Devonian–Early Carboniferous miospore biostratigraphy of the Amazon Basin, Northern Brazil

72
Devonian^Early Carboniferous miospore biostratigraphy of the Amazon Basin, Northern Brazil Jose ¤ Henrique G. Melo a; Ã , Stanislas Loboziak 1 a Petrobras/Cenpes/Pdexp/Bpa, Cidade Universita ¤ria, Ilha do Funda ‹o, 21949-900 Rio de Janeiro, RJ, Brazil Received 20 December 2001; received in revised form 28 May 2002; accepted 16 July 2002 Abstract A miospore biozonation, including 17 new interval zones, is proposed for Devonian^Early Carboniferous stratigraphic sections in the Amazon Basin. It results from a detailed review of the coeval miospore assemblages and biohorizons in the basin. The combined use of selected Euramerican and Western Gondwanan forms as zonal and characteristic taxa permits accurate subdivision, dating and correlation of Amazon Basin palyniferous strata in terms of equivalent miospore zones of Western Europe and the Old Red Sandstone Continent. The miospore data provide new insights into such varied issues as e.g. the age and stratigraphic relationships of regional rock units, the detection and dating of intervening hiatuses, condensed sedimentary sections, anoxic phases, and resedimentation cycles. Although primarily devised to serve as a regional biozonation, the scheme presented here has a unifying character because it can be applied to other Paleozoic basins in Brazil and Western Gondwanan regions where similar miospore successions are documented. A miospore assemblage zone recently described for the early Late Carboniferous interval of the Amazon Basin is also partly reviewed and integrated with the new biozonation for the older sections. ȣ 2003 Elsevier Science B.V. All rights reserved. Keywords: Devonian; Carboniferous; miospores; biozonation; Amazon Basin; Brazil 1. Introduction The main purpose of this paper is to update and calibrate the Devonian to Lower Carbonifer- ous palynostratigraphy of the Amazon Basin, Northern Brazil, with reference to standard Eur- american miospore zonations (Clayton et al., 1977, 1978; Higgs, 1984; Richardson and McGre- gor, 1986; Streel et al., 1987; Richardson and Ahmed, 1988; Higgs et al., 1988a,b, 1992; Stee- mans, 1989; Streel and Loboziak, 1996; Maziane et al., 1999). This is a major detailed revision of the stratigraphy and taxonomy of Amazonian Middle Paleozoic miospores, initiated by the present authors and associates in the early 1990s and still continuing (Loboziak and Streel, 1992; Loboziak et al., 1991a, 1993, 1994a,b, 1996, 1997a,c, 1998a, 1999a, 2000b; Melo et al., 1996, 1998, 1999; Melo and Loboziak, 1997; Loboziak, 1999; Loboziak and Melo, 2000, 2002; Streel et al., 2000a; Melo and Loboziak, 2001). The present results are derived from the inves- tigation of over 2250 palynological slides from 0034-6667 / 03 / $ ^ see front matter ȣ 2003 Elsevier Science B.V. All rights reserved. doi :10.1016/S0034-6667(02)00184-7 1 Deceased * Corresponding author. E-mail address: [email protected] (J.H.G. Melo). Review of Palaeobotany and Palynology 124 (2003) 131^202 R Available online at www.sciencedirect.com www.elsevier.com/locate/revpalbo

Transcript of Devonian–Early Carboniferous miospore biostratigraphy of the Amazon Basin, Northern Brazil

Devonian^Early Carboniferous miospore biostratigraphy ofthe Amazon Basin, Northern Brazil

Jose¤ Henrique G. Melo a;�, Stanislas Loboziak 1

a Petrobras/Cenpes/Pdexp/Bpa, Cidade Universita¤ria, Ilha do Funda‹o, 21949-900 Rio de Janeiro, RJ, Brazil

Received 20 December 2001; received in revised form 28 May 2002; accepted 16 July 2002

Abstract

A miospore biozonation, including 17 new interval zones, is proposed for Devonian^Early Carboniferousstratigraphic sections in the Amazon Basin. It results from a detailed review of the coeval miospore assemblages andbiohorizons in the basin. The combined use of selected Euramerican and Western Gondwanan forms as zonal andcharacteristic taxa permits accurate subdivision, dating and correlation of Amazon Basin palyniferous strata in termsof equivalent miospore zones of Western Europe and the Old Red Sandstone Continent. The miospore data providenew insights into such varied issues as e.g. the age and stratigraphic relationships of regional rock units, the detectionand dating of intervening hiatuses, condensed sedimentary sections, anoxic phases, and resedimentation cycles.Although primarily devised to serve as a regional biozonation, the scheme presented here has a unifying characterbecause it can be applied to other Paleozoic basins in Brazil and Western Gondwanan regions where similar miosporesuccessions are documented. A miospore assemblage zone recently described for the early Late Carboniferous intervalof the Amazon Basin is also partly reviewed and integrated with the new biozonation for the older sections.� 2003 Elsevier Science B.V. All rights reserved.

Keywords: Devonian; Carboniferous; miospores; biozonation; Amazon Basin; Brazil

1. Introduction

The main purpose of this paper is to updateand calibrate the Devonian to Lower Carbonifer-ous palynostratigraphy of the Amazon Basin,Northern Brazil, with reference to standard Eur-american miospore zonations (Clayton et al.,1977, 1978; Higgs, 1984; Richardson and McGre-gor, 1986; Streel et al., 1987; Richardson and

Ahmed, 1988; Higgs et al., 1988a,b, 1992; Stee-mans, 1989; Streel and Loboziak, 1996; Mazianeet al., 1999). This is a major detailed revision ofthe stratigraphy and taxonomy of AmazonianMiddle Paleozoic miospores, initiated by thepresent authors and associates in the early 1990sand still continuing (Loboziak and Streel, 1992;Loboziak et al., 1991a, 1993, 1994a,b, 1996,1997a,c, 1998a, 1999a, 2000b; Melo et al., 1996,1998, 1999; Melo and Loboziak, 1997; Loboziak,1999; Loboziak and Melo, 2000, 2002; Streel etal., 2000a; Melo and Loboziak, 2001).The present results are derived from the inves-

tigation of over 2250 palynological slides from

0034-6667 / 03 / $ ^ see front matter � 2003 Elsevier Science B.V. All rights reserved.doi:10.1016/S0034-6667(02)00184-7

1 Deceased* Corresponding author.E-mail address: [email protected]

(J.H.G. Melo).

Review of Palaeobotany and Palynology 124 (2003) 131^202

R

Available online at www.sciencedirect.com

www.elsevier.com/locate/revpalbo

cuttings and core samples of 37 Petrobras explor-atory wells and the Caima PH-2 shallow core-drill(Fig. 1). This extensive work was carried out dur-ing the period 1994^1999, partly at the Universite¤des Sciences et Technologies de Lille (USTL; Vil-leneuve d’Ascq, France) and partly at PetrobrasResearch and Development Centre (Cenpes; Riode Janeiro, Brazil), in the course of a Petrobras^USTL joint project focusing mainly on the De-vonian^Carboniferous palynostratigraphy of theAmazon Basin. Although primarily concernedwith the Early Devonian^late Vise¤an stratigraphicinterval, the analyses have been extended upwardsinto the basal part of the overlying Late Carbon-iferous sequence in order to evaluate the extentand chronostratigraphic magnitude of the post-Vise¤an unconformity across the basin. The LateCarboniferous palynostratigraphy of the AmazonBasin has been recently revised by Playford andDino (2000a,b) and is beyond the main scope ofthis paper.In addition to more accurate dating and corre-

lation of the Devonian^Carboniferous strata ofNorthern Brazil, our study also aims at the erec-tion of an improved miospore biozonal schemeapplicable to not only Amazonian basins (i.e.the Amazon and Solimo‹es Basins), but also theParna|¤ba and Parana¤ Basins. The latter two ba-sins have been likewise investigated by us, i.e.from the late 1980s to the present (Burjack etal., 1987; Loboziak et al., 1988, 1989, 1992,1993, 1994a,b, 1995, 1998b, 2000a; Dino et al.,1995; Rodrigues et al., 1995; Melo and Loboziak,2000; Streel et al., 2001). All were found to dis-play similar miospore successions, in most re-spects comparable to those from other WesternGondwanan regions and Western Europe (Lobo-ziak, 1999; Loboziak et al., 1999a; Melo et al.,1999; Loboziak and Melo, 2000, 2002; Streel etal., 2000a), thus no longer justifying the separatebiozonal schemes proposed in the previous Brazil-ian literature.Our new scheme has therefore a unifying char-

acter, and is intended to replace the post-Silurian,pre-Pennsylvanian parts of earlier biozonations inthe aforementioned Paleozoic basins of Brazil(Mu«ller, 1962; Brito, 1967, 1971; Lange, 1967a,b;Daemon et al., 1967; Daemon and Contreiras,

1971; Andrade and Daemon, 1974; Daemon,1974, 1976). These, with few exceptions, e.g. thecompilation and tentative integration of the Para-na¤ Basin Silurian^Devonian palynozones by Dino(1999), or the Devonian marine palynomorph bio-zonations of the Parna|¤ba and Solimo‹es Basinsby Quadros (1982, 1988), have remained largelyunrevised for almost three decades. Grahn (1992,plus several unpublished Petrobras and UERJ re-ports) and Grahn et al. (2001) reassessed the ageof the Devonian rock units of Brazil based onchitinozoan studies. However, no actual biozoneshave been proposed until his latest Parana¤, Par-na|¤ba and Amazon Basin reviews (Grahn et al.,2000, 2001; Grahn and Melo, 2002). The reasonsfor the proposed replacement of the zonalschemes are manifold, and can be summarizedas follows:(1) The Petrobras biozones for the Northern

Brazilian basins and the Parana¤ Basin, as wellas Mu«ller’s (1962) and Brito’s (1967, 1971) schemefor the Parna|¤ba Basin, were all developed duringthe 1960s and early 1970s, i.e. at a time whenDevonian^Carboniferous palynomorph taxonomyand stratigraphy were still in their infancy. Withthe exception of subsequent works mainly con-cerned with marine microfossil biostratigraphy(Quadros, 1982, 1985a,b, 1988, 1999a; Oliveira,1997; Grahn, 1992, 1997, 1998, 1999; Grahn etal., 2000, 2001; Grahn and Melo, 2002), the pro-posed ages and palynomorph vertical ranges inthose pioneer Brazilian zonations have not beenrevised for a long time, and some are no longeracceptable in the light of our miospore-baseddata.(2) The recognition of several Petrobras bio-

zones relies on mixed palynomorph groups suchas miospores, organic-walled microphytoplanktonand chitinozoans. In some cases, because of suchheterogeneity, their boundaries and variable as-semblages are too ill-de¢ned to be reliably corre-lated with the standard biozonations elsewhere,which have usually been erected on the basis ofseparate palynomorph groups.(3) Most of the taxa used to characterize some

Petrobras biozones (particularly in the NorthernBrazilian basins) have been neither illustrated nordescribed appropriately, but instead left in open

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202132

nomenclature and indicated by alpha^numericalcodes only. Of the relatively few miospore taxaillustrated by Mu«ller (1962) and Daemon (1972,1974), most are hardly comparable to any indexspecies employed nowadays in Devonian^Carbon-iferous zonations elsewhere in the world. Thishampers all attempts at biozonal calibration andlong-distance correlation.(4) The regional stratigraphic distribution of

some key taxa of Petrobras older biozonalschemes in at least the Amazon Basin is nowknown to di¡er considerably from what is shownin the range charts of the 1970s. For instance, thespore Contagisporites permultus (Petrobras taxonF-2065, now Grandispora permulta) and the acri-tarch Umbellasphaeridium saharicum (F-2332) ap-pear in large numbers (Loboziak et al., 1999b;Melo et al., 1996, 1999) within sections assignableto Petrobras biozones V and VI respectively,although the same species are used by Daemon(1974, table I) to characterize younger intervals(VI and VIII)2. Another problem seldom consid-ered in past Petrobras biozonations concerns theexaggerated or blurred vertical ranges of severalDevonian palynomorphs due to reworking pro-cesses, so common in the late to latest Famennianstrata of the Northern Brazilian basins (Loboziaket al., 1994a, 1996, 2000a; Melo et al., 1996;Streel et al., 2001; Grahn et al., 2001).(5) Possibly due to some combination of the

problems itemized above, the correlation of the

Petrobras palynozones may prove troublesomeeven on an intra-basinal scale. Such is the case,for instance, with the highly diachronous andpartly coeval Tournaisian biozones IX throughXI in the Amazon Basin, as already pointed outin our previous reviews (Loboziak et al., 1998a,pp. 149^150; Melo et al., 1999, pp. 15^17; Lobo-ziak et al., 2000b, p. 243). In addition, the corre-lation of the Devonian palynozones in theschemes of Daemon and Contreiras (1971, tableon p. 82 and ¢gs. 2 and 3) and Daemon (1974,text¢g. 2) seems to be rigidly conditioned by lith-ostratigraphic boundaries, particularly biozonesIV through VII which have been equated respec-tively with the Maecuru, Erere“, Barreirinha andCuriri Formations. Some of these zones are alsotoo comprehensive and now known to includestrata with quite distinct ages, such as intervalsIV and VI (the former spanning the period frompossibly the latest Lochkovian through the earlyEifelian, and the latter from the early Frasnianthrough the late Famennian). The Parana¤ BasinDevonian also testi¢es to marked diachronism ofsome Petrobras regional zones [e.g. biostrati-graphic units D3 and D4 sensu Lange (1967b)and Daemon et al. (1967)], as discussed by Grahn(1997, 1998).(6) Contrary to the former Petrobras biozona-

tion of the Amazon Basin (strictly regional inconception), the new Devonian^Carboniferousmiospore zonal scheme proposed here is applica-ble to other Brazilian and Western Gondwananbasins. It is also easily correlated with the stan-dard Euramerican miospore zonations because ittakes into consideration index or characteristicspecies from both palyno£oral realms.

2. Geological setting

A detailed account of the Amazon Basin Paleo-zoic lithostratigraphy and sequence stratigraphy,structural framework, tectono^sedimentary histo-ry, and geological evolution is clearly beyond thescope of this paper. Such topics have already beensu⁄ciently covered in a number of previousworks, and the interested reader is referred tosome for both historical reviews and update pur-

2 The Amazon Basin palynomorph range chart by Daemonand Contreiras (1971, ¢g. 4) correctly shows miospore F-2065appearing within the lower part of biozone V ( =Vi). On theother hand, they propose an extended range for this species upto interval VIII of latest Famennian age, with a sustainedepibole until at least interval VI (then regarded as Frasnian,now known to include also late Famennian strata in its upperpart). Nevertheless, our miospore results, based on numerouswell-dated sections in the Devonian basins of Brazil and otherWestern Gondwanan regions, now indicate that Grandisporapermulta becomes extinct within the Frasnian, as the higher(Famennian) occurrences are due only to recycling of Middleand early Late Devonian sediments. No pre-VII occurrences ofacritarch F-2332 (Umbellasphaeridium saharicum) are shown inthe range charts of Daemon and Contreiras (1971) and Dae-mon (1974), even though the species is abundant in the upperpart of the Barreirinha Formation (a rock unit traditionallyequated with biozone VI by the Petrobras pioneer workers).

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202 133

poses (Lange, 1967a; Andrade and Cunha, 1971;Caputo et al., 1972; Carozzi et al., 1972, 1973;Carozzi, 1979; Caputo, 1984; Melo, 1985; Back-heuser, 1988; Neves, 1989; Neves et al., 1989;Grahn, 1992; Cunha et al., 1994; Silva, 1996;Cunha, 2000; Playford and Dino, 2000a). No-menclatural aspects and formal de¢nitions ofAmazon Basin rock units are also provided inthe Brazilian stratigraphic lexicon (Baptista etal., 1984).The present-day con¢guration of the Amazon

Basin has been largely inherited from the Precam-brian basement’s structural framework and wasfurther in£uenced by post-Paleozoic tectonicsand erosion. It represents a large, E^W elongatedintracratonic sedimentary basin that occupies anarea of ca. 500 000 km2 in Northern Brazil (Fig.1). The northern and southern boundaries consistrespectively of the Guiana and Brazilian Shields,where Precambrian crystalline and metasedimen-tary rocks are widely exposed. Structural highs orarches (Purus, Gurupa¤) separate the Amazon Ba-sin from adjacent sedimentary basins to the west

and east (respectively the Solimo‹es and Marajo¤Basins). Aligned structural hinges of the basin’s£oor, grossly parallel to the northern and south-ern rims of the Amazon Basin, separate a pair ofless subsident marginal sectors (the so-calledNorth and South Platforms) from the intervening,deeper Central Basin sector where most of theregional Paleozoic rock units (Table 1) presentthe greatest sedimentary development and thick-ness (Neves, 1989; Neves et al., 1989).According to Cunha et al. (1994), the basin’s

Phanerozoic sedimentary wedge, up to 5000 mthick, includes two ¢rst-order depositional se-quences, i.e. a less important Mesozoic^Cenozoicsection and a far more developed Paleozoic sec-tion which is however only partly exposed in out-crop belts along the basin’s margins. The Paleo-zoic ¢rst-order sequence consists of three second-order sequences (Cunha, 2000), which also corre-spond to major lithostratigraphic units. These in-clude (in ascending stratigraphic order) : (1) theLate Ordovician^earliest Devonian TrombetasGroup, (2) the Early Devonian^Early Carbonifer-

Fig. 1. Location map of the study area and analysed wells in the Amazon Basin, and index map showing other Brazilian Paleo-zoic basins mentioned in the text. Amazon Basin structural settings and well sites compiled from the following sources: Andradeand Cunha (1971), Daemon and Contreiras (1971), Carozzi et al. (1972), Neves (1989), Neves et al. (1989), Loboziak et al.(1996, 1997b,c), and Playford and Dino (2000a). Key to symbols on inset map: 1 (encircled), study area; I, Iquitos Arch; II,Carauari High; III, Purus Arch; IV, Gurupa¤ High; SO, Solimo‹es Basin (Jd, Jandiatuba Sub-basin; Jr, Jurua¤ Sub-basin); PN,Parna|¤ba Basin; PR, Parana¤ Basin.

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202134

Table1

BriefcharacterizationofAmazonBasinDevonianandCarboniferousrockunitsdiscussedinthispaper.TheVise¤ anFaroFormationisheremaintainedasanin-

dependentunitasproposedbyCaputoetal.(1972)andCaputo(1984),althoughsomeauthors(e.g.Cunhaetal.,1994)considerittorepresentpartoftheCurua¤

Group.

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202 135

Table2

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202136

ous Urupadi and Curua¤ Groups (for some alsoincluding the Faro Formation on its top), and(3) the Late Carboniferous^Permian Tapajo¤sGroup. The lower and intermediate sequences in-clude siliciclastic strata only, whereas evaporitesand carbonates are extensively developed in theupper sequence.Our work is primarily concerned with the paly-

nostratigraphy of the ‘intermediate’ Paleozoic se-quence of Cunha (2000), although bounding por-tions of the sequences immediately above andbelow are also brie£y considered. The study area(Fig. 1) covers the main part of the Amazon Ba-sin, and includes the 38 wells we investigated. Ofthese, 15 are on the North Platform, 8 on theSouth Platform, and the remainder in the CentralBasin. In terms of the regional lithostratigraphythe following units are considered (in ascendingstratigraphic order) : the uppermost ManacapuruFormation on the top of the Trombetas Group,the Jatapu and Lontra Members of the MaecuruFormation and the Erere“ Formation (altogethermaking up the Urupadi Group), the Barreirinha,Curiri and Oriximina¤ Formations of the Curua¤Group, the Faro Formation, and the Monte Ale-gre Formation (basal unit of the Tapajo¤s Group).Brief lithological characterizations and furtherdata concerning these rock units are compiled inTable 1.

3. Previous palynological investigations in theDevonian^Carboniferous strata of the AmazonBasin

The history of Devonian^Carboniferous paly-nostratigraphy in the Amazon Basin is intimately

related to that of hydrocarbon exploration in theregion, intermittently carried out by Petrobrassince the 1950s. Several palynological works notprimarily concerned with the recognition of re-gional biozones have been issued since aboutthat same period (Lange, 1952; Sommer, 1953,1956; Van Boekel, 1963, 1967a^c, 1968a,b;Sommer and Van Boekel, 1963, 1965, 1966,1967; Costa, 1971; Cruz, 1982; Quadros, 1996,1999b). However, most of these studies have fo-cused mainly on local records and taxonomic as-pects of Devonian marine palynomorphs (chitino-zoans and organic-walled microphytoplankton)and plant microfossils, with scanty considerationof their stratigraphic usefulness or age implica-tions.Paleozoic biostratigraphic units for the Amazon

Basin were ¢rst proposed in the pioneer work ofLange (1967a), who recognized seven informal in-tervals (I up to VII) on the basis of Silurian andDevonian chitinozoans and acritarchs. This earlyscheme and its implied age determinations were tobe soon rede¢ned and improved by Daemon andContreiras (1971), who took miospores into con-sideration in addition to the marine palyno-morphs. These authors added new units to Lan-ge’s original biozonation so as to encompass thewhole Paleozoic sequence (intervals I throughXVI) as well as the Mesozoic and Cenozoic sec-tions (XVII, XVIII). This became the most widelyaccepted version of Petrobras regional biozona-tion in subsequent works concerned with strati-graphic syntheses and interbasinal correlation ofPaleozoic strata in Northern Brazil (Daemon,1972, 1974, 1976; Andrade and Daemon, 1974;Caputo et al., 1972; Carozzi et al., 1973, 1975;Carozzi, 1979). Of interest to our study are the

Table 2Previous age assignments and palynozonations of Amazon Basin Devonian and Carboniferous rock units reviewed in this paperaccording to selected works. Stratigraphic intervals not considered in the various works are indicated by dark-grey background,and recognized biostratigraphic hiatuses by a hatched pattern. Horizontal guidelines on the background refer to boundaries oftime^stratigraphic units shown in the leftmost column. The Silurian^Devonian marine palynomorph assemblage zones of Quadros(1985a,b) are indicated by numerals 1^10, i.e. (in ascending order): (1) Linochitina erratica ; (2) Calpichitina (Densichitina) sphaer-ica ; (3) Margachitina catenaria tenuipes ; (4) Tyligmasoma alargadum ; (5) Ramochitina ramosi ; (6) Alpenachitina eisenacki ; (7)Sphaerochitina lucianoi ; (8) Pseudolunulidia imperatrizensis ; (9) Umbellasphaeridium saharicum ; (10) Maranhites brasiliensis. TheLate Carboniferous miospore assemblage zones of Playford and Dino (2000b) are represented by numerals 1^5, i.e. (in ascendingorder): (1) Spelaeotriletes triangulus; (2) Striomonosaccites incrassatus ; (3) Illinites unicus ; (4) Striatosporites heyleri ; (5) Raistrick-ia cephalata.

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202 137

following biostratigraphic intervals (given in de-scending order) :

Biozone (1) Age*XIII Westphalian D (1)XII late Vise¤an (2)XI early Vise¤an (2)X late Tournaisian (2)IX early Tournaisian (2)VIII ‘Strunian’ (latest Famennian) (2)VII Famennian (2)VI Frasnian (2)V Middle Devonian (3)IV Emsian (3)III Silurian (1)*(1) after Daemon and Contreiras (1971); (2) after Daemon(1974); (3) after Daemon (1976).

During the late 1970s and 1980s no signi¢cantadvances were made in the Carboniferous paly-nostratigraphy of the Amazon Basin, whereasmost attempts at biostratigraphic re¢nement ofthe Devonian section relied almost exclusivelyon marine microfossil data (chie£y chitinozoans,acritarchs and prasinophytes). The pre-Carbonif-erous biozonation of the Amazon Basin was in-vestigated by Quadros (1985b), who was able torecognize a palynological succession similar tothat of the neighboring Parna|¤ba Basin (Quadros,1982). The marine palynomorph biostratigraphyof beds adjacent to the Maecuru Formation/Trombetas Group boundary was discussed byQuadros (1985a). Afterwards the scheme ofQuadros (1985a,b) was revised and greatly modi-¢ed by the chitinozoan studies by Grahn(1988a,b, 1990, 1992) and Grahn and Paris(1992). It was on the basis of these works thatMelo et al. (1992) informally proposed severalnew chitinozoan biozones for the Ordovician^De-vonian section of the Amazon Basin. Ever since,however, the regional Devonian marine palyno-morph stratigraphy has become largely obsoleteand is now in need of revision. Late Devonianchitinozoan successions are being reevaluated(Grahn et al., 1997; Grahn and Melo, 2002) inthe light of the current advances of Amazon Basinmiospore stratigraphy which are summarized be-low. Ongoing reviews also concern the Middle toLate Devonian microphytoplankton assemblagesof the basin (Le He¤risse¤, 2001).A renewed phase of updating revisions of the

regional miospore biozonation, nowadays still inprogress, was initiated by the investigations in theuppermost Devonian and Lower Carboniferoussections of well 2-LF-1-AM (Lago do Faro) byLoboziak et al. (1991a). Their studies were soonextended (Loboziak and Streel, 1992; Loboziak etal., 1992, 1993) to other wells in the Amazon andParna|¤ba Basins. Besides permitting, for the ¢rsttime, a preliminary calibration of the biostrati-graphic units of Daemon and Contreiras (1971)in terms of the standard palynozones of WesternEurope, those early attempts also provided addi-tional data for an improved correlation of Paleo-zoic strata between the two aforementioned ba-sins. Ever since, further re¢nement and accurateage determinations have been obtained from re-appraisals of the miospore zonation in selectedstratigraphic intervals of the Amazon Basin,namely the Barreirinha and Curiri Formations(Loboziak et al., 1996, 1997b,c; Melo et al.,1996), the Oriximina¤ and Faro Formations(Melo and Loboziak, 1997; Loboziak et al.,1998a, 1999a; Melo et al., 1999), and the MonteAlegre Formation and younger Pennsylvanianunits (Loboziak et al., 1997b; Melo et al., 1998,1999; Playford and Dino, 2000a,b). Combinedtaxonomic^stratigraphic reevaluations of somecritical miospore taxa (Loboziak et al., 1999b,c,2000c) have contributed to more accurate datingand correlation of particular intervals. An im-proved biozonation has been established for latestDevonian and Early Carboniferous strata in theAmazon Basin and other Northern Brazilian ba-sins, based on the joint occurrence of WesternGondwanan and Euramerican miospore species.It permits long-distance correlation of those areaswith coeval, faunally calibrated reference sectionsin North Africa and Western Europe (Loboziaket al., 2000b). Western European-de¢ned Devoni-an miospore zones currently recognized in theAmazon Basin are reviewed and summarized byLoboziak and Melo (2000, 2002), who correlatethem with similarly zoned strata in selected basinsof Brazil, North Africa and the Middle East. Thisevidence has also been used by Streel et al.(2000a), together with coeval miospore datafrom other Western Gondwanan areas, in orderto evaluate climatic and glacio^eustatic £uctua-

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202138

Fig. 2. Occurrences of main miospore taxa in core sections of the Manacapuru Formation (upper part) and Maecuru Formation(Jatapu Member).

