EB70 - HDR-60 Base Board- Revision B User's Guide - Lattice ...

34
April 2014 Revision: EB70_01.2 HDR-60 Base Board – Revision B User’s Guide

Transcript of EB70 - HDR-60 Base Board- Revision B User's Guide - Lattice ...

April 2014Revision: EB70_01.2

HDR-60 Base Board – Revision B

User’s Guide

2

HDR-60 Base Board – Revision B

IntroductionThe HDR-60 Base Board provides a low-cost evaluation and demonstration platform to evaluate, test and debug image signal processing user designs or IP, including High Dynamic Range (HDR) cores targeted for the LatticeECP3™-70 FPGA. The HDR-60 Base Board and NanoVesta Head Board have been designed to work together as part of the HDR-60 Video Camera Development Kit. Connections are available on the HDR-60 Base Board for the A-1000 HDRI sensor from Aptina, scalable to future sensors from Aptina, and adaptable to sensors from other manufacturers by redesigning the add-on NanoVesta Head Board. The HDR-60 Base Board features a LatticeECP3-70 FPGA in the 484-ball fpBGA package. The LatticeECP3 I/Os are connected to a rich variety of both generic and application-specific interfaces described later in this document.

Important: This document (including the schematics in Appendix A) describes the HDR-60 Base Board marked as Revision B. This marking can be seen on the silkscreen of the printed circuit board, under the Lattice Semiconduc-tor logo. The following are the changes from Revision A to Revision B.

• Added R136 and R137

• Installed R130 and R131

• Moved DVI_DDC_SCL signal to U2 pin D22

• Moved DVI_DDC_SDA signal to U2 pin G19

• Moved DVI_HPD signal to U2 pin C22

The LatticeECP3 is a third-generation device utilizing reconfigurable SRAM logic technology optimized to deliver high-performance features such as an enhanced DSP architecture, high-speed SERDES and high-speed source synchronous interfaces in an economical FPGA fabric. The LatticeECP3 devices also provide popular building blocks such as LUT-based logic, distributed and embedded memory, Phase Locked Loops (PLLs), Delay Locked Loops (DLLs), and advanced configuration support, including encryption, multi-boot capabilities and TransFR™ field upgrade features. The LatticeECP3 SERDES dedicated PCS functions, high jitter tolerance and low transmit jitter allow the SERDES plus PCS blocks to be configured to support an array of popular data protocols including PCI Express, SMPTE, Ethernet (XAUI, GbE, and SGMII), SATA I/II, OBSAI and CPRI. Transmit Pre-emphasis and Receive Equalization settings make the SERDES suitable for transmission and reception over various forms of media.

For a full description of the LatticeECP3 FPGA, including data sheet, technical notes and more, see the Lattice web site at www.latticesemi.com/products/fpga/ecp3.

Some common uses for the HDR-60 Base Board include:

• Security/surveillance and automotive camera applications

• Evaluation of the Helion NanoVesta Head Board and other camera sensors

• Applications using Aptina Head Boards

• Evaluation of Helion IONOS Imaging Pipeline IP cores

• Ethernet IP camera applications

• Evaluation of Teradek H.264 compression modules

FeaturesKey features of the HDR-60 Base Board include:

• SPI serial Flash device included for low-cost, non-volatile configuration storage

• DDR2 SDRAM: 16-bit data over a 32M address space

• Tri-speed (10/100/1000 Mbit) Ethernet PHY with RJ-45 (includes 12 core magnetics)

3

HDR-60 Base Board – Revision B

• Built-in USB 2.0 download to LatticeECP3

• Can be configured for a flywire ispDOWNLOAD™ cable connection

• HiSPi and parallel video data path connections with selectable VCCIO (1.8 V/2.5 V/3.3 V)

• Connectors for Aptina standard Head Board with USB 2.0 interface

• Connector for Teradek Capella H.264 codec board

• Test point connections to 19 I/O pins for prototyping

• Two MEMS and two crystal oscillators

• HDMI/DVI output using four channels (one quad) of differential SERDES

• 5.0 V, 3.3 V, 2.5 V, 1.8 V, 1.2 V voltages are generated from a single 12 V power source

• ispVM™ System programming support

General DescriptionThe heart of the HDR-60 Base Board is the LatticeECP3 FPGA. The devices and connectors attached to the LatticeECP3 provide a means to investigate applications developed for High Dynamic Range image signal pro-cessing. The board also provides several different interconnections and support devices that permit it to be used for a variety of purposes. The HiSPi and parallel video input, DDR2 memory, Tri-speed Ethernet PHY, and HDMI output are useful for applications using Lattice IP cores. A modest number of test points were added around the board for general purpose LatticeECP3 I/O usage. The SPI memory showcases the fail-safe capabilities of the LatticeECP3. Figure 1 is the block diagram for the HDR-60 Video Camera Development Kit.

Figure 1. HDR-60 Video Camera Development Kit Block Diagram

Refclk

QuadA

Bank 6 Bank 7

Bank 0

Bank 1

Bank 2Bank 3

SERDESCh3

Ch2

Ch1

Ch0

Teradek MPEG Ethernet

AptinaHead Board

NanoVestaHead Board

LatticeECP3-70EA

484 fpBGAHDMI

DDR2 SDRAM

27 MHz 25MHz

4

HDR-60 Base Board – Revision B

Initial Setup and HandlingThe following is recommended reading prior to removing the evaluation board from the static shielding bag and may or may not apply to your particular use of the board.

CAUTION: The devices on the board can be damaged by improper handling.

The devices on the evaluation board contain fairly robust ESD (Electro Static Discharge) protection structures within them, able to withstand typical static discharges (see the “Human Body Model” specification for an example of ESD characterization requirements). Even so, the devices are static sensitive to conditions that exceed their designed in protection. For example: higher static voltages, as well as lower voltages with lower series resistance or larger capacitance than the respective ESD specifications can potentially damage or degrade the devices on the evaluation board.

As such, it is recommended that you wear an approved and functioning grounded wrist strap at all times while han-dling the evaluation board when it is removed from the static shielding bag. If you will not be using the board for a while, it is best to put it back in the static shielding bag. Please save the static shielding bag and packing box for future storage of the board when it is not in use.

When reaching for the board, it is recommended that you first touch the ground plane of the board (for example, the metal shielding of the HDMI connector). This will neutralize any static voltage difference between your body and the board prior to any contact with signal I/O.

CAUTION: To minimize the possibility of ESD damage, the first and last electrical connections to the board should always be from test equipment chassis ground to the ground plane of the board.

Before connecting signals or power to the board, attach a cable from chassis ground on grounded test equipment to the ground plane of the board. Connecting the board ground to test equipment chassis ground will decrease the risk of ESD damage to the I/O on the board as the initial connections to the board are made. Likewise, when unplugging cables from the evaluation board, the last connection unplugged, should be the chassis GND connec-tion to the evaluation board GND. If you have a signal source that is floating with respect to chassis GND, attempt to neutralize any static charge on that signal source prior to attaching it to the evaluation board.

If you are holding or carrying the board when it is not in a static shielding bag, please keep one finger on the ground plane of the board, for example the metal shielding of the HDMI connector. This will keep the board at the same voltage potential as your body until you can pick up the static shielding bag and put the board back in it.

Electrical, Mechanical, and Environmental SpecificationsThe nominal board dimensions are 203.2 mm x 42 mm (8.000” x 1.654”). Additional mechanical board dimension information is included on the mechanical drawing shown in Appendix A, Figure 24. On the physical board itself, connectors include pin 1 indictors as either an arrow, or triangle point near pin 1 on the outer layer silk screen. The environmental specifications are as follows:

• Operating temperature: 0 °C to 55 °C

• Storage temperature: -40 °C to 75 °C

• Humidity: <95% without condensation

• 11 V to 18 V DC (20 watts max.)

5

HDR-60 Base Board – Revision B

Functional DescriptionFigure 2. HDR-60 Base Board, Top View

HDMI

RJ45 &2x USB

BNC (Not present on all boards. See note below)

Discera MEMs based oscillator(on reverse side

of board)

12 V DC Input

LatticeECP3-70FPGA

ISSI DDR2

BroadcomBroadreach

PHY

FTDIUSB

Aptina HeadboardConnector

Head BoardConnector

(HiSPi)

Head BoardConnector(Parallel)

Note: The BNC connector (J11), and Delta Filter (U8) are designed for Ethernet-over-BNC. This is an unsupported feature. These components are not populated on most manufacturing runs of this board.

LatticeECP3 DeviceThis board features a LatticeECP3-70 FPGA with a 1.2 V DC core in a 484-ball fpBGA package. The LatticeECP3-35, -70 and -95 device densities in this package can be accommodated with no change in pin connections. A com-plete description of this device can be found on the Lattice web site at www.latticesemi.com/products/fpga/ecp3.

Power Connector (J10) The board is supplied by a single 12 V DC power supply at J10. On-board step-down switching regulators then pro-vide the necessary supply voltages: 3.3 V, 2.5 V, 1.8 V, 1.2 V. For proper operation, the 12 V DC power applied at J10 should be within the range of +11 V min. to +18 V max. The requirements for the J10 power jack itself are listed in Table 1.

Table 1. Power Jack J10 Specifications

Polarity Positive Center

Inside Diameter 0.1” (2.5mm)

Outside Diameter 0.218” (5.5mm)

Current Capacity Up to 2.5A

The on-board switching regulator output voltages can be measured at test points located around the board as shown in Table 2.

Table 2. Test Points for On-Board Regulator Voltages

Supply Switching Regulator Test Point Resistor Ratio Comment

5.0 V U15 PP7 R123/R122

3.3 V U10 (side 2) PP1 R46/R45

2.5 V U10 (side 1) PP2 R53/R5 (default)

(R56 and R51 modify ratio)

1.8 V: jumper on J4 pins 1-22.5 V: no jumper on J4 (default)3.3 V: jumper on J4 pins 2-3

1.8 V U11 (side 2) PP3 R55/R6

1.2 V U11 (side 1) PP4 R54/R52

Each of the step-down switching regulators, U10, U11, and U15, incorporate typical resistor divider voltage feed-back to divide down the regulator output voltage and compare it against an internal reference voltage. The regula-tor then adjusts the output voltage higher or lower such that the resistor divided voltage matches the internal

6

HDR-60 Base Board – Revision B

reference. By doing this, the regulator output voltage remains at a constant voltage value independent of the load driven. Each regulator output voltage follows this equation:

Vout = (1 + resistor ratio) x (regulator internal reference voltage)

See the LT3503 and LT3508 device data sheets for additional details about these devices.

The 2.5 V regulator output voltage can also be set to 1.8 V or 3.3 V by adding a shorting jumper on J4, as shown in Table 2. With no jumper on J4, the voltage divider is set by R53 and R5 and this divider sets up a nominal 2.5 V output voltage. When a shorting jumper is added to J4, the R56 and R51 resistors will be placed in parallel with either R53 or R5, which then changes the resistor divider ratio, and this changes side 1 of the U10 regulator output voltage to become 1.8 V or 3.3 V depending on the placement of the shorting jumper on J4.

The SERDES 1.2 V regulators (U4) are low dropout linear types that deliver a constant 1.2 V output voltage when powered by the 3.3 V input voltage. In contrast to the switching regulators discussed above, the U4 linear regulars do not generate switching noise, so they are a good choice for powering the LatticeECP3 SERDES to give the low-est jitter generation. Also, U4 does not use resistor divider networks to set the output voltage, instead U4 is set up to directly copy its own internal 1.215 V reference voltage to its outputs. The U4 regulator outputs are available for testing at test points PP5 and PP6. See the LT3029 device data sheets for additional details about this device.

When using the various I/O test points located around the board, be sure to not exceed the LatticeECP3 Family Data Sheet specified absolute maximum rating for Output Supply Voltage VCCIO range of -0.5 V to +3.75 V, or damage to the device may occur. Also, for I/O input capability of the various I/O standards supported by the LatticeECP3 sysIO structures, see the LatticeECP3 sysIO Usage Guide.

LatticeECP3 I/O Bank VoltagesMost of the bank voltages on the LatticeECP3 (U2) have been hard-wired to specific power supply values. Excep-tions to this are banks 1 and 2 which can be set to other values used to power the sensor boards that plug into the parallel connector (J2) and HiSPi connector (J1). This is shown in Table 3.

Table 3. LatticeECP3 (U2) Bank Voltage Settings

LatticeECP3 Bank VCCIO Voltage Comment

0 3.3 V Aptina Head Board

1 and 2 Adjustable

Sensor attached to J1 and J21.8 V: Jumper on J4 pins 1-22.5 V: No jumper on J4 (default)3.3 V: Jumper on J4 pins 2-3

3 1.8 V DDR2

Quad A 1.2 V SERDES

6 3.3 V Teradek MPEG Encoder

7 3.3 V Ethernet

8 3.3 V LatticeECP3 programming

7

HDR-60 Base Board – Revision B

Default Jumper SettingsFigure 3. Default Jumpers

LatticeECP3

Aptina Head Board

Cypress Device

SCL

SDA

On: 1.8V

J4 J5 J6

Off: 2.5V

On: 3.3V

VDDIO

Figure 3 shows the HDR-60 Base Board default jumpers settings for VDDIO set to 2.5 V. By installing a jumper on J4 in the upper position, the VDDIO will change to 1.8 V and on the lower position, the VDDIO will change to 3.3 V.

Only when using the Aptina Head Board, do the serial clock and data signals, J5 and J6 need to be of concern. J5 and J6 select whether the Aptina Head Board will be sourced from the Cypress device (U6) directly or from the LatticeECP3. Moving the jumpers from the lower position on J5 and J6 to the upper position will change the source of the serial clock and data to be from the LatticeECP3 device (U2).

Prototype AreasFor general purpose I/O testing or monitoring, 19 unconnected test points with reference labels TP1, 2, … are pro-vided for direct access to the LatticeECP3 device. Other I/Os on the LatticeECP3 are brought to dedicated connec-tors such as J1, J2, J7, J8 and J9, which could also be considered as available prototype connectors when they are not in use.

Crystal OscillatorsThere are two crystal oscillators and two MEMS-based oscillators on the HDR-60 Base Board. The two crystals are used for the two USB port connections. One MEMS-based oscillator is used to set the reference frequency for the Ethernet PHY, while the other is used to drive inputs to the LatticeECP3 (U2). Table 4 shows the oscillator usage. Locations Y1 and Y4 are the MEMS-based oscillators.

Table 4. Crystal Oscillators Used on the HDR-60 Base Board

Location Frequency CommentLatticeECP3 Input

I/O Setting

Y1 27.000 MHz DDR2 U2 pin R17MPEG U2 pin T3

SSTL18 (no term)LVCMOS33

Y2 6.000 MHz USB FTD2232D U5 pin 43(upper USB port at J12) —

Y3 24.000 MHz USB Cypress U6 pin 11(lower USB port at J12) —

Y4 25.000 MHz Ethernet PHY U3 pin F1 —

DVI Video OutputThe LatticeECP3 (U2) SERDES Quad A outputs drive the HDMI connector (J13) through inline AC coupling capac-itors C55, C56, C57, C58, C218, C219, C220, and C221. The SERDES signal paths are 50 ohms between the LatticeECP3 outputs to the HDMI connector on the HDR-60 Base Board. The DVI signal connections between the LatticeECP3 device and the HDMI connector are shown in Table 5.

