Effect of Macrophomina phaseolina (Tassi) Goid. on Grain Yield of Common Beans (Phaseolus vulgaris...

9
Available in: http://www.redalyc.org/articulo.oa?id=61221211 Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Sistema de Información Científica Netzahualcóyotl Mayek Pérez, Cándido López Castañeda, Ernesto López Salinas, Javier Cumpián Gutiérrez, Ignacio Candelario Joaquín Torres, José Saúl Padilla Ramírez, Jorge Alberto Acosta Gallegos Effect of Macrophomina phaseolina (Tassi) Goid. on Grain Yield of Common Beans (Phaseolus vulgaris L.) and its Relationship with Yield Stability Parameters Revista Mexicana de Fitopatología, vol. 21, núm. 2, julio-diciembre, 2003, pp. 168-175, Sociedad Mexicana de Fitopatología, A.C. México How to cite Complete issue More information about this article Journal's homepage Revista Mexicana de Fitopatología, ISSN (Printed Version): 0185-3309 [email protected] Sociedad Mexicana de Fitopatología, A.C. México www.redalyc.org Non-Profit Academic Project, developed under the Open Acces Initiative

Transcript of Effect of Macrophomina phaseolina (Tassi) Goid. on Grain Yield of Common Beans (Phaseolus vulgaris...

Available in: http://www.redalyc.org/articulo.oa?id=61221211

Red de Revistas Científicas de América Latina, el Caribe, España y Portugal

Sistema de Información Científica

Netzahualcóyotl Mayek Pérez, Cándido López Castañeda, Ernesto López Salinas, Javier Cumpián Gutiérrez,

Ignacio Candelario Joaquín Torres, José Saúl Padilla Ramírez, Jorge Alberto Acosta Gallegos

Effect of Macrophomina phaseolina (Tassi) Goid. on Grain Yield of Common Beans (Phaseolus vulgaris L.) and

its Relationship with Yield Stability Parameters

Revista Mexicana de Fitopatología, vol. 21, núm. 2, julio-diciembre, 2003, pp. 168-175,

Sociedad Mexicana de Fitopatología, A.C.

México

How to cite Complete issue More information about this article Journal's homepage

Revista Mexicana de Fitopatología,

ISSN (Printed Version): 0185-3309

[email protected]

Sociedad Mexicana de Fitopatología, A.C.

México

www.redalyc.orgNon-Profit Academic Project, developed under the Open Acces Initiative

Effect of Macrophomina phaseolina (Tassi) Goid. on Grain Yieldof Common Beans (Phaseolus vulgaris L.) and its Relationship

with Yield Stability ParametersNetzahualcóyotl Mayek-Pérez, Universidad Autónoma de Aguascalientes, Depto. deQuímica, Centro de Ciencias Básicas, Universidad 940, Aguascalientes, Aguascalientes,México CP 20100; Cándido López-Castañeda, Colegio de Postgraduados, km 36.5 Carr.México-Texcoco, Montecillo, Edo. de México CP 56230; Ernesto López-Salinas, JavierCumpián-Gutiérrez, Ignacio Candelario Joaquín-Torres, José Saúl Padilla-Ramírez,and Jorge Alberto Acosta-Gallegos, Instituto Nacional de Investigaciones Forestales,Agrícolas y Pecuarias (INIFAP), Programa de Frijol, Apdo. Postal 10, Chapingo, Edo. deMéxico CP 56230. Correspondencia: [email protected]