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202 139

tions during the Late Devonian and their e¡ectson contemporary land vegetation.Table 2 compares and summarizes the Devoni-

an^Carboniferous palynostratigraphic results ob-tained from the Amazon Basin by works selectedamongst those mentioned above, ordered chrono-logically from the late 1960s to the present. Thetable also shows the increasing re¢nement andmore accurate datings obtained by successiveworks during the past decade chie£y in responseto signi¢cant improvements of the regional mio-spore stratigraphy.

4. Biostratigraphic results

In this section our main results concerning the

miospore stratigraphy of the interval rangingfrom the uppermost Trombetas Group (earliestDevonian) through the basal Tapajo¤s Group(early Late Carboniferous) are presented and de-veloped. Firstly, we review the miospore assem-blages and biohorizons that have a bearing on thedating of the Amazon Basin sequences and theircorrelation with coeval biozonal successions ofEuramerica and selected Western Gondwanan re-gions. In a next step, the erection of a new region-al miospore biozonation for the Amazon Basin(announced in a brief account by Melo and Lo-boziak, 2001) is proposed as a replacement ofprevious schemes, including our published at-tempts at directly recognizing Western Euro-pean-de¢ned palynozones in the Devonian^Car-boniferous sequences of Brazil. Advantages and

Fig. 3. Distribution chart of main miospore taxa and biochronostratigraphy of the Maecuru Formation (Lontra Member) andErere“ Formation in well 1-UA-1-AM.

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202140

shortcomings of the new biozonation are dis-cussed, and its application to other Brazilian Pa-leozoic basins is demonstrated.

4.1. Distinctive Devonian^Carboniferous miosporeassemblages and biohorizons

4.1.1. Earliest Devonian sectionThis section comprises the highest strata of the

Manacapuru Formation and the entire JatapuMember of the Maecuru Formation. Miosporeassemblages recovered from these rocks are oftenpoorly diversi¢ed and generally contain onlysmall-sized forms. Age-diagnostic taxa are usuallyrare (Fig. 2).The miospore documentation for the upper-

most part of the Manacapuru Formation is par-ticularly poor because of the limited samplingavailable for this study. In well 2-CA-1-AM, cut-tings from 738/741 m have yielded, in addition toArchaeozonotriletes chulus and Synorisporites tri-papillatus, some small zonate forms lacking anyspinose sculpture. Most of these are assignableto Cirratriradites diaphanus and permit apparentcorrelation with at least the upper part of the E.micrornatus var. sinuosus (Si) phylogenetic Zone,which is within the E. micrornatus^S. newportensis(MN) Oppel Zone of the Ardenne^Rhenish zona-tion (Streel et al., 1987, ¢g. 2; Steemans, 1989, p.174, ¢g. 220). A tentative attribution to a positionnot lower than the Si Biozone, and, consequently,an age not older than middle Lochkovian (aboveChitinozoa Zone 29 of Paris, 1981, after Streel etal., 1987, ¢g. 3), are therefore suggested for thisstratigraphic interval.Most of the investigated samples of the Jatapu

Member of the Maecuru Formation have yieldedvery few identi¢able miospore species. These in-clude mainly Archaeozonotriletes chulus, Biornati-spora salopiensis, Brochotriletes foveolatus, Cheli-nospora cassicula, Dibolisporites spp., Synorispo-rites spp. and Dictyotriletes spp. as well as non-spinose zonates. Such low-diversity assemblagesprovide only poor evidence of possible Lochko-vian or younger Early Devonian age for variedintervals within that unit (well 2-BI-1-AM, cores24 and 25; well 2-CA-1-AM, core 10; well 1-MU-2-AM, core 15; well 2-NA-1-PA, core 36; well

1-RX-4-AM, core 42). However, in more richlypalyniferous samples from the near-basal portionof the Jatapu Member (well 1-AM-7-AM, core27; well 2-BI-1-AM, core 23; well 2-PC-1-AM,cores 51 and 52; well 1-UR-1-AM, core 21) themost signi¢cant zonal species is Dictyotriletes em-siensis. This is an eponymous species of the lateearly Pragian^early Emsian emsiensis^polygonalisAssemblage Zone of the zonation by Richardsonand McGregor (1986) for the Old Red Sandstone(ORS) Continent and adjacent regions. Neverthe-less, the actual stratigraphic inception of D. em-siensis takes place in somewhat older strata,namely within the underlying breconensis^zavalla-tus Assemblage Zone (Richardson and McGregor,1986, ¢g. 3). In the Ardenne^Rhenish regions(Streel et al., 1987, ¢g. 2; Steemans, 1989, p.180, ¢g. 220) the same biohorizon de¢nes thebase of the D. emsiensis (E) Interval Zone, whichis the highest subdivision of the homonymousB. breconensis^E. zavallatus (BZ) Oppel Zone.According to Streel et al. (2000b, p. 18, text¢g.8), it is close to, but below, the lower limit ofthe Pragian Stage as de¢ned in Bohemia by the¢rst entry of the conodont Eognathus sulcatus.Elsewhere in the Jatapu Member, core 35 of

well 1-AM-1-AM (situated still in the lower partof the unit), like core 33 of well 2-MN-1-AM andcore 42 of well 1-UA-1-AM (higher up within themiddle part of the same), have yielded somepoorly preserved spores which are strongly remi-niscent of Verrucosisporites polygonalis. This is aneponymous species of the emsiensis^polygonalisAssemblage Zone of the zonation of Richardsonand McGregor (1986) and its equivalent in theArdenne, the V. polygonalis^D. wetteldorfensis(PoW) Oppel Zone (Streel et al., 1987, ¢gs. 2and 13; Steemans, 1989, p. 206, ¢g. 220).As a whole, these results suggest that the bulk

of the Jatapu Member should be placed within theE-PoW zonal range and therefore dated latestLochkovian to early Emsian3. These assignments

3 The boundary between the PoW Biozone and the over-lying E. annulatus^B. bellatulus (AB) Zone is now above thebase of Emsian (Streel et al., 2000b, p. 16, text¢g. 7) as recentlyrede¢ned (Yolkin et al., 1997) by the appearance of the con-odont Polygnathus kitabicus.

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202 141

are further reinforced by the presence, near thetop of the unit (cores 33 and 35 of well 1-MS-4-AM, and cores 27 and 28 of well 1-MS-5-AM), ofsome corroded spores probably attributable toDictyotriletes subgranifer sensu Steemans (1989).This is the index species of the D. subgranifer(Su) Interval Zone, the uppermost subdivision ofPoW that is now regarded by Streel et al. (2000b,p. 16) as mainly restricted to the early Emsian.These data are also in permissive agreementwith the co-occurrence, in the same interval, ofsome distinctive large-sized non-spinose zonates.These display thin, well developed exoexinal ex-tensions and are probably conspeci¢c with Pero-trilites sp. cf. Zonotriletes 2 in Jardine¤ and Ya-paudjian (1968), reported by Boumendjel et al.(1988) from PoW-equivalent sections at the topof the Hassi^Tabankort Formation in the Alger-ian Sahara.

4.1.2. Late Early to early Middle Devonian sectionThis stratigraphic interval corresponds to the

Lontra Member of the Maecuru Formation (low-er portion of the Urupadi Group). Due to itsprominently sandy character the lower part ofthis unit has not been sampled and, therefore,does not provide any miospore documentation.The main palynological evidence for dating the

investigated part of the Lontra unit is based onthe presence of large-sized spinose zonate andpseudosaccate miospores belonging to the generaSamarisporites and Grandispora. Small-sized mio-spores, so well represented in the underlying Jata-pu and Manacapuru palyno£oras, are less numer-ous here.A distinct increase in spore size has been docu-

mented by Richardson andMcGregor (1986, pp. 13and 14, ¢g. 2) in the uppermost part of their annu-latus^sextantii Assemblage Zone and the basalpart of the overlying douglastownense^eurypterotaAssemblage Zone. In terms of the Ardenne^Rhen-ish miospore zonation the same interval corre-sponds approximately to the uppermost E. foveo-latus^V. dubia (FD) Oppel Zone and the lowestportion of the overlying A. apiculatus^G. protea(AP) Oppel Zone (Streel et al., 1987, ¢g. 13).The species Acinosporites apiculatus has been

doubtfully identi¢ed in cores 38 and 36 of well

1-UA-1-AM (Fig. 3), whereas Grandispora dou-glastownense and G. protea occur together withother Grandispora spp. in core 31 of well 2-MN-1-AM. Altogether these taxa ensure correlation oftheir host strata with at least the upper part of theaforementioned transitional interval, i.e. the low-ermost douglastownense^eurypterota AssemblageZone in the ORS Continent and the lowermostAP Oppel Zone in Ardenne^Rhenish regions (ofwhich A. apiculatus and G. protea are the epon-ymous species).Core 25 of well 1-AM-7-AM, which straddles

the lithological boundary between the LontraMember and the overlying Erere“ Formation(Fig. 13A), has yielded poorly preserved spinosepseudosaccates apparently attributable to Grandi-spora permulta. By comparison with the Ardenne^Rhenish miospore biozonation (Loboziak andStreel, 1995) the stratigraphic inception of thisGondwanan species can be regarded as approxi-mately coeval with the boundary between the APZone and the overlying A. acanthomammillatus^D. devonicus (AD) Oppel Zone.These data collectively permit one to conclude

that the palyniferous sections of the Lontra Mem-ber are not older than the uppermost FD to APzonal transition of the Ardenne^Rhenish regions.They are probably coeval with an interval some-where within the uppermost annulatus^sextantii tolower velatus^langii zonal range of the ORS Con-tinent zonation (Streel et al., 1987, ¢g. 13). Ac-cording to Streel and Loboziak (1996, text¢g. 3),the same interval corresponds to the serotinus orcostatus patulus through costatus partitus cono-dont Zones of late Emsian to early Eifelian age.Moreover, an extension of the uppermost LontraMember into at least the base of the AD Zone(late early Eifelian, see below) is also suggested bymiospore results issued from well 1-AM-7-AM.Other (though less age-diagnostic) miospore

species recognized in the Lontra Member includeAcinosporites lindlarensis, Archaeozonotriletes chu-lus, Diatomozonotriletes franklinii, Dictyotriletesemsiensis, Emphanisporites annulatus and Grandi-spora megaformis (Fig. 14A).

4.1.3. Later Middle Devonian sectionThis interval corresponds entirely to the Erere“

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202142

Fig.4.DistributionchartofmainmiosporetaxaandbiochronostratigraphyoftheErere“Formationinwell1-AM-1-AM.

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202 143

Fig.5.DistributionchartofmainmiosporetaxaandbiochronostratigraphyoftheErere“Formation(upperpart),andBarreirinhaandCuririFormationsinwell

1-RX-1-AM.

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202144

Formation, which has been sampled in severalwells (Fig. 13A,B). Numerous miospore taxahave been recorded from di¡erent levels through-out this formation. Their distribution is shown inFigs. 3^5 and 14A.All of the recovered assemblages consist of typ-

ically Middle Devonian palyno£oras featuring anevident predominance of large-sized, spinose zo-nates/pseudosaccates of the genera Grandispora,Samarisporites and Craspedispora. The most age-signi¢cant of the Grandispora species include G.permulta and G. libyensis, another Gondwanan

pseudosaccate species that appears in strata co-eval with the pre-Lem part of the AD OppelZone (Loboziak and Streel, 1995). Their presenceimmediately below the base of the Erere“ Forma-tion ensures the correlation of this rock unit withthe AD Biozone.Somewhat higher up within the Erere“ Forma-

tion, e.g. in core 22 of well 1-AM-1-AM (Fig. 4)or in cuttings from interval 2674/2677 m of well1-RX-1-AM (Fig. 5), the most signi¢cant mio-spore species is Geminospora lemurata, a wide-spread Middle Devonian key species. Its appear-

Fig. 6. Distribution chart of main miospore taxa and biochronostratigraphy of the Barreirinha Formation (upper part) and CuririFormation (lower part) in well 1-SO-1-AM.

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202 145

ance characterizes the base of the Lem IntervalZone, which is the highest subdivision of theAD Oppel Zone in Ardenne^Rhenish regions(Streel et al., 1987). The species is also an eponymof the lemurata^magni¢cus Assemblage Zone inthe zonation of Richardson and McGregor(1986). The appearance of G. lemurata in the Erere“Formation is accompanied by the inception andproliferation of patinate spores bearing a promi-nent verrucate^baculate sculpture. These can begrouped together into a Chelinospora ex gr. ligur-ata complex, which comprises scattered specimensof C. ligurata sensu stricto along with more abun-dant, closely related forms herein collectivelytermed Chelinospora sp.Thus far no zonal miospore species younger

than G. lemurata have been identi¢ed towardsthe top of the Erere“ Formation (where Cymbo-sporites catillus and C. cyathus are the only addi-tional forms with some stratigraphic usefulness).This holds true even for intensively sampled sec-tions such as, for example, core 4 of well 1-AM-15-AM (Fig. 13A) and core 19 of well 1-AM-6A-AM, both of which straddle the lithologicalboundary between the Erere“ Formation and theoverlying Barreirinha Formation. Therefore, thewhole Erere“ unit seems to correlate with onlythe AD Zone, i.e. the upper velatus^langii to low-er lemurata^magni¢cus zonal interval of the ORSContinent zonation (Streel et al., 1987, ¢g. 13). Itcorresponds to the conodont interval between thecostatus costatus and the ensensis obliquimargina-tus Zones of late early Eifelian to early Givetianage. The main part of the Erere“ is surely earlyGivetian because G. lemurata is ¢rst detectedwithin the unit’s lower section in key sampledwells such as 1-AM-1-AM and 1-UA-1-AM(Figs. 3 and 4). It should be kept in mind thatthe Eifelian/Givetian boundary is now de¢ned bythe base of the hemiansatus conodont Zone (Clau-sen et al., 1993), which is close to, but slightlybelow the ¢rst occurrence of G. lemurata (Streeland Loboziak, 1996, text¢g. 3).

4.1.4. Frasnian to early late Famennian sectionThis comprises mainly the entire Barreirinha

Formation with its two informal divisions, a low-er sub-unit including highly radioactive, very ¢s-

sile, organic- and sul¢de-rich black shales, and anupper sub-unit consisting likewise of dark-grey toblack shales that lack those same properties (Lo-boziak et al., 1996, 1997b). A large number ofsamples has been investigated from the whole for-mation (Fig. 13A,B), where a succession of dis-tinctive miospore assemblages containing charac-teristic zonal species could be identi¢ed (Figs. 5^7and 14A,B). In more central parts of the AmazonBasin the section under consideration may extendsomewhat above the Barreirinha shales to includealso basal silty strata of the overlying Curiri For-mation, which are only recorded where a non-ero-sional lithological contact between the two forma-tions has been documented, such as in wells 1-SO-1-AM and 1-UA-1-AM (Figs. 6 and 7).The oldest assemblage, recovered from lami-

nated black shales immediately above the Erere“/Barreirinha lithological boundary, contains Sa-marisporites triangulatus. This species’ inceptionin the Ardenne^Rhenish regions (Streel et al.,1987) characterizes the base of the S. triangu-latus^A. ancyrea (TA) Oppel Zone within the en-sensis bipennatus conodont Zone, of late earlyGivetian age (Loboziak et al., 1991b). First occur-rences of S. triangulatus unaccompanied by anyyounger zonal species have been recorded inthe Brazilian Parana¤ and Parna|¤ba Basins, whereTA-equivalent sections are known (Loboziak etal., 1988; Rodrigues et al., 1995). In the AmazonBasin, however, the earliest representatives ofS. triangulatus are usually associated with, or im-mediately succeeded by spores bearing tabulatesculpture, such as Verrucosisporites bulliferus andGeminospora piliformis (Loboziak et al., 1997b),so that a younger Devonian age is implied forthe same.

Verrucosisporites bulliferus is an eponym of theovalis^bulliferus Assemblage Zone of the biozona-tion of Richardson and McGregor (1986). Ac-cording to the Ardenne^Rhenish zonal scheme(Streel et al., 1987), its appearance characterizesthe base of the V. bulliferus^C. jekhovskyi (BJ)Oppel Zone, which is placed by Streel and Lobo-ziak (1996, text¢g. 3) somewhere within the tran-sitans through punctata conodont Zones of earlyFrasnian age. In its turn G. piliformis is thus faronly known from Western Gondwanan regions,

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202146

where its stratigraphic inception has been re-corded within the V. bulliferus range. In at leastthe Parana¤ Basin it is known to ¢rst occur instrata approximately coeval with the boundarybetween the BJ and the overlying V. bulliferus^L. media (BM) Oppel Zones of the Ardenne^Rhenish regions (Loboziak et al., 1988). Basedon these considerations a stratigraphic correlationwith the undi¡erentiated BJ^BM zonal range can

be proposed for the lowest miospore assemblageof the Barreirinha Formation.Most of the miospore taxa present in this paly-

no£ora persist upwards into younger assemblagesof the radioactive black shale interval. However, asuccession of other characteristic biohorizons isrecorded amidst the latter, the most signi¢cantof which are de¢ned by the following species:Rugospora bricei, Diducites mucronatus, Crassi-

Fig. 7. Distribution chart of main miospore taxa and biochronostratigraphy of the Barreirinha Formation (upper part) and CuririFormation (lower part) in well 1-UA-1-AM.

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202 147

spora catenata, Auroraspora pseudocrista, and Tei-chertospora torquata.

Rugospora bricei was described from the NorthAfrican Ghadamis Basin (Loboziak and Streel,1989). It had been ¢rst reported (as Rugosporacf. £exuosa) from the Boulonnais area of North-ern France, which is considered as a western ex-tension of the Ardenne Namur Syncline. The spe-cies’ stratigraphic inception de¢nes the base of theinformally named regional phase zone ‘IV’ (Lobo-ziak and Streel, 1981; Loboziak et al., 1983). Theearliest representatives of R. bricei in the Barrei-rinha Formation are often associated with Didu-cites mucronatus, a species that in the Boulonnaisregion is also known to ¢rst appear at practicallythe same horizon as Rugospora bricei (Loboziaket al., 1983).Another diagnostic miospore biohorizon in the

Barreirinha Formation is de¢ned by the incomingof Teichertospora torquata. This is an eponymousspecies of the torquata^gracilis Assemblage Zoneof Richardson and McGregor’s (1986) zonation.T. torquata has not been taken into account as azonal species of the Ardenne^Rhenish biozona-tion because it is seemingly absent in WesternEurope. However, Streel et al. (1987, ¢g. 13)have proposed a correlation of the lower bound-ary of the torquata^gracilis Assemblage Zone witha horizon within their phase zone ‘IV’ near thebase of the ‘IV’c subdivision. They also tentativelyequated this assemblage zone with a broad strati-graphical interval extending from the basal ‘IV’cup to the top of the G. gracilis^G. famenensis(GF) Oppel Zone, thus implying a latest Frasnianthrough early late Famennian age range. In theAmazon Basin the above inferences are furtherreinforced by the joint occurrences of Aurorasporapseudocrista and Crassispora catenata. These aretwo distinctive species commonly associated withT. torquata in higher parts of the BarreirinhaFormation black shale interval, both of whichalso characterize the torquata^gracilis AssemblageZone in Euramerica (Richardson and McGregor,1986; Richardson and Ahmed, 1988).Other diagnostic species of both Ardenne^

Rhenish and ORS Continent biozonations are ap-parently missing. Therefore, only a ‘IV’a^b inter-val (characterized by the lowest specimens of

R. bricei) followed by a ‘IV’c+ interval (initiatedwith the ¢rst occurrence of T. torquata) can beproposed for the upper part of the radioactiveblack shale section. Altogether they imply a lateFrasnian4 and possibly younger age, but the poor(too diluted) miospore content of the ‘IV’c+ in-terval makes it impossible to subdivide the unitinto more accurate miospore biozones. Moreover,characteristically early and middle Famennianmiospore assemblages remain unrecorded in theBarreirinha Formation (Streel et al., 2000a) de-spite the lack of any apparent unconformities ormajor discontinuities within the highly homogene-ous black shale section. Strong sedimentary con-densation under distal marine, anoxic settings(Rodrigues, 2001) may account for the very lowresolution of miospore biostratigraphy in this in-terval (Loboziak et al., 1996, 1997b).The next miospore assemblage occurs through-

out the upper, less radioactive, part of the Bar-reirinha Formation and eventually attains thelowermost part of the overlying Curiri Formationin areas where the latter is fully developed. It canbe recognized on the basis of abundant specimensof Rugospora radiata and much scarcer Grandi-spora cornuta, the late Famennian index species,in addition to Vallatisporites sp. cf. V. anthoideus.The ¢rst appearance of the former two taxa char-acterizes the £exuosa^cornuta Assemblage Zoneas de¢ned by Richardson and McGregor (1986),and also the base of the D. versabilis^G. cornuta(VCo) Oppel Zone of the Ardenne^Rhenish re-gions (Streel et al., 1987). The latter biozone cor-responds to an interval ranging from the trachy-tera (or uppermost marginifera) through the lower(or middle) expansa conodont Zones (Streel andLoboziak, 1996).The earliest specimens of Rugospora radiata in

the Amazon Basin are found at the transition be-tween the lower and upper sub-units of the Bar-reirinha Formation as indicated in well logs by

4 The earliest occurrence of Rugospora bricei has been re-corded by Streel and Loboziak (1996) somewhere between theupper hassi and the linguiformis conodont Zones of late Fras-nian age. However, a more restricted assignment of this bio-horizon, i.e. late rhenana to linguiformis Zones, was recentlyproposed by Obukhovskaya et al. (2000, p. 241).

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202148

the gamma-ray curve (see Fig. 5). Associated withR. radiata all along its stratigraphic rangethroughout the upper Barreirinha shales aresome of the most signi¢cant species previouslyrecorded by us in the underlying radioactive shalesection. These include Rugospora bricei, Diducitesmucronatus, Crassispora catenata, Teichertosporatorquata, Auroraspora pseudocrista, and Verruci-retusispora magni¢ca. Some scattered precursorsof Cyrtospora cristifera are also found withinVCo-age beds of the Barrerinha Formation(Melo et al., 1996), which are further character-ized by a succession of ¢rst occurrences. Some ofthese have already been reported from the CaimaPH-2 core-drill, on the southern margin of theAmazon Basin (Loboziak et al., 1997b). Of thenewcomers, the stratigraphically most useful onesare (Fig. 14B): Knoxisporites hederatus, Leiotri-letes struniensis, Aratrisporites sp. cf. Archaeoper-isaccus guangxiensis, Diaphanospora rugosa, andSynorisporites sp. cf. Verrucosisporites grandis.No inceptions of signi¢cant miospore taxa havebeen so far recorded within the basalmost Curiristrata, in the top part of the VCo Zone.

4.1.5. Late to latest Famennian sectionThis corresponds to practically the whole Curiri

Formation, except for only the basal part of itslower, diamictite-free sub-unit which may be miss-ing in several parts of the basin (see Loboziak etal., 1997c and comments above). Eventually theupper Curiri siltstones, diamictites and sandstonelenses grade laterally to sections with sandier lith-ofacies, which in some Amazon Basin wells havebeen included by Petrobras geologists into theoverlying Oriximina¤ Formation (Caputo, 1984,p. 231). Miospores from the Curiri Formationhave been extensively documented by us in nu-merous wells (Figs. 5^10 and 13A,B). Oriximina¤Formation glacio^marine palyniferous sectionswith latest Famennian age have been investigatedin wells 1-RO-1-AM, 1-RX-1-AM, 1-MS-4-AM,1-AD-1A-AM, 2-LF-1-AM and 1-CM-2-PA(Figs. 8^10 and 13A,B). Abundant and highlydiverse miospores recovered from the two for-mations enable one to identify two main assem-blages.Immediately above VCo-age palyno£oras the

next miospore assemblage of the lower Curirisub-unit is distinguished by the presence of Valla-tisporites hystricosus. The ¢rst occurrence of thisspecies characterizes the base of the A. verrucosa^V. hystricosus (VH) Biozone, de¢ned by Mazianeet al. (1999) within the uppermost part of theFa2c interval (middle to late expansa conodontZones) in the eastern part of the Dinant Basin(Ardenne). This biozone corresponds to the upperpart of the VCo Biozone in its previous concep-tion, i.e. the ‘upper VCo’ unit in the usage ofLoboziak et al. (1997b,c). VH-equivalent, late Fa-mennian palyno£oras are also known from NorthAfrica (Streel, 1986; Streel et al., 1988). In theeastern USA, the earliest occurrence of Valla-tisporites hystricosus in late Famennian sectionsdevoid of Retispora lepidophyta was used by Rich-ardson and Ahmed (1988) to de¢ne the pusillites(sensu lato)-fructicosa Assemblage Zone, withinthe lowest part of their pusillites (sensu lato)-lep-idophyta Total Range Superzone.In the Amazon Basin, occurrences of Vallati-

sporites hystricosus dissociated from those of Re-tispora lepidophyta usually characterize the bulkof the lower Curiri sub-unit. This regionally com-prises the Protosalvinia/Spirophyton Zone (Niklaset al., 1976; Caputo, 1984), which in terms ofWestern European conodont stratigraphy wassupposed to correspond to a portion of the post-era to the early (or middle) expansa zonal range(Loboziak et al., 1997c). In addition to V. hystri-cosus other taxa also have their inception withinlower Curiri strata. Amongst these are (Fig. 14B):Grandispora facilis, Spelaeotriletes granulatus, Re-tusotriletes incohatus, and Retusotriletes sp. in Lo-boziak et al. (1997c), a large-sized, thick-exinedmiospore that probably derives from Protosalvi-nia. Retusotriletes sp. eventually provides a reli-able palynological tool for the recognition andtracing of the Protosalvinia Zone in the subsurfaceof the basin.The youngest miospore assemblage found in

the Curiri Formation occurs in its upper, diamic-tite-bearing section, and is also present in coevalsandier sections attributed to the base of theOriximina¤ Formation. The in situ assemblage isinextricably mixed with, and sometimes over-whelmed by well preserved Middle Devonian

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202 149

Fig.8.DistributionchartofmainmiosporetaxaandbiochronostratigraphyoftheCuririFormation(toppart)andOriximina¤Formationinwell1-CM-2-PA.

