahan aerobik juga diperiksadan telah disajikan dalam sebuah artikel baru-baru ini olehMcGarvey et al. [12] . Untuk studi ini, gas yang dihasilkandari proses pengolahan anaerobik dikumpulkan dan dibakaruntuk produksi energi. Gas-gas yang dihasilkan dari prosespengolahan aerobik yang dirilis ke suasana. Dampak dari gas

16 | BAYU FIRDAUS 075524221 T u g a s P e n g e n d a l i a n E m i s i G a s B u a n g

yang dilepaskan selama Proses perlakuan aerobik atauanaerobik bukan fokus kajian ini.

2 Bahan dan metode2.1 Eksperimental set-up dan desain

Hasil set-up seperti yang ditunjukkan pada Gambar 1adalah digunakan untuk memberikan pengobatan atau aerobikanaerobik susu pupuk sebelum penyimpanan dan untukmembandingkan perlakuan pupuk kandang dengan pupuk tidakdiobati untuk mereka gas emisi lebih dari satu bulan periodepenyimpanan-enam. 1 Sistem ini dirancang untuk memberikanpengobatan anaerobik sebelum penyimpanan pupuk. Sistem 2digunakan sebagai kontrol untuk Sistem 1. Sistem 1mempekerjakan anaerobik digester dengan volume kerja 4L,dioperasikan di (35 +1) ℃, dengan waktu retensi hidrolik(HRT) dari 20 hari, dan volatile padatan (VS) tingkatpembebanan 1 g / (· L d) . The digester ini dioperasikansebagai campuran digester sepenuhnya, diramu untuk tigamenit setiap jam dan diberi makan dengan 200 pupuk mL sususiap sekali sehari setelah 200 mL efluen telahdihapus. Dalam Sistem 2 (kontrol untuk Sistem 1), jumlahyang sama pupuk kandang yang tidak diobati adalah dipompa kedalam kapal penyimpanan setiap hari seperti dalam Sistem1. Sistem 3 dirancang untuk memberikan perawatan aerobiksebelum pupuk penyimpanan. Sistem 4 digunakan sebagaikontrol Sistem 3. Sistem 3 mempekerjakan reaktor aerobikdengan 2 L volume kerja dioperasikan pada suhu kamar (20 ±2) ℃, dengan, HRT lima hari dan oksigen terlarutkonsentrasi 2 mg / L. Reaktor aerobik diberi makan sekalisehari dengan 400 ml susu pupuk disusun setelah 400 mLefluen telah dihapus. udara tekan itu diberikan ke dalamreaktor melalui batu difusi udara dipasang di bawah reaktordengan kecepatan dikendalikan untuk menjaga DO di 2 mg / L,yang dimonitor menggunakan DO probe dan meter. Dalam Sistem4 (kontrol untuk Sistem 3), sama Jumlah pupuk yang tidakdiobati adalah dipompa ke penyimpanan kapal setiap hariseperti di Sistem 3. Kondisi kedua pencernaan anaerobik danaerobik reaktor dirancang untuk mengurangi VS pada kotoransusu sekitar 40% berdasarkan penelitian sebelumnya oleh Lidan Zhang [13,14] . The sebenarnya kinerja digesteranaerobik dan aerobik reaktor menunjukkan rata-rata 55% dan

17 | BAYU FIRDAUS 075524221 T u g a s P e n g e n d a l i a n E m i s i G a s B u a n g

43% dari VS pengurangan, masing-masing, dalam pupuk sususelama enam bulan masa operasinya.

Selama periode enam bulan, semua empat sistem diberimakan dari pupuk susu yang sama disiapkan di laboratoriumdari pupuk kandang segar yang dikumpulkan dari susu UC Davispertanian. Pupuk kandang segar dicampur dengan air dandisaring dengan ayakan dengan bukaan 2 mm × 2 mm sampaimenghilangkan partikel besar, diencerkan dengan air untukmencapai konten yang diinginkan TS sebesar 4,4%, danditempatkan ke dalam tangki feed dipertahankan pada 4 ℃. TSsebesar 4,4% ini dipilih karena itu mirip ke tingkat yangdiamati dalam pupuk kandang yang dikumpulkan pada khas susukomersial menggunakan limbah dan skrap flush penghapusansistem