Mayek-Pérez, N., López-Castañeda, C., López-Salinas, E.,Cumpián-Gutiérrez, J., Joaquín-Torres, I.C., Padilla-Ramírez,J.S., and Acosta-Gallegos, J.A. 2003. Effect ofMacrophomina phaseolina (Tassi) Goid. on grain yield ofcommon beans (Phaseolus vulgaris L.) and its relationshipwith yield stability parameters. Revista Mexicana deFitopatología 21:168-175.Abstract. The reaction of common bean germplasm tocharcoal rot under field conditions in Mexico was evaluatedto determine the relationship between the susceptibility indexand yield stability parameters, and to suggest an alternativestrategy for evaluation and selection of resistant germplasm.Sixty-four genotypes with contrasting reactions toMacrophomina phaseolina were sown in Isla, Cotaxtla, andIguala, Mexico in five experiments on naturally and artificiallyinfested soils. The lowest seed yield and the highest charcoalrot intensity index were obtained in Iguala in 1998, andCotaxtla in 1997-1998, where artificial soil inoculationsreduced seed yield more than 60% compared to naturallyinfested soils. Charcoal rot susceptibility index wassignificantly associated to seed yield (-0.47*) particularly atvegetative stage, whereas charcoal rot severity was not.Resistant germplasm with high seed yield belonged toMesoamerican race, while susceptibility was associatedmainly to Jalisco and Durango races. The association betweenreaction to charcoal rot and yield stability under fieldconditions was unclear, since only 35% of germplasmpreclassified as resistant under greenhouse conditions showedyield stability, while 60 and 45% of germplasm pre-classifiedas intermediate or susceptible exhibited yield stability,respectively. Results indicate that charcoal rot susceptibilityindex based on seed yield could be useful as a fast, nondestructive and reliable screening strategy of resistantgermplasm under field conditions.

Additional keywords: Charcoal rot, charcoal rot intensityindex, charcoal rot susceptibility index, yield stability.

Resumen. Se evaluó la reacción de germoplasma de frijolcomún a la pudrición carbonosa en condiciones de campo enMéxico, para determinar la relación entre el índice desusceptibilidad y parámetros de estabilidad del rendimiento,y para sugerir una estrategia alternativa para la evaluación yselección de germoplasma resistente. Sesenta y cuatrogenotipos de frijol común con reacción contrastante aMacrophomina phaseolina se sembraron en Isla, Cotaxtla eIguala, México, en cinco experimentos en suelos infestadosen forma natural y artificial. El menor rendimiento de semillay el mayor índice de intensidad de la pudrición carbonosa seobtuvo en Iguala en 1998 y en Cotaxtla en 1997-1998, dondela inoculación artificial del suelo redujo el rendimiento desemilla en más del 60% en comparación con suelos infestadosen forma natural. El índice de susceptibilidad a la pudricióncarbonosa estuvo asociado significativamente al rendimientode semilla (-0.47*), particularmente en la fase vegetativa delcultivo, pero no a la severidad de la pudrición carbonosa. Elgermoplasma resistente y con altos rendimientos de semillacorrespondió a la raza Mesoamericana, mientras que lasusceptibilidad se asoció principalmente a germoplasma delas razas Jalisco y Durango. Se observó una relación pococlara entre la reacción a la pudrición carbonosa y la estabilidaddel rendimiento en condiciones de campo, debido a que sóloel 35% del germoplasma que había sido pre-clasificado comoresistente en invernadero mostró estabilidad del rendimiento,mientras que el 60 y el 45% del germoplasma pre-clasificadocomo intermedio o susceptible exhibió estabilidad delrendimiento, respectivamente. Los resultados indicaron queel índice de susceptibilidad basado en el rendimiento desemilla podría ser una estrategia rápida, no destructiva y

(Received: July 4, 2002 Accepted: November 4, 2002)

168 / Volumen 21, Número 2, 2003

confiable en condiciones de campo, para la selección degermoplasma resistente.

Palabras clave adicionales: Pudrición carbonosa, índice deintensidad de la pudrición carbonosa, índice desusceptibilidad a la pudrición carbonosa, estabilidad delrendimiento.