8

HDR-60 Base Board – Revision B

Table 5. LatticeECP3 (U2) Connections to HDMI Output (J13)

J13 Pin LatticeECP3 I/O Polarity sysIO Bank Signal Name10 AB15 P Quad A DVI_HDOUTP0

12 AB14 N Quad A DVI_HDOUTN0

7 AB12 P Quad A DVI_HDOUTP1

9 AB13 N Quad A DVI_HDOUTN1

4 AB11 P Quad A DVI_HDOUTP2

6 AB10 N Quad A DVI_HDOUTN2

1 AB8 P Quad A DVI_HDOUTP3

3 AB9 N Quad A DVI_HDOUTN3

13 — — — CEC_OUT

15 E18 — 8 DVI_DDC_SCL

16 E17 — 8 DVI_DDC_SDA

19 A20 — 8 DVI_HPD

HiSPi Connector (J1)The LatticeECP3 (U2) banks 1 and 2 can receive HiSPi sub-LVDS video signals from connector J1. When receiv-ing HiSPi signals, you will need to set the LatticeECP3 input type to LVDS with differential 100 ohm termination. The signal connections between the LatticeECP3 device and the HiSPi connector are shown in Table 6.

Table 6. LatticeECP3 (U2) Interface to HiSPi Connector J1

J1 PinLatticeECP3 I/O BGA Ball Polarity sysIO Bank

DifferentialSignal Parallel Signal

13 K21 P 2 SLVS_0P —

11 L21 N 2 SLVS_0N —

29 L22 P 2 SLVS_1P —

27 M22 N 2 SLVS_1N —

21 P21 P 2 SLVS_2P —

19 N22 N 2 SLVS_2N —

26 M18 P 2 SLVS_3P —

24 N17 N 2 SLVS_3N —

14 L18 P 2 SLVS_4P —

12 L19 N 2 SLVS_4N HISPI_LED

22 K20 P 2 SLVS_5P —

20 K19 N 2 SLVS_5N —

17 K17 P 2 SLVS_6P —

15 K18 N 2 SLVS_6N —

25 H21 P 2 SLVS_7P —

23 H22 N 2 SLVS_7N —

18 M21 P 2 SLVS_CP —

16 M20 N 2 SLVS_CN —

10 C13 — 1 — HISPI_RESETN

28 K22 — 2 Note 1 RESERVED_1

30 J22 — 2 Note 1 HISPI_SDATA

32 C14 — 1 — HISPI_SCLK

4 A13 — 1 — VDDIO_rH

1. Routed on the HDR-60 Base Board as a differential pair.

9

HDR-60 Base Board – Revision B

Parallel Connector (J2)The LatticeECP3 (U2) bank 1 receives parallel video signals from connector J2. The signal connections between the LatticeECP3 device and the HiSPi connector are shown in Table 7.

Table 7. LatticeECP3 (U2) Interface to Parallel Connector J2

J2 PinLatticeECP3I/O BGA Ball sysIO Bank Parallel Signal Differential Signal

16 J20 2 DOUT0 SLVS_8N

20 G22 2 DOUT1 SLVS_9N

15 F22 2 DOUT2 SLVS_11N

19 J18 2 DOUT3 SLVS_10N

14 A16 1 DOUT4 —

18 J19 2 DOUT5 SLVS_8P

13 C16 1 DOUT6 —

17 E22 2 DOUT7 SLVS_11P

22 G21 2 DOUT8 SLVS_9P

24 G14 1 DOUT9 —

21 J17 2 DOUT10 SLVS_10P

23 C17 1 DOUT11 —

10 C12 1 PIXCLK —

9 A19 1 EXTCLK_FPGA —

11 A18 1 LINE_VALID —

12 B16 1 FRAME_VALID —

25 B18 1 TRIGGER —

27 A17 1 RESET_BAR —

29 F16 1 OUTPUT_EN_BAR —

31 F15 1 STANDBY —

26 G15 1 SADDR —

28 D15 1 SCLK —

30 C15 1 SDATA —

32 E15 1 OSC_ENABLE —

4 A12 1 VDDIO_rP —

Aptina Head Board ConnectorConnectors J7 and J8 make up the Aptina Head Board connector. They are described below. Note that jumpers J5 and J6 may be required to be in the 2 and 3 positions if using Aptina DevWare software. Contact Aptina for details on running DevWare on the HDR-60 Base Board.

Dual Row Connector (J7)The LatticeECP3 (U2) bank 0 interfaces to the Aptina dual row connector (J7) as shown in Table 8.

Table 8. LatticeECP3 (U2) Interface to Aptina Dual Row Connector (J7)

J7 Pin LatticeECP3 I/O BGA Ball sysIO Bank Signal

1 C8 0 HEAD_DOUT0

2 C7 0 HEAD_DOUT1

3 F9 0 HEAD_DOUT2

4 E9 0 HEAD_DOUT3

5 C9 0 HEAD_DOUT4

10

HDR-60 Base Board – Revision B

Aptina Single Row Connector (J8)The LatticeECP3 (U2) bank 0 interfaces to the Aptina single row connector (J8) as shown in Table 9.

Table 9. LatticeECP3 (U2) Interface to Aptina Single Row Connector (J8)

J2 Pin LatticeECP3 I/O BGA Ball sysIO Bank Signal

1 F10 0 HEAD_DOUT10

2 E10 0 HEAD_DOUT11

3 A9 0 HEAD_DOUT12

4 B10 0 HEAD_DOUT13

5 A10 0 HEAD_DOUT14

6 A11 0 HEAD_DOUT15

7 C5 0 HEAD_SP0

8 B4 0 HEAD_SP1

9 E6 0 HEAD_SP2

10 D5 0 HEAD_GSHT_CTL

11 C6 0 HEAD_TRIGGER

Teradek MPEG Encoder ConnectorThe LatticeECP3 (U2) bank 6 I/Os connect to the Teradek MPEG Encoder Connector (J9). The signal connections are shown in Table 10.

6 C10 0 HEAD_DOUT5

7 B7 0 HEAD_DOUT6

8 A7 0 HEAD_DOUT7

9 B8 0 HEAD_DOUT8

10 A8 0 HEAD_DOUT9

13 A3 0 HEAD_LINE_VALID

14 B6 0 HEAD_SP5

15 G9 0 HEAD_SP7

16 F7 0 HEAD_SENSOR_RESETN

17 A4 0 HEAD_FRAME_VALID

19 E7 0 HEAD_SHIP_CLK

20 F8 0 HEAD_SP6

23 F11 0 HEAD_PIXCLK

26 D6 0 HEAD_MCLK

Table 10. LatticeECP3 (U2) Connections to Teradek MPEG Encoder (J9)

J9 Pin LatticeECP3 I/O sysIO Bank Signal Name

4 N3 6 MG_VID00

6 P3 6 MG_VID01

8 N5 6 MG_VID02

10 P6 6 MG_VID03

12 P1 6 MG_VID04

14 R1 6 MG_VID05

16 R3 6 MG_VID06

Table 8. LatticeECP3 (U2) Interface to Aptina Dual Row Connector (J7) (Continued)

J7 Pin LatticeECP3 I/O BGA Ball sysIO Bank Signal

11

HDR-60 Base Board – Revision B

SPI Serial FlashThe U9 SPI Flash device used on this board is a 16-pin, 64-Mbit device, sufficient to store two bitstreams simulta-neously in order to support SPIm mode. The HDR-60 Base Board is configured to download bitstreams stored in the SPI Flash (U9) into the LatticeECP3 when the +12 V power is applied at connector J10. The SPI Flash device is a Numonyx SPI-M25P64 in a 16-pin SOIC package.

Downloading Bitstreams into the LatticeECP3 (U2)In order to download bitstreams into the LatticeECP3 (U2) device, the HDR-60 Video Camera Development Kit includes two USB-A to USB-A cables that can connect a PC with ispVM System software installed, to the HDR-60 Base Board. Each USB-A to USB-A cable is 6’ (1.83 m) in length. As both ends of the USB cables are the same, either end can plug into a PC’s USB port, while the other end connects to the HDR-60 Base Board J12 upper USB port. The J12 upper USB port connects to a FTD2232D USB transceiver (U5) that can produce JTAG signals able to drive the LatticeECP3 device (U2). Given this, the ispVM System software can detect the LatticeECP3 device, download bitstreams directly into the LatticeECP3 SRAM, or bitstreams can be downloaded into the on board SPI Flash (U9).

Note that the J12 lower USB port has no USB-to-JTAG signal path connections to any Lattice device, so the ispVM System software will not detect any devices at the J12 lower USB port.

18 R2 6 MG_VID07

3 W2 6 MG_VID08

5 Y1 6 MG_VID09

7 T4 6 MG_VID10

9 U4 6 MG_VID11

11 AA1 6 MG_VID12

13 Y2 6 MG_VID13

15 Y3 6 MG_VID14

17 AA2 6 MG_VID15

20 P5 6 MG_VID0_PIXCLK

19 T6 6 MG_VID1_PIXCLK

22 U1 6 VGPIO1

26 U2 6 VGPIO2

30 R7 6 VGPIO3

23 N1 6 MG_VSYNC

24 N2 6 MG_HSYNC

25 R4 6 MG_FIELD

27 V3 6 VIDEO_SCL

28 W1 6 VIDEO_SDA

31 L4 6 MG_MCLK_IN

32 W3 6 MG_LRCLK_IN

33 M5 6 MG_BCLK_IN

35 T5 6 MG_SPDIF

34 P7 6 MG_IDAT0

36 V1 6 MG_IDAT1

Table 10. LatticeECP3 (U2) Connections to Teradek MPEG Encoder (J9) (Continued)

J9 Pin LatticeECP3 I/O sysIO Bank Signal Name

12

HDR-60 Base Board – Revision B

See the “Configuring/Programming the Board” section of this document for details on how to download bitstreams into the LatticeECP3 device. See www.latticesemi.com/hdr60 for additional downloadable project files and bit-streams designed for use with this board.

LEDs There are three LEDs on the HDR-60 Base Board that are used to show the programming state of the LatticeECP3. See Table 11 for information on the programming state LEDs.

Table 11. Programming LEDs

LED Pin Color Function

LED1 PROGRAMN Red On when signal is low

LED2 INITN Red On when initializing

LED3 DONE Green On when configuration is complete

DDR2 MemoryThe HDR-60 Base Board is equipped with an 84-ball BGA DDR2 SDRAM such as the IS43DR16320B, which pro-vides memory resources with16 bits of data width that span a 32M address space. The DDR2 memory is powered by an on-board 1.8 V regulator with a 0.9 V midpoint bias termination regulator (U12). The evaluation board includes terminations for address, command and data signals. The suggested configuration is to set the DDR2 SDRAM (U1) for internal 150 ohms ODT, and the LatticeECP3 (U2) address, control and data signals to slow slew, 8 ma, with no ODT. This gives a low-noise, low-power DDR2 memory configuration usable to over 400 MT/s. Table 12 shows the pin connections for both the LatticeECP3 (U2) and DDR2 SDRAM (U1).

Table 12. LatticeECP3 Interface to DDR2 SDRAM

Signal Name LatticeECP3 I/O Pin (U2) sysIO Bank DDR2 SDRAM Pin (U1)

DDR2_DQ0 R22 3 G8

DDR2_DQ1 R20 3 G2

DDR2_DQ2 T20 3 H7

DDR2_DQ3 T22 3 H3

DDR2_DQ4 R21 3 H1

DDR2_DQ5 N19 3 H9

DDR2_DQ6 P22 3 F1

DDR2_DQ7 M19 3 F9

DDR2_DM0 N20 3 F3

DDR2_DQS0_P N18 3 F7

DDR2_DQS0_N P19 3 E8

DDR2_DQ8 Y21 3 C8

DDR2_DQ9 V22 3 C2

DDR2_DQ10 W22 3 D7

DDR2_DQ11 W21 3 D3

DDR2_DQ12 U22 3 D1

DDR2_DQ13 Y22 3 D9

DDR2_DQ14 R16 3 B1

DDR2_DQ15 P17 3 B9

DDR2_DM1 R18 3 B3

DDR2_DQS1_P T21 3 B7

DDR2_DQS1_N U20 3 A8

DDR2_VREF P20 3 J2

13

HDR-60 Base Board – Revision B

Ethernet PHYTo the right of the LatticeECP3 FPGA is U3, a Broadcom BCM54810 triple-speed 10/100/1000BASE-T Gigabit Ethernet (GbE) transceiver. The LatticeECP3 FPGA interacts with the PHY over a 3.3 V Gigabit Media Indepen-dent Interface (GMII). The PHY is connected to an RJ45 connector J12 at the Media Dependent Interface (MDI). The RJ45 connector J12 has built-in magnetics and link activity indicator LEDs driven by the PHY. The J12 PHY link LEDs are set to indicate the link status, as shown in Table 13.

Table 13. J12 Link Status LEDs

J12 LED Color Link Status

Orange and Green 1000Base-T

Orange 100Base-T

Green 10Base-T

Yellow Activity

(off) No link

The PHY is available on the board in order to demonstrate the Lattice Ethernet Media Access (MAC) IP core. How-ever, it is also possible to use the PHY to evaluate a custom MAC solution.

During power-up, the resistors R21, R22, R23, R24, R25, R103, R105, and R107 set the initialized PHY configura-tion to: auto-negotiate, full duplex, 10/100/1000Base-T. The PHY can also be programmed after power-up to use a new configuration. The PHY signal path is factory-configured to send and receive 10/100/1000Base-T Ethernet signals at the RJ45 connector (J12). It is possible to change the configuration of the PHY signal path to instead

DDR2_A0 AB19 3 M8

DDR2_A1 R14 3 M3

DDR2_A2 AA21 3 M7

DDR2_A3 V17 3 N2

DDR2_A4 AB17 3 N8

DDR2_A5 W17 3 N3

DDR2_A6 Y17 3 N7

DDR2_A7 W18 3 P2

DDR2_A8 AB18 3 P8

DDR2_A9 U18 3 P3

DDR2_A10 T19 3 M2

DDR2_A11 AA17 3 P7

DDR2_A12 Y19 3 R2

DDR2_BA0 Y18 3 L2

DDR2_BA1 U15 3 L3

DDR2_CK_P AA22 3 J8

DDR2_CK_N AB21 3 K8

DDR2_CKE T18 3 K2

DDR2_RASN T14 3 K7

DDR2_CASN V18 3 L7

DDR2_WEN U16 3 K3

DDR2_ODT R19 3 K9

DDR2_CSN U19 3 L8

Table 12. LatticeECP3 Interface to DDR2 SDRAM (Continued)

Signal Name LatticeECP3 I/O Pin (U2) sysIO Bank DDR2 SDRAM Pin (U1)

14

HDR-60 Base Board – Revision B

provide a legacy Ethernet coaxial link using the BNC connector (J11) by removing three resistors off the HDR-60 Base Board and then add back on three resistors as shown in Table 14. However, Ethernet-over-BNC is an unsup-ported feature on this board. The BNC connector and Delta filter (U8) are unpopulated on most production runs of this board. This information is provided as a reference only.

Table 14. Ethernet Connection at J11 or J12

Connector Cable LAN Speed PCB Configuration

J12 (RJ45) Cat5 10/100/1000Base-TR31, R32 = 0 ohmsR23 = 4.7K ohmsR29, R30, R21 = open

J11 (BNC) Coaxial 10/100Base-TR29, R30 = 0 ohmsR21 = 4.7K ohmsR31, R32, R23 = open

1

Refer to the HDR-60 Base Board schematic in Appendix A and the Broadcom BCM54810 Data Sheet for detailed information about the operation of the Ethernet PHY interface on this device. Refer to Table 15 for a description of the Ethernet PHY GMII connections to the LatticeECP3.

1. J11 (BNC) and U8 (Delta filter) are unpopulated on most manufacturing runs of this board. Ethernet-over-BNC is an unsupported feature of this board. The information in this table is for reference only.