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202150

and Frasnian palyno£oras that have been ex-humed and resedimented in the course of the lat-est Famennian glacial episode.The in situ assemblage presents variable abun-

dance and diversity from sample to sample. Inalmost all cases it is promptly recognized throughthe occurrence of Retispora lepidophyta, the mio-spore index species that characterizes the latestFamennian (or ‘Strunian’) on a near-global scale.The total range of R. lepidophyta in the type‘Strunian’ of the Ardenne^Rhenish regions is cur-rently subdivided into three interval zones (Ma-ziane et al., 1999). Each of them has its base de-¢ned by the appearance of a diagnostic species,namely (in ascending stratigraphic order): Knox-isporites literatus (LL Zone), Indotriradites explan-atus (LE Zone), and Verrucosisporites nitidus (LNZone). In terms of the ORS Continent zonalscheme the total range of R. lepidophyta corre-sponds to the lepidophyta Regional Range Zone(Richardson and Ahmed, 1988).In the Amazon Basin as well as in other Brazil-

ian Paleozoic basins, latest Famennian miosporeassemblages are often characterized by the jointoccurrence of Retispora lepidophyta and Indotri-radites explanatus, and some include also Vallati-sporites verrucosus, Vallatisporites vallatus andTumulispora rarituberculata. Therefore, the LLZone, i.e. the pre-explanatus portion of the R.lepidophyta total range, has not been identi¢edthus far in any of the investigated sections andmay be entirely missing in those regions. Accord-ing to Loboziak and Melo (2000, p. 405), thiscould indicate a biostratigraphic and probablylithological gap between at least the VH Zone,or locally even older parts of the underlyingVCo Zone (such as in well 1-AM-1-AM), andthe base of the ‘Strunian’ section containing Re-tispora lepidophyta and Indotriradites explanatus.In its turn, Verrucosisporites nitidus is scarce orabsent in several investigated sections, and, there-fore, an undi¡erentiated LE^LN zonal attributionis preferably proposed for the total range of Re-tispora lepidophyta in the Amazon Basin. It cor-responds to the praesulcata conodont Zone inWestern Europe (Streel and Loboziak, 1996, text-¢g. 3).In addition to Retispora lepidophyta typical

‘Strunian’ assemblages of the Amazon Basin con-tain also distinctive Late Devonian miosporespecies continued from underlying strata, such asRugospora radiata, Leiotriletes struniensis, Grandi-spora facilis, Spelaeotriletes granulatus and Valla-tisporites hystricosus. They are now joined byseveral newcomers that range upwards into theCarboniferous (just like some of the preexistingspecies), e.g. Aratrisporites saharaensis, Convoluti-spora major, Cordylosporites marciae and C. spa-thulatus, Grandispora maculosa and G. spiculifera,and Radiizonates arcuatus (Fig. 14B). Other com-monly associated taxa consist of Convolutisporaspp., plus diverse reticulate and verrucate/rugulateforms.

4.1.6. Tournaisian sectionTournaisian strata make up the bulk, or more

often the whole, of the Oriximina¤ Formation.Their palynological content has been investigatedby us in various wells (Fig. 13A,B), and a succes-sion of three miospore assemblages could be es-tablished above the already discussed LE^LNpalyno£oras (Figs. 8^11 and 14B).The earliest Carboniferous assemblage is

promptly distinguished from the latest Devonianones by an abrupt change in the composition ofthe palyno£ora. This change is evidenced by thefollowing data.(1) The absence of a distinctive group of taxa

well represented in the underlying samples, someof which, however, may recur sparsely due to re-working processes, such as Rugospora bricei, Tei-chertospora torquata, Rugospora radiata, Leiotri-letes struniensis, Grandispora facilis, Spelaeotri-letes granulatus, Vallatisporites hystricosus, Verru-ciretusispora magni¢ca, and Retispora lepidophyta.(2) A more regular presence of some species

already documented in Late Devonian sediments,such as Cyrtospora cristifera, Cordylosporites spa-thulatus, Vallatisporites verrucosus, V. vallatus,Radiizonates arcuatus and Verrucosisporites niti-dus.(3) The incoming of new species such as Rugo-

spora minuta and Waltzispora lanzonii.(4) An increased diversity in the palyno£ora,

mainly in response to the proliferation of:b miospores belonging to the densospore group,

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202 151

Fig.9.DistributionchartofmainmiosporetaxaandbiochronostratigraphyoftheCuririFormation(toppart)andOriximina¤Formationinwell1-RO-1-AM.

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202152

Fig.10.DistributionchartofmainmiosporetaxaandbiochronostratigraphyoftheCuririFormation(toppart)andOriximina¤Formationinwell1-RX-1-AM.

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202 153

Fig.11.DistributionchartofmainmiosporetaxaandbiochronostratigraphyoftheOriximina¤Formation(toppart)andFaroFormationinwell2-LF-1-AM,

modi¢edafterLoboziaketal.(1998a).

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202154

such as Densosporites spp., Cristatisporites spp.,Indotriradites spp., and Vallatisporites spp.;

b reticulate forms including Dictyotriletes spp.,Knoxisporites spp., and Cordylosporites spp.;

b forms bearing apiculate (Anapiculatisporitesspp.), baculate (Raistrickia spp.), verrucate (Ver-rucosisporites spp.) and convolute (Convolutisporaspp.) sculptural elements.Such an assemblage has been attributed to an

undi¡erentiated VI^HD zonal range by correla-tion with the British miospore zonation (Higgset al., 1988a). Additional re¢nement could notbe accomplished because of the apparent regionalabsence, in the Amazon Basin, of both epony-mous index species of the C. hybernicus^U. dis-tinctus (HD) Biozone, which succeeds the under-lying V. verrucosus^R. incohatus (VI) Biozone inthe British Isles. Altogether the VI^HD zonalrange corresponds to a succession of conodontzones (uppermost praesulcata through the mainpart of the lower crenulata) of early to earliestmiddle Tournaisian age (Higgs and Streel, 1984;Higgs et al., 1992).The next miospore assemblage is characterized

by the joint appearance of Spelaeotriletes baltea-tus and Rugospora polyptycha, which de¢nes thebase of the S. balteatus^R. polyptycha (BP) Bio-zone in terms of the British palynozonation(Higgs et al., 1988a). Together with those twotaxa also ¢rst appear Raistrickia strumosa, Neo-raistrickia loganii, and the earliest representativesof the genus Mooreisporites typi¢ed by their tri-angular amb and the presence, on the radial cor-ners, of baculate and/or conate ornaments usuallyunited by their bases. The BP Biozone corre-sponds to an interval ranging from the upperpart of the lower crenulata through the base ofthe upper crenulata conodont Zones (Higgs etal., 1992), of early ^ but not earliest ^ middleTournaisian age.The highest Tournaisian assemblage of the Ori-

ximina¤ Formation is de¢ned by the incoming ofseveral new species, the most characteristic beingSpelaeotriletes pretiosus and Raistrickia clavata.Their appearances de¢ne the base of the S. pre-tiosus^R. clavata (PC) Biozone in Britain (Higgset al., 1988a), which corresponds to the uppercrenulata and the lower part of the communis

carina conodont Zones of late middle to earlylate Tournaisian age (Dreesen et al., 1993). Othernewcomers include Colatisporites decorus, C. den-ticulatus and Crassispora trychera, in additionto scarce representatives of Vallatisporites agade-sensis. Most of the species found in older Tour-naisian assemblages also persist into the PC Bio-zone.

4.1.7. Vise¤an sectionThe Vise¤an interval of the Amazon Basin cor-

responds essentially to the Faro Formation only,characterized by dominantly sandy lithologies.However, more argillaceous strata of the sameage, especially those poorly developed in the west-ern part of the basin, have been misplaced bysome stratigraphers in the top of the underlyingOriximina¤ Formation (e.g. in wells 1-RX-1-AM,1-SO-1-AM and 1-UA-1-AM; see Figs. 10 and13A,B). The miospore content of the Vise¤an in-terval has been analyzed by us in several wells(Fig. 13A,B), particularly 2-LF-1-AM (Lago doFaro; Fig. 11), which contains the formation’stype-section (Lange, 1967a). The palynostratigra-phy, age and correlation of the Faro Formationhave been discussed in some of our previous pub-lications (Loboziak et al., 1991a; Melo and Lo-boziak, 1997, 2000, 2001; Loboziak et al., 1998a,1999a, 2000b; Melo et al., 1999).Vise¤an palyno£oras recovered from the investi-

gated samples are generally abundant, rather di-verse and variably preserved. Figs. 10, 11 and 14Cshow the stratigraphic distribution of the mostsigni¢cant taxa (both Euramerican and WesternGondwanan in a⁄nity) that, nevertheless, makeup only a minor proportion of the total assem-blage. The dominant components consist of mor-phologically simple, smooth (Retusotriletes spp.)or apiculate (Apiculiretusispora spp.) retusoids,as well as forms showing coarser, more elaboratedsculptural patterns (Convolutispora spp., Verruco-sisporites spp.) and several representatives of thedensospore group (Cristatisporites spp., Denso-sporites spp., Radiizonates spp., and Vallatispor-ites spp.). The palyno£ora also contains variousholdovers of the latest Devonian^Tournaisian in-tervals. Lycospora spp., so characteristic of theVise¤an assemblages of Euramerica, are surpris-

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202 155

ingly rare or have only patchy occurrences in theAmazon Basin.Therefore, only relatively few indisputably Vi-

se¤an zonal and characteristic species in the totalpalyno£ora actually contribute to the dating andcorrelation of the Faro Formation (Figs. 10, 11and 14C). Amongst the Vise¤an incomers is Pero-trilites tessellatus, an age-diagnostic species of theBritish palynozonation. This species is known todisplay a restricted stratigraphic distribution inBritain, i.e. from the P. tessellatus^S. campylo-ptera (TC) to the succeeding R. nigra^T. margin-atus (NM) Biozones (Neves et al., 1972, ¢g. 2;Neves et al., 1973, table 1). According to Clayton(1985, ¢g. 1) and Higgs et al. (1988b, ¢g. 1), thetwo biozones altogether correspond to the upperpart of the Holkerian (or the Lower Asbian afterRiley, 1993, p. 438 and text¢g. 1) and the wholeAsbian, the British regional stages for the lowerand middle parts of the Upper Vise¤an.In the absence of contrary evidence such a re-

stricted late Vise¤an age is likewise acceptable toall palyniferous sections of the Faro Formationanalyzed to date. This is con¢rmed by the jointoccurrence, in the Faro Formation, of other dis-tinctive miospore taxa with well-known late Vi-se¤an appearances in Western Europe (Cirratrira-dites rarus, Diatomozonotriletes fragilis, Spelaeo-triletes arenaceus and S. triangulus, Waltzisporapolita/planiangulata, etc.) and Western Gondwana(Cordylosporites magnidictyus, forms of the Indo-triradites dolianitii morphon). Melo and Loboziak(1997) and Loboziak et al. (1998a) envisaged apossible correlation of the uppermost Faro sec-tion with the T. vetustus^R. fracta (VF) Biozone,which succeeds the NM Biozone and correspondsto the lower part of the Brigantian stage in Britain(i.e. the uppermost Vise¤an). Their proposition wasbased on the absence of P. tessellatus in the high-est investigated samples (cores 13^18) of well2-LF-1-AM (Fig. 11). However, miospore resultsnewly obtained from the coeval Poti Formationof the Parna|¤ba Basin (Melo and Loboziak, 2000)clearly restrict its correlation with the TC^NMzonal range only. It is currently still unclearwhether the Faro Formation could indeed bepartly younger than the Poti Formation or thatthe apparent absence of P. tessellatus in the

uppermost Faro strata can be ascribed simply topaleoecological constraints. Therefore, its sup-posed assignment to the VF Zone is now underserious doubt.

4.1.8. Late Carboniferous section (basal part)Late Carboniferous strata in the Amazon Basin

are restricted to the Tapajo¤s Group, which liesunconformably on older Paleozoic and Proterozo-ic rocks. Of its four constituent formations onlythe lowest one, the Monte Alegre Formation, willbe subject of some consideration in this paper.The Monte Alegre Formation has been inves-

tigated by us on the basis of several wells, mostlyin the western central part of the basin. Positiveresults of these analyses are unfortunately limited.This was in part due to the poor preservation ofthe organic residue, as the palyno£ora generallyappears corroded and partly destroyed in mostsamples studied. Nevertheless, su⁄cient informa-tion has been obtained from discrete sections, andPlayford and Dino (2000a,b) also present addi-tional palynostratigraphic data for the MonteAlegre and younger Paleozoic rock units of theAmazon Basin.In contrast to older Paleozoic palyno£oras,

those of the Monte Alegre Formation are charac-terized by the incoming of pollen grains. Associ-ated with them are several trilete spores alreadydocumented by us in the Vise¤an sections, such asGranulatisporites spp., Lycospora spp., and partic-ularly numerous large-sized pseudosaccates of thegenus Spelaeotriletes (S. arenaceus and S. triangu-lus) (Figs. 12 and 14C). Depending on the sectionstudied, and possibly in response to local faciescontrols, three distinct assemblages have been re-corded in the formation, each one characterizedby the occurrence of distinct pollen groups. Theassemblage with the oldest appearance is recog-nized by the presence of monosaccates only, ofboth bilateral (Potonieisporites spp.) and radial(Cannanoropollis janakii, Plicatipollenites malabar-ensis) symmetry. The second type of pollen assem-blage includes some non-taeniate bisaccate genera(Limitisporites sp., Pityosporites sp.) in addition tothe monosaccates. Finally, the assemblage withthe youngest appearance is also the most diversi-¢ed one, due to the appearance of scattered taeni-

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202156

Fig. 12. Occurrences of selected miospore taxa in cuttings and core sections of the Monte Alegre Formation.

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202 157

Fig.13.(A,B)Miospore-basedcorrelationofselectedAmazonBasinwellsections.Notethatsomeofthesearecompositesections,whichintegrateequivalentintervals

oftwoormoreadjacentwells.

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202158

Fig.13(C

ontinued).

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202 159

Fig.14.StratigraphicdistributionofmainmiosporetaxaintheDevonian^CarboniferousoftheAmazonBasin.(A)Lochkovian^Frasnianinterval.(B)Famennian^

Tournaisianinterval.(C)Vise¤ an^earlyWestphalianinterval.

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202160

Fig.14(C

ontinued).

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202 161

Fig.14(C

ontinued).

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202162

ate bisaccates (Protohaploxypinus spp., Striatoa-bieites spp., Striatopodocarpites sp.). The latterbecome gradually more numerous as the assem-blage ranges upwards into the lower part of theItaituba Formation.Recent reviews (Loboziak et al., 1997a; Melo et

al., 1998, 1999; Playford and Dino, 2000b) dem-onstrated that the taeniate bisaccates from theMonte Alegre Formation can be somewhat olderthan similar pollen assemblages present in West-phalian C or the late early Moscovian (Kashirsky)sections of Europe. Indeed, foraminifera from in-terbedded limestones of the Monte Alegre andlower Itaituba Formations support slightly olderassignments (Westphalian A^B in Western Eu-rope, late Bashkirian or early Moscovian in theUrals and the Russian Platform, late Morrowanin the North American Midcontinent), althoughmany of the taxa involved are now known topossess longer stratigraphic ranges than supposedin earlier Brazilian studies (Altiner and Savini,1995).In the light of these considerations we maintain

that the age of the Monte Alegre sections is prob-ably not older than Westphalian, contrary to pre-vious Namurian assignments by Marques-Toigoet al. (1995). Palynological and marine faunaldata available for the Monte Alegre Formationdo not seem to provide any accurate age con-straint within the Westphalian A^C stratigraphicinterval, which corresponds to the undi¡erenti-ated C. saturni^T. sinani (SS) to T. securis^T. lae-vigata (SL) zonal succession in terms of the West-ern European miospore zonation (Clayton et al.,1977). Nevertheless, Playford and Dino (2000b,p. 129) present palynological arguments to favora Westphalian A^B age range for their Spelaeo-triletes triangulus Assemblage Zone, which en-compasses the entire Monte Alegre Formationand the basal part of the succeeding Itaituba For-mation.

4.2. Miospore biozonation

As explained in the previous review, the Devo-nian and Carboniferous miospore biozonations ofWestern Europe and the ORS Continent regionsare applicable in a general way to most equivalent

sections of the Amazon Basin, because the succes-sion of ¢rst appearances of common index speciesis the same in all these areas. On the other hand,particular stratigraphic intervals in the lattercannot be accurately correlated with any de¢nite,potentially coeval palynozones of Euramerica be-cause eponymous or characteristic miospore spe-cies of the same are either very scarce or absent inNorthern Brazil. This is well exempli¢ed by partsof the Early Devonian, Famennian and EarlyCarboniferous intervals and by beds adjacent tothe Givetian/Frasnian and Frasnian/ Famennianboundaries. The reasons for these problems, al-though not yet clari¢ed, are possibly variousand may be related to the dynamics of ancientland plant distribution (including paleogeograph-ical and paleoclimatic controls), sampling biases,barren or missing sections, sedimentary condensa-tion, and the poor preservation of local palyno-£oras, just to mention some possibilities. What-ever their causes, and in spite of their relativelylimited vertical extent, such intervals of poor bio-zonal de¢nition can pose considerable di⁄cultiesto detailed intrabasinal or interregional correla-tion, as often demanded in hydrocarbon explora-tion.The biozonation described next (see also Melo

and Loboziak, 2001) allows for the suppression ofseveral low-resolution intervals by placing themeither within interzones or inside more compre-hensive miospore zones. Another innovation isthe use of alternative Euramerican and West-ern Gondwanan taxa as zonal species, selectedamongst those with best regional representation,in place of some poorly documented index spe-cies. It is hoped that additional re¢nements willbe made possible by continued investigations, es-pecially as concerns further subdivisions and moreaccurate placement of some zonal boundaries inthe sedimentary column. Such future develop-ments are expected, for instance, in the case ofprovisionally comprehensive Lower Devonianpalynozones, which have been erected on the basisof insu⁄cient sampling.As currently envisaged our proposed scheme

consists of a succession of 18 miospore zonesspanning in age from earliest Devonian to earlyLate Carboniferous. The highest of these (Spe-

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202 163

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202164

laeotriletes triangulus Assemblage Zone, herecoded Tri) is maintained as previously describedby Playford and Dino (2000b), whereas the other17 consist of newly de¢ned interval zones. Ofthese only one, the Trg Zone, has its referencesections outside the Amazon Basin because anapparent hiatus accounts for its regional absencetherein. The base of every new zone is de¢nedin cored sections by the ¢rst occurrence biohori-zon (FOB) of one or more miospore taxa selectedamongst the most signi¢cant ones discussed ear-lier. Last occurrence biohorizons (LOB) havebeen also considered in the few cases wherethey could be reliably established. In the absenceof contrary evidence the boundary-de¢ning bio-horizons are here assumed to be coeval withtheir Euramerican counterparts for the purposesof dating and long-distance correlation. In itsturn, biozonal characterization relies mainly onfeatures of the contained assemblages, especiallythe incoming, relative abundance or disappear-ance of selected miospore taxa (both with cosmo-politan and Western Gondwanan a⁄nities). Al-though primarily devised for the Amazon Basin,the new biozonation is likewise applicable toother basins in Brazil (Fig. 16) and WesternGondwanan regions. However, it should be keptin mind that vertical ranges documented here forsome characteristic miospore species in the Ama-zon Basin (Fig. 14A^C) may di¡er to a variableextent from those recorded elsewhere in theliterature concerning other Brazilian basins (Par-na|¤ba or Parana¤) where the same taxa are recog-nized.The zones are named and described in ascend-

ing stratigraphical order. Reference sections aregiven for the zonal boundaries, supplemented bya listing of representative occurrences of the bio-zone elsewhere in the Amazon Basin (which, how-ever, generally do not correspond to the total ver-tical range of the unit in any given well). Theproposed datings or age spans of the new zones,as well as their relationships with the regionallithostratigraphy and the standard Euramerican

biozonal schemes, rely on considerations alreadypresented in 4.1. Distinctive Devonian^Carbonif-erous miospore assemblages and biohorizons (Fig.15). In addition to the biozone characterization,supplementary remarks also provide other usefulinformation bearing on the identi¢cation and cor-relation of the biozone within and outside theAmazon Basin.

4.2.1. Non-spinose Zonates Interval Zone (NsZ)Zone base de¢nition: FOB of non-spinose zonatespores.Characterization of zone: Archaeozonotriletes chu-lus, Synorisporites spp., Biornatispora salopiensis,Brochotriletes foveolatus, Chelinospora cassiculaand Cirratriradites diaphanus are characteristictaxa. Of these, the former two are continuedfrom Silurian sections, whereas the others havetheir regional appearances within the NsZ Zone.All persist upwards into the succeeding EmsZone.Reference section for zone base: Well 2-BI-1-AM,core 25, 1470.00/1473.75 m, is provisionally indi-cated, but the actual base of the zone may belower.Representative occurrences of zone: Wells 2-BI-1-AM (core 24 between 1465.88/1466.75 m) and2-CA-1-AM (cuttings from 738/741 m). Possiblyalso well 1-MU-2-AM (core 15 sampled at 1286.6m), but this requires con¢rmation.Lithostratigraphic distribution: Basal part of Jata-pu Member of the Maecuru Formation, and theuppermost part of the Manacapuru Formation (atleast in well 2-CA-1-AM).Age range: Pre-latest Lochkovian (earliest Devo-nian).Equivalent interval in Petrobras operational paly-nozonation of Northern Brazilian basins (Daemonand Contreiras, 1971; Daemon, 1976): Transitionof biostratigraphic intervals III and IV, and prob-ably the uppermost part of the former.Equivalent interval in the ORS Continent miosporezonation (Richardson and McGregor, 1986): Atleast the top (possibly also older parts) of the

Fig. 15. The new Devonian^Early Carboniferous miospore zonation of the Amazon Basin and its relationships with regionalrock units, the standard zonal schemes in Western Europe and the ORS Continent, and Petrobras operational palynozonation.

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202 165

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202166

micrornatus^newportensis and lower part of thebreconensis^zavallatus Assemblage Zones.Equivalent interval in the Western European mio-spore zonation (Streel et al., 1987; Steemans,1989): Part of the MN Oppel Zone (at leastfrom the Si phylogenetic Zone upwards) and thesucceeding Z Interval Zone, but older sections ofthe MN Zone may be also involved.Supplementary remarks: Additional sampling inthe lowest Jatapu and upper Manacapuru sec-tions will expectedly enable an improved charac-terization of the NsZ Zone and a more accuratepositioning of its base. Coeval miospore assem-blages have thus far not yet been recorded fromother Brazilian Paleozoic regions. However, theypossibly occur in at least the Jandiatuba Sub-basin of the Solimo‹es Basin (Fig. 16), whereLochkovian palyno£oras (including Dictyotriletesgranulatus, Iberoespora glabella, Chelinospora fa-vosa, Chelinospora baculoreticulata and Diboli-sporites eifeliensis) are reported from the upperpart of the Juta|¤ Formation (Rubinstein et al.,2000).

4.2.2. Dictyotriletes emsiensis Interval Zone(Ems)Zone base de¢nition: FOB of Dictyotriletes em-siensis.Characterization of zone: The incoming of Verru-cosisporites cf. polygonalis is detected above thatof D. emsiensis in the lower part of Ems Zone,whereas its upper part is characterized by the ap-pearance of Dictyotriletes cf. subgranifer sensuSteemans (1989) and Perotrilites sp. cf. Zonotri-letes 2 in Jardine¤ and Yapaudjian (1968). Thesethree characteristic taxa, just like some of the pre-existing species (Biornatispora salopiensis and

Chelinospora cassicula), apparently do not persistabove the Ems Zone in contrast to D. emsiensis,which reaches the succeeding GS Zone.Reference section for zone base: Well 2-BI-1-AM,core 23, 1462/1465 m.Representative occurrences of zone: Lower to mid-dle parts of the Ems Zone are recorded in wells1-AM-1-AM (core 35, 1503.8/1508.8 m); 1-AM-7-AM (core 27, 1534.5/1537.1 m); 2-MN-1-AM(core 33, 1166.9/1167.9 m); 2-PC-1-AM (cores51 and 52 comprising the total interval 1523.44/1572.00 m); 1-UA-1-AM (cores 41^44, 3659/3682m), and 1-UR-1-AM (core 21, 2313.3/2315.3 m).The top section of the Ems Zone is documentedpalynologically in wells 1-MS-4-AM (cores 33^38,1418.8/1435.3 m) and 1-MS-5-AM (from core 27,excluding its uppermost part, down to core 31 atleast, comprising interval 1539.0/1557.3 m).Lithostratigraphic distribution: Jatapu Member ofMaecuru Formation, including its peculiar sand-ier lithofacies in the southern margin of the Ama-zon Basin (Maue¤s and Abacaxis River areas) thathas been miscorrelated in Petrobras wells with theyounger Lontra Member of the same formation.Age range: Mainly latest Lochkovian throughPragian, possibly attaining the early Emsian inthe top part of zone (Early Devonian).Equivalent interval in Petrobras operational paly-nozonation of Northern Brazilian basins (Daemonand Contreiras, 1971; Daemon, 1976): Biostrati-graphic interval IV (lower part).Equivalent interval in the ORS Continent miosporezonation (Richardson and McGregor, 1986):Upper part of breconensis^zavallatus AssemblageZone and probably the entire polygonalis^emsien-sis Assemblage Zone.Equivalent interval in the Western European mio-

Fig. 16. Miospore-based correlation of Devonian^early Late Carboniferous rock units of the Amazon, Solimo‹es, Parna|¤ba andParana¤ Basins in Brazil, and their updated relationships with respective Petrobras regional biozonations (Amazon Basin: Daemonand Contreiras, 1971 and Daemon, 1974; Solimo‹es Basin: Quadros, 1988; Parna|¤ba Basin: Mu«ller, 1962 and Brito, 1967, 1971;Parana¤ Basin: Lange, 1967b and Daemon et al., 1967). Key to abbreviations used for Petrobras interval zones of Solimo‹es Basin(Quadros, 1988): Alp. eis., Alpenachitina eisenacki ; Spel. lepydo., Spelaeotriletes lepidophytus. The Solimo‹es Basin lithostratigraphyis according to the latest revision by Eiras et al. (1994). The proposed correlation of the Amazon Basin miospore zones with Pe-trobras regional biozonations of other Brazilian Paleozoic basins relies on unpublished data by the authors, plus informationcompiled and updated from various sources (Dino and Rodrigues, 1995; Dino et al., 1995; Grahn, 1992, 1997, 1998, 1999;Grahn et al., 2000, 2001; Loboziak and Melo, 2002; Loboziak et al., 1988, 1992, 1993, 1994a,b, 1995, 1998a,b, 1999a, 2000a,b;Melo and Loboziak, 2000, 2001; Melo et al., 1999; Rodrigues et al., 1995; Rubinstein et al., 2000).

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202 167

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202168

spore zonation (Streel et al., 1987; Steemans,1989): E Interval Zone and probably the entirePoW Oppel Zone.Supplementary remarks: Several intervals in wellsof the Amazon Basin bear palyno£oras consistingentirely of small-sized, morphologically simplemiospores that are too poorly preserved or other-wise not age-diagnostic. Nevertheless, some ofthese can be equated with nearby Ems sectionson the basis of lithological and grapho^electricalcorrelation, as is surely the case of well 2-NA-1-PA (core 36, 1886.0/1887.4 m). Elsewhere in Bra-zil, palyno£oras characteristic of the Ems Zoneare known from the uppermost Furnas and lowerPonta Grossa Formations of the Parana¤ Basin(Daemon et al., 1967; Dino and Rodrigues,1995; Dino et al., 1995; Loboziak et al., 1995,1998b). They also occur within the uppermostpart of the Juta|¤ Formation, in the JandiatubaSub-basin of Solimo‹es Basin (J.H.G. Melo, un-published data).

