Biogeochemical Characterization of a Wetland Impacted by ...

258
Biogeochemical Characterization of a Wetland Impacted by Alkaline Mine Tailings Located in North Cobalt, Ontario Submitted by Jenifer Kelly, B.Eng. A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science Department of Earth Sciences Carleton University Ottawa, Ontario January 2006 @ copyright 2006, Jenifer Kelly Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Transcript of Biogeochemical Characterization of a Wetland Impacted by ...

Biogeochemical Characterization of a Wetland Impacted by Alkaline Mine Tailings Located in

North Cobalt, Ontario

Submitted by

Jenifer Kelly, B.Eng.

A thesis submitted to the Faculty of Graduate

Studies and Research in partial fulfillment of the

requirements for the degree of Master of Science

Department o f Earth Sciences

Carleton University

Ottawa, Ontario

January 2006

@ copyright

2006, Jenifer Kelly

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and Archives Canada

Published Heritage Branch

395 Wellington Street Ottawa ON K1A 0N4 Canada

Bibliotheque et Archives Canada

Direction du Patrimoine de I'edition

395, rue Wellington Ottawa ON K1A 0N4 Canada

Your file Votre reference ISBN: 0-494-13467-4 Our file Notre reference ISBN: 0-494-13467-4

NOTICE:The author has granted a non­exclusive license allowing Library and Archives Canada to reproduce, publish, archive, preserve, conserve, communicate to the public by telecommunication or on the Internet, loan, distribute and sell theses worldwide, for commercial or non­commercial purposes, in microform, paper, electronic and/or any other formats.

AVIS:L'auteur a accorde une licence non exclusive permettant a la Bibliotheque et Archives Canada de reproduire, publier, archiver, sauvegarder, conserver, transmettre au public par telecommunication ou par I'lnternet, preter, distribuer et vendre des theses partout dans le monde, a des fins commerciales ou autres, sur support microforme, papier, electronique et/ou autres formats.

The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

L'auteur conserve la propriete du droit d'auteur et des droits moraux qui protege cette these.Ni la these ni des extraits substantiels de celle-ci ne doivent etre imprimes ou autrement reproduits sans son autorisation.

In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.

While these forms may be included in the document page count, their removal does not represent any loss of content from the thesis.

Conformement a la loi canadienne sur la protection de la vie privee, quelques formulaires secondaires ont ete enleves de cette these.

Bien que ces formulaires aient inclus dans la pagination, il n'y aura aucun contenu manquant.

i * i

CanadaReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

The wetland area studied in the Farr Creek drainage basin in North Cobalt is entirely

floored with alkaline mine tailings containing elevated concentration levels of metals

including As, Co, Cu, Zn, Pb, and Sb. The results from this study clearly indicate that

this wetland is a net sink for metals, with over 75% (by mass) o f the metals being

retained in the sediments. Also, up to 25 % (by mass) of the metals were retained in the

leaves o f Typha latfolia. Both oxidizing and reducing bacteria were quantified

throughout the wetland and it was found that both types o f bacteria were prevalent

throughout the wetland at similar population levels. This would suggest that both oxic

and anoxic geochemical processes are prevalent throughout this system. It is likely that

the presence of localized oxic zones in the vicinity o f root zones o f Typha latfolia,

supported the APB populations observed. The sequentially extracted metals (SEM)

results indicated that much of the metals retained in the sediments are associated with the

residual and organic matter (OM) fractions. These results have highlighted the

geochemical processes prevalent in Alkaline drainage systems which are quite different

from those observed in acid drainage systems. These results indicate the importance in

considering both the geochemical conditions of the wetland or system being used to treat

the mine drainage, as well as to have a detailed understanding o f the metals o f concern

within the mining waste because different metals will have different geochemical

interactions based on redox conditions, presence o f sulfides, Fe and Mn oxides, and

organic matter.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOW LEDGEM ENTS

I would like to extend thanks to my supervisors, Dr. Fred Michel and Dr. Pascale

Champagne for their guidance, supervision and support throughout this project. I would

also like to thank Dr. Nimal De Silva for conducting my metals analysis in such a timely

fashion and Lyne Lortie and Doug Gould of CANMET who helped me a great deal with

my microbiological analyses.

This project was funded by NSERC Discovery Grant (through Dr. Pascale Champagne)

and Natural Resources Canada by providing direct and in-kind funding contributions.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

1.0 INTRODUCTION.............................................................................................................1

1.1 Study Area............................................................................................................................1

1.2 Study Objectives................................................................................................................ 4

2.0 BACKGROUND...............................................................................................................5

2.1 Literature Review................................................................................................................5

2.1.1 Mine drainage............................................................................................................. 5

2.1.2 Treatment Options.......................................................................................................6

2.1.3 Geochemical Processes in Freshwater Aquatic Environments.............................7

2.1.4 Previous Studies on the Use o f Wetlands for Treating NAM D..........................13

2.2 Site Background Information.......................................................................................... 19

2.2.1 General Geology........................................................................................................19

2.2.2 Silver Vein Occurrence and Geochemistry........................................................... 20

2.2.3 Tailings Deposits and Composition....................................................................... 21

2.2.4 Farr Creek Tailings Deposit Geochemistry.......................................................... 39

3.0 METHODOLOGY.......................................................................................................... 49

3.1 Field M ethods................................................................................................................... 49

3.1.1 Coring Procedures..................................................................................................... 49

3.1.2 Monitoring Well Installation and Sampling...........................................................52

3.1.3 Surface Water Sampling and Flow Measurement.................................................54

3.1.4 Vegetation Sampling................................................................................................. 56

3.2 Laboratory M ethods..........................................................................................................56

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2.1 Water Contents and Organic Matter Determinations...........................................56

3.2.2 Microbiology............................................................................................................. 58

3.2.3 Acid Volatile Sulfides (AVS) and Chromium Reducible Sulfides (CRS)

Sequential Extraction Procedure...................................................................................... 60

3.2.4 Metals Sequential Extractions Procedure............................................................. 62

3.2.5 Total Sediment Digestions for M etals...................................................................65

3.2.6 Metal Extractions from Cattail Samples............................................................... 66

4.0 RESULTS AND DISCUSSION................................................................................... 67

4.1 Hydrogeology and Groundwater F low ............................. 67

4.2 Sediment Metal Concentrations, Organic Matter and Water Contents.....................71

4.3 Sequential Extractions......................................................................................................77

4.4 Acid Volatile Sulfides (AVS) and Chromium Reducible Sulfides (CRS)

Extractions............................................................................................................................... 97

4.5 Pore water Metal Concentrations...................................................................................100

4.6 Porewater Field Parameters Chemistry........................................................................106

4.7 Surface Water Chemistry...............................................................................................112

4.8 Vegetation........................................................................................................................114

4.9 Microbiology.......................... 114

4.10 Mass distribution o f metals between phases.............................................................119

4.11 Discussion......................................................................................................................121

5.0 GEOCHEMICAL SPECIATION MODELLING.................................................. 126

5.1 Background on MINTEQA2......................................................................................... 126

5.2 Model Runs......................................................................................................................128

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 Results..............................................................................................................................130

5.3.1 Modeled Runs without Adsorption...................................................................... 130

5.3.2 Modeled runs with Adsorption.............................................................................132

5.4 Discussion o f Modeling Results from Each Core Location......................................133

5.5 Discussion....................................................................................................................... 135

6.0 CONCLUSIONS...........................................................................................................137

7.0 RECOMMENDATIONS............................................................................................. 140

8.0 REFERENCES..............................................................................................................142

APPENDICES

Appendix A - Borehole Logs.................................................................................................. 162

Appendix B - Summary of Field and Laboratory Chemical Analysis Results................165

Appendix C - Modeling Results Raw Data...........................................................................212

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

Table 2-1: Oxidation of Organic Compounds (Chemoorganotrophs, All Heterotrophs) (Morel and Hering, 1993).............................................................................................................8

Table 2-2: Ore-bearing minerals in Cobalt Veins (Petruk, 1971b and Boyle and Dass, 1971)............................................................................................................................................. 22

Table 2-3: Vein Composition from Cobalt Area (Petruk, 1071b)........................................23

Table 2-4: Average metal concentrations in native bedrock units from the Cobalt area (Boyle et al., 1967)...................................................................................................................... 24

Table 2-5: Trace metal concentrations in tailings samples collected from the Cobalt area (taken from Dumaresq, 1993)....................................................................................................29

Table 2-6: Major components from core samples collected from Farr Creek and Mill Creek (Percival et al., 2004)...................................................................................................... 32

Table 2-7: Trace metal concentrations from core samples collected from Farr Creek and Mill Creek (Percival et al., 2004)...............................................................................................33

Table 2-8: Trace metal concentrations from core pore water samples collected from Farr Creek and Mill Creek (Percival et al., 2004)...........................................................................34

Table 2-9: Trace metal concentrations from surface water samples collected from Farr Creek and Mill Creek (Percival et al., 2004)...........................................................................36

Table 2-10: Anion concentrations from surface water samples collected from Farr Creek and Mill Creek (Percival et al., 2004).......................................................................................40

Table 2-11: Maximum allowable concentrations (MAC) for Ni based on water hardness (taken from Dumaresq, 1993).................................................................................................... 46

Table 4-1: Sediment metal concentrations for June and September 2004 cores using aqua regia digestions and ICP MS.......................................................................................................75

Table 4-2: Porewater dissolved metals concentrations.........................................................101

Table 4-3: Monitoring wells groundwater field chemistry.................................................. 107

Table 4-4: Surface water chemistry for selected parameters...............................................113

Table 4-5: Extracted metal concentrations from cattail samples........................................ 115

vm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4-6: Mass Distribution o f heavy metals between solid, dissolved and vegetative uptake phases............................................................................................................................. 120

Table 5-1: Location and depth for each modeled run...........................................................128

Table 5-2: Percent difference o f pH values for modeled runs without adsorption......... 132

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Figure 1-1: Location of Cobalt, Ontario (Taken from Dumaresq, 1993)..............................2

Figure 1-2: Study Area..................................................................................................................3

Figure 2-1: Typical pore water profile (Fortin, 2003)............................................................10

Figure 2-2: Locations o f tailings deposits in the Cobalt area (Dumaresq, 1993)...............27

Figure 2-3: Location of core samples collected from Farr Creek and Mill Creek by Percival et al., 2004..................................................................................................................... 31

Figure 2-4: Location o f surface water samples collected from Farr Creek and Mill Creek by Percival et al., 2004................................................................................................................38

Figure 3-1: Location o f June and September Core Samples..................................................51

Figure 3-2: Location of groundwater monitoring wells installed in June 2004.................. 53

Figure 3-3: Location of surface water samples collected in June 2004............................... 55

Figure 4-1: Groundwater elevation measurements collected in September 2004 for all onsite monitoring wells...............................................................................................................69

Figure 4-2: Vertical gradients calculated from September hydraulic head measurements from selected onsite monitoring wells...................................................................................... 70

Figure 4-3a: Core J1 - water and organic matter content...................................................... 72

Figure 4-3b: Core J2 - water and organic matter content...................................................... 72

Figure 4-3c: Core J3 - water and organic matter content...................................................... 72

Figure 4-3d: Core J4 - water and organic matter content...................................................... 72

Figure 4-3e: Core J5 - water and organic matter content...................................................... 72

Figure 4-3f: Core J7 - water and organic matter content...................................................... 72

Figure 4-3g: Core J8 - water and organic matter content...................................................... 73

Figure 4-3h: Core J9 - water and organic matter content...................................................... 73

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4-3 i: Core J10 - water and organic matter content....................................................73

Figure 4-3j: Core SI - water and organic matter content.....................................................73

Figure 4-3k: Core S2 - water and organic matter content.....................................................73

Figure 4-31: Core S3 - water and organic matter content.................................................... 73

Figure 4-3m: Core S4 - water and organic matter content....................................................74

Figure 4-3n: Core S5 - water and organic matter content..................................................... 74

Figure 4-4a(i): Core J1 - As, Co, Cu, Zn Sediment Concentrations....................................78

Figure 4-4a(ii): Core J1 - Ni, Pb, Sb Sediment Concentrations........................................... 78

Figure 4-4b(i): Core J2 - As, Co, Cu, Zn Sediment Concentrations....................................79

Figure 4-4b(ii): Core J2 - Ni, Pb, Sb Sediment Concentrations........................................... 79

Figure 4-4c(i): Core J3 - As, Co, Cu, Zn Sediment Concentrations....................................80

Figure 4-4c(ii): Core J3 - Ni, Pb, Sb Sediment Concentrations........................................... 80

Figure 4-4d(i): Core J4 - As, Co, Cu, Zn Sediment Concentrations....................................81

Figure 4-4d(ii): Core J4 - Ni, Pb, Sb Sediment Concentrations........................................... 81

Figure 4-4e(i): Core J5 - As, Co, Cu, Zn Sediment Concentrations....................................82

Figure 4-4e(ii): Core J5 - Ni, Pb, Sb Sediment Concentrations........................................... 82

Figure 4-4f(i): Core J7 - As, Co, Cu, Zn Sediment Concentrations.....................................83

Figure 4-4f(ii): Core J7 -N i , Pb, Sb Sediment Concentrations........................................... 83

Figure 4-4g(i): Core J8 - As, Co, Cu, Zn Sediment Concentrations....................................84

Figure 4-4g(ii): Core J8 - Ni, Pb, Sb Sediment Concentrations............................................84

Figure 4-4h(i): Core J9 - As, Co, Cu, Zn Sediment Concentrations....................................85

Figure 4-4h(ii): Core J9 - Ni, Pb, Sb Sediment Concentrations............................................85

Figure 4-4i(i): Core J10 - As, Co, Cu, Zn Sediment Concentrations...................................86

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4-4i(ii): Core J10 - Ni, Pb, Sb Sediment Concentrations.......................................... 86

Figure 4-5a: Sequential extractions results for Arsenic......................................................... 89

Figure 4-5b: Sequential extractions results for Cobalt.......................................................... 89

Figure 4-5c: Sequential extractions results for Zinc...............................................................90

Figure 4-5d: Sequential extractions results for Copper......................................................... 90

Figure 4-5e: Sequential extractions results for Nickel........................................................... 91

Figure 4-5f: Sequential extractions results for Lead...............................................................91

Figure 4-5g: Sequential extractions results for Antimony..................................................... 92

Figure 4-6a: Core SI - AVS and CRS Concentrations.........................................................99

Figure 4-6a: Core S2 - AVS and CRS Concentrations........................................................ 99

Figure 4-6a: Core S3 - AVS and CRS Concentrations........................................................ 99

Figure 4-6a: Core S4 - AVS and CRS Concentrations........................................................ 99

Figure 4-6a: Core S5 - AVS and CRS Concentrations........................................................ 99

Figure 4-7a: Core SI - Al, Fe porewater concentrations..................................................... 103

Figure 4-7b: Core SI - Pb, Ti, Zn porewater concentrations..............................................103

Figure 4-7c: Core SI - As, Co, Sb porewater concentrations.............................................103

Figure 4-7d: Core S2 - Al, Fe porewater concentrations.................................................... 103

Figure 4-7e: Core S2 - Pb, Ti, Zn porewater concentrations..............................................103

Figure 4-7f: Core S2 - As, Co, Sb porewater concentrations..............................................103

Figure 4-7g: Core S3 - Al, Fe porewater concentrations.................................................... 104

Figure 4-7h: Core S3 - Pb, Ti, Zn porewater concentrations..............................................104

Figure 4-7i: Core S3 - As, Co, Sb porewater concentrations..............................................104

Figure 4-7j: Core S4 - Al, Fe porewater concentrations..................................................... 104

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4-7k: Core S4 - Pb, Ti, Zn porewater concentrations..............................................104

Figure 4-71: Core S4 - As, Co, Sb porewater concentrations..............................................104

Figure 4-7m: Core S5 - Al, Fe porewater concentrations...................................................105

Figure 4-7n: Core S5 - Pb, Ti, Zn porewater concentrations..............................................105

Figure 4-7o: Core S5 - As, Co, Sb porewater concentrations.............................................105

Figure 4-8a: Core SI - Porewater sulfate and alkalinity concentrations..........................108

Figure 4-8b: Core SI - Porewater sulfide and Fe(II) concentrations................................108

Figure 4-8c: Core SI - Porewater pH and dissolved oxygen concentrations................... 108

Figure 4-8d: Core S2 - Porewater sulfate and alkalinity concentrations........................... 108

Figure 4-8e: Core S2 - Porewater sulfide and Fe(II) concentrations................................108

Figure 4-8f: Core S2 - Porewater pH and dissolved oxygen concentrations.................. 108

Figure 4-8g: Core S3 - Porewater sulfate and alkalinity concentrations..........................109

Figure 4-8h: Core S3 - Porewater sulfide and Fe(II) concentrations............................... 109

Figure 4-8i: Core S3 - Porewater pH and dissolved oxygen concentrations....................109

Figure 4-8j: Core S4 - Porewater sulfate and alkalinity concentrations........................... 109

Figure 4-8k: Core S4 - Porewater sulfide and Fe(II) concentrations.................................109

Figure 4-81: Core S4 - Porewater pH and dissolved oxygen concentrations....................109

Figure 4-8m: Core S5 - Porewater sulfate and alkalinity concentrations.........................110

Figure 4-8n: Core S5 - Porewater sulfide and Fe(II) concentrations............................... 110

Figure 4-8o: Core S5 - Porewater pH and dissolved oxygen concentrations.................. 110

Figure 4-9a: Core SI - Microbial populations with depth.................................................. 116

Figure 4-9b: Core S2 - Microbial populations with depth.................................................. 116

Figure 4-9c: Core S3 - Microbial populations with depth.................................................. 116

xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4-9d: Core S4 - Microbial populations with depth.................................................. 116

Figure 4-9e: Core S5 - Microbial populations with depth..................................................117

xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.0 INTRODUCTION

All sediments contain natural background concentrations of trace metals from the

surrounding bedrock material (Gambrell, 1991). Anthropogenic sources of metals,

including mining wastes, runoff waste streams, and air fall deposition from industrial

operations, are becoming increasingly an issue for contamination o f downstream

environments and health impacts to aquatic species and humans. As a result, it is

important to characterize metal distributions and transformations in aquatic environments

to better understand the geochemical and biological processes regulating these

transformations.