Gambar 1 Eksperimental set-up untuk pupuk pengobatan studisusu

Yang tidak diobati kontrol pupuk dan perlakuan ditempatkandi kapal penyimpanan terpisah 80 L. Semua penyimpanan empatkapal disegel kedap udara, dan memerah diisi dengan gasnitrogen untuk menciptakan lingkungan anaerob mirip denganyang ditemui di kolam limbah anaerobik ditemukan dikomersial pabrik. Selama percobaan, 10 L tas tedlardihubungkan ke bagian atas setiap kapal penyimpanan melaluilubang port untuk mengumpulkan semua gas yang dipancarkandari sampah. Volume gas di kantong dan ruang atas kapalpenyimpanan diukur mingguan. Pada saat pengukuran, duavolume ditambahkan untuk sampai pada fasa gas volumetotal. Gas sampel dianalisis untuk konsentrasi metana,karbon dioksida dan VOC. Massa gas tertentu (misalnya,metana) hadir dalam fasa gas dihitung oleh mengalikan volume

18 | BAYU FIRDAUS 075524221 T u g a s P e n g e n d a l i a n E m i s i G a s B u a n g

fasa gas total oleh konsentrasi bahwa gas (misalnya,metana). Pada saat mengukur volume gas tahap tersebut,volume cairan dalam penyimpanan kapal jugadiukur. Konsentrasi gas individu dalam fase cair ditentukandengan menggunakan's Hukum Henry, dengan asumsi ekuilibriumantara fase cair dan gas. Massa gas (Misalnya, metana) dalamfase cair dihitung oleh mengalikan volume cairan dengankonsentrasi dalam cair. Massa dalam dan gas fase cairditambahkan untuk memberikan total massa gas pada saatpengukuran. Jumlah gas yang dihasilkan selama periodepengukuran dihitung dengan mengurangi massa pada waktupengukuran sebelumnya dari massa pada waktu pengukuran saatini. Massa kumulatif dari suatu gas tertentu pada waktutertentu dinormalisasi berdasarkan jumlah TS dalam pupuksusu yang dimasukkan ke sistem. Kinerja digester anaerobikdan reaktor aerobik dipantau dengan mengambil sampel dariinfluen dan efluen reaktor setiap dua kali minggu selesai,enam bulan dan dianalisis untuk TS, VS dan Direksi 5menggunakan metode standar [15]. Biogas produksi dalamdigester anaerob diukur setiap hari menggunakan meter ujungbasah (http://wettipgasmeter.com/) dan diukur mingguan untukmetana dan hidrogen menggunakan gas kromatograf dilengkapidengan konduktivitas termal detektor.

2.2 Analisis kimiaKarbon dioksida dan metana isi gas Sampel diukur

dengan menggunakan GC / TCD (5890 Hewlett-Packard Company,Wilmington,, DE USA). Sebuah Alltech carbosphere 80/100kolom dengan dimensi '6' × 1 / 8 SS digunakan. Heliumdigunakan sebagai gas pembawa pada laju alir 82 / menitmL. Suhu dari oven, injektor dan detektor adalah 100 º C,120 º C dan 120 º C, masing. Konsentrasi VOC dalam gasSampel adalah ditentukan menggunakan yang Gas Kromatografi /Spektrometri Massa (GC / MS) sistemyang terdiri dari Varian CP-3800 Kromatografi Gas denganbuilt-in konsentrator kinerja tinggi dan sampel Varian IonSaturn 2200 Trap Spektrometer Massa (Varian, Inc, Palo Alto,CA, USA). Sistem ini memenuhi persis persyaratan untuk EPAAS KE-14 dan KE-15Metode[15]. Sampel terjebak pada cryotrap di -130 ℃ dankemudian dibersihkan dengan N ultra murni2 untuk menyiramsetiap sampel yang tersisa di tubing atau valving kecryotrap. Setelah membersihkan, cryotrap itu cepat

19 | BAYU FIRDAUS 075524221 T u g a s P e n g e n d a l i a n E m i s i G a s B u a n g

dipanaskan sampai 200 ℃ untuk mentransfer / desorb isi danretrap mereka fokus pada perangkap cryo pada -130 ℃. The-Fokus perangkap cryo dengan cepat dipanaskan sampai 200 ℃untuk menyuntikkan sampel ke CP-624 CB Pilih kolom kapiler(60 m × 0,32 mm x 1.8 μ m). Helium digunakan sebagai gaspembawa di aliran konstan mode pada 2,0 / menit mL. GC ovenProgram suhu adalah sebagai berikut: suhu awal -30 ℃ tahan5 menit, jalan 5 ℃ / menit hingga 200 º C. GC / MS telahdikalibrasi menggunakan ATAS-15 campuran kalibrasi 62komponen dengan masing-masing sebesar 100 ppb dari ScottSpecialty Gas (Plumsteadville, PA, USA). Cairan sampel yangdiambil dari tangki pakan, limbah dari digester anaerobikdan reaktor aerobik, dan kapal penyimpanan diukur untukpadatan total (TS), volatile padatan (VS) dan padatantersuspensi (SS), kebutuhan oksigen biokimia (BOD 5 ), Danelemen lainnya seperti ditunjukkan pada Tabel 1 menggunakanMetode Standar (APHA, 1995). Semua analisis dilakukan dalamrangkap dan dilaporkan sebagai rata-rata.