4.2.3. Grandispora/Samarisporites spp. IntervalZone (GS)Zone base de¢nition: FOB of large-sized spinosepseudosaccates/zonates belonging to the Grandi-spora/Samarisporites spp. complex.Characterization of zone: Acinosporites apiculatus,Grandispora douglastownense, G. megaformis andG. protea are characteristic species that ¢rst ap-pear within the GS Zone, much like other onesthat are known to have older stratigraphical in-ceptions outside the Amazon Basin (Acinosporiteslindlarensis, Diatomozonotriletes franklinii, Em-phanisporites annulatus). They all range upwardsinto succeeding Middle Devonian zones (Per,

LLi). On the other hand, a number of Early De-vonian holdovers, poorly represented in the GSZone, have not been recorded above this unit inthe Amazon Basin (particularly Archaeozonotri-letes chulus, Dictyotriletes emsiensis and alliedforms, Synorisporites spp., and several small-sizednon-spinose zonates).Reference section for zone base: Well 1-UA-1-AM, core 38, 3595.0/3597.2 m, is provisionallyindicated, but the actual base of the zone maybe lower.Representative occurrences of zone: Wells 2-MN-1-AM (core 31, 1108.0/1110.8 m); 2-PC-1-AM(core 50 sampled at 1449.10 m), and 1-UA-1-AM (core 36, 3553/3556 m) provide supplementa-ry reference sections for the upper part of the GSZone.Lithostratigraphic distribution: Lontra Member ofMaecuru Formation, excluding its basal section,which thus far proved palynologically barren, andprobably the uppermost part that belongs in thesucceeding Per Zone.Age range: Late Emsian^early Eifelian (late Earlyto Middle Devonian).Equivalent interval in Petrobras operational paly-nozonation of Northern Brazilian basins (Daemonand Contreiras, 1971; Daemon, 1976): Biostrati-graphic interval IV (upper part).Equivalent interval in the ORS Continent miosporezonation (Richardson and McGregor, 1986):Questionably the top part of the annulatus^sex-tantii Assemblage Zone, and most probably thedouglastownense^eurypterota and lower velatus^langii Assemblage Zones.Equivalent interval in the Western European mio-spore zonation (Streel et al., 1987): Questionably

Fig. 17. Integrated correlation of the Amazon Basin miospore zones with global and Brazilian Devonian chitinozoan successions,and with the standard Euramerican miospore and faunal biozonations for the Devonian^early Late Carboniferous interval. Thedata sources include: (1) Conodonts: Clausen et al., 1993, modi¢ed by Yolkin et al., 1997; Varker and Sevastopulo, 1985, modi-¢ed by Higgins, 1985, and Riley, 1993; (2) Miospores (ORS Continent): Richardson and McGregor, 1986, modi¢ed by Richard-son and Ahmed, 1988; (3) Miospores (Amazon Basin, Brazil): this paper and (+) Playford and Dino, 2000b; (4) Miospores(Western Europe): Neves et al., 1972 modi¢ed by Clayton, 1985; Higgs et al., 1988a,b and Riley, 1993; Clayton et al., 1977;Owens et al., 1977; Streel et al., 1987, modi¢ed by Streel and Loboziak, 1996; Maziane et al., 1999, and Streel et al., 2000b; (5)non-marine bivalves: Trueman and Weir, 1946; (6) Chitinozoans (global biozonation): Paris et al., 2000; (7) Chitinozoans (Braziland Paraguay): Grahn, 1998, 1999; Grahn et al., 1997, 2000; Grahn and Melo, in press and unpublished data; (8) Ammonoids(Britain): Ramsbottom, 1969; Riley, 1993; (9) Foraminifera: Conil et al., 1976, and Paproth et al., 1983, modi¢ed by Laloux etal., 1988, and Loboziak et al., 1990.

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202 169

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202170

the uppermost levels of the FD Oppel Zone, andmost probably the AP Oppel Zone.Supplementary remarks: A barren interzone,mainly consisting of coarse-grained sandstonesand conglomerates underlain by an erosional hia-tus at the base, separates the GS Zone from theunderlying Ems Zone. However, the apparentthickness of such interzone (at least some 30 min well 1-UA-1-AM) is partly a function of thetoo discrete sampling made available to thisstudy. Detailed investigations of pelitic lenses orinterlayers downwards within the Lontra sand-stones will possibly permit the base of the zoneto be further lowered. The GS Zone is apparentlymissing or highly condensed in wells of the Maue¤sarea (southern margin of the basin), where the PerZone lies just above, or directly upon, the EmsZone. Elsewhere in Brazil, there are as yet no

published records of GS-equivalent palyno£orasin the Parana¤ and Parna|¤ba Basins, although po-tentially coeval strata may exist within the PontaGrossa and Itaim Formations, respectively (Grahnet al., 2000, 2001; Loboziak and Melo, 2000).Loboziak et al. (1994a), based on very limitedmiospore evidence, suggested that coeval sectionsmay be present in the Jandiatuba and Uere“ For-mations of the Solimo‹es Basin.

4.2.4. Grandispora permulta Interval Zone (Per)Zonebasede¢nition: FOB of Grandispora permulta.Characterization of zone: The Per Zone is alsorecognized by the occurrence of selected species¢rst appearing here (Camarozonotriletes? conca-vus, Craspedispora ghadamisensis, Grandispora li-byensis, Verrucosisporites premnus) and a furtherdiversi¢cation of the Grandispora/Samarisporites

Plate I. Slides 14(2/3), 15(1), 21(1) and 23(1) from well 2-LF-1-AM, and slides 315.60 and 358.60(2) from well RSP-1 (Parana¤ Ba-sin) are housed in the palynological collection of the Laboratory of Paleobotany, USTL, France. All the other slides are housedin the palynological slide collection of the Applied Biostratigraphy and Paleoecology Management of Petrobras Research Centre(Cenpes/Pdexp/Bpa), Rio de Janeiro, Brazil. Miospore locations on slides are based on England Finder graticules. Magni¢cationof illustrated specimens:U500. All palyniferous samples are from the Amazon Basin unless otherwise stated. Numerical codes forcore samples from the shallow well Caima PH-2, and alpha^numerical codes for Tocantins Valley outcrop samples, are as givenby Loboziak et al. (1997b, 2000a), respectively

1. Acinosporites apiculatus (Streel) Streel, 1967. Slide 960644: W 56, well 1-UI-2-AM, cuttings sample at 600 m.2. Acinosporites lindlarensis Riegel, 1968. Slide 9406774: T 38, well 1-RX-1-AM, core 129.3. Acinosporites macrospinosus Richardson, 1965. Slide 9306160: P 46, well 2-MN-1-AM, core 30.4. Auroraspora macra Sullivan, 1968. Slide 940344: K 44, well 1-CM-3-PA, core 9.5. Auroraspora solisorta Ho¡meister, Staplin and Malloy, 1955. Slide 21(1): T 38/4, well 2-LF-1-AM, core 21.6. Auroraspora pseudocrista Ahmed, 1980. Slide 960071: Y 45/2, well 1-RX-1-AM, cuttings sample at 2581 m.7. Aratrisporites saharaensis Loboziak, Clayton and Owens, 1986. Slide 9406745: E 59/2, well 1-RX-1-AM, core 117.8. Aratrisporites sp. cf. Archaeoperisaccus guangxiensis Gao, 1989. Slide 950765: D 43, well 1-NO-1-AM, core 910.9. Brochotriletes foveolatus Naumova, 1953. Slide 960436: R 53/4, well 2-BI-1-AM, core 23.10. Camarozonotriletes? concavus Loboziak and Streel, 1989. Slide 13211: X 48/4, well 1-AM-1-AM, core 23.11. Archaeozonotriletes variabilis Naumova emend. Allen, 1965. Slide 950533: M 50, shallow well Caima PH-2, sample 234.12. Biornatispora salopiensis (Richardson and Lister) Steemans, 1981. Slide 960442: U 53/4, well 2-BI-1-AM, core 24.13. Archaeozonotriletes chulus (Cramer) Richardson and Lister, 1969. Slide 9306163: F 55/1, well 2-MN-1-AM, core 33/34.14. Chelinospora timanica (Naumova) Loboziak and Streel, 1989. Slide 9500222: B 34, well 1-AM-15-AM, core 4.15. Chelinospora sp. Slide 950672: V 59/1, shallow well Caima PH-2, sample 373.16. Chelinospora cassicula Richardson and Lister, 1969. Slide 960443: M 36, well 2-BI-1-AM, core 24.17. Chelinospora ligurata Allen, 1965. Slide 960431: H 48, well 2-BI-1-AM, core 21.18. Cirratriradites diaphanus Steemans, 1989. Slide 960631: M 56/1, well 2-PC-1-AM, core 52.19. Cirratriradites rarus (Ibrahim) Schopf, Wilson and Bentall, 1944. Slide 960173: L 29, well 1-RX-4-AM, cuttings sample

at 2043 m.20. Colatisporites denticulatus Neville in Neves et al., 1973. Slide 9001241: S 60/2, well 1-RX-1-AM, core 111.21. Colatisporites decorus (Bharadwaj and Venkatachala) Williams in Neves et al., 1973. Slide 950725: Q 53, well 1-NO-1-

AM, core 855.22. Convolutispora stigmoidea Bharadwaj and Venkatachala, 1961. Slide 9301847: G 40/4, well 1-CM-2-PA, core 19.

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202 171

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202172

spp. complex. All species present in this intervalpersist upwards into the succeeding LLi Zone.Reference section for zone base: Well 1-AM-7-AM, core 25, 1435.92/1439.34 m.Representative occurrences of zone: Wells 1-AM-1-AM (core 23, 1384.0/1390.3 m) and 1-CM-3-PA(cores 12 and 13, 631.0/636.9 m).Lithostratigraphic distribution: Lower section ofthe Erere“ Formation (interval below the unit’smain radioactive marker), and probably also theuppermost part of the underlying Lontra Memberof Maecuru Formation.Age range: Late early Eifelian through the Eife-lian/Givetian transition (Middle Devonian).Equivalent interval in Petrobras operational paly-nozonation of Northern Brazilian basins (Daemonand Contreiras, 1971; Daemon, 1976): Biostrati-graphic interval V (part).Equivalent interval in the ORS Continent miosporezonation (Richardson and McGregor, 1986):Upper part of the velatus^langii and the entiredevonicus^naumovii Assemblage Zones.Equivalent interval in the Western European mio-spore zonation (Streel et al., 1987) : Pre-Lem por-tion of the AD Oppel Zone.

Supplementary remarks: Additional palynologicalinvestigations are required for more accurate de-termination of the base of the zone in relation tothe Lontra/Erere“ lithological boundary. Outsidethe Amazon Basin, palyno£oras of the Per Zonemay include most of the characteristic taxa listedfor the succeeding LLi Zone (see below). Theyoccur in the Ponta Grossa Formation of the Para-na¤ Basin (Daemon et al., 1967; Loboziak andMelo, 2000, 2002), as well as in the uppermostItaim and lowest Pimenteira Formations of theParna|¤ba Basin (Loboziak et al., 1992, 1993; Lo-boziak and Melo, 2000, 2002). In the Solimo‹esBasin, according to Loboziak et al. (1994a), partof the Middle Devonian intervals of the Jandia-tuba and Uere“ Formations could have the sameage as the Per Zone, but this still remains un-proven from the viewpoint of miospore stratig-raphy.

4.2.5. Geminospora lemurata^Chelinospora exgr. ligurata Interval Zone (LLi)Zone base de¢nition: FOB of Geminospora lemur-ata and/or coarsely baculate^reticulate patinatesbelonging to the Chelinospora ex. gr. ligurata

Plate II. (See caption for Plate I.)

1. Convolutispora major (Kedo) Turnau, 1978. Slide 9305552: M 49/3, well 1-CM-1-PA, core 24.2. Corbulispora cancellata (Waltz) Bharadwaj and Venkatachala, 1961. Slide 9500133: W 38/1, well 1-AM-15-AM, core 3.3. Convolutispora vermiformis Hughes and Playford, 1961. Slide 9305546: G 40/4, well 1-CM-1-PA, core 20.4. Cyrtospora cristifera (Luber) Van der Zwan, 1979. Slide 9305348: E 46, well 1-CM-1-PA, core 9.5. Cordylosporites spathulatus (Winslow) Playford and Satterthwait, 1985. Slide 9305549: N 31/1, well 1-CM-1-PA, core 21.6. Cordylosporites marciae Playford and Satterthwait, 1985. Slide 960566A: N 37/4, well 1-RX-3-AM, core 27.7. Cordylosporites magnidictyus (Playford and Helby) Loboziak and Melo, 2000. Slide 960560: K 36, well 1-RX-3-AM,

core 24.8,9. Craspedispora ghadamisensis Loboziak and Streel, 1989.8. Slide 9603108: P 44, outcrop sample RSO-5, Tocantins River Valley, Parna|¤ba Basin.9. Slide 358.60(2): N 43, well RSP-1, core at 358.60m, Parana¤ Basin.10. Craspedispora paranaensis Loboziak, Streel and Burjack, 1988. Slide 315.60(1): G 40/2, well RSP-1, core at 315.60m,

Parana¤ Basin.11. Cristatisporites sp. Slide 9305559: S 31/2, well 1-CM-1-PA, core 26.12. Cristatisporites echinatus Playford, 1964. Slide 9500118: G 37, well 1-AM-15-AM, core 3.13. Crassispora catenata Higgs, 1975. Slide 9701251: Q 63, well 2-PC-1-AM, core 42.14. Crassispora trychera Neves and Ioannides, 1974. Slide 14 (2/3): R 36/4, well 2-LF-1-AM, core 14.15. Cymbosporites cyathus Allen, 1965. Slide 9500218: S 19/1, well 1-AM-15-AM, core 4.16. Cymbosporites catillus Allen, 1965. Slide 9306159: J 53/4, well 2-MN-1-AM, core 30.17. Cymbosporites acutus (Kedo) Byvsheva, 1985. Slide 9601413: Z 60/4, well 1-NO-2-AM, core 40.18. Cymbosporites acanthaceus (Kedo) Obukhovskaya in Obukhovskaya et al., 2000. Slide 9306155: L 49/3, well 2-MN-1-

AM, core 27.19. Cymbosporites minutus (Kedo) Avkhimovitch and Streel, 1988. Slide 940346: M 52, well 1-CM-3-PA, core 11.

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202 173

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202174

complex (which includes C. ligurata sensu strictoand closely related Chelinospora sp.).Characterization of zone: Acinosporites macrospi-nosus, Chelinospora timanica, Craspedispora para-naensis (scarce), Geminospora punctata, Grandi-spora macrotuberculata, G. mammillata, Verru-cosisporites scurrus, Archaeozonotriletes variabilis,Rhabdosporites langii, and R. parvulus are charac-teristic species. Except for possibly the last three,all are known to have slightly lower stratigraphicinceptions outside the Amazon Basin in Brazil.A signi¢cant group of preexisting miospore spe-cies has not been recorded above the zone’s up-per boundary thus far in the basin (including atleast Acinosporites apiculatus, Craspedispora gha-damisensis, C. paranaensis, Emphanisporites annu-latus, Grandispora douglastownense, and G. mega-formis). On the other hand, Cymbosporites catillusand C. cyathus ¢rst appear in the highest levels ofthe LLi Zone and persist upwards into youngerzones.Reference section for zone base: Well 1-AM-1-AM, core 22, 1380/1381 m.Representative occurrences of zone: Wells 1-AM-1-AM (cores 15^22, providing discrete samplingcover of interval 1327.34/1381.00 m); 2-BI-1-AM

(core 21, 1349.44/1351.36 m); 1-CM-1-PA (core29, 615.2/616.4 m); 2-MN-1-AM (core 30, 1063/1066 m); 1-MS-5-AM (cores 21 and 22 bracketinginterval 1450.50/1519.40 m); 1-UA-1-AM (cores34 and 35 comprising the interval 3456.3/3509.8m); 1-UI-2-AM (core 7, 582.0/583.4 m, and cut-tings from 600 m), and 1-RX-1-AM (cuttingsfrom at least interval 2647/2677 m). The toppart of the zone is accurately delimited in well1-AM-15-AM (interval 1272.55/1277.72 m withinlower part of core 4), and further characterized inwell 1-AM-3-AM (from basal part of core 9 downto core 13, sampled interval 1319.49/1333.20 m).Lithostratigraphic distribution: Major part of theErere“ Formation (interval extending from some-what below its main radioactive marker throughthe unit’s top).Age range: Early Givetian (Middle Devonian).Equivalent interval in Petrobras operational paly-nozonation of Northern Brazilian basins (Daemonand Contreiras, 1971; Daemon, 1976): Biostrati-graphic interval V (part).Equivalent interval in the ORS Continent miosporezonation (Richardson and McGregor, 1986): Low-er part of the lemurata^magni¢cus AssemblageZone.

Plate III. (See caption for Plate I.)

1. Densosporites spitsbergensis Playford, 1963. Slide 9406733: G 62/4, well 1-RX-1-AM, core 110.2. Densosporites intermedius Butterworth and Williams, 1958. Slide 9305343: S 39, well 1-CM-1-PA, core 8.3. Densosporites pseudoanulatus Butterworth and Willams, 1958. Slide 9700866: S 42, well 1-MS-4-AM, core 19.4. Diaphanospora rugosa (Naumova) Byvscheva, 1985. Slide 9305568: H 51/1, well 1-CM-1-PA, core 28.5. Diatomozonotriletes franklinii McGregor and Cam¢eld, 1982. Slide 13376: R 60, well 1-AM-3-AM, core 7.6. Dictyotriletes emsiensis (Allen) McGregor, 1973. Slide 9800543: H 44/1, well 1-MU-2-AM, core 15.7. Dictyotriletes cf. subgranifer McGregor, 1973. Slide 9701338: F 12/2, well 1-MS-5-AM, core 28.8. Diatomozonotriletes fragilis Clayton in Neves et al., 1973. Slide 960560: T 46/3, well 1-RX-3-AM, core 24.9. Diducites mucronatus (Kedo) Van Veen, 1981. Slide 9701143: S 47/3, well 2-PC-1-AM, core 30.10. Dibolisporites sp. Slide 9406774: T 62, well 1-RX-1-AM, core 129.11. Foveosporites appositus Playford, 1971. Slide 15(1): F 39/1, well 2-LF-1-AM, core 15.12. Emphanisporites rotatus McGregor, 1961. Slide 4070: R 44/2, well 2-NO-1-AM, core 12.13. Emphanisporites annulatus McGregor, 1961. Slide 9701323: Q 64, well 1-MS-5-AM, core 24.14. Geminospora punctata Owens, 1971. Slide 950303: L 52/4, shallow well Caima PH-2, sample 24.15,16. Geminospora lemurata Balme emend. Playford, 1983.15. Slide 950403: Q 46/1, shallow well Caima PH-2, sample 122.16. Slide 9500127: V 18/1, well 1-AM-15-AM, core 3.17. Geminospora piliformis Loboziak, Streel and Burjack, 1988. Slide 950303: L 41/2, shallow well Caima PH-2, sample 24.18. Grandispora gracilis (Kedo) Streel in Becker et al., 1974. Slide 9601417: C 57, well 1-NO-2-AM, core 46.19. Grandispora megaformis (Richardson) McGregor, 1973. Slide 9701311: N 45/2, well 1-MS-5-AM, core 22.20. Grandispora mammillata Owens, 1971. Slide 960607: P 45, well 2-CA-1-AM, cuttings sample at 642 m.

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202 175

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202176

Equivalent interval in the Western European mio-spore zonation (Streel et al., 1987): Lem IntervalZone, within the upper part of the AD OppelZone.Supplementary remarks: In marginal sectors ofthe Amazon Basin (in wells of the Auta¤s^Mirimand Maue¤s areas) the base of the LLi Zone ap-proaches the base of the Erere“ Formation as theunderlying Per Zone displays more reduced thick-ness. Outside the basin, other Brazilian occur-rences of LLi palyno£oras are documented inthe Ponta Grossa Formation of the Parana¤ Basin(Daemon et al., 1967; Loboziak et al., 1988; Lo-boziak and Melo, 2000, 2002), and also in thelower part of the Pimenteira Formation of theParna|¤ba Basin (Loboziak et al., 1992, 1993,2000a; Loboziak and Melo, 2000, 2002). LLi as-semblages may occur in coeval strata of the Sol-imo‹es Basin (within the Jandiatuba and Uere“ For-mations, after Loboziak et al., 1994a), in spite ofthe very poor documentation of Middle Devonianpalyno£oras there.

4.2.6. Samarisporites triangulatus Interval Zone(Trg)Zone base de¢nition: FOB of Samarisporites tri-angulatus.Characterization of zone: The proliferation ofCymbosporites catillus and C. cyathus, as well asthe more regular presence of Chelinospora para-vermiculata, are generally recorded from the TrgZone upwards. Higher parts of the unit are char-acterized by scattered specimens of Chelinospora

concinna and some precursor miospores bearingtabulate sculptural elements (Grandispora tabula-ta). Except S. triangulatus, C. catillus, and C. cy-athus other mentioned species are thus far un-known in the Amazon Basin.Reference section for zone base: Petrobras well1-IZ-2-MA, horizon at 1831.1 m in core 7 (Par-na|¤ba Basin), according to Rodrigues et al. (1995).

Representative occurrences of zone: Interval200.1^259.0 m of Docegeo well RSP-1 (Parana¤Basin), after Loboziak et al. (1988).Lithostratigraphic distribution: Thus far unre-corded in the Amazon Basin, but known in atleast the Parana¤ and Parna|¤ba Basins (respectivelyin the Ponta Grossa and Pimenteira Formations).Age range: Late early Givetian^earliest Frasnian(Middle to Late Devonian).Equivalent interval in Petrobras operational paly-nozonation of Northern Brazilian basins (Daemonand Contreiras, 1971; Daemon, 1976): Transitionof biostratigraphic intervals V and VI (compari-son possible in Parna|¤ba Basin only).Equivalent interval in the ORS Continent miosporezonation (Richardson and McGregor, 1986):Upper part of the lemurata^magni¢cus Assem-blage Zone and the entire optivus^triangulatus As-semblage Zone.Equivalent interval in the Western European mio-spore zonation (Streel et al., 1987): TA and TCoOppel Zones.Supplementary remarks: The Trg Zone has notyet been documented in the Amazon Basin, pos-sibly in response to strong sedimentary condensa-

Plate IV. (See caption for Plate I.)

1. Grandispora libyensis Moreau-Benoit, 1980. Slide 6842: P 19, outcrop sample BR-19A, Tocantins River Valley, Parna|¤baBasin.

2. Grandispora protea (Naumova) Moreau-Benoit, 1980. Slide 960607: P 61, well 2-CA-1-AM, cuttings sample at 642 m.3. Grandispora facilis (Kedo) Avkhimovitch, 1988. Slide 9701303: K 62, well 1-MS-5-AM, core 20.4. Grandispora incognita (Kedo) McGregor and Cam¢eld, 1976. Slide 950304: Q 38/1, shallow well Caima PH-2, sample 25.5. Grandispora permulta (Daemon) Loboziak, Streel and Melo, 1999. Slide 9603106: K 49, outcrop sample Pto-17A,

Tocantins River Valley, Parna|¤ba Basin.6. Grandispora echinata Hacquebard, 1957. Slide 9700871: J 54/2, well 1-MS-4-AM, core 27.7. Grandispora cornuta Higgs, 1975. Slide 9606623A: E 44/4, well 1-MS-4-AM, core 27.8. Grandispora douglastownense McGregor, 1973. Slide 9306161(bis): J 51/2, well 2-MN-1-AM, core 31.9. Grandispora macrotuberculata (Arkhangelskaya) McGregor, 1973. Slide 960607: Q 43, well 2-CA-1-AM, cuttings sample

at 642 m.

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202 177

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202178

tion adjacent to the Erere“/Barreirinha lithologicalboundary. This accounts for a signi¢cant biostra-tigraphic gap across the basin, which causes theBPi and LLi Zones to lie in close stratigraphicsuccession. In core 4 of well 1-AM-15-AM, forexample, the top of the LLi Zone is apparentlyseparated from the base of the BPi Zone (whichsucceeds the Trg Zone in other Brazilian basins)by a 2.8-m shaly interzone. Although very rich inunstructured organic matter and tasmanaceansthe interzone is practically barren of miosporesor other age-diagnostic palynomorphs and there-fore devoid of any biostratigraphic resolution. Asimilar, but more reduced hiatus was documentedby Rodrigues et al. (1995) within the PimenteiraFormation of the Parna|¤ba Basin, where only theupper part of the Trg Zone (equivalent to theTCo Oppel Zone of Western Europe) seems tobe missing. No apparent gap has been detectedby Loboziak et al. (1988) in the Ponta GrossaFormation of the Parana¤ Basin (RSP-1 borehole),where the Trg Zone is fully developed. The TrgZone is still unknown in the Solimo‹es Basin ofNorthern Brazil.

4.2.7. Verrucosisporites bulliferus^Geminosporapiliformis Interval Zone (BPi)Zone base de¢nition: FOB of Verrucosisporitesbulliferus.Characterization of zone: The proliferation ofmiospore species bearing tabulate sculptural ele-ments (among these the two eponymous species)is a diagnostic feature of the BPi Zone. Particu-larly characteristic is the incoming of one suchspecies, Geminospora piliformis, the stratigraphicalappearance of which closely succeeds that of V.bulliferus in the Amazon Basin. Further hints forrecognition of the BPi Zone in the basin include:the appearance of Samarisporites sp. E in Streeland Loboziak (1987), and, somewhat higher, ofLophozonotriletes spp. and the earliest (thoughstill rare) specimens of Verruciretusispora magnif-ica ; the persistence of many species from the pre-ceding Trg Zone (including S. triangulatus) ; andthe remarkable decline and disappearance of sev-eral taxa introduced in the LLi, Per and GSZones.Reference section for zone base: Well 1-AM-15-AM, core 4 sampled at 1269.73/1269.75 m.

Plate V. (See caption for Plate I.)

1. Grandispora spiculifera Playford, 1976. Slide 9406727: M 64/4, well 2-NO-1-AM, core 104.2. Indotriradites daemonii Loboziak, Melo, Playford and Streel, 1999. Slide 960560: C 56/1, well 1-RX-3-AM, core 24.3. Indotriradites dolianitii (Daemon) Loboziak, Melo, Playford and Streel, 1999. Slide 960564: J 60, well 1-RX-3-AM, core

25.4,5. Indotriradites explanatus (Luber) Playford, 1991.4. Slide 9701141: L 51/3, well 2-PC-1-AM, core 30.5. Slide 9602207: K 63/2, well 1-NO-6-AM, core 28.6. Indotriradites mitratus (Higgs) Higgs, 1996. Slide 9601767: V 40/1, well 1-NO-6-AM, core 17.7. Knoxisporites literatus (Waltz) Playford, 1963. Slide 13597-2: N 47/4, well 1-CM-2-PA, core 14.8. Knoxisporites hederatus (Ishchenko) Playford, 1963. Slide 9507422: A 45/4, well 1-RO-1-AM, core 44.9. Mooreisporites sp. Slide 9305309: P 29/3, well 1-CM-1-PA, core 3.10. Perotrilites tessellatus (Staplin) Neville in Neves et al., 1973. Slide 21(1): L 27/3, well 2-LF-1-AM, core 21.11. Leiotriletes struniensis Moreau-Benoit, 1979. Slide 9701037: N 40/1, well 1-MS-3-AM, core 23.12. Neoraistrickia loganii (Winslow) Coleman and Clayton, 1988. Slide 9705932B: A 49, well 2-LF-1-AM, core 51.13. Granulatisporites granulatus Ibrahim, 1933. Slide 940239: B 65/3, well 1-AD-1A-AM, core 25.14,15. Lycospora pusilla (Ibrahim) Somers, 1972.14. Slide 940745: V 33, well 1-UA-1-AM, core 22.15. Slide 9706050: B 54, well 1-RX-1-AM, core 111.16. Prolycospora rugulosa (Butterworth and Spinner) Turnau, 1978. Slide 8706168: B 46/1, well 1-AD-1A-AM, core 25.17. Lophozonotriletes media Taugourdeau-Lantz, 1967. Slide 950401: V 56/4, shallow well Caima PH-2, sample 120.18. Cannanoropollis janakii Potonie¤ and Sah, 1958. Slide 9606609: H 56/4, well 1-MS-4-AM, core 16.19. Potonieisporites magnus Lele and Karim, 1971. Slide 9500103A: L 15/2, well 1-AM-15-AM, core 1.