Table 15. LatticeECP3 Interface to Ethernet PHY

Signal Name LatticeECP3 I/O Pin (U2) sysIO Bank BCM54810 Pin (U3)

PHY_A0 E3 7 H10

PHY_A1 D4 7 J10

PHY_A2 E5 7 J9

PHY_A3 E4 7 K10

PHY_A4 B2 7 K9

GTXCLK F5 7 A7

ECP3_GSRN F4 7 --

PHY_LOWPWR G4 7 F5

MDC G5 7 E3

TXD0 B1 7 C7

TXD1 G3 7 C8

TXD2 H6 7 B6

TXD3 C1 7 B7

TXD4 H4 7 B8

TXD5 E2 7 B9

TXD6 F3 7 B10

TXD7 H5 7 A10

TX_EN J4 7 A8

TX_ER G2 7 A9

CRS F1 7 E5

COL H2 7 D5

RESETN G1 7 E4

RXD0 J1 7 D4

RXD1 K6 7 D3

RXD2 J7 7 C3

RXD3 J3 7 C4

RXD4 J6 7 C5

15

HDR-60 Base Board – Revision B

Configuring/Programming the BoardRequirements

• PC with Lattice ispVM System software version 17.9 (or later) installed with USB driver. Note: An option to install this driver is included as part of the ispVM System setup.

For a complete discussion of the LatticeECP3 configuration and programming options, refer to the LatticeECP3 sysCONFIG Usage Guide.

Download Procedures for the Lattice HDR-60 Base BoardThe download instructions described below show how to download bitstreams into the LatticeECP3 SRAM using the ispVM System software. Downloads can be either direct through a cable connection to a PC, or indirect by first programming the on-board SPI Flash and then downloading the bitstream to the LatticeECP3 SRAM from SPI Flash. You can download bitstreams through a download cable to the LatticeECP3 SRAM at any time. After a bit-stream has been downloaded to SPI Flash, you can download the bitstream from SPI Flash to the LatticeECP3 SRAM by cycling the power to the evaluation board.

The Lattice HDR-60 Base Board provides support for two types of download cable connections: a standard USB-A to USB-A cable at J12, or a Lattice ispDOWNLOAD cable (USB type or parallel port type with flywire connections) at J3 as described in Appendix C. Given that you might want to download to either the LatticeECP3 SRAM or the SPI Flash, separate LatticeECP3 download procedures will follow that cover each type of download.

Note that the first download procedure shows the menus as viewed on a Windows XP operating system. Follow-on download procedures are very similar and do not show the menus.

LatticeECP3 SRAM Configuration Using a Standard USB Cable at J12The LatticeECP3 SRAM can be configured easily using the ispVM System software to download a bitstream via a standard USB-A to USB-A cable. The LatticeECP3 device is SRAM based, so it must remain powered on to retain its configuration when programming the SRAM.

1. Attach a ground connection from test equipment chassis ground to the ground plane of the board, for example, on the metal HDMI connector.

2. Connect the USB-A to USB-A cable from your PC’s USB connector to the upper USB port on J12 on the HDR-60 Base Board.

3. Connect the 12 V wall power adaptor cable to J10 and check to see that the wall power adapter is plugged in to a 120 VAC source.

4. Start the ispVM System software. Select the menu items Options > Autoscan Options > Custom Scan as shown in Figure 4.

RXD5 E1 7 B5

RXD6 H3 7 B4

RXD7 H1 7 B3

RX_ER K3 7 A1

TXC K4 7 C6

MDIO K5 7 F4

125MHz K1 7 B1

RX_DV L1 7 B2

RXC L5 7 A2

Table 15. LatticeECP3 Interface to Ethernet PHY (Continued)

Signal Name LatticeECP3 I/O Pin (U2) sysIO Bank BCM54810 Pin (U3)

16

HDR-60 Base Board – Revision B

Figure 4. Setting the ispVM Custom Scan Option

5. Select Options > Cable and I/O Port Setup. For the Cable Type, select USB2, then click OK.

6. Push the Scan button. You should now see the LFE3-95/70 device listed in the New Scan Configuration Setup window. In the device list, left-click on the LatticeECP3 device to select it. If offered other selections, select LFE3-70EA. See Figure 5.

Figure 5. ispVM New Scan Configuration Setup

7. Click Edit > Edit Device to edit the device. A Device Information window will be opened. Click the Select but-ton and select the package type 484-ball fpBGA as shown in Figure 6, then click OK.

Figure 6. LatticeECP3 Package Size Selection

8. Check that the Device Access Options drop-down menu control selects the JTAG 1532 Mode. Check that the Operation drop-down menu selects Fast Program.

9. Click the data file Browse button and select the path to the LatticeECP3 “.BIT” bitstream file as shown in Figure 7, then click OK.

17

HDR-60 Base Board – Revision B

Figure 7. Bitstream Ready to Download into LatticeECP3 SRAM

10. Click Project >Download or the green Go button to download the bitstream into the LatticeECP3 device (U2). A small window will appear as shown in Figure 8. It will take about 12 seconds to download the bitstream for a PC with USB 2.0 ports. When the LatticeECP3 has loaded in correctly, the ispVM status window will report “Operation Successful” as shown in Figure 9.

Figure 8. Bitstream Downloading into LatticeECP3

Figure 9. Bitstream Download Operation Successful

LatticeECP3 SRAM Configuration Using SPI Flash and USB Cable at J12The LatticeECP3 SRAM can be configured easily using the ispVM System software to program the on-board SPI Flash via a standard USB cable connected to the upper USB port at J12. The LatticeECP3 device is SRAM-based, so it must remain powered on to retain its configuration when programming the SRAM. The on-board SPI Flash retains its programmed bitstreams when power is off, and can quickly load programmed bitstreams into the LatticeECP3 device when power is applied.

1. Attach a ground connection from test equipment chassis ground to the ground plane of the board, for example on the metal HDMI connector.

18

HDR-60 Base Board – Revision B

2. Connect the USB-A to USB-A cable from your PC’s USB connector to the upper USB port on J12 on the HDR-60 Base Board.

3. Connect the 12 V wall power adaptor cable to J10 and check to see that the wall power adapter is plugged in to a 120 VAC source.

4. Start the ispVM System software. Select the menu items Options > Autoscan Options > Custom Scan.

5. Select Options > Cable and I/O Port Setup. For the Cable Type, select USB2, then click OK.

6. Push the Scan button. You should now see the LFE3-95/70 device listed in the New Scan Configuration Setup window. In the device list, left-click on the LatticeECP3 device to select it. If offered other selections, select LFE3-70EA.

7. Click Edit > Edit Device to edit the device. A Device Information window will be opened. Click the Select but-ton and select the package type 484-ball fpBGA, then click OK.

8. Click the Device Access Options drop-down menu control and select SPI Flash Background Programming. A SPI Serial Flash Device window will open.

9. Push the Select button and select the Vendor as Numonyx, the device as SPI-M25P64 and the package 16-lead SOIC as shown in Figure 10. Push the OK button.

Figure 10. SPI Flash Device Selection

10. Click the data file Browse button and select the path to the LatticeECP3 “.BIT” bitstream file. Push the Load From File button and then click OK to complete the SPI Flash device selection as shown in Figure 11. Again click OK to exit the Device Information menu. The bitstream is now set up for downloading into the SPI Flash as shown in Figure 12.

19

HDR-60 Base Board – Revision B

Figure 11. SPI Flash Device Setup Complete

Figure 12. Bitstream Ready to Download into SPI Flash

11. Click Project > Download or the green Go button to download the bitstream into the SPI Flash device (U9), the bitstream download progress indictor will pop up as shown in Figure 13. When using the built-in USB down-load cable, it will take about two minutes to erase, program and verify the bitstream loaded properly into the SPI Flash for a PC with USB 2.0 ports. After the SPI Flash contents have been verified, the ispVM status win-dow will report “Operation Successful” as shown in Figure 14.

Figure 13. Bitstream Download Progress Indicator

20

HDR-60 Base Board – Revision B

Figure 14. SPI Flash Download Operation Successful

12. Unpower the HDR-60 Base Board for a few seconds then power it back up. The design will load into the LatticeECP3 (U2) from the external SPI Flash (U9) in two seconds, and the “DONE” LED (LED3) will light up.

References• HDR-60 Video Camera Development Kit web page

• DS1021, LatticeECP3 Family Data Sheet

• HB1009, LatticeECP3 Family Handbook

• QS010, HDR-60 Video Camera Development Kit QuickSTART Guide

• EB63, NanoVesta Head Board User’s Guide

• TN1177, LatticeECP3 sysIO Usage Guide

• TN1169, LatticeECP3 sysCONFIG Usage Guide

Description Ordering Part NumberChina RoHS Environment-Friendly

Use Period (EFUP)

HDR-60 Video Camera Development Kit(Contains: HDR-60 Base Board with LatticeECP3 FPGA pre-loaded with Image Signal Processing (ISP)Demo, NanoVesta Head Board with Aptina A-1000 720p HDR Sensor and Sunex lens, two USB cables, HDMI cable with HDMI-to-DVI adapter, 12 V AC adapter power supply, QuickSTART Guide)

LFE3-70EAHDR60-DKN

HDR-60 Video Camera Base Board(Contains: HDR-60 Base Board with LatticeECP3 FPGA pre-loaded with Image Signal Processing (ISP)Demo, two USB cables, HDMI cable with HDMI-to-DVI adapter, 12 V AC adapter power supply, QuickSTART Guide)

Note: Does not include NanoVesta Head Board.

LFE3-70EAHDR60-EVN

21

HDR-60 Base Board – Revision B

Ordering Information

Technical Support Assistancee-mail: [email protected]

Internet: www.latticesemi.com

Revision HistoryDate Version Change Summary

August 2012 01.0 Initial release.

March 2013 01.1 Added HDR-60 Video Camera Base Board in Ordering Information.

April 2014 01.2 Updated references to BNC connector (J11) and Delta filter (U8) to indi-cate these are unpopulated on most boards. Ethernet-over-BNC is an unsupported feature of this board.

Updated Technical Support Assistance information.

© 2014 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

22

HDR-60 Base Board – Revision B

Appendix A. SchematicFigure 15. Block Diagram

5 5

4 4

3 3

2 2

1 1

DD

CC

BB

AA

HD

R-6

0 B

ase

Boa

rd B

lock

Dia

gram

(Sheet 2, 3)

Voltage

Regulators

SerDes

(Sheet 5)

Quad

A

Lat

tice

EC

P3-

70 4

84 b

all

Bank8

(Sheet 6)

Bank0

Bank1

Bank2

Bank3

(Sheet 4)

(Sheet 8)

(Sheet 8)

(Sheet 7)

Bank7

(Sheet 4)

Bank6

(Sheet 9)

(Sheet 4)

1000Base-T

PHY/RJ45

(Sheet 6)

Built In USB

2.0 Download

Programming

Rev

B, 4

84 b

all,

-70

(top

vie

w)

A1

(Sheet 5)

DVI

(Sheet 8)

Aptina

Head Board

(Sheet 7)

DDR2 16 Bit

(Sheet 9)

Teradek MPEG

Encoder, USB

(Sheet 8)

Nanovesta

Head Board

(Sheet 4)

Nanovesta

Head Board

Title

Siz

eP

roje

ctR

ev

Dat

e:S

heet

of

Lattice Semiconductor Corporation

5555 N.E. Moore Court

Hillsboro, Oregon. 97124

HD

R-6

0 B

ase

Boa

rd S

chem

atic

B

Blo

ck D

iag

ram

C

110

Wed

nesd

ay, S

epte

mbe

r 21

, 201

1

Title

Siz

eP

roje

ctR

ev

Dat

e:S

heet

of

Lattice Semiconductor Corporation

5555 N.E. Moore Court

Hillsboro, Oregon. 97124

HD

R-6

0 B

ase

Boa

rd S

chem

atic

B

Blo

ck D

iag

ram

C

110

Wed

nesd

ay, S

epte

mbe

r 21

, 201

1

Title

Siz

eP

roje

ctR

ev

Dat

e:S

heet

of

Lattice Semiconductor Corporation

5555 N.E. Moore Court

Hillsboro, Oregon. 97124

HD

R-6

0 B

ase

Boa

rd S

chem

atic

B

Blo

ck D

iag

ram

C

110

Wed

nesd

ay, S

epte

mbe

r 21

, 201

1

23

HDR-60 Base Board – Revision B

Figure 16. Voltage Regulators

5 5

4 4

3 3

2 2

1 1

DD

CC

BB

AA

Vol

tage

Reg

ulat

ors

CDRH4D15/SNP-2R2NC

Vout = 0.78*(R123/R122+1) = 5.06v

Ramp voltage at EN pin provides soft start

PO

WE

R IN

PU

T+

11v

to +

18v

+5.0

v1.

2 A

+3.3

v1.

35 A

+1.8

v1.

1 A

Vout = 0.8*(R46/R45+1) = 3.28 v

Vout = 0.8*(R55/R6+1) = 1.79 v

+1.2

v1.

35 A

+2.5

v1.

1 A

Vout = 0.8*(R53/R5+1) = 2.52 v

Vout = 0.8*(R54/R52+1) = 1.21 v

1.2v

/ms

1.2v

/ms

1.2v

/ms

1.2v

/ms

SW

SW

5_0V, +5.0 V, 1.2 A

3_3V, +3.3 V, 1.35 A

Pow

er S

uppl

y B

lock

Dia

gram

12_0V

EN

EN

(5A fused)

10m

s R

C

NV_VDD, +1.8v/+2.5v/+3.3v, 1.1 A

SW

SW

1_8V, +1.8 V, 1.1 A

EN

VCC_CORE, +1.2 V, 1.35 A

SW

LD

O1_2V, +1.2 V, 1A

EN

Short 1-2: 1.806v

Short 2-3: 3.298v

5_0v

12_0

V

12_0

VIN

12_0

V

3_3v

12_0

V

12_0

V

VC

C_C

OR

E

NV

_VD

D

1_8v

3_3V

3_3V

3_3V

3_3V

Titl

e

Siz

eP

roje

ctR

ev

Dat

e:S

heet

of

Lattice Semiconductor Corporation

5555 N.E. Moore Court

Hillsboro, Oregon. 97124

HD

R-6

0 B

ase

Boa

rd S

chem

atic

B

Vo

ltag

e R

egu

lato

rs

B

210

Wed

nesd

ay, S

epte

mbe

r 21

, 201

1

Titl

e

Siz

eP

roje

ctR

ev

Dat

e:S

heet

of

Lattice Semiconductor Corporation

5555 N.E. Moore Court

Hillsboro, Oregon. 97124

HD

R-6

0 B

ase

Boa

rd S

chem

atic

B

Vo

ltag

e R

egu

lato

rs

B

210

Wed

nesd

ay, S

epte

mbe

r 21

, 201

1

Titl

e

Siz

eP

roje

ctR

ev

Dat

e:S

heet

of

Lattice Semiconductor Corporation

5555 N.E. Moore Court

Hillsboro, Oregon. 97124

HD

R-6

0 B

ase

Boa

rd S

chem

atic

B

Vo

ltag

e R

egu

lato

rs

B

210

Wed

nesd

ay, S

epte

mbe

r 21

, 201

1

R51

22_1

K-0

603S

MT

R50

51k

C68

PP

7

1 2

C8

22uF

,6.3

V

R44

51k

C81

C85

22uF

,6.3

V

PP

4

1 2

C74

C20

7

22pF

C77

22uF

,6.3

V

D9

MB

RM

130L

T3G

1 2C20

5

0.1u

F

L3 4.7u

H

R52

10_0

K

C75

C80

10uF

,25V

C20

9

0.1u

F

C21

0

22uF

PP

2

1 2C

70

C64

+C

208

10uF

63V

1 2

D6

1N44

48W

2 1

C69

L1 6.8u

H

R47

51k

R48

63.4

k

D4

DF

LS22

0L

1 2

R41

51k

D3

DF

LS22

0L

1 2

C20

6

1uF

R6

10k

R55

12.4

k

C82

22uF

,6.3

V

R5

10_0

K

C84

22uF

,6.3

V

C66

R12

3

54_9

K

D2

DF

LS22

0L

1 2

PP

1

1 2

C4

22uF

,6.3

V

D8

1N44

48W

2 1

C73

L4 4.7u

H

F1

F12

51C

T-N

D

5A F

ast-

Blo

SM

T S

ocke

ted

Fus

e

R49

51k

C63

R43

34k

C65

C7

22uF

,6.3

V

R12

2

10_0

K

D1

DF

LS22

0L

1 2

J10

PJ-

032A

Mal

e P

ower

Jac

k 2.