This section gives a brief introduction to the study area (Section 1.1) and provides the

study objectives (Section 1.2).

1.1 Study Area

The study area is located in the Farr Creek drainage area, in Cobalt, ON. Cobalt is

located on Highway 1 IB, approximately 130 km north o f North Bay, ON (Figure 1-1).

The wetland area investigated in this study is confined to a relatively narrow northeast

oriented valley that is bounded to the south by Crosswise Lake and the remnants o f a

gravel dam, and bounded to the north by a water level control dam. Tailings underlie the

entire study area as well as both upgradient and downgradient o f the study area. Farr

Creek flows northeast through the study area (Figure 1-2). Mill Creek, which transports

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1-1: Location of Cobalt, Ontario (Taken from Dumaresq, 1993)

ONTARIO

CobaltNorth Bay

Ottawa

Toronto

200km

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1-2: Study Area

Legend

D am s

T a ilin g s Dep os its

200 0 200 400 Meters

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

metal loadings from several upstream tailings deposits and organic loadings from the

municipal wastewater lagoon flows into Farr Creek as shown on Figure 1-2. The

northern portion o f the area is maintained under a water cover for much of the open water

season, whereas the southern portion of the area is relatively dry throughout the summer

and fall. This is further evidenced by the establishment of grasses and sedges in the drier

areas, while waterlogged areas are primarily populated with cattails.

1.2 Study Objectives

The main objectives of this research were to characterize the biogeochemical interactions

occurring throughout the wetland and to evaluate the wetland’s ability to effectively

attenuate heavy metals. This was accomplished by:

• Determining the magnitude and distribution o f acid producing bacteria (APB),

iron reducing bacteria (IRB), and sulfate reducing bacteria (SRB) populations

throughout the wetland;

• Characterizing the abundance and distribution of geochemical species in the

sediment, porewater, and surface water;

• Correlating microbial population results with porewater chemistry and sediment

metals concentrations; and

• Conducting geochemical speciation modeling and adsorption modeling to

determine the role precipitation and adsorption reactions have on metal

immobilization throughout the wetland.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.0 BACKGROUND

The environmental disturbance resulting from mining wastes has become a well

documented problem. Drainages and/or seepages from mine adits, waste rock piles, and

tailings impoundments containing elevated, and in many cases toxic concentrations of

heavy metals, can have deleterious effects on the receiving environments. The following

section will provide a literature review o f the problems associated with mine drainage,

the geochemical processes that are occurring in aquatic environments, the applicability of

wetlands as passive treatment options for mining wastes (Section 2.1), and a summary of

background geology and tailings geochemistry from the study area (Section 2.2).

2.1 Literature Review

2.1.1 Mine drainage

The most studied mine waste problem is acid mine drainage (AMD). This occurs when

sulfide bearing material is exposed to the atmosphere and undergoes oxidation. The

oxidation of sulfides, which may be catalyzed by microbial populations, produces

sulfuric acid. This can result in extremely low pH waters, depending on the amount of

sulfides in the waste rock or tailings. The highly acidic conditions produced enhance

heavy metal dissolution. Metals are typically more soluble under low pH conditions due

to the increased competition between protons and metal cations for organic ligands

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Schnoor, 1996). The dissolved metals have the potential to migrate offsite resulting in

potential negative impacts to both humans and aquatic organisms.

The acidity produced from the oxidation reactions can potentially become neutralized if

there is adequate carbonate minerals present in the tailings and mixing waters. This can

result in net neutral or alkaline mine drainage (NAMD). NAMD can also be produced

from mining wastes containing little to no sulfides. Such drainage, although non-acidic,

can also contain elevated dissolved metal concentrations, which can potentially impact

receiving environments.

2.1.2 Treatment Options

Historically several mining companies have used active treatment options for mitigating

impacts to the environment as a result o f acid mine drainage. These options typically

involved chemical additions o f neutralizing agents such as lime, which was quite

expensive. This sparked the movement towards passive treatment options, one o f which

is the use of constructed or natural wetlands to attenuate the metals. Currently, two types

of treatment wetlands are used: aerobic wetlands and anaerobic wetlands.

Aerobic wetlands typically have a large surface area pond with horizontal surface flow

and aquatic vegetation such as cattails (Typha latfolia). The typical water cover should

be maintained between 15 to 45 cm in depth (Berghom and Hunzeker, 2001). Shallower

areas may enhance the oxygenation o f surficial sediments and oxidizing reactions.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Deeper areas generally decrease the vegetative diversity in the wetland (Berghom and

Hunzeker, 2001). These wetlands are only effective for NAMD because the predominant

metal removal/immobilization pathway is via oxidation reactions. As such, the

operational pH should be maintained above 5.5. Under oxic conditions Fe and Mn form

amorphous Fe and Mn oxides, hydroxides and oxyhydroxides, which contain prime

adsorption sites where metals can be bound. It has also been shown that selected metals,

such as As, can coprecipitate with Fe oxides and/or hydroxides (Gambrell et al., 1994).

Anaerobic wetlands typically consist of a large pond with an organic substrate layer

which is typically 30 to 60 cm thick (Berghom and Hunzeker, 2001). Vegetation may

help stabilize the organic layer and provide additional substrate to perpetuate sulfate

reduction. The organic substrate stimulates chemical and microbial reduction reactions

which generate alkalinity and increase solution pH. The organic matter removes any

oxygen which allows for iron and sulfate reduction. Anaerobic wetlands are better suited

for AMD waste streams because the prime method o f metal removal is through iron and

sulfate reduction. This results in the precipitation of metal sulfides. Sulfate reducing

bacteria typically thrive in relatively neutral environments, however, Fortin et al. (1996)

have reported active SRB populations in waters with pH values of less than 4.

2.1.3 Geochemical Processes in Freshwater Aquatic Environments

Redox condition and pH are the two most important parameters used to characterize

geochemical interactions. Microbial populations play a vital role in the cycling of

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

geochemical species. Organic substrates, nutrients and terminal electron acceptors are

required by microbial populations to survive. Variations in these geochemical species

will dictate the dominance of certain microbial populations. Microorganisms will derive

their energy from the breakdown o f organic substrates by sequentially using electron

acceptors in the most energetically favourable order (Hunter, et al., 1998). Table 2-1 lists

the chemical equations for the sequential oxidation of organic compounds by

microorganisms.

Table 2-1: Oxidation of Organic Compounds (Chemoorganotrophs, All

Heterotrophs) (Morel and Hering, 1993)

Aerobic Respiration:

CH2 O + O2 “ CCh +H 2O AG°=-119 KJ/mol

Denitrification

1/4CH20 + 1 /5N 0 3 + 1/5I f -» 1/4C 0 2 + I/ION2 + 7/20H2O AG°=-113 KJ/mol

Manganese Reduction

1/4CH20 + l/2M n 0 2 + i f -> 1/4C 0 2 + l/2M n2+ + 3/4H20 AG°=-96.9 KJ/mol

Iron Reduction

1/4CH20 + Fe(OH ) 3 + 2 l f -» 1/4C 02 + Fe2+ + 11/4H20 AG°=-46.7 KJ/mol

Sulfate Reduction

1/4CH20 + I/8 SO4 2' + l / 8 F f -> 1/4C 0 2 + 1/8HS' + 1/4H20 AG°=-20.5 KJ/mol

Methanogenesis

1/4CH20 1/8C0 2 + I/8 CH4 AG°=-17.7 KJ/mol

Hydrogen Fermentation:

1/4CH20 + 1/4H20 1/4C0 2 + 1/2H2 AG°=-1.1 KJ/mol

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Gibbs free energy of formation values for each reaction is included in Table 2-1.

Microorganisms will typically favour the reactions with the highest Gibbs free energy

value (aerobic respiration) and sequentially move down the chain once electron acceptors

become consumed. It is important to note that these reactions are competitive between

different microbial populations (Hunter et al., 1998).

In the oxic zone o f the sediments, aerobic respiration is prevalent. Arsenopyrite (FeAsS),

which is a relatively common sulfide mineral found in mine tailings, would undergo

oxidation as shown by the reaction shown in equation 2 - 1, when present in the oxic zone

of the tailings(Boyle and Dass, 1971):

2FeAsS + 702 + 2H2O 2 FeAsC>4 + 2H2SO4 (Equation 2-1)

The sulfuric acid produced from this reaction immediately reacts with carbonates present

in the tailings to produce soluble sulfates. The reaction of FeC0 3 with sulfuric acid is

presented in equation 2-2 ( Boyle and Dass, 1971):

FeCC>3 + H2SO4 -> FeS04 + H2CO3 (Equation 2-2)

Fe is further oxidized to Fe(III) as ferric sulfates and hydrous ferric oxides and/or

oxyhydroxides as shown in equation 2-3 (Boyle and Dass, 1971):

12FeS0 4 + 6O2 + XH2O -> Fe2(SC>4)3 + 4Fe203«xH2 0 (Equation 2-3)

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

These oxidation reactions may be catalyzed by a wide range of acidophilic and

neutrophilic microorganisms. Figure 2-1 presents a typical pore water redox zonation

profile for submerged sediments.

Figure 2-1: Typical pore water profile (Fortin, 2003)

Water

DON 03

sediment

DepthMn(II)

Fe(II)

S04

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Immediately below the sediment-water interface there is a rapid reduction in the

dissolved oxygen concentration, indicating the development of anoxia, followed by the

reduction o f nitrate concentration. The end product of nitrate reduction is nitrogen gas,

which may either be converted to organic nitrogen by nitrogen fixating bacteria or

released to the atmosphere. This process generates permanent alkalinity by removing one

equivalent H+ ion per ion of nitrate reduced (Rudd et al., 1986). As such, if acidic

conditions persist in the oxic zone of sediments or the water column, there will be a shift

towards increasing pH with depth. Deeper into the sediments there is a measurable

increase in reduced manganese, followed by an increase in reduced iron. Both Mn and

Fe reduction may generate alkalinity. For each equivalent H+ ion two Fe or Mn ions are

reduced. Further in depth within the pore water profile there will be a reduction in sulfate

concentrations. Sulfate reduction converts sulfate to sulfides. If there is a significant

concentration of dissolved metals, such as reduced Mn, iron and other metal sulfide

precipitates may form. Sulfate reduction also generates alkalinity. For each equivalent

H+ ion two sulfate ions are reduced. The alkalinity produced from Mn, Fe and sulfate

reduction is not permanent. Should the sediments become reoxidized, the reduced Mn,

Fe and sulfide are converted back to their oxidized forms o f manganese oxides, iron

oxides and sulfate respectively, thereby consuming the alkalinity produced by the

reduction processes (Rudd et al., 1986). This is typical in hypolimnetic lakes during fall

overturn where the lake completely mixes resulting in oxic conditions throughout the

entire depth of the lake. In the absence o f adequate nitrate, Mn or Fe oxides, and sulfate,

methanogenesis and hydrogen fermentation will proceed where an external organic

substrate is converted directly to carbon dioxide and methane during methanogenesis and

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to carbon dioxide and hydrogen gas during hydrogen fermentation. These processes do

not add to the alkalinity budget.

The most common chemical species contributing to alkalinity in fresh waters are shown

in equation 2-4 (Cook et al., 1986):

Aik = 2C 032' + H C 03' - H+ + 2S2‘ + HS' + NH3 (Equation 2-4)

2 2At neutral to slightly acidic pH values, the contribution of C 0 3 \2S ’ and NH3 to the

overall alkalinity are negligible and the dissolution of carbonates in water adds equal

amounts o f H+ and H C 03‘ (Cook et al., 1986). Therefore the overall reaction can be re­

written in terms o f the redox species produced, as shown in equation 2-5 (Cook et al.,

1986):

AAlk = AFe(II) +AMn(II) - AN03‘ - 2AS042' (Equation 2-5)

This production of alkalinity during nitrate, Mn and Fe reduction may help insure

adequate pH values for sulfate reduction. Microorganisms involved in sulfate reduction

cannot survive in pH less than 5 (Fortin et al., 1996).

It is important to note, that all o f the above redox reactions are catalyzed by

microorganisms. Only oxidation and reduction of Fe and Mn can occur abiotically as

well as mediated by microorganisms (Fortin, 2003). Several studies have been conducted

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to determine under what circumstances iron and manganese oxidation occur abiotically

versus biotically. The results of these studies have indicated that iron oxidation is

catalyzed more strongly by bacteria under lower pH conditions where abiotic controls

may take over at circumneutral pH’s (Kirby et al., 1999). It is also speculated that

because both iron and manganese oxides tend to remain as amorphous solids, bacteria

growth onto these surfaces may stimulate further growth, indicating an autocatalytic

process (Tessier et al., 1996; Tipping et al., 1984).

2.1.4 Previous Studies on the Use of Wetlands for Treating NAMD

Metal Immobilization in Soils

Metal contamination in soils is a cumulative process. Retention of metals within

substrates results from Van der Waals interactions between particulate matter and metal

cations, adsorption to organic matter via lewis acid base reactions and precipitation

reactions due to oxidation, hydrolysis, and bacteria catalyzed reactions (Gamrell et al.,

1991). These reactions are influenced by sediment pH, redox condition, and chelating

agents released during decomposition of organic matter (Gambrell et al., 1991).

Microbial biomass and pH are the dominant parameters which control metal adsorption

sediments. Metal adsorption increases with pH and is quite active under circumneutral

to alkaline conditions and becomes reduced under acidic conditions. Organic matter is

typically negatively charged under the pH conditions of most aquatic environments.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bacterial surfaces become neutral at pH values approaching 2 (Yee et al, 2001). As the

pH increases, the bacterial cell walls become increasingly negatively charged due to

deprotonation reactions of surface functional groups such as carboxyl, hydroxyl and

phosphate functional groups (Yee et al., 2000). The negative charge on the bacteria

surface and the positively charged dissolved metal ions generates an electric field where

positively charged ions diffuse towards the negatively charged organic matter surfaces.

Sequential extractions have been used to quantify the forms in which metals are bound in

the sediment substrate. This can give an indication of the metal’s availability for uptake

by organisms. There are five major fractions o f sediments: residual fraction,

exchangeable fraction, carbonate fraction, Fe and Mn oxides fraction, and organic matter

fraction. Metals retained in the residual fraction o f the soil are usually in the form of

metal sulfides or adsorbed to clay minerals and are considered relatively unavailable for

uptake by organisms (Grambrell et al., 1991). Exchangeable metal fractions adsorb onto

substrate surfaces but these forms are easily exchangeable with other cations depending

on adsorption kinetics and equilibria (Miller et al., 1983). In high alkalinity waters,

carbonates could bind metals as well (Miller et al., 1983). Metals adsorbed and/or

coprecipitated with the Fe and Mn oxides fraction o f the sediments are relatively

immobile assuming that redox conditions do not change to reducing conditions. This

would result in the dissolution of Fe and Mn oxides, thereby releasing the metals back

into the porewater.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In a complex aquatic system, there are numerous different types o f microorganisms

which may be associated with specific chemical species such as iron oxides. It has also

been suggested that adsorption of metal species to microorganism surfaces may promote

further metal precipitations or enhance the formation of metal complexes, resulting in the

generation o f large molecular weight organic complexes. A classic example of this is the

adsorption o f metals to Fe-humic substance complexes, which form under predominantly

acidic conditions. This results in enhanced metal adsorption to these reactive surfaces

under reduced pH conditions. As a metal-organic matter complex grows, the molecule

may become folded resulting in the permanent adsorption o f metals to the structure.

Fitch and Buken (2003) reported that the main removal mechanism regulating metal

immobilization at a constructed wetland in Trail BC were:

1) adsorption, predominantly to organic matter;

2) coprecipitation with iron oxyhydroxides; and

3) precipitation as metal sulfides.

They also noted that the bulk of the removal was due to coprecipitative adsorption onto

growing Fe oxide particles. There were concerns, however, that metals adsorbed onto

dissolved organic matter molecules could potentially migrate outside o f the wetland.

It has been suggested that adsorbed metals can remobilize easier than metals associated

with sulfide precipitate lattices. A number o f studies have shown that longer residence

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

times in constructed wetlands can enhance the probability of forming metal sulfides

(Machemer and Wildeman, 1992; Sobolewski, 1996; Chague-Goff and Rosen, 2001).

