Disk-Haloes in Einstein-Maxwell gravity

95
Disk-haloes in Einstein-Maxwell gravity Antonio C. GutiØrrez-Piæeres Universidad Tecnolgica de Bolvar, Colombia UNILA, Brazil November 14, 2014 A. C. GutiØrrez-Piæeres Disk-haloes in Einstein-Maxwell gravity

Transcript of Disk-Haloes in Einstein-Maxwell gravity

Disk-haloes inEinstein-Maxwell gravity

Antonio C. Gutiérrez-Piñeres

Universidad Tecnológica de Bolívar, Colombia

UNILA, Brazil

November 14, 2014

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Physical Relevance

1 Disks may be used to model

• Accretion disks• Galaxies in thermodynamic equilibrium• Superposition of galaxies and black holes• + Magnetic field: neutron stars, white dwarfs, galaxies

formation2 Disks with Halos

• A large number of galaxies and other astrophysical systemhave extended distribution of matter surrounded by a“material” halo

• The flat rotation curves problem and the DARK MATTERassumption

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Physical Relevance

1 Disks may be used to model• Accretion disks

• Galaxies in thermodynamic equilibrium• Superposition of galaxies and black holes• + Magnetic field: neutron stars, white dwarfs, galaxies

formation2 Disks with Halos

• A large number of galaxies and other astrophysical systemhave extended distribution of matter surrounded by a“material” halo

• The flat rotation curves problem and the DARK MATTERassumption

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Physical Relevance

1 Disks may be used to model• Accretion disks• Galaxies in thermodynamic equilibrium

• Superposition of galaxies and black holes• + Magnetic field: neutron stars, white dwarfs, galaxies

formation2 Disks with Halos

• A large number of galaxies and other astrophysical systemhave extended distribution of matter surrounded by a“material” halo

• The flat rotation curves problem and the DARK MATTERassumption

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Physical Relevance

1 Disks may be used to model• Accretion disks• Galaxies in thermodynamic equilibrium• Superposition of galaxies and black holes

• + Magnetic field: neutron stars, white dwarfs, galaxiesformation

2 Disks with Halos• A large number of galaxies and other astrophysical system

have extended distribution of matter surrounded by a“material” halo

• The flat rotation curves problem and the DARK MATTERassumption

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Physical Relevance

1 Disks may be used to model• Accretion disks• Galaxies in thermodynamic equilibrium• Superposition of galaxies and black holes• + Magnetic field: neutron stars, white dwarfs, galaxies

formation

2 Disks with Halos• A large number of galaxies and other astrophysical system

have extended distribution of matter surrounded by a“material” halo

• The flat rotation curves problem and the DARK MATTERassumption

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Physical Relevance

1 Disks may be used to model• Accretion disks• Galaxies in thermodynamic equilibrium• Superposition of galaxies and black holes• + Magnetic field: neutron stars, white dwarfs, galaxies

formation2 Disks with Halos

• A large number of galaxies and other astrophysical systemhave extended distribution of matter surrounded by a“material” halo

• The flat rotation curves problem and the DARK MATTERassumption

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Physical Relevance

1 Disks may be used to model• Accretion disks• Galaxies in thermodynamic equilibrium• Superposition of galaxies and black holes• + Magnetic field: neutron stars, white dwarfs, galaxies

formation2 Disks with Halos

• A large number of galaxies and other astrophysical systemhave extended distribution of matter surrounded by a“material” halo

• The flat rotation curves problem and the DARK MATTERassumption

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Physical Relevance

1 Disks may be used to model• Accretion disks• Galaxies in thermodynamic equilibrium• Superposition of galaxies and black holes• + Magnetic field: neutron stars, white dwarfs, galaxies

formation2 Disks with Halos

• A large number of galaxies and other astrophysical systemhave extended distribution of matter surrounded by a“material” halo

• The flat rotation curves problem and the DARK MATTERassumption

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Physical Relevance

1 Disks may be used to model• Accretion disks• Galaxies in thermodynamic equilibrium• Superposition of galaxies and black holes• + Magnetic field: neutron stars, white dwarfs, galaxies

formation2 Disks with Halos

• A large number of galaxies and other astrophysical systemhave extended distribution of matter surrounded by a“material” halo

• The flat rotation curves problem and the DARK MATTERassumption

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Mathematical Relevance

1 Exact Solution of Einstein-Maxwell equations

• Pure Exact solutions ambit• Conceptual basis in the study of other topics and research

areas

2 Distributional theory• Shell problem and General Relativity• The Electromagnetic potential

(Aharonov-Bohm effect in GR)• Covariant jump• The electro-geodesic and the electromagnetic problem