1mm

13

2

U11

LT35

08E

UF

FB

218

VC

219

PG

220

RT

/SY

NC

22

SHDN21

FB

11

TR

AC

K/S

S1

2

BO

OS

T1

7

SW

18

VIN19

VC

124

VIN210

PG

123

SW

211

BO

OS

T2

12

TR

AC

K/S

S2

17

GND525

GND613

GND714

GND46GND35GND24GND13

GND815

GND916

C5

10uF

,25V

C67

R45

11.5

kR

568_

06K

-060

3SM

T

R54

5_11

K

C79

22uF

,6.3

V

C83

U10

LT35

08E

UF

FB

218

VC

219

PG

220

RT

/SY

NC

22

SHDN21

FB

11

TR

AC

K/S

S1

2

BO

OS

T1

7

SW

18

VIN19

VC

124

VIN210

PG

123

SW

211

BO

OS

T2

12

TR

AC

K/S

S2

17

GND525

GND613

GND714

GND46GND35GND24GND13

GND815

GND916

D5

1N44

48W

2 1

R42

51k

J4

HE

AD

ER

31 2 3

U15

LT35

03E

DC

B#P

BF

EN

6

SW

4

GND2

FB

1

VIN

5

BOOST3

PAD_GND7

R46

35.7

k

C71

R53

21_5

K

PP

3

1 2

C72

R12

4

100K

C76

22uF

,6.3

V

D7

1N44

48W

2 1

C78

D10

CM

DS

H-4

E2

1

L5 2.2u

H

L2 6.8u

H

24

HDR-60 Base Board – Revision B

Figure 17. Core Power

5 5

4 4

3 3

2 2

1 1

DD

CC

BB

AA

Cor

e P

ower

28 mA max

100 mA max

302 mA max

0.46 v drop at 500 mA max

25V

6.3V

0805

0805

2.3v minimum input voltage

+1.2

v50

0 m

A

EC

P3

Sym

bol P

ins:

* T

rue

LVD

S O

utpu

t^

DQ

SD

ensi

ty s

how

n as

-70

25V

0805

+1.2

v50

0 m

AV

CC

PLL

PC

SA

_VC

CIB

PC

SA

_VC

CO

B

VC

CA

3_3v

VC

CA

3_3V

VC

C_C

OR

E

3_3V

1_2v

3_3v

Titl

e

Siz

eP

roje

ctR

ev

Dat

e:S

heet

of

Lattice Semiconductor Corporation

5555 N.E. Moore Court

Hillsboro, Oregon. 97124

HD

R-6

0 B

ase

Boa

rd S

chem

atic

B

Co

re P

ow

er

B

310

Wed

nesd

ay, S

epte

mbe

r 21

, 201

1

Titl

e

Siz

eP

roje

ctR

ev

Dat

e:S

heet

of

Lattice Semiconductor Corporation

5555 N.E. Moore Court

Hillsboro, Oregon. 97124

HD

R-6

0 B

ase

Boa

rd S

chem

atic

B

Co

re P

ow

er

B

310

Wed

nesd

ay, S

epte

mbe

r 21

, 201

1

Titl

e

Siz

eP

roje

ctR

ev

Dat

e:S

heet

of

Lattice Semiconductor Corporation

5555 N.E. Moore Court

Hillsboro, Oregon. 97124

HD

R-6

0 B

ase

Boa

rd S

chem

atic

B

Co

re P

ow

er

B

310

Wed

nesd

ay, S

epte

mbe

r 21

, 201

1

C25

1UF-16V-0805SMT

C14

5

10NF-0402SMT

10uF

CO

UT

2

FB

2

BLM

41P

G60

0SN

1

C15

5

1NF-0402SMT

C17

0

100NF-0402SMT

C13

7

100NF-0402SMT

+C

113 22UF-16V-TANTBSMT

GND

GND

GND

GND

U2L

EC

P3_

70E

A_B

GA

484

1R

13

2L1

1

3M

10

4E

8

5U

17

6U

14

7N

13

8A

B16

9N

21

10G

11

11K

10

12C

19

13T

13

14K

11

15P

18

16A

A11

17V

7

18M

3

19L1

0

20V

9

21H

15

22F

6

23L1

3

24F

17

25T11

26R8

27B17

28A1

29R15

30AA14

31V8

32P16

33U6

34N8

35U21

36J21

37K15

38L20

39H13

40L16

41A22

42J5

43V16

44W7

45AA8

46B13

47B5

48AB7

49L7

50H

1051

M11

52W

2053

M7

54V

1555

AA

956

T12

57P

258

E21

59C

1160

AA

1261

Y16

62V

1463

AA

1664

H18

65M

1266

R5

67W

1668

AB

2269

H8

70N

1071

E14

72U

1073

F2

98N11

97K13

96B9

95G12

94V2

93K8

92M16

91Y4

90N12

89AA7

88U13

87AA10

86AA15

85D3

84M13

83AB1

82AA13

81T10

80U9

79L12

78AA18

77K12

76R10

75K2

74Y7

XR

ES

N15

PP

6

1 2

C12

9

10NF-0402SMT

C14

8

10NF-0402SMT

C15

6

100NF-0402SMT

C13

6

10NF-0402SMT

PP

5

1 2

FB

10B

LM41

PG

600S

N1

CB

YP

2

0.01

uF

C14

9

10NF-0402SMT

U2M

EC

P3_

70E

A_B

GA

484

VC

CP

LL_L

_K9

K9

VC

CP

LL_L

_N9

N9

VC

CP

LL_R

_K14

K14

VC

CP

LL_R

_N14

N14

TP

26

C12

8 100NF-0402SMT

C14

4

100NF-0402SMT

C14

6

100NF-0402SMT

C12

6

1NF-0402SMT

FB

1

BLM

41P

G60

0SN

1C

142

1NF-0402SMT

R90

10k1

%

C16

8 1UF-16V-0805SMT

C16

5

100NF-0402SMT

C46

1UF-16V-0805SMT

C13

9

10NF-0402SMT

CB

YP

1

0.01

uF

+C

154 22UF-16V-TANTBSMT

+C

182

22UF-16V-TANTBSMT

1uF

CIN

2

VCC

U2J

EC

P3_

70E

A_B

GA

484

1J1

1

2J9

3P

11

4P

12

5J1

4

6J1

3

7M

14

8M

9

9P

9

10L9

11P

14

12P

10

13J1

2

14J1

0

15L1

4

16P

13

C16

3

10NF-0402SMT

C14

7

10NF-0402SMT

C16

2

10NF-0402SMT

TP

25T

P24

C13

4 10NF-0402SMT

C42

1UF-16V-0805SMT

C16

0

1NF-0402SMT

FB

4

BLM

41P

G60

0SN

1

C13

1

1NF-0402SMT

TP

23

C14

3

10NF-0402SMT

C16

1 1NF-0402SMT

+C

179

22UF-16V-TANTBSMT

10uF

CO

UT

1

U4

LT30

29E

DE

BY

P1

1

VIN1_1313

BY

P2

8

AD

J29

GND5

AD

J116

EN

15

VO

UT

14

EN

210

VO

UT

27

VIN212

VO

UT

1_3

3V

OU

T2_

66

VIN114

VIN2_1111

NC2

GND_PAD17

C15

2

100NF-0402SMT

C17

7

100NF-0402SMT

C15

8

10NF-0402SMT

C15

3

1NF-0402SMT

C13

3

10NF-0402SMT

C41

1UF-16V-0805SMT

C15

9

100NF-0402SMT

C14

1

10NF-0402SMT

C47 100NF-0402SMT

U2K

EC

P3_

70E

A_B

GA

484

VC

CA

UX

_M8

M8

VC

CA

UX

_R11

R11

VC

CA

UX

_H11

H11

VC

CA

UX

_M15

M15

VC

CA

UX

_R12

R12

VC

CA

UX

_H12

H12

VC

CA

UX

_L8

L8

VC

CA

UX

_L15

L15

VC

CA

_V10

V10

VC

CA

_V13

V13

VC

CA

_U12

U12

VC

CA

_U11

U11

+C

178

22UF-16V-TANTBSMT

1uF

CIN

1

25

HDR-60 Base Board – Revision B

Figure 18. 100Base-T PHY/RJ45

5 5

4 4

3 3

2 2

1 1

DD

CC

BB

AA

1000

Bas

e-T

PH

Y/R

J45

PH

Y s

ho

uld

po

wer

do

wn

wh

en n

ot i

n u

se

GM

II de

faul

t

Pla

ce r

esis

tor

near

osc

n.c.

n.c.

n.c.

TR

D o

utpu

ts a

re a

ll 10

0 oh

m m

atch

ed le

ngth

diff

pai

rs to

RJ4

5 co

nnec

tor.

Pla

ce T

DR

(0)

resi

stor

com

mon

end

s to

geth

er.

+1.

2v

EC

P3

Sym

bol P

ins:

* T

rue

LVD

S O

utpu

t^

DQ

SD

ensi

ty s

how

n as

-70

Pla

ce o

sc n

ear

U3

LED

[1..4

] pow

ers

up to

: 110

1 to

set

for

auto

-neg

otia

te, f

ull d

uple

x, 1

0/10

0/10

00B

ase-

T

LED

[21]

= L

ink

spee

d00

: 100

0Bas

e-T

(O

rang

e &

Gre

en O

N)

01: 1

00B

ase-

T (

Ora

nge

ON

)10

: 10B

ase-

T (

Gre

en O

N)

11: n

o lin

k

LED

3 =

Act

ivity

(Y

ello

w O

N)

All

high

spe

ed s

igna

ls u

se 5

0 oh

m tr

aces

TX

and

RX

trac

es a

re a

ll m

atch

ed le

ngth

GS

RN

Fer

rites

are

all

0.45

ohm

, 200

ma,

060

3

RX

D2

RX

D0

RX

D1

RX

D3

RX

D4

RX

D5

RX

D6

RX

D7

RX

_ER

RX

_DV

RX

C

TX

D0

TX

D1

TX

D2

TX

D3

TX

D4

TX

D5

TX

D6

TX

D7

TX

_ER

TX

_EN

TX

C

CR

SC

OL

GT

XC

LK

MD

C

GT

XC

LK

MD

C

RX

D5

CR

S

RX

D7

RX

D4

CO

L

RX

D3

RX

D6

RX

_ER

TX

CR

XD

0

MD

IO

RX

CR

X_D

V

RX

D1

TX

D5

TX

D4

TX

D6

TX

_EN

TX

D0

TX

D7

TX

D3

TX

D2

TX

D1

TX

_ER

P_2

5MH

z

P_2

5MH

z

PH

Y_A

0

RE

SE

TN

LED

4

RE

SE

TN

PH

Y_L

OW

PW

R

PH

Y_A

0P

HY

_A1

PH

Y_A

2P

HY

_A3

PH

Y_A

4

TD

R0_

P0

TD

R0_

M0

LED

1LE

D2

LED

2LE

D3

XT

ALV

DD

PLL

VD

DA

VD

DL

MD

IO

AV

DD

RE

GS

UP

PLY

RE

GO

UT

DV

DD

AV

DD

BIA

SV

DD

AV

DD

XT

ALV

DD

RE

GO

UT

PLL

VD

D

RE

GO

UT

AV

DD

L

RE

GO

UT

125M

Hz

PH

Y_A

1P

HY

_A2

PH

Y_A

3P

HY

_A4

PH

Y_L

OW

PW

R

LED

1

LED

3

EC

P3_

GS

RN

125M

Hz

RX

D2

3_3V

3_3V

3_3V

3_3V

3_3V

3_3V

3_3V

3_3V

3_3V

3_3V

3_3V

Titl

e

Siz

eP

roje

ctR

ev

Dat

e:S

heet

of

Lattice Semiconductor Corporation

5555 N.E. Moore Court

Hillsboro, Oregon. 97124

HD

R-6

0 B

ase

Boa

rd S

chem

atic

B

1000

Bas

e-T

PH

Y/R

J45

B

410

Wed

nesd

ay, S

epte

mbe

r 21

, 201

1

Titl

e

Siz

eP

roje

ctR

ev

Dat

e:S

heet

of

Lattice Semiconductor Corporation

5555 N.E. Moore Court

Hillsboro, Oregon. 97124

HD

R-6

0 B

ase

Boa

rd S

chem

atic

B

1000

Bas

e-T

PH

Y/R

J45

B

410

Wed

nesd

ay, S

epte

mbe

r 21

, 201

1

Titl

e

Siz

eP

roje

ctR

ev

Dat

e:S

heet

of

Lattice Semiconductor Corporation

5555 N.E. Moore Court

Hillsboro, Oregon. 97124

HD

R-6

0 B

ase

Boa

rd S

chem

atic

B

1000

Bas

e-T

PH

Y/R

J45

B

410

Wed

nesd

ay, S

epte

mbe

r 21

, 201

1

R17

100R

R04

02

C31

10NF-0402SMT

R24

DN

IR

0402

R30

DN

IR

0603

R19

4_7K

R06

03

C18

0

100NF-0603SMT

C20

1

100N

F-0

603S

MT

R96

4_7K

R04

02

R16

301K

R04

02

R21

DN

IR

0603

C26

10uF/6V3/X7R

C21

5

100N

F-0

603S

MT

C16

7 1NF-0402SMT

50 o

hm O

DT

100

FB

GA

U3

BC

M54

810

NC

3A

3

NC

4A

4

OVDD_RGMIIA5 OVDDA6

NC

21C

1

GND1C2

GND2C9

DVDD1C10

DVDD2D1

TD

ID

6T

CK

D7

TM

SD

8

DVDD3D10

NC

46E

6

NC

47E

7

NC

48E

8

NC

49E

9

NT

RS

TE

10

XT

ALI

F1

XT

ALO

F2

REGOUTF3

NC

56F

6

NC

57F

7

NC

58F

8

NC

59F

9

TD

OF

10

NC

62G

2

REGSUPPLYG3

NC

64G

4

NC

65G

5

TEST2G8

TEST3G9

RDACH1

NC

72H

2

NC

73H

3

NC

77H

7

TEST0H8

TEST1H9

TR

D[0

]+K

1

TR

D[0

]-K

2

TR

D[1

]-K

3T

RD

[1]+

K4

TR

D[2

]+K

5

TR

D[2

]-K

6

TR

D[3

]-K

7T

RD

[3]+

K8

RX

_ER

A1

RX

CA

2

GT

XC

LKA

7

TX

_EN

A8

TX

_ER

A9

TX

D[7

]A

10

CLK

125

B1

RX

_DV

B2

RX

D[7

]B

3R

XD

[6]

B4

RX

D[5

]B

5

TX

D[2

]B

6

TX

D[3

]B

7

TX

D[4

]B

8

TX

D[5

]B

9

TX

D[6

]B

10

RX

D[2

]C

3

RX

D[3

]C

4

RX

D[4

]C

5

TX

CC

6

TX

D[0

]C

7

TX

D[1

]C

8

RGMII_SEL[1]D2

RX

D[1

]D

3R

XD

[0]

D4

CO

LD

5

MD

CE

3

NR

ES

ET

E4

CR

SE

5

MD

IOF

4

LOW

PW

RF

5

LED

[2]