Role o f Wetland Plants on Metal Immobilizations

Wetland plants play an important role in metal removal. Metals may be absorbed directly

into the plant tissue via the shoot system and they enhance filtration and cation exchange

reactions (Deng et al., 2004). The degree to which plant species can retain metals, either

through their root system or through absorption and translocation, is dependent not only

on the specific plant species, but also on its growth stage, and the specific metal

characteristics (Deng et al., 2004). A study was conducted by Deng et al. (2004) where

metal accumulations were tested in both the root zones and the shoots o f 12 different

wetland plant species, one of which was cattails (Typha latfolia). The results indicated

that much higher metal concentrations were retained in the root zone o f the plants as

compared to the amount of metals in the plant shoots and leaves. The metals investigated

were Pb, Cu, Cd, Zn. Jackson et al. (1993) demonstrated that under mildly oxidizing

conditions in the root zone, lower concentrations o f metals were reported in the shoot as

opposed to the root zone. This was attributed to the formation o f amorphous Fe and Al

oxide precipitates to which metals would be adsorbed. It was suggested that the

formation of Fe and Al oxides in the root zones prevented high concentrations of metals

from being taken up into the plants, thereby helping to regulate the internal metal

transport under contaminated conditions.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Wetland plants transport oxygen to the root system, also known as the rhizosphere,

generating a zone of radial oxygen loss (ROL) in an otherwise predominantly anoxic

environment. The total volume o f ROL is dependent on several factors including the root

biomass, location along the root, root age, time of day, season, and soil oxygen demand

(Jacob and Otte, 2003). Thus, even though roots diffuse oxygen into the sediment, whole

root systems may consume this oxygen immediately due to soil and or respiratory

demands. Engler and Patrick (1979) and Trolldenier (1988) showed that in the root zone

there was an increase in sulfide oxidation leading to increased concentrations o f soluble

ferric iron, and a reduction in the pH. Fe may also become oxidized, forming Fe oxide

and oxyhydroxide precipitates, as evidenced by iron plaques observed in the rhizosphere

of some wetland plants (Jacob and Otte, 2003). These plaques can act as adsorption sites

for selected metals, including As, Co, Ni. This oxygen-rich rhizosphere may cycle to

anoxic conditions during the winter months when plants die. Weise et al. (2001) found

that both iron oxidizing bacteria and iron reducing bacteria were present in the

rhizosphere. Sulfides are generally oxidized before Fe. Therefore, it would be expected

that some distance away from the root surface sulfides would be abundant while near the

roots ferric oxide precipitates would be plentiful. Between these zones would be an area

where sulfides have oxidized to sulfates but where iron still exists in its reduced form.

This is the zone where metals which were in the form of metal sulfides such as ZnS

would have optimal mobility, provided no organic matter is present to facilitate

adsorption (Jacob and Otte, 2003).

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vegetation also contributes to the organic matter content o f the sediment through

senescence, root tissue sloughing and the release o f organic acids (Jacob and Otte, 2003).

Through the process of senescence, metals can be immobilized temporarily, however,

they may become redistributed into the water column or surficial sediments (Jacob and

Otte, 2003). The presence of dissolved organic acids in the rhizosphere can enhance the

formation o f soluble metal -organic complexes under oxidizing conditions, thereby

further increasing metal mobility.

Seasonal Influences

Seasonal influences on metal attenuation in natural and constructed wetlands appear to be

site specific. Faulkner and Skousen (1994) found that climate, season, and nutrient

availability in the winter months dramatically reduced sulfate reduction and thus metal

retention. Ye et al. (2001) noted that in the presence of live vegetation there appeared to

be no effect of season on metal retention. They attributed this to the fact that sulfate

reduction was not the main removal mechanism for this treatment wetland. Adsorption

onto iron hydroxides and plant uptake were noted as the main removal pathways. August

et al. (2002 ) studied an older treatment wetland that has been receiving mining

wastewater since the early 1900’s. They found that the wetland shifted from a net sink

for metals in the summer to a net source for metals in the winter months. During the

winter months, the plants would die, fall into the water column and release metals,

particularly Mn, back into the water column. Other factors that contributed to the release

of metals back to the water column include the change in redox condition, flow paths,

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and decreases in microbial activity. This was one of the few studies on an aged wetland.

It was speculated that perhaps this wetland was initially a sink for metals throughout all

seasons and at some point there was a shift due to metal accumulations over several

years.

2.2 Site Background Information

The following sections summarize the local geology, provide a summary o f the ore

deposits geochemistry, a brief history of mining and milling activities, a brief description

o f the tailings deposits in the area and at the study site, and give a brief description of

geochemical properties and interactions of metals of interest. The objective o f these

discussions is to provide the reader with an idea as to the complexity o f the tailings at the

study site.

2.2.1 General Geology

The geology of the Cobalt Mining Camp has been investigated by numerous government,

corporate and independent academic geologists since the discovery o f silver in 1903. The

following section gives a brief summary of the findings of Jambor (1971).

The basic geology o f the area consists o f Archean volcanic basement rocks and interflow

sediments overlain by Proterozoic rocks. The oldest Proterozoic rocks deposited in the

area are the Coleman member o f the Gowganda Formation. These rocks consist

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

predominantly o f conglomerates with variable amounts of argillite, quartzite, and arkose.

Overlying the Coleman member is the Firstbrook member o f the Gowganda Formation.

Typically well bedded, fine grained greywacke and argillite rock units are associated with

the Firstbrook member. The Lorraine Formation overlies the Gowganda Formation. The

rock units in this formation consist o f pink arkose and white quartzite.

Both the Archean and Proterozoic rocks were intruded by a sill-like sheet o f the Nipissing

diabase and later dikes o f olivine and quartz diabase. Paleozoic shales, sandstones and

limestones o f Silurian and Ordovician age unconformably overlie the Proterozoic

formations in the northeastern portion o f the region. Pleistocene sand, gravel and clay

deposits unconformably overlie much of the lowlying area. These sediment deposits can

vary in thickness from a few millimeters to over 90 m.

2.2.2 Silver Vein Occurrence and Geochemistry

Silver deposits in the Cobalt area occur as veins in the fractures, joints, and faults within

the Archean and Proterozoic rocks and the Nipissing diabase. These veins vary in width

from a few millimeters to over 30 cm (Dumaresq, 1993).

The vein mineralogy is quite complex. The gangue minerals include calcite, dolomite,

quartz, and chlorite (Dumaresq, 1993). Other minerals associated with the silver deposits

include arsenides, sulfarsenides, antimonides, arsenates, sulfates, carbonates, silicates,

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

oxides, and sulfides. A complete list of ore minerals with their chemical formulae are

presented in Table 2-2.

Petruk (1971b) analyzed four rock samples from the silver veins and also presented ore

geochemical data collected from other sources. These data are presented in Table 2-3.

As can be seen from these tables, the major components o f the ore materials include

carbonate minerals plus Ni, As, Ag, Co, and S.

Boyle et al. (1967) analyzed samples collected from local rock units located away from

areas o f mineralization to determine background trace metal concentrations. Table 2-4

summarizes his results. The data indicate that significantly elevated concentrations of

As, Sb, Ni, Co, Pb, Zn, Cu, and Mn occur predominantly in the Archean rock units.

Interestingly, Ni, Co, Cu, and Mn were found to have elevated concentrations throughout

all the rock units, with the exception o f the granite and the Lorraine sandstone.

2.2.3 Tailings Deposits and Composition

Tailings consist o f crushed waste rock and any residues or chemicals used in the milling

and refining processes. Therefore it is important to understand the procedures and

processes used in the milling and refining processes to fully characterize the geochemical

reactions with the tailings and surrounding porewater.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 2-2: Ore-bearing Minerals in Cobalt Veins (Petruk, 1971b and Boyle and Dass, (1971)

Mineral Group Mineral Name Chemical FormulaA rsenides Nickeline NiAs

Langisite (Co, N i)AsSafflorite (Co,Fe,Ni)As

Loellingite FeAs2

Rammelsbergite, pararam m elsbergite Skutterite

N iA s2(Co,Fe,N i)As3.x

Sulfarsenides Cobaltite (Co,Fe,Ni)AsSGerdorffite NiAsS

Arsenopyrite FeAsSAlloclatite (Fe,Co)AsS

A ntim onides Breithauptite NiSbUllmannite NiSbS

Allargentum Agi_xSbx

A rsenates Erythrite Co3(A s0 4)2-8H20

Annabergite N i3(A s0 4)2-8H20

Scordite (Fe,A l)A s04-2H20

Sulfides Pyrargyrite A g3SbS3

Tetrahedrite (Cu,Fe)i2Sb4Si3

Chalcopyrite CuFeS2

Bom ite Cu5FeS4Galena PbS

M arcasite, pyrite FeS2Sphalerite (Zn,Fe,M n)S

Pyrrhotite Fe,.xS

M olybdenite MoS2

Oxides Rutile T i0 2

Hem atite Fe20 3

M agnetite Fe30 4

Anatase T i0 2

Illmenite FeTiOj

Sulfates M elanterite F e S 0 4-7H20Gypsum C a S 0 4-2HzO

Silicates Quartz S i0 2Chlorite (M g,Fe)10A l2(SiA l)8O20(O H ,F)16

Albite (Na,Ca)(A l,Si)40 8Carbonates Calcite C a C 0 3

DolomiteM alachite

C aM g(C 03)2Cu2(C 0 3)(O H )2

Hydroxides Lim oniteW ad

FeO(OH)-nH20 hydrated M n 0 2 mixtures

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced

with perm

ission of the

copyright ow

ner. Further

reproduction prohibited

without

permission.

Table 2-3: Vein Composition from Cobalt area (Petruk, 1971b)

ComponentUnits

C aO%

M g O%

M n O%

Fe%

Co%

Ni%

Cu%

Zn%

P b%

A s%

Sb%

A g%

H g%

8 1 0 2

%S%

5.82 4.41 0 .25 1.61 10.56 12.19 tr 0 .0 4 0 .0 4 4 4 .53 2 7 .85 0 .37 na na11.2 3.5 0 .3 6 4 .0 4 10 4.41 0 .0 7 0 .13 0 .05 41.11 0 .82 10.78 0 .8 7 na na7 .98 0 .3 6 0.05 8 .55 14.35 1.82 0.1 0.01 0.03 57 0 .09 0.01 0.01 na na

2 1 .0 6 2 .0 2 0 .06 11.6 9 .18 0 .5 4 0.01 0.01 nd 3 5 .5 7 0.1 0 .0 4 0.03 na na27 .4 8 tr na 7 .1 9 5 .04 0 .7 4 nd na na 3 1 .8 6 na 2 .6 8 na 1.5 0 .6 6na na na 4 .2 8 21.1 tr 0 .19 na na 6 4 .45 tr na na na 4 .7 7

na na na 6 .6 9 13.97 0.53 0 .4 na na 5 0 .7 1.05 0 .1 7 na na 1.71na na na 7 .43 12.1 2 .2 4 tr na na 6 2 .5 6 tr 0 .1 2 na na 0 .6 7na na na 12.42 9 .2 7 tr nd na na 52.93 na 0 .03 na na 1.32

18.3 tr na 10.4 6.25 0 .4 7 nd na na 47 .6 5 na 2.81 na 0 .13 trna na na 4.81 16.02 1.1 tr na na 6 4 .7 9 tr 9 .4 8 na na 1.26na na na 6 .05 9 .56 0 .78 0 .26 na na 3 8 .9 0 .27 0 .3 9 na na 0 .7 2

Average: 15,31 2 .57 0 ,18 7 ,0 9 11.45 2 .48 0 ,17 0.05 0 .0 4 4 9 .34 0 .7 2 3 .1 2 0 .32 0 .8 2 1.59ro^ Notes:

na Not analyzednd Not detected

Reproduced

with perm

ission of the

copyright ow

ner. Further

reproduction prohibited

without

permission.

Table 2-4: Average metal concentrations in native bedrock units from the cobalt area (Boyle et al, 1967)

Elem entUnits

A rchean V olcanics A rchean In terflow Sedim ents

G ranite C olem an C onglom erate C olem an C onglom erate

Colem an G reyw acke Colem an G reyw acke L orraine Sandstone

N ip issing D iabase

Pb Zn Cu A s Sb M o A g N i Co B i M nJilL'il... ppm .......P I T ...... - PPra ..PPm PP,n - PPm PPm ppm ppm ppm

5500

135500

100 10 <2 1 0.25 122 56 <0,05 2500400 80 5 3 3 130 80 0.83 50015 25 6 <1 <2 1 <0.5 2 <10 <0.05 7012 105 57 4 <2 <1 <0.5 150 30 <0.05 15005 25 22 <5 <2 <1 <0.1 60 25 <0.05 50012 75 45 5 <2 <1 <0.5 125 25 <0.05 1000<5 20 20 <5 <2 <1 <0.1 60 25 <0.05 500<2.5 5 2 <1 <2 <1 <0.5 20 <10 <0.05

<0.0520

2000<2.5 65 90 <2 < 2 1 0.11 128 40

H gPPm0.030.050.030.020.1

0.020.1

0.030.03

to

Milling and Refining Processes

Milling and refining processes that were employed throughout the entire Cobalt Camp

have been summarized in great detail by Dumaresq (1993). The following section gives

a brief description of the milling and refining processes.

The first mining operations began in 1904 using hand sorting or gravity separation of the

ore. The first cyanide mill began operation in 1909. This process involved mixing the

crushed ore with KCN to dissolve the Ag. Powdered Al was then added to the mixture to

form Ag precipitates. The precipitate was melted down in a furnace to produce a final

bullion of approximately 960 fine. One negative aspect of using cyanide was the

formation of cyanide complexes (cyanicides) with base metals such as Ni and Co present

in the ore.

In 1911, the Nipissing high grade mill began adding Hg to its cyanide milling process.

The revised protocol involved mixing the crushed ore with Hg and KCN. Chert pebbles

were also added as grinding agents. After approximately 10 hours o f milling the Ag

became amalgamated with Hg. The amalgam was later refined in furnaces for an end

product of 999 fine. This process was discontinued in 1918 due to the increased cost of

Hg. In 1918, all the high grade ores were pretreated with calcium hypochlorite prior to

cyanicidation. This process oxidized the ores thereby preventing the cyanide from

forming complexes with the base metals in the ore such as Ni and Co present in the ore.

This reduced the actual amount of cyanide required in the milling process. In 1921,

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sulfuric acid replaced the calcium hypochlorite because it proved to be more efficient in

oxidizing the base metals.

In 1912, the Nipissing low grade cyanide mill began operation using NaCN instead of

KCN. During World War I, the price of Al rose significantly and as such, many of the

cyanide mills switched to floatation processing. This process involved coating the finely

crushed ore with a mixture of creosote, pine oil, and coal tar. The emulsified ore was

then agitated in floatation cells where the Ag emulsion would float to the top of the cells

and the waste material would sink to the bottom. The concentrates produced from this

process were shipped elsewhere to smelters for refining.

Tailings Deposits

There were several milling operations throughout the Cobalt area. Figure 2-2 presents

the locations o f the major tailings deposits in the Cobalt area. The Crosswise Lake

tailings deposits represent the primary source of contamination in the study area and

these tailings underlie the entire study area. Small amounts o f contaminants have been

deposited into Farr Creek as a result o f downstream transport from Mill Creek.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced

with perm

ission of the

copyright ow

ner. Further

reproduction prohibited

without

permission

Figure 2-2: Locations o f tailings deposits in the Cobalt area (Dum aresq, 1993)

ro

LEGEND

Lakes or Stream s

W astewater Treatment Lagoon

C3

lam)

Study Site

udson^ Chambets-Ferlan Bay

Crosswise LakeTreuiewS

o /V ' ConiagasTailings DepositsLaRose

RoadsNipissing

Buffalo w Low Grade

Nipissing High Grade

Nova Scotia

0

Cart Lake M i(source of base map:

Energy, Mines and Resources, Canada,Air Photo 0A25419-62)

Crosswise Lake Tailings Deposits

Crosswise Lake is home to the largest tailings deposits in the area. Tailings were

deposited from at least five different mills in operation from 1908 to the early 1930’s and

intermittently until the 1970’s (Dumaresq, 1993). A dam was built at the northern limit

o f Crosswise Lake in order to minimize the continued migration of tailings into Farr

Creek. The dam was reportedly constructed in the 1970’s and failed shortly thereafter.

North o f this failed dam is a marshy area followed by a road with a small water level

control dam and overflow weir maintained by the province of Ontario. The purpose of

the water level control dam was to minimize further migration of the tailings by

maintaining water cover over the tailings and enhance the wetland vegetation in the area.

Tailings Composition

Table 2-5 presents geochemical data collected from several different tailings deposits in

the Cobalt area. As can be seen from the table, there is considerable geochemical

variability among the different tailings deposits. The tailings samples collected from

Crosswise Lake show that the tailing are elevated with respect to carbonate and sulfate

minerals, as well as As, Al, Fe, Ni, Sb, Co, Cu, Hg, Pb, Zn, and V.

The Geological Survey o f Canada (GSC) Open File Report 1680 (Percival et al., 2004)

summarized the results of several environmental investigations undertaken to

characterize the environmental conditions o f the Cobalt area. Four sediment cores were

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced

with perm

ission of the

copyright ow

ner. Further

reproduction prohibited

without

permission.

