BoWI Project - Inria

43
BoWI Project Body World Interac/on 10/2012 2016 LabSTICC: J Ph.Diguet (CNRS), C.Roland, F.Poirier, C.Person, C.Langlais (TB) IRISA: O.SenAeys (INRIA), P.Scalart, O.Berder, A.Carer, A. Courtay (ENSSAT/UR1) IETR: R.Sauleau (UR1) Designer: C. Gault (UBS) Engineer: M. Le GenAl (ENSSAT/UR1) PhD students: A. Alery (UBS/UR1), R. Massod (TB/UR1), Z.Zheng (UR1/UBS), VH.Nguyen (UR1,TB) Journées Ouest IRT / Labex CominLabs Rennes, Dec. 2013

Transcript of BoWI Project - Inria

BoWI  Project  Body  World  Interac/on  

10/2012-­‐  2016  

Lab-­‐STICC:  J-­‐Ph.Diguet  (CNRS),  C.Roland,  F.Poirier,  C.Person,  C.Langlais  (TB)  IRISA:  O.SenAeys  (INRIA),  P.Scalart,  O.Berder,  A.Carer,  A.  Courtay  (ENSSAT/UR1)    

IETR:  R.Sauleau  (UR1)  Designer:  C.  Gault  (UBS)                  Engineer:  M.  Le  GenAl  (ENSSAT/UR1)  

PhD  students:  A.  Alery  (UBS/UR1),  R.  Massod  (TB/UR1),    Z.Zheng  (UR1/UBS),  V-­‐H.Nguyen  (UR1,TB)  

 Journées  Ouest  IRT  /  Labex  CominLabs  

Rennes,  Dec.  2013  

2  

Outline

1.  Project  overview  2.  Recent  progresses  

§  Usage  §  Radio  §  Algorithms  §  Architecture  §  Network  

3.  PerspecAves  

3  

•  Digital  Environment  for  the  CiMzen  +  Energy  Efficiency  in  ICT  •  New  Wireless  Body  Area  Network  for  Gesture  /  Posture  recogniAon  -  In-­‐  or  out-­‐door,  everyday  environment  without  addiMonal  equipment  -  UlAmate  low  power:  no  baZery  but  energy  harvesAng  

1- Overview: Labex Challenges

xyz

"

#

$ $ $

%

&

' ' '

xyz

"

#

$ $ $

%

&

' ' '

Centralized Device (e.g. Smartphone)

Body Coordinates System WLAN Connexion

Inter-nodes communications

Node Geo-localisation

CompuAng  Control  

RF  Front  End  

InerAal  MEMS  

Energy  HarvesAng  200µW  

4  

Cross-­‐layer  approach  taking  advantage  of  diversity  and  redundancy.    1.   Accurate  short-­‐range  geolocalizaMon  based  on  distributed  mulAple  

sensor  fusion:  IMU  +  Radio.  2.   Self-­‐powered  and  self-­‐adapMve  compuMng  plaXorm  3.   Channel  propagaMon  modeling  and  adapMve  antennas  4.   Dynamic  protocols,  cooperaMve  communicaMons  and  coding  5.   New  body-­‐world  interfaces  exploiMng  the  BoWI  concept  for  digital  

ciAzens.  

1- Overview: Technical Challenges

5  

•  VICON  •  Camera  set  +  Reflectors  •  Accurate    •  Equipped  environment  

 •  Xsense  MOVEN  

•  9  DoF  IMU  (MTX)  +  Standard  Embedded  processor  •  Xbus  /  PC:  BT  connecAon  •  17  MTX  @350mW    •  3  orders  of  magnitude  over  Energy  HarvesMng    

1- Overview: Current GAP

BT Radio Link

6  

1- Overview: Project organization

Usage (Designer 12months, 2013)

Inertial Sensors

Dynamic Cooperative Communication Protocol

Wake-Up Radio

Archi. HW/SW Self-adaptivity for Power

Optimisation

Channel Models + Antennas Radio

Available Soon BoWI Research Scope Post BoWI timeline

mm-Waves Front End

BAN (eg Zigbee or upcoming UWB

802.15.4a)

PhD2 PhD3

PhD1

Geolocalisation based on multi-sensors and Distributed Algorithms

New UWB ?

HW/SW/COM Node Architecture Network Protocol-Coding

Pro

toty

pe

(Eng

inee

r, 20

13)

PhD4

Sho

rt-R

ange

Geo

loca

tion

+ M

ulti-

Sen

sor

7  

1- Overview: project strategy

Zyggie Prototype

2.4GHz

Simulator (Matlab)

Algorithms - Bayesian Filtering - Trialeration - Classification

Usage - Case studies - Capture

Node Architecture

- Reconfigurable - Float => Fixed point

Channel Modeling Antenna Design

2.4 => 60GHz

Protocols - Wake Up Radio

Raw data Models

Quantification Noise

Computation & Control Ressources

Constraints

Power Optimization

Communication & Control Resource

C specs.