The fungus Macrophomina phaseolina (Tassi) Goid. causescharcoal rot in a broad range of hosts in variable climates(Abawi and Pastor-Corrales, 1990). In Mexico, it causessignificant yield losses in common bean (Díaz, 1992), sincethe fungus attacks under drought and high temperature stressesin arid (Díaz, 1992; Mayek-Pérez et al., 1995) or tropicalregions (Mayek-Pérez et al., 1997). M. phaseolina causesboth pre-emergence and post-emergence seedling death, andreduces adult plant vigor and grain yield. Typical symptomsinclude dark and irregular lesions in cotyledons, wilting,chlorosis, early defoliation, and plant death. Later infectionscause greyish areas in stems, where microsclerotia andpycnidia are produced (Abawi and Pastor-Corrales, 1990).Genetic resistance is the most important strategy for control,since it is a cheap and easy measure to be used by mexicancommon bean growers, who frequently cultivate their cropusing low inputs. The idea of developing common beancultivars that produce high yields and show resistance to biotic(diseases, insects, weeds) and abiotic (drought, salinity, lowfertility soils) stresses over a broad range of environments isattractive to mexican common bean breeders (Acosta-Gallegos, 1998). Despite that resistance to charcoal rot hasbeen detected in Phaseolus germplasm (Pastor-Corrales andAbawi, 1988; Songa et al., 1997; Miklas et al., 1998) underfield and controlled conditions, we suggest that specialattention must be given to the evaluation and selection ofcommon bean genotypes that show resistance to fungalpathogens and adaptation to variable environments. Thus, toimprove screening methodologies, it is important to establishappropriate criteria for quick and efficient selection ofresistant germplasm. Reliable criteria to evaluate the reactionto charcoal rot in common bean germplasm, such aspercentage of pre-emergence and post-emergence seedlingdeath, and charcoal rot severity ratings at vegetative andreproductive stages are commonly used under fieldevaluations (Pastor-Corrales and Abawi, 1988; Songa et al.,1997; Mayek-Pérez et al., 1997); however, thesemethodologies are destructive and could be not associated tograin yield. We suggest that practical criteria to evaluate andselect resistant germplasm could be based on selection indexesthat involve grain yield. In order to be able to use plant traitsand variable climate patterns in that selection, their previousvalidation is necessary. The objectives of this investigationwere: 1) To measure the reaction of common bean germplasmto charcoal rot under field conditions in Mexico, and 2) toinvestigate the relationship between charcoal rot susceptibilityindex and yield stability parameters, in order to suggest an

alternative strategy for evaluation and selection of resistantgermplasm to charcoal rot based on yield selection indexes.

MATERIALS AND METHODSLocations and germplasm used. Five experiments wereestablished in three locations of Mexico: Isla, Veracruz (18o06'N, 95o32' W, 65 masl), Cotaxtla, Veracruz (18o44' N, 95o58'W, 16 masl), and Iguala, Guerrero (17o52' N, 98o45' W, 760masl). Sixty-four common bean genotypes were selected fromprevious studies conducted under greenhouse conditions(Mayek-Pérez et al., 1996). The germplasm was classified inthree groups that have shown resistance, intermediate reactionor susceptibility. Four controls were included, two resistantgenotypes to charcoal rot (BAT 477 and TLP 19), and twosusceptible (Rio Tibagi and Pinto UI-114).Experimental design and variables. Germplasm wasrandomized in 8 x 8 lattice designs with six replications. Threereplications were infested using sorghum or rice seeds (5 gby row 3 m long; approximately 0.15 m-2) colonized byvirulent local isolates of M. phaseolina (Abawi and Pastor-Corrales, 1990), and three replications were established undernaturally infested soil. The experimental unit consisted ofone row 3 m long and spaced 0.7 m, where 30 seeds weresown. Charcoal rot severity was recorded 28 and 56 daysafter sowing (das) (vegetative and reproductive stages,respectively), using the scale described by Abawi and Pastor-Corrales (1990), where: 1 = No visible symptoms, and 9 =more than 75% of stem or root tissues are infected. Weconsidered scores 1-3 as a resistance reaction, and 4-9 as asusceptible reaction. Days to flowering and maturity wererecorded in each experimental unit. Grain yield (g m-2) wasobtained from the harvest of all plants in each plot, expressedin kg ha-1. The effect of charcoal rot on grain yield in eachgenotype was estimated by using three different indexes basedon grain yield of germplasm under infested or noninfestedconditions. The M. phaseolina intensity index (MpII) wascalculated from Fischer and Maurer (1978): MpII = 1-Yi/Yc; where: Yi = Average yield under inoculated conditions,and Yc = Average yield under unninoculated conditions. Then,M. phaseolina susceptibility index (MpSI) of each cultivarwas calculated by using an equation adapted from Fischerand Maurer (1978): MpSIi = (1-Yii/Yci)/MpII; where: MpSIi= Charcoal rot susceptibility index of the i-th genotype, Yii =Average yield in inoculated condition for the i-th genotype,and Yci = Average yield under uninoculated condition for thei-th genotype. The second index was the geometric mean(Samper and Adams, 1985), calculated by the followingequation: GMi = (Yii*Yci)