G6

LED

[1]

G7

LED

[4]

G10

TV

CO

IH

4

RGMII_SEL[0]H5

LED

[3]

H6

PH

YA

[0]

H10

AVDD1J2

AVDDL1J3

PH

YA

[2]

J9P

HY

A[1

]J1

0

PH

YA

[4]

K9

PH

YA

[3]

K10

GND3D9

GND4E2

AVDDL2J4

AVDD2J8

PLLVDDE1

XTALVDDG1

BIASVDDJ1

GND5J5

GND6J6

GND7J7

FB

20

BLM

21A

G60

1SN

1D

RJ45 (1..8)

J12A

0862

-1J1

T-4

3-F

LED

1_Y

EL_

K11

TR

D3+

7

TR

D3-

8

TR

D4+

9

CT6

LED

1_A

12

TR

D4-

10

LED

2_O

RN

_K15

LED

2_G

RN

_K13

GND1

LED

2_A

14

TR

D2+

4

TR

D2-

5

TR

D1+

2

TR

D1-

3

U8

LFB

0001

-R

TP

1+1

CT

13

TP

1-2

NC

44

NC

55

MT

P1-

7

NC

66

MT

P1+

8

Y4

DS

C10

01-C

E-2

5.00

0

DS

C10

01-C

E-2

5-00

0D

I

VC

C4

OU

T3

GN

D2

EN

1

R29

DN

IR

0603

C50

10uF/6V3/X7R

C18

5 10uF/6V3/X7R

C54

100N

F-0

603S

MT

R18

1_24

KR

0402

C44

100NF-0603SMT

C45

100NF-0603SMT

C18

7

100NF-0603SMT

C43

10uF/6V3/X7R

C17

31u

FC

0603

TP

6

SW

1

SW

PU

SH

BU

TT

ON

-SP

ST

FB

16Z

-600

ohm

/ 74

2792

65

12

FB

17Z

-600

ohm

/ 74

2792

65

12

R98

4_7K

R04

02

R23

4_7K

R04

02

C18

4

100NF-0603SMT

C16

9 1NF-0402SMT

C20

01u

F, X

5R, 6

.3V

R35

150

R04

02

BA

NK

7

U2E

EC

P3_

70E

A_B

GA

484

VC

CIO

7_J8

J8

VC

CIO

7_K

7K

7

PL8

AE

3

PL1

0A*

E5

PL8

BD

4

PL1

0B*

E4

PL1

1A*

B2

PL1

3A^

F5

PL1

1B*

C2

PL1

3B^

F4

PL1

4AD

2

PL1

6A*

G4

PL1

4BD

1

PL1

6B*

G5

PL2

6AE

2

PL2

8A*

H4

PL2

6BF

3

PL2

8B*

J4

PL2

9A*

B1

PL3

1A^

H5

PL2

9B*

C1

PL3

1B^

H6

PL3

2AG

3

PL3

4A*/

VR

EF

1_7

E1

PL3

2BG

2

PL3

4B*/

VR

EF

2_7

F1

PL3

5AG

1

PL3

7A*/

LUM

0_G

DLL

T_I

N_A

J7P

L35B

H1

PL3

7B*/

LUM

0_G

DLL

T_I

N_B

J6

PL3

8A*/

LUM

0_G

DLL

T_F

B_A

H2

PL4

0A^

J3P

L38B

*/LU

M0_

GD

LLT

_FB

_BH

3

PL4

0B^

K3

PL4

1AJ2

PL4

3A*/

PC

LKT

7_0

K4

PL4

1BJ1

PL4

3B*/

PC

LKC

7_0

K5

PL4

3E_A

/LU

M0_

GP

LLT

_FB

_AK

1

PL4

3E_C

/LU

M0_

GP

LLT

_IN

_AL5

PL4

3E_B

/LU

M0_

GP

LLT

_FB

_BL1

PL4

3E_D

/LU

M0_

GP

LLT

_IN

_BK

6

VT

T7

L6

FB

13

Z-6

00 o

hm /

7427

9265

12

C18

1 10uF/6V3/X7RC

114 100NF-0603SMT

RN

44_

7K74

1X08

3472

JP1 2 3 4

8 7 6 5

C18

3 10uF/6V3/X7R

R10

74_

7KR

0603

TP

1

TP

5

C19

90.

1uF

1 2

C49

10uF/6V3/X7R

R11

9

4_7K

R10

34_

7KR

0402

C52

33uF/6V3

R20

1_24

KR

0402

C11

2 100NF-0603SMT

FB

14Z

-600

ohm

/ 74

2792

65

12

R32

0RR

0603

C48

10uF/6V3/X7R

R31

0RR

0603

R33

150

R04

02

FB

18Z

-600

ohm

/ 74

2792

65

12

J11

BN

C

12 3 4

FB

15

Z-6

00 o

hm /

7427

9265

12

C15

1 10NF-0402SMT

R11

533

R04

02

R25

DN

IR

0402

R34

150

R04

02

C51

100NF-0603SMT

R22

DN

IR

0402

TP

2

FB

5Z

-600

ohm

/ 74

2792

65

12

R99

4_7K

R04

02

R10

0D

NI R06

03

C18

6

100NF-0603SMT

FB

3

Z-6

00 o

hm /

7427

9265

12

C19

4

100NF-0603SMT

R10

54_

7KR

0402

26

HDR-60 Base Board – Revision B

Figure 19. DVI

5 5

4 4

3 3

2 2

1 1

DD

CC

BB

AA

DV

I

HD

MI/D

VI O

utpu

t

PIN

NO

TM

DS

DA

TA

2+

TM

DS

DA

TA

2 S

HIE

LD

TM

DS

DA

TA

2-

TM

DS

DA

TA

1+

TM

DS

DA

TA

1 S

HIE

LD

TM

DS

DA

TA

1-

TM

DS

DA

TA

0+

TM

DS

DA

TA

0 S

HIE

LD

1

TM

DS

DA

TA

0-

TM

DS

CLO

CK

+

TM

DS

CLO

CK

SH

IELD

TM

DS

CLO

CK

-

CE

C

NC

SC

L

SD

A

DD

C/C

EC

GR

OU

ND

+5V

PO

WE

R

HO

T P

LUG

DE

TE

CT

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

NA

ME

EC

P3

Sym

bol P

ins:

* T

rue

LVD

S O

utpu

t^

DQ

SD

ensi

ty s

how

n as

-70

All

high

spe

ed s

igna

ls u

se 5

0 oh

m tr

aces

DV

I sig

nals

are

all

mat

ched

leng

th

{6}

DD

C_S

DA

DD

C_S

DA

HP

D

TM

DS

OU

T_D

AT

A2+

TM

DS

OU

T_D

AT

A2-

TM

DS

OU

T_D

AT

A1+

TM

DS

OU

T_D

AT

A1-

TM

DS

OU

T_D

AT

A0+

TM

DS

OU

T_D

AT

A0-

TM

DS

OU

T_D

AT

AC

LK+

TM

DS

OU

T_D

AT

AC

LK-

CE

C_O

UT

DD

C_S

CL

DV

I_H

DO

UT

N3

DV

I_H

DO

UT

P3

DV

I_H

DO

UT

N2

DV

I_H

DO

UT

P2

DV

I_H

DO

UT

N1

DV

I_H

DO

UT

P1

DV

I_H

DO

UT

N0

DV

I_H

DO

UT

P0

5_0V

SH

IELD

5_0V

PC

SA

_VC

CIB

PC

SA

_VC

CO

B

DV

I_D

DC

_SC

L

DV

I_D

DC

_SD

A

DV

I_H

PD

Titl

e

Siz

eP

roje

ctR

ev

Dat

e:S

heet

of

Lattice Semiconductor Corporation

5555 N.E. Moore Court

Hillsboro, Oregon. 97124

HD

R-6

0 B

ase

Boa

rd S

chem

atic

B

DV

I

B

510

Wed

nesd

ay, S

epte

mbe

r 21

, 201

1

Titl

e

Siz

eP

roje

ctR

ev

Dat

e:S

heet

of

Lattice Semiconductor Corporation

5555 N.E. Moore Court

Hillsboro, Oregon. 97124

HD

R-6

0 B

ase

Boa

rd S

chem

atic

B

DV

I

B

510

Wed

nesd

ay, S

epte

mbe

r 21

, 201

1

Titl

e

Siz

eP

roje

ctR

ev

Dat

e:S

heet

of

Lattice Semiconductor Corporation

5555 N.E. Moore Court

Hillsboro, Oregon. 97124

HD

R-6

0 B

ase

Boa

rd S

chem

atic

B

DV

I

B

510

Wed

nesd

ay, S

epte

mbe

r 21

, 201

1

C21

81u

F

C59

100n

F

C60 10

0nF

C56

1uF

C22

2

10nF

C58

1uF

SE

RD

ES

Qu

ad A

U2F

EC

P3_

70E

A_B

GA

484

PC

SA

_HD

INP

3Y

8

PC

SA

_VC

CIB

3W

8

PC

SA

_HD

INN

3Y

9

PC

SA

_VC

CO

B3

W9

PC

SA

_HD

OU

TP

3A

B8

PC

SA

_HD

OU

TN

3A

B9

PC

SA

_VC

CO

B2

W10

PC

SA

_HD

OU

TN

2A

B10

PC

SA

_HD

OU

TP

2A

B11

PC

SA

_VC

CIB

2W

11

PC

SA

_HD

INN

2Y

10P

CS

A_H

DIN

P2

Y11

PC

SA

_RE

FC

LKP

V12

PC

SA

_RE

FC

LKN

V11

PC

SA

_HD

INP

1Y

12

PC

SA

_HD

INN

1Y

13

PC

SA

_VC

CIB

1W

12

PC

SA

_HD

OU

TP

1A

B12

PC

SA

_VC

CO

B1

W13

PC

SA

_HD

OU

TN

1A

B13

PC

SA

_HD

OU

TN

0A

B14

PC

SA

_HD

OU

TP

0A

B15

PC

SA

_VC

CO

B0

W14

PC

SA

_HD

INN

0Y

14

PC

SA

_VC

CIB

0W

15

PC

SA

_HD

INP

0Y

15

R13

2D

NI

R13

010

0R

R36

1M

FB

21

BLM

41P

G60

0SN

1

C21

91u

F

J13

5002

54_1

927

11

22

33

44

55

66

77

88

99

1010

1111

1212

1313

1414

1515

1616

1717

1818

1919

2020

2121

2222

2323

C22

11u

F

R13327K

R1354.7K

C55

1uF

R1344.7K

C22

01u

F

R13

110

0R

C57

1uF

27

HDR-60 Base Board – Revision B

Figure 20. USB Download

5 5

4 4

3 3

2 2

1 1

DD

CC

BB

AA

US

B D

ownl

oad

EC

P3

Sym

bol P

ins:

* T

rue

LVD

S O

utpu

t^

DQ

SD

ensi

ty s

how

n as

-70

Local JTAG header (ispVM)

TMS

TCK

DONE

INITn

+3.3V

TDI

GND

TDO

PROGRAMn

DO

NE

6 M

Hz

PR

OG

INIT

N

PR

OG

RA

MN

{5}

(Upp

er U

SB

, isp

VM

)