3 Hasil dan pembahasan

TS dan BOD 5 dari influent dan limbah dari reaktor(digester anaerobik dan reaktor aerobik) adalah ditunjukkanpada Tabel 1. Hasil analisis lain (Nutrisi dan populasimikroba) disajikan dalam McGarvey et al. [12] . pengobatanaerobik menghasilkan 32% TS pengurangan, sebuah VSpengurangan 43% dan BOD 77% 5 pengurangan pupuksusu. Anaerobik pengobatan menghasilkan pengurangan TS 43%,sebuah VS pengurangan 55% dan sebuah% 87 BOD 5 penurunandibandingkan dengan pupuk feed.Hasil biogas dari digester anaerobik diukur untuk menjadi0,32 L / gVS makan dan kandungan metana rata-rata di biogasadalah 64,3%.

20 | BAYU FIRDAUS 075524221 T u g a s P e n g e n d a l i a n E m i s i G a s B u a n g

Akumulasi produksi metana, karbon dioksida dan VOC dariwaktu ke waktu selama penyimpanan diperlakukan dan pupukkandang tidak diobati ditunjukkan pada Gambar 2, 3, dan 4,masing. Produksi gas dilaporkan sebagai mg gas per grampadatan total di dalam pakan susu dan bahan pupuk dihitungdari jumlah kumulatif total gas dihasilkan selama periodedibagi dengan jumlah total total padatan dalam pupuk kandangyang dimasukkan ke dalam sistem. Data menunjukkan bahwaproduksi gas metana dan karbon dioksida rendah selama 84hari pertama; Namun, setelah titik waktu produksi gasmeningkat cepat. Di antara 51 VOC termasuk dalam standarmetode US EPA KE-15 [16], Berikut senyawa terdeteksi dalamsampel gas yang diambil dari kotoran penyimpanan kapal:aseton, 2-propanol, klorometana, asetaldehida, etil asetat,benzena, toluena, metil iso-butil keton, trans-1 ,3-Dichloropropene, dan 2-Hexanone. Senyawa utama yangdipancarkan adalah aseton, 2-propanol, asetaldehida, benzenadan toluena. Juga banyak lainnya VOC senyawa kemungkinanbesar diproduksi dari pupuk susu, tetapi tidak dianalisisdalam hal ini studi. Pengurangan jumlah gas yang dihasilkan(Metana, karbon dioksida, dan VOC) dari susu penyimpananpupuk setelah 112 dan 180 hari sebagai akibat dari Gambar 2produksi metana kumulatif selama penyimpanandiperlakukan dan diobati pupuk

21 | BAYU FIRDAUS 075524221 T u g a s P e n g e n d a l i a n E m i s i G a s B u a n g

22 | BAYU FIRDAUS 075524221 T u g a s P e n g e n d a l i a n E m i s i G a s B u a n g

Kumulatif produksi karbon dioksida selama penyimpanan dantidak diobati pupuk diperlakukan Gambar 4 kumulatif VOCproduksi selama penyimpanan diperlakukan dan tidak diobatipupuk atau anaerobik pengolahan aerobik, dibandingkan denganmereka kontrol masing-masing (penyimpanan pupuk tidakdiobati), akan ditampilkan pada Tabel 2. Secara umum,perlakuan anaerob lebih efektif daripada pengolahan aerobikuntuk pengurangan metana dan VOC produksi dari penyimpananpupuk. Namun, efek dari perlakuan anaerobik dan aerobikbervariasi dari waktu ke waktu, misalnya, setelah 112 haripenyimpanan limbah anaerobik digester memiliki 63,13% kurangmetana sedangkan penyimpanan limbah digester aerobik telah22,26% peningkatan produksi metana. Yang terakhir adalahtidak diharapkan tetapi dapat dijelaskan oleh fakta bahwaefluen reaktor aerobik VS berisi lebih dari efluen daridigester anaerobik. Hal ini juga masuk akal bahwapelepasan senyawa organik dari pemecahan bakteri aerobik selterbentuk dalam reaktor aerobik memberikan kontribusiterhadap produksi metana. VOC produksi dari anaerobik danaerobik limbah cair penyimpanan adalah 74,05% dan 73,98%lebih rendah, masing-masing, dari yang diproduksi di dalamlumbung pupuk yang tidak diobati (Kontrol). Oleh karena itu,pengurangan signifikan dalam produksi metana dan VOC darikotoran penyimpanan dicapai sebagai hasil dari pengolahananaerobik sebelum penyimpanan. Penurunan yang signifikan VOCproduksi dari penyimpanan pupuk yang dicapai sebagaiHasil pengolahan aerobik, namun peningkatan metana produksidari penyimpanan pupuk diamati terhadap penyimpanan hari180.