.bvh

-­‐  Lab-­‐STICC/CERV  (Xsens/Moven)    -­‐  Univ.  Sherbrook,  CA  (Optotrack)    -­‐   ENS/INRIA  (Vicon)  

8  

2- Recent progress

9  

2.1- Usage

10  

2.1- Usage: Combinatorial alphabet

•  Original  Idea:  Propose  the  first  standard  combinatorial  alphabet  of  gestures  

   -­‐  Head,  Arm,  Back,  Legs    >  2000  postures      -­‐  Testbench  for  BoWI      -­‐  No  specific  meaning  but  thousands  of  combinaAons  for  various  applicaAons  cases    

e.g.  Lel  and  Right  Arms:  16  possibiliAes  

11  

2.1- Usage / 1st Test Scenario: Imitation Game

•  Technological  demonstrator  •  “Simon”-­‐inspired  Simple  and  

Playful  Game  •  Popularize  the  alphabet    

12  

2.1- Usage / 1nd prospective scenario

•  FuncMonal  rehabilitaMon  •  Remote  monitoring  

 

13  

2.1- Usage / 2nd prospective scenario

•  Social  Network  •  Gestures  =  CommunicaMon  •  Share  Timed  and  localized  

emoMons  

 

2- Usage: 3nd prospective scenario

•  Func%onal)rehabilita%on)•  Remote)monitoring)"

Pleasant

Attraction Reject

Unpleasant

Posture Axis

Facial Axis

: Neutral : Primary : Secondary

Based on Schlosberg’s Emotion

Organization

14  

2.2- Radio

15  

2.2- Radio Channel

1.   2.4GHz  Zyggie  Antenna  AdaptaMon,  ISM  band,  Johanson  Chip  2.   On-­‐body  channel  measurements:    

§  Instability  §  Ongoing:  Phantom  Based  measures  +  StaAsAcal  Model  (Wiserban  project)  §  Diversity  can  offer  advantages  

M2 M1

Rx  R2  R1  

T1  T2  Tx  

13  cm  ~λ[email protected]  

M1 M2

16  

2.2- Radio Channel

3.   Inter-­‐BAN  Channel  Modeling  -­‐  LOS:  Diversity  interesAng  -­‐  NLOS:  Poor,  but  acceptable  channels  

   4.   Short-­‐term  plan  

§  POSER  studio  +  CST  integraAon:  Radio  channels  for  BoWI  posture  combinatorial  alphabet  

§  Scenario-­‐based  antenna  design  opAmized  for  BoWI  postures    (Ground  plane,  Size,  RadiaAon  paZern,  PolarizaAon)  

5.   Long-­‐term  plan  §  Study  of  mm-­‐waves  channels  (e.g.  60GHz)  

17  

2.3- Algorithms

18  

2.3- Global Scheme

•  Data  Fusion  and  Redundancy  

•  AdaptaAon:  §  F1,  F2:  Algorithms,  Type  of  used  inputs,  Input  data  rate,  #iteraAons  …  §  Choice  /  Use  of  Hardware  resources  done  accordingly      §  Depending  on:  Accuracy  constraints,  Energy  availability,  MoAon,  Node  …  

ni Central Manager

(smartphone) IMU IMU

IMU Position: Pi

(t)[]=F1( Mi[],{Dij[],Pj≠i[]}, Pi(t-1)[] )

Posture ID: Gi[]=F2( {Dij[],Pj[],Gj[]} )

Mi[]

Dij[], Pj[], Gj[]

E

E

E

Dij[], Pj[]

BoWI node

19  

2.3- Architecture Schematic

Calibration Filter IMU fusion

LMS tracking

Iterative Position

Estimation

RX RF-FE

Canal estimation

Classification 1 (e.g. PCA)

Distance estimation

TX RF-FE MAC/Compression

MAC/Uncompress Equalization

Energy management

User configuration

Algo control

Radio control

Speed Position (x,y,z) Orientation

Position

Partial Gesture

Classification 2 FinalPGosture Decision

BoW

I Nod

e S

mar

tpho

ne

BAN Interface •  Minimize  CommunicaMons  •  Self-­‐adaptaMon  •  Dedicated  Node  architecture  

20  

Sensors

Kalman

Acc Gyr Mag

Orientation

LMS

Speed Position (x,y,z)