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202 179

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202180

Representative occurrences of zone: Caima PH-2shallow core-drill (interval 123.29/135.13 m).Wells 1-AM-15-AM (core 4, at least 1266.40/1269.75 m, and possibly as high as level 1261.58m); 1-AM-6A-AM (core 17, 1269.1/1269.3 m); 2-PC-1-AM (core 46 sampled at 1356.59 m); 1-TR-1-AM (core 32 sampled at 2624.02 m), and 1-RX-1-AM (cuttings interval from 2611/2641 m).Lithostratigraphic distribution: Barreirinha For-mation (lower part of radioactive black shale sec-tion, characterized by its comparatively low gam-ma-ray readings and silty/sandy interbeds).Age range: Early Frasnian (Late Devonian).Equivalent interval in Petrobras operational paly-nozonation of Northern Brazilian basins (Daemonand Contreiras, 1971; Daemon, 1974, 1976): Bio-stratigraphic interval VI (lower part).Equivalent interval in the ORS Continent miosporezonation (Richardson and McGregor, 1986): Mainpart of the ovalis^bulliferus Assemblage Zone, ex-cluding its highest interval.Equivalent interval in the Western European mio-spore zonation (Streel et al., 1987): BJ and BMOppel Zones.Supplementary remarks: Regional appearances ofGeminospora piliformis and Lophozonotriletes spp.

within the BPi Zone are generally too scatteredand poorly controlled to permit any workablesubdivision of the unit in the Amazon Basin. Incore 32 of well 1-TR-1-AM G. piliformis is foundless than 1 m above the Erere“/Barreirinha litho-logical boundary. Evidence from the Caima PH-2borehole and core 4 of well 1-AM-15-AM alsosuggests that the stratigraphic inception of G. pi-liformis may practically coincide with, or immedi-ately succeed, that of V. bulliferus. A di¡erentsituation is veri¢ed in the Ponta Grossa Forma-tion of the Parana¤ Basin (Loboziak et al., 1988),where the two biohorizons are widely separatedand further distinguished by the regular concur-rence of G. piliformis and Lophozonotriletes media,thus permiting correlation of this higher intervalof the BPi Zone with the BM Oppel Zone ofWestern Europe. In addition to the Amazon andParana¤ Basins, the BPi Zone is also recognizablein the Pimenteira Formation of the Parna|¤ba Ba-sin (Loboziak et al., 2000a), more precisely at thebase of the Frasnian section where a distinctiveradioactive marker is present (Rodrigues et al.,1995). Coeval rocks are apparently present inthe Solimo‹es Basin as well, namely in the basalpart of radioactive black shale sections of Fras-

Plate VI. (See caption for Plate I.)

1. Potonieisporites elegans (Wilson and Kosanke) Wilson and Venkatachala, 1964. Slide 950236: B 50/4, well 1-RO-1-AM,core 20.

2. Protohaploxypinus latissimus (Luber and Waltz) Samoilovitch, 1953. Slide 90613: S 61/2, well 1-NO-1-AM, core 726.3. Protohaploxypinus amplus (Balme and Hennelly) Hart, 1964. Slide 960515: Y 55/2, well 1-NO-2-AM, cuttings sample at

2514 m.4. Plicatipollenites malabarensis (Potonie¤ and Sah) Foster, 1975. Slide 9601126: S 62/4, well 2-PC-1-AM, core 21.5. Limitisporites elongatus Lele and Karim, 1971. Slide 90613: G 47/3, well 1-NO-1-AM, core 726.6,7. Rugospora radiata (Jushko) Byvsheva, 1985.6. Slide 9305529: O 51/4, well 1-CM-1-PA, core 18.7. Slide 9406745: C 48/3, well 1-RX-1-AM, core 117.8. Rugospora bricei Loboziak and Streel, 1989. Slide 9406745: B 48/3, well 1-RX-1-AM, core 117.9. Rugospora minuta Neves and Ioannides, 1974. Slide 23(1): U 36/2, well 2-LF-1-AM, core 23.10. Rugospora polyptycha Neves and Ioannides, 1974. Slide 960166: Q 50/1, well 1-RX-4-AM, cuttings sample at 2019 m.11. Radiizonates arcuatus Loboziak, Playford and Melo, 2000. Slide 9305349: J 31, well 1-CM-1-PA, core 9.12. Perotrilites sp. cf. Zonotriletes 2 in Jardine¤ and Yapaudjian, 1968. Slide 9606867: G 43/4, well 1-MS-4-AM, core 37.13. Rhabdosporites langii (Eisenack) Richardson, 1960. Slide 9603207: N 55/4, outcrop sample RSO-1, Tocantins River

Valley, Parna|¤ba Basin.14. Retusotriletes sp. Loboziak, Melo, Quadros and Streel, 1997. Slide 9505381: N 63/4, shallow well Caima PH-2, sample

5b.

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202 181

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202182

nian age within the Jandiatuba and Uere“ Forma-tions, but the available miospore evidence is stilltoo poor to con¢rm this correlation (S. Loboziakand J.H.G. Melo, unpublished data).

4.2.8. Rugospora bricei^Diducites mucronatusInterval Zone (BMu)Zone base de¢nition: FOB of Rugospora briceiand/or Diducites mucronatus.Characterization of zone: The scarcity or even ab-sence of Verrucosisporites bulliferus, the incomingof Crassispora catenata, and an overall decline inthe amount and diversity of large-sized spinosezonates/pseudosaccates (Grandispora/Samarispo-rites spp. complex) also distinguish the BMuZone from older biozones of the Amazon Basin.The two eponymous species and C. catenata rangeup into younger Devonian intervals.Reference section for zone base: Caima PH-2 shal-low core-drill, horizon at 123.22/123.29 m.Representative occurrences of zone: Caima PH-2shallow core-drill (interval 117.73/123.29 m).Wells 1-AM-15-AM (core 4, at least 1260.00/1261.58 m, questionably as low as level 1266.34m) and 1-RX-1-AM (cuttings from 2596/2602 mand core 125, 2604.90/2608.46 m).Lithostratigraphic distribution: Barreirinha For-mation (lower to middle parts of radioactive black

shale section, characterized by comparativelyhigher gamma-ray readings).Age range: Late Frasnian (Late Devonian).Equivalent interval in Petrobras operational paly-nozonation of Northern Brazilian basins (Daemonand Contreiras, 1971; Daemon, 1974, 1976): Bio-stratigraphic interval VI (part).Equivalent interval in the ORS Continent miosporezonation (Richardson and McGregor, 1986):Upper part of the ovalis^bulliferus AssemblageZone.Equivalent interval in the Western European mio-spore zonation (Streel et al., 1987): The ‘IV’aand ‘IV’b subdivisions of informal phase zone‘IV’.Supplementary remarks: The miospore content ofthe BMu Zone, much like that of the succeedingTP Zone, is very diluted in the Amazon Basin,whereas unstructured organic matter and compo-nents of the organic-walled microphytoplanktonprevail in the same intervals (Loboziak et al.,1996, 1997b). This probably re£ects the distal ma-rine sedimentary settings of the lower Barreirinhablack shales. The BMu Zone is also recognized incoeval sections of the Ponta Grossa and Pimen-teira Formations, in the Parana¤ and Parna|¤ba Ba-sins, respectively, where miospores are generallymore numerous and additional species are re-

Plate VII. (See caption for Plate I.)

1. Retusotriletes incohatus Sullivan, 1964. Slide 940139: Q 38/4, well 1-CM-2-PA, core 34.2. Raistrickia strumosa Playford, 1976. Slide 9406629: Q 47/4, well 1-CM-1-PA, cuttings sample at 237 m.3. Raistrickia baculosa Hacquebard, 1957. Slide 9305348: V 47/4, well 1-CM-1-PA, core 9.4. Raistrickia clavata Hacquebard emend. Playford, 1964. Slide 960175: T 47/1, well 1-RX-4-AM, cuttings sample at 2064

m.5. Schop¢tes claviger (Sullivan) Higgs, Clayton and Keegan, 1988. Slide 940239: R 53, well 1-AD-1A-AM, core 25.6. Schop¢pollenites sp. Slide 940857: O 49, well 1-IU-1-PA, core 1.7,8. Retispora lepidophyta (Kedo) Playford, 1976.7. Slide 9600668: X 63/3, well 1-NO-2-AM, core 27.8. Slide 9507442: N 63/4, well 1-RO-1-AM, core 54.9. Spelaeotriletes triangulus Neves and Owens, 1966. Slide 960427: A 54, well 2-BI-1-AM, core 2010. Spelaeotriletes arenaceus Neves and Owens, 1966. Slide 960427: S 56, well 2-BI-1-AM, core 20.11. Spelaeotriletes balteatus (Playford) Higgs, 1996. Slide 9701078: O 48/2, well 1-RX-4-AM, core 19.12. Spelaeotriletes benghaziensis Loboziak and Clayton, 1988. Slide 9500103A: E 33, well 1-AM-15-AM, core 1.13. Spelaeotriletes granulatus (Kedo) Moreau-Benoit, 1980. Slide 9701139: J 68, well 2-PC-1-AM, core 29.14. Spelaeotriletes owensii Loboziak and Alpern, 1978. Slide 940083 (bis): M 58, well 2-IZ-1-MA, core 355, Parna|¤ba Basin.15. Spelaeotriletes obtusus Higgs, 1975. Slide 9507412: L 47, well 1-RO-1-AM, core 40.

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202 183

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202184

corded (Loboziak et al., 1988, 1992, 1993, 1994b).Intervals of the same age in the Solimo‹es Basinare probably represented within highly radioactiveshale sections of Frasnian age, attributed to boththe Jandiatuba and Uere“ Formations, but thiscannot yet be proved on the basis of miosporeevidence (Loboziak et al., 1994a).

4.2.9. Teichertospora torquata^Aurorasporapseudocrista Interval Zone (TP)Zone base de¢nition: FOB of Teichertospora tor-quata and/or Auroraspora pseudocrista.Characterization of zone: Palyno£oras are usuallyscarce, and possibly for this reason no otherstratigraphically useful miospore species areknown to ¢rst occur or disappear within the TPZone. The concurrence of the two eponymousspecies and the continued presence of several

taxa from the preceding BMu Zone constitutethe main basis for recognition of the unit. Mostforms persist upwards into younger Devonianbiozones.Reference section for zone base: Caima PH-2 shal-low core-drill, horizon at 117.67/117.73 m.Representative occurrences of zone: Caima PH-2shallow core-drill (interval 103.42/117.73 m).Wells 2-NA-1-PA (core 28, 1628.31/1630.41 m);1-RX-1-AM (cuttings from interval 2560/2590 mand core 124, 2572.5/2577.5 m), and 1-RX-3-AM(cuttings from interval 2550/2571 m and core 34,2554.2/2556.6 m).Lithostratigraphic distribution: Barreirinha For-mation (middle and upper parts of radioactiveblack shale section, often characterized by thehighest gamma-ray readings).

Plate VIII. (See caption for Plate I.)

1. Spelaeotriletes pretiosus (Playford) Neves and Belt, 1970. Slide 940746: W 67/1, well 1-UA-1-AM, core 22.2. Teichertospora torquata (Higgs) McGregor and Playford, 1990. Slide 950680b: G 50/4, well 1-SO-1-AM, core 15.3. Umbonatisporites rarisetosus (Kedo) Higgs, 1996. Slide 9305345: L 51, well 1-CM-1-PA, core 8.4. Vallatisporites sp. cf. V. anthoideus Braman and Hills, 1992. Slide 950303: U 55, shallow well Caima PH-2, sample 24.5. Vallatisporites agadesensis Loboziak and Alpern, 1978. Slide 940073: R 69/3, well 2-IZ-1-MA, cores 334/335, Parna|¤ba

Basin.6. Vallatisporites ciliaris (Luber) Sullivan, 1964. Slide 940237: U 46, well 1-AD-1A-AM, core 25.7. Vallatisporites hystricosus (Winslow) Byvsheva, 1985. Slide 9406745: V 57/1, well 1-RX-1-AM, core 117.8. Radiizonates sp. cf. Vallatisporites cf. ban¡ensis n‡ 2891 in Lanzoni and Magloire, 1969. Slide 9701087: Q 49, well

1-RX-4-AM, core 22.9. Vallatisporites vallatus Hacquebard, 1957. Slide 8502263: K 49, well 1-AM-1-AM, core 9.10. Vallatisporites splendens Staplin and Jansonius, 1964. Slide 960565: P 37, well 1-RX-3-AM, core 26.11. Vallatisporites verrucosus Hacquebard, 1957. Slide 9301847: E 52/2, well 1-CM-2-PA, core 19.12. Verrucosisporites cf. polygonalis Lanninger, 1968. Slide 9306163: P33/4, well 2-MN-1-AM, core 33.13. Verrucosisporites bulliferus Richardson and McGregor, 1986. Slide 960077: Y 32, well 1-RX-1-AM, cuttings sample at

2500 m.14. Verrucosisporites nitidus Playford, 1964. Slide 9701156: O 38/1, well 2-PC-1-AM, core 36.15. Verrucosisporites premnus Richardson, 1965. Slide 9500222: J 13/3, well 1-AM-15-AM, core 4.16. Verrucosisporites congestus Playford, 1964. Slide 9305348: E 43, well 1-CM-1-PA, core 9.17. Verrucosisporites oppressus (Higgs) Higgs, Clayton and Keegan, 1988. Slide 9406731: J 72, well 1- RX-1-AM, core 109.18. Verrucosisporites scurrus (Naumova) McGregor and Cam¢eld, 1982. Slide 950403: F 44/1, shallow well Caima PH-2,

sample 122.19. Samarisporites sp. E in Streel and Loboziak, 1987. Slide 960645: O 46/2, shallow well Caima PH-2, sample 346.20. Samarisporites triangulatus Allen, 1965. Slide 950672: N 41/3, well Caima PH-2, sample 373.21. Tumulispora rarituberculata (Luber) Potonie¤, 1966. Slide 940165: O 48/2, well 2-NA-1-PA, core 22.22. Waltzispora planiangulata Sullivan, 1964. Slide 9706038: E 41/3, well 1-RX-1-AM, core 110.23. Waltzispora lanzonii Daemon, 1974. Slide 9305348: L 31/1, well 1-CM-1-PA, core 9.24. Synorisporites tripapillatus Richardson and Lister, 1969. Slide 960443: D 40/3, well 2-BI-1-AM, core 24.25. Synorisporites sp. cf. V. grandis McGregor, 1960. Slide 9701161: F 53, well 2-PC-1-AM, core 38.26. Verruciretusispora magni¢ca (McGregor) Owens, 1971. Slide 25(1): P 28/4, well 2-NA-1-PA, core 25.

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202 185

Age range: Latest Frasnian to questionably latemiddle Famennian (Late Devonian).Equivalent interval in Petrobras operational paly-nozonation of Northern Brazilian basins (Daemonand Contreiras, 1971; Daemon, 1974, 1976): Bio-stratigraphic interval VI (part).Equivalent interval in the ORS Continent miosporezonation (Richardson and McGregor, 1986): Pos-sibly the entire torquata^gracilis Assemblage Zone.Equivalent interval in the Western European mio-spore zonation (Streel et al., 1987): Correlation isstill problematic because common index speciesare missing. The most likely equivalent intervalin Western Europe ranges from the ‘IV’c subdivi-sion of informal phase zone ‘IV’ through possiblythe GF Oppel Zone (Loboziak et al., 1996,1997b), despite the apparent absence of Famen-nian zonal taxa within the TP Zone.Supplementary remarks: The main argument forextending the age of the TP Zone into the earlyand middle Famennian relies on its undoubtedlyconformable sedimentological boundary with thesucceeding Rad Zone, of proven late Famennian,Fa2c age (see below). On the other hand, stronglydiluted sedimentation related to starved basinconditions may have originated condensed inter-vals adjacent to the TP/Rad zonal boundary.These could account for some apparent biostrati-graphic hiatuses noticed within the black shalesection of the Barreirinha Formation (Loboziaket al., 1996, 1997b). Streel et al. (2000a) attributethe overall scarcity of early and middle Famen-nian miospore species in the Brazilian basins to aclimatically-driven crisis of coeval land plant cov-ers around the world. Regardless of its nature, theTP/Rad zonal boundary is easily traceable in elec-tric logs all over the Amazon Basin. It consis-tently matches the transition between the lowerand upper sub-units of the Barreirinha Formationwith their contrasting patterns in gamma-ray andresistivity curves (Fig. 5). Thus far the TP Zonehas not yet been recognized with certainty outsidethe Amazon Basin in Brazil. This holds particu-larly true for the Parana¤ Basin, where post-BMuFrasnian palyno£oras are still unknown in theuppermost Ponta Grossa Formation (Loboziaket al., 1988). Potentially synchronous, but some-what distinct assemblages are recorded in the Par-

na|¤ba Basin, within latest Frasnian to possiblymiddle Famennian parts of the upper Pimenteiraand lower Cabec�as Formations (Loboziak et al.,1994a,b; Loboziak and Melo, 2000, 2002). Addi-tional studies are required in the Solimo‹es Basin,where coeval strata could be present within radio-active shale sections of the Jandiatuba and Uere“Formations.

4.2.10. Rugospora radiata Interval Zone (Rad)Zone base de¢nition: FOB of Rugospora radiata.Characterization of zone: Several species ¢rst ap-pear within the Rad Zone, yet the most ubiqui-tous and diagnostic of these is actually the zonaleponym, R. radiata. They all range upwards intoyounger Famennian biozones. Characteristic taxainclude: Aratrisporites sp. cf. Archaeoperisaccusguangxiensis, Diaphanospora rugosa, Knoxisporiteshederatus, Leiotriletes struniensis, Synorisporitessp. cf. Verrucosisporites grandis, very rare speci-mens of Cyrtospora cristifera and Grandisporacornuta, and towards the zone top the earliestforms of Vallatisporites (with V. sp. cf. V. anthoi-deus). In addition, the lowest regional occurrencesof Auroraspora macra and Cymbosporites acantha-ceus (two species known elsewhere since the Fras-nian) seem to be also in the Rad Zone. The mio-spore content of this interval is generally moreabundant and diverse than that of the BMu andTP Zones.Reference section for zone base: Caima PH-2 shal-low core-drill, horizon at 103.35/103.42 m.Representative occurrences of zone: Caima PH-2shallow core-drill (interval 37.20/103.42 m). Wells1-AM-1-AM (cuttings from 1275/1287 m); 2-CA-1-AM (cuttings from 600 m); 1-CM-2-PA (cut-tings from interval 531/564 m); 2-MN-1-AM(core 27, 974.66/979.76 m); 2-NA-1-PA (cores26 and 27 bounding interval 1489.9/1567.8 m);1-RX-1-AM (cuttings from interval 2536/2557 mand core 123, 2520.8/2523.7 m); 1-RX-3-AM (cut-tings from interval 2502/2547 m); 1-SO-1-AM(cores 18^20 providing discrete cover for interval2592.0/2654.2 m); 1-TR-1-AM (at least cores 26^30 providing discrete sampling for interval 2443/2560 m); 1-UA-1-AM (cores 29 and 30 boundinginterval 3298.0/3370.8 m), and 1-UR-1-AM (core13, 1961.37/1965.77 m).

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202186

Lithostratigraphic distribution: Barreirinha For-mation (the entire upper sub-unit, characterizedin well logs by lower gamma-ray values), and low-est part of the Curiri Formation (base of lowersub-unit, which lacks diamictites).Age range: Late Famennian (main part of Fa2c)(Late Devonian).Equivalent interval in Petrobras operational paly-nozonation of Northern Brazilian basins (Daemonand Contreiras, 1971; Daemon, 1974, 1976): Var-iably attributed to biostratigraphic intervals VIand VII in di¡erent Amazon Basin wells.Equivalent interval in the ORS Continent miosporezonation (Richardson and McGregor, 1986): Theentire £exuosa^cornuta Assemblage Zone.Equivalent interval in the Western European mio-spore zonation (Streel et al., 1987): VCo OppelZone.Supplementary remarks: The stratigraphic appear-ance of Rugospora radiata in the Amazon Basincoincides with the transition between the lowerand upper sub-units of the Barreirinha Forma-tion. Therefore, subsurface sections belonging tothe Rad Zone can be easily traced and correlatedacross the basin with the aid of electric logs. Else-where in Brazil they may exist in at least the Jan-diatuba Sub-basin of the Solimo‹es Basin, withinthe Jandiatuba Formation, and possibly also inthe Jurua¤ Sub-basin, although miospore evidencefrom these areas is still too poor (S. Loboziak andJ.H.G. Melo, unpublished data). Equivalents ofthe Rad Zone are so far unknown in the Parna|¤baand Parana¤ Basins.

4.2.11. Vallatisporites hystricosus Interval Zone(Hys)Zone base de¢nition: FOB of Vallatisporites hys-tricosus.Characterization of zone: Grandispora facilis, Spe-laeotriletes granulatus (two characteristic species)and possibly also Retusotriletes incohatus (an ac-cessory form) ¢rst appear regionally in the HysZone. Retusotriletes sp. in Loboziak et al.(1997c) is a thick-exined, large miospore withquite restricted range within the zone, as it isonly found in Protosalvinia-bearing beds. Withthe exception of the latter, all other aforemen-

tioned miospore taxa range upwards into the suc-ceeding Rle and LVa Zones.Reference section for zone base: Caima PH-2 shal-low core-drill, horizon at 37.15/37.20 m.Representative occurrences of zone: Caima PH-2shallow core-drill (interval 7.80/37.20 m). Wells1-MS-5-AM (cuttings from 1250 and 1290 m atleast); 1-NO-1-AM (cores 908^911, 2749.9/2758.7m); 1-NO-2-AM (core 47, 2751/2754 m); 2-PC-1-AM (cores 43^45, 1241.11/1253.09 m); 1-SO-1-AM (core 17 sampled at 2530.6 m), and 1-UA-1-AM (at least core 27, 3202.0/3205.5 m).Lithostratigraphic distribution: Curiri Formation(bulk of lower sub-unit, that lacks diamictites).Age range: Late Famennian (latest Fa2c) (LateDevonian).Equivalent interval in Petrobras operational paly-nozonation of Northern Brazilian basins (Daemonand Contreiras, 1971; Daemon, 1974, 1976): Bio-stratigraphic interval VII (part).Equivalent interval in the ORS Continent miosporezonation (Richardson and McGregor, 1986; Rich-ardson and Ahmed, 1988): The entire pusillites(sensu lato)^fructicosa Assemblage Zone, in thelower part of the pusillites (sensu lato)^lepidophy-ta Total Range Superzone.Equivalent interval in the Western European mio-spore zonation (Maziane et al., 1999): VH Bio-zone.Supplementary remarks: Vallatisporites hystrico-sus is not always found in miospore assemblagesfrom Amazon Basin well sections that are likelyto represent lateral equivalents of the Hys Zoneas suggested by lithological and geophysical cor-relation (e.g., cores 5 and 6 of well 2-MS-2-AM,847.07/856.30 m; cores 119^121 of well 1-RX-1-AM, 2410.0/2423.6 m; core 33 of well 1-RX-3-AM sampled at 2404.0/2405.1 m; cores 24 and25 of well 1-TR-1-AM, 2397.6/2405.4 m). Thisprobably re£ects the well-known fact that Valla-tisporites-producing plants may have been facies-sensitive in their spatial distribution (Streel andScheckler, 1990; Loboziak et al., 1997c; Streelet al., 2000a). Outside the Amazon Basin, equiv-alents of the Hys Zone in Brazil are thus far onlyproven in the Jandiatuba Sub-basin of the Soli-mo‹es Basin, within the upper part of the Jandia-

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202 187

tuba Formation (S. Loboziak and J.H.G. Melo,unpublished data).

4.2.12. Retispora lepidophyta Interval Zone (Rle)Zone base de¢nition: FOB of Retispora lepidophy-ta.Characterization of zone: Rle palyno£oras aregenerally more abundant and diverse than thoseof any preceding Late Devonian biozones. Themain characteristic species are Aratrisporites sa-haraensis, Indotriradites explanatus, Knoxisporitesliteratus, Tumulispora rarituberculata and Vallati-sporites verrucosus. Any of these, though less ubiq-uitous than R. lepidophyta, can be found togetherwith the latter from the very base of the Rle Zone.Other associates ¢rst documented regionally with-in the zone include: Convolutispora major, Cordy-losporites marciae, C. spathulatus, Cymbosporitesacutus, C. minutus, Grandispora maculosa, G. spi-culifera, Radiizonates sp. cf. Vallatisporites cf.ban¡ensis no. 2891 in Lanzoni and Magloire(1969), Spelaeotriletes obtusus, and Umbonatispor-ites rarisetosus. Various additional species of thegenera Convolutispora, Corbulispora, Cristatispor-ites, Cymbosporites, Densosporites and Verrucosi-sporites also occur in the Rle strata. All of theaforementioned taxa range upwards into the suc-ceeding LVa Zone, and many persist even higher.The in situ miospore assemblages of both bio-zones are commonly joined by abundant palyno-morphs reworked from Middle and early LateDevonian strata.Reference section for zone base: Well 1-NO-2-AM, core 46, 2747.0/2751.7 m.Representative occurrences of zone: Wells 1-AM-3-AM (core 7 sampled at 1237.28 m); 1-AM-6A-AM (core 15, 1183.92/1186.82 m); 1-AM-7-AM(cores 17^23, 1263.0/1284.3 m); 1-NO-1-AM (atleast cores 896^907, 2725.2/2749.9 m); 1-NO-2-AM (cores 42^46, 2741.0/2751.7 m, possibly alsocores 36^41, 2705.25/2719.20 m); 1-NO-6-AM(cores 35^37 bracketing interval 2771.92/2811.22m); 1-SO-1-AM (core 16 sampled at 2484.60 m),and 1-TR-1-AM (cores 22 and 23, 2351.0/2356.1m). Possibly also wells 2-PC-1-AM (cores 41 and42, 1204.52/1211.05 m) and 1-RO-1-AM (cores 55and 56, 2165.28/2172.28 m).Lithostratigraphic distribution: Curiri Formation

(lower part of upper sub-unit). The biozone ispossibly also present in some well sections attrib-uted to the lower part of the Oriximina¤ Forma-tion (2-LF-1-AM). Diamictites and glacio^marinestrata are common in these intervals.Age range: Latest Famennian or ‘Strunian’ (ex-cluding its oldest part) (Late Devonian).Equivalent interval in Petrobras operational paly-nozonation of Northern Brazilian basins (Daemonand Contreiras, 1971; Daemon, 1974, 1976): Bio-stratigraphic intervals VII to VIII5.Equivalent interval in the ORS Continent miosporezonation (Richardson and McGregor, 1986; Rich-ardson and Ahmed, 1988): A yet unde¢ned por-tion of the lepidophyta Regional Range Zone, butexcluding its lowest part (the lepidophyta-prostataConcurrent Range Subzone).Equivalent interval in the Western European mio-spore zonation (Streel et al., 1987): A yet unde-¢ned portion of the combined range of the LE^LN Interval Zones.Supplementary remarks: It is currently unclearwhether a part of the subsurface intervals display-ing Rle palynological signatures in the AmazonBasin could account simply for locally impover-ished variants of LVa palyno£oras elsewhere (seezonal characterization below). Such is most likelythe case with several well sections yielding appar-ent Rle miospore results from stratigraphical lev-els that are too high (uppermost Curiri/lower Ori-ximina¤) within the regional ‘Strunian’ sequence,e.g. 1-AM-5-AM (core 25, 1190.9/1196.9 m); 2-LF-1-AM (core 55, 2483.8/2485.0 m and cuttingsfrom interval 2457/2507 m); 1-MS-3-AM (cores21^24, 1174.8/1189.2 m); 1-MS-4-AM (cores 22^

5 Palyno£oras of Rle and LVa a⁄nity occur in cuttingsfrom interval 2409/2472 m of well 2-LF-1-AM, in the middlepart of the Oriximina¤ Formation. The same section has beenpreviously attributed to interval IX (Daemon, 1974) although,as far as we could observe, apparently lacking any character-istically Early Carboniferous miospore assemblages. Neverthe-less, reworking of latest Devonian miospores within earlyTournaisian strata is not uncommon in the Amazon Basin(see the supplementary remarks for the AL Zone). Therefore,we judge the evidence from 2-LF-1-AM still insu⁄cient tojustify any vertical extension of ‘Strunian’ assemblages aboveDaemon’s interval VIII (i.e. above core 55 of that well wherethe same palyno£oras are certainly in situ).

