CFD of Fluidized Bed Considerations v1.2.key - CPFD Software

77
Applying the Fundamentals Considerations for Simulating Fluidized Beds Ray Cocco, Casey LaMarche, S.B. Reddy Karri, Ben Freireich CPFD-Software User Group Meeting April 9th, 2018

Transcript of CFD of Fluidized Bed Considerations v1.2.key - CPFD Software

Applying the Fundamentals

Considerations for Simulating Fluidized Beds

Ray Cocco, Casey LaMarche, S.B. Reddy Karri, Ben Freireich

CPFD-Software User Group MeetingApril 9th, 2018

Applying the Fundamentals

Abo

ut P

SRI

Applying the Fundamentals

FCC Fluidized Bed Regenerator

Barracuda®Barracuda®

Applying the Fundamentals

FCC Fluidized Bed Regenerator

Barracuda®Barracuda®

Applying the Fundamentals

FCC Fluidized

Bed Regenerator

Barracuda®

Barracuda®

Applying the Fundamentals

FCC Fluidized

Bed Regenerator

Barracuda®

Barracuda®

Applying the Fundamentals

Status of CFD Modeling of Fluidized Beds

• Today’s CFD (CPFD) models are• Capturing macro-scaled hydrodynamics• Simulating large-scale, commercial equipment

• CFD models used for fluidized bed simulations are at the point that other factors need to be strongly considered• Accurate boundary conditions• Actual particle properties• Relevant drag model• Actual steady state

Steady State ???

Steady State ???

Applying the Fundamentals

Accurate Boundary Conditions

• In the world of fluidized bed, it is unlikely your boundary condition is uniform

• Boundary conditions either need to• Reflect the actual non uniform spacial and temporal of

boundary in the fluidized bed, or• Be position such that the boundary condition has a

minimal effect on the solution

Barracuda®

Applying the Fundamentals

Accurate Boundary Conditions

• In the world of fluidized bed, it is unlikely your boundary condition is uniform

• Boundary conditions either need to• Reflect the actual non uniform spacial and temporal of

boundary in the fluidized bed, or• Be position such that the boundary condition has a

minimal effect on the solution

Barracuda®

Applying the Fundamentals

Accurate Boundary Conditions

• In the world of fluidized bed, it is unlikely your boundary condition is uniform

• Boundary conditions either need to• Reflect the actual non uniform spacial and temporal of

boundary in the fluidized bed, or• Be position such that the boundary condition has a

minimal effect on the solution

Barracuda®

Applying the Fundamentals

Case Study: How Does Aeration Help Standpipe Flow

OutletOutlet

Angle

d Tra

nsiti

on

Pressure Taps

Aeration Taps

4’ (1.2 m) ID x 70’ (21 m) Standpipe

30’ (9.1 m) ID Fluidized Bed

400% Open Area Cone

Slide Valve

10’ (3 m) ID Mixing Pot

5’ (1.5 m) ID Riser

Pout = 101 KPa

Even though we only cared about the standpipe, the whole loop was simulated

UOP RxCat

PSRI Experimental Data

Applying the Fundamentals

Effects of Aeration as Visualized with

Isovolumes With

100

% A

erat

ion

With

out A

erat

ion

Barracuda®

Solids volume fractions < 0.05

Applying the Fundamentals

Effects of Aeration as Visualized with

Isovolumes With

100

% A

erat

ion

With

out A

erat

ion

Barracuda®

Solids volume fractions < 0.05

Applying the Fundamentals

Symmetric Asymmetric

Fluidized Bed

Outlets

Vert

ical

Sta

ndpi

pe

Cone Inlet

Ris

er

Mixing Pot

Ang

led

Stan

dpip

e

Slide Valve @ 25%

Barracuda®

Outlets

Barracuda®

Symmetric vs. Asymmetric

Aeration

Applying the Fundamentals

Symmetric Asymmetric

Fluidized Bed

Outlets

Vert

ical

Sta

ndpi

pe

Cone Inlet

Ris

er

Mixing Pot

Ang

led

Stan

dpip

e

Slide Valve @ 25%

Barracuda®

Outlets

Barracuda®

Symmetric vs. Asymmetric

Aeration

Applying the Fundamentals

‡‡‡

‡‡‡‡

‡ ‡‡‡‡‡‡

‡‡‡‡‡‡

‡‡‡‡

‡‡‡‡‡

‡‡

‡‡

‡‡‡

···

·

·

·

·

····

· ············

····

·····

··

··

·

·

·

·

···

·

·

0 20000 40000 60000 800000

10

20

30

40

Pressure Drop, Pa

Height,m

‡‡‡

‡‡‡

‡‡‡‡

‡‡‡‡‡‡‡‡‡‡

‡‡‡‡

‡‡‡‡‡

‡‡

‡‡

‡‡‡

···

·

·

·

·

····

· ····

····

····

····

·····

··

··

·

·

·

·

···

·

·

0 2 4 6 8 100

20

40

60

80

100

120

140

Pressure Drop, psi

Height,ft

Symmetric

Asymmetric‡‡‡‡

‡‡‡‡

‡ ‡‡‡‡

‡‡‡‡

‡‡‡‡

‡‡‡‡

‡‡‡‡‡

‡‡

‡‡

‡‡‡

····

·

·

·

····

· ············

····

·····

··

··

·

·

·

·

···

·

·

0 2 4 6 8 10 120

20

40

60

80

100

120

140

Pressure Drop, psi

Height,ft

Symmetric vs. Asymmetric Aeration

Applying the Fundamentals

Case Study: How Do Vent Holes Improve Stripping

Catalyst Catalyst

Steam Steam

ÊÊ Ê Ê Ê Ê ÊÊÊ

ÊÊ

ÊÊÊ

‡ ‡ ‡ ‡ ‡‡ ‡‡ ‡ ‡ ‡‡ ‡‡ ‡‡ ‡

Ê Without Vents

‡ With Vents

0 5 10 15 2010

20

30

40

50

Solids Flux from Circulation, lbmêft2-sBedDensity,lbmêft3

0.5 ft/sec Superficial Gas VelocityFCC eCat

2-ft Dia x 9-ft Tall Stripper6 Disk and Donut Trays

Applying the Fundamentals

• Isovolumes indicate regions where solids volume fraction exceeds 0.3

• Color indicates axial particle velocity

• Highest solids volume fraction near disk and donuts

• Highest particle velocity is between the disk and donuts

Without Holes With “Holes”