1/2; where GMi = Geometric meanof the i-th genotype, and Yii and Yci is the yield of the i-thgenotype under inoculated and uninoculated condition,respectively. The third index was the relative efficiency index(REI), described by Graham (1984), was calculated usingthe following equation, whose components have beendescribed: REIi = (Yii/Yi)*(Yci/Yc). Pearson’s correlationcoefficients between grain yield and charcoal rot severity,

Revista Mexicana de FITOPATOLOGIA/ 169

indexes of damage and phenotypical data were calculatedusing SAS software version 6.12 for Windows (SAS Institute,Cary, NC, USA). Correlation coefficients between charcoalrot severity and yield stability with charcoal rot indexes wereperformed. Finally, correlation coefficients between yieldstability estimates and overall means of agronomic andcharcoal rot data were calculated. An analysis of grain yieldstability was performed (Eberhart and Russell, 1966).Inoculation treatments and genotype by environmentinteraction sum of squares for grain yield were partitionedinto heterogeneity of response and pooled deviations fromlinear effects. Estimates of linear response over environments(bi) and deviations from response (Sdi

2) were calculated.Experimental error was used to test treatment effects. Pooleddeviation mean squares for each treatment were used to testcorresponding heterogeneity of response. Linear responseover environments and deviations from response wereconsidered as indexes of stability (Ortega-Alcalá and Magaña-Torres, 1992).

RESULTS AND DISCUSSIONAt all locations, artificial soil inoculations reduced seed yieldmore than 60% compared to naturally infested soil. At Isla,the highest average seed yield and the lowest charcoal rotintensity indexes (0.27 and 0.31) were observed (Table 1).Pastor-Corrales and Abawi (1988) and Songa et al. (1997)found that artificial M. phaseolina infestation increasedcharcoal rot severity; however, Pastor-Corrales and Abawi(1988) suggested that artificial inoculations could fail due tothe interaction between the pathogen and soil microbiota, hostand environment, and escapes could be frequent. Thus, Smithand Carvil (1997) suggested periodical monitoring ofpotential locations for germplasm screening to determine ifother root rot pathogens could influence the reaction tocharcoal rot. The lowest average seed yield and the highestcharcoal rot intensity indexes were detected in Iguala in 1998,and Cotaxtla in 1997-1998 (Table 2). Analysis of variancepartitioned in genotype x environment interaction showedsignificant differences among genotypes, environments,environment lineal effects, and genotype x environment linealeffects (Table 3). Results indicated that environment played