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Mathematical Relevance

1 Exact Solution of Einstein-Maxwell equations• Pure Exact solutions ambit

• Conceptual basis in the study of other topics and researchareas

2 Distributional theory• Shell problem and General Relativity• The Electromagnetic potential

(Aharonov-Bohm effect in GR)• Covariant jump• The electro-geodesic and the electromagnetic problem

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Mathematical Relevance

1 Exact Solution of Einstein-Maxwell equations• Pure Exact solutions ambit• Conceptual basis in the study of other topics and research

areas

2 Distributional theory• Shell problem and General Relativity• The Electromagnetic potential

(Aharonov-Bohm effect in GR)• Covariant jump• The electro-geodesic and the electromagnetic problem

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Mathematical Relevance

1 Exact Solution of Einstein-Maxwell equations• Pure Exact solutions ambit• Conceptual basis in the study of other topics and research

areas

2 Distributional theory• Shell problem and General Relativity

• The Electromagnetic potential(Aharonov-Bohm effect in GR)

• Covariant jump• The electro-geodesic and the electromagnetic problem

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Mathematical Relevance

1 Exact Solution of Einstein-Maxwell equations• Pure Exact solutions ambit• Conceptual basis in the study of other topics and research

areas

2 Distributional theory• Shell problem and General Relativity• The Electromagnetic potential

(Aharonov-Bohm effect in GR)

• Covariant jump• The electro-geodesic and the electromagnetic problem

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Mathematical Relevance

1 Exact Solution of Einstein-Maxwell equations• Pure Exact solutions ambit• Conceptual basis in the study of other topics and research

areas

2 Distributional theory• Shell problem and General Relativity• The Electromagnetic potential

(Aharonov-Bohm effect in GR)• Covariant jump

• The electro-geodesic and the electromagnetic problem

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Mathematical Relevance

1 Exact Solution of Einstein-Maxwell equations• Pure Exact solutions ambit• Conceptual basis in the study of other topics and research

areas

2 Distributional theory• Shell problem and General Relativity• The Electromagnetic potential

(Aharonov-Bohm effect in GR)• Covariant jump• The electro-geodesic and the electromagnetic problem

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Mathematical Relevance

1 Exact Solution of Einstein-Maxwell equations• Pure Exact solutions ambit• Conceptual basis in the study of other topics and research

areas

2 Distributional theory• Shell problem and General Relativity• The Electromagnetic potential

(Aharonov-Bohm effect in GR)• Covariant jump• The electro-geodesic and the electromagnetic problem

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Finite axisymmetric charged dust disks in conformastaticspacetimes

[1]

Conformastatic disk-haloes in Einstein-Maxwell gravity.[2]

Conformastationary disk-haloes in Einstein-Maxwell gravity .[3]

Conformastationary disk-haloes in Einstein-Maxwell gravity II:the physical interpretation of the halo.

[4]Variational thermodynamics of relativistic thin disks

[5]

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Finite axisymmetric charged dust disks in conformastaticspacetimes

[1]Conformastatic disk-haloes in Einstein-Maxwell gravity.

[2]

Conformastationary disk-haloes in Einstein-Maxwell gravity .[3]

Conformastationary disk-haloes in Einstein-Maxwell gravity II:the physical interpretation of the halo.

[4]Variational thermodynamics of relativistic thin disks

[5]

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Finite axisymmetric charged dust disks in conformastaticspacetimes

[1]Conformastatic disk-haloes in Einstein-Maxwell gravity.

[2]Conformastationary disk-haloes in Einstein-Maxwell gravity .

[3]

Conformastationary disk-haloes in Einstein-Maxwell gravity II:the physical interpretation of the halo.

[4]Variational thermodynamics of relativistic thin disks

[5]

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Finite axisymmetric charged dust disks in conformastaticspacetimes

[1]Conformastatic disk-haloes in Einstein-Maxwell gravity.

[2]Conformastationary disk-haloes in Einstein-Maxwell gravity .

[3]Conformastationary disk-haloes in Einstein-Maxwell gravity II:the physical interpretation of the halo.

[4]

Variational thermodynamics of relativistic thin disks[5]

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Finite axisymmetric charged dust disks in conformastaticspacetimes

[1]Conformastatic disk-haloes in Einstein-Maxwell gravity.

[2]Conformastationary disk-haloes in Einstein-Maxwell gravity .

[3]Conformastationary disk-haloes in Einstein-Maxwell gravity II:the physical interpretation of the halo.

[4]Variational thermodynamics of relativistic thin disks

[5]

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Finite axisymmetric charged dust disks in conformastaticspacetimes

[1]Conformastatic disk-haloes in Einstein-Maxwell gravity.

[2]Conformastationary disk-haloes in Einstein-Maxwell gravity .

[3]Conformastationary disk-haloes in Einstein-Maxwell gravity II:the physical interpretation of the halo.