Setelah 180 hari, penyimpanan limbah digesteranaerobik terus menunjukkan metana produksi kurangsignifikan (70,31%) dan penyimpanan limbah reaktor aerobikmenunjukkan suatu pengurangan 24,58%, dibandingkan denganpupuk yang tidak diobati penyimpanan (kontrol). Namundemikian, baik digester anaerobik dan penyimpanan limbahreaktor aerobik berpengalaman peningkatan produksi yangsignifikan selama periode VOC 112-180 hari, mengurangidampak dari perawatan. Dibandingkan dengan penyimpanan pupukyang tidak diobati (Kontrol) pencernaan anaerobik, dan

23 | BAYU FIRDAUS 075524221 T u g a s P e n g e n d a l i a n E m i s i G a s B u a n g

perlakuan aerobik menghasilkan 17,27% dan 5,26% pengurangandalamkumulatif produksi VOC di penyimpanan. Peningkatan produksiVOC setelah 112 hari dapat karena dekomposisi senyawaorganik kompleks dalam pupuk susu yang tidak terdegradasidalam perawatan reaktor. Hal ini menunjukkan bahwa adakebutuhan untuk membatasi lama penyimpanan pupuk setelahanaerobik dan aerobik pengobatan jika pengurangan yangsignifikan VOC diinginkan.

4 Kesimpulan

Efek dari perlakuan anaerobik dan aerobik diproduksimetana, karbon dioksida, dan VOC di penyimpanan pupukdievaluasi dalam penelitian ini. Umumnya berbicara, jumlahyang sangat kecil gas diproduksi selama 84 hari pertamapenyimpanan dalam keduanya dirawat dan penyimpanan pupukyang tidak diobati, dengan sebagian besar gas-gas yangdiproduksi setelahnya. Hasil penelitian ini menunjukkandampak positif dan perlakuan aerobik anaerobik padapengurangan gas metana dan VOC, kecuali bahwa aerobik pupukdiperlakukan menunjukkan metana lebih tinggi produksi dalampenyimpanan dari kontrol di bawah jangka waktu 98-140hari. Ini pengaruh perlakuan aerobik pada emisi metana perluditeliti lebih lanjut. Pengaruh pengolahan anaerobik danaerobik bervariasi dengan waktu selama penyimpanan, terutamauntuk VOC. The Hasil penelitian ini menunjukkan bahwa untukmencapai signifikan pengurangan emisi VOC dari aerobik dan

24 | BAYU FIRDAUS 075524221 T u g a s P e n g e n d a l i a n E m i s i G a s B u a n g

diperlakukan anaerobik limbah, waktu penyimpanan untuklimbah di bawah kondisi yang diuji harus dibatasi sekitar100 hari.

Ucapan Terima KasihPenelitian ini didukung sebagian oleh penelitian hibah dariCalifornia Perlindungan Lingkungan Hidup Bada, Negara DewanPengendalian Sumber Daya Air, dan Merced County DepartemenKesehatan Lingkungan, oleh AS Departemen Pertanian,PertanianResearch Service, Program Nasional 108, dan oleh StasiunPercobaan Pertanian di Universitas California, Davis.

[Referensi]1. Zhang RH, Dugba PN, Bundy D S. Laboratorium studi aerasi

permukaan lagun anaerobik untuk kontrol bau pupukkandang babi. Transaksi dari ASAE, 1997; 40 (1): 185 -190.

2. Westerman PW, Zhang R H.-cair pemisahan Mampat kotoranhewan untuk kontrol bau dan manajemen hara. TeknikTerapan Pertanian, 1997; 13 (5): 657 - 664.