Table 2-5: l race element concentrations in tailings samples collected from the Cobalt area (Taken from Dumaresq, 1993)

Elem ent(ppm) Buffalo Coniagas Thretheway

HudsonBay NLGM

Cobalt Lake Mine*

Cobalt Lake Baseball**

Right o f W ay M ine*** LaRose

SasaginagaCreek**** Nova Seotia

Crosswise Lake, SW

Crosswise Lake, SE

As 6800 594 652 952 11700 11700 41 4700 1040 718 8330 5120 7110Al 60400 47200 50000 46000 40400 39300 47400 36200 50400 53800 46000 42700 30900Sb 468 99 93 148 445 531 229 234 19 143 1590 10 176Fe 56700 43500 40900 41100 51200 60400 47700 46900 49100 41900 46400 42700 56500Mn 680 400 360 401 624 516 455 566 450 369 509 490 592Cl <10 <10 <10 <10 <10 10 10 10 <10 <10 <10 17 17

Mg 13200 8670 14400 15000 7730 6350 6240 6740 106000 5720 9700 7680 7370Ca 9900 4970 4190 3310 4260 2880 5940 2832 3260 2420 10400 4030 3200Hg 3,31 0.72 0.29 0.34 16.6 2.54 0.58 8.36 0.61 0.42 0.77 2.54 2.37Na 23600 38900 31200 33100 25400 17500 63600 23900 23700 68900 2500 24400 21000

C 03 9000 <1000 <1000 <1000 7200 5400 2000 2000 3600 2500 9150 9000 9000S 0 4 11100 40300 6010 11500 9700 6170 7790 15700 13600 10000 2980 12600 20100Cu 699 419 175 650 813 1390 40 693 159 262 210 192 281Pb 961 19 33 107 91 75 11 66 1130 370 267 69 314Zn 913 107 282 361 545 347 99 342 801 194 200 346 233Mo <0.6 <0.6 <0.6 <0.6 <0.6 2.2 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6Co 490 95 142 265 2100 4060 80 1490 173 84 8 286 566Ni 278 76 63 52 10000 2070 64 862 103 88 182 100 88Cd 2.9 1.1 1.9 1.9 2.4 0.9 0.6 1.2 3.2 1.4 1.6 1.2 1.2Cr 155 263 360 110 89 119 119 107 99 116 130 106 38Bi <10 12 15 20 90 <10 <10 <10 <10 <10 <10 <10 53Ba 42 27 42 50 14 30 35 25 63 20 57 38 29Sr 82 77 93 36 67 27 61 57 46 61 58 49 55V 971 195 156 160 159 142 142 167 198 116 120 192 222

Notes:* it is not clear the specific location o f this sample since there was no on land tailings in this area** sample was likely collected from the playing surface o f the baseball diamond at the Cobalt Lion's Club Park*** the Right o f Way Mine did not produce any tailings**** sampling location is not known. Possibly collected within the tailings on the Chamber-Ferland Pronertv. or unstream o f these tnilinoc

collected within 150m of the confluence o f Mill Creek with Farr Creek. The report did

not specify the date when these cores were collected. The specific core locations are

presented on Figure 2-3. The most abundant minerals in these core samples were quartz,

chlorite, and plagioclase. Table 2-6 summarizes the major constituents o f these core

samples and Table 2-7 presents the trace metal concentrations of the core samples. The

major components of the tailings samples include approximately 60% SiC>2, 15% AI2O3,

8%Fe2C>3, 5% MgO, and 4% CaO. The trace metal analytical results indicated that most

of the metals were present in stable and relatively low concentrations as a function of

depth. Between core samples, As, Co, Cu, and Pb displayed elevated concentrations that

increased with depth. Elevated concentrations o f Ni were reported but did not exhibit

any observable trend with depth.

Pore water was also extracted from these cores and analyzed for dissolved metals. Table

2-8 summarizes the dissolved metal concentrations in the pore water samples. In Farr

Creek, upstream of the confluence with Mill Creek (Core C l 4) elevated concentrations of

heavy metals were reported at shallow depths followed by decreases in concentrations

with depth. In Core Cl 3, located in Farr Creek, just downstream of the confluence with

Mill Creek, higher concentrations were reported with depth. Similar ranges in the

concentrations o f heavy metals, such as As, Ni, Co, Pb, Sb, were reported from the pore

water collected from the cores in Mill Creek. However, there were not enough data

available to provide a depth profile.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2-3: Location o f Core Samples collected from Farr Creek and Mill Creek by Percival et al., 2004

Legend

• C o re L o ca tio n s Lakes and P o n d s

DamS R aikru ay

— — — W a te rc o u rs e | ; : i j T a ilin g s D e p o s its

R o a d w a y200 0 200 400 Meters

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced

with perm

ission of the

copyright ow

ner. Further

reproduction prohibited

without

permission.

Table Z-b: Major Components from core samples collected from Farr Creek and Mill Creek (Percival et al., 2004)

N>

Location

Farr Creek, 5m u/s o f confluence with Mill Creek

Farr Creek, 50m d/s o f confluence with Mill Creek

Mill Creek, 150m u/s from confluence with Farr Creek

Mill Creek, 10m u/s from confluence with Farr Creek

Core ID

C14

C13

C12

C15

Variable Units

tection Limits Depth (cm)

S i02wt%0.5

(Fc

A1203wt%0.2

203=F

?e 2 0 3 ( lwt%0.06

e203T -

Fe203wt%

,113xFeO)

FeOwt%

0.2

MnO wt % 0.01

MgOwt%0.04

CaOwt%0.01

420(Twt%0.1

C02(T)wt%

0.1

C 02wt%

0.1C=(CC

Cwt%

0.2)2T-CO

P205wt%0.01

2)/3.66

SCOwt%0.02

LOI

0.1

2.00 62.6 15.1 6.65 2.00 4.2 0.08 3.66 2.05 2.8 0.2 0.9 nd 0.10 0.04 3.612.00 60,3 15.0 7.63 1.90 5.2 0.11 4.70 3.37 3.1 0.5 1.2 nd 0.12 0.11 3.631.00 53.5 15.0 8.99 1.70 6.6 0.14 4.65 4.66 4.5 5.7 3.5 0.6 0.14 0.14 7.931.00 53.8 15.3 8.79 1.20 6.8 0.13 4.64 3.69 5.3 8,1 2.2 1.6 0.15 0.18 8.65.00 56.7 14.4 8.02 1.50 5.9 0.12 4.37 2.74 4.8 6.4 1.3 1.4 0.26 0.24 7.414.50 61.8 15.3 7.30 0.70 5.9 0.09 3.97 2.38 2.8 0.5 1.2 nd 0.11 0.17 2.922.75 53.1 15.3 9.36 1.60 7.0 0.14 5.07 nd 4.4 4.2 2.7 0.4 0.14 0.17 6.633.00 54.3 14.7 8.96 0.60 7.5 0.15 5.45 5.28 3.4 1.9 2.6 nd 0.13 0.19 5.0

3.00 54.0 14.3 8.59 1.60 6.3 0.12 4.79 3.48 4.9 6.4 1.6 1.3 0.15 0.13 7.226.50 54.2 14.6 9.24 1.50 7.0 0.13 5.24 4.18 3.2 1.3 2.0 nd 0.12 0.13 4.326.50 55.7 15.3 9.60 1.60 7.2 0.14 5.52 4.57 3.2 1.4 2.1 nd 0.12 0.11 4.19.00 59.5 14.7 6.75 0.30 5.8 0.10 4.01 2.29 2.8 0.6 1.3 nd 0.13 0.09 3.4

26.00 59.9 15.2 7.33 1.10 5.6 0.09 4.08 2.41 2.8 0.6 1.3 nd 0.12 0.10 3.426.00 57.9 14.3 7.38 0.80 5.9 0.11 4.18 2.90 3.5 4.4 1.8 0.7 0.19 0.14 5.439.75 52.8 15.5 9.25 0.70 7.7 0.12 4.84 3.39 4.1 3.8 2.3 0.4 0.15 0.20 6.1

Notes:nd N o t detected

Reproduced

with perm

ission of the

copyright ow

ner. Further

reproduction prohibited

without

permission.

Table 2-7: Trace m etal concentrations from core sam ples collected from Farr Creek and M ill C reek (Percival et al., 2004)

Location Core ID

Variable Units

Detection Limits Depth (era)

Agppm0.1

Asppm

10

Bappm

10

Beppm0.5

Bippm0.5

Cdppm0.2

Ceppm0.1

Coppm

5

Crppm

10

CsPPm0.02

Cuppm

10

Moppm0.2

Nippm

10

Pbppm

10

RbPPm0.05

Farr Creek, 5m u/s of C14 2.00 32 343 160 1.5 7.2 <0.2 31 130 87 0.86 150 3.2 96 110 23confluence with Mill Creek 12.00 30 1300 180 1.5 18 0.5 38 440 100 0.93 160 6.5 170 140 263 i.OO 210 1400 190 2.1 21 0.7 62 390 120 1.50 470 7.2 300 350 3431.00 200 1650 190 2.0 23 0,6 54 400 160 1.20 470 7.8 320 240 31Farr Creek, 50m d/s of C13 5,00 95 1580 170 1.7 28 0.9 41 590 130 1.20 380 5.0 290 230 27confluence with Mill Creek 14.50 140 878 170 1.7 15 0.5 33 260 93 1.10 320 4.4 140 180 2522.75 220 1980 210 2.0 36 0.7 55 480 160 1.50 460 6.5 290 340 3633.00 170 2610 200 1.7 38 1.0 46 600 210 0.98 540 6.3 310 310 30

Mill Creek, 150m u/s from CI2 3.00 54 1200 120 1.5 25 1.0 39 560 120 1.20 440 3.4 360 300 23confluence with Farr Creek 26.50 17 817 110 1.5 23 1.6 34 250 120 1.30 700 8.7 130 510 22

26.50 17 876 110 1.5 22 1.6 34 270 140 1.30 640 6.1 130 460 23Mill Creek, 10m u/s from C15 9.00 48 451 160 1.7 8.2 0.5 29 210 140 1.10 290 4.7 130 210 24confluence with Farr Creek 26.00 58 456 150 1.7 11 0.6 32 210 90 1.20 330 4,6 120 210 25

26.00 96 913 160 1.6 21 0.6 35 460 120 1.00 340 4.1 250 200 2439.75 230 1720 140 2.2 26 0.7 54 420 130 0.90 660 14 310 350 23

Variable Sc Sm Sn Sr Ta Tb Th XI Tm U V Y Zn ZrUnits ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm

Detection Limits 0.5 0.02 0.5 5 0.2 0.02 0.02 0.02 0.02 0.02 5 0.02 5 10Location Core ID Depth (cm)

Farr Creek, 5m u/s of C14 2.00 16 3.2 1.5 83 0.4 0.51 4.2 0.13 0.25 1.6 130 17 110 110confluence with Mill Creek 12.00 21 3.9 1.7 82 0.4 0.61 3.4 0.13 0.29 1.7 150 20 180 130

31.00 18 5.6 3.8 94 0.6 0.75 6.7 0.31 0.31 2.5 130 26 400 10031.00 20 5.2 3.8 89 0.5 0.68 6.3 0.27 0.30 2.5 140 24 420 100

Farr Creek, 50m d/s of C13 5.00 20 4.2 4.0 78 0.4 0.64 4.4 0.17 0.29 2.0 140 21 320 130confluence with Mill Creek 14.50 18 3.4 5.2 85 0.4 0.56 4.5 0.15 0.27 1.8 130 19 200 120

22.75 21 5.0 3.6 87 0.5 0.72 6.0 0.32 0.30 2.3 150 25 470 11033.00 23 4.7 3.7 79 0.4 0.66 4.4 0.27 0.29 2.0 160 23 420 100

Mill Creek, 150m u/s from C12 3.00 25 4.1 1.9 75 0.3 0.68 3.2 0.17 0.33 1.9 180 23 380 110confluence with Farr Creek 26.50 29 4.3 1.5 70 0.3 0.78 2.4 0.18 0.36 2.0 200 26 350 100

26.50 29 4.4 1.0 69 0.3 0.81 2.4 0.18 0.38 1.8 200 27 370 100Mill Creek, 10m u/s from C15 9.00 18 3.3 3.1 79 0.4 0.56 4.5 0.15 0.28 1.6 140 19 190 110confluence with Farr Creek 26.00 18 3,5 2.0 79 0.4 0.57 4.6 0.17 0.27 1.7 140 19 200 110

26.00 18 3.6 2.7 82 0.5 0.58 4.5 0.21 0.27 1.7 130 20 270 11039.75 20 5.3 3.4 69 0.5 0.70 6.4 0.26 0.30 2.5 150 24 390 100

Reproduced

with perm

ission of the

copyright ow

ner. Further

reproduction prohibited

without

permission.

Table 2-8: Trace metal concentrations from core porewater samples collected from Farr Creek and Mill Creek (Percival et al., 2004)

Location Core ID

Variable Units

Detection Limits Depth (cm)

SiPPb10

TiPPb

1

AlPPb100

FePPb

3

MnPPb100

MgPpb

2

CaPPb

5

NaPPb20

KPpb20

Agppb

1

AsPPb500

Bppb16

Bappb

2

Beppb

5

Bippb

1

Cdppb

2

CoPPb100

Farr Creek, 5m u/s o f C14 2.00 20000 57 4800 11000 340 18000 130000 6500 4300 9 1100 29 91 <5 11 <2 610confluence with Mill Creek 12.00 15000 39 3400 6100 480 38000 230000 18000 1600 15 1500 24 110 <5 8 <7 87031.00 8400 8 610 1200 720 24000 130000 18000 950 3 670 27 45 <5 1 <2 85Farr Creek, 50m d/s o f C13 5.00 14000 19 2300 5600 2500 21000 200000 18000 11000 6 1800 43 170 <5 1 <2 930confluence with Mill Creek 14.50 9900 31 2100 4000 400 12000 98000 22000 8400 4 1600 17 100 <5 3 <? 12022.75 16000 53 5000 9000 640 17000 97000 17000 8600 32 1300 20 77 <5 10 <? 18033.00 26000 80 11000 19000 1200 32000 160000 19000 20000 87 2500 <16 160 <5 25 <2 350

Mill Creek, 150m u/s fromconfluence with Farr Creek C12 3.00 6700 7 960 2000 200 16000 90000 16000 2900 6 1900 73 54 <5 390Mill Creek, 10m u/s from C15 26.00 14000 24 2200 4600 620 31000 360000 29000 4800 8 900 200 220 <5 3 <"> 2700confluence with Farr Creek 39.75 17000 70 6400 12000 520 35000 190000 24000 2600 78 1100 160 100 <5 14 <2 430

Location Core ID

Variable Units

Detection Limits Depth (cm)

Crppb

1

C'sPPb

I

CuPPb

2

Hgppb

1

Moppb

2

NiPpb100

PbPPb

1

Rbppb

1

Sbppb

1

ScPPb

1

SePPb10

SrPPb

1

TIPPb

1

Uppb

1

Vppb

1

ZnPPb10

Farr Creek, 5m u/s o f C14 2,00 67 1 130 <1 22 270 192 21 220 1.3 10 180 <1 t 45 120confluence with Mill Creek 12.00 53 <1 54 <1 42 540 108 10 1000 1.3 12 310 <1 4 27 83

31.00 27 <1 18 <1 24 230 25 4 720 <1 13 200 <1 9 to 20Farr Creek, 50m d/s of C13 5.00 42 <1 25 <1 32 300 66 20 110 1.1 15 190 <1 1 23 60

confluence with Mill Creek 14.50 38 <1 22 <1 51 130 72 13 310 2.8 10 110 <1 3 17 4022.75 62 <t 31 <1 11 220 158 32 380 1.2 <10 130 <1 8 41 7033.00 120 1 150 <1 12 460 396 67 560 1.2 <10 210 <1 15 93 130

Mill Creek, 150m u/s fromconfluence with Farr Creek C12 3.00 47 <1 53 <1 33 280 56 9 750 1.0 11 140 <1 2 14 54Mill Creek, 10m u/s from C15 26.00 36 <1 65 <1 15 980 69 9 490 <1 15 390 <1 <1 15 190confluence with Farr Creek 39.75 79 <1 190 <1 28 290 158 8 890 1.4 18 260 <1 2 47 180

Also summarized by Percival et al. (2004) were trace metal concentrations from several

surface water samples collected at various locations within the study area from 1994 to

1997. These results are presented in Table 2-9 and the sample locations are presented in

Figure 2-4. Elevated concentrations were noted for the alkali earth metals as well as As,

Co, Ni, Sb, where more elevated concentrations were generally noted in Mill Creek. This

could be attributed to two factors:

1) Mill Creek transports tailings loadings from several upstream tailings deposits and

from the municipal wastewater lagoon discharge; and

2) Dilution effects from Mill Creek draining into Farr Creek resulting in lower

observed concentrations in Farr Creek downstream of the confluence.

The remaining metals analyzed appeared to have relatively low and stable concentrations

throughout the drainage path with only minor fluctuations. Table 2-10 presents the results

from the anion surface water chemistry summarized by Percival et al. (2004). As can be

seen from the table, there are elevated nitrates and phosphates in Mill Creek, with

significantly lower concentrations, in most cases below the method detection limits, in

Farr Creek. Municipal wastewater was released directly to Mill Creek without treatment

prior to approximately 2 0 0 0 , when a wastewater treatment lagoon was installed in the

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced

with perm

ission of the

copyright ow

ner. Further

reproduction prohibited

without

permission.