[4]Variational thermodynamics of relativistic thin disks

[5]

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

The Einstein-Maxwell equations andthe thin disk-haloes

WE ASSUME THAT:• The coordinates are quasicylindrical: xa = (t, ϕ, r, z).

• There exists an infinitesimally thin disk, located at thehypersurface z = 0, so that the components of the metrictensor gab and the components of the electromagnticpotential Aa are symmetrical functions of z and their firstderivatives have a finite discontinuity at z = 0.

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

The Einstein-Maxwell equations andthe thin disk-haloes

WE ASSUME THAT:• The coordinates are quasicylindrical: xa = (t, ϕ, r, z).• There exists an infinitesimally thin disk, located at the

hypersurface z = 0, so that the components of the metrictensor gab and the components of the electromagnticpotential Aa are symmetrical functions of z and their firstderivatives have a finite discontinuity at z = 0.

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

The Einstein-Maxwell equations andthe thin disk-haloes

WE ASSUME THAT:• The coordinates are quasicylindrical: xa = (t, ϕ, r, z).• There exists an infinitesimally thin disk, located at the

hypersurface z = 0, so that the components of the metrictensor gab and the components of the electromagnticpotential Aa are symmetrical functions of z and their firstderivatives have a finite discontinuity at z = 0.

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

The metric and the electromagneticpotentials

REFLEXION SYMMETRY z = 0

gab(r, z) = gab(r,−z), Aa(r, z) = Aa(r,−z),gab,z(r, z) = −gab,z(r,−z) Aa,z(r, z) = −Aa,z(r,−z).

CONTINUITY z = 0

[gab] = gab|z=0+− gab|z=0−

= 0, (2a)[Aa] = Aa|z=0+

−Aa|z=0−= 0, (2b)

γab = [gab,z], (2c)ζa = [Aa,z]. (2d)

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

The metric and the electromagneticpotentials

REFLEXION SYMMETRY z = 0

gab(r, z) = gab(r,−z), Aa(r, z) = Aa(r,−z),gab,z(r, z) = −gab,z(r,−z) Aa,z(r, z) = −Aa,z(r,−z).

CONTINUITY z = 0

[gab] = gab|z=0+− gab|z=0−

= 0, (2a)[Aa] = Aa|z=0+

−Aa|z=0−= 0, (2b)

γab = [gab,z], (2c)ζa = [Aa,z]. (2d)

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

The metric and the electromagneticpotentials

gab = g+abθ(z) + g−ab{1− θ(z)}, (3a)

Aa = A+a θ(z) +A−a {1− θ(z)}, (3b)

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

The Ricci, energy-momentum tensor and the electric currentdensity can be expressed as

Rab = R+abθ(z) +R−ab{1− θ(z)}+Habδ(z), (4a)

Tab = T+abθ(z) + T−ab{1− θ(z)}+Qabδ(z), (4b)

Ja = J+a θ(z) + J−a {1− θ(z)}+ Iaδ(z), (4c)

Hab =1

2{γzaδzb + γzb δ

za − γccδzaδzb − gzzγab}, (5)

T±ab and J±ab are the energy-momentum tensors and electriccurrent density of the z ≥ 0 and z ≤ 0 regions. Qab and Ia givesthe part of the energy-momentum tensor and the electriccurrent density corresponding to the disklike source.

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

The Einstein-Maxwell equations andthe thin disk-halos

G±ab = R±ab −1

2gabR

± = T±ab, (6)

Hab −1

2gabH = Qab, (7)

F ab± ;b = Ja±, (8)

[F ab]nb

= Ia, (9)

T±ab = E±ab +M±ab,

Eab =1

{FacF

cb −

1

4gabFcdF

cd

},

Fab = Ab,a −Aa,b.

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

The Einstein-Maxwell equations andthe thin disk-halos

G±ab = R±ab −1

2gabR

± = T±ab, (6)

Hab −1

2gabH = Qab, (7)

F ab± ;b = Ja±, (8)

[F ab]nb

= Ia, (9)

T±ab = E±ab +M±ab,

Eab =1

{FacF

cb −

1

4gabFcdF

cd

},

Fab = Ab,a −Aa,b.A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

General conformastationary electromagnetized disk-haloes

Inspired by inverse method techniques, let us assume that thesolution has the general form [6, 7]

ds2 = −f2(dt+ ωdϕ)2 + Λ4[dr2 + dz2 + r2dϕ2], (10)

where we have introduced the cylindrical coordinatesxα = (t, r, z, ϕ) in which the metric function f,Λ and ω and theelectromagnetic potential, Aα = (At, 0, 0, Aϕ) depend only onrand z .