an important role on the reaction of germplasm to charcoalrot, since most of the reactions were closely associated tospecific pathogenic conditions of the disease at each location.Most of the resistant genotypes and which had the highestaverage seed yield, belonged to the Mesoamerican racedeveloped in climatic conditions similar to the locationsincluded in this work. On the other hand, Jalisco and Durangogermplasm was susceptible to charcoal rot, showing lowadaptation to each location because it was developed fortemperate and semi-arid climate conditions; Peru and NuevaGranada genotypes had poor adaptation to the test locations,since the former was developed in climatic conditions of theCentral Plateau and Northern Mexico, and the latter is adaptedto climatic conditions from South America. There were somecases in which the reaction depended upon adaptation tospecific environmental conditions; for example, genotypeslike G2333 and G13745 showed low yield and late biologicalcycle because of their poor adaptation to tropical conditionsprevalent in Veracruz. Nevertheless, G2333 was resistant toa large number of Colletotrichum lindemuthianum isolates(González et al., 1998) from Mexico. Germplasm includedin this work was previously selected from evaluations carriedout under greenhouse conditions. These experimentsexhibited unclear association between race, growth habit orgenetic status to charcoal rot reaction. Although similarreactions were observed in greenhouse and field experiments,no clear relationship was determined between reactions undercontrolled and field conditions. Under both conditions,resistance to charcoal rot was more frequent in genotypesfrom the Mesoamerican race, with growth habits II and III,bred lines and cultivars. Susceptibility to charcoal rot wasmore frequent in genotypes from Jalisco and Durango races,with growth habits III and IV, bred cultivars, and landraces.This results suggest the presence of two different componentsof resistance, the first working at the seedling stage(greenhouse evaluations) and the second operating duringadult plant (field conditions) (Miklas et al., 1998), althoughdifferences between greenhouse and field evaluations couldbe influenced by variation of environmental conditions ineach location, that could promote specific adaptation ofgermplasm. Miklas et al. (1998) found an unclear association

Table 1. Mean grain yield from 64 common bean (Phaseolus vulgaris) cultivars undernatural and artificial field inoculation with Macrophomina phaseolina in three locationsin Mexico. Grain yield (kg ha-1) LSD Reduction

Isla, 1996-1997 1867 2549 2208 27Iguala, 1997 459 811 635 43Isla, 1997-1998 1028 1460 1244 31Cotaxtla, 1997-1998 249 665 457 63Iguala, 1998 182 528 355 66

Locality Inoculated Uninoculated (p = 0.05) Inoculated/ uninoculated(%)

170 / Volumen 21, Número 2, 2003

between reaction to charcoal rot under greenhouse and fieldconditions. Despite that greenhouse evaluations providefavourable conditions for charcoal rot development, highinoculum levels, and high and uniform charcoal rot selectionpressure, field evaluations are needed to evaluate theadaptation of any genotype to specific climatic condition,and its reaction to pathogenic variability of the fungus fromeach location. Thus, we suggest that combined evaluationsshould be conducted for a more efficient selection strategy.Germplasm like TLP 17, G 5150, TLP 22, BAT 477, TLP

19, and Carioca, with an average seed yield greater than 1ton ha-1 belonged to the Mesoamerican race; GarbancilloSerdán, Amarillo 169, Negro Querétaro, GarbancilloSupremo, and Bayo Mecentral, with the lowest average seedyield (300-800 kg ha-1) belonged to the Jalisco race; and BayoZacatecas, Bayo Madero, Satevó, and Pinto UI-114, belongedto the Durango race (300-850 kg ha-1). However, our resultswere contradictory because genotypes with the highest seedyield were classified as 2 or 3 (not stable and with the bestbehaviour under favourable or unfavourable environments,respectively), while genotypes with low seed yield wereclassified as stable genotypes with the best response tounfavourable environments. Yield stability analysis confirmedthe independence between reactions to charcoal rot and yieldstability under controlled or field conditions. Only 35% ofthe resistant germplasm under greenhouse conditions showedyield stability, while 60 and 45% of intermediate andsusceptible germplasm, exhibited yield stability under fieldconditions, respectively. Thirty percent of genotypes fromresistant and susceptible germplasm under controlledconditions, had the best seed yield under unfavourableenvironments (Table 4). Charcoal rot severity was negativelyassociated to seed yield, particularly during the vegetativestage. The susceptibility index was negatively associated to

Table 2. Effect of charcoal rot (Macrophomina phaseolina) on grain yield of common bean (Phaseolusvulgaris) genotypes, and phenotypic correlation of yield with other traits at each experiment based ontreatment means, in three locations in Mexico. Locality Grain yield (kg ha-1) MpIIu Phenotypic correlation with yield