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202188

27, 1060.8/1074.5 m); 1-RX-3-AM (cuttings at2298 m and cores 31 and 32, 2382.8/2388.2 m);1-SO-1-AM (core 15, 2432.45/2433.07 m); 1-TR-1-AM (core 21 sampled at 2295.30/2296.51 m); 1-UA-1-AM (core 24, 3067.7/3069.4 m); 1-UI-2-AM (core 4, 345/350 m); 1-UR-1-AM (core 10sampled at 1701.1 m), etc. We suspect that com-positional di¡erences detected amongst miosporeassemblages from these intervals may have no agesigni¢cance, but rather indicate random non-oc-currences of LVa index species in response to fa-ciological or paleoecological controls. Detailedcorrelation studies with the aid of electrical logsand supplementary palynological analyses mayhelp settle this vexing question. Other occurrencesof the Rle Zone in Brazil concern diamictite-bear-ing sections of the Jandiatuba and Uere“ Forma-tions in the Solimo‹es Basin (Loboziak et al.,1994a,b) and Cabec�as Formation in the Parna|¤baBasin (Loboziak et al., 1992, 1993; Loboziak andMelo, 2000, 2002). In all these regions the base ofthe ‘Strunian’ section is underlain by a major hia-tus of variable magnitude, which separates the RleZone (or the LVa Zone) from older rock unitsranging in age from Precambrian to late Famen-nian.

4.2.13. Retispora lepidophyta^Vallatisporitesvallatus Interval Zone (LVa)Zone base de¢nition: FOB of Vallatisporites valla-tus and concurrence of Retispora lepidophyta.Characterization of zone: In addition to the zonaleponym, Radiizonates arcuatus and Verrucosispor-ites nitidus are characteristic species ¢rst appear-ing in the LVa Zone, even though they are toproliferate in Lower Carboniferous strata only.In most other respects LVa palyno£oras are es-sentially similar to those of the preceding RleZone, and likewise abundant and diverse. Itsupper boundary, with the succeeding AL Zone,is well marked by the disappearance of severaldistinctive Devonian miospore taxa (see next zo-nal characterization).Reference section for zone base: Well 1-RO-1-AM, core 54, 2162.70/2164.63 m.Representative occurrences of zone: Wells 1-AD-1A-AM (cuttings from 3527/3530 m and core 38,3540.7/3541.7 m); 1-AM-1-AM (at least cores 7^

9, 1228.61/1239.56 m, possibly also down to core12, 1245.96/1249.96 m); 1-AM-15-AM (core 3, atleast the upper half at 1109/1119 m, possibly alsodown to its base at 1127 m); 1-CM-1-PA (cores10^28, 275.61/343.80 m); 1-CM-2-PA (at leastcores 21^27 providing discrete sampling for inter-val 316.8/371.9 m, possibly also cores 28^35,373.0/400.0 m); 1-CM-3-PA (cores 9 and 11bracketing interval 280.0/314.2 m); 1-MS-3-AM(at least core 20, 1171.3/1174.8 m); 1-MS-4-AM(at least cores 19^21, 1050.0/1060.8 m); 1-MS-5-AM (core 20, 1176.66/1182.00 m); 2-NA-1-PA(cores 22 and 23 bounding interval at 1332.07/1380.29 m); 1-NO-1-AM (at least cores 870^882,2593.3/2596.3 m); 1-NO-2-AM (at least cores 17^35, 2650.9/2704.4 m); 1-NO-6-AM (cores 19^34,2733.37/2771.92 m); 2-PC-1-AM (cores 29^39,1165.54/1203.67 m); 1-RO-1-AM (cores 35^54,2081.85/2164.63 m); 1-RO-2-AM (at least cores38^46, 2054.56/2092.30 m, possibly also includingthe lower part of core 37 from 2050.61 m down-wards); 1-RX-1-AM (cores 114^118, 2331/2410m), and 1-RX-4-AM (cuttings at 2080/2100 mand cores 36^38, 2122/2136 m).Lithostratigraphic distribution: Curiri Formation(bulk of upper sub-unit) and/or Oriximina¤ For-mation (lower part), depending on local lithostra-tigraphic di¡erences of each well section. Diamic-tites and glacio^marine strata are common inthese intervals.Age range: Terminal Famennian or terminal‘Strunian’ (latest Devonian).Equivalent interval in Petrobras operational paly-nozonation of Northern Brazilian basins (Daemonand Contreiras, 1971; Daemon, 1974, 1976): Bio-stratigraphic intervals VII to VIII (see footnote tosame entry for the preceding Rle Zone).Equivalent interval in the ORS Continent miosporezonation (Richardson and McGregor, 1986; Rich-ardson and Ahmed, 1988): Upper part or all ofthe lepidophyta^nitidus Subzone, in the top of thelepidophyta Regional Range Zone.Equivalent interval in the Western European mio-spore zonation (Streel et al., 1987): Upper part orall of the LN Interval Zone.Supplementary remarks: The LVa is the highestDevonian palynozone of the Amazon Basin, andprobably also the most widespread and best docu-

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202 189

mented of all. Its top, which is supposed to closelyparallel the Devonian/Carboniferous boundary, isparticularly well documented in wells 1-CM-1-PA(core 9, 270.4/275.6 m), 1-CM-2-PA (core 21sampled at 316.80 m), and 1-RO-2-AM (core 37,levels 2050.35/2050.61 m). The zone may accountfor the entire ‘Strunian’ succession in some wells(e.g. the 1-RX’s) where Rle palyno£oras are un-recorded. Outside the Amazon Basin the LVaZone is also extensively represented in the samebasins and lithostratigraphic units as the RleZone (see above), except that in the Parna|¤ba Ba-sin it may extend above the Cabec�as Formationto include the lower part of the Longa¤ Formation(Loboziak et al., 1994b, 2000a). Palyno£oras ofLVa a⁄nity have been also reported from diamic-tites in the subsurface of the Parana¤ Basin. How-ever, it is still uncertain whether they are in situ orrecycled within Late Paleozoic sediments of theItarare¤ Group locally barren of coeval miospores(Loboziak et al., 1995; Loboziak and Melo, 2000,2002).

4.2.14. Radiizonates arcuatus^Waltzisporalanzonii Interval Zone (AL)Zone base de¢nition: FOB ofWaltzispora lanzonii,concurrence of Radiizonates arcuatus, and LOBof an entire group of important Late Devo-nian miospores headed by Retispora lepidophyta,and including Cymbosporites minutus, Diaphano-spora rugosa, Grandispora facilis, Leiotriletes stru-niensis, Rugospora radiata, R. bricei, Spelaeotri-letes granulatus, Teichertospora torquata, Vallati-sporites hystricosus, and Verruciretusispora mag-ni¢ca.Characterization of zone: In addition to the epon-ymous species Waltzispora lanzonii, Rugosporaminuta is another diagnostic species ¢rst appear-ing in the AL Zone. The unit is further character-ized by a distinctive proliferation of particularmiospore groups, namely: (1) simple-morphology,laevigate forms; (2) several representatives (bothnew and preexistent) of the genera Convolutispora,Cristatisporites, Cymbosporites, Densosporites,Raistrickia, Radiizonates, Vallatisporites and Ver-rucosisporites, amongst others; and (3) importantLate Devonian holdovers that become moreabundant here (Aratrisporites saharaensis, Cordy-

losporites marciae and C. spathulatus, Cyrtosporacristifera, Grandispora spiculifera, Tumulisporararituberculata, Vallatisporites vallatus and V. ver-rucosus, Verrucosisporites nitidus, etc.). All mio-spore taxa present in the AL Zone range aboveits upper boundary.Reference section for zone base: Well 1-CM-1-PA,core 9, 270.4/275.6 m.Representative occurrences of zone (those markedwith an asterisk contain reworked ‘Strunian’ mio-spores as discussed below): Wells 1-CM-1-PA*(cores 4^9, 249.7/275.6 m); 1-CM-2-PA* (cores18^20, 296.9/310.7 m); 1-RO-1-AM* (cores 33and 34, 2069.56/2074.71 m); 1-RO-2-AM* (atleast cores 33^36, 2034.09/2048.38 m, possiblydown to the upper part of core 37 at 2050.35 m);1-RX-1-AM* (core 112, 2270/2274 m); 1-RX-3-AM* (cores 27and 28, 2219.5/2223.7 m and cut-tings from interval at 2238/2256 m); 1-RX-4-AM*(cores 21^32, 2044.00/2075.17 m); 1-SO-1-AM(cuttings from interval at 2381/2387 m), and1-UA-1-AM* (core 23, 3015.0/3018.9 m).Lithostratigraphic distribution: Oriximina¤ Forma-tion.Age range: Early to earliest middle Tournaisian(Early Carboniferous).Equivalent interval in Petrobras operational paly-nozonation of Northern Brazilian basins (Daemonand Contreiras, 1971; Daemon, 1974, 1976): Var-iably attributed to biostratigraphic intervals IXand X in the Amazon Basin.Equivalent interval in the Western European mio-spore zonation (Higgs, 1984; Higgs et al.,1988a,b): A yet unde¢ned portion of the VI-HD zonal range.Supplementary remarks: In certain AL Zone sec-tions (for example, those marked with asterisks inthe above list), and even in higher Tournaisianand Vise¤an intervals, Retispora lepidophyta andsome of its latest Famennian associates may stillpersist (usually in reduced numbers) due to recy-cling processes. This could pose some di⁄culty tozonal identi¢cations based on cuttings samples,although the qualitative and quantitative criteriagiven in the above characterization are generallysu⁄cient to prevent serious confusion in most sit-uations. Nevertheless, the concurrence of Tour-naisian index species (Waltzispora lanzonii, in

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202190

the particular case of the AL Zone), preferably incored sections, provides the safest way to detectreworked Rle^LVa palyno£oras within the Ori-ximina¤ Formation. The AL Zone is still poorlyrecognized in Brazilian Tournaisian sequencesoutside the Amazon Basin. However, potentiallycoeval palyniferous strata are present in the Jan-diatuba Formation of the Solimo‹es Basin (Lobo-ziak et al., 1994a,b), and possibly also in theLonga¤ Formation6 of the Parna|¤ba Basin (Lobo-ziak et al., 1992). Early Carboniferous strata areunknown in the Parana¤ Basin of central andsouthern Brazil.

4.2.15. Spelaeotriletes balteatus^Neoraistrickialoganii Interval Zone (BL)Zone base de¢nition: FOB of Spelaeotriletes bal-teatus and/or Neoraistrickia loganii.Characterization of zone: Mooreisporites sp., Rais-trickia strumosa and Rugospora polyptycha arecharacteristic taxa that ¢rst appear in the BLZone. Of these, at least the latter two range up-wards into the succeeding PD Zone. On the otherhand, some remnant species of Late Devonianpalyno£oras (Cyrtospora cristifera, Knoxisporitesliteratus, Spelaeotriletes obtusus) have thus farnot been recorded above the BL Zone in the Am-azon Basin.Reference section for zone base: Well 1-CM-1-PA,core 3, 245.0/249.7 m.Representative occurrences of zone (those markedwith an asterisk contain reworked ‘Strunian’ mio-spores as already discussed for the AL Zone):Wells 1-CM-1-PA* (cores 1^3, 239.0/249.7 m,and probably cuttings from 234/237 m); 1-CM-2-PA* (at least core 14, 275.8/278.9 m); 2-NA-1-PA (core 21, 1285.1/1286.8 m); 1-RO-1-AM (low-

er part of core 32, 2037.20/2038.52 m); 1-RX-3-AM* (from lowest part of cores 25 and 26 com-prising interval 2212.0/2212.7 m); and 1-RX-4-AM* (at least core 20, 2039/2044 m). The BLZone is possibly also represented in wells 1-AD-1A-AM (cuttings from 3422/3428 m and core 37,3455/3456 m); 2-LF-1-AM (cores 53 and 54 com-prising interval 2325.1/2375.0 m and cuttings at2367 and 2379 m), and 1-UA-1-AM (cuttings at2979 m).Lithostratigraphic distribution: Oriximina¤ Forma-tion.Age range: Early middle Tournaisian (Early Car-boniferous).Equivalent interval in Petrobras operational paly-nozonation of Northern Brazilian basins (Daemonand Contreiras, 1971; Daemon, 1974, 1976): Var-iably attributed to biostratigraphic intervals IXthrough XI in the Amazon Basin.Equivalent interval in the Western European mio-spore zonation (Higgs, 1984; Higgs et al., 1988a,b):BP Interval Zone.Supplementary remarks: Neoraistrickia loganiiand Spelaeotriletes balteatus are generally moreubiquitous in middle Tournaisian palyno£oras ofNorthern Brazilian basins than the associate spe-cies Rugospora polyptycha. For practical purposesthis justi¢es the proposition of the BL Zone inreplacement to our previous identi¢cations ofthe BP Zone in the same areas (Melo et al.,1999). Outside the Amazon Basin, equivalent as-semblages, usually poorly distinguished from PD-age ones, have been reported from pelites anddiamictites within the upper Jandiatuba Forma-tion of the Solimo‹es Basin (Loboziak et al.,1994a,b), as well as from pelites making up theupper part of the Longa¤ Formation in the Parna|¤-ba Basin (Loboziak et al., 2000a,b; Melo andLoboziak, 2000).

4.2.16. Spelaeotriletes pretiosus^Colatisporitesdecorus Interval Zone (PD)Zone base de¢nition: FOB of Spelaeotriletes pre-tiosus and/or Colatisporites decorus.Characterization of zone: In addition to the twoeponymous species other signi¢cant newcomersare ¢rst recorded within the PD Zone, namely:Colatisporites denticulatus, Crassispora trychera,

6 Daemon (1974, p. 561) refers to supposed occurrences ofWaltzispora lanzonii (a species restricted to the TournaisianAL through PD Zones) in the Poti Formation of the Parna|¤baBasin. However, our latest palynostratigraphic assessment ofthat rock unit in several well sections (Melo and Loboziak,2000) demonstrates that it is entirely of late Vise¤an age. Noadditional information is given in Daemon’s paper, so it isunclear to us whether his Parna|¤ba specimens are reworkedwithin the Poti Formation or derive from a Tournaisian sec-tion that would be best attributed to the underlying Longa¤Formation.

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202 191

Indotriradites mitratus, and rare Raistrickia clav-ata and Vallatisporites agadesensis (the lattermore characteristic of Vise¤an palyno£oras). Allof these persist upwards into younger strata. Onthe other hand, Waltzispora lanzonii is much lessfrequent here than in preceding Tournaisian inter-vals. The species is not known to have any in situoccurrences above the PD Zone in at least theAmazon Basin, just like an entire group of distinc-tive miospore taxa that include: Convolutisporamajor, Cordylosporites marciae, Indotriradites ex-planatus, Knoxisporites hederatus, Neoraistrickialoganii, Radiizonates sp. cf. Vallatisporites cf.ban¡ensis no. 2891 in Lanzoni and Magloire(1969), Raistrickia strumosa, Rugospora polypty-cha, Tumulispora rarituberculata, and Umbonati-sporites rarisetosus.Reference section for zone base: Well 1-CM-2-PA,core 13 at 274.95 m.Representative occurrences of zone (those markedwith an asterisk contain reworked ‘Strunian’ mio-spores as already discussed for the AL Zone):Wells 1-AD-1A-AM (cores 30 and 33 comprisinginterval 3333.98/3342.00 m); 1-CM-1-PA (at leastcuttings at 228 m); 1-CM-2-PA* (cores 12 and 13,264.95/274.95 m); 1-IU-1-PA (core 2, 1926.26/1934.94 m); 2-LF-1-AM* (cores 51 and 52,2252.0/2256.8 m); 1-RO-1-AM* (upper part ofcore 32, 2036.17/2036.85 m); 1-SO-1-AM (cut-tings from interval at 2342/2360 m), and 1-UA-1-AM (part of core 22 sampled at 2962.9/2963.6m). The PD Zone is possibly also represented inwells 1-RX-4-AM* (core 19, 2033/2039 m) and 1-TR-1-AM (core 18 sampled at 2167.83/2169.92m). In addition to well 1-CM-2-PA (reference sec-tion of PD Zone base), the BL/PD boundary isrecorded in 1-RO-1-AM (core 32, at a level some-where within 2036.85/2037.20 m).Lithostratigraphic distribution: Oriximina¤ Forma-tion.Age range: Late middle to early late Tournaisian(Early Carboniferous).Equivalent interval in Petrobras operational paly-nozonation of Northern Brazilian basins (Daemonand Contreiras, 1971; Daemon, 1974, 1976): Var-iably attributed to biostratigraphic intervals Xand XI in the Amazon Basin.Equivalent interval in the Western European mio-

spore zonation (Higgs, 1984; Higgs et al.,1988a,b): PC Interval Zone.Supplementary remarks: See comments for thepreceding BL Zone. The general scarcity of Rais-trickia clavata and good representation of Cola-tisporites decorus and Spelaeotriletes pretiosus inPC-age palyno£oras of the Amazon Basin providethe main argument for erection of the PD Zone.

4.2.17. Cordylosporites magnidictyus IntervalZone (Mag)Zone base de¢nition: FOB of Cordylosporitesmagnidictyus.Characterization of zone: A large number of mio-spore taxa are ¢rst recorded in the Mag Zone.They can be grouped into two major categoriesas concerns their stratigraphic distribution in theAmazon Basin: those apparently restricted to theMag Zone, and those ranging across the unit’supper boundary into Late Carboniferous sections.The ¢rst group includes the eponymous speciesand associates like: Auroraspora solisorta, Cirra-triradites rarus, Diatomozonotriletes fragilis andother congeneric setose forms, species of the In-dotriradites dolianitii Morphon, Foveosporitesspp., Perotrilites tessellatus, Schop¢pollenites sp.,Schop¢tes claviger, Spelaeotriletes owensii, andVallatisporites ciliaris. The second group com-prises Granulatisporites spp., Lycospora spp. (withonly sporadic occurrences in the Mag Zone), Pro-lycospora rugulosa, Waltzispora planiangulata, W.polita, and some large-sized species of Spelaeotri-letes (S. arenaceus, S. triangulus) destined to pro-liferate in the Tri Zone. Still a signi¢cant propor-tion of the Mag palyno£ora consists of long-ranging species (persisting from ‘Strunian’ andTournaisian intervals) that seemingly do notstraddle the Mag/Tri boundary. These are: Ara-trisporites saharaensis, Auroraspora macra, Cola-tisporites decorus, C. denticulatus, Cordylosporitesspathulatus, Crassispora trychera, Grandisporamaculosa, G. spiculifera, Indotriradites mitratus,Raistrickia clavata, Radiizonates arcuatus, Rugo-spora minuta, Spelaeotriletes balteatus, S. pretio-sus, Vallatisporites agadesensis, V. vallatus, V. ver-rucosus, and Verrucosisporites nitidus.Reference section for zone base: Well 1-RX-3-AM, core 25 at 2210.95 m.

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202192

Representative occurrences of zone (those markedwith an asterisk contain reworked ‘Strunian’ mio-spores as already discussed for the AL Zone):Wells 1-AD-1A-AM (cores 24 and 25, 3159.17/3164.25 m and cuttings from 3182/3188 m);1-FA-1-AM* (core 27, 2851.69/2855.40 m andcuttings from interval 2865/2951 m); 1-IU-1-PA(core 1, 1272.3/1279.7 m); 2-LF-1-AM* (cores13^29, 2148.53/2190.00 m); 1-NO-1-AM (at leastcores 849 and 850, 2488.9/2491.3 m); 1-NO-6-AM(at least cores 15 and 16, 2524.52/2528.16 m);1-RX-1-AM* (possibly the basal part of core108 below 2246 m, plus cores 109^111, 2247.0/2254.7 m); 1-RX-3-AM* (core 24 and at leastthe upper three-fourths of core 25, altogethercomprising interval 2207.25/2210.95 m); 1-RX-4-AM* (cores 17 and 18 sampled at 2024.15/2031.20m), and 1-UA-1-AM (at least the upper part ofcore 22, sampled at 2962.1/2962.7 m). The bio-zone is certainly also present in what has beenregarded as the highest Oriximina¤ section ofwells 1-SO-1-AM* and 1-NO-2-AM, but investi-gated cuttings samples are too contaminated withcavings and do not permit accurate determina-tions.Lithostratigraphic distribution: Faro Formation.Mag Zone palyno£oras also occur in some Faro-equivalent sections of very reduced thickness thathave been misattributed partly to the uppermostOriximina¤ Formation (for example in wells 1-NO-2-AM, 1-NO-6-AM, 1-SO-1-AM, 1-UA-1-AM)and partly to the basal Monte Alegre Formation(wells 1-RX-3-AM and 1-RX-4-AM), in the west-ern sectors of the Amazon Basin.Age range: Late Vise¤an, probably late Holkerianto Asbian (Early Carboniferous).Equivalent interval in Petrobras operational paly-nozonation of Northern Brazilian basins (Daemonand Contreiras, 1971; Daemon, 1974, 1976): Bio-stratigraphic interval XII.Equivalent interval in the Western European mio-spore zonation (Higgs, 1984; Higgs et al.,1988a,b; Riley, 1993): A yet unde¢ned portionof the TC^NM zonal range.Supplementary remarks: In the Amazon Basinand other Northern Brazilian basins the MagZone is underlain by a signi¢cant biostratigraphichiatus that separates it from variably older rock

sections (generally late Famennian to Tournai-sian; see Melo et al., 1999). In certain AmazonBasin wells (for instance, some 1-RX’s) the zone isdetected in sandy sections previously assigned tothe base of the Monte Alegre Formation, but de-void of any associated Late Carboniferous paly-no£oras. An exception is core 22 of 1-RX-3-AMwhere ‘Strunian’, Tournaisian and Vise¤an mio-spores are mixed with saccate pollen grains. Be-cause lithological inspection of the other coresrevealed no contrary evidence, we now are in-clined to consider those argillaceous, partly bio-turbated sandstones as part of a thin wedge ofVise¤an strata intervening between the Westphali-an and Tournaisian sequences in those areas,therefore unrelated to the generally cleanerquartz^sandstones of the overlying Monte AlegreFormation. Outside the Amazon Basin, equiva-lent sections of the Mag Zone are recorded inthe Poti Formation of the Parna|¤ba Basin (Meloand Loboziak, 2000), whereas in the Solimo‹esBasin they are thus far known only from the Jan-diatuba Sub-basin, in the uppermost part ofthe homonymous formation (Loboziak et al.,1994a,b; S. Loboziak and J.H.G. Melo, unpub-lished data). Vise¤an strata remain unproven in theParana¤ Basin.

4.2.18. Spelaeotriletes triangulus AssemblageZone (Tri)Zone base identi¢cation: Beginning of the regionaljoint epibole of Spelaeotriletes triangulus and S.arenaceus, and inception of saccate pollen grainsin the basin. The eponymous species, just likesome of its associates in the Tri Zone (e.g. Gra-nulatisporites spp., Lycospora spp., Prolycosporarugulosa, Spelaeotriletes arenaceus, Waltzisporapolita), are also present in the underlying MagZone of late Vise¤an age. The Mag/Tri boundaryis erosional and coincides with the regional pre-Monte Alegre unconformity, traceable all over theAmazon Basin.Characterization of zone: See Playford and Dino(2000b, p. 121) for original description of assem-blage characteristics. The Tri Zone is easily dis-tinguished from older palynozones through theubiquitous proliferation of Spelaeotriletes triangu-lus and S. arenaceus (together with a less frequent

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202 193

newcomer, S. benghaziensis), and the abrupt ap-pearance of the earliest pollen assemblages of theAmazon Basin. The latter typically feature thewide predominance of non-taeniate, monosaccategenera (Caheniasaccites, Cannanoropollis, Plicati-pollenites, Potonieisporites) over less frequenttaeniates (mainly Protohaploxypinus, Striatoabie-tites, Striatopodocarpites, Striomonosaccites) andnon-taeniate bisaccates (Limitisporites, Pityospor-ites).Reference sections of zone (after Playford andDino, 2000b): Wells 1-AM-15-AM (core 1,1113.5/1127.0 m) and 2-SA-1-AM (core 14, inter-val 1227.60/1229.40 m).Representative occurrences of zone: In addition tothe occurrences listed by Playford and Dino(2000b, p. 121), in part also investigated by us(for instance, those from 1-AD-1A-AM, 1-AM-1-AM, 1-AM-5-AM, 1-AM-15-AM and 2-BI-1-AM), the following ones can be recommended:1-AM-6A-AM (cores 3 and 4, 1101.23/1107.09m); 1-AM-7-AM (cores 7 and 9 bracketing inter-val 1172.0/1175.9 m); 2-MN-1-AM (core 26,942.9/948.9 m); 1-NO-1-AM (cores 819 and 824comprising interval 2432.0/2443.9 m); 2-PC-1-AM(cores 21, 22 and 25 within interval 1137.21/1156.60 m); 1-RO-1-AM (core 20 sampled at2015.49 m); 1-RX-3-AM (cores 13, 14 and 22bracketing interval 2178.7/2204.5 m); 1-SO-1-AM (cores 8 and 12 bracketing interval 2270.45/2280.00 m plus cuttings at 2300 m), and 1-UA-1-AM (cuttings at 2802/2811 m and core 20, 2860/2866 m). Furthermore, wells 1-MS-4-AM (cores16 and 17 sampled respectively at 1029.94 and1032.5 m), 1-MS-5-AM (upper to middle partsof core 17 sampled above 1145 m), and 1-RX-4-AM (core 16 sampled at 2021.44 m) provide goodsupplementary reference sections for the base ofthe Tri Zone, in the lowest part of the MonteAlegre Formation.Lithostratigraphic distribution: Monte Alegre andlower Itaituba Formations.Age range: Early Westphalian (Late Carbonifer-ous) in at least the Amazon Basin, according tofaunally calibrated correlation with Euramericanreference sections (see discussions in Loboziak etal., 1997a; Melo et al., 1998, 1999; Playford and

Dino, 2000b). However, the zone base may beolder (Late Namurian?) in the Solimo‹es Basin(Melo et al., 1999).Equivalent interval in Petrobras operational paly-nozonation of Northern Brazilian basins (Daemonand Contreiras, 1971; Daemon, 1974, 1976): Bio-stratigraphic interval XIII (part).Equivalent interval in the Western European mio-spore zonation (Clayton et al., 1977): No directcorrelation is possible because of marked di¡er-ences between European and Gondwanan LateCarboniferous palyno£oras. However, potentiallycoeval units of the biostratigraphic scheme ofClayton et al. (1977) make up a part or the wholeof the SS^SL zonal succession, depending onwhether a Westphalian A^B or A^C equivalenceis accepted for the Amazon Basin occurrences. Onthe other hand, partial correlation with Late Na-murian palynozones (KV^FR?) is conceivable forthe lowest part of the Tri Zone in the Solimo‹esBasin, where taeniate bisaccates are seemingly ab-sent (Melo et al., 1999).Supplementary remarks: As veri¢ed in the Tour-naisian and Vise¤an biozones, recycled latest De-vonian miospores may occur in the Tri Zone, asexempli¢ed in well 2-PC-1-AM (core 21, 1138.76^1139.76 m). Reworked Tournaisian and Vise¤anassemblages are also occasionally found in thebasal part of the Monte Alegre Formation (re-spectively in wells 1-CM-2-PA and 1-RX-3-AM,for example). The Tri Zone rests unconformablyupon rocks of varied ages (Precambrian to Vi-se¤an). Outside the Amazon Basin, palyno£orasattributable to the biozone are found in the Sol-imo‹es Basin, namely in the Jurua¤ Formation andlower part of the overlying Carauari Formation(Loboziak et al., 1994a,b). On a larger scale thebase of the Tri Zone seems to be diachronousfrom one region to the other, i.e. possibly some-what older in the Solimo‹es Basin than in theAmazon Basin (respectively Late Namurian? andEarly Westphalian, according to Melo et al.,1999). Playford and Dino (2000b, pp. 124^126)do not recognize Tri-equivalent sections in theParna|¤ba and Parana¤ Basins of Brazil based ontheir review of previous palynological recordsfrom those regions.