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

The surface energy-momentum tensor of the disk Sαβ is

Sαβ ≡∫Qαβδ(z)dsn =

√gzzQαβ, (11)

Stt =1

r2Λ6{−f2ωω,z + 8r2Λ3Λ,z},

Stϕ = − 1

r2Λ6f{−4r2ωfΛ3Λ,z + ω2f3ω,z + 2r2Λ4ωf,z + r2fΛ4ω,z},

Srr =2

Λ3f{2fΛ,z + Λf,z},

Sϕt =f2

r2Λ6ω,z,

Sϕϕ =1

r2Λ6f{2r2Λ4f,z + 4r2Λ3fΛ,z + ωf3ω,z},

where dsn =√gzz dz is the “physical measure” of length in the

direction normal to the z = 0 surface.

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

The surface electric current density of the disk J α is

J α ≡∫Iαδ(z)dsn =

√gzzIα (13)

J t =1

r2Λ6f2{ωf2 [Aϕ,z] + (r2Λ4 − f2ω2) [At,z]},

J ϕ =1

r2Λ6{ω [At,z]− [Aϕ,z]}.

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

The electric current density of the halo is

J t± =1

Λ6f∇ · {Λ2f−1∇At

+ r−2ωfΛ−2(∇Aϕ − ω∇At)}, (15a)

Jϕ± =1

Λ6f∇ · {r−2fΛ−2(∇Aϕ − ω∇At)}. (15b)

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

The non-zero components of the energy-momentum tensor ofthe halo,

M±αβ = G±αβ − E±αβ, (16)

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

M±tt =1

4r2Λ8{3f4∇ω · ∇ω − 16r2f2Λ3∇2Λ

− 2f2∇Aϕ · ∇Aϕ + 4f2ω∇At · ∇Aϕ− 2(r2Λ4 + f2ω2)∇At · ∇At}, (17)

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

M±tϕ =1

4r2Λ8{−4r2f2Λ3∇ω · ∇Λ + 3f4ω∇ω · ∇ω

− 16r2f2Λ3ω∇2Λ + 6r2Λ4f∇ω · ∇f+ 2Λ4r2f2∇2ω − 4rf2Λ4∇ω · ∇r − 2ωf2∇Aϕ · ∇Aϕ+ 2(ωΛ4r2 − f2ω3)∇At · ∇At+ 4(f2ω2 − r2Λ4∇At · ∇Aϕ)} = M±ϕt, (18)

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

M±rr = − 1

4r2Λ4f2{−f4(ω2

r − ω2z)− 4Λ4r2f∇2f

+ 4r2fΛ4frr − 8r2f2Λ3∇2Λ + 8r2f2Λ3Λrr

− 16r2Λ3ff,rΛ,r + 8f2Λ2r2Λ2,z − 16f2r2Λ2Λ2

,r

+ 2f2(A2ϕ,r −A2

ϕ,z)− 2(Λ4r2 − f2ω2)(A2t,r −A2

t,z)

− 4ωf2(At,rAϕ,r −At,zAϕ,z)}, (19)

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

M±rz =1

2r2Λ4f2{4r2fΛ3(Λ,rf,z + Λ,zf,r)

+ 12r2f2Λ2Λ,rΛ,z + f4ω,rω,z − 4r2f2Λ3Λ,rz

− 2r2Λ4ff,rz − 2(f2ω2 − Λ4r2)At,rAt,z

+ 2f2ω(Aϕ,rAt,z +At,rAϕ,z)− 2f2Aϕ,rAϕ,z}, (20)

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

M±zz =1

4r2Λ4f2{−f4(ω2

,r − ω2,z) + 4r2Λ4f∇2f

− 4r2Λ4ff,zz + 8r2f2Λ3∇2Λ− 8r2f2Λ3Λ,zz

− 8r2f2Λ2Λ2,r + 16r2Λ3ff,zΛ,z + 16r2f2Λ2Λ2

,z

+ 2f2(A2ϕ,r −A2

ϕ,z)− 4ωf2(At,rAϕ,r −At,zAϕ,z)− 2(Λ4r2 − f2ω2)(A2

t,r −A2t,z)}, (21)

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

M±ϕϕ =1

4r2Λ8f2{4r4fΛ8∇2f − 4r3Λ8f∇f · ∇r

+ f4(Λ4r2 + 3ω2f2)∇ω · ∇ω − 16r2f4ω2Λ3∇2Λ

+ 4r2Λ4f4ω∇2ω − 8r4f4ω∇ω · ∇r + 12Λ4r2ωf3∇ω · ∇f− 8r2ωf4Λ3∇ω · ∇Λ + 8f2Λ7r4∇2Λ− 8f2Λ7r3∇Λ · ∇r− 8r4f2Λ6∇Λ · ∇Λ− 2(f2Λ4r2 + f4ω2)∇Aϕ · ∇Aϕ− 4(f2ωΛ4r2 − ω3f4)∇Aϕ · ∇At− 2(Λ8r4 − 2Λ4r2f2ω2 + f4ω4)∇At · ∇At}. (22)