Isla 1996-1997 2208 0.27 -0.49** -0.31**Iguala 1997 635 0.43 -0.49* -0.39*Isla 1997-1998 1244 0.31 -0.49** -0.12NSCotaxtla 1997-1998 457 0.63 -0.38** -0.30**Iguala 1998 355 0.66 -0.40** -0.27**

Isla 1996-1997 2208 0.27 -0.54** 0.97** 0.95**Iguala 1997 635 0.43 -0.66** 0.99** 0.95**Isla 1997-1998 1244 0.31 -0.36** 0.98** 0.96**Cotaxtla 1997-1998 457 0.63 -0.48** 0.92** 0.90**Iguala 1998 355 0.66 -0.30** 0.91** 0.88**

Isla 1996-1997 2208 0.27 -0.11NS -0.12NSIguala 1997 635 0.43 -0.08NS -0.09NSIsla 1997-1998 1244 0.31 0.21* -0.02NSCotaxtla 1997-1998 457 0.63 -0.06NS 0.08NSIguala 1998 355 0.66 -0.24* -0.18NSLSD (P = 0.05) 122 0.08

uMpII = Macrophomina phaseolina intensity index.vSEV1 = Charcoal rot severity 28 days after sowing.wSEV2 = Charcoal rot severity 56 days after sowing.xMpSI = Macrophomina phaseolina susceptibility index.yYGM = Yield geometric mean.zREI = Relative efficiency index.

Days to flowering Days to maturity

MpSIx YGMy REIz

SEV1v SEV2w

Table 3. Mean squares for the analysis of variance for grain yield of64 common bean (Phaseolus vulgaris) genotypes, partitioninggenotype by environment interaction into heterogeneity of response,and pooled deviations from response.

Genotype 63 5171**Environment 576 5686**Environment (linear) 1 2749372**Genotype x Environment (linear) 63 5031**Pooled deviation 512 408Error 1260 1417Total 639

**Significant at the 0.01 probability level.

Source Df Mean square

Revista Mexicana de FITOPATOLOGIA/ 171

Table 4. Characteristics of 64 common bean (Phaseolus vulgaris) genotypes, grain yield, and stabilitydata for experiments conducted at three localities in Mexico. Cultivar Racet Growth Genetic Grain yield biw Sdi2x Classificationy

habitu statusv kg ha-1

Resistantz

Negro INIFAP M II VM 987 1.3 1102 3BAT 1467 M III LM 830 1.2 486 1G 1323 M III VC 757 1.4 1284 3G 19428 P III LM 560 1.0 395 1Negro Perla M II VM 192 0.3 1368 2Bayo Zacatecas D III VM 342 0.7 1197 2Bayo Blanco Serdán J III VC 425 0.8 1366 2Garbancillo Serdán J III VC 387 0.8 1246 2Manzano J III VC 528 0.9 1001 1Amarillo 169 J III VM 318 0.4 1330 2Negro Querétaro J III VC 322 0.6 1377 2MUS 133 M II LM 765 1.0 1215 1TLP 22 M II LM 1057 1.7 1150 3TLP 17 M II LM 1208 1.9 796 3Jamapa M II VM 731 1.2 1278 3Apetito J IV VC 427 0.9 1154 1G 1937R M III VC 701 1.1 440 1G 4523 NG II VC 699 1.2 1291 3Negro Veracruz M II VM 983 1.6 919 3Negro Tacaná M II VM 950 1.1 826 1IntermediateFlor de Mayo M38 J III VM 785 1.1 962 1G 17717 P III LM 657 1.1 753 1G 5150 M III VC 1100 1.3 861 3Tlaxcala 475 J III VC 458 1.0 1203 1Bayo Durango D III VM 497 0.6 548 2TLP 24 M II LM 948 1.8 693 3BAT 76 M II LM 593 0.8 993 2TLP 16 M II LM 820 1.2 1286 3TLP 21 M II LM 831 1.2 781 1TLP 20 M II LM 732 0.9 1150 1TLP 25 M II LM 797 1.1 800 1Negro 8025 M III VM 885 1.1 1240 1Negro Huasteco 81 M II VM 875 1.2 530 1Bayo Madero D III VM 442 0.7 1229 2G 13746 J IV VC 464 0.8 1198 2G 3593 M III VC 620 1.1 1281 1G 4691 P III VC 620 1.4 1097 3Negro CEVAMEX D III VM 838 1.2 1020 1PT 91084 D III LM 740 1.0 1196 1SEQ 12 M III LM 790 0.7 549 1SusceptibleBayo Mecentral J III VM 261 0.3 1264 2Azufrado Tapatío J III VM 494 0.3 833 2MAM 45 J III LM 732 1.2 1101 1ARA 18 J II VM 605 0.7 429 1Pinto Villa D III VM 617 1.2 1222 3Flor de Junio Marcela J II VM 739 1.2 1166 3G 8259 M III VC 882 1.4 1301 3G 4698 NG III VC 812 1.1 1102 1California Small White M III VM 457 0.7 1194 2Carioca M II VM 1022 1.0 732 1Puebla 152 J II VC 550 1.3 962 3