IPE Position

Classif1

Posture projection

Node Algo

BVH Position

Comparison Position

Posture Posture

Comparison

Classif 2 Posture Decision

Posture

Smartphone

Position IMU synthesis

Calibration Filter

Noise model

Motion capture

Distance

Distance

Radio Model

2.3- Simulator

21  

2-3 Iterative Position Estimation

•  IPE  EsAmaAon  based  on  distances:  §  Compute  [xi,yi,zi]  from  all  Nj≠i[xj,yj,zj,  Rj]  §  Minimize  cumulated  distance  funcAon:  

§  OpAmizaAon  based  on  space  dichotomy  •  8  direcAon  exploraAon  •  Dynamic  step    (/  2k)  •  Some  distances  can  be  fixed  

f (x,y,z) = (x − 1x )! + (y − 1y )! + (z − 1z )! − 1r ! λ1

+ (x − 2x )! + (y − 2y )! + (z − 2z )! − 2r ! λ2

+ (x − 3x )! + (y − 3y )! + (z − 3z )! − 3r ! λ3+

22  

2.3 IPE Simulation •  Average  distance  errors  vs.  σ_Distance  and  σ_Mems  noise  

10  nodes:  

27  nodes:  

 Accuracy  stop  criterion  :      10-­‐2m      10-­‐3m  

23  

2-3 Prediction §  Quaternion  (orientaAon),  angular  &  linear  acceleraAons    based  on  Kalman-­‐like  filters  

(EKF,  UKF,  Gradient,  …)    §  Also  used  to  improve  iniMal  posiMon  with  predicAon  

Position image k+1 Position image k

Prediction (IMU)

24  

2-3 Posture identification §  Example  of  Principal  Component  Analysis-­‐based  idenAficaAon  

•  Case  of  86  Postures  from  a  conAnuous  Capueira  movement  •  Highly  correlated  Postures:  only  3  eigen  vectors  enough  (correlaAon  >  90%)    

25  

2-3 PCA-based identification §  Example  of  PCA-­‐based  idenAficaAon  

•  Case  of  86  Postures  from  a  conAnuous  Capueira  movement  •  Highly  correlated  Postures:  only  3  eigen  vectors  enough  (correlaAon  >  90%)    

26  

2-3 PCA-based identification §  Example  of  PCA-­‐based  idenAficaAon  

•  Case  of  86  Postures  from  a  conAnuous  Capueira  movement  •  Highly  correlated  Postures:  only  3  eigen  vectors  enough  (correlaAon  >  90%)    

27  

2-3 PCA-based identification §  Example  of  PCA-­‐based  idenAficaAon  

•  Case  of  86  Postures  from  a  conAnuous  Capueira  movement  •  Highly  correlated  Postures:  only  3  eigen  vectors  enough  (correlaAon  >  90%)    

28  

2-3 PCA-based identification §  Example  of  PCA-­‐based  idenAficaAon  

•  Case  of  86  Postures  from  a  conAnuous  Capueira  movement  •  Highly  correlated  Postures:  only  3  eigen  vectors  enough  (correlaAon  >  90%)    

29  

•  Experiment  on  RSSI  measurements  with  Zyggie  §  9  postures  §  1min  recording  §  Fixed  posiAons  §  3  environment  (office,  hall,  park)  

2-3 Towards Posture Signature

Right arm up Right arm middle

Right arm down

Left arm up 1 2 3 Left arm middle 4 5 6 Left arm down 7 8 9

30  

•  Experiment  on  RSSI  measurements  with  Zyggie  §  Outdoor  case  

2-3 Towards Posture Signature

Transmitter number

Rece

iver n

umbe

r

Posture 1

2 4 6 8

1

2

3

4

5

6

7

8

9-100

-80

-60

-40

-20

0

Transmitter number

Rece

iver n

umbe

r

Posture 2

2 4 6 8

1

2

3

4

5

6

7

8

9-100

-80

-60

-40

-20

0

Transmitter number

Rece

iver n

umbe

r

Posture 3

2 4 6 8

1

2

3

4

5

6

7

8

9-100

-80

-60

-40

-20

0

Transmitter number

Rece

iver n

umbe

r

Posture 4

2 4 6 8

1

2

3

4

5

6

7

8

9-100

-80

-60

-40

-20

0

Transmitter number

Rece

iver n

umbe

r

Posture 5

2 4 6 8

1

2

3

4

5

6

7

8

9-100

-80

-60

-40

-20

0

Transmitter number

Rece

iver n

umbe

r

Posture 6

2 4 6 8

1

2

3

4

5

6

7

8

9-100

-80

-60

-40

-20

0

Transmitter number

Rece

iver n

umbe

r

Posture 7

2 4 6 8

1

2

3

4

5

6

7

8

9-100

-80

-60

-40

-20

0

Transmitter number

Rece

iver n

umbe

r

Posture 8

2 4 6 8

1

2

3

4

5

6

7

8

9-100

-80

-60

-40

-20

0

Transmitter number

Rece

iver n

umbe

r

Posture 9

2 4 6 8

1

2

3

4

5

6

7

8

9-100

-80

-60

-40

-20

0

31  

•  Promising  results:  Redundancy  to  compensate  radio  inaccuracy  •  Improve  signature  informaAon  content  with  other  parameters:  