Barracuda®

2-ft (0.6-m) Diameter

Mechanism Behind Flooding

Solids Flux of 9.2 lb/ft2-s (46 kg/m2-s)Gas Superficial Velocity of 0.5 ft/sec (0.15 m/sec)

Isovolumes for >0.3 Solids Volume Fractions

Applying the Fundamentals

• Isovolumes indicate regions where solids volume fraction exceeds 0.3

• Color indicates axial particle velocity

• Highest solids volume fraction near disk and donuts

• Highest particle velocity is between the disk and donuts

Without Holes With “Holes”

Barracuda®

2-ft (0.6-m) Diameter

Mechanism Behind Flooding

Solids Flux of 9.2 lb/ft2-s (46 kg/m2-s)Gas Superficial Velocity of 0.5 ft/sec (0.15 m/sec)

Isovolumes for >0.3 Solids Volume Fractions

Applying the Fundamentals

ÊÊ

ÊÊ

ÊÊ

ÊÊÊ

Ê

Ê

Ê

Ê

ÊÊ

‡‡‡

‡‡‡‡‡‡

‡‡

ÁÁ

Á

Á

Á

···

·

·

0 100 200 300 400 500 600 7000

2

4

6

8

DPêL, kgêm^3

Height,meters

Ê 0.15 ftêsec & 45 kgêm2-sec CFD‡ 0.3 mêsec & 45 kgêm2-sec CFDÁ 0.15 mêsec & 52 kgêm2-sec Expermental· 0.3 mêsec & 46 kgêm2-sec Expermental

Bed Density Validation

Comparing bed densities at similar superficial gas velocities and at near flooding conditions

Flooding in the Experimental unit corresponded to a solids flux of 14 lbm/ft2-sec (68 kg/m2-sec) but in the CFD simulations it was at 9.2 lbm/ft2-sec

(45 kg/m2-sec).

2-ft (0.6-m) Diameter

Applying the Fundamentals

A Better Way: Barracuda’s New BC Options

• Pressure Boundary Condition (BC) • Allows gas and entrained particles to exit

• Flow BC on cyclone dipleg face • Returns entrained particles via BC Connector • For cases with non-zero solids flux, this BC is also used to return bottom exit particles to the system • Interstitial gas also enters the domain

• Local injection BCs at gas distributor nozzles

• Flow BC at bottom of vessel • Only present for cases with non-zero solids flux • Particle out flow with “Particle Exit Control” • Desired solids flux is specified

Subway grating baffles are included in the

geometry as real CAD elements, and captured

by the computational mesh.

Simulation Boundary Conditions

Applying the Fundamentals

Ug = 1.0 ft/s

With BC Flux

Control

Applying the Fundamentals

Ug = 1.0 ft/s

With BC Flux

Control

Applying the Fundamentals

Relevant Particle Properties

Particles are rarely perfectly round, smooth or mono dispersed

■■

■ ■■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

▲ ▲▲ ▲▲ ▲▲ ▲▲

● ●● ●● ●

● ● ●●

▼▼▼ ▼▼ ▼▼ ▼

▼ ▼▼

0.0 0.2 0.4 0.6 0.8 1.0 1.2

200

300

400

500

600

700

800

Superficial Gas Velocity, m/sec

BedDensity,kg/m3

12% Fines

8% Fines

6% Fines

4% Fines

PSRI Data of FCC Catalyst in a 0.9-m Diameter Fluidized Bed

PSRI Experimental Data

Applying the Fundamentals

Effects of Particle Size

0"

50"

100"

150"

200"

250"

1" 2" 3" 4"

dP#m

ean,#kg/m

3#

sampling#point#

mean#across#en5re#bed#

exptl"

sim"

0"

5"

10"

15"

20"

25"

1" 2" 3" 4"

dP#stde

v,#kg/m

3#

sampling#point#

Stdev#across#en5re#bed#

exptl"

sim"

0"

10"

20"

30"

40"

50"

1" 2" 3" 4"

dP#m

ean,#kg/m

3#

sampling#point#

mean#across#61#cm#

exptl"

sim"

0"

5"

10"

15"

20"

25"

30"

1" 2" 3" 4"

dP#stde

v,#kg/m

3#

sampling#point#

Stdev#across#61#cm#

exptl"

sim"

0.0"

1.0"

2.0"

3.0"

4.0"

5.0"

6.0"

0" 200" 400" 600" 800" 1000"

H,#m

#

dP/dL,#kg/m3#

mono"

exptl"

0.0#

1.0#

2.0#

3.0#

4.0#

5.0#

6.0#

0# 200# 400# 600# 800# 1000#

H,#m

#

dP/dL,#kg/m3#

exptl#

PB#

rev#PB#

175#180#185#190#195#200#205#210#215#220#

1# 2# 3# 4#

dP#m

ean,#kg/m

3#

sampling#point#

mean#across#en7re#bed#

exptl#

sim#

0#

5#

10#

15#

20#

25#

30#

1# 2# 3# 4#

dP#stde

v,#kg/m

3#

sampling#point#

Stdev#across#en7re#bed#

exptl#

sim#

0#

10#

20#

30#

40#

50#

1# 2# 3# 4#

dP#m

ean,#kg/m

3#

sampling#point#

mean#across#61#cm#

exptl#

sim#

0#

5#

10#

15#

20#

25#

30#

1# 2# 3# 4#

dP#stde

v,#kg/m

3#

sampling#point#

Stdev#across#61#cm#

exptl#

sim#

DQMOM

Applying the Fundamentals

Effects of Particle Size

0"