Table 2-9: Trace metal concentrations from surface water samples collected from Farr Creek and Mill Creek (Percival et al., 2004)

Location Description

VariableUnitsDetection Limits Sample ID

Sippb3.3

Tippb

1

AlPPb0.5

Feppb

3

Mnppb0.5

Mgppb

2

Cappb

5

NaPPb20

Kppb20

Agppb0.5

Asppb

2

Bppb16

Bappb

5

Beppb

5

Bippb0.5

Cdppb

1

Coppb0.2

Crppb0.2

Mill Creek, u/s from HWY 1 IB PNA94-W16 3100 <1 12 38 140 10000 51000 25000 3100 <0.5 1200 18 11 <5 <0,5 <1 140 2,5Mill Creek, u/s from HWY 1 IB PNA97-W10 2000 <1 6.3 30 85 8200 43000 19000 1300 <0.2 910 20 12 <1 <0.2 <0.5 <0.2 0.2Mill Creek, HWY 1 IB PNA95-W113 860 <1 9.6 88 20 7600 37000 13000 980 <0.2 570 <16 5.4 <i <0.2 <0.5 90 17Mill Creek, u/s from beaver pond PNA95-W111 820 <1 15 52 23 7500 36000 12000 920 <0.2 570 <16 5.7 <i <0.2 <0.5 88 4,6Mill Creek, beaver dam PNA95-W105 830 <1 13 57 31 7700 37000 12000 940 <0.2 560 <16 6.0 <i <0.2 <0.5 88 12Mill Creek, below dam PNA94-W32 2600 <1 7.3 51 160 11000 54000 36000 2700 <0.5 1400 23 13 <i <0.2 <0.5 220* <0.2Mill Creek, below dam PNA95-W110 820 <1 16 62 24 7500 36000 12000 930 <0.2 560 <16 5.9 < i <0,2 <0.5 84 7.8Mill Creek, below dam PNA97-W11 2000 <1 6.9 39 75 8300 43000 20000 1300 <0.2 910 23 12 <i <0,2 <0.5 <0.2 0.6Mill Creek, 10m u/s of confluence with Farr Creek PNA95-W108 830 <1 13 49 28 7700 37000 12000 930 <0.2 570 <16 5.8 <i <0.2 <0,5 90 6.2Mill Creek, 10m u/s o f confluence with Farr Creek PNA97-W12 1800 <1 17 37 61 8100 42000 19000 1300 <0.2 930 <16 8.8 <i <0.2 <0,5 88 0.2Mill Creek, 5m u/s o f confluence with Farr Creek PNA94-W7 3300 <1 9.3 56 140 10000 53000 25000 2000 <0.5 1700 19 11 <5 <0.5 <1 110 1,6

Farr Creek, 150m from culvert PNA94-W4 1600 <1 6,6 23 13 7100 29000 1400 570 <0.5 510 <16 6.3 <5 <0,5 <1 5,9 1.0Farr Creek, d/s from culvert PNA94-W5 1400 <1 6,6 26 8.6 6100 25000 980 450 <0.5 340 <16 <5 <5 <0.5 <1 3.4 0.8Farr Creek, d/s from culvert PNA95-W109 1300 <1 12 29 5.9 6300 25000 1200 560 <0.2 240 <16 4.9 <1 <0.2 <0.5 6.4 6.6Farr Creek, d/s from culvert PNA97-W13 2000 2 86 210 31 6000 25000 1100 470 <0.2 420 <16 5.0 <1 0.2 <0.5 7.3 <0.2Farr Creek, 5m u/s o f confluence with Mill Creek PNA95-W107 1100 <1 11 31 11 6400 27000 3800 650 <0.2 300 <16 4.8 <1 <0.2 <0.5 25 6.3Farr Creek, 3m u/s o f confluence with Mill Creek PNA94-W6 1400 <1 12 58 14 6100 26000 990 450 <0.5 360 <16 5.0 <5 <0.5 <1 4.0 1.8Farr Creek, 25m d/s o f confluence with Mill Creek PNA97-W15 1900 1 6.0 25 39 6800 32000 8500 810 <0.2 640 <16 6.5 <1 <0.2 <0.5 37 <0.2Farr Creek, 50m d/s o f confluence with Mill Creek PNA94-W8 2000 <1 17 79 52 7400 33000 8000 880 <0.5 750 <16 7.9 <5 <0.5 <1 35 1.3

PNA95-W106 1100 <1 10 41 16 6600 29000 5600 660 <0.2 310 <16 5.2 <1 <0.2 <0.5 40 6.0Farr Creek, ~ l ,5km from Road PNA94-W9 1800 <1 6.7 36 10 7400 34000 7800 920 <0.5 730 <16 5.8 <5 <0.5 <1 17 1.2Farr Creek, control Weir PNA94-W17 4800 <1 5.4 45 150 8300 37000 7200 180 <0.5 260 <16 8.6 <5 <0.5 <1 14 1.0

Reproduced

with perm

ission of the

copyright ow

ner. Further

reproduction prohibited

without

permission.

UJ-J

Location DescriptionMill Creek, u/s from HWY 1 IB Mill Creek, u/s from HWY 1 IB Mill Creek, HWY U B Mill Creek, u/s from beaver pond Mill Creek, beaver dam Mill Creek, below dam Mill Creek, below dam Mill Creek, below damMill Creek, 10m u/s o f confluence with Farr Creek Mill Creek, 10m u/s of confluence with Farr Creek Mill Creek, 5m u/s o f confluence with Farr Creek

Farr Creek, 150m from culvertFarr Creek, d/s from culvertFarr Creek, d/s from culvertFarr Creek, d/s from culvertFarr Creek, 5m u/s o f confluence with Mill CreekFarr Creek, 3m u/s o f confluence with Mill CreekFarr Creek, 25m d/s of confluence with Mill CreekFarr Creek, 50m d/s of confluence with Mill Creek

Farr Creek, ~1,5km from Road Farr Creek, control Weir

VariableUnitsDetection Limits Sample ID

CsPPb0,2

Cuppb0.5

Gappb0.2

Hgppb0.2

Inppb0.2

PNA94-W16 PNA97-W10

<0.2<0.2

8.44.1

<0.2<0.2

nd<0.2

<0.21

PNA95-W1.13 <0.2 7.5 <0.2 <0.2 <0.2PNA95-W111 <0.2 7.8 <0.2 <0.2 <0.2PNA95-W105 <0.2 7.0 <0.2 <0.2 <0.2PNA94-W32 <0.2 27 <0.2 <0.2 <0.2PNA95-W110 <0.2 7.5 <0.2 <0.2 <0.2PNA97-W11 <0.2 8.9 <0.2 <0.2 <1PNA95-W108 <0.2 7.2 <0.2 <0.2 <0.2PNA97-W12 <0,2 7.2 <0.2 <0.2 <1PNA94-W7 <0.2 6.0 <0.2 nd <0.2

PNA94-W4 <0.2 3.3 <0.2 nd <0.2PNA94-W5 <0.2 2.8 <0.2 nd <0.2PNA95-W109 <0.2 3.5 <0.2 <0.2 <0.2PNA97-W13 <0.2 3.7 <0.2 <0.2 <1PNA95-W107 <0.2 4.5 <0.2 <0.2 <0.2PNA94-W6 <0.2 3.3 <0.2 nd <0.2PNA97-W15 <0.2 4.4 <0.2 <0.2 <1PNA94-W8 <0.2 4.5 <0.2 nd <0.2PNA95-W106 <0.2 4.9 <0,2 <0.2 <0.2PNA94-W9 <0.2 3.7 <0.2 nd <0.2PNA94-W17 <0.2 20 <0.2 nd <0.2

LiPPb

1

MoPPb

2

NiPPb1

Pbppb

1

Rbppb0.5

Sbppb0.5

Scppb

1

Seppb

2

Srppb

1

Tlppb0.5

Uppb0.5

Vppb0.5

Znppb

5

<1 5.9 27 <i nd 81 <0.5 <0.5 <0.5 <51.6 27 <1 <2 59 <0.2 0.4 0.4 142.0 0.9 25 0.4 <2 50 <0.2 0.4 0.4 8.01.3 0.9 24 0.5 <2 49 <0.2 0.4 0.4 831.2 0.9 23 0.5 <2 51 <0.2 0.3 0.4 130.5 2.7 26 <1 <2 81 <0.2 0.5 0.6 8.01.4 0.9 24 0.4 <2 49 <0.2 0.4 0.4 7.91.6 28 <1 <2 60 <0.2 0.4 0.4 131.0 0.9 23 <0.4 <2 so <0.2 0.3 0.4 9.61.7 29 <1 <2 59 <0.2 0.3 0.4 11<1 3.1 51 <1 nd 82 <0.5 <0.5 0.5 <5

<1 1.5 1.8 <1 nd 41 <0.5 <0.5 <0.5 <5<1 1.4 1.6 <1 nd 35 <0.5 <0.5 <0.5 <50.3 1.3 3.5 0.4 <2 33 <0,2 <0.2 0.3 3.91.4 2,9 <1 <2 34 <0.2 0.2 0.7 <20.4 1.1 8.4 0.4 <2 37 <0.2 0.2 0,3 4.7<1 1.5 1.9 <1 nd 36 <0.5 <0.5 <0.5 <51.5 13 <1 <2 44 <0.2 0.2 0.2 3<1 1.9 17 <1 nd 49 <0.5 <0.5 <0.5 <50.6 0.9 11 0.4 <2 42 <0.2 0.2 0.3 7.0<1 1.8 15 <1 nd 49 <0.5 <0.5 <0.5 <5<1 0.6 1.1 <1 nd 55 <0.5 <0.5 <0.5 <5

34.1 1 1

<121

4.2 1

3.93

211

0.811

2.12122

5.4 61 6.13.84.94.84.2 583.9 536.4

<2<21.85.92.3 <2 25 2.12.5 2.8 <2

730.476578311063 2.9641.4 68

5.4 3.8 27 2.0 365.2 0.3 23 41 219.2

Figure 2-4: Location of Surface Water Samples Collected from Farr Creek and Mill Creek by Percival et al., 2004

w sCreekW108

Legend

• S a m p le L o c a tio n s Lakes and P o n d s

D am s R a ilw a y

R o a d w a y

N

200 0 200 400 Meters

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

area. The lack of nutrients detected in Farr Creek is attributable to consumption of

nutrients along the flow path and to dilution effects.

2.2.4 Farr Creek Tailings Deposit Geochemistry

The mobility of elements in subsurface systems is generally regulated by the solubility of

their salts (in this case mainly their sulfates, arsenates, antimonates, or carbonate salts),

and the pH and Eh conditions (Boyle and Dass, 1971). Near surface oxidation reactions

will mobilize soluble components whereas in deeper anoxic sediments, dissolved

components tend to form precipitates as a result of the strong reducing conditions.

Geochemical interactions in tailings deposits are quite complex. As a result, this

discussion will be limited to elements that are components o f major mineral groups

within the tailings such as Fe, Mn, Ca, Mg, Al, silicates and alkali earth metals, and to

metals of significant environmental concern, which include As, Sb, Co, Ni, Pb, and Zn.

Iron. Manganese, Calcium and Magnesium

Primary carbonate minerals such as calcite and dolomite will react with the dissolved

CO2 in the mixing water, thereby forming soluble secondary bicarbonate and carbonate

minerals (Boyle and Dass, 1971). Should there be any sulfide minerals in the surficial

tailings, they will become oxidized producing sulfuric acid. Considering the amount of

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced

with perm

ission of the

copyright ow

ner. Further

reproduction prohibited

without

permission.

Table 2-10: Anion concentrations from surface water samples collected from Farr Creek and Mill Creek (Percival et al., 2004)

Location Description

VariableUnitsDetection Limits Sample ID

N02PPb50

N03ppb50

Fppb50

P04ppb50

Brppb50

S04ppm0.05

Clppm0.05

Mill Creek, u/s from HWY 1 IB PNA94-W16 180 4880 110 650 <50 31.6 33.3Mill Creek, u/s from HWY 1 IB PNA97-W10 <50 3460 54 <50 <50 16.9 25.7Mill Creek, HWY 11B PNA95-W113 <50 <50 <50 <50 <50 17.3 17 5Mill Creek, u/s from beaver pond PNA95-W111 <50 <50 <50 <50 <50 16.7

i / •17.4Mill Creek, beaver dam PNA95-W105 <50 <50 <50 <50 <50 16.0 17.5Mill Creek, below dam PNA94-W32 <50 13800 160 600 <50 25.6 42.9Mill Creek, below dam PNA95-W110 <50 <50 210 <50 <50 16.2 17.1Mill Creek, below dam PNA97-W11 <50 3300 62 <50 <50 16.8 27.0Mill Creek, 10m u/s of confluence with Farr Creek PNA95-W108 <50 <50 <50 <50 <50 16.5 17.3

Mill Creek, 10m u/s of confluence with Farr Creek PNA97-W12 <50 2070 61 <50 <50 15.8 25.9Mill Creek, 5m u/s of confluence with Farr Creek PNA94-W7 380 3760 86 450 <50 21.4 35.5

Farr Creek, 150m from culvert PNA94-W4 <50 <50 <50 <50 <50 9.08 0.89Farr Creek, d/s from culvert PNA94-W5 <50 <50 <50 <50 <50 8.43 0.61Farr Creek, d/s from culvert PNA95-W109 <50 <50 <50 <50 <50 9.93 0.83Farr Creek, d/s from culvert PNA97-W13 <50 <50 <50 <50 <50 7.23 0.72Farr Creek, 5m u/s of confluence with Mill Creek PNA95-W107 <50 <50 <50 <50 <50 10.9 5.03Farr Creek, 3m u/s of confluence with Mill Creek PNA94-W6 <50 <50 <50 <50 <50 8.45 0.65Farr Creek, 25m d/s of confluence with Mill Creek PNA97-W15 <50 750 <50 <50 <50 10.7 10.6Farr Creek, 50m d/s of confluence with Mill Creek PNA94-W8 140 830 92 <50 <50 12.6 10.2Farr Creek, 50m d/s of confluence with Mill Creek PNA95-W106 <50 <50 <50 <50 <50 11.8 7.50Farr Creek, ~1,5km from Road PNA94-W9 69 747 <50 <50 <50 12.0 9.76Farr Creek, control Weir PNA94-W17 <50 <50 100 <50 <50 2.06 8.54

carbonate present in the tailings, the acid would be immediately neutralized and produce

soluble Fe, Mn, Mg, and Ca sulfates (Boyle and Dass, 1971).

Under oxidizing conditions, Fe is found predominantly in the form o f limonite and Mn as

wad (Dumaresq, 1993). Wad may also coprecipitate with limonite. If arsenides are

“7+present the Fe may be bound in scordite. Under reducing conditions Fe (aq) is the

dominant Fe species, in the absence of reduced sulfur, at pH values below 6.8 (Brookins,

1988). If reduced sulfur is present, iron sulfide precipitates can form regardless o f the

pH. Between pH values o f 6 .8-9.4, FeCC>3 precipitates form and at pH values above 9.4

reduced iron oxides are dominant (Brookins, 1988). Similar species are formed for

manganese with one exception. The formation o f MnS is dependent on pH and will only

occur between pH levels o f 8-10 (Brookins, 1988).

Alkalies, Silica, and Alumina

The oxidation o f alkalies typically results in the formation of soluble carbonates, sulfates,

and arsenates (Boyle and Dass, 1971). Silica is released as alkali silicates or monosilic

acid (Boyle and Dass, 1971). Much o f the dissolved alkalies, silica and alumina are

bound up in clay minerals, limonite, and wad. It should be noted, however, that the

mobilities and Eh-pH relationships o f these elements are quite different. Na and K are

quite mobile for a wide range of pH values. Silica only becomes pH dependent above pH

12, after which its solubility increases significantly (Brookins, 1988). The mobility o f Al

is very pH dependent. Below pH 4, Al is in the form o f Al3+(aq)- Between pH 4-10,

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AI2O3 and A1(0 H)3 precipitates are abundant, and above pH 10, soluble AIO2’ is

predominant (Brookins, 1988).

Arsenic

Most o f the arsenic in the tailings originates from arsenides and sulfarsenides (Boyle and

Dass, 1971). The most common oxidation states in natural waters are As(III) and As(V).

The oxidation of arsenides and sulfarsenides releases arsenious oxide and arsenic acid

and its ionization products (Boyle and Dass, 1971). Dissolved Fe may react with the

arsenic forming scordite or it may precipitate as limonite. Similarly, Co and Ni can react

with arsenic acid forming erythrite and annabergite respectively. These three minerals

are the most common secondary minerals in the tailings in general and may also adsorb

to or coprecipitate with limonite and wad (Dumaresq, 1993). In the presence of reduced

sulfur AsS can precipitate. Under reducing conditions, bacteria can methylate arsenic

producing methylarsenic acid [(CH3)H2AsC>3], dimethyarsenic acid [(CH3)2HAs0 2 ], and

trimethylarsine oxide [(CH3)3AsO] (Percival et al., 2004).

As(III) species are more toxic than As(V) species, and in general inorganic As species are

more toxic than the organic forms (Percival et al., 2004). Arsenic tends to adsorb onto Fe

and Al oxides, clay minerals and organic matter. The freshwater aquatic life discharge

guideline for As is 5ppb (CCME, 2003). Chronic exposures to As may affect the central

nervous system and form skin lesions which could become cancerous (Percival et al.,

2004).

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Antimony

Antimony present in the tailings is associated with antimonides and arsenides. It is

considered relatively mobile under oxic conditions. Similar to As, its primary oxidation

states in natural waters are Sb(III) and Sb(V). Under oxic conditions, various antimony

oxides are abundant such as Sb(OH)6_, Sb2C>4, SbiOs, and Sb(OH)3 (Krupka and Seme,

2002). Under reducing conditions and in the presence o f reduced sulfur, antimony

sulfides are generated at pH values below 6 . Above pH 6 antimony sulfide soluble

complexes such as Sb2S42' form (Brookins, 1988). Also, under mildly reducing

conditions at very low pH aqueous SbO+ forms, while at very high pH values (above 12)

S b02" is formed (Krupka and Seme, 2002).