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Conformastationary magnetizeddisk-haloes

ds2 = −e2φ(dt+ ωdϕ)2 + e−2βφ(dr2 + dz2 + r2dϕ2), (23)Jα± = 0, Aα = (0, 0, 0, Aϕ). (24)

e(1+β)φ =1

1− U , ω = kωU, (25)

Aϕ,r = − rkU,z, Aϕ,z =

r

kU,r. (26)

∇2U = 0. (27)

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Conformastationary magnetizeddisk-haloes

ds2 = −e2φ(dt+ ωdϕ)2 + e−2βφ(dr2 + dz2 + r2dϕ2), (23)Jα± = 0, Aα = (0, 0, 0, Aϕ). (24)

e(1+β)φ =1

1− U , ω = kωU, (25)

Aϕ,r = − rkU,z, Aϕ,z =

r

kU,r. (26)

∇2U = 0. (27)

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Conformastationary magnetizeddisk-haloes

ds2 = −e2φ(dt+ ωdϕ)2 + e−2βφ(dr2 + dz2 + r2dϕ2), (23)Jα± = 0, Aα = (0, 0, 0, Aϕ). (24)

e(1+β)φ =1

1− U , ω = kωU, (25)

Aϕ,r = − rkU,z, Aϕ,z =

r

kU,r. (26)

∇2U = 0. (27)

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

THE DISK:

Sαβ = (µ+ P )VαVβ + Pgαβ +QαVβ +QβVα + Παβ, (28)

{V α, Iα,Kα, Y α} ≡ {h α(t) , h

α(r) , h

α(z) , h

α(ϕ)}, (29)

{Vα, Iα,Kα, Yα} ≡ {−h(t)α, h(r)α, h(z)α, h(ϕ)α}. (30)

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

µ =4βU,z

(β + 1)(1− U)2β+1β+1

, (31a)

P =(1− β)

3βµ, (31b)

Qα = − kωU,z1− U δ

ϕα , (31c)

Πrr =2(1− β)U,z

3(1 + β)(1− U)1

1+β

, (31d)

Πϕϕ = r2Πrr, (31e)

j = − [U,r]

k(1− U)3β1+β

, (31f)

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

U = −N∑n=0

bnPn(z/R)

Rn+1, Pn(z/R) = (−1)n

Rn+1

n!

∂n

∂zn

(1

R

),(32)

Aϕ = −1

k

N∑n=0

bn(−1)n

n!

∂n

∂zn

( zR

). (33)

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

µ(r) =4β∑N

n=0 bn(n+ 1)Pn+1(a/Ra)R−(n+2)a

(1 + β)(

1 +∑N

n=0 bnPn(a/Ra)R−(n+1)a

)(2β+1)/(β+1),

P = (1− β)µ/(3β),

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

µ(r) =4β∑N

n=0 bn(n+ 1)Pn+1(a/Ra)R−(n+2)a

(1 + β)(

1 +∑N

n=0 bnPn(a/Ra)R−(n+1)a

)(2β+1)/(β+1),

P = (1− β)µ/(3β),

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Qα =kωδ

ϕα∑N

n=0 bnPn(a/Ra)R−(n+1)a

1 +∑N

n=0 bnPn(a/Ra)R−(n+1)a

,

Πrr =2(1− β)

∑Nn=0 bn(n+ 1)Pn+1(a/Ra)R

−(n+2)a

3(1 + β)(

1 +∑N

n=0 bnPn(a/Ra)R−(n+1)a

)1/(1+β) ,Πϕϕ = r2Πrr,

j = − 2r∑N

n=0 bnP′n+1(a/Ra)R

−(n+3)

k(1 +∑N

n=0 bnPnR−(n+1))2β/(1+β)

.

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Qα =kωδ

ϕα∑N

n=0 bnPn(a/Ra)R−(n+1)a

1 +∑N

n=0 bnPn(a/Ra)R−(n+1)a

,

Πrr =2(1− β)

∑Nn=0 bn(n+ 1)Pn+1(a/Ra)R

−(n+2)a

3(1 + β)(

1 +∑N

n=0 bnPn(a/Ra)R−(n+1)a

)1/(1+β) ,Πϕϕ = r2Πrr,

j = − 2r∑N

n=0 bnP′n+1(a/Ra)R

−(n+3)

k(1 +∑N

n=0 bnPnR−(n+1))2β/(1+β)

.