172 / Volumen 21, Número 2, 2003

Rigoberto Rosales-Serna.

LITERATURE CITEDAbawi, G.S., and Pastor-Corrales, M.A. 1990. Root Rots of

Beans in Latin America and Africa: Diagnosis, ResearchMethodologies, and Management Strategies. CIAT. Cali,Colombia. 114 p.

Acosta-Gallegos, J.A. 1998. Mejoramiento genético del frijolen México. En: R. Lépiz-Ildefonso (ed.). Memoria delTaller Internacional de Mejoramiento Genético de Frijol

Negro Mesoamericano. PROFRIJOL. Veracruz, México.pp. 5-12.

Díaz, F.A. 1992. Evaluación de genotipos de frijol e influenciade la temperatura con relación a la pudrición carbonosa.Agricultura Técnica en México 18:3-10.

Eberhart, S.A., and Russell, W.A. 1966. Stability parametersfor comparing varieties. Crop Science 6:36-40.

Fischer, R.A., and Maurer, R. 1978. Drought resistance inspring wheat cultivars. I: Grain yield responses. AustralianJournal of Agricultural Research 29:897-912.

Gonzalez, M., Rodríguez, R., Zavala, M.E., Jacobo, J.L.,Hernández, F., Acosta, J., Martínez, O., and Simpson, J.1998. Characterization of Mexican isolates ofColletotrichum lindemuthianum by using differentialcultivars and molecular markers. Phytopathology 88: 292-299.

Graham, R.D. 1984. Breeding for nutritional characteristicsin cereals. Advances in Plant Nutrition 1:57-102.

Mayek Pérez, N., Pedroza-Flores, J.A., Villarreal-García,L.A. y Valdés-Lozano, C.G.S. 1995. Factores genéticos yambientales relacionados con la dinámica temporal yefecto de las enfermedades en frijol (Phaseolus vulgarisL.) en Marín, Nuevo León, México. Revista Mexicana deFitopatología 13:1-9.

Mayek-Pérez, N., López-Castañeda, C., Acosta-Gallegos,J.A., and Cumpeán-Gutiérrez, J. 1996. Reaction to

Table 5. Phenotypic correlation of charcoal rot indexes with disease severity ratingsand stability parameters for 64 common bean (Phaseolus vulgaris) genotypes ineach experiment in three locations of Mexico. Locality SEV1w SEV2x bi