§  High  Order  staAsAcs  §  Gravity/Quaternion  vectors  §  PredicAon  (inter-­‐posture  correlaAon)  

•  Ongoing  work  on  different  learning  &  classificaAon  methods:  §  Outlier  eliminaAon  §  Principal  Component  Analysis,  Support  Vector  Machine,  Neuron  Networks  

•  Distributed  algorithms  §  Parallel  implementaAon  on  nodes  §  Node  /  Smartphone  parAAoning  for  communicaAon  minimizaAon  

2-3 Towards Posture Signature

32  

2.4- Architecture

33  

•  AdapAve  Hardware  §  Reconfigurable  hardware  specialized  to  Control/Compute/Store  

§  Efficient  dynamic  reconfiguraAon    §  Fine-­‐Grain  Power  Management  

•  Power  gaAng  • Body  Bias    

2-4 Towards  Run-­‐Time  Fully  AdapMve  mulM  core  Architecture  

Close to energy efficiency of fully specialized hardware but with much higher flexibility and hardware reuse.

Control

data-path

reg./mem.

Control

data-path

reg./mem.

Control

data-path

reg./mem.

Global Controller

Control

data-path

reg./mem.

34  

2-4 Hardware / Algorithm adaptation

•  ComputaAon  requirements  /  algorithm  parameters  §  Algorithm  choices  =>  huge  impact  on  computaAons  (so  power)  §  Node  Level  adaptaAon  is  mandatory  

!""#$%"&'

()*+,-'

(.#/0'

123'4$,+5"0'

123'67+%0,'

841'

35  

2-4 Hardware design projection

•  Very  first  “ulMmate  bounds”  esAmaAons  §  28nm  FDSOI,  1nJ/bit,  7.5pJ/MAC32,  no  PCA,  48b  messages  

•  Case  1  (worst):  17  nodes,  EKF:  50Hz,  IPE:  50Hz,  M=1,  Precision  1cm  •  Case  2  :  17  nodes,  EKF:  50Hz,  IPE:  25Hz,  M=2,  Precision  1cm  •  Case  3  :  17  nodes,  EKF:  50Hz,  IPE:  10Hz,  M=3,  Precision  1cm  

•  Notes:  §  Big  impact  of  communicaAon  policy  §  MEMS  not  included:  add  50μW  without  Gyrometer.    

   

Ultimate Power Bounds Case 1 Case 2 Case 3 ComputaMon  +  Memory:   5.9  μW 5.2  μW 4.9  μW Radio:   22  μW 7.7  μW 2.7  μW

36  

2.5- Network

37  

2-5 MAC layer optimization

•  IniAal  MAC  protocol:  IEEE802.15.4    (low  power  Zigbee)  §  Frame  divided  in  Ameslots  §  Each  node  listens  in  each  Ame  slot  to  get  other  node  RSSI  and  send  

data  to  the  manager  §  Balise:  Synchro  by  the  manager  §  SuperTrame:  123ms  @  8Hz    

38  

2-5 MAC layer optimization on Zyggie

•  Improve  MAC  protocol:  IEEE802.15.4    (low  power  Zigbee)  §  SeparaAon  of  short  RSSI  and  larger  Data  Frames  

39  

2-5 MAC layer optimization on Zyggie

•  Improve  MAC  protocol:  IEEE802.15.4    (low  power  Zigbee)  §  SeparaAon  of  short  RSSI  and  larger  Data  Frames  

40  

3- Conclusion & Perspectives

41  

•  Challenging  project:  §  RSSI  Inaccuracy  §  Ultra  Low  power  architecture  :  <  200µW  from  (Energy  HarvesAng)  §  Distributed  system  with  limited  communicaAons  (Power  impact)  

•  OpportuniMes  §  AdaptaAon  (moAon,  correlaAon  vs  communicaAon  cost,  etc..)  §  Redundancy  §  OperaAonal  Zyggie  prototype  for  research  (algorithms,  

communicaAon,  radio)  §  MulAdisciplinary  team  

3- Conclusion

42  

•  Short  term  §  Node  Architecture  Design  §  ClassificaAon  method  and  Node/Smartphone  parAAoning  §  Channel  modeling  based  on  postures  §  MIMO  (diversity,  precoding,  distributed)  

•  Long  term  §  ASIC  design  §  mm-­‐waves  front  end  

3- Perspectives

43  

3- Perspectives

- Postures/Applications - Compilation Synthesis - Configuration Repositories

Monitoring information

- Decision Application - Management