{5}

FP

GA

_CS

SP

I0N

_DI

SP

I0_QNW

FLA

SH

_DIS

FP

GA

_MC

LKF

PG

A_S

ISP

I

PR

OG

RA

MN

INIT

N

US

B1_

CS

US

B1_

SK

US

B1_

D

US

B1_

Q

FP

GA

_MC

LK

FP

GA

_SIS

PI

FP

GA

_CS

SP

I0N

_DI

SP

I0_Q

US

B_T

DO

US

B_T

DI

US

B_T

MS

US

B_T

CK

FP

GA

_WR

ITE

N

FP

GA

_CS

NF

PG

A_C

S1N

TX

D_U

AR

TR

XD

_UA

RT

RX

D_U

AR

TT

XD

_UA

RT

DO

NE

3_3V

3_3V

3_3V

5_0V

5_0V

3_3V

3_3V

3_3V

3_3V

3_3V

3_3V

3_3V

3_3V

5_0V

3_3V

3_3V

3_3V

DV

I_D

DC

_SC

L

DV

I_D

DC

_SD

A

DV

I_H

PD

Titl

e

Siz

eP

roje

ctR

ev

Dat

e:S

heet

of

Lattice Semiconductor Corporation

5555 N.E. Moore Court

Hillsboro, Oregon. 97124

HD

R-6

0 B

ase

Boa

rd S

chem

atic

B

US

B D

ow

nlo

ad

B

610

Wed

nesd

ay, S

epte

mbe

r 21

, 201

1

Titl

e

Siz

eP

roje

ctR

ev

Dat

e:S

heet

of

Lattice Semiconductor Corporation

5555 N.E. Moore Court

Hillsboro, Oregon. 97124

HD

R-6

0 B

ase

Boa

rd S

chem

atic

B

US

B D

ow

nlo

ad

B

610

Wed

nesd

ay, S

epte

mbe

r 21

, 201

1

Titl

e

Siz

eP

roje

ctR

ev

Dat

e:S

heet

of

Lattice Semiconductor Corporation

5555 N.E. Moore Court

Hillsboro, Oregon. 97124

HD

R-6

0 B

ase

Boa

rd S

chem

atic

B

US

B D

ow

nlo

ad

B

610

Wed

nesd

ay, S

epte

mbe

r 21

, 201

1

C12

1 1NF-0402SMT

TP

12

R11

31K D

I

R86 0R

R11

42_

2KD

I

LED

2re

d

R65

4_7K

R12

10K

R13

6D

NI

VCC

GND

TDO

TDI

ispEN_N

NC

TMS

TCK

DONE

INITN

J3 HE

AD

ER

10

DN

I

12 3 4 5 6

7

8 9 10

R11 2k

2

R10

20R

R71

4_7K

R13

2k2

C19

0

33nF

R10

40R

TP

11

R10

933

0R

TP

19

TP

13T

P20

TP

15

R11

210

k TP

18

R40

10k

TP

16

R10

10R

R8 2k

2

C18

9

12pF

DI

R12

627

R1

1_0k

U7

M93

C46

-WM

N6T

P

CS

1

CLK

2

DIN

3

QO

UT

4V

SS

5

OR

G6

N.C

.7

VC

C8

J12C

0862

-1J1

T-4

3-F

US

B+

US

B2_

3

GN

DU

SB

2_4

VP

US

B2_

1

US

B-

US

B2_

2

U5

FT

D22

32D

3V3O

UT

6

US

BD

M8

US

BD

P7

NO

T_R

ST

OU

T5

NO

T_R

ST

IN4

XT

IN43

XT

OU

T44

EE

CS

48

EE

SK

1

EE

DA

TA

2

TE

ST

47

SI/W

UB

26B

CB

US

327

BC

BU

S2

28B

CB

US

129

BC

BU

S0

30

BD

BU

S7

32B

DB

US

633

BD

BU

S5

35B

DB

US

436

BD

BU

S3

37B

DB

US

238

BD

BU

S1

39B

DB

US

040

SI/W

UA

10A

CB

US

311

AC

BU

S2

12A

CB

US

113

AC

BU

S0

15

AD

BU

S7

16A

DB

US

617

AD

BU

S5

19A

DB

US

420

AD

BU

S3

21A

DB

US

222

AD

BU

S1

23A

DB

US

024

NO

T_P

WR

EN

41

AGND45

DGND_99

DGND_1818

DGND_2525

DGND_3434

VCCIOB31 VCCIOA14 DVCC_4242 DVCC_33

AVCC46

Y2

AT

S06

0SM

-1 H

C-4

9/U

S-S

M

DI

12

U9

M25

P64

NH

OLD

1

VC

C2

NC

13

NC

24

NC

35

NC

46

NS

7

Q8

NW

9V

SS

10N

C5

11N

C6

12N

C7

13N

C8

14D

15C

16

R39

10k

R10

60R

R3

4_7k

R13

71K

LED

1re

d

C19

3

100n

F

C21

2

33pF

C6

100n

F

C21

1

33pF

C19

1

100n

F

Q1

MM

BT

3904

1

23

C53

100n

F

R9

2k2

R70

4_7K

TP

7

R2

4_7k

LED

3gr

een

R12

527

C19

512

pFD

I

C21

6

100n

F

BA

NK

8

U2G

EC

P3_

70E

A_B

GA

484

VC

CIO

8_H

16H

16V

CC

IO8_

G16

G16

PR

16B

/BU

SY

/SIS

PI

H20

PR

14B

/D6/

SP

ID1

G20

PR

16A

/D7/

SP

ID0

H19

PR

14A

/D5

G19

PR

13B

/D4/

SO

G18

PR

11B

/D2

D22

PR

13A

/D3/

SI

G17

PR

11A

/D1

C22

PR

10B

/D0/

SP

IFA

ST

NH

17

PR

8B/M

CLK

B22

PR

10A

/WR

ITE

NJ1

6

PR

8A/D

OU

T/C

S0N

/CS

SP

I1N

A21

PR

7B/C

SN

/SN

/CO

NT

1NF

18

PR

5B/D

I/CS

SP

I0N

/CS

SP

IND

21

PR

7A/C

S1N

/HO

LDN

/CO

NT

2NF

19

PR

5AC

21

DO

NE

F21

CC

LKF

20

INIT

ND

20

PR

OG

RA

MN

C20

CF

G0

E20

CF

G1

E19

CF

G2

B21

PT

145B

D19

PT

143B

B20

PT

145A

D18

PT

143A

A20

PT

142B

E17

PT

140B

B19

PT

142A

E18

PT

140A

C18

R27

1k5

R11

6

10k

R10 2k

2

C37

100NF-0603SMT

C61

100n

F

C12

3 10NF-0402SMT

R11

01M D

I

R38

10k

U2H

EC

P3_

70E

A_B

GA

484

VC

CJ

H7

TM

SC

4T

DO

C3

TC

KG

7

TD

IG

6

TP

3

C18

8

100n

F

R4

4_7k

R7

2k2

TP

21

C3

100NF-0603SMT

C62

100n

F

R37

10k

28

HDR-60 Base Board – Revision B

Figure 21. DDR2 Memory

5 5

4 4

3 3

2 2

1 1

DD

CC

BB

AA

DD

R2

Mem

ory

EC

P3

Sym

bol P

ins:

* T

rue

LVD

S O

utpu

t^

DQ

SD

ensi

ty s

how

n as

-70

All

high

spe

ed s

igna

ls u

se 5

0 oh

m tr

aces

Pla

ce r

esis

tors

nea

r U

2

Pla

ce D

QS

res

isto

rs

clos

e to

EC

P3

DD

R2_

CK

_PD

DR

2_C

KE

DD

R2_

CS

ND

DR

2_R

AS

ND

DR

2_C

AS

ND

DR

2_W

EN

DD

R2_

BA

0D

DR

2_B

A1

DD

R2_

A0

DD

R2_

A1

DD

R2_

A2

DD

R2_

A3

DD

R2_

A4

DD

R2_

A5

DD

R2_

A6

DD

R2_

A7

DD

R2_

A8

DD

R2_

A9

DD

R2_

A10

DD

R2_

A11

DD

R2_

A12

DD

R2_

DQ

S1_

PD

DR

2_D

QS

1_N

DD

R2_

DQ

S0_

PD

DR

2_D

QS

0_N

DD

R2_

DM

0D

DR

2_D

Q0

DD

R2_

DQ

1D

DR

2_D

Q2

DD

R2_

DQ

3D

DR

2_D

Q4

DD

R2_

DQ

5D

DR

2_D

Q6

DD

R2_

DQ

7

DD

R2_

DQ

13D

DR

2_D

Q14

DD

R2_

DQ

15

DD

R2_

DQ

8D

DR

2_D

Q9

DD

R2_

DQ

10D

DR

2_D

Q11

DD

R2_

DQ

12

DD

R2_

DM

1

DD

R2_

CK

_ND

DR

2_O

DT

DD

R2_

DQ

9_r

DD

R2_

DQ

14_r

DD

R2_

DQ

12_r

DD

R2_

DQ

S1_

N_r

DD

R2_

DQ

10_r

DD

R2_

DQ

S1_

P_r

DD

R2_

DQ

13_r

DD

R2_

DQ

15_r

DD

R2_

DQ

8_r

DD

R2_

WE

N

DD

R2_

A4

DD

R2_

RA

SN

DD

R2_

A11

DD

R2_

A1

DD

R2_

A7

DD

R2_

A0

DD

R2_

A5

DD

R2_

A6

DD

R2_

CA

SN

DD

R2_

BA

0

DD

R2_

A3

DD

R2_

A12

DD

R2_

A9

DD

R2_

A2

DD

R2_

CS

N

DD

R2_

CK

_ND

DR

2_A

10

DD

R2_

CK

_P

DD

R2_

DM

1_r

DD

R2_

DQ

11_r

DD

R2_

DQ

S0_

P_r

DD

R2_

DQ

0_r

DD

R2_

DQ

7_r

DD

R2_

DQ

1_r

DD

R2_

VR

EF

DD

R2_

DQ

2_r

DD

R2_

DQ

S0_

N_r

DD

R2_

DQ

3_r

DD

R2_

DM

0_r

DD

R2_

DQ

5_r

DD

R2_

DQ

6_r

DD

R2_

DQ

4_r

DD

R2_

OD

T

DD

R2_

CK

E

DD

R2_

A8

DD

R2_

BA

1

DD

R2_

CK

_P

DD

R2_

CK

_N

DD

R2_

VR

EF

DD

R2_

WE

ND

DR

2_C

SN

DD

R2_

RA

SN

DD

R2_

OD

TD

DR

2_C

AS

ND

DR

2_C

KE

DD

R2_

BA

1D

DR

2_B

A0

DD

R2_

A0

DD

R2_

A1

DD

R2_

A2

DD

R2_

A3

DD

R2_

A4

DD

R2_

A5

DD

R2_

A9

DD

R2_

A6

DD

R2_

A10

DD

R2_

A7

DD

R2_

A11

DD

R2_

A8

DD

R2_

A12

F_2

7MH

z

DD

R2_

DQ

9

DD

R2_

DQ

14

DD

R2_

DQ

12

DD

R2_

DQ

10

DD

R2_

DQ

13

DD

R2_

DQ

15

DD

R2_

DQ

8

DD

R2_

DQ

11

DD

R2_

DQ

0

DD

R2_

DQ

7

DD

R2_

DQ

1D

DR

2_D

Q2

DD

R2_

DQ

3

DD

R2_

DQ

5D

DR

2_D

Q6

DD

R2_

DQ

4

DD

R2_

DQ

9_r

DD

R2_

DQ

14_r

DD

R2_

DQ

12_r

DD

R2_

DQ

10_r

DD

R2_

DQ

13_r

DD

R2_

DQ

15_r

DD

R2_

DQ

8_r

DD

R2_

DQ

11_r

DD

R2_

DQ

0_r

DD

R2_

DQ

7_r

DD

R2_

DQ

1_r

DD

R2_

DQ

2_r

DD

R2_

DQ

3_r

DD

R2_

DQ

5_r

DD

R2_

DQ

6_r

DD

R2_

DQ

4_r

DD

R2_

DM

0D

DR

2_D

M1

DD

R2_

DM

0_r

DD

R2_

DM

1_r

DD

R2_

DQ

S0_

PD

DR

2_D

QS

0_N

DD

R2_

DQ

S1_

PD

DR

2_D

QS

1_N

DD

R2_

DQ

S1_

N_r

DD

R2_

DQ

S1_

P_r

DD

R2_

DQ

S0_

P_r

DD

R2_

DQ

S0_

N_r

DD

R2_

VR

EF

3_3V

1_8V

1_8V

3_3V

1_8V

1_8V

1_8V

1_8V

DD

R2_

VT

T

DD

R2_

VT

T

DD

R2_

VT

T

DD

R2_

VT

T

DD

R2_

VT

T

DD

R2_

VT

T

DD

R2_

VT

T

F_2

7MH

z

Titl

e

Siz

eP

roje

ctR

ev

Dat

e:S

heet

of

Lattice Semiconductor Corporation

5555 N.E. Moore Court

Hillsboro, Oregon. 97124

HD

R-6

0 B

ase

Boa

rd S

chem

atic

B

DD

R2

Mem

ory

B

710

Wed

nesd

ay, S

epte

mbe

r 21

, 201

1

Titl

e

Siz

eP

roje

ctR

ev

Dat

e:S

heet

of

Lattice Semiconductor Corporation

5555 N.E. Moore Court

Hillsboro, Oregon. 97124

HD

R-6

0 B

ase

Boa

rd S

chem

atic

B

DD

R2

Mem

ory

B

710

Wed

nesd

ay, S

epte

mbe

r 21

, 201

1

Titl

e

Siz

eP

roje

ctR

ev

Dat

e:S

heet

of

Lattice Semiconductor Corporation

5555 N.E. Moore Court

Hillsboro, Oregon. 97124

HD

R-6

0 B

ase

Boa

rd S

chem

atic

B

DD

R2

Mem

ory

B

710

Wed

nesd

ay, S

epte

mbe

r 21

, 201

1

C10

8

100n

f

C15

100n

F

C1910nf

U1

IS43

DR

1632

0B

VD

D_A

1A

1

VD

D_E

1E

1

VD

D_J

9J9

VD

D_M

9M

9

VS

S_A

3A

3

VS

S_E

3E

3

VS

S_N

1N

1V

SS

_J3

J3

VD

DQ

_A9

A9

VD

DQ

_C1

C1

VD

DQ

_C3

C3

VD

DQ

_C7

C7

VS

SQ

_A7

A7

VS

SQ

_B2

B2

VS

SQ

_B8

B8

VS

SQ

_D2

D2

VR

EF

J2

VD

DL

J1

VS

SD

LJ7

OD

TK

9

N.C

.1A

2

N.C

.2E

2

N.C

.3L1

N.C

.4R

3

VD

DQ

_C9

C9

VD

DQ

_E9

E9

VD

DQ

_G1

G1

VD

DQ

_G3

G3

VS

SQ

_D8

D8

VS

SQ

_E7

E7

VS

SQ

_F2

F2

VS

SQ

_F8

F8

VD

DQ

_G7

G7

VD

DQ

_G9

G9

VS

SQ

_H2

H2

VS

SQ

_H8

H8

VD

D_R

1R

1

VS

S_P

9P

9

N.C

.5R

7

N.C

.6R

8

A1

M3

A2

M7

A3

N2

A4

N8

A5

N3

A6

N7

A7

P2

A8

P8

A9

P3

A10

/AP

M2

A11

P7

A12

R2

DQ

0G

8

DQ

1G

2

DQ

2H

7

DQ

3H

3

DQ

4H

1

DQ

5H

9

DQ

6F

1

DQ

7F

9

DQ

8C

8

DQ

9C

2

DQ

10D

7

DQ

11D

3

DQ

12D

1

DQ

13D

9

DQ

14B

1

DQ

15B

9

CLK

J8

CK

EK

2

NO

T_C

SL8

NO

T_R

AS

K7

NO

T_C

AS

L7

NO

T_W

EK

3

BA

1L3

BA

0L2

NO

T_U

DQ

SA

8

LDQ

SF

7

NO

T_C

LKK

8

UD

QS

B7

NO

T_L

DQ

SE

8

UD

MB

3

LDM

F3

A0

M8

R74

33R

R04

02

C94100nF

RN

3

100

OH

M A

RR

AY

DI

1 2 3 4 5 6 7 8910111213141516

R61

50R

C11

1

100n

f

C12

100n

f

R68

33R

R04

02

R64

DN

I

FB

8B

LM41

PG

600S

N1

R82

33R

R04

02

C24100nF

C10

2

22uF

/ 6V

3

R77

33R

R04

02

R84

33R

R04

02

R83

33R

R04

02

FB

9B

LM41

PG

600S

N1

C9710nf

C10

5

10nf

R67

33R

R04

02

C11

10nf

RN

2

100

OH

M A

RR

AY

DI

1 2 3 4 5 6 7 8910111213141516

C11

5

1uf

R72

33R

R04

02

C1710nf

R81

33R

R04

02

R63

33R

R04

02

C11

0

10nf

C96100nF

R73

33R

R04

02

R85

33R

R04

02

R66

33R

R04

02

C14

100n

f

C18100nF

C10

6

10nf

R78

33R

R04

02

RN

1

100

OH

M A

RR

AY

DI

1 2 3 4 5 6 7 8910111213141516 R62

33R

R04

02

R80

33R

R04

02

+C88 47

uF

R76

33R

R04

02

C10

9

1uf

C2210nf

C2010nf

C9810nf

R88

40_2

RR

0402

C10

3

100n

f

R14

33R

R04

02

C1610nf

BA

NK

3

U2I

EC

P3_

70E

A_B

GA

484

VC

CIO

3_P

15P

15V

CC

IO3_

N16

N16

PB

133A

U16

PB

133B

U15

PB

134A

AB

17

PB

136A

T14

PB

134B

AA

17

PB

136B

R14

PB

137A

AB

18

PB

139A

W18

PB

137B

AB

19

PB

139B

W17

PB

140A

Y17

PB

142A

V18

PB

140B

Y18

PB

142B

V17

PB

143A

AA

19

PB

145A

T15

PB

143B

Y19

PB

145B

T16

PR

97B

*A

B20

PR

95B

V19

PR

97A

*A

A20

PR

95A

W19

PR

94B

^Y

20

PR

92B

*U

18

PR

94A

^A

A21

PR

92A

*U

19P

R91

B*

T18

PR

89B

AB

21

PR

91A

*T

19

PR

89A

AA

22P

R61

E_D

/RLM

1_G

PLL

T_I

N_B

T17

PR

61E

_B/R

LM1_

GP

LLT

_FB

_BV

20

PR

61E

_C/R

LM1_

GP

LLT

_IN

_AR

17

PR

61E

_A/R

LM1_

GP

LLT

_FB

_AV

21P

R61

B*

R18

PR

59B

W21

PR

61A

*R

19

PR

59A

Y21

PR

58B

^U

20

PR

56B

*W

22

PR

58A

^T

21

PR

56A

*Y

22P

R55

B*

P17

PR

53B

V22

PR

55A

*R

16

PR

53A

U22

PR

52B

*/V

RE

F2_

3N

20

PR

50B

R20

PR

52A

*/V

RE

F1_

3P

20

PR

50A

T20

PR

49B

^P

19

PR

47B

*T

22

PR

49A

^N

18

PR

47A

*R

22P

R46

B*/

PC

LKC

3_0

M19

PR

44B

R21

PR

46A

*/P

CLK

T3_

0N

19

PR

44A

P22

VT

T3

M17

U12

LP29

98

GN

D1

NS

D2

VS

EN

SE

3

VR

EF

4V

DD

Q5

AV

IN6

PV

IN7

VT

T8

C11

7

10nf

C100100nF

+C89 47

uF

R79

33R

R04

02

C10

100n

F

R91

49_9

RR

0402

R15

33R

R04

02

C10

7

100n

f

C23100nF

FB

11B

LM41

PG

600S

N1

+C

93

47uF

C11

6

22uF

/ 6V

3

C21100nf

C99100nF

R75

33R

R04

02

+C

13

47uF

C11

8

100n

f

R60

50R

C9510nf

C92

10nf

C9100nF

C10

1

22uF

/ 6V

3

R59

1k

C10

4

1uf

R69

33R

R04

02

29

HDR-60 Base Board – Revision B

Figure 22. Head Board5 5

4 4

3 3

2 2

1 1

DD

CC

BB

AA

Hea

d B

oard

EC

P3

Sym

bol P

ins:

* T

rue

LVD

S O

utpu

t ̂D

QS

Den

sity

sho

wn

as -

70

{9}

{9}

Par

alle

l

HiS

PI

Apt

ina

Pla

ce 1

00 o

hm r

esis

tors

as

clos

e as

pos

sibl

e to

EC

P3

pins

All

high

spe

ed s

igna

ls u

se 5

0 oh

m tr

aces

U2-J22 and U2-K22 are routed

as a matched length diff pair

HE

AD

_DO

UT0

HE

AD

_DO

UT2

HE

AD

_DO

UT4

HE

AD

_DO

UT6

HE

AD

_DO

UT8

HE

AD

_LIN

E_V

ALI

DH

EA

D_S

P7

HE

AD

_FR

AM

E_V

ALI

DH

EA

D_S

HIP

_CLK

HE

AD

_PIX

CLK

HE

AD

_DO

UT1

HE

AD

_DO

UT3

HE

AD

_DO

UT5

HE

AD

_DO

UT7

HE

AD

_DO

UT9

HE

AD

_SP

5H

EA

D_S

EN

SO

R_R

ES

ETN

HE

AD

_SH

IP_D

ATA

HE

AD

_SP

6

HE

AD

_MC

LK

HE

AD

_DO

UT1

0H

EA

D_D

OU

T11

HE

AD

_DO

UT1

2H

EA

D_D

OU

T13

HE

AD

_DO

UT1

4H

EA

D_D

OU

T15

HE

AD

_SP

0H

EA

D_S

P1

HE

AD

_SP

2H

EA

D_G

SH

T_C

TLH

EA

D_T

RIG

GE

R

STA

ND

BY

OU

TPU

T_E

N_B

AR

RE

SE

T_B

AR

TRIG

GE

RD

OU

T11

DO

UT6

LIN

E_V

ALI

DE

XTC

LK_F

PG

A

OS

C_E

NA

BLE

SD

ATA

SC

LKS

AD

DR

DO

UT9

DO

UT4

FR

AM

E_V

ALI

DP

IXC

LK

SLV

S_3

PS

LVS

_3N

SLV

S_5

P

SLV

S_C

P

SLV

S_4

NH

ISP

I_LE

D

SLV

S_C

NS

LVS

_4P

VD

DIO

_rH

SLV

S_5

NS

LVS

_6P

SLV

S_6

NS

LVS

_0P

SLV

S_1

P

SLV

S_0

N

SLV

S_1

N

SLV

S_2

PS

LVS

_2N

HE

AD

_VB

US

_OU

T

SLV

S_C

PS

LVS

_CN

SLV

S_0

PS

LVS

_0N

SLV

S_1

PS

LVS

_1N

SLV

S_2

PS

LVS

_2N

SLV

S_3

PS

LVS

_3N

SLV

S_4

PS

LVS

_4N

SLV

S_5

NS

LVS

_5P

RE

SE

RV

ED

_1H

ISP

I_S

DA

TAS

LVS

_6N

SLV

S_6

PS

LVS

_7N

SLV

S_7

PS

LVS

_8N

SLV

S_8

PS

LVS

_9N

SLV

S_9

PS

LVS

_10N

SLV

S_1

0PS

LVS

_11N

SLV

S_1

1P

SLV

S_1

1PD

OU

T7S

LVS

_11N

DO

UT2

SLV

S_9

PD

OU

T8S

LVS

_9N

DO

UT1

SLV

S_1

0ND

OU

T3S

LVS

_10P

DO

UT1

0

SLV

S_8

ND

OU

T0S

LVS

_8P

DO

UT5

HIS

PI_

SD

ATA

RE

SE

RV

ED

_1

SLV

S_7

NS

LVS

_7P

HIS

PI_

SC

LK

HIS

PI_

RE

SE

TN

VD

DIO

_rP

PIX

CLK

EX

TCLK

_FP

GA

LIN

E_V

ALI

DD

OU

T6D

OU

T11

TRIG

GE

RR

ES

ET_

BA

RO

UTP

UT_

EN

_BA

RS

TAN

DB

YF

RA

ME

_VA

LID

DO

UT4

DO

UT9

SA

DD

RS

CLK

SD

ATA

OS

C_E

NA

BLE

VD

DIO

_rP

HE

AD

_DO

UT0

HE

AD

_DO

UT2

HE

AD

_DO

UT4

HE

AD

_DO

UT6

HE

AD

_DO

UT8

HE

AD

_LIN

E_V

ALI

D

HE

AD

_SP

7

HE

AD

_FR

AM

E_V

ALI

D

EC

P3_

SH

IP_C

LK

HE

AD

_PIX

CLK

HE

AD

_DO

UT1

HE

AD

_DO

UT3

HE

AD

_DO

UT5

HE

AD

_DO

UT7

HE

AD

_DO

UT9

HE

AD

_SP

5

HE

AD

_SE

NS

OR

_RE

SE

TNE

CP

3_S

HIP

_DA

TA

HE

AD

_SP

6

HE

AD

_DO

UT1

0H

EA

D_D

OU

T11

HE

AD

_DO

UT1

2H

EA

D_D

OU

T13

HE

AD

_DO

UT1

4H

EA

D_D

OU

T15

HE

AD

_SP

0H

EA

D_S

P1

HE

AD

_SP

2H

EA

D_G

SH

T_C

TLH

EA

D_T

RIG

GE

R

HE

AD

_SY

S_3

_3V

HE

AD

_SH

IP_D

ATA

HE

AD

_SH

IP_C

LK

EC

P3_

SH

IP_D

ATA

EC

P3_

SH

IP_C

LK

CY

P_S

DA

CY

P_S

CL

HE

AD

_MC

LK

VD

DIO

_rH

DO

UT9

SA

DD

R

DO

UT4

FR

AM

E_V

ALI

D

TRIG

GE

RR

ES

ET_

BA

R

OU

TPU

T_E

N_B

AR

STA

ND

BY

HIS

PI_

RE

SE

TNH

ISP

I_S

CLK

5_0V

3_3V

3_3V

3_3V

NV

_VD

D

NV

_VD

D

5_0V

5_0V

5_0V

5_0V

5_0V

NV

_VD

D

NV

_VD

D

5_0V

5_0V

5_0V

5_0V

5_0V

3_3V

3_3V

CY

P_S

CL

CY

P_S

DA

Title

Siz

eP

roje

ctR

ev

Dat

e:S

heet

of

Lattice Semiconductor Corporation

5555 N.E. Moore Court

Hillsboro, Oregon. 97124

HD

R-6

0 B

ase

Boa

rd S

chem

atic

B

Hea

d B

oar

dC

810

Wed

nesd

ay, S

epte

mbe

r 21

, 201

1

Title

Siz

eP

roje

ctR

ev

Dat

e:S

heet

of

Lattice Semiconductor Corporation

5555 N.E. Moore Court

Hillsboro, Oregon. 97124

HD

R-6

0 B

ase

Boa

rd S

chem

atic

B

Hea

d B

oar

dC

810

Wed

nesd

ay, S

epte

mbe

r 21

, 201

1

Title

Siz

eP

roje

ctR

ev

Dat

e:S

heet

of

Lattice Semiconductor Corporation

5555 N.E. Moore Court

Hillsboro, Oregon. 97124

HD

R-6

0 B

ase

Boa

rd S

chem

atic

B

Hea

d B

oar

dC

810

Wed

nesd

ay, S

epte

mbe

r 21

, 201

1

BA

NK

2

U2C

EC

P3_

70E

A_B

GA

484

VC

CIO

2_15

J15

VC

CIO

2_K

16K

16

PR

43E

_D/R

UM

0_G

PLL

T_IN

_BN

17

PR

43E

_B/R

UM

0_G

PLL

T_F

B_B

N22

PR

43E

_C/R

UM

0_G

PLL

T_IN

_AM

18

PR

43E

_A/R

UM

0_G

PLL

T_F

B_A

P21

PR

43B

*/P

CLK

C2_

0M

20

PR

41B

M22

PR

43A

*/P

CLK

T2_0

M21

PR

41A

L22

PR

40B

^L1

9

PR

38B

*/R

UM

0_G

DLL

T_F

B_B

L21

PR

40A

^L1

8

PR

38A

*/R

UM

0_G

DLL

T_F

B_A

K21

PR

37B

*/R

UM

0_G

DLL

T_IN

_BK

19

PR

35B

K22

PR

37A

*/R

UM

0_G

DLL

T_IN

_AK

20

PR

35A

J22

PR

34B

*/V

RE

F2_

2K

18

PR

32B

H22

PR

34A

*/V

RE

F1_

2K

17

PR

32A

H21

PR

31B

^J2

0

PR

29B

*G

22

PR

31A

^J1

9

PR

29A

*G

21P

R28

B*

J18

PR

26B

F22

PR

28A

*J1

7

PR

26A

E22

VTT

2L1

7

C87

100n

F

C33

10NF-0402SMT

R89

100_

RD

NI

HRS-DF12A(3.0)-40D*-0.5V**

J2 DF

12(4

.0)-

40D

P-0

.5V

_HE

AD

ER

PIN

11

PIN

22

PIN

33

PIN

44

PIN

55

PIN

66

PIN

77

PIN

88

PIN

99

PIN

1010

PIN

1111

PIN

1212

PIN

1313

PIN

1414

PIN

1515

PIN

1616

PIN

1717

PIN

1818

PIN

1919

PIN

2020

PIN

2121

PIN

2222

PIN

2323

PIN

2424

PIN

2525

PIN

2626

PIN

2727

PIN

2828

PIN

2929

PIN

3030

PIN

3131

PIN

3232

PIN

3333

PIN

3434

PIN

3535

PIN

3636

PIN

3737

PIN

3838

PIN

3939

PIN

4040

SH

IELD

_1S

HIE

LD1

SH

IELD

_2S

HIE

LD2

J5

HE

AD

ER

3

1 2 3

C15

7 1NF-0402SMT

R93

100_

RD

NI

TP8

C34

10NF-0402SMT

C86

100n

F

TP4

C40

10NF-0402SMT

R87

100_

RD

NI TP

22

C13

8 1NF-0402SMT

C12

7 1NF-0402SMT

C39

10NF-0402SMT

R94

33_R

0402

J7

PIN

HD

-2X

13-F

EM

ALE

-RO

UN

D

12

34

56

78

910

1112

1314

1516

1718

1920

2122

2324

2526

C12

0 100NF-0603SMT

C32

100NF-0603SMT

C15

0 1NF-0402SMT

C35

10uF/6V3/X7R

C91

100n

F

R57

4_7K

J6

HE

AD

ER

3

1 2 3

C29

10uF/6V3/X7R

TP17

C17

5 100NF-0603SMT

J8

PIN

HD

-1X

13-F

EM

ALE

-RO

UN

D

11

22

33

44

55

66

77

88

99

1010

1111

1212

1313

BA

NK

0

EC

P3_

70E

A_B

GA

484

U2A

U2 VC

CIO

0_H

9H

9V

CC

IO0_

G10

G10

PT7

3B/P

CLK

C0_

0F

12

PT7

1BA

11

PT7

3A/P

CLK

T0_0

F11

PT7

1AA

10P

T70B

^D

11

PT6

8BB

10

PT7

0A^

E11

PT6

8AA

9P

T67B

E10

PT6

5BA

8

PT6

7AF

10

PT6

5AB

8P

T64B

E7

PT6

2BA

7

PT6

4AD

8

PT6

2AB

7P

T61B

^D

10

PT5

9BC

10

PT6

1A^

D9

PT5

9AC

9P

T58B

E9

PT5

6BC

7

PT5

8AF

9

PT5

6AC

8P

T14B

A6

PT1

4AA

5P

T13B

G8

PT1

1BA

4

PT1

3AF

7

PT1

1AA

3P

T10B

D7

PT8

BA

2

PT1

0AD

6

PT8

AB

3P

T7B

^G

9

PT5

BB

6

PT7

A^

F8

PT5

AC

6P

T4B

/VR

EF

2_0

D5

PT2

BB

4

PT4

A/V

RE

F1_

0E

6

PT2

AC

5

C2 1NF-0402SMT

C17

4 10uF/6V3/X7R

C12

5 100NF-0603SMT

HRS-DF12A-(3.0)-40D*-0.5V**

J1 DF

12__

-40D

S-0

.5V

_RE

CE

PTA

CLE

PIN

11

PIN

22

PIN

33

PIN

44

PIN

55

PIN

66

PIN

77

PIN

88

PIN

99

PIN

1010

PIN

1111

PIN

1212

PIN

1313

PIN

1414

PIN

1515

PIN

1616

PIN

1717

PIN

1818

PIN

1919

PIN

2020

PIN

2121

PIN

2222

PIN

2323

PIN

2424

PIN

2525

PIN

2626

PIN

2727

PIN

2828

PIN

2929

PIN

3030

PIN

3131

PIN

3232

PIN

3333

PIN

3434

PIN

3535

PIN

3636

PIN

3737

PIN

3838

PIN

3939

PIN

4040

SH

IELD

_1S

HIE

LD1

SH

IELD

_2S

HIE

LD2

R92

100_

RD

NI

FB

6

BLM

41P

G60

0SN

1

C12

2 1NF-0402SMT

C1 1NF-0402SMT

FB

7

BLM

41P

G60

0SN

1

C13

5 1NF-0402SMT

C90

100n

F

C13

2 10NF-0402SMT

C30

100NF-0603SMT

R58

4_7K

TP10

BA

NK

1

U2B

EC

P3_

70E

A_B

GA

484

VC

CIO

1_H

14H

14V

CC

IO1_

G13

G13

PT1

36B

/VR

EF

2_1

D17

PT1

34B

A19

PT1

36A

/VR

EF

1_1

D16

PT1

34A

A18

PT1

33B

^C

16

PT1

31B

B18

PT1

33A

^C

17

PT1

31A

A17

PT1

30B

F16

PT1

28B

B16

PT1

30A

F15

PT1

28A

A16

PT9

1BG

14

PT8

9BD

15

PT9

1AG

15

PT8

9AC

15P

T88B

^E

15

PT8

6BB

15

PT8

8A^

E16

PT8

6AA

15P

T85B

F14

PT8

3BB

14

PT8

5AF

13

PT8

3AA

14P

T82B

D14

PT8

0BC

14

PT8

2AD

13

PT8

0AC

13P

T79B

^E

13

PT7

7BA

13

PT7

9A^

E12

PT7

7AA

12P

T76B

/PC

LKC

1_0

D12

PT7

4BB

12

PT7

6A/P

CLK

T1_0

C12

PT7

4AB

11

C17

6 100NF-0603SMT

C36

10NF-0402SMT

30

HDR-60 Base Board – Revision B

Figure 23. Teradek MPEG Encoder

5 5

4 4

3 3

2 2

1 1

DD

CC

BB

AA

Ter

adek

MP

EG

Enc

oder E

CP

3 S

ymbo

l Pin

s:*

Tru

e LV

DS

Out

put

^ D

QS

Den

sity

sho

wn

as -

70

24 M

Hz

6.3v

0603

All

high

spe

ed s

igna

ls u

se 5

0 oh

m tr

aces

Pla

ce r

esis

tor

near

pin

T3

of U

1

Rou

te s

igna

l F_2

7MH

z to

R97

firs

t, th

en to

the

DD

R2

clo

ck in

put r

esis

tors

Pla

ce Y

1 ne

ar U

2

(spare)

(spare)

(spare)