50"

100"

150"

200"

250"

1" 2" 3" 4"

dP#m

ean,#kg/m

3#

sampling#point#

mean#across#en5re#bed#

exptl"

sim"

0"

5"

10"

15"

20"

25"

1" 2" 3" 4"

dP#stde

v,#kg/m

3#

sampling#point#

Stdev#across#en5re#bed#

exptl"

sim"

0"

10"

20"

30"

40"

50"

1" 2" 3" 4"

dP#m

ean,#kg/m

3#

sampling#point#

mean#across#61#cm#

exptl"

sim"

0"

5"

10"

15"

20"

25"

30"

1" 2" 3" 4"

dP#stde

v,#kg/m

3#

sampling#point#

Stdev#across#61#cm#

exptl"

sim"

0.0"

1.0"

2.0"

3.0"

4.0"

5.0"

6.0"

0" 200" 400" 600" 800" 1000"

H,#m

#

dP/dL,#kg/m3#

mono"

exptl"

0.0#

1.0#

2.0#

3.0#

4.0#

5.0#

6.0#

0# 200# 400# 600# 800# 1000#

H,#m

#

dP/dL,#kg/m3#

exptl#

PB#

rev#PB#

175#180#185#190#195#200#205#210#215#220#

1# 2# 3# 4#

dP#m

ean,#kg/m

3#

sampling#point#

mean#across#en7re#bed#

exptl#

sim#

0#

5#

10#

15#

20#

25#

30#

1# 2# 3# 4#

dP#stde

v,#kg/m

3#

sampling#point#

Stdev#across#en7re#bed#

exptl#

sim#

0#

10#

20#

30#

40#

50#

1# 2# 3# 4#

dP#m

ean,#kg/m

3#

sampling#point#

mean#across#61#cm#

exptl#

sim#

0#

5#

10#

15#

20#

25#

30#

1# 2# 3# 4#

dP#stde

v,#kg/m

3#

sampling#point#

Stdev#across#61#cm#

exptl#

sim#

DQMOM

Applying the Fundamentals

Effects of Particle Size

0"

50"

100"

150"

200"

250"

1" 2" 3" 4"

dP#m

ean,#kg/m

3#

sampling#point#

mean#across#en5re#bed#

exptl"

sim"

0"

5"

10"

15"

20"

25"

1" 2" 3" 4"

dP#stde

v,#kg/m

3#

sampling#point#

Stdev#across#en5re#bed#

exptl"

sim"

0"

10"

20"

30"

40"

50"

1" 2" 3" 4"

dP#m

ean,#kg/m

3#

sampling#point#

mean#across#61#cm#

exptl"

sim"

0"

5"

10"

15"

20"

25"

30"

1" 2" 3" 4"

dP#stde

v,#kg/m

3#

sampling#point#

Stdev#across#61#cm#

exptl"

sim"

0.0"

1.0"

2.0"

3.0"

4.0"

5.0"

6.0"

0" 200" 400" 600" 800" 1000"

H,#m

#

dP/dL,#kg/m3#

mono"

exptl"

0.0#

1.0#

2.0#

3.0#

4.0#

5.0#

6.0#

0# 200# 400# 600# 800# 1000#

H,#m

#

dP/dL,#kg/m3#

exptl#

PB#

rev#PB#

175#180#185#190#195#200#205#210#215#220#

1# 2# 3# 4#

dP#m

ean,#kg/m

3#

sampling#point#

mean#across#en7re#bed#

exptl#

sim#

0#

5#

10#

15#

20#

25#

30#

1# 2# 3# 4#

dP#stde

v,#kg/m

3#

sampling#point#

Stdev#across#en7re#bed#

exptl#

sim#

0#

10#

20#

30#

40#

50#

1# 2# 3# 4#

dP#m

ean,#kg/m

3#

sampling#point#

mean#across#61#cm#

exptl#

sim#

0#

5#

10#

15#

20#

25#

30#

1# 2# 3# 4#

dP#stde

v,#kg/m

3#

sampling#point#

Stdev#across#61#cm#

exptl#

sim#

DQMOM

Applying the Fundamentals

Gas Bypassing in Fluidized Beds

4

3

2

1

0Max

Bed

Hei

ght w

/o B

ypas

sing

, m

1412108642% Fines (< 44 µm)

0.3 meters Column DiaLight FCC Powder

Ug = 0.46 m/sec Ug = 0.61 m/sec

Applying the Fundamentals

Gas Bypassing in Fluidized Beds

4

3

2

1

0Max

Bed

Hei

ght w

/o B

ypas

sing

, m

1412108642% Fines (< 44 µm)

0.3 meters Column DiaLight FCC Powder

Ug = 0.46 m/sec Ug = 0.61 m/sec

Applying the Fundamentals

Gas Bypassing in Fluidized Beds

4

3

2

1

0Max

Bed

Hei

ght w

/o B

ypas

sing

, m

1412108642% Fines (< 44 µm)

0.3 meters Column DiaLight FCC Powder

Ug = 0.46 m/sec Ug = 0.61 m/sec

Applying the Fundamentals

PSDs Matter with CFD

Simulations of Fluidized Beds

3% Fines, No Flux 9% Fines, No Flux 3% Fines with Flux 9% Fines with Flux

SolidsVolumeFraction

2 ft/sec (0.6 m/sec) Superficial Gas Velocity

Barracuda™

Applying the Fundamentals

PSDs Matter with CFD

Simulations of Fluidized Beds

3% Fines, No Flux 9% Fines, No Flux 3% Fines with Flux 9% Fines with Flux

SolidsVolumeFraction

2 ft/sec (0.6 m/sec) Superficial Gas Velocity

Barracuda™

Applying the Fundamentals

ÊÊÊÊÊÊÊÊÊÊÊ

Ê

Ê

ÊÊ

Ê

Ê

ÊÊ

ÊÊÊ

ÊÊ

ÊÊÊ

ÊÊ

ÊÊ

ÊÊ

ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ

Ê

Ê

Ê

Ê

Ê

ÊÊ

ÊÊ

Ê

ÊÊÊ

Ê

ÊÊ

ÊÊÊ

ÊÊÊÊÊ

ÊÊÊÊÊ Ê

0 50 100 150 2000

2

4

6

8

dp, um

Diffwt%

9 wt%

3 wt%

Reported dp50, μm % Fines, (< 44 μm)

3 wt% 80.4 μm 2.7%

8 wt% 81.0 μm 8.6%

• Significant difference in hydrodynamics due to fines level, not median particle size.