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Qα =kωδ

ϕα∑N

n=0 bnPn(a/Ra)R−(n+1)a

1 +∑N

n=0 bnPn(a/Ra)R−(n+1)a

,

Πrr =2(1− β)

∑Nn=0 bn(n+ 1)Pn+1(a/Ra)R

−(n+2)a

3(1 + β)(

1 +∑N

n=0 bnPn(a/Ra)R−(n+1)a

)1/(1+β) ,Πϕϕ = r2Πrr,

j = − 2r∑N

n=0 bnP′n+1(a/Ra)R

−(n+3)

k(1 +∑N

n=0 bnPnR−(n+1))2β/(1+β)

.

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

w

m0

rw

Figure: Dimensionless surface energy densities µ̃ as a function of r̃.We plot µ̃0(r̃) for different values of the parameter β with b̃0 = 1

s

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

w

m0

rw

Figure: Dimensionless surface energy densities µ̃ as a function of r̃.We plot µ̃0(r̃) for different values of the parameter β with b̃0 = 1

s A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

rw

w

m1

Figure: Dimensionless surface energy densities µ̃ as a function of r̃.We plot µ̃1(r̃) for different values of the parameter β with b̃0 = 1

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

rw

w

m1

Figure: Dimensionless surface energy densities µ̃ as a function of r̃.We plot µ̃1(r̃) for different values of the parameter β with b̃0 = 1

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

rw

wj0

rw

wj1

(a) (b)

Figure: Dimensionless current of magnetization µ̃ as a function of r̃.In each case, we plot µ̃0(r̃) and µ̃1(r̃) for different values of theparameter β with b̃0 = 1 and b̃0 = 0.5

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

THE HALO:

M±tt =U2,r + U2

,z

(1 + β)2e4(1+β)φ

{(β2 + 2β)

− 1

2k2(1 + β)2e−2φ +

3k2ω4

(1 + β)2r−2}

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

M±tϕ =kω(U2

,r + U2,z)

(1 + β)2e4(1+β)φ

×{

1

2(3 + β)(1 + β)e−(1+β)φ + U

(3k2ω4

(1 + β)2r−2 + β2 + 2β

)}− kωe2(1+β)φ

(1

2k2e2βφU(U2

,r + U2,z) + r−1U,r,

)

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

M±rr = −U2,r − U2

,z

(1 + β)2e2(1+β)φ

((2− β2)− (1 + β)2

2k2e−2φ

)+

(1− β)

(1 + β)2e2(1+β)φ

(2U2

,r − (1 + β)e−(1+β)φU,rr

)+k2ω4r−2e2(1+β)φ(U2

,r − U2,z)

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

M±rz = − 2U,rU,z(1 + β)2

e2(1+β)φ(

(2− β2)− (1 + β)2

2k2e−2φ

)+

(1− β)

(1 + β)2e2(1+β)φ

(2U,rU,z − (1 + β)e−(1+β)φU,rz

)+

1

2k2ωr

−2e2(1+β)φU,rU,z,

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

M±zz =U2,r − U2

,z

(1 + β)2e2(1+β)φ

((2− β2)− (1 + β)2

2k2e−2φ

)+

(1− β)

(1 + β)2e2(1+β)φ

(2U2

,z − (1 + β)e−(1+β)φU,zz

)− 1

4k2ωr

−2e2(1+β)φ(U2,r − U2

,z),

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

M±ϕϕ =r2(U2

,r + U2,z)

(1 + β)2e2(1+β)φ

((2− β2)− (1 + β)2

2k2e−2φ

)− (1− β)rU,r

(1 + β)e(1+β)φ + k2ωe

2(1+β)φK,

K =U2,r + U2

,z

(1 + β)2

{(β2 + 2β)U2e2(1+β)φ + (3 + β)(1 + β)Ue(1+β)φ

+(1 + β)2U2

2e2βφ

(3

2k2ωr

−2 − 1

k2

)+

(1 + β)2

4

}− 2r−1UU,r.

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

M±αβ = (µ± + P±)VαVβ + P±gαβ +Q±αVβ +Q±β Vα + Π±αβ, (34)

{V α, Iα,Kα, Y α} ≡ {h α(t) , h

α(r) , h

α(z) , h

α(ϕ)}, (35)

{Vα, Iα,Kα, Yα} ≡ {−h(t)α, h(r)α, h(z)α, h(ϕ)α}. (36)

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

µ± =(U2

,r + U2,z)e

2(1+2β)φ

(1 + β)2r2

×{

(2β + β2)r2 − (1 + β)2

2k2r2e−2φ +

3k2ω(1 + β)2

4

},

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

P± =(U2

,r + U2,z)e

2(1+2β)φ

3(1 + β)2r2

{(4− 2β − β2)r2 − (1 + β)2

2k2r2e−2φ

+k2ω(1 + β)2

4

(1 + 3k2ωr

−2U2e2βφ(1− e2φ))}

,

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Q±α =kωe

(1+2β)φ

2(1 + β)r

{2(1 + β)U,r − (3 + β)r(U2

,r + U2,z)e

(1+β)φ

}δϕα .