Methylated antimony species have been detected in some marine and fresh waters,

comprising less than 10% of the total dissolved antimony in these waters (Krupka and

Seme, 2002). Antimony is adsorbed significantly under acidic pH levels due to its

negatively charged species surface for much o f the pH range. It is known to adsorb

and/or coprecipitate with Fe and Al oxides (Krupka and Seme, 2002). The Canadian

Council of Ministers o f the Environment (CCME) list the maximum allowable Sb

concentration (MAC) for drinking water as 6 ppb. There is no reported guideline for

freshwater aquatic life. Long term exposures to elevated concentrations of Sb may lead

to irritation of the eyes, irritation o f the respiratory system, and the development o f skin

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

lesions called antimony spots. Chronic exposure may lead to damage to the heart, lungs

and liver (ASTDR, 1992).

Cobalt

The cobalt present in the tailings originate from arsenides, sulfarsenides and sulfides.

Cobalt has two oxidation states, Co(II) and Co(III). Co(III) is a strong oxidizing agent

and chemical species containing Co(III) tend to decompose under the Eh-pH conditions

of most natural waters (Krupka and Seme, 2002). However, the presence of certain

complexing ligands, such as EDTA and NH 3; can stabilize Co(III) and allow it to persist

in aqueous solutions (Krupka and Seme, 2002).

• » » . . 2+ . . .Under oxidizing to slightly reducing conditions, Co (aq) is the dominant species for pH

values less than 9. From pH 9-13.5, Co(OH)2 is formed and above pH 13.5, soluble

Co(OH)42' becomes abundant (Brookings, 1988). Under strongly oxidizing and

circumneutral to alkaline conditions C03O4 becomes the dominant precipitate (Brookings,

1988). In the presence of carbonates, C0 CO3 may form between pH 7-10 under slightly

oxidizing conditions (Brookings, 1988). Under reducing conditions, CoS precipitates

form relatively independent of pH.

Several adsorption studies have indicated that Co is strongly adsorbed and/or

coprecipitated onto Mn and Fe oxide surfaces in the absence of organic ligands, with the

adsorption being more strongly favoured with Mn oxides (Percival et al., 2004). Under

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

neutral to basic conditions, the presence of organic ligands can significantly reduce

adsorption by forming soluble complexes with Co (Krupka and Seme, 2002).

Co is considered an essential element for humans, however, it becomes toxic at doses

greater than 25mg/day (Reinman and de Caritat, 1998). It causes deficiencies in Fe and

Cu (Percival et al., 2004).

Nickel

Nickel containing compounds present in the tailings are associated with sulfides,

sulfarsenides, arsenides, and a number o f silicates. The most common oxidation states

for Ni in natural systems are Ni(0) and Ni(II). Chemically, Ni is very similar to Fe and

Co, and as such can replace Fe and Co in primary mineral phases such as FeS2 and

CoAsS (Brookings, 1988). Under oxidizing conditions, Ni is in the form of Ni2+(aq) at pH

values less than 8 . Ni(OH)2 becomes the dominant species at pH values between 8.5-11,

and HNiCb' predominates at pH values above 11 (Brookings, 1988). Under reducing

conditions and in the presence o f sulfides, NiS will form under a wide range o f pH

I 2 ”F

values. NiOH and NiCCb are metastable with respect to Ni and Ni(OH)2, respectively

(Brookings, 1988). Nickel does not form any stable carbonate species.

In aquatic systems, Ni can become adsorbed or coprecipitated with iron and manganese

oxides, clay minerals and organic matter (Dumaresq, 1993). The MAC for nickel, as

reported by the CCME, is related to water hardness (Table 2-11). As shown, the toxicity

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of Ni increases with decreasing hardness. It is suggested by the USEPA that short term

exposure is not likely to cause negative health effects, however, prolonged or chronic

exposure to elevated nickel concentrations may lead to reduced body weight, heart

damage, liver damage, and skin irritation (Reimann and de Caritat, 1998).

Table 2-11: Maximum Allowable Concentrations (MAC) for Ni based on water

hardness (taken from Dumaresq, 1993)

Hardness (mg CaCCVI) Ni (ppm)

0-60 0.025

60-120 0.065

120-180 0.11

>180 0.15

Zinc

Zinc is present in the tailings in trace quantities and is most likely associated with sulfide

deposits. The most common oxidation state for Zn is Zn(II) (Reimann and de Caritat,

1998). Under oxidizing conditions and pH values less than 7.5, Zn is predominantly in

the form Zn2+(aq) (Brookings, 1988). At pH values between 7.5 and 8 and under oxidizing

conditions, ZnCC>3 may form (Brookings, 1988). At higher pH values, Zn oxides are

dominant. Under reducing conditions the only species that is formed is ZnS. This

precipitate may form between pH values o f 2 to 14 (Brookings, 1988).

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In aquatic systems, Zn can become adsorbed or coprecipitated with iron and manganese

oxides, clay minerals and organic matter. Under reducing conditions and in the presence

of reduced sulfur, Zn competitively forms ZnS precipitates (Brookings, 1988). The MAC

for Zn, as reported by the CCME drinking water guideline is 5 mg/1. Zinc toxicity in

plants results in depressed growth. This typically occurs at soil zinc concentrations in

excess of 300 mg/kg (Reimann and de Caritat, 1998). Concentrations of Zn in drinking

water in excess of 3 mg/1 causes aesthetic complaints (Reimann and de Caritat, 1998).

Lead

Lead is present in the tailings in trace quantities and is most likely associated with sulfide

deposits. The most common oxidation states for Pb are Pb(II) and Pb(IV) (Reimann and

de Caritat, 1998). Under oxidizing conditions and strongly acidic conditions with pH

2+values less than 0.5, Pb is predominantly in the form was Pb (aq) (Brookings, 1988). At

pH values between 0.5 and 4.5 and under oxidizing conditions, PbS0 4 may form

(Brookings, 1988). At pH values between 4.5 and 11 PbC03 is the dominant lead

species. At higher pH values and strong oxidizing conditions, various lead oxides may

form, including PbO, PbsCL, and PbC>2. Under reducing conditions, PbS is the only

species that forms. This precipitate may form between pH values o f 0.4 to 14

(Brookings, 1988).

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In aquatic systems, Pb is generally strongly adsorbed or coprecipitated with iron and

manganese oxides, clay minerals and organic matter. Under reducing conditions and

the presence o f reduced sulfur, Pb competitively forms PbS precipitates (Brookings,

1988). The MAC for Pb, as reported by the CCME drinking water guideline, is 0.05

mg/1. Concentrations o f Pb above the MAC in drinking water can result in delays of

normal physical and mental development in babies and young children, increases in

blood pressure to adults in the short term and can cause stroke, kidney disease, and

various cancers with long term exposure (Reimann and de Caritat, 1998).

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.0 M ETHODOLOGY

3.1 Field Methods

The following sections summarize the methodologies followed for the collection of

sediment, surface and groundwater, and vegetation samples at the study site.

3.1.1 Coring Procedures

In June 2004, nine cores were collected from the Farr Creek drainage area between the

south dam near Crosswise Lake and the north control dam located at 4th Avenue. These

cores were collected using a Russian Auger, which consists o f a 50 cm half barrel capable

of holding 1/2 of a 5 cm core diameter volume. Each barrel was opened in the field and

the sediment core sample was quickly transferred onto saran wrap and sealed and

wrapped again with tin foil to seal the core from the atmosphere. The core samples were

placed in a cooler to ensure conditions at the time of sampling were maintained through

to the time of analysis. Stratigraphic borehole logs were completed for each core and are

presented in Appendix A. The locations of the core samples collected in June 2004 are

presented on Figure 3-1.

Individual soil samples were also collected upstream of the study area in Crosswise Lake.

Both a submerged and an exposed sediment sample were collected in 125ml plastic jars.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

All the cores were stored in a refrigerator (kept below 4°C) during the field trip and

transported in metal coolers insulated with Styrofoam and ice packs to the Earth Sciences

Laboratory at Carleton University, Ottawa, ON until they were prepared for analysis.

These cores were sectioned in approximately 15 cm intervals and analyzed for total

metals, water content and organic matter content.

Five additional sediment cores were collected from the study area in September 2004.

The coring was completed by pushing a 5 cm diameter ABS pipe, 1.8 m in length into the

sediment. The locations of the cores are presented in Figure 3-1. Four of the five cores

were completed in standing water and as such the pipes were pushed down below the

water level. Due to the coring methodology chosen, some compression was inevitable. It

is difficult to determine the exact level o f compression in each core due to losses of

sediment from the base o f the pipe, while extracting the pipe.

Prior to pulling the core back up to the surface, a plastic cap was pushed into the end of

the pipe and then covered by several pieces of duct tape to maintain adequate suction and

ensure the pipe was sealed to the atmosphere. As soon as the pipe was lifted above the

sediment-water interface, the lower end o f the pipe was sealed with a plastic cap and duct

tape to ensure only minimal sediment was lost during the extraction. Sediment samples

were collected from these cores at approximately 25 cm intervals and analyzed for acid

producing bacteria (APB), iron reducing bacteria (IRB) and sulfate reducing bacteria

(SRB) sequentially extracted metals (SEM), acid volatile sulfides (AVS) and chromium

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3-1: Location of June and September Core Samples

Legend

D am s

200 0 200 400 Metersw a te rc o u rs e

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

reducible sulfides (CRS), water content (WC), and organic matter content (OM). Pore

water was extracted from the remaining sediment samples by ultracentrifugation and

analyzed for alkalinity, pH, dissolved oxygen, Fe(II), sulfate, sulfide, and dissolved

metals.

3.1.2 Monitoring Well Installation and Sampling

Seven monitoring wells were installed at the site in June 2004. The locations of the

monitoring wells are presented in Figure 3-2. Borehole logs detailing the well

installation specifications are provided in Appendix A.

All monitoring wells installed in June 2004 were monitored and sampled in September

2004. All wells were established using HDPE 1.6 cm ID tubing with a waterra foot valve

attached to the end. Monitoring wells MW1, MW2, MW3, MW4 were purged 3 well

volumes, whereas MW5, MW6 , and MW7 were purged dry. These monitoring wells

were located outside o f standing water and as such, had slower recovery times. Two

250ml HDPE plastic bottles were filled at each well, one of which was filtered with a

0.45um Gelman glass microfibre filter. In situ measurements for pH, DO, conductivity,

temperature, and salinity were conducted using YSI Model 85 multiprobe and an Oakton

Instruments portable pH meter. Samples were brought back to camp, where alkalinity,

Fe(II), sulfate, sulfide, ammonia, nitrate, and chloride were immediately measured using

Hach field test kits. All field measurements were completed within 2 hours o f arriving

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3-2: Location of Groundwater Monitoring Wells Installed in June 2004

MW 5

/ v MW 7

Legend

............... D am s ■ 1 Lakes and P o n d s

® M o n ito r in g W e lls □ T a ilin g s D e p o s its

— — — w a te rc o u rs e — R a ilw a y

R oads

300 0 300 600 Meters

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

back at camp. One 125 ml plastic bottle was filled for each monitoring well with filtered

sample water and preserved with 1 ml concentrated nitric acid for dissolved metal

analysis. The water samples were kept in the fridge and transported in coolers with

icepacks to ensure the samples remained below 4°C to the to the Earth Sciences

Laboratory at Carleton University, Ottawa, ON until they were prepared for analysis.

3.1.3 Surface Water Sampling and Flow Measurement

Surface water samples were collected throughout the length o f Farr Creek and Mill

Creek, from approximately 1 km upstream of the confluence with Farr Creek to the

control dam. The location for each of the surface water samples collected is presented in

Figure 3-3. Prior to collecting the sample, each sample bottle was rinsed 3 times with

stream water. Samples were collected in two 250 ml HDPE plastic bottles. One of the

bottles was later filtered using a 0.45um Gelman glass micro fibre filter into 125ml plastic

bottle and preserved with 1 ml o f concentrated nitric acid for dissolved metal analysis.

The water samples were kept in the refrigerator and transported in coolers with icepacks

to ensure the samples remained below 4°C to the Earth Sciences Laboratory at Carleton

University, Ottawa, ON until they were prepared for analysis.

Estimates o f surface water velocity were made at various locations throughout the study

area by throwing twigs or leaves into the middle o f the stream and timing their movement

downstream. Measurements of stream width and depth were also made to determine an

approximate streamflow volume.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3-3: Location of Surface Water Samples Collected in June 2004

f/s \A /i/sw io•SW11

SW15SW14

SW13

SW12.

Legend

................ D am s Lakes and P o n d s

* S a m p le L o c a tio n s □ T a ilin g s D ep os its

” — — w a te rc o u rs e — R a ilw a y

— R oads300 600 Meters

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1.4 Vegetation Sampling

Cattail shoot samples were collected near each o f the monitoring well locations and

analyzed for total metals. Several shoot samples were cut and placed in labeled Ziplock

plastic bags. They were kept in the refrigerator and transported in coolers with icepacks

to ensure the samples remained below 4°C to the Earth Sciences Laboratory at Carleton

University, Ottawa, ON until they were prepared for analysis.

3.2 Laboratory Methods

The following sections summarize the methodologies followed for the chemical analysis

conducted on all of the samples collected in the field.

3.2.1 Water Contents and Organic Matter Determinations

All core samples were sectioned in 15 or 25 cm intervals. A composite 1 g sample was

used for determining the water and loss on ignition (LOI) contents o f the sample.

Approximately 5g o f sediment was oven dried at 105-115°C overnight to determine the

sediment water content. The dried sample was then ashed in a furnace at 550°C for 2

hours to determine the amount o f organic matter as loss on ignition. The following

equation was used to determine the water content o f the sample:

Mw = Mi-Md

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

WC = Mw/Md

Where:

Mw = mass of water (g)

Mi = initial mass o f wet sample (g)

Md = mass o f dried sample (g)

WC = water content (%)

The organic matter (as LOI) content of the sample was calculated using the equations

presented below:

Mom = Md-Mf

OM = Mom/Md

Wfiere:

Mom = mass of organic matter lost (g)

M f = mass of sample after furnace (g)

OM = organic matter content (%)

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2.2 Microbiology

Sixteen sediment samples were analyzed for acid producing bacteria (APB), iron

reducing bacteria (IRB) and sulfate reducing bacteria (SRB). The most probable number

(MPN) technique was used to estimate the number o f APB’s, IRB, and SRB in each

sample.

The growth medium used for the APB consisted o f 1 Og dextrose, 2g beef extract, 20g

protease peptone, 20g NaCl, and 0.2g bromothymol blue. The above ingredients and 2L

o f deionized water were measured and added to a 2L Erlenmeyer flask. The pH o f the

solution was buffered to pH 7.2 using concentrated HC1 and/or NaOH. The broths were

then heated to approximately 100°C and aerated for approximately 1 hour.

The APB growth medium was transferred to test tubes, whereas culture jars were used for

the IRB and SRB enumerations. 10 different dilutions, at 1 ml in 10 mis were completed

with 5 replicates o f each dilution.

Nine ml of the APB growth medium was added to the test tubes using a 9 ml pipette.

Approximately lg o f wet sediment was added to the five tubes containing the first

dilution series. The remaining tubes were then inoculated with 1ml from the previous

dilution set. The APB samples were incubated for 96 hours at room temperature. A blue

colour indicated a positive reading.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The growth medium containing the reducing agent, used for the IRB consisted o f 5g

NaHC03, 3g NH4CI, 1,2g NaH2P 0 4, 0.2g CaCL2-4H20 , 0.2g KC1, 0.2g MgCl2 6H20 ,

O.Olg MnCl2-4H20, 0.002g Na2Mo0 4 , 3.68g ferric EDTA, and 3g peptone. All the

above ingredients were mixed with 2L o f deionized water in a 2L Erlenmeyer flask. All

solutions were adjusted to pH 7 with concentrated HC1 and/or NaOH. The broths were

then heated to approximately 100°C and aerated for approximately 1 hour.

The Postgate growth medium was used for the SRB samples. This medium and reducing

reagents consisted of lg KH2P0 4 , 2g NH4CI, 9g Na2S0 4 , 0.08g CaCL2-6H20 , 0.12g

MgS0 4 -7H20 , 5.87g Na lactate, 2.56 g Na acetate, 2g yeast extract, 0.008g FeS0 4 -7H20 ,

0.6g Na citrate dihydrate, and 0.4% resazurin. All the above ingredients were mixed with

2L of deionized water in a 2L Erlenmeyer flask. The pH of the solution was buffered to

pH 7.5 with concentrated H2S0 4 and/or NaOH. The broths were then heated to

approximately 100°C and aerated for approximately 1 hour.

Nine ml of the IRB and SRB growth mediums were each transferred to their individual

culture jars via a 9 ml pipette in an anaerobic chamber to maintain reducing conditions.

Prior to inoculating the samples, the jars were sealed inside the anaerobic chamber and

then autoclaved to ensure there was no oxygen in the media. Approximately lg o f wet

sediment was added to the five jars containing the first dilution series in the anaerobic

chamber. The remaining sealed jars were then inoculated with 1ml from the previous

dilution set. The samples were then left in the anaerobic chamber at room temperature

for the four-week incubation period.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Positive SRB counts were indicated by the formation of black FeS precipitates. For the

IRB samples, 0.2 ml of ferrazine was added to each jar after the incubation period. A

positive reading was indicated by the solution colour change to pink.