• Fines are the driver for moving gas in and out of the emulsion phase• Higher mobility in dense bed• Higher surface to volume

ratio• There may be a lot more

fines in your particles than you think• 9 wt% = 33 num%

• If using one representative particle size, which one do you use?

Fines Matter!

3% Fines with Flux 9% Fines with Flux

SolidsVolumeFraction

Barracuda™

Applying the Fundamentals

ÊÊÊÊÊÊÊÊÊÊÊ

Ê

Ê

ÊÊ

Ê

Ê

ÊÊ

ÊÊÊ

ÊÊ

ÊÊÊ

ÊÊ

ÊÊ

ÊÊ

ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ

Ê

Ê

Ê

Ê

Ê

ÊÊ

ÊÊ

Ê

ÊÊÊ

Ê

ÊÊ

ÊÊÊ

ÊÊÊÊÊ

ÊÊÊÊÊ Ê

0 50 100 150 2000

2

4

6

8

dp, um

Diffwt%

9 wt%

3 wt%

Reported dp50, μm % Fines, (< 44 μm)

3 wt% 80.4 μm 2.7%

8 wt% 81.0 μm 8.6%

• Significant difference in hydrodynamics due to fines level, not median particle size.

• Fines are the driver for moving gas in and out of the emulsion phase• Higher mobility in dense bed• Higher surface to volume

ratio• There may be a lot more

fines in your particles than you think• 9 wt% = 33 num%

• If using one representative particle size, which one do you use?

Fines Matter!

3% Fines with Flux 9% Fines with Flux

SolidsVolumeFraction

Barracuda™

Applying the Fundamentals

Effect of Drag on Fluidized Bed Simulations

• Drag dominates in fluidized beds and yet our drag laws are limited

Esmaili and Mahinpey (2011) Adv Eng Software

Experimental Data Various drag model predictions

Applying the Fundamentals

Effects of Drag with

Fluidized Bed Simulations

Wen Yu x 0.63

Case 3 Case 5 Case 6 Case 7

Wen Yu x 0.8 Wen Yu x 1 Wen Yu x 1.5

Applying the Fundamentals

Effects of Drag with

Fluidized Bed Simulations

Wen Yu x 0.63

Case 3 Case 5 Case 6 Case 7

Wen Yu x 0.8 Wen Yu x 1 Wen Yu x 1.5

Applying the Fundamentals

● ● ●●●●●

●●●●●●●●●

●●●

○○

○○

○○○○ ○○○

○○○

○○○○

● CFD○ Data

0 200 400 600 8000

1

2

3

4

5

6

ΔL/lg, kg/m3

HeightAboveGrid,m

Bed Density (Ave from 34.9997 to 39.9997 Seconds)

Bed Density at High Velocity for Wen & Yu Drag

Model

Wen & Yu x 0.63Case 3B

Case 5B

Case 6B

Case 7B

Wen & Yu x 1

Wen & Yu x 0.8 Wen & Yu x 1.5

● ● ●●●●

●●●●●●●●●●

●●

○○

○○

○○○○ ○○○

○○○

○○○○

● CFD○ Data

0 200 400 600 8000

1

2

3

4

5

6

ΔL/lg, kg/m3

HeightAboveGrid,m

Bed Density (Ave from 34.9996 to 39.9996 Seconds)

● ●●●●●

●●●●●●●●●

●●

●●

○○

○○

○○○○ ○○○

○○○

○○○○

● CFD○ Data

0 200 400 600 8000

1

2

3

4

5

6

ΔL/lg, kg/m3

HeightAboveGrid,m

Bed Density (Ave from 35. to 40. Seconds)

●●●●●●●●●●●

●●●●●

●●

○○

○○

○○○○ ○○○

○○○

○○○○

● CFD○ Data

0 100 200 300 400 500 600 7000

1

2

3

4

5

6

ΔL/lg, kg/m3

HeightAboveGrid,m

Bed Density (Ave from 34.9994 to 39.9994 Seconds)

3-ft (0.9-m) Bed Diameter0.75 ft/sec (0.23 m/sec) Superficial Gas Velocity

BC at Sparger Exit

Applying the Fundamentals

● ● ●●●●●

●●●●●●●●●

●●●

○○

○○

○○○○ ○○○

○○○

○○○○

● CFD○ Data

0 200 400 600 8000

1

2

3

4

5

6

ΔL/lg, kg/m3

HeightAboveGrid,m

Bed Density (Ave from 34.9997 to 39.9997 Seconds)

Bed Density at High Velocity for

EMMS Drag Model

Wen & Yu x 0.63Case 3B

Case 8B

EMMS x 1

Case 9B

EMMS x 0.5Case 10B

EMMS x 1.5

●●●●●●●●

●●●●●●●

●●

●●

○○

○○

○○○○ ○○○

○○○

○○○○

● CFD○ Data

0 100 200 300 400 500 600 7000

1

2

3

4

5

6

ΔL/lg, kg/m3

HeightAboveGrid,m

Bed Density (Ave from 34.9996 to 39.9996 Seconds)

●●●●

●●●●●●

●●●●●

●●●●

○○

○○

○○○○ ○○○

○○○

○○○○

● CFD○ Data

0 200 400 600 8000

1

2

3

4

5

6

ΔL/lg, kg/m3

HeightAboveGrid,m

Bed Density (Ave from 34.9997 to 39.9997 Seconds)