3. FW Welsh, Schudelte DD, Kroeker EJ, H Lapp M. efekpencernaan anaerob pada bau kotoran babi. Kanada TeknikPertanian, 1977; 19:122-126.

4. Pain BF, TH Misselbrook, CR Clarkson, Rees Y J. Bau danemisi amonia setelah penyebaran anaerobik-dicerna buburbabi di padang rumput. Biologis Limbah, 1990; 34 (3):259-267.

5. Vetter H, Steffens G, Schropel R. Pengaruh pengolahanyang berbeda metode untuk lumpur pada pupuk yang nilaipada padang rumput. Dalam: Prosiding InternasionalSimposium Federasi Grassland Eropa Kotoran Hewan diPadang Rumput dan Tanaman Fodder - Perlakuan pupuk atauLimbah. Wageningen, The, September Belanda 1987, hal 73-86. (G. Van Der Meer, Unwin RJ, TA Van Dijk, dan GCEnnik, eds.), Penerbit Martinus Nijhoff, Boston, MA,USA. ISBN: 90-247-3568-8.

6. Zhang RH, Tao J, Dugba P N. Evaluasi dua tahap anaerobiksistem reaktor sequencing batch untuk hewan pengolahanair limbah. Transaksi dari ASAE, 2001; 43 (6): 1795-1801.

7. Mempermanis JM, L Jacobson, Heber AJ, Schmidt, Lorimor DJ, Westerman P, et al. Bau mitigasi untuk berkonsentrasi

25 | BAYU FIRDAUS 075524221 T u g a s P e n g e n d a l i a n E m i s i G a s B u a n g

hewan makanan operasi: Putih Kertas danrekomendasi. 2001. White Paper disiapkan untuk PusatNasional untuk dan Limbah Kotoran Hewan Manajemen, NorthCarolina State University, Raleigh, NC, USA.

8. Shaw SL, FM Mitloehner, WA Jackson, DePeters E,Holzinger R, Fadel J, et al. Senyawa organik Volatileemisi dari sapi perah dan limbah mereka sebagaimanadiukur dengan reaksi transfer proton - spektrometrimassa. Lingkungan Hidup, Sains dan Teknologi, 2006; 41:1310-1316.

9. Hobbs PJ, Webb J, TT Mottram, B Grant, Misselbrook T.Emisi senyawa organik yang mudah menguap yang berasaldari Inggris peternakan. Jurnal Ilmu Pangan danPertanian, 2004; 84: 1414-1420.

10. NE Rabaud, E Ebeler, LL Ashbaugh, R Flocchini G.Karakterisasi dan kuantifikasi harum dan harum non-senyawa organik yang mudah menguap dekat komersial susudi California. Atmosfer Lingkungan, 2003; 37: 933-940.

11. Sunesson A, Gullberg J, Blomquist G. Airborne kimiasenyawa pada peternakan susu. Jurnal LingkunganPemantauan, 2001; 3: 210-216.

12. McGarvey J, WG Miller, Zhang R, Y Ma, Mitloehner F M.Dinamika populasi bakteri dalam limbah susu selamaaerobik dan anaerobik perawatan dan penyimpananselanjutnya. Mikrobiologi Terapan Lingkungan, 2007; 73:193 - 202.

13. Li X, Zhang R H. aerobik pengolahan limbah susu dengansistem reaktor sequencing batch. Bioproses RekayasaBiosystem, 2001; 25 (2002): 103-109.

14. Li X, Zhang R H. Terpadu anaerobik dan aerobikpengolahan limbah susu dengan sequencing batchreaktor. Transaksi dari ASAE, 2002; 47 (1): 235 - 241.

15. APHA. Standar metode untuk pemeriksaan air dan airlimbah. 18 ed. Washington DC: Amerika Asosiasi KesehatanMasyarakat. 1998.

16. US EPA. Kompendium Metode KE-15. Penentuan Senyawaorganik volatile (VOC) di Udara Dikumpulkan dalamDisiapkan tabung khusus dan Analisa dengan GasKromatografi / Massa Spectrosmetry (GC / MS). EPA/625/R-96/010b. Cincinnati, OH: Pusat Informasi PenelitianLingkungan, Kantor Penelitian dan Pembangunan, BadanPerlindungan Lingkungan AS. 1999

26 | BAYU FIRDAUS 075524221 T u g a s P e n g e n d a l i a n E m i s i G a s B u a n g

27 | BAYU FIRDAUS 075524221 T u g a s P e n g e n d a l i a n E m i s i G a s B u a n g