MPN values were calculated for each set of samples from statistical tables (Cochran,

1950) and the results were expressed as colony forming units per gram of sediment dry

weight (CFU/gdw). This method gives a rough estimate of the order o f magnitude of

bacterial populations and therefore the results are not indicative o f absolute population

numbers.

3.2.3 Acid Volatile Sulfides (AVS) and Chromium Reducible Sulfides (CRS) Sequential

Extraction Procedure

Sixteen sediment samples were analyzed for AVS and CRS corresponding to the same

depths as the microbiology samples.

The extraction apparatus consisted of six 250 ml distillation flasks, 30 cm long

condensers with water flowing through them, and six traps. This allowed for the analysis

o f 5 samples at a time and one blank sample for each set o f five samples.

Approximately 2g o f dried sediment was added to the distillation flask. 10ml of 50%

ethanol was added to the flask to remove elemental sulfur from the sediment. This was

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

done for 15 minutes at room temperature under a continuous flow of N2 gas to maintain

reducing conditions throughout the system. Ten ml of 12M HC1 was added to each flask

and the AVS was extracted at room temperature for 1 hour under continuous flow o f N2

carrier gas. The evolving H2S was trapped in 10 ml 20% Zn acetate solution. The CRS

fraction was extracted from the sediment by adding 16 ml of 1M CrCl2 to each flask. The

solution was then boiled at 150-175 °C for 1 hour. The H2S was trapped in the same

manner as the AVS. The ZnS precipitates were collected, diluted, and run in a

Spectrophotometer at 670nm wavelength under visible light. Dilutions were prepared in

50 ml volumetric flasks. Four ml of Clines solution was added to each dilution to allow

for the colourimetric determinations. Clines solution consists of diamine, ferric chloride

and 50 M HC1. Specific amounts o f diamine and ferric chloride are dependent on

expected sulfide range.

Prior to running the sample dilutions through the spectrophotometer, standard

calibrations were made using Na2S«9H20 . 1.44 g o f Na2S*9H2 0 was added to a 40 ml

glass vial. Then, 3.2 ml of Cline’s Solution was added to each vial. The vials were then

filled completely with deionized water to ensure there was no headspace. Finally, the

vials were capped with a septum and plastic screw cap. Six different dilutions were

made using mechanical pipettes to produce a range of sulfide concentrations from 5 to

150 uM. The samples were run in a Spectrophotometer at 670 nm wavelength under

visible light. A calibration curve was generated with >99% correlation.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2.4 Metals Sequential Extractions Procedure

Sixteen sediment samples were analyzed in duplicate for metals using a sequential

extraction procedure corresponding to the same depths as the microbiology samples.

The sequential extraction procedure followed was a modification o f the methodology

developed by Tessier et al. (1979). The procedure separates the extracted metals into five

fractions: exchangeable, metals bound to carbonates, metals bound to iron and

manganese oxides, metals bound to organic matter, and residual fraction. Blank samples

were run for 10% of the samples.

a) Exchangeable Fraction

Approximately lg of dried sediment was mixed with 10 ml of 1M MgC^, buffered to pH

7 with sodium acetate. The sample was mechanically shaken for 16 hours. The samples

were then centrifuged at 3000 rpm for 20 minutes and the supernatant was decanted into

a sample bottle, preserved with HNO3 to maintain a sample pH of 2. The samples were

stored below 4°C until analysis. The residue was washed with 20 ml o f distilled water

and mechanically shaken for 15 minutes, and centrifuged at 3000 rpm for 20 minutes.

The supernatant was decanted slowly to ensure that no sediment was lost and discarded.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

b) Fraction Bound to Carbonates

Twenty ml o f sodium acetate buffered to pFI 5 with 1M acetic acid was added to the

residue from the previous step. The mixture was mechanically shaken for 16 hours. The

samples were then centrifuged at 3000 rpm for 20 minutes and the supernatant was

decanted into a sample bottle, preserved with HNO3 to maintain a sample pH of 2. The

samples were stored below 4°C until analysis. The residue was washed with 20 ml o f

distilled water and mechanically shaken for 15 minutes, and centrifuged at 3000 rpm for

20 minutes. The supernatant was decanted slowly to ensure that no sediment was lost

and discarded.

c) Fraction Bound to Iron and Manganese Oxides

Twenty ml of 0.05 M hydroxylamine hydrochloride buffered to pH 5 with sodium citrate

was added to the residue from the previous step. The mixture was mechanically shaken

for 16 hours. The samples were then centrifuged at 3000 rpm for 20 minutes and the

supernatant was decanted into a sample bottle, preserved with HNO3 to maintain a

sample pH of 2. The samples were stored below 4°C until analysis. The residue was

washed with 20 ml o f distilled water and mechanically shaken for 15 minutes, and

centrifuged at 3000 rpm for 20 minutes. The supernatant was decanted slowly to ensure

that no sediment was lost and discarded.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

d) Fraction Bound to Organic Matter

Ten ml of 30% H2O2 buffered to pH 2 with 0.02M HNO3 was slowly added to the residue

from the previous step. The solution was loosely covered and digested at room

temperature for 1 hour with occasional manual agitation. The solution was digested for

another hour at a temperature of approximately 85°C. The solution was then uncovered

and the solution volume was reduced to approximately 3 ml by evaporation. Another 10

ml of 30% H2O2 buffered to pH 2 with 0.02 M HNO3 was slowly added to the mixture

and digested for 1 hour at 85°C while loosely capped. After an hour, the cap was

removed and the solution was concentrated down to approximately 1 ml. The solution

was allowed to cool and 50 ml o f 1 M ammonium acetate was added to the mixture and

the mixture was mechanically shaken for 16 hours. The samples were then centrifuged at

3000 rpm for 20 minutes and the supernatant was decanted into a sample bottle. The

samples were stored below 4°C until analysis. The residue was washed with 20 ml of

distilled water and mechanically shaken for 15 minutes, and centrifuged at 3000 rpm for

20 minutes. The supernatant was decanted slowly to ensure that no sediment was lost

and discarded.

e) Residual Fraction

Thirty ml of aqua regia solution (3:1 HCFHNO3 mixture) was added to the residue from

the previous step and the mixture was digested at 100-130°C until the solution became

clear. This varied from 2 days to 3 weeks, depending on the sample composition.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

HF or HCIO4 was not used in the analysis for 2 reasons:

1) the ICP apparatus used to determine the metal concentrations was not equipped

with the proper materials to handle HF; and

2 ) the complete dissolution of silicates and or clay minerals was not o f the utmost

importance because the metals associated with these mineral phases are

considered relatively immobile compared to the metals associated with the other

fractions.

Once the solution became clear the supernatant was decanted into a sample bottle. The

samples were stored below 4°C until further analysis.

3.2.5 Total Sediment Digestions for Metals

Total sediment digestions were conducted on all o f the sectioned core samples collected

from the June and September sampling. This procedure is the same as the Residual

Fraction step in the Sequential Extraction Procedure. The total digestion was completed

on the September cores as a check to ensure that the total metals extracted from the total

digestion sample corresponded to the total metals extracted from the sum of all the

sequential extraction steps on the same sample. Sequential metal extractions were not

conducted for the June cores. As such, the total digestion procedure was the only

analysis used to determine metal concentrations in these samples.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

All of the metal samples were delivered to Dr. Nimal DeSilva and he completed the metal

analysis via inductively couple plasma mass spectrometry (ICPMS) at the Laboratory at

Health Canada.

3.2.6 Metal Extractions from Cattail Samples

Seven cattail (Typha latfolia) shoot samples were analyzed for metals. The samples were

washed with deionized water, manually broken into small pieces and cmshed using a

mortar and pestle. Blank samples were run on 10% of the samples.

Thirty ml o f 4:1 HNO3: HC1 mixture was added to 200 mg of ashed cattail shoots and the

mixture was digested at 100-130°C until the solution became clear. This procedure

varied from 1 to 2 hours. Once the solution became clear the supernatant was decanted

into a sample bottle. The samples were stored below 4°C until further analysis.

All o f the metal samples were delivered to Dr. Nimal DeSilva and he completed the metal

analysis via inductively couple plasma mass spectrometry (ICPMS) at the Laboratory at

Health Canada.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.0 RESULTS AND DISCUSSION

The following section summarizes the results from the field work conducted in 2004.

Much of the discussion is focused on the five cores sampled in September 2004 because a

more extensive analysis was completed on these cores.

4.1 Hydrogeology and Groundwater Flow

The locations of the 9 cores collected in June 2004 are presented in Figure 3-1. The

general stratigraphy at the site, as observed from the 9 cores collected during June field

sampling, is summarized below, starting at ground surface:

■ Grey to brown silty tailings 60 to 100 cm thick;

■ Layered clay tailings, 10 to 40 cm thick;

■ An organic layer underlies the layered clay unit. The cores collected from the

southern portions o f the wetland (J1, J2, J5) indicated that the organic layer was 2 to

10 cm thick. A thicker organic layer was observed in the northern portion of the

wetland (J9, J10) where the layer extended from 20 cm to greater than 60 cm in

thickness; and

■ Massive brown clay was observed to underlie the layered clay and organics.

Seven monitoring wells were installed at the site to determine the direction o f

groundwater flow and to assess groundwater quality throughout the site. The locations of

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the groundwater monitoring wells are presented in Figure 3-2 and details of the well

installations are provided in Appendix A. Figure 4-1 presents the hydraulic head

measurements determined in September 2004. Six of the seven monitoring wells were

installed in standing water and, therefore, vertical gradients could be calculated as shown

in equation 4-1:

i = hi - h2/dl [equation 4-1 ]

Where:

hi = water elevation in the creek (cm above arbitrary level (aal)

h2 = water elevation in the monitoring well (cm aal)

dl = the distance from the surface water elevation and the center o f the screen in the

monitoring well (cm),

i = vertical hydraulic gradient (cm/cm)

Positive vertical gradients are indicative o f downward gradients, whereas negative

vertical gradients are indicative o f upward vertical gradients. The vertical gradients are

shown on Figure 4-2 for all wells with the exception of MW5. All but two wells (MW1

and MW2) had upward gradients with groundwater discharging into Farr Creek and their

gradients were quite small, ranging from 0.016 to 0.006. MW1 and MW2 had downward

gradients and much steeper gradients ranging from 1.08 to 0.03. The cause of the

downward gradients at these locations is most likely attributable to changes in

topography, which would affect vertical groundwater movement. MW2 was located

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4-1: Groundwater Elevation Measurements Collected in September 2004 for all Onsite Monitoring W ells

J - MW 6 * 98 .3 , -

Legend

R oadw ayD arris.shf) — ..—

M on ito ring W e lls “ ==— Railw ay

mLakes and P onds ---------- W a te rco u rse

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4-2: Vertical Gradients Calculated from September Hydraulic Head Measurements from Selected Onsite Monitoring W ells

MW1-1.082MW3

MW40.006

MW2

0.008

Legend

D a m s .s h p «— — R o a d w a y

• M o n ito r in g W e lls = R a ilw a y

----- W a te rc o u rs e | | T a ilin g s Dep os its

mLakes and P o n d s

200 0 200 400 Meters

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

immediately west of a beaver house, which could also affect the vertical water table

fluctuations.

4.2 Sediment Metal Concentrations, Organic Matter and Water Contents

Figures 4-3a through 4-3n present the organic matter (OM) and water content profiles

with depth for all 14 cores. The water contents were typically less than 35 % at low OM

values (less than 5%). As the OM contents increased, the water contents increased

substantially (up to 90 %). The OM profiles corresponded to the stratigraphy observed.

Core J10 showed the highest OM layer at over 70%.

Table 4-1 presents selected trace metal concentrations from the nine cores collected in

June 2004 and from the 5 cores collected in September 2004. The reader is referred to

Appendix B for complete chemical analysis. As shown in Table 4-1, concentrations of

Al, Fe, Ca, Mg, Mn, and Na were found to be relatively consistent values with depth,

with the exception o f core J10. Potassium demonstrated considerable variability is some

cases, ranging from 2000 ppm to 20,000 ppm with depth. Also, Core J10 showed

substantial decreasing concentrations with depth for Na, Mn, Mg, K, Pb, Ti, Zn, Fe, Cu,

Co, As, and Al. It is possible that the enhanced organic matter content and vegetative

cover o f the sediments at this location act as adsorption sites for these metals, thus

immobilizing them within the sediment and root zones. The results from core J10

contained elevated concentrations of several metals at 55.0 cm depth. This depth also

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4-3a: Core J1 - Water andorganic m atter content

( % )

0 10 20 30 40 50 60

0 ■ ♦20 ■ ♦

T 40 ■ ♦60

■ ♦w4 ■ ♦t tt, 80 ■ ♦

a 100 - ■ ♦

120 ■■

♦140

♦ V IC (%) ■ OC(%)

Figure 4-3b: Core J2 - W ater andorganic m atter content

i % )

0 10 20 30 40 50 60 70

♦ V\C(%) ■ OC("/i)

Figure 4-3c: C ore J3 - W ater and o rg a n ic m a tter c o n te n t

( % i

0 10 20 30 40

♦ WC(*X) ■ OC(°/q)

Figure 4-3d: C ore J4 - W ater and o rg a n ic m atter c o n te n t

(%>

0 20 40 60 80

0■ ♦

20 - ■ ♦

“J 40 - ■ ♦g

j 60 ■ ♦

q 80 1 ♦■

100■

120

♦ V\C(°/Q ■ O C (% )

Figure 4 -3e: C ore J5 - W ater and o rg a n ic m a tter c o n te n t

4 100a

♦ V\C(% ) ■ OC(°/Q

Figure 4-3f: C ore J7 - W ater and org a n ic m a tter c o n te n t

♦ W C(%) ■ OC(°/<)

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4-3g: Core J8 - Water andorganic m atter content

( % )

0 5 10 15 20 25

0

20

40I

60•4

804

a 100

120

140

♦ W C ("4 ■ O C (K

Figure 4-3h: Core J9 - Water andorganic m atter content

( % )

3 10 20 30 40 50 60

I» 40

80

100

♦ W C (“X) ■ OC(°/J

Figure 4-3i: C ore J10 - W ater and organ ic m a tter c o n te n t

( % )

0 20 40 60 80 100

100

120

■ ♦ ■ ♦

♦ V\C(°/Q ■ OC(%)

Figure 4-3j: C ore S1 - W ater and org a n ic m a tter c o n te n t

( % )

10 20 30 40 50

0

10

20

30

40

4 M la60

70

80

Figure 4-3k: C ore S2 - W ater and organ ic m a tter c o n te n t

(%>

0 5 10 15 20 25

0

10

A 201 30W4 40it* 50a

60

70

80

♦ W3(°X) ■ OC(%)

Figure 4-31: C ore S3 - W ater and org a n ic m a tter c o n te n t

< % )

0 2 0 4 0 6 0 8 0

0

10

2 0fl 3 0

4 0&4> 50

Q 6 0

70

8 0

♦ w c n ■ OC

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4-3m : C ore S4 - W ater and o r g a n ic m a tter c o n te n t

(%>

0 5 10 15 20

Figure 4-3n: C ore S 5 - W ater and organ ic m atter c o n te n t

(% )

0 10 2 0 3 0

0

1020

■ ♦2 0 -

40 ■ ♦■ ♦ X 3 0

! SO ww* 4 0

i 1 ♦J 80a ■ ♦ 5 50 ■ ♦

100 6 0

120 ■ ♦70

■ ♦

140 8 0

[♦WC(%) ■ OC(%T] p wc (°4 ■ oc e>9

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tabl

e 4-

1: S

edim

ent

met

al c

once

ntra

tions

for

Jun

e an

d Se

ptem

ber

2004

Co

res

Using

Aq

ua

Regi

a D

iges

tions

an

d IC

P M

S

eN

1 900

0 i

9.52

E+

02

I.22

E+

03

9.64

E+

02

5.54

E+

02

| 7.5

0E+

02

6.41

E+0

2 1

8.07

E+

02

2.63

E+

02

2.75

E

+02

i 2.8

8E+

025.

88E

+02

4.

52E

+02

7.

31 E

+02

6.

94E

+02

7.

64E

+02

8.

00E

+02

5.

28E

+02

5.

69E

+02

6.

11 E

+02

6.

25E

+02

9.2

3 E

+02

3.81

E+0

2 3,0

5 E

+02

1.46

E+0

2 4.

93E

+02

4.88

E+

026.

52E

+02

6.90

E+

023.

30E

+02

5.34

E+

023.

12E

+02

5.

21 E

+02

4.

72E

+02

5.

28E

+02

3.

84E

+02

5.

47E

+02

4.

39E

+02

6.

I4E

+02

6.

30E

+02

2.

07E

+02

s

I 898

0 Q

5.40

E+

026

77E

+02

5.84

E+

023.

94E

+02

3.74

E+

023.

80E

+02

3.35

E+

02I.

83E

+02

2.88

E+

022.

50E

+02

3.49

E+

02

2.62

E+

02

4.89

E+

02

3.79

E+

02

4.18

E+

02

4.12

E+

02

3.77

E+

02

3.61

E+

02

4.22

E+

02

1.58

E+

02

4.58

E+

02

3.71

E+0

2 2.

91 E

+02

1.44

E+0

2 3.

14E

+02

M n f t N N¥ ? ? ? ? UJ UJ UJ LU LL)\8 5 S «ri ^r t r i 'A r i r i 4.

24E

+02

3.

71 E

+02

3.

40E

+02

3.

72E

+02

3 .

14E

+02

3.

52E

+02

3.

02E

+02

3.