● ●● ●●● ●●●●●●●

●●●

●●

○○

○○

○○○○ ○○○

○○○

○○○○

● CFD○ Data

0 100 200 300 400 500 600 7000

1

2

3

4

5

6

ΔL/lg, kg/m3

HeightAboveGrid,m

Bed Density (Ave from 34.9999 to 39.9999 Seconds)

3-ft (0.9-m) Bed Diameter0.75 ft/sec (0.23 m/sec) Superficial Gas Velocity

BC at Sparger Exit

Applying the Fundamentals

Well Established Drag Law Limits

Confident in single particle and packed bed drag laws, but not at intermediate Re and 𝜙 which is relevant to fluidized bed simulations

0 0.2 0.4 0.6100

102

104

106

Re

0 0.2 0.4 0.6100

102

104

106

Re

Carman-Kozeny Fd(Loading → Loading, Re → 0)

Single Particle Drag Fd(loading → 0, Re) Ergun Fd(loading → loadingmax, Re)

Fluidized Beds

Applying the Fundamentals

Uncertainty in Drag Coefficient, CD

Uncertainty in CD measurements high at low Re

Fd(loading, Re) = C,D,single(Re) loadingn

What Do We Do?

Applying the Fundamentals

Uncertainty in Drag Coefficient, CD

Uncertainty in CD measurements high at low Re

Fd(loading, Re) = C,D,single(Re) loadingn

Range of interest

What Do We Do?

Applying the Fundamentals

Parameter Estimation using Umf/Umb Data

Wen Yu x 0.8Wen Yu x 1

ÊÊÊ

Ê

Ê

Ê

Ê

Ê

Ê

Ê

ÊÊÊ ÊÊ Ê ÊÊ ÊÊ ÊÊÊÊÊ ÊÊÊÊÊ ÊÊ ÊÊÊ

‡‡‡ ‡‡‡ ‡‡ ‡ ‡‡‡

‡‡‡‡‡‡ ‡‡ ‡ ‡

‡‡‡ ‡ ‡ ‡‡ ‡ ‡ ‡ ‡‡‡

0.005 0.010 0.015 0.020 0.025 0.030 0.0350

10

20

30

40

50

60

16.16.517.17.518.18.519.19.520.

Superficial Gas Velocity, ftêsec

BedDensity,lbêft2

BedHeight,in

PSRI Umf/Umb Test Unit

We are basically fitting the drag model to the Umf/Umb data

Applying the Fundamentals

Parameter Estimation using Umf/Umb Data

Wen Yu x 0.8Wen Yu x 1

ÊÊÊ

Ê

Ê

Ê

Ê

Ê

Ê

Ê

ÊÊÊ ÊÊ Ê ÊÊ ÊÊ ÊÊÊÊÊ ÊÊÊÊÊ ÊÊ ÊÊÊ

‡‡‡ ‡‡‡ ‡‡ ‡ ‡‡‡

‡‡‡‡‡‡ ‡‡ ‡ ‡

‡‡‡ ‡ ‡ ‡‡ ‡ ‡ ‡ ‡‡‡

0.005 0.010 0.015 0.020 0.025 0.030 0.0350

10

20

30

40

50

60

16.16.517.17.518.18.519.19.520.

Superficial Gas Velocity, ftêsec

BedDensity,lbêft2

BedHeight,in

PSRI Umf/Umb Test Unit

We are basically fitting the drag model to the Umf/Umb data

Applying the Fundamentals

It’s Not Just About Bed Density

• Column dimensions• 3 ft (0.9-m) diameter• 20 ft (6.1-m) tall

• 4 ft (1.2-m) static bed height• Entrainment rate determined from rate of fill in

primary cyclone dipleg• Heavy FCC catalyst• 70 micron dp50

• 1500 kg/m3 density○

0.5 0.6 0.7 0.8 0.9 1.00.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Superficial Gas Velocity, m/sec

EntrainmentFlux,kg

/m2-sec

Experimental Data

Particle Entrainment

For Geldart Group A Particles, Drag Models Over Predict the Entrainment Rates

Applying the Fundamentals

Entrainment Fluxes

��� �/��� ���� ������� ����������� ����� ��/��-������ ��������� ������������ ��������� ������������ �������� ������������ ��������� ����������� ��������� ���������

PSRI Cluster Size + Entrainment Flux

△△▽ ▽

▽ ▽

▲ ▲▲

★★

0.5 0.6 0.7 0.8 0.9 1.0 1.1

0.5

1

5

10

Superficial Gas Velocity, m/sec

EntrainmentFlux,kg

/m2-sec

● Data

△ CPFD 0.8 Wen Yu

▽ CPFD 1.0 Wen Yu

▲ PSRI Drag

★ PSRI Correlation

Applying the Fundamentals

Its Not Just CFD

Entrainment rate calculations based on FCC catalyst powder with 9% fines in a 3-meters ID x 12-meters tall fluidized bed with a bed height of 6 meters and superficial gas velocity of 1 m/sec at

room temperature

Stojkovski, V., Kostic’, Z., Thermal Science, 7 (2003) 43-58.Zenz, P.A., Weil, N.A., AIChE J., 4 (1958) 472-479.Lin, L, Sears, J.T., Wen, C.Y., Powder Technology, 27 (1980) 105-115.

M. Colakyan, N. Catipovic, G. Jovanovic, T.J. Fitzgerald, AIChE Symp. Ser. 77 (1981) 66.Colakyan, M., Levenspiel, O., Powder Technology, 38 (1984), pp. 223-232

Geldart, D., Cullinan, J., Georghiades, S., Gilvray, D., Pope, D.J., Trans. Inst. Chem. Eng., 57 (1979) 269-277.