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Π±αβ = P±r IαIβ + P±z KαKβ + P±ϕ YαYβ + 2P±T I(αKβ),

P±r = e2βφΠ±rr,

P±z = e2βφΠ±zz,

P±ϕ =e2βφ

r2Π±ϕϕ,

P±T = e2βφΠ±rz.

P± ≡ P±r + P±z + P±ϕ = 0, Π±αα = 0.

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Π±αβ = P±r IαIβ + P±z KαKβ + P±ϕ YαYβ + 2P±T I(αKβ),

P±r = e2βφΠ±rr,

P±z = e2βφΠ±zz,

P±ϕ =e2βφ

r2Π±ϕϕ,

P±T = e2βφΠ±rz.

P± ≡ P±r + P±z + P±ϕ = 0, Π±αα = 0.

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Π±αβ = P±r IαIβ + P±z KαKβ + P±ϕ YαYβ + 2P±T I(αKβ),

P±r = e2βφΠ±rr,

P±z = e2βφΠ±zz,

P±ϕ =e2βφ

r2Π±ϕϕ,

P±T = e2βφΠ±rz.

P± ≡ P±r + P±z + P±ϕ = 0, Π±αα = 0.

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Π±rr =e2(1+β)φ

3(1 + β)2r2

{(k2ω(1 + β)2

2+

2(1 + β)2

k2r2e−2φ

− 4(1 + β − β2)r2 − 3k4ω(1 + β)2

4r−2U2e2βφ(1− e2φ)

)U2r

+

(− k2ω(1 + β)2 − (1 + β)2

k2r2e−2φ + 2(1 + β − β2)r2

− 3k4ω(1 + β)2

4r−2U2e2βφ(1− e2φ)

)U2z

− 3(1− β2)r2e−(1+β)φU,rr},

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Π±zz =e2(1+β)φ

3(1 + β)2r2

{(− k2ω(1 + β)2 − (1 + β)2

k2r2e−2φ

+ 2(1 + β − β2)r2 − 3k4ω(1 + β)2

4r−2U2e2βφ(1− e2φ)

)U2r

+

(k2ω(1 + β)2

2+

2(1 + β)2

k2r2e−2φ − 4(1 + β − β2)r2

− 3k4ω(1 + β)2

4r−2U2e2βφ(1− e2φ)

)U2z

− 3(1− β2)r2e−(1+β)φU,zz},

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Π±ϕϕ =(U2

,r + U2,z)e

2(1+β)φ

3(1 + β)2

{2(1 + β − β2)r2 − (1 + β)2

k2r2e−2φ

+k2ω(1 + β)2

2

(1 + 3k2ωr

−2U2e2βφ(1− e2φ))}

− (1− β)

1 + βre(1+β)φU,r

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Π±rz =e2(1+βφ)

(1 + β)2

{(− 2(1 + β − β2) +

(1 + β)2

k2e−2φ

+k2ω(1 + β)2

2r2

)U,rU,z − (1− β2)e−(1+β)φU,rz

}.

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

U = −N∑n=0

bnPn(z/R)

Rn+1, Pn(z/R) = (−1)n

Rn+1

n!

∂n

∂zn

(1

R

),(37)

Aϕ = −1

k

N∑n=0

bn(−1)n

n!

∂n

∂zn

( zR

). (38)

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

30.1 30.1

220.30.3

22

110.50.5

zr zr00

44

0.70.7 − 1− 1

66

− 2− 2

88

1010

(a)

Figure: Dimensionless surface plot of the energy density µ̃±0

on theexterior halo as a function of r̃ and z̃ with parameters β = 0.5, b̃0 = 1,k = 1 and kω = 1

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

30.1 30.1

220.30.3

22

110.50.5

zr zr00

44

0.70.7 − 1− 1

66

− 2− 2

88

1010

(a)

Figure: Dimensionless surface plot of the energy density µ̃±0

on theexterior halo as a function of r̃ and z̃ with parameters β = 0.5, b̃0 = 1,k = 1 and kω = 1

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

30.1 30.1

220.30.3

22

110.50.5

zr zr00

44

0.70.7 − 1− 1

66

− 2− 2

88

1010

(a) (b)

Figure: Dimensionless surface plot and level curves of the energydensity µ̃±

0on the exterior halo as a function of r̃ and z̃ with

parameters β = 0.5, b̃0 = 1, k = 1 and kω = 1

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

30.1 30.1

22

55

0.30.311

0.50.5

1010

zzrr00

− 1− 10.70.7

1515

− 2− 2

2020

2525

(a) (b)