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202194

5. Conclusions

The miospore results and new zonation pre-sented in this paper considerably improve the res-olution of the Devonian-Early Carboniferous bio-stratigraphy in the Amazon Basin. The combineduse of Western Gondwanan and semi-cosmopol-itan miospore index species allows for more re-¢ned and workable subdivisions of the basin’sstratigraphic column (Fig. 14A^C). These can becorrelated simultaneously with the standard, fau-nally-calibrated Euramerican zonal achemes (Fig.17) and regional palynozonations in South Amer-ica, North Africa and the Middle East. On a moreregional scale, the new miospore data from theAmazon Basin contribute to a better understand-ing of the stratigraphic relationships, both verti-cally and laterally, amongst the various rock units(Fig. 15) and their correlation with the equivalentintervals and Petrobras biozones in other Brazil-ian Paleozoic basins (Fig. 16). In addition, themiospore zones can be used to calibrate theranges of other associated palynomorph groups,such as the Devonian chitinozoan successions ofBrazil, in terms of the international biochrono-stratigraphic scale (Fig. 17).

Acknowledgements

The authors are indebted to the geologists Rene¤Rodrigues and Roge¤rio Loureiro Antunes (Petro-bras/Cenpes/Pdexp/Bpa, Rio de Janeiro, Brazil)for reviewing this manuscript. Dr. Bernard Owens(Langdale, Nottingham, UK) and Dr. John Ut-ting (Geological Survey of Canada, Calgary, Can-ada) are also gratefully acknowledged for theirconstructive criticisms, careful peer review andEnglish revision of the manuscript, which led toa much improved work. J.H.G. Melo thanks Pe-trobras^Petro¤ leo Brasileiro S.A. for the permis-sion to publish this paper.

Species listed

Acinosporites apiculatus (Streel) Streel, 1967Acinosporites lindlarensis Riegel, 1968

Acinosporites macrospinosus Richardson, 1965Aratrisporites saharaensis Loboziak, Clayton andOwens, 1986

Archaeoperisaccus guangxiensis Gao, 1989Archaeozonotriletes chulus (Cramer) Richardsonand Lister, 1969

Archaeozonotriletes variabilis Naumova emend.Allen, 1965

Auroraspora macra Sullivan, 1968Auroraspora pseudocrista Ahmed, 1980Auroraspora solisorta Ho¡meister, Staplin andMalloy, 1955

Biornatispora salopiensis (Richardson and Lister)Steemans, 1981

Brochotriletes foveolatus Naumova, 1953Camarozonotriletes? concavus Loboziak andStreel, 1989

Cannanoropollis janakii Potonie¤ and Sah, 1958Chelinospora baculoreticulata Steemans, 1989Chelinospora cassicula Richardson and Lister, 1969Chelinospora concinna Allen, 1965Chelinospora favosa (McGregor and Cam¢eld)Steemans, 1989

Chelinospora ligurata Allen, 1965Chelinospora paravermiculata Loboziak, Streeland Burjack, 1988

Chelinospora timanica (Naumova) Loboziak andStreel, 1989

Cirratriradites diaphanus Steemans, 1989Cirratriradites rarus (Ibrahim) Schopf, Wilsonand Bentall, 1944

Colatisporites decorus (Bharadwaj and Venkata-chala) Williams in Neves et al., 1973

Colatisporites denticulatus Neville in Neves et al.,1973

Convolutispora major (Kedo) Turnau, 1978Convolutispora stigmoidea Bharadwaj and Ven-katachala, 1961

Convolutispora vermiformis Hughes and Playford,1961

Corbulispora cancellata (Waltz) Bharadwaj andVenkatachala, 1961

Cordylosporites magnidictyus (Playford and Hel-by) Loboziak and Melo, 2000.

Cordylosporites marciae Playford and Satterth-wait, 1985

Cordylosporites spathulatus (Winslow) Playfordand Satterthwait, 1985

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202 195

Craspedispora ghadamisensis Loboziak and Streel,1989

Craspedispora paranaensis Loboziak, Streel andBurjack, 1988

Crassispora catenata Higgs, 1975Crassispora trychera Neves and Ioannides, 1974Cristatisporites echinatus Playford, 1964Cymbosporites acanthaceus (Kedo) Obukhov-skaya in Obukhovskaya et al., 2000

Cymbosporites acutus (Kedo) Byvsheva, 1985Cymbosporites catillus Allen, 1965Cymbosporites cyathus Allen, 1965Cymbosporites minutus (Kedo) Avkhimovitchand Streel, 1988

Cyrtospora cristifera (Luber) Van der Zwan, 1979Densosporites intermedius Butterworth and Wil-liams, 1958

Densosporites pseudoanulatus Butterworth andWillams, 1958

Densosporites spitsbergensis Playford, 1963Diaphanospora rugosa (Naumova) Byvscheva,1985

Diatomozonotriletes fragilis Clayton in Neves etal., 1973

Diatomozonotriletes franklinii McGregor andCam¢eld, 1982

Dibolisporites eifeliensis (Lanninger) McGregor,1973

Dictyotriletes emsiensis (Allen) McGregor, 1973Dictyotriletes granulatus Steemans, 1989Dictyotriletes subgranifer McGregor, 1973Diducites mucronatus (Kedo) Van Veen, 1981Emphanisporites annulatus McGregor, 1961Emphanisporites rotatus McGregor, 1961Foveosporites appositus Playford, 1971Geminospora lemurata Balme emend. Playford,1983

Geminospora piliformis Loboziak, Streel andBurjack, 1988

Geminospora punctata Owens, 1971Grandispora cornuta Higgs, 1975Grandispora douglastownense McGregor, 1973Grandispora echinata Hacquebard, 1957Grandispora facilis (Kedo) Avkhimovitch, 1988Grandispora gracilis (Kedo) Streel in Becker etal., 1974

Grandispora incognita (Kedo) McGregor andCam¢eld, 1976

Grandispora libyensis Moreau-Benoit,1980Grandispora macrotuberculata (Arkhangelskaya)McGregor, 1973

Grandispora maculosa Playford and Helby, 1968Grandispora mammillata Owens, 1971Grandispora megaformis (Richardson) McGregor,1973

Grandispora permulta (Daemon) Loboziak, Streeland Melo, 1999

Grandispora protea (Naumova) Moreau-Benoit,1980

Grandispora spiculifera Playford, 1976Grandispora tabulata Loboziak, Streel and Bur-jack, 1988

Granulatisporites granulatus Ibrahim, 1933Iberoespora glabella Cramer and D|¤ez, 1975Indotriradites daemonii Loboziak, Melo, Playfordand Streel, 1999

Indotriradites dolianitii (Daemon) Loboziak,Melo, Playford and Streel, 1999

Indotriradites explanatus (Luber) Playford, 1991Indotriradites mitratus (Higgs) Higgs, 1996Knoxisporites hederatus (Ishchenko) Playford,1963

Knoxisporites literatus (Waltz) Playford, 1963Leiotriletes struniensis Moreau-Benoit, 1979Limitisporites elongatus Lele and Karim, 1971Lophozonotriletes media Taugourdeau-Lantz,1967

Lycospora pusilla (Ibrahim) Somers, 1972Neoraistrickia loganii (Winslow) Coleman andClayton, 1988

Perotrilites tessellatus (Staplin) Neville in Neveset al., 1973

Plicatipollenites malabarensis (Potonie¤ and Sah)Foster, 1975

Potonieisporites elegans (Wilson and Kosanke)Wilson and Venkatachala, 1964

Potonieisporites magnus Lele and Karim, 1971Prolycospora rugulosa (Butterworth and Spinner)Turnau, 1978

Protohaploxypinus amplus (Balme and Hennelly)Hart, 1964

Protohaploxypinus latissimus (Luber and Waltz)Samoilovitch, 1953

Radiizonates arcuatus Loboziak, Playford andMelo, 2000

Raistrickia baculosa Hacquebard, 1957

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202196

Raistrickia clavata Hacquebard emend. Playford,1964

Raistrickia strumosa Playford, 1976Retispora lepidophyta (Kedo) Playford, 1976Retusotriletes incohatus Sullivan, 1964Rhabdosporites langii (Eisenack) Richardson,1960

Rhabdosporites parvulus Richardson, 1965Rugospora bricei Loboziak and Streel, 1989Rugospora £exuosa (Jushko) Streel, 1974Rugospora minuta Neves and Ioannides, 1974Rugospora polyptycha Neves and Ioannides, 1974Rugospora radiata (Jushko) Byvsheva, 1985Samarisporites eximius (Allen) Loboziak andStreel, 1989

Samarisporites praetervisus (Naumova) Allen,1965

Samarisporites triangulatus Allen, 1965Samarisporites sp. E in Streel and Loboziak,1987

Schop¢tes claviger (Sullivan) Higgs, Clayton andKeegan, 1988

Spelaeotriletes arenaceus Neves and Owens, 1966Spelaeotriletes balteatus (Playford) Higgs, 1996Spelaeotriletes benghaziensis Loboziak and Clay-ton, 1988

Spelaeotriletes granulatus (Kedo) Moreau-Benoit,1980

Spelaeotriletes obtusus Higgs, 1975Spelaeotriletes owensii Loboziak and Alpern,1978

Spelaeotriletes pretiosus (Playford) Neves andBelt, 1970

Spelaeotriletes triangulus Neves and Owens, 1966Synorisporites tripapillatus Richardson and Lis-ter, 1969

Teichertospora torquata (Higgs) McGregor andPlayford, 1990

Tumulispora rarituberculata (Luber) Potonie¤,1966

Umbonatisporites rarisetosus (Kedo) Higgs, 1996Vallatisporites agadesensis Loboziak and Alpern,1978

Vallatisporites anthoideus Braman and Hills,1992

Vallatisporites ban¡ensis Staplin and Jansonius,1964

Vallatisporites ciliaris (Luber) Sullivan, 1964

Vallatisporites hystricosus (Winslow) Byvsheva,1985

Vallatisporites splendens Staplin and Jansonius,1964

Vallatisporites vallatus Hacquebard, 1957Vallatisporites verrucosus Hacquebard, 1957Verruciretusispora magni¢ca (McGregor) Owens,1971

Verrucosisporites bulliferus Richardson and Mc-Gregor, 1986

Verrucosisporites congestus Playford, 1964Verrucosisporites grandis McGregor, 1960Verrucosisporites nitidus Playford, 1964Verrucosisporites oppressus (Higgs) Higgs, Clay-ton and Keegan, 1988

Verrucosisporites polygonalis Lanninger, 1968Verrucosisporites premnus Richardson, 1965Verrucosisporites scurrus (Naumova) McGregorand Cam¢eld, 1982

Waltzispora lanzonii Daemon, 1974Waltzispora planiangulata Sullivan, 1964Waltzispora polita (Ho¡meister, Staplin andMalloy) Smith and Butterworth, 1967

Zonotriletes 2 in Jardine¤ and Yapaudjian, 1968

References

Altiner, D., Savini, R.R., 1995. Pennsylvanian foraminiferaand biostratigraphy of the Amazonas and Solimo‹es basins(north Brazil). Rev. Paleobiol. 14, 417^453.

Andrade, C.A.C., Cunha, F.M.B., 1971. Revisa‹o geolo¤gica daBacia do Amazonas. In: An. 25‡ Congr. Brasil. Geol., 3,Sa‹o Paulo, pp. 93^112.

Andrade, S.M., Daemon, R.F., 1974. Litoestratigra¢a e bio-estratigra¢a do £anco sudoeste da Bacia do Parna|¤ba (De-voniano e Carbon|¤fero). In: An. 28‡ Congr. Brasil. Geol., 2,Porto Alegre, pp. 129^137.

Backheuser, Y., 1988. Ana¤lise estratigra¤¢ca e ambiental daFormac�a‹o Erere“, Bacia do Amazonas, na sec�a‹o compreen-dida entre o Arco de Purus e a margem esquerda do RioTapajo¤s. M.Sc. Thesis, Ouro Preto, Univ. Fed. Ouro Preto.

Baptista, M.B., Braun, O.P.G., Campos, D.A. (Eds.), 1984.Le¤xico Estratigra¤¢co do Brasil. DNPM/CPRM, Bras|¤lia,560 pp.

Boumendjel, K., Loboziak, S., Paris, F., Steemans, P., Streel,M., 1988. Biostratigraphie des miospores et des Chitinozo-aires du Silurien supe¤rieur et du De¤vonien dans le bassind’Illizi (S.E. du Sahara alge¤rien). Geobios 21, 329^357.

Brito, I.M., 1967. Silurian and Devonian Acritarcha fromMaranha‹o Basin, Brazil. Micropaleontology 13, 473^482.

Brito, I.M., 1971. Contribuic�a‹o ao conhecimento dos micro-

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202 197

fo¤sseis silurianos e devonianos da Bacia do Maranha‹o. V ^Acritarcha Herkomorphitae e Prismatomorphitae. An.Acad. Brasil. Ci. 43, 201^208.

Burjack, M.I.A., Loboziak, S., Streel, M., 1987. Quelques don-ne¤es nouvelles sur les miospores de¤voniennes du bassin duParana¤ (Bre¤sil). Bull. Sci. Ge¤ol. 40, 381^391.

Caputo, M.V., 1984. Stratigraphy, tectonics, palaeoclimatolo-gy, and palaeogeography of northern basins of Brazil. Ph.D.Thesis, Santa Barbara, University of California.

Caputo, M.V., Rodrigues, R., Vasconcelos, D.N.N., 1972. No-menclatura estratigra¤¢ca da Bacia do Amazonas; histo¤rico eatualizac�a‹o. In: An. 26‡ Congr. Brasil. Geol., 3, Bele¤m, pp.35^46.

Carozzi, A.V., 1979. Petroleum geology in the Paleozoic clas-tics of the Middle Amazon Basin, Brasil. J. Petrol. Geol. 2,55^74.

Carozzi, A.V., Alves, R.J., Castro, J.C., 1972. Controle tecto“-nico sinsedimentar dos carbonatos permo^carbon|¤feros dasformac�o‹es Itaituba e Nova Olinda da Bacia do Amazonas,Brasil. In: An. 26‡ Congr. Brasil. Geol., 3, Bele¤m, pp. 47^64.

Carozzi, A.V., Pamplona, H.R.P., Castro, J.C., Contreiras,C.J.A., 1973. Ambientes deposicionais e evoluc�a‹o tectono^sedimentar da sec�a‹o cla¤stica paleozo¤ ica da Bacia do Me¤dioAmazonas. In: An. 27‡ Congr. Brasil. Geol., 3, Aracaju, pp.279^314.

Carozzi, A.V., Falkenhein, F.U.H., Carneiro, R.G., Esteves,F.R., Contreiras, C.J.A., 1975. Ana¤lise ambiental e evoluc�a‹otecto“nica sinsedimentar da sec�a‹o siluro-eocarbon|¤fera da Ba-cia do Maranha‹o. Cie“nc.^Te¤c.^Petro¤l., Sec�. Expl. Petro¤l. 7,Petrobras/Cenpes, Rio de Janeiro, 48 pp.

Clausen, C.-D., Weddige, K., Ziegler, W., 1993. Devonian ofthe Rhenish Massif. SDS Newsletter 10, 18.

Clayton, G., 1985. Dinantian miospores and inter-continentalcorrelation. C.R. 10e Congr. Int. Strat. Ge¤ol. Carbonife're,Madrid 1983, 4, pp. 9^23.

Clayton, G., Coquel, R., Doubinger, J., Gueinn, K.J., Lobo-ziak, S., Owens, B., Streel, M., 1977. Carboniferous mio-spores of Western Europe: illustration and zonation.Meded. Rijks Geol. Dienst 29, 1^71.

Clayton, G., Higgs, K., Keegan, J.B., Sevastopulo, G.D., 1978.Correlation of the palynological zonation of the Dinantianof the British Isles. Palinolog|¤a 1, 137^147.

Conil, R., Groessens, E., Pirlet, H., 1976. Nouvelle chartestratigraphique du Dinantien type de la Belgique. Ann.Soc. Ge¤ol. Nord 96, 363^371.

Costa, N.M.M., 1971. Quitinozoa¤rios brasileiros e sua impor-ta“ncia estratigra¤¢ca. An. Acad. Brasil. Ci. 43, 209^272.

Cruz, N.M.C., 1982. Palinopla“ncton de sedimentos paleozo¤ icosdo Estado do Amazonas. An. Acad. Brasil. Ci. 54, 355^363.

Cunha, P.R.C., 2000. Ana¤lise estratigra¤¢ca dos sedimentos eo/mesodevonianos da porc�a‹o ocidental da Bacia do Amazonassob a o¤tica da estratigra¢a de sequ«e“ncias no interior crato“-nico. M.Sc. Thesis, Porto Alegre, Univ. Fed. Rio Grandedo Sul.

Cunha, P.R.C., Gonzaga, F.G., Coutinho, L.F.C., Feijo¤ , F.J.,1994. Bacia do Amazonas. Bol. Geoci. Petrobras 8, 47^55.

Daemon, R.F., 1972. Palinomorfos da Bacia do Amazonas,parte II: Sistema¤tica, subs|¤dios paleoecolo¤gicos e zoneamen-to. Petrobras Rep. 418, Petrobras/Desul, Ponta Grossa.

Daemon, R.F., 1974. Palinomorfos-guias do Devoniano Supe-rior e Carbon|¤fero Inferior das bacias do Amazonas e Par-na|¤ba. An. Acad. Brasil. Ci. 46, 549^587.

Daemon, R.F., 1976. Correlac�a‹o bioestratigra¤¢ca entre os se-dimentos do Siluriano, Devoniano e Carbon|¤fero Inferiordas bacias do Amazonas, Parna|¤ba e Parana¤. In: An. 29‡Congr. Brasil. Geol., 2, Ouro Preto, pp. 189^194.

Daemon, R.F., Contreiras, C.J.A., 1971. Zoneamento palino-lo¤gico da Bacia do Amazonas. In: An. 25‡ Congr. Brasil.Geol., 3, Sa‹o Paulo, pp. 79^88.

Daemon, R.F., Quadros, L.P., Silva, L.C., 1967. Devonianpalynology and biostratigraphy of the Parana¤ Basin. In:Bigarella, J.J. (Ed.), Problems in Brazilian Devonian Geol-ogy. Bol. Parana. Geoc. 21^22, pp. 99^132.

Dino, R., 1999. Palynostratigraphy of the Silurian and Devo-nian sequence of the Parana¤ Basin, Brazil. In: Rodrigues,M.A.C., Pereira, E. (Eds.), Ordovician^Devonian Palyno-stratigraphy in Western Gondwana: update, problems andperspectives. UERJ, Rio de Janeiro, pp. 27^61.

Dino, R., Rodrigues, M.A.C., 1995. Palinomorfos eodevonia-nos da Formac�a‹o Furnas ^ Bacia do Parana¤. An. Acad.Brasil. Ci. 67, 107^116.

Dino, R., Bergamaschi, S., Pereira, E., Melo, J.H.G., Loboziak,S., Steemans, P., 1995. Biochronostratigraphic investigationsof the Pragian and Emsian stages on the southeastern borderof the Parana¤ Basin. In: 2‡ Simp. Cronoestrat. Bac. Parana¤.,Bol. Res. Expand., Porto Alegre, pp. 19^25.

Dreesen, R., Poty, E., Streel, M., Thorez, J., 1993. Late Fa-mennian to Namurian in Eastern Ardenne, Belgium. Guide-book IUGS Comm. on Strat. SCCS, Lie'ge, 60 pp.

Eiras, J.F., Becker, C.R., Souza, E.M., Gonzaga, F.G., Silva,J.G.F., Daniel, L.M.F., Matsuda, N.S., Feijo¤ , F.J., 1994.Bacia do Solimo‹es. Bol. Geoci. Petrobras 8, 17^45.

Grahn, Y., 1988a. Chitinozoan biostratigraphy of the pre-Car-boniferous sequence of well 1-AM-1-AM, Amazonas Basin;age and correlation of the Pitinga Shale. Petrobras Rep. 915,Petrobras/Cenpes, Sebipe, Rio de Janeiro.

Grahn, Y., 1988b. Chitinozoan biostratigraphy of the pre-Car-boniferous Sequence of the Amazonas Basin, with com-ments on the Upper Tajapo¤s Basin. Petrobras Rep. 934,Petrobras/Cenpes, Sebipe, Rio de Janeiro.

Grahn, Y., 1990. The Late Silurian and Early Devonian ofBrazil: new evidence from the chitinozoan biostratigraphy.Petrobras Rep. 1115, Petrobras/Cenpes, Sebipe, Rio de Ja-neiro.

Grahn, Y., 1992. Revision of Silurian and Devonian strata ofBrazil. Palynology 16, 35^61.

Grahn, Y., 1997. Devonian chitinozoan biostratigraphy in theoutcrop belt of the east part of the Parana¤ Basin, and inolder formations from the Parana¤ Basin, Brazil. UERJ/PADCT/FINEP, UERJ, Fac. Geol., Dept. Estrat. Paleont.,Rio de Janeiro.

Grahn, Y., 1998. Devonian chitinozoan biostratigraphy in thenorth and northwest part of the Parana¤ Basin, Brazil.

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202198

UERJ/PADCT/FINEP, UERJ, Fac. Geol., Dept. Estrat.Paleont., Rio de Janeiro.

Grahn, Y., 1999. Recent progress in Silurian and Devonianchitinozoan biostratigraphy of the Parana¤ Basin in Braziland Paraguay. In: Rodrigues, M.A.C., Pereira, E. (Eds.),Ordovician^Devonian Palynostratigraphy in Western Gond-wana: update, problems and perspectives. UERJ, Rio deJaneiro, pp. 147^163.

Grahn, Y., Melo, J.H.G., 2002. Chitinozoan biostratigraphy ofthe Late Devonian formations in well Caima PH-2, Tapajo¤sRiver area, Amazonas Basin, northern Brazil. Rev. Palaeo-bot. Palynol. 118, 115^139.

Grahn, Y., Paris, F., 1992. Age and correlation of the Trom-betas Group, Amazonas Basin, Brazil. Rev. Micropale¤ont.35, 197^209.

Grahn, Y., Melo, J.H.G., Loboziak, S., 1997. Preliminary bio-stratigraphic integration of chitinozoan and miospore suc-cessions in the type Barreirinha Formation, Curua¤ Group(Upper Devonian, Amazonas Basin). Rev. Univ. Guarulhos(Geoc.) II, p. 218.

Grahn, Y., Pereira, E., Bergamaschi, S., 2000. Silurian andLower Devonian chitinozoan biostratigraphy of the Parana¤Basin in Brazil and Paraguay. Palynology 24, 143^172.

Grahn, Y., Loboziak, S., Melo, J.H.G., 2001. Integratedmiospore^chitinozoan biozonation of the Parna|¤ba Basinand its correlation with Petrobras (Mu«ller 1962) Silurian^Lower Carboniferous palynozones. In: Melo, J.H.G.,Terra, G.J.S. (Eds.), Correlac�a‹o de Sequ«e“ncias Paleozo¤ icasSul-Americanas. Ci.-Te¤c.-Petro¤l., Sec�. Expl. Petro¤l. 20,pp. 81^89.

Higgins, A.C., 1985. The Carboniferous System, Part 2. Con-odonts of the Silesian Subsystem from Great Britain andIreland. In: Higgins, A.C., Austin, R.L. (Eds.), A Strati-graphical Index of Conodonts. British Micropal. Soc. Series,Ellis Horwood, Chichester, pp. 210^227, 252^253.

Higgs, K.T., 1984. Stratigraphic palynology of the Carbonif-erous rocks in Northwest Ireland. Geol. Surv. Irel. Bull. 3,171^201.

Higgs, K.T., Streel, M., 1984. Spore stratigraphy at the Devo-nian^Carboniferous boundary in the northern ‘RheinischesSchiefergebirge’, Germany. Cour. Forsch.^Inst. Senckenberg67, 157^179.

Higgs, K.T., Clayton, G., Keegan, J.B., 1988a. Stratigraphyand systematic palynology of the Tournaisian rocks of Ire-land. Geol. Surv. Irel. Spec. Pap. 7, 1^93.

Higgs, K.T., McPhilemy, B., Keegan, J.B., Clayton, G., 1988b.New data on palynological boundaries within the Irish Di-nantian. Rev. Palaeobot. Palynol. 56, 61^68.

Higgs, K.T., Dreesen, R., Dusar, M., Streel, M., 1992. Paly-nostratigraphy of the Tournaisian (Hastarian) rocks in theNamur Synclinorium, West Flanders, Belgium. Rev. Palaeo-bot. Palynol. 72, 149^158.

Jardine¤, S., Yapaudjian, L., 1968. Lithostratigraphie et paly-nologie du De¤vonien^Gothlandien gre¤seux du bassin de Po-lignac (Sahara). Rev. Inst. Fr. Pe¤trole et Ann. Combust.Liq. 23, 439^467.

Laloux, M., Groessens, E., Overlau, P., Pirlet, H., 1988. Warn-

ant. In: Stratotypes carbonife'res et de¤voniens en Belgique.Bull. Soc. belge Ge¤ol. 96, pp. 221^226.