(spare)

(spare)

(Low

er U

SB

)

CY

P

MG

_VID

00

MG

_VID

02M

G_V

ID03

MG

_VID

04M

G_V

ID05

MG

_VID

07M

G_V

ID0_

PIX

CLK

VG

PIO

1M

G_H

SY

NC

VG

PIO

2

MG

_LR

CLK

_IN

MG

_ID

AT

0

VID

EO

_SD

AV

GP

IO3

MG

_ID

AT

1

MG

_VID

06

MG

_VID

01M

G_V

ID08

MG

_VID

10M

G_V

ID11

MG

_VID

12M

G_V

ID13

MG

_VID

15M

G_V

ID1_

PIX

CLK

MG

_VS

YN

CM

G_F

IELD

VID

EO

_SC

L

MG

_SP

DIF

MG

_VID

14

MG

_VID

09

MG

_MC

LK_I

NM

G_B

CLK

_IN

RD

Y0

RD

Y1

CY

P_S

CL

CY

P_S

DA

FN

_HI

PA

1P

A0

PA

4P

A5

PA

6

PA

2

CT

L0

CY

P_S

CL

CY

P_S

DA

MG

_VID

00

MG

_VID

02M

G_V

ID03

MG

_VID

04M

G_V

ID05

MG

_VID

07

MG

_VID

0_P

IXC

LK

VG

PIO

1

MG

_HS

YN

C

VG

PIO

2

VID

EO

_SD

AV

GP

IO3

MG

_ID

AT

1

MG

_VID

06

MG

_VID

01

MG

_LR

CLK

_IN

MG

_ID

AT

0

MG

_VID

08

MG

_VID

10M

G_V

ID11

MG

_VID

12M

G_V

ID13

MG

_VID

15

MG

_VID

1_P

IXC

LK

MG

_VS

YN

C

MG

_FIE

LD

VID

EO

_SC

L

MG

_SP

DIF

MG

_VID

14

MG

_VID

09

MG

_MC

LK_I

N

MG

_BC

LK_I

N

FD

8F

D9

FD

11F

D12

FD

13F

D14

FD

10

FD

15

FD

0F

D1

FD

3F

D4

FD

5F

D6

FD

2

FD

7

CT

L0P

A6

PA

5

PA

4

PA

2

PA

1P

A0

FD

8

FD

11F

D12

FD

13F

D14

FD

15

FD

0F

D1

FD

3F

D4

FD

5F

D6

FD

2

FD

7

FD

109D

F9

DF

RD

Y0

RD

Y1

IFC

LK

CY

P_S

CL

CY

P_S

DA

F_2

7MH

z

F_2

7MH

z

PA

7

PA

3

PA

3P

A7

CT

L1C

TL2

CT

L3

CT

L1C

TL2

CT

L3

IFC

LK

3_3V

3_3V

3_3V

3_3V

3_3V

5_0V

5_0V

3_3V

3_3V

3_3V

3_3V

3_3V

5_0V

3_3V

3_3V

3_3V

3_3V

CY

P_S

CL

CY

P_S

DA

F_2

7MH

z

Titl

e

Siz

eP

roje

ctR

ev

Dat

e:S

heet

of

Lattice Semiconductor Corporation

5555 N.E. Moore Court

Hillsboro, Oregon. 97124

HD

R-6

0 B

ase

Boa

rd S

chem

atic

B

Ter

adek

MP

EG

En

cod

er

B

910

Wed

nesd

ay, S

epte

mbe

r 21

, 201

1

Titl

e

Siz

eP

roje

ctR

ev

Dat

e:S

heet

of

Lattice Semiconductor Corporation

5555 N.E. Moore Court

Hillsboro, Oregon. 97124

HD

R-6

0 B

ase

Boa

rd S

chem

atic

B

Ter

adek

MP

EG

En

cod

er

B

910

Wed

nesd

ay, S

epte

mbe

r 21

, 201

1

Titl

e

Siz

eP

roje

ctR

ev

Dat

e:S

heet

of

Lattice Semiconductor Corporation

5555 N.E. Moore Court

Hillsboro, Oregon. 97124

HD

R-6

0 B

ase

Boa

rd S

chem

atic

B

Ter

adek

MP

EG

En

cod

er

B

910

Wed

nesd

ay, S

epte

mbe

r 21

, 201

1

C38 10uF/6V3/X7R

C14

01u

F, X

5R, 6

.3V

2.2u

FC

196

TP

9 R97

49_9

RR

0402

C21

7

100n

F

R26

10k

R12

010

KD

I

U6

CY7C68013A-100AXC

CLK

OU

T10

0

RD

Y0/

SLR

D3

RD

Y1/

SLR

W4

RD

Y2

5

RD

Y3

6

RD

Y4

7

RD

Y5

8

AV

CC

_99

XT

ALO

UT

10X

TA

LIN

11

AG

ND

_12

12

AV

CC

_16

16

DP

LUS

17D

MIN

US

18

AG

ND

_19

19

INT

422

T0

23

T1

24

T2

25

IFC

LK26

RE

SE

VE

D27

BK

PT

28

SC

L29

SD

A30

TX

D0

40

TX

D1

42

RX

D0

41

RX

D1

43

RE

SE

T77

INT

584

WA

KE

UP

79

RD

31

WR

32

PB

0/F

D0

34

PB

1/F

D1

35

PB

2/F

D2

36

PB

3/F

D3

37

PB

4/F

D4

44

PB

5/F

D5

45

PB

6/F

D6

46

PB

7/F

D7

47

CT

L351

CT

L452

CT

L0/F

LAG

A54

CT

L1/F

LAG

B55

CT

L2/F

LAG

C56

PC

0/G

PIF

AD

R0

57

PC

1/G

PIF

AD

R1

58

PC

2/G

PIF

AD

R2

59

PC

3/G

PIF

AD

R3

60

PC

4/G

PIF

AD

R4

61

PC

5/G

PIF

AD

R5

62

PC

6/G

PIF

AD

R6

63

PC

7/G

PIF

AD

R7

64

PA

0/IN

T0

67

PA

1/IN

T1

68

PA

2/S

LOE

69

PA

3/W

U2

70

PA

4/F

IFO

AD

R0

71

PA

5/F

IFO

AD

R1

72

PA

6/P

KT

EN

D73

PA

7/F

LAG

D/S

LCS

74

CT

L576

PD

0/F

D8

80

PD

1/F

D9

81

PD

2/F

D10

82

PD

3/F

D11

83

PD

4/F

D12

95

PD

5/F

D13

96

PD

6/F

D14

97

PD

7/F

D15

98

PE

0/T

0OU

T86

PE

1/T

1OU

T87

PE

2/T

2OU

T88

PE

3/R

XD

0OU

T89

PE

4/R

XD

1OU

T90

PE

5/IN

T6

91

PE

6/T

2EX

92

PE

7/G

PIF

AD

R8

93

VCC_8585

VCC_7878

VCC_5353

VCC_6666

VCC_4949

VCC_3838

VCC_3333

VCC_2020

VCC_11

GND_9999

GND_9494

GND_7575

GND_3939

GND_6565

GND_5050

GND_4848

GND_2121

GND_22

NC

_13

13

NC

_14

14

NC

_15

15

C13

00.

1uF

1 2

C20

3

100NF-0603SMT

J12B

0862

-1J1

T-4

3-F

US

B+

US

B1_

3

GN

DU

SB

1_4

VP

US

B1_

1

US

B-

US

B1_

2

R10

82_

2KR

0402

U14

TP

S38

36L3

0

CT

1

GN

D2

NM

R3

NR

ES

ET

4

VD

D5

C20

4

100NF-0603SMT

FB

19

BLM

21A

G60

1SN

1D

C12

4

10NF-0402SMT

R11

71M

DN

I

Y1

DS

C10

01-A

C2-

027.

0000

DI

VC

C4

OU

T3

GN

D2

EN

1

C19

210

NF

C16

6

1NF-0402SMT

R28

1M

C11

9

10NF-0402SMT

R12

80

C20

212

pFD

I

C28 100NF-0603SMT

R12

1

1M

C17

2

10NF-0402SMT

R12

70

Y3

AT

S24

AS

M-1

HC

-49/

US

-SM

DI

12

C27 10NF-0402SMT

C21

3

DN

I

R11

80R D

I

Hirose DF17 Series

J9

DF

17(4

.0)-

40D

P-0

.5V

(5?)

PIN

11

PIN

22

PIN

33

PIN

44

PIN

55

PIN

66

PIN

77

PIN

88

PIN

99

PIN

1010

PIN

1111

PIN

1212

PIN

1313

PIN

1414

PIN

1515

PIN

1616

PIN

1717

PIN

1818

PIN

1919

PIN

2020

PIN

2121

PIN

2222

PIN

2323

PIN

2424

PIN

2525

PIN

2626

PIN

2727

PIN

2828

PIN

2929

PIN

3030

PIN

3131

PIN

3232

PIN

3333

PIN

3434

PIN

3535

PIN

3636

PIN

3737

PIN

3838

PIN

3939

PIN

4040

FIT

TIN

G1

FIT

TIN

G1

FIT

TIN

G2

FIT

TIN

G2

BO

SS

1B

OS

S1

BO

SS

2B

OS

S2

R12

9D

NI

C16

4

1NF-0402SMT

C19

8

100NF-0603SMT

C21

4

DN

I

C19

7

12pF

DI

FB

12

BLM

21A

G60

1SN

1D

C17

1

100NF-0603SMT

BA

NK

6

U2D

EC

P3_

70E

A_B

GA

484

VC

CIO

6_N

7N

7

VC

CIO

6_P

8P

8

PL4

4AL3

PL4

6A*/

PC

LKT

6_0

L4P

L44B

L2

PL4

6B*/

PC

LKC

6_0

M4

PL4

7A*

M2

PL4

9A^

M5

PL4

7B*

M1

PL4

9B^

N6

PL5

0AN

2

PL5

2A*/

VR

EF

1_6

N4

PL5

0BN

1

PL5

2B*/

VR

EF

2_6

P4

PL5

3AN

3

PL5

5A*

N5

PL5

3BP

3

PL5

5B*

P6

PL5

6A*

P1

PL5

8A^

P5

PL5

6B*

R1

PL5

8B^

R6

PL5

9AR

3

PL6

1A*

U1

PL5

9BR

2

PL6

1B*

U2

PL6

1E_A

/LLM

1_G

PLL

T_F

B_A

T2

PL6

1E_C

/LLM

1_G

PLL

T_I

N_A

T3

PL6

1E_B

/LLM

1_G

PLL

T_F

B_B

T1

PL6

1E_D

/LLM

1_G

PLL

T_I

N_B

U3

PL8

2B*

P7

PL8

3A*

V1

PL8

5A^

R7

PL8

3B*

W1

PL8

5B^

T7

VT

T6

M6

PL8

6AV

3

PL8

8A*

R4

PL8

6BW

3

PL8

8B*

T5

PL8

9AW

2

PL9

1A*

T4

PL8

9BY

1

PL9

1B*

U4

PL9

2A*

AA

1

PL9

4A^

T6

PL9

2B*

Y2

PL9

4B^

U5

PL9

5AY

3

PL9

7A*

V4

PL9

5BA

A2

PL9

7B*

V5

RE

SE

RV

E_A

B2

AB

2R

ES

ER

VE

_AA

3A

A3

PB

2AA

B3

PB

4AW

4P

B2B

AB

4

PB

4BY

5

PB

5AA

A4

PB

7AW

5P

B5B

AA

5

PB

7BW

6

PB

8AA

B5

PB

10A

V6

PB

8BA

B6

PB

10B

U7

PB

11A

Y6

PB

13A

U8

PB

11B

AA

6

PB

13B

T8

PB

16A

R9

PB

16B

T9

R95

4_7K

U13

24LC

64I/S

N

A0

1

A1

2

A2

3

VS

S4

SD

A5

SC

L6

WP

7V

CC

8

R11

12_

2KR

0402

31

HDR-60 Base Board – Revision B

Figure 24. Mechanical Drawing5 5

4 4

3 3

2 2

1 1

DD

CC

BB

AA

Mec

hani

cal D

raw

ing

Title

Siz

eP

roje

ctR

ev

Dat

e:S

heet

of

Lattice Semiconductor Corporation

5555 N.E. Moore Court

Hillsboro, Oregon. 97124

HD

R-6

0 B

ase

Boa

rd S

chem

atic

B

Mec

han

ical

Dra

win

gC

1010

Wed

nesd

ay, S

epte

mbe

r 21

, 201

1

Title

Siz

eP

roje

ctR

ev

Dat

e:S

heet

of

Lattice Semiconductor Corporation

5555 N.E. Moore Court

Hillsboro, Oregon. 97124

HD

R-6

0 B

ase

Boa

rd S

chem

atic

B

Mec

han

ical

Dra

win

gC

1010

Wed

nesd

ay, S

epte

mbe

r 21

, 201

1

Title

Siz

eP

roje

ctR

ev

Dat

e:S

heet

of

Lattice Semiconductor Corporation

5555 N.E. Moore Court

Hillsboro, Oregon. 97124

HD

R-6

0 B

ase

Boa

rd S

chem

atic

B

Mec

han

ical

Dra

win

gC

1010

Wed

nesd

ay, S

epte

mbe

r 21

, 201

1

32

HDR-60 Base Board – Revision B

Appendix B. Silkscreen

33

HDR-60 Base Board – Revision B

Appendix C. Programming Using JTAG Flywire ConnectionsLatticeECP3 Configuration Using JTAG Flywire ConnectionsThe HDR-60 Base Board includes a provision for the flywire connected programming header J3. The pins for the J3 header are not installed, as typical use of the board will be through the USB download. In the instance where a user of the board would like to use a flywire JTAG connection rather than the built-in USB download at J12, the user will need to first acquire and install the header pins for J3. The pinout for J3 is provided in Table 16.

Important Note: The board must be un-powered when connecting, disconnecting, or reconnecting an ispDOWN-LOAD cable or USB cable. Always connect an ispDOWNLOAD cable’s GND pin (black wire), before connecting any other JTAG pins. Failure to follow these procedures can in result in damage to the LatticeECP3 FPGA and ren-der the board inoperable.

Table 16. JTAG Flywire Programming Header J3

J3 Pin JTAG Signal

1 3_3V

2 TDO

3 TDI

4 NC

5 NC

6 TMS

7 GND

8 TCK

9 NC

10 NC

Requirements

• PC with Lattice ispVM System programming software version 17.9 (or later), installed with appropriate drivers (USB driver for USB cable, Windows NT/2000/XP parallel port driver for ispDOWNLOAD cable). Note: An option to install these drivers is included as part of the ispVM System setup.

• Any ispDOWNLOAD or Lattice USB cable (pDS4102-DL2x, HW7265-DL3x, HW-USB-2x, etc.).

For a complete discussion of the LatticeECP3’s configuration and programming options, refer to the LatticeECP3 sysCONFIG Usage Guide.

The remainder of this JTAG flywire download procedure is identical to the download procedures described previ-ously in the sections of this document: “LatticeECP3 SRAM Configuration Using a Standard USB Cable at J12”and “LatticeECP3 SRAM Configuration Using SPI Flash and USB Cable at J12”. However, instead of the program-ming signals arriving at J12, they arrive at J3, and in step 5 of those procedures, where it says to select USB2, instead select the Lattice ispDOWNLOAD flywire connected cable type you are attaching to the J3 header pins.

34

HDR-60 Base Board – Revision B

Appendix D. Known IssuesThe following resistors should not be populated by default: R87, R89, R92 and R93. The location of these resistors is on the bottom side of the HDR-60 Base Board Revision B (reverse side of the LatticeECP3-70). These resistors may have been installed on some boards and may cause issues for custom designs that use the signals connected to these resistors.