Figure: Dimensionless surface plot and level curves of the energydensity µ̃±

1on the exterior halo as a function of r̃ and z̃ with

parameters β = 0.5, b̃0 = 1, b̃1 = 0.5, k = 1 and kω = 1

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

0.1 30.1 3

220.30.3

2020

110.50.5r zzr

00

4040

− 10.7 − 10.7

6060

− 2− 2

8080

100100

(a) (b)

Figure: Dimensionless surface plot and level curves of the pressureP̃±

0on the exterior halo as a function of r̃ and z̃ with parameters

β = 0.5, b̃0 = 1, k = 1 and kω = 1

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

30.1 30.1

22

55

0.30.311

0.50.5

1010

zzrr00

− 1− 10.70.7

1515

− 2− 2

2020

2525

(a) (b)

Figure: Dimensionless surface plot and level curves of the pressureP̃±

1on the exterior halo as a function of r̃ and z̃ with parameters

β = 0.5, b̃0 = 1, b̃1 = 0.5, k = 1 and kω = 1

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Perspectives

• Orbit of test particles on the halo

• Orbit of test particles in the disk• Confrontation of the model with observational data• Conformastationary thick disk with halos• Interpretation of the EMT of the disk (halo) from the ZAMO• Stability and Interpretation of the EMT of the disk (halo)• Covariant thermodynamics of the conformastationary

disk-haloes.

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Perspectives

• Orbit of test particles on the halo• Orbit of test particles in the disk

• Confrontation of the model with observational data• Conformastationary thick disk with halos• Interpretation of the EMT of the disk (halo) from the ZAMO• Stability and Interpretation of the EMT of the disk (halo)• Covariant thermodynamics of the conformastationary

disk-haloes.

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Perspectives

• Orbit of test particles on the halo• Orbit of test particles in the disk• Confrontation of the model with observational data

• Conformastationary thick disk with halos• Interpretation of the EMT of the disk (halo) from the ZAMO• Stability and Interpretation of the EMT of the disk (halo)• Covariant thermodynamics of the conformastationary

disk-haloes.

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Perspectives

• Orbit of test particles on the halo• Orbit of test particles in the disk• Confrontation of the model with observational data• Conformastationary thick disk with halos

• Interpretation of the EMT of the disk (halo) from the ZAMO• Stability and Interpretation of the EMT of the disk (halo)• Covariant thermodynamics of the conformastationary

disk-haloes.

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Perspectives

• Orbit of test particles on the halo• Orbit of test particles in the disk• Confrontation of the model with observational data• Conformastationary thick disk with halos• Interpretation of the EMT of the disk (halo) from the ZAMO

• Stability and Interpretation of the EMT of the disk (halo)• Covariant thermodynamics of the conformastationary

disk-haloes.

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Perspectives

• Orbit of test particles on the halo• Orbit of test particles in the disk• Confrontation of the model with observational data• Conformastationary thick disk with halos• Interpretation of the EMT of the disk (halo) from the ZAMO• Stability and Interpretation of the EMT of the disk (halo)

• Covariant thermodynamics of the conformastationarydisk-haloes.

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

Perspectives

• Orbit of test particles on the halo• Orbit of test particles in the disk• Confrontation of the model with observational data• Conformastationary thick disk with halos• Interpretation of the EMT of the disk (halo) from the ZAMO• Stability and Interpretation of the EMT of the disk (halo)• Covariant thermodynamics of the conformastationary

disk-haloes.

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity

ReferencesG. A. González, A. C. Gutiérrez-Piñeres, and P. A. Ospina.Finite axisymmetric charged dust disks in conformastatic spacetimes.Phys. Rev. D, 78:064058, Sep 2008.

A. C. Gutiérrez-Piñeres, G. A. González, and H. Quevedo.Conformastatic disk-haloes in einstein-maxwell gravity.Phys. Rev. D, 87:044010, Feb 2013.

A. C. Gutiérrez-Piñeres.Conformastationary disk-haloes in einstein-maxwell gravity.arXiv preprint arXiv:1410.3148, 2014.

A. C. Gutiérrez-Piñeres.Conformastationary disk-haloes in einstein-maxwell gravity ii: the physical interpretation of the halo.Paper in preparation, 2014.

A. C. Gutiérrez-Piñeres, C. S. Lopez-Monsalvo, and H. Quevedo.Variational thermodynamics of relativistic thin disks.arXiv preprint arXiv:1306.6591, 2013.

H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, and E. Herlt.Exact solutions of Einstein’s field equations.Cambridge University Press, 2003.

J. Synge.Relativity: the general theory.North-Holland Pub. Co.; Interscience Publishers, Amsterdam; New York, 1960.

Back1 Back2

A. C. Gutiérrez-Piñeres Disk-haloes in Einstein-Maxwell gravity