Lange, F.W., 1952. Chitinozoa¤rios do Folhelho Barreirinha,Devoniano do Para¤. Dusenia 3, 373^386.

Lange, F.W., 1967a. Subdivisa‹o bioestratigra¤¢ca e revisa‹o dacoluna siluro^devoniana da Bacia do Baixo Amazonas.In: Atas 1, Simp. Biota Amazo“nica, Bele¤m 1966, pp. 215^236.

Lange, F.W., 1967b. Biostratigraphic subdivision of the Devo-nian in the Parana¤ Basin. In: Bigarella, J.J. (Ed.), Problemsin Brazilian Devonian Geology. Bol. Parana. Geoc. 21^22,pp. 63^98.

Lanzoni, E., Magloire, L., 1969. Associations palynologiqueset leurs applications stratigraphiques dans le De¤voniensupe¤rieur et Carbonife're infe¤rieur du Grand Erg Occidental(Sahara alge¤rien). Rev. Inst. Fr. Pe¤trole et Ann. Combust.Liq. 24, 441^469.

Le He¤risse¤, A., 2001. Evolution of Devonian phytoplanktonicassemblages in the upper Erere“ Formation and Curua¤Group (Barreirinha and lower Curiri Formations), Tapajo¤sRiver area, Amazon Basin, northern Brazil. In: Melo,J.H.G., Terra, G.J.S. (Eds.), Correlac�a‹o de Sequ«e“ncias Pa-leozo¤ icas Sul-Americanas. Ci.-Te¤c.-Petro¤ l., Sec�. Expl. Petro¤l.20, pp. 117^124.

Loboziak, S., 1999. Late Early to Late Devonian palynologicevents in Western Gondwana: an application to BrazilianDevonian basins. In: Rodrigues, M.A.C., Pereira, E. (Eds.),Ordovician^Devonian Palynostratigraphy in Western Gond-wana: update, problems and perspectives. UERJ, Rio deJaneiro, pp. 63^75.

Loboziak, S., Melo, J.H.G., 2000. Miospore events from lateEarly to Late Devonian strata of Western Gondwana. Geo-bios 33, 399^407.

Loboziak, S., Melo, J.H.G., 2002. Devonian miospore succes-sions of Western Gondwana: Update and correlation withSouthern Euramerican miospore zones. Rev. Palaeobot.Palynol. 121, 133^148.

Loboziak, S., Streel, M., 1981. Miospores in middle^upperFrasnian to Famennian sediments partly dated by cono-donts (Boulonnais), France. Rev. Palaeobot. Palynol. 34,49^66.

Loboziak, S., Streel, M., 1989. Middle^Upper Devonian mio-spores from the Ghadamis Basin (Tunisia^Libya): system-atics and stratigraphy. Rev. Palaeobot. Palynol. 58, 173^196.

Loboziak, S., Streel, M., 1992. Middle Devonian to LowerCarboniferous miospore stratigraphy in Amazonas and Par-na|¤ba Basins (Brazil). Petrobras Rep., Univ. Lie'ge, Lie'ge, 40pp.

Loboziak, S., Streel, M., 1995. West Gondwanian aspects ofthe Middle and Upper Devonian miospore zonation inNorth Africa and Brazil. Rev. Palaeobot. Palynol. 86,147^155.

Loboziak, S., Streel, M., Vanguestaine, M., 1983. Miospores etacritarches de la Formation d’Hydrequent (Frasnien supe¤r-ieur a' Famennien infe¤rieur, Boulonnais, France). An. Soc.Ge¤ol. Belg. 106, 173^183.

Loboziak, S., Streel, M., Burjack, M.I.A., 1988. Miospores du

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202 199

De¤vonien moyen et supe¤rieur du bassin du Parana¤, Bre¤sil :syste¤matique et stratigraphie. Bull. Sci. Ge¤ol. 41, 351^377.

Loboziak, S., Streel, M., Burjack, M.I.A., 1989. De¤ductionspale¤oclimatiques d’une comparaison entre les assemblagesde miospores du De¤vonien moyen et supe¤rieur de Libye etdu Bre¤sil. Geobios 22, 247^251.

Loboziak, S., Vachard, D., Fadli, D., Streel, M., 1990. Data-tion par miospores et Foraminife'res du Tournaisien et duVise¤en de l’Oued Zemrine (Massif des Mdakra, Maroc).J. Afr. Earth Sci. 11, 113^118.

Loboziak, S., Streel, M., Caputo, M.V., Melo, J.H.G., 1991a.Evidence of West European-de¢ned miospore zones in theuppermost Devonian and Lower Carboniferous of the Ama-zonas Basin (Brazil). Geobios 24, 5^11.

Loboziak, S., Streel, M., Weddige, K., 1990. Miospores, thelemurata and triangulatus levels and their faunal indices nearthe Eifelian/Givetian boundary in the Eifel (F.R.G.). Ann.Soc. Ge¤ol. Belg. 113, 299^313.

Loboziak, S., Streel, M., Caputo, M.V., Melo, J.H.G., 1992.Middle Devonian to Lower Carboniferous miospore stratig-raphy in the central Parna|¤ba Basin (Brazil). Ann. Soc.Ge¤ol. Belg. 115, 215^226.

Loboziak, S., Streel, M., Caputo, M.V., Melo, J.H.G., 1993.Middle Devonian to Lower Carboniferous miospores fromselected boreholes in Amazonas and Parna|¤ba Basins (Bra-zil): additional data, synthesis, and correlation. Doc. Lab.Ge¤ol. Lyon 125, 277^289.

Loboziak, S., Melo, J.H.G., Quadros, L.P., Daemon, R.F.,Barrilari, I.M.R., 1994a. Biocronoestratigra¢a dos palino-morfos do Devoniano Me¤dio ^ Carbon|¤fero Inferior dasBacias do Solimo‹es e Parna|¤ba: estado da arte. In: 2‡ Sintex^ Semina¤rio de Interpretac�a‹o Explorato¤ria, Petrobras, Atas,Rio de Janeiro, pp. 51^56.

Loboziak, S., Melo, J.H.G., Quadros, L.P., Daemon, R.F.,Barrilari, I.M.R., Streel, M., 1994b. Devonian^Dinantianmiospore biostratigraphy of the Solimo‹es and Parna|¤ba Ba-sins (with considerations on the Devonian of the Parana¤Basin). Petrobras Rep., Petrobras/Cenpes, Rio de Janeiro,2 vols.

Loboziak, S., Melo, J.H.G., Steemans, P., Barrilari, I.M.R.,1995. Miospore evidence for pre-Emsian and latest Famen-nian sedimentation in the Devonian of the Parana¤ Basin,south Brazil (Abstract.). An. Acad. Brasil. Ci. 67, 391^392.

Loboziak, S., Melo, J.H.G., Rodrigues, R., Streel, M., Qua-dros, L.P., Barrilari, I.M.R., 1996. Age and correlation ofthe Barreirinha Formation (Curua¤ Group, Amazon Basin):new evidence from the miospore biostratigraphy. An. Acad.Brasil. Ci. 68, pp. 207^212.

Loboziak, S., Melo, J.H.G., Dino, R., Vachard, D., Streel, M.,1997a. Earliest taeniate bisaccates from the Amazon Basinare not older than Westphalian. Geobios 30, 467^474.

Loboziak, S., Melo, J.H.G., Matsuda, N.S., Quadros, L.P.,1997b. Miospore biostratigraphy of the type BarreirinhaFormation (Curua¤ Group, Upper Devonian) in the Tapajo¤sRiver area, Amazon Basin, North Brazil. Bull. Centre Rech.Elf Explor. Prod. 21, 187^205.

Loboziak, S., Melo, J.H.G., Quadros, L.P., Streel, M., 1997c.

Palynological evaluation of the Famennian Protosalvinia(Foerstia) Zone in the Amazon Basin, Northern Brazil: apreliminary study. Rev. Palaeobot. Palynol. 96, 31^45.

Loboziak, S., Melo, J.H.G., Streel, M., 1998a. Reassessmentof Vise¤an miospore biostratigraphy in the Amazon Basin,northern Brazil. Rev. Palaeobot. Palynol. 104, 143^155.

Loboziak, S., Steemans, P., Borghi, L., 1998b. New miosporeevidence of Pragian age for the lower Ponta Grossa Forma-tion (Devonian, Parana¤ Basin) in the Chapada dos Guima-ra‹es area, Mato Grosso State, Brazil (Abstract.). An. Acad.Brasil. Ci. 70, 382.

Loboziak, S., Melo, J.H.G., Streel, M., 1999a. Vise¤an mio-spore biostratigraphy in northern Brazilian basins: state-of-the-art and implications for other Western Gondwananregions (Abstract.). Carb. Newslett. 17, 17.

Loboziak, S., Streel, M., Melo, J.H.G., 1999b. Grandispora (al.Contagisporites) permulta Daemon 1974, nov. comb., a se-nior synonym of Grandispora riegelii Loboziak and Streel1989 ^ nomenclature and stratigraphic distribution. Rev.Palaeobot. Palynol. 106, 97^102.

Loboziak, S., Melo, J.H.G., Playford, G., Streel, M., 1999c.The Indotriradites dolianitii Morphon, a distinctive group ofmiospore species from the Lower Carboniferous of Gond-wana. Rev. Palaeobot. Palynol. 107, 17^22.

Loboziak, S., Caputo, M.V., Melo, J.H.G., 2000a. Middle De-vonian^Tournaisian miospore biostratigraphy in the south-western outcrop belt of the Parna|¤ba Basin, north-centralBrazil. Rev. Micropale¤ont. 43, 301^318.

Loboziak, S., Melo, J.H.G., Streel, M., 2000b. Latest Devoni-an and Early Carboniferous palynostratigraphy of northernBrazil and North Africa: a proposed integration of WesternEuropean and Gondwanan miospore biozonations. Bull.Centre Rech. Elf Expl. Prod. 22, 1998, pp. 241^259.

Loboziak, S., Playford, G., Melo, J.H.G., 2000c. Radiizonatesarcuatus, a distinctive new miospore species from the LowerCarboniferous of Western Gondwana. Rev. Palaeobot. Paly-nol. 109, 271^277.

Marques-Toigo, M., Cazzulo-Klepzig, M., Picarelli, A.T.,Quadros, L.P., 1995. The occurrence of Disaccites Striatitipollen grains in the Amazonas Basin Namurian ^ paleocli-matic and paleogeographic implications. CIMP Newslett.49, 7.

Maziane, N., Higgs, K., Streel, M., 1999. Revision of the lateFamennian miospore zonation scheme in eastern Belgium.J. Micropal. 18, 17^25.

Melo, J.H.G., 1985. A Prov|¤ncia Malvinoca¤frica no Devo-niano do Brasil: estado atual dos conhecimentos., M.Sc.Thesis, Univ. Fed. Rio de Janeiro, Rio de Janeiro.

Melo, J.H.G., Loboziak, S., 1997. Vise¤an miospore biostratig-raphy in the Amazon Basin: state-of-the-art. Rev. Univ.Guarulhos, Geoc. 2, p. 210.

Melo, J.H.G., Loboziak, S., 2000. Vise¤an miospore biostratig-raphy and correlation of the Poti Formation (Parna|¤ba Ba-sin, northern Brazil). Rev. Palaeobot. Palynol. 112, 147^165.

Melo, J.H.G., Loboziak, S., 2001. New miospore zonation ofdevonian^Early Carboniferous strata in the Amazon Basin:a preliminary account. In: Melo, J.H.G., Terra, G.J.S.

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202200

(Eds.), Correlac�a‹o de Sequ«e“ncias Paleozo¤icas Sul-Ameri-canas. Ci.-Te¤c.^Petro¤l., Sec�., Expl. Petro¤l. 20, pp. 99^107.

Melo, J.H.G., Grahn, Y., Quadros, L.P., 1992. Bacia do Ama-zonas. In: Beurlen, G., Quadros, L.P. (Eds.), Bioestratigra-¢a das bacias paleozo¤ icas brasileiras; texto explicativo dascartas bioestratigra¤¢cas. Petrobras Rep., Petrobras/Cenpes,Rio de Janeiro, pp. 17^33.

Melo, J.H.G., Grahn, Y., Loboziak, S., Paris, F., 1996. Firstrecord of Fungochitina fenestrata (Taugourdeau and Je-khowsky 1960) (Chitinozoa) in the Devonian of Brazil andits biostratigraphic signi¢cance. In: An. Simp. Sul-Am.Siluro^Devon.: Estrat. e Paleont., Ponta Grossa, pp. 263^288.

Melo, J.H.G., Loboziak, S., Dino, R., Vachard, D., Streel, M.,1998. Inception of taeniate bisaccate pollen: further evidenceand age implications for the Monte Alegre Formation(Pennsylvanian, Amazon Basin). An. Acad. Brasil. Ci. 70,384^385.

Melo, J.H.G., Loboziak, S., Streel, M., 1999. Latest Devonianto early Late Carboniferous biostratigraphy of northernBrazil: an update. Bull. Centre Rech. Elf Expl. Prod. 22,1998, pp. 13^33.

Mu«ller, H., 1962. Report on palynological results of samplesexamined from wells in Maranha‹o. Petrobras Rep. 229, Pe-trobras/Setex/RPBa, Salvador.

Neves, C.A.O., 1989. O estado da arte: potenciais e a¤reaspriorita¤rias para explorac�a‹o na Bacia do Amazonas. In:Atas 1‡ Sintex^Semina¤rio de Interpretac�a‹o Explorato¤ria.Petrobras, Rio de Janeiro, pp. 13^23.

Neves, C.A.O., Campos, J.N.P., Arana, J., Teixeira, L.B., Ro-drigues, R., Trigu«is, J.A., 1989. Integrac�a‹o geolo¤gica e ex-plorato¤ria da Bacia do Amazonas. Petrobras Rep., Petro-bras/Denoc, Manaus, 113 pp.

Neves, R., Gueinn, K.J., Clayton, G., Ioannides, N., Neville,R.S.W., 1972. A scheme of miospore zones for the BritishDinantian. C.R. 7‡ Congr. Int. Strat. Ge¤ol. Carbonife're,Krefeld 1971, 1, pp. 347^353.

Neves, R., Gueinn, K.J., Clayton, G., Ioannides, N.S., Neville,R.S.W., Kruszewska, K., 1973. Palynological correlationswithin the Lower Carboniferous of Scotland and northernEngland. R. Soc. Edinb. Trans. 69, 23^76.

Niklas, K.J., Phillips, T.L., Carozzi, A.V., 1976. Morphologyand paleoecology of Protosalvinia from the Upper Devonian(Famennian) of the Middle Amazon Basin of Brazil. Palae-ontographica B 155, 1^30.

Obukhovskaya, T.G., Avkhimovitch, V.I., Streel, M., Lobo-ziak, S., 2000. Miospores from the Frasnian^FamennianBoundary deposits in Eastern Europe (the Pripyat Depres-sion, Belarus and the Timan Pechora Province, Russia) andcomparison with Western Europe (Northern France). Rev.Palaeobot. Palynol. 112, 229^246.

Oliveira, S.F., 1997. Palinologia da sequ«e“ncia devoniana daBacia do Parana¤ no Brasil, Paraguai e Uruguai: implicac�o‹eso‹es biocronoestratigra¤¢cas, paleoambientais e paleogeogra¤¢-cas. D.Sc. Thesis, Univ. de Sa‹o Paulo, Sa‹o Paulo.

Owens, B., Neves, R., Gueinn, K.J., Mishell, D.R.F., Sabry,H.S.M.Z., Williams, J.E., 1977. Palynological division of the

Namurian of northern England and Scotland. Proc. Yorks.Geol. Soc. 41, 381^398.

Paproth, E., Conil, R., Bless, M.J.M., Boonen, P., Bouckaert,J., Carpentier, N., Coen, M., Delcambre, B., Deprijck, C.,Deuzon, S., Dreesen, R., Groessens, E., Hance, L., Henne-bert, M., Hibu, D., Hahn, G.R., Hislaire, O., Kasig, W.,Laloux, M., Lauwers, A., Lees, A., Lys, M., Op de Beek,K., Overlau, P., Pirlet, H., Poty, E., Ramsbottom, W.,Streel, M., Swennen, R., Thorez, J., Vanguestaine, M.,Van Steenwinkel, M., Vieslet, J.L., 1983. Bio- and lithostra-tigraphic subdivisions of the Dinantian in Belgium, a review.Ann. Soc. Ge¤ol. Belg. 106, 185^239.

Paris, F., 1981. Les chitinozoaires dans le Pale¤ozo|«que du sud-ouest de l’Europe. Me¤m. Soc. Ge¤ol. Mine¤ral. Bretagne 26,412 pp.

Paris, F., Winchester-Seeto, T., Boumendjel, K., Grahn, Y.,2000. Toward a global biozonation of Devonian chitinizo-ans. Cour. Forsch.^Inst. Senckenberg 220, 39^55.

Playford, G., Dino, R., 2000a. Palynostratigraphy of upperPalaeozoic strata (Tapajo¤s Group), Amazonas Basin, Brazil :part one. Palaeontographica B 255, 1^46.

Playford, G., Dino, R., 2000b. Palynostratigraphy of upperPalaeozoic strata (Tapajo¤s Group), Amazonas Basin, Brazil,part two. Palaeontographica B 255, 87^145.

Quadros, L.P., 1982. Distribuic�a‹o bioestratigra¤¢ca dos Chiti-nozoa e Acritarchae na Bacia do Parna|¤ba. Cie“nc.^Te¤c.^Pe-tro¤ l., Sec�. Expl. Petro¤l. 12, Petrobras/Cenpes, Rio de Janeiro,76 pp.

Quadros, L.P., 1985a. Natureza do contato entre as formac�o‹esTrombetas e Maecuru. In: Campos, D.A., Ferreira, C.S.,Brito, I.M., Viana, C.F. (Eds.), Coleta“nea de trabalhos pa-leontolo¤gicos; trabalhos apresentados no VIII CongressoBrasileiro de Paleontologia ^ 1983. DNPM, Bras|¤lia, pp.435^441.

Quadros, L.P., 1985b. Distribuic�a‹o estratigra¤¢ca dos Chitino-zoa e Acritarchae na Bacia do Amazonas. D.Sc. Thesis,Univ. Fed. Rio de Janeiro, Rio de Janeiro.

Quadros, L.P., 1988. Zoneamento bioestratigra¤¢co do Paleo-zo¤ico inferior e me¤dio (sec�a‹o marinha) da Bacia do Soli-mo‹es. Bol. Geoc. Petrobras 2, 95^109.

Quadros, L.P., 1996. Pseudomaranhites, novo ge“nero de acri-tarco do Devoniano Superior da Bacia do Amazonas. In:An. 39‡ Congr. Brasil. Geol., Salvador, 2, pp. 281^284.

Quadros, L.P., 1999a. Silurian^Devonian acritarch assemblag-es from Parana¤ Basin: an update and correlation withnorthern Brazilian basins. In: Rodrigues, M.A.C., Pereira,E. (Eds.), Ordovician^Devonian Palynostratigraphy inWestern Gondwana: update, problems and perspectives.UERJ, Rio de Janeiro, pp. 105^145.

Quadros, L.P., 1999b. Novos acritarcos do Devoniano Supe-rior da Bacia do Amazonas. Acta Geol. Leopold. 23, 15^27.

Ramsbottom, W.H.C., 1969. The Namurian of Britain. Proc.6e Congr. Int. Strat. Ge¤ol. Carbonife're, She⁄eld 1967, 1,pp. 219^232.

Richardson, J.B., Ahmed, S., 1988. Miospore zonation andcorrelation of Upper Devonian sequences from westernNew York State and Pennsylvania. In: McMillan, N.J., Em-

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202 201

bry, A.F., Glass, D.J. (Eds.), Devonian of the World. Can.Soc. Petr. Geol. Mem. 14, pp. 541^558.

Richardson, J.B., McGregor, D.C., 1986. Silurian and Devo-nian spore zones of the Old Red Sandstone Continent andadjacent regions. Geol. Surv. Can. Bull. 364, 1^79.

Riley, N.J., 1993. Dinantian (Lower Carboniferous) biostratig-raphy and chronostratigraphy in the British Isles. J. Geol.Soc. 150, 427^446.

Rodrigues, R., 2001. Caracterizac�a‹o geoqu|¤mica do eventoano¤xico/diso¤xico do Frasniano nas Bacias do Amazonas eParna|¤ba. In: Melo, J.H.G., Terra, G.J.S. (Eds.), Correlac�a‹ode Sequ«e“ncias Paleozo¤icas Sul-Americanas. Ci.^Te¤c.^Petro¤ l.,Sec�., Expl. Petro¤ l. 20, pp. 109^115.

Rodrigues, R., Loboziak, S., Melo, J.H.G., Alves, D.B., 1995.Geochemical characterization and miospore biochronostra-tigraphy of the Frasnian anoxic event in the Parna|¤ba Basin,northeast Brazil. Bull. Centr. Rech. Expl.^Prod. Elf Aqui-taine 19, 319^327.

Rubinstein, C., Le He¤risse¤, A., Steemans, P., 2000. Lochko-vian (early Lower Devonian) acritarchs and miospores fromthe Solimo‹es Basin, northern Brazil. In: Geowissenschaft-liches Lateinamerika-Kolloquium, Stuttgart, October 2000,p. 36.

Silva, O.B., 1996. Ciclicidade sedimentar no Pensilvaniano daBacia do Amazonas e o controle dos ciclos de sedimentac�a‹ona distribuic�a‹o estratigra¤¢ca dos conodontes, fusulin|¤deos epalinomorfos. D.Sc. Thesis, Univ. Fed. Rio Grande do Sul,Porto Alegre.

Sommer, F.W., 1953. Os esporomorfos do Folhelho de Bar-reirinha. Bol. Div. Geol. Mineral. 140, 49 pp.

Sommer, F.W., 1956. Novas espe¤cies de Tasmanites do De-voniano do Para¤. An. Acad. Brasil. Ci. 28, 455^463.

Sommer, F.W., Van Boekel, N.M., 1963. Some new Tasmana-ceae from the Devonian of Para¤. An. Acad. Brasil. Ci. 36,423^431.

Sommer, F.W., Van Boekel, N.M., 1965. Microfo¤sseis devo-nianos do Rio Jatapu, Amazonas. Avulso Div. Geol. Min-eral. 40, 58.

Sommer, F.W., Van Boekel, N.M., 1966. Revisa‹o das tasmana¤-ceas paleozo¤ icas brasileiras. An. Acad. Brasil. Ci. 38, 53^64.

Sommer, F.W., Van Boekel, N.M., 1967. Brazilian PalaeozoicAlgomycetes and Tasmanaceae. Palaeontology 10, 640^646.

Steemans, P., 1989. Etude palynostratigraphique du De¤vonieninfe¤rieur dans l’Ouest de l’Europe. Me¤m. Expl. Cartes Ge¤ol.Min. Belgique 27, 453 pp.

Streel, M., 1986. Miospore contribution to the upper Famen-nian^Strunian event stratigraphy. Ann. Soc. Ge¤ol. Belg. 109,75^92.

Streel, M., Loboziak, S., 1987. Nouvelle datation par mio-spores du Give¤tien^Frasnien des se¤diments non marins dusondage de Booischot (Bassin de Campine, Belgique). Bull.Soc. Ge¤ol. Belg. 96, 99^106.

Streel, M., Loboziak, S., 1996. Middle to Upper Devonianmiospores. In: Jansonius, J.J., McGregor, D.C. (Eds.), Paly-nology: principles and applications. AASP Foundation, SaltLake City, 2, pp. 575^587.

Streel, M., Scheckler, S.E., 1990. Miospore lateral distributionin upper Famennian alluvial, lagoonal to tidal facies fromeastern United States and Belgium. Rev. Palaeobot. Palynol.64, 315^324.

Streel, M., Higgs, K., Loboziak, S., Riegel, W., Steemans, P.,1987. Spore stratigraphy and correlation with faunas and£oras in the type marine Devonian of the Ardenne^Rhenishregions. Rev. Palaeobot. Palynol. 50, 211^229.

Streel, M., Paris, F., Riegel, W., Vanguestaine, M., 1988. Ac-ritarch, chitinozoan and spore stratigraphy from the Middleand Late Devonian of Northeast Libya. In: El-Arnauti, A.,Owens, B., Thusu, B. (Eds.), Subsurface Palynostratigraphyof Northeast Libya. Garyounis Univ. Publ., Benghazi, pp.111^128.

Streel, M., Caputo, M.V., Loboziak, S., Melo, J.H.G., 2000a.Late Frasnian^Famennian climates based on palynomorphquantitative analyses and the question of the Late Devonianglaciations. Earth Sci. Rev. 52, 121^173.

Streel, M., Loboziak, S., Steemans, P., Bultynck, P., 2000b.Devonian miospore stratigraphy and correlation with theglobal stratotype sections and points. Cour. Forsch.^Inst.Senckenberg 220, 9^23.

Streel, M., Caputo, M.V., Loboziak, S., Melo, J.H.G., Thorez,J., 2001. Palynology and sedimentology of laminites andtillites from the latest Famennian of the Parna|¤ba Basin,Brazil. Geol. Belgica 3, pp. 87^96.

Trueman, A.E., Weir, J., 1946. A Monograph of British Car-boniferous Non-Marine Lamellibranchia, Part 1. Mono-graph of the Palaeontographical Society (London) 99, pp.1^32.

Van Boekel, N.M.C., 1963. Uma nova espe¤cie de Tasmanitesdo Devoniano do Para¤. An. Acad. Brasil. Ci. 35, 353^355.

Van Boekel, N.M.C., 1967a. Quitinozoa¤rios silurianos e de-vonianos da Bacia Amazo“nica e sua correlac�a‹o estratigra¤¢ca.In: Atas Simp. Biota Amazo“nica, 1966, Bele¤m, 1, pp.87^119.

Van Boekel, N.M.C., 1967b. Tasmana¤ceas paleozo¤icas da Ba-cia Amazo“nica e sua correlac�a‹o estratigra¤¢ca. In: AtasSimp. Biota Amazo“nica, 1966, Bele¤m, 1, pp. 121^139.

Van Boekel, N.M.C., 1967c. New Devonian chitinozoans fromthe Tapajo¤s River, Para¤. An. Acad. Brasil. Ci. 39, 273^278.

Van Boekel, N.M.C., 1968a. Microfo¤sseis devonianos do RioTapajo¤s, Para¤, I. ^ Tasmanaceae. Notas Prelim. Est. Div.Geol. Mineral. 145, 15 pp.

Van Boekel, N.M.C., 1968b. Microfo¤sseis devonianos do RioTapajo¤s, Para¤, II. Chitinozoa. Notas Prelim. Est. Div. Geol.Mineral. 146, 19 pp.

Varker, W.J., Sevastopulo, G.D. 1985. The Carboniferous Sys-tem, Part 1. Conodonts of the Dinantian Subsystem fromGreat Britain and Ireland. In: Higgins, A.C., Austin, R.L.(Eds.), A Stratigraphical Index of Conodonts. British Micro-pal. Soc. Series, Ellis Horwood, Chichester, pp. 167^209,250^251.

Yolkin, E.A., Kim, A.I., Weddige, K., Talent, J.A., House,M.R., 1997. De¢nition of the Pragian/Emsian Stage bound-ary. Episodes 20, 235^240.

J.H.G. Melo, S. Loboziak / Review of Palaeobotany and Palynology 124 (2003) 131^202202