Applying the Fundamentals

This is a Fines Problem

‡ ‡ ‡‡

‡‡

Ê Ê ÊÊ

ÊÊÊÊÊÊÊÊÊ

Ê

Ê

Ê

0.2 0.4 0.6 0.8 1.0 1.2 1.40

2

4

6

8

Superficial Gas Velocity, mêsec

EntrainmentFlux,kgêm

2 -sec

‡‡

‡‡

ÊÊ

ÊÊÊÊÊ

Ê

Ê

0.6 0.8 1.0 1.2 1.40.0

0.5

1.0

1.5

2.0

2.5

3.0

Superficial Gas Velocity, mêsec

EntrainmentFlux,kgêm

2 -sec

Geldart Group B Cokeρp=1600 kg/m3

dp50 (Initial) =150 μmColumn Dia. = 0.3 mStatic Bed Height (Initial) = 0.76 m

With Baffles

Without Baffles

With Baffles

Without Baffles

Geldart Group A FCC Catalyst Powderρp=1490 kg/m3

dp50 (Initial) =90 μmColumn Dia. = 0.15 mStatic Bed Height (Initial) = 0.76 mBaffles at 0.5 and 0.76 m

Applying the Fundamentals

Particle Drag and

Entrainment

Fluid FlowFluid Flow

����������� ��� ��������� �/��� ������� �������� ������� �������� ��/�� ������������ �������� ��/�� ��������������� ��/�-��� ���������

Fluid Flow

dp = 50 microns dp = 100 microns dp,cluster = 100 micronsdp = 30 microns

0 50 100 150 200 250

100

200

500

1000

2000

Particle Size, microns

DragForce,N

eCat in a Bubbling Fluidized Bed

Applying the Fundamentals

FCC Catalyst Particle Clusters in Freeboard

• 30% of the material in the freeboard was observed as clusters

• Average cluster size was equivalent to 11 particles of dp50 size

Phantom V7.1 @ 4000 fps, 20 μs exposure (NETL)

FCC powder with dp50 of 72 microns in 6-in (15-cm) ID

fluidized bed with superficial gas velocity of 1 ft/sec (0.3 m/

sec)

Applying the Fundamentals

FCC Catalyst Particle Clusters in Freeboard

• 30% of the material in the freeboard was observed as clusters

• Average cluster size was equivalent to 11 particles of dp50 size

Phantom V7.1 @ 4000 fps, 20 μs exposure (NETL)

FCC powder with dp50 of 72 microns in 6-in (15-cm) ID

fluidized bed with superficial gas velocity of 1 ft/sec (0.3 m/

sec)

←200 μm Diameter

Applying the Fundamentals

FCC Catalyst Clusters in the Fluidized Bed

• Cluster observed near bubble region

• Can not distinguished if clusters are in the emulsion phase or not

Phantom V7.1 @ 4000 fps, 20 μs exposure (NETL)FCC powder with dp50 of 72 microns in 6-in (15-cm) ID fluidized bed with superficial gas

velocity of 1 ft/sec (0.3 m/sec)

←50 μm Diameter

Applying the Fundamentals

FCC Catalyst Clusters in the Fluidized Bed

• Cluster observed near bubble region

• Can not distinguished if clusters are in the emulsion phase or not

Phantom V7.1 @ 4000 fps, 20 μs exposure (NETL)FCC powder with dp50 of 72 microns in 6-in (15-cm) ID fluidized bed with superficial gas

velocity of 1 ft/sec (0.3 m/sec)

←50 μm Diameter

Applying the Fundamentals

FCC Catalyst Clusters in the Fluidized Bed

• Cluster observed near bubble region

• Can not distinguished if clusters are in the emulsion phase or not

Phantom V7.1 @ 4000 fps, 20 μs exposure (NETL)FCC powder with dp50 of 72 microns in 6-in (15-cm) ID fluidized bed with superficial gas

velocity of 1 ft/sec (0.3 m/sec)

←50 μm Diameter←50 μm Diameter

Applying the Fundamentals

Surface Morphology Driven

Royer, J.R., Evans, D.J., Oyarte, L., Guo, Q., Kapit, E., Möbius, M.E., Waitukaitis, S.R., Jaeger, H.M., High-Speed Tracking of Rupture and Clustering in Freely Falling Granular Streams, Nature 459 (2009) 1110-1113.

Glass Beads Copper Powder

Applying the Fundamentals

Surface Morphology Driven

Royer, J.R., Evans, D.J., Oyarte, L., Guo, Q., Kapit, E., Möbius, M.E., Waitukaitis, S.R., Jaeger, H.M., High-Speed Tracking of Rupture and Clustering in Freely Falling Granular Streams, Nature 459 (2009) 1110-1113.

Glass Beads Copper Powder

Applying the Fundamentals

Surface Roughness Matters

• The addition of Aerosil®, to roughen the surface, reduced the clustering of the glass particles

• Static interaction may have higher levels of attraction but in dynamics environments that may not be sufficient

• Particle momentum plays a role in particle clustering

Clean Glass Glass with Aerosil™

Applying the Fundamentals

Electronic and Ionic Exchange

• \

V. Lee, S.R. Waitukaitis, M.Z. Miskin, H.M. Jaeger, Direct observation of particle interactions and clustering in charged granular streams, Nat Phys. 11 (2015) 733–737.

Large Particles

Small Particles

80% of the larger particles were positively charged while 95% of the smaller particles where negatively charged

S.R. Waitukaitis, V. Lee, J.M. Pierson, S.L. Forman, H.M. Jaeger, Size-Dependent Same-Material Tribocharging in Insulating Grains, Physical Review Letters. 112 (2014) 218001–5

Applying the Fundamentals

Electronic and Ionic Exchange

S.R. Waitukaitis, V. Lee, J.M. Pierson, S.L. Forman, H.M. Jaeger, Size-Dependent Same-Material Tribocharging in Insulating Grains, Physical Review Letters. 112 (2014) 218001–5

Thermoluminescence Measurements

σ~1x10-4 um-2

Surface charge density, σ, is 5X lower than needed to explain the particle

mobility in the drop tube. Ionic exchange, such as OH-, may be

responsible with the glass beads

No Excitation

12 hrs Visible

12 hrs UV

Applying the Fundamentals

Hydroxyl Ion and Clustering

• Pence et al. (1994) and McCarty et al. (2008) have noted the importance of water, and with it OH- ions, on the surface of particles for contact charging.