y Sdi2z

Macrophomina phaseolina susceptibility indexIsla 1996-1997 0.57** 0.17 -0.40** -0.01Iguala 1997 0.44** 0.20 -0.18 0.12Isla 1997-1998 0.53** 0.04 -0.16 -0.14Cotaxtla 1997-1998 0.47** 0.12 -0.04 -0.15Iguala 1998 -0.42** -0.18 0.12 -0.11Yield geometric meanIsla 1996-1997 -0.35** -0.23 0.81** -0.12Iguala 1997 -0.30* -0.15 0.05 -0.35*Isla 1997-1998 -0.33* -0.10 0.44** -0.14Cotaxtla 1997-1998 -0.24* -0.25* 0.14 -0.04Iguala 1998 -0.21* -0.18 0.10 -0.16Relative efficiency indexIsla 1996-1997 -0.52** -0.24* 0.79** -0.08Iguala 1997 -0.30* -0.16 0.01 -0.42**Isla 1997-1998 -0.50** -0.12 0.48** -0.15Cotaxtla 1997-1998 -0.50** -0.22* 0.03 -0.13Iguala 1998 -0.32* -0.12 0.04 -0.12

wSEV1 = Charcoal rot severity 28 days after sowing.xSEV2 = Charcoal rot severity 56 days after sowing.ybi = Regression coefficient for treatment-environment yield means regressed onenvironment means (Ortega-Alcalá and Magaña-Torres, 1992).zSdi

2 = Deviation from response (Ortega-Alcalá and Magaña-Torres, 1992).

Table 6. Correlation values (r) among stability estimates and overallmeans of agronomic and charcoal rot data of 64 common bean(Phaseolus vulgaris) genotypes in three locations of Mexico. Sdi

2w Grain SEV1x SEV2y Days to Days to yield flowering maturitybi

z -0.22* 0.30* -0.26* -0.18 0.04 0.05

Sdi2 -0.16 0.17 0.09 0.08 0.08wSdi

2 = Deviation from response (Ortega-Alcalá and Magaña-Torres,1992).xSEV1 = Charcoal rot severity 28 days after sowing.ySEV2 = Charcoal rot severity 56 days after sowing.zbi = Regression coefficient for treatment-environment yield meansregressed on environment means (Ortega-Alcalá and Magaña-Torres,1992).

174 / Volumen 21, Número 2, 2003

Macrophomina phaseolina in common beans (Phaseolusvulgaris L.). In: J.P.R. Martínez-Soriano (comp.).Proceedings XXXVI Annual Meeting of the AmericanPhytopathological Society-Caribbean Division.Guadalajara, México. Abstr. 010.

Mayek-Pérez, N., Acosta-Gallegos, J.A., López-Castañeda,C., López-Salinas, E., Cumpeán-Gutiérrez, J., and Acosta-Díaz, E. 1997. Resistance to Macrophomina phaseolinain common beans under field conditions. BeanImprovement Cooperative 40:99-100.

Miklas, P.N., Schwartz, H.F., Salgado, M.O., Nina, R., andBeaver, J.S. 1998. Reaction of selected tepary bean to ashystem blight and Fusarium wilt. HortScience 33:136-139.

Ortega-Alcalá, J. y Magaña-Torres, O.S. 1992. Parámetrosde estabilidad. Programa de análisis. Versión 2.1. INIFAP-Región Centro. Chapingo, México.

Pastor-Corrales, M.A., and Abawi, G.S. 1988. Reactions ofselected bean accessions to infection by Macrophominaphaseolina. Plant Disease 72:39-41.

Samper, C., and Adams, M.W. 1985. Geometric mean of stress

and control yield as a selection criterion for droughttolerance. Bean Improvement Cooperative 28:53-54.

Singh, S.P. 1982. A key for identification of different growthhabits of Phaseolus vulgaris L. Bean ImprovementCooperative 25:92-95.

Singh, S.P., Gepts, P., and Debouck, D.G. 1991. Races ofcommon bean (Phaseolus vulgaris, Fabaceae). EconomicBotany 45:379-396.

Smith, G.S., and Carvil, O.N. 1997. Field screening ofcommercial and experimental soybean cultivars for theirreaction to Macrophomina phaseolina. Plant Disease81:363-368.

Songa, W., Hillocks, J., Mwango’mbe, A.W., Buruchara, R.,and Ronno, W.K. 1997. Screening common beanaccessions for resistance to charcoal rot (Macrophominaphaseolina) in Eastern Kenya. Experimental Agriculture33:459-468.

Revista Mexicana de FITOPATOLOGIA/ 175