• Unless one prepares surfaces under ultra-high vacuum conditions, thin water layers are generally unavoidable.

• Indeed, even in a vacuum at 10-6 Torr, a molecularly thin layer of water adsorbs in one second, which is the definition of a Langmuir.

• On a zeolite, water is present on the surface at temperature exceeding 700°C

Applying the Fundamentals

Particle Clusters in Freefall

Lee, V., Waitukaitis, S.R., Miskin, M.Z., Jaeger, H,M., Direct observations of particle interactions and clustering in charged granular streams, Nature Physics, 11, (2015) 733-737.

Applying the Fundamentals

Particle Clusters in Freefall

Lee, V., Waitukaitis, S.R., Miskin, M.Z., Jaeger, H,M., Direct observations of particle interactions and clustering in charged granular streams, Nature Physics, 11, (2015) 733-737.

Applying the Fundamentals

Momentum Exchange is Important Too

Near Capture Repulsion Rotational to Translational

Lee, V., Waitukaitis, S.R., Miskin, M.Z., Jaeger, H,M., Direct observations of particle interactions and clustering in charged granular streams, Nature Physics, 11, (2015) 733-737.

Applying the Fundamentals

Momentum Exchange is Important Too

Near Capture Repulsion Rotational to Translational

Lee, V., Waitukaitis, S.R., Miskin, M.Z., Jaeger, H,M., Direct observations of particle interactions and clustering in charged granular streams, Nature Physics, 11, (2015) 733-737.

Applying the Fundamentals

Hypothesis on Particle Clustering

+

-OH-

H+

OH-

H+

OH-H+

Long Range Attraction

Collision

Short Range Attraction

Collision and Collisional Cooling

Short Range Attraction

Clustering

+

-OH-

H+

Long Range Attraction

Collision

Rotational Momentum ➔Translational Momentum

Clustering Unlikely+

-

Long Range Attraction

Applying the Fundamentals

Sub-grid Drag Models: Filtered

Filtered drag models based on simulations using homogenous drag models (mostly Wen and Yu)

Ultra-fine mesh simulations

Filtering regions

∆* ∆*

Developed filtered drag model

Applying the Fundamentals

Heterogeneous (Sub-grid or Filtered) Models

Course mesh[1] Ultrafine mesh

Agrawal et al. (2001) J Fluid Mech

Homogenous drag: ultra-fine mesh required to resolve solids gradients of

instabilities

experimental data

sub-grid drag

homogenous drag

Sub-grid drag model improves upon (course-grid) homogenous drag model which over-predicts drag

Wang et al. (2010) Chem Eng Sci

However, clustering may not start with the drag

Applying the Fundamentals

Sub-grid Drag Models: EMMSFlow separated into three phases

(phase c)

(phase d)

(phase cl)

Drag determined on each phase separately

Total power (F·u), minimized to close all unknowns introduced

Applying the Fundamentals

Sub-grid Drag Models: EMMS

Drag force computed within each phase based on homogenous Wen and Yu drag model

Flow separated into three phases

Wen and Yu drag for each phase

(phase c)

(phase d)

(phase cl)

Drag determined on each phase separately

Total power (F·u), minimized to close all unknowns introduced

Applying the Fundamentals

Sub-grid Drag Model Experimental Validation: EMMS

0 1 2 3

0

1

2

3

0

1

2

3

0123

0

1

2

3

0

1

2

3

< >Gs,loc

Gs,all

Bub P/ x

Yang et al. (2003)Shah et al. (2011) (low flux)Shah et al. (2011) (high flux)Shah et al. (2011)Wang (2010)Lu et al. (2011) (group A)Lu et al. (2011) (group B)Hong et al. (2016)Chen et al. (2016)Qui et al. (2017)Song et al. (2016)Li et al. (2012)Qui et al. (2015)

For Entrainment, the drag needs to be fitted to the entrainment rate data

Applying the Fundamentals

Sub-grid Drag Model Experimental Validation: EMMS

0 1 2 3

0

1

2

3

0

1

2

3

0123

0

1

2

3

0

1

2

3

< >Gs,loc

Gs,all

Bub P/ x

Yang et al. (2003)Shah et al. (2011) (low flux)Shah et al. (2011) (high flux)Shah et al. (2011)Wang (2010)Lu et al. (2011) (group A)Lu et al. (2011) (group B)Hong et al. (2016)Chen et al. (2016)Qui et al. (2017)Song et al. (2016)Li et al. (2012)Qui et al. (2015)

0 1 2 3

0

1

2

3

0

1

2

3

0123

0

1

2

3

0

1

2

3

< >Gs,loc

Gs,all

Bub P/ x

Yang et al. (2003)Shah et al. (2011) (low flux)Shah et al. (2011) (high flux)Shah et al. (2011)Wang (2010)Lu et al. (2011) (group A)Lu et al. (2011) (group B)Hong et al. (2016)Chen et al. (2016)Qui et al. (2017)Song et al. (2016)Li et al. (2012)Qui et al. (2015)

Fully validated

For Entrainment, the drag needs to be fitted to the entrainment rate data

Applying the Fundamentals

Sub-grid Drag Model Experimental Validation: EMMS

0 1 2 3

0

1

2

3

0

1

2

3

0123

0

1

2

3

0

1

2

3

< >Gs,loc

Gs,all

Bub P/ x

Yang et al. (2003)Shah et al. (2011) (low flux)Shah et al. (2011) (high flux)Shah et al. (2011)Wang (2010)Lu et al. (2011) (group A)Lu et al. (2011) (group B)Hong et al. (2016)Chen et al. (2016)Qui et al. (2017)Song et al. (2016)Li et al. (2012)Qui et al. (2015)

0 1 2 3

0

1

2

3

0

1

2

3

0123

0

1

2

3

0

1

2

3

< >Gs,loc

Gs,all

Bub P/ x

Yang et al. (2003)Shah et al. (2011) (low flux)Shah et al. (2011) (high flux)Shah et al. (2011)Wang (2010)Lu et al. (2011) (group A)Lu et al. (2011) (group B)Hong et al. (2016)Chen et al. (2016)Qui et al. (2017)Song et al. (2016)Li et al. (2012)Qui et al. (2015)

Fully validated

0 = 😣

For Entrainment, the drag needs to be fitted to the entrainment rate data

Applying the Fundamentals

Sub-grid Drag Model Experimental Validation: EMMS

0 1 2 3

0

1

2

3

0

1

2

3

0123

0

1

2

3

0

1

2

3

< >Gs,loc

Gs,all

Bub P/ x

Yang et al. (2003)Shah et al. (2011) (low flux)Shah et al. (2011) (high flux)Shah et al. (2011)Wang (2010)Lu et al. (2011) (group A)Lu et al. (2011) (group B)Hong et al. (2016)Chen et al. (2016)Qui et al. (2017)Song et al. (2016)Li et al. (2012)Qui et al. (2015)

0 1 2 3

0

1

2

3

0

1

2

3

0123

0

1

2

3

0

1

2

3

< >Gs,loc

Gs,all

Bub P/ x

Yang et al. (2003)Shah et al. (2011) (low flux)Shah et al. (2011) (high flux)Shah et al. (2011)Wang (2010)Lu et al. (2011) (group A)Lu et al. (2011) (group B)Hong et al. (2016)Chen et al. (2016)Qui et al. (2017)Song et al. (2016)Li et al. (2012)Qui et al. (2015)

Fully validated

0 = 😣

1 = 🙁

For Entrainment, the drag needs to be fitted to the entrainment rate data

Applying the Fundamentals

Sub-grid Drag Model Experimental Validation: EMMS

0 1 2 3

0

1

2

3

0

1

2

3

0123

0

1

2

3

0

1

2

3

< >Gs,loc

Gs,all

Bub P/ x

Yang et al. (2003)Shah et al. (2011) (low flux)Shah et al. (2011) (high flux)Shah et al. (2011)Wang (2010)Lu et al. (2011) (group A)Lu et al. (2011) (group B)Hong et al. (2016)Chen et al. (2016)Qui et al. (2017)Song et al. (2016)Li et al. (2012)Qui et al. (2015)

0 1 2 3

0

1

2

3

0

1

2

3

0123

0

1

2

3

0

1

2

3

< >Gs,loc

Gs,all

Bub P/ x

Yang et al. (2003)Shah et al. (2011) (low flux)Shah et al. (2011) (high flux)Shah et al. (2011)Wang (2010)Lu et al. (2011) (group A)Lu et al. (2011) (group B)Hong et al. (2016)Chen et al. (2016)Qui et al. (2017)Song et al. (2016)Li et al. (2012)Qui et al. (2015)

Fully validated

0 = 😣

1 = 🙁

2 = 😀

For Entrainment, the drag needs to be fitted to the entrainment rate data

Applying the Fundamentals

Sub-grid Drag Model Experimental Validation: EMMS

0 1 2 3

0

1

2

3

0

1

2

3

0123

0

1

2

3

0

1

2

3

< >Gs,loc

Gs,all

Bub P/ x

Yang et al. (2003)Shah et al. (2011) (low flux)Shah et al. (2011) (high flux)Shah et al. (2011)Wang (2010)Lu et al. (2011) (group A)Lu et al. (2011) (group B)Hong et al. (2016)Chen et al. (2016)Qui et al. (2017)Song et al. (2016)Li et al. (2012)Qui et al. (2015)

0 1 2 3

0

1

2

3

0

1

2

3

0123

0

1

2

3

0

1

2

3

< >Gs,loc

Gs,all

Bub P/ x

Yang et al. (2003)Shah et al. (2011) (low flux)Shah et al. (2011) (high flux)Shah et al. (2011)Wang (2010)Lu et al. (2011) (group A)Lu et al. (2011) (group B)Hong et al. (2016)Chen et al. (2016)Qui et al. (2017)Song et al. (2016)Li et al. (2012)Qui et al. (2015)

Fully validated

0 = 😣

1 = 🙁

2 = 😀

3 = 🤘

For Entrainment, the drag needs to be fitted to the entrainment rate data

Applying the Fundamentals

Entrainment Fluxes

��� �/��� ���� ������� ����������� ����� ��/��-������ ��������� ������������ ��������� ������������ �������� ������������ ��������� ����������� ��������� ���������

����������� ��� ��������� �/��� ������ ������� ����� ���������� ������������ ������������ ����������� ����������� ���������

PSRI Cluster Size + Entrainment Flux CFD Fitted to a Cluster Size

△△▽ ▽

▽ ▽

▲ ▲▲

★★

0.5 0.6 0.7 0.8 0.9 1.0 1.1

0.5

1

5

10

Superficial Gas Velocity, m/sec

EntrainmentFlux,kg

/m2-sec

Dp Correction

● Data

△ CPFD 0.8 Wen Yu

▽ CPFD 1.0 Wen Yu

▲ PSRI Drag

★ PSRI Correlation

Fitting Cluster Size

Applying the Fundamentals

Concluding Remarks

• Boundary conditions need to be realistic or have a minimal dependance on the solution

• Particle properties need to go beyond the median particles size and particle density

• PSD, Shape, Adsorbate, Roughness!• Drag models are dragging down the capabilities of today’s CFD models for

fluidized bed simulations• All CFD models are limited for Geldart Group A and AC materials due to

particle clustering• This is not an issue for larger particles where clustering is unlike to happen

• With such limitations, calibration with experimental data is recommended• For fluidized beds, fitting drag to Umf/Umb and bed density data is a good start