20E

+02

2.

76E

+02

1

47E

+02

p

01

00 tCL.

5.07

E+

03

6.43

E+

03

4.42

E+

03

4.10

E+

03

5.81

E+

03

3.83

E+0

3 3.

08E

+O3

2.47

E+

03

3.72

E+

03

2.80

E+

033.

74E

+03

1.

83E

+03

4.63

E+

03

2.98

E+

03

3.06

E+

03

3.1S

E+

03

2.98

E+

03

2.19

E+

03

2.33

E+

03

1.51

E+0

3 2.

76E

+03

2.

13E

+03

2.

14E

+03

1

68E

+03

3.

06E

+03

1.91

E+

031

2.56

E+

031

2.48

E+

03

1.52

E+0

3 2.

37E

+03

1.80

E+0

33.

43E

+03

3.45

E+

032.

69E

+03

3.57

E+

032.

96E

+03

1.92

E+0

32.

22E

+03

1.96

E+0

31.

73E

+03

35

1 rzo

'o i .Q.

3.37

E+0

1 2.

59E

+01

4.09

E+0

1 5.

70E

+01

2 .26

E+0

1 4.

83E

+01

7.12

E+

0I

4.75

E+O

I 9.

37E

+01

4 74

E+0

13.

44E

+01

8.36

E+0

1 ! 5

.26E

+01

i 4.6

5E+0

1 5.

96E

+01

8.31

E+0

1 6.

07E

+01

6.95

E+0

1 1.

43E

+02

607E

+01

1.

18E

+02

7.13

E+0

1 6.

84E

+0I

5

03E

+01

1 24

E+

024.

47E

+01

4.88

E+

0I

3 77

E+0

1 3.

56E

+01

4.17

E+0

1

¥ ¥ ¥ ¥ ¥ ? ¥ ¥ ¥ ¥U JU JU JU JU JU JU JU JU JU Jf t M N n ' t ' f P M f t ' fr j iri N N f* K 0# - O'

.eCA

0.16

7 EQa

1.13

E+0

2 1

39E

+02

1

20E

+02

1.

34E

+02

1.38

E+

02

65E

+01

3.13

E+

02

1.93

E+0

2 7.

40E

+01

i6 52

E+0

1|2

57E

+-02

4.

65E

+01

8.65

E+

0I

693

E+

0I

1.54

E+0

2 3.

41 E

+02

9.

24E

+0I

8.

49E

+OI

8.35

E+0

1 4.

08E

+02

I

34E

+02

7.1

IE

+01

46

7E+

01

3.27

E+0

1 9

.10E

+01

4.94

E+0

1I6.

75E

+011

5.60

E+0

1,nd

6.15

E+0

16.

44E

+01

7.87

E+0

1 9.

06E

+01

5.

91E

+01

1.18

E+0

2 8.

83E

+01

3.66

E+

0!

1.10

E+

02

5.16

E+

0I

4.03

E+0

1

0.56

8

I

I.26

E+

04

1.58

E+

04

1 79

E+

04

8.65

E+

03

1.33

E+

04

1.03

E+O

4 1.

05E

+04

, 6

.80E

+03

5.

63E

+03

9.

63E

+03

i 8.2

5E+

03

6.49

E+

03

I.56

E+

04

1.36

E+0

4 1.

42E

+04

1.

45E

+04

9.

17E

+03

9.

45E

+03

8.

57E

+03

2.

25E

+04

1.

52E

+04

8.

39E

+03

11

1E+

04|

9.51

E+

03

1.17

E+

046.

77E

+03

8.95

E+

031.

04E

+04

5.79

E+

038.

43E

+03

8.50

E+

03

8.47

E+

03

7.97

E+

03

8.87

E+

03

7.05

E+

03

7.08

E+

03

7.52

E+

03

8.71

E+0

3 9.

20E

+03

6.

44E

+03

£CL.

0.21

3

i .a .

7.09

E+

02

8.77

E+

02

9.12

E+

02

4.58

E+

02

6.22

E+

02

5.50

E+

02

7.45

E+

02

1 50

E+

02

5.74

E+0

1 1.

74E

+02

4.57

E+

02

3.78

E+

02

6.26

E+

02

5.27

E+

02

577E

+02

5.

89E

+02

' 4

.13E

+02

4.

88E

+02

7

.11 E

+02

1 4

54E

+02

, 8

.59E

+02

2.

46E

+02

2.

21 E

+02

5.

28E

+01

3.48

E+

023.

63E

+02

4.80

E+

026.

04E

+02

2.88

E+

024.

46E

+02

r t N N N N N N N N - ? ? ? ¥ ¥ ¥ ¥ ¥ ¥ ¥ U JU JU JU JO JU 4U 4U 4U 4U 4 t n r t f t f t *t oo O O' r i tj-‘ ■>+ Tf

a.

0.26

8 1

Eaa

1.50

E+

03

1.87

E+0

3 1

30E

+03

1.

16E

+03

1.43

E+0

3 1.

02E

+03

6.22

E+

02

1.84

E+0

3 2.

64E

+03

1.

91 E

+03

1.30

E+0

3 1.

05E

+03

1.20

E+0

3 8.

88E

+02

6.

34E

+02

,9

.83

E+

02

1.21

E+0

3 9.

36E

+02

! 1

.47E

+03

5.21

E+0

2 7.

94E

+02

8.

32E

+02

9.

44E

+02

8.9

3 E

+02

1.27

E+0

37.

24E

+02

I6.

90E

+021

6.13

E+

025.

43E

+02

6 .72

E+

024.

13E

+02

1.

13E

+03

1.19

E+

03'

7.62

E+

02

1.46

E+0

3 1.

39E

+03

8.56

E+

02

9.19

E+

02

9.13

E

+02

1.79

E+0

3

z

0.05

9 I

1a

8.93

E+

02

1.03

E+0

3 1.5

1 E

+03

5.22

E+

02

i7.4

9E+

02

'4.9

5E+

02

5.49

E+

02

1.11

E+0

3 1.

72E

+02

1.87

E+0

24.

48E

+02

4.

33E

+02

5.

32E

+02

3.0

3 E

+02

6.54

E+

02

5.97

E+

02

4.30

E+

02

5.72

E+

02

8.39

E+

02

8.07

E+

02

6.37

E+

02

2.92

E+

02

1.93

E+0

2 8.

71 E

+01

3.41

E+

02

f t N N f t N ? ¥ ? ¥ ¥ UJ 04 UJ UJ LUr f - ^ Mn - O » + irt K r i »+ 3.

01 E

+02,

4.

15E

+02

3 .

61 E

+02

1 4.

30E

+02

2.

64E

+02

3.

92E

+02

4.

14E

+02

5.

07E

+02

3.

60E

+02

1.2

2 E

+02

«z

■>»oo

Eaa

2.72

E+0

33.

66E

+03

5.54

E+0

31.

36E

+03

3.68

E+

039.

89E

+02

2.36

E+

038.

40E

+02

1.20

E+0

31.

02E

+03

9.62

E+

02

4.82

E+

02

2.32

E+

03

1.72

E+0

3 1

52E

+03

8.06

E+

02

7.22

E+

02

2.53

E+

03

! 45

E+0

3 7.

42E

+02

1.81

E+0

3 8.

46E

+02

1.

00E

+03

5.84

E+

02

1.60

E+0

31.0

4 E

+03

1.03

E+0

3 1.

14E

+03

5.26

E+

02

9.47

E+

02

( N t f r f f l f f r t f t f i P i r t¥ ¥ ? ? ¥ ¥ ¥ ¥ ? ¥ UJ UJ 04 UJ 04 UJ UJ U4 U4 OJ N O i ' r t n U ' f t r ' f p - f i r t ^ r t f f ^ r i - f i qj U — — vOrd — *£)

Mn

I 1 0

10

0

Ea

2.58

E+

03

3.39

E+

03

2.67

E+

03

1.71

E+0

3 2.

41E

+03

1.

79E

+03

1.75

E+0

3 1.

08E

+03

1 09

E+

03

1.12

E+0

3|

1.58

E+0

3 i 1

.08E

+03

' 2.2

2E+

03

j 1.

56E

+03

1 99

E+

03

1.97

E+0

3 1.

65E

+03

1.66

E+0

3 2.

04E

+03

1.

06E

+03

2.20

E+

03

1.02

E+0

3 9.

33E

+02

5.

60E

+02

I.

38E

+03

1.59

E+0

31.

78E

+03

2.26

E+

031.

13E

+03

1.70

E+0

31.

08E

+03

1.75

E+0

3 1.

66E

+03

1.78

E+0

3 1.

50E

+03

1 66

E+

03

1.36

E+0

3 1.

45E

+03

1.53

E+0

3 7.

05E

+02

US

1 0

10

0

£aa

? ? ? ? ? ? ? ? ? ?ril til cu til til UJ uj ui uj r.ui / i O ' i A n - O ' O O ' O O N « N 09 «J ^ N -

3 54

E+

04

2.53

E+

04

4.55

E+

04

j 3 .4

7E+

04

4.00

E+

04

4.21

E+

04

3 44

E+

04

3.20

E+

04

3 .97

E+

04

1.93

E+

04

4.I9

E+

04

2.12

E+

04

1.91

E+

04

1.08

E+O

4 2.

85E

+04

3.25

E+

04

3.82

E+

04

4.78

E+

04

2.51

E+

04

3 76

E+

042.

42E

+04

3.

66E

+04

3.

60E

+04

3.6

8 E

+04

3.59

E+

04

3.21

E+

04

2.91

E+

04

2.88

E+

04

3.08

E+

04

1 25

E+

04

0.05

2 |

Ia.

7.23

E+

039.

93E

+03

6.47

E+

033.

82E

+03

6.98

E+

033.

99E

+03

4.66

E+

036.

25E

+03

l.U

E+

04

7.68

E+

033.

27E

+03

1

59E

+03

5.

81E

+03

3.

99E

+03

3.

34E

+03

2.

07E

+03

2.

12E

+03

2.

99E

+03

3.

56E

+03

1

88E

+03

5.

14E

+03

4.

41E

+03

6.

30E

+03

3.

76E

+03

5.

38E

+03

4 86

E+

03

4.97

E+

03

6.83

E+

03

3.73

E+

03

5.65

E+

033.

23E

+03

5.

57E

+03

5.

69E

+03

5.

86E

+03

6.

19E

+03

5

01

E+

03

3.41

E+

03

4.99

E+

03

5.59

E+

03

5.44

E+

03

4*u.

1 o

oro ia.

9.96

E+

04

I.28

E+

05

1.03

E+0

5 6.

79E

+04

9.

21 E

+04

7.

26E

+04

6

.51 E

+04

4.

43 E

+04

5.

53E

+04

4.

64E

+04

6.42

E+

04

4.60

E+

04

8.22

E+

04

6.27

E+

04

' 7.1

4E+

04

7.72

E+

04

6.29

E+

04

5.94

E+

04

7.38

E+

04

3.88

E+

04

7.62

E+

04

4.10

E+

04

3.69

E+

04

229E

+04

5.

55E

+04

: t f 5 + +¥ ¥ ¥ ¥ ¥ UJ UJ 04 UJ UJ

O ■*? o vo 99 e 4 P

' O 9C ^ ‘O 4.22

E+

046.

41E

+04

6.30

E+O

46.

60E

+04

6.32

E+

045.

79E

+04

5.15

E+

045.

53E

+04

5.87

E+

042.

96E

+04

aW

0.01

2 |

1a

9.67

E+

02

1.13

E+0

3 1.

42E

+03

6.Q

0E+0

2 8

.31 E

+02

;

6.62

E+

02

1.13

E+

03

2.63

E+

02

1.79

E+

02

3.44

E+

02i

6.00

E+

02

5.15

E+

02

1 6.

72E

+02

4

.11E

+02

9.86

E+

02

8.70

E+

02

6.29

E+

02

8.13

E+

02

7.02

E+

02

6.18

E+

02

9.64

E+

02

3.38

E+

02

2.56

E+

02

9.67

E+O

I 4.

58E

+02

4.61

E+0

2 1

6.37

E+0

2 1

7.69

E+

02

3.83

E+

02

5.94

E+

023.

11 E

+02

4.

93E

+02

5.

10E

+02

5.

93E

+02

5.

63E

+02

5.

22E

+02

4.

86E

+02

6.

58E

+02

5.

95E

+02

1

28E

+02

U

0.01

6 |

ia

376

E+0

2 4.

81E

+02

4.

00E

+02

2.

55E

+02

3.

50E

+02

2.

74E

+02

2.

64E

+02

1.

85E

+03

2.56

E+

02

1 82

E+

022.

36E

+02

1

70E

+O2

3.14

E+

02

2.34

E+

02

2.85

E+

02

2.83

E+

02

2.32

E+

02

2.23

E+

02

2.92

E+

02

5.72

E+

02

3.16

E+

02

2.11

E+

02

154

E+

02

1 02

E+

02

220E

+02

2.19

E+

02

2.61

E+

02

3.17

E+

02

1 87

E+

02

2.53

E+

02I6

0E+

02

2.48

E+

02

2.40

E+

02

2.51

E+0

2 2.

29E

+02

2.

24E

+02

1.

90E

+02

4.

15E

+02

2.

32E

+02

1.

33E

+02

oU

r~8o '

ia¥ ¥ ¥ ¥ ? ¥ ¥ ? ¥ ¥ O JU JO JU JU JU JU JU JU JU I m 00 O VI — <N O — IO C4 — r t co — oo ffi' n — m 8.

79E

+02

7

49E

+02

1.

39E

+03

6.92

E+

02

1.28

E+0

3 1.

15E

+03

7.52

E+

02

9.65

E+

02

1.14

E+0

3 7.

38E

+02

1.1

3 E

+03

4.28

E+

02

3.22

E+

02

1.09

E+0

2 6.

07E

+02

8.68

E+02

1

1.17

E+0

3 I.

32E

+03

6.

31 E

+02

' 8.

95E

+02

f t f t r t r t M f t f t N N N¥ ¥ ¥ ¥ ? ¥ ¥ ¥ ¥ ¥L UUJ OJ UJ UJ OJ UJ UJ OJ OJr - h r ' ^ r t C T o c O f No o ^ oo « o r t v?f i c c ' O o c + ' C t + o ' n "

AU 0.

055

|

Eaa

7.22

E+

04

9.81

E+

04

7.59

E+

04

5.39

E+

04

6.78

E+

04

5.01

E+

04

4.50

E+

04

3.31

E+0

4 3.

77E

+04

3.

60E

+04

4.07

E+

04

2.58

E+

04

7.02

E+

04

4.79

E+

04

7.32

E+

04

6.41

E+

04

6.07

E+

04

6.06

E+

04

7.15

E+

04

4.51

E+

04

7.75

E+

04

3.79

E+

04

4.I2

E+

04

2.95

E+

04

5.24

E+

044 .

27E

+04

I4.

07E

+04

I5.

63E

+04

3.15

E+

044.

45E

+04

3.46

E+

04

5.92

E+

04

5.84

E+

04

5.61

E+0

4 5.

77E

+04

5.

91E

+04

4.

17E

+04

43

2E+

04

4.68

E+

04

3.10

E+O

4

<

0.12

0 [

1CL¥ ¥ ¥ ? ¥ ? ¥ ? ¥ ¥U U l l U U U l M U l U J U J U )■ s t r ~ r - - o o o O r ^ r 4 ^ p r ^ o oTt- —r i + i O ' r i w r i w o I r i - 2.

44E

+03

1

97E

+03

5.

26E

+03

2.

73E

+03

6.

36E

+03

5.

36E

+03

3.

34E

+03

4.

71E

+03

5.

87E

+03

3.

74E

+03

5

32E

+03

1.

61E

+03

1.

09E

+03

3.

69E

+02

2.

39E

+03

1.43

E+03

1

1.53

E+03

|

2.30

E+

03

1.30

E+0

3 1

74E

+03

1.06

E+0

3 2.

44E

+03

2.

00E

+03

1.

91 E

+03

1.21

E+0

3 2.

65E

+03

1.

74E

+03

2.71

E+0

3 2.

13

E+0

3 3.

46E

+02

5

0.07

0 [

£aa

8.87

E+

041.

15E

+05

9.53

E+

045.

89E

+04

S.1

6E+

046.

20E

+04

608E

+O

45.

I9E

+04

9.49

E+

046.

34E

+04

5.35

E+

04

3.72

E+

04

7.42

E+

04

5.44

E+

04

6.51

E+

04

6.24

E+

04

5.08

E+

04

5.37

E+

04

6.63

E+

04

3.13

E+

04

6.96

E+

04

4.38

E+

04

4.48

E+

04

3.02

E+

04

5.78

E+

045.

23E

+04

6.02

E+

047.

72E

+04

3.96

E+

045 .

97E

+04

3.78

E+

045.

77E

+04

5.68

E+

045.

88E

+04

5.65

E+

045.

38E

+04

4.44

E+

045.

36E

+04

5.54

E+

044.

54E

+04

1 C

ore

ID D

epth

(c

m)|

JaS

3‘2D

CO

RE

J1

7 5

15.0

22.5

37.5

52.5

67.5

82.5

10

0 11

5 12

5C

OR

E J2

7.5

22.5

37.5

52.5

67.5

82.5

97.5

11

3 12

8 13

8 14

8 16

3 17

8 19

3

CO

RE

J3 7

522

.537

.552

.567

.5C

OR

E J4

7

522

.537

.557

.572

.577

.5

80.0

90

.097

.5

106

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced

with perm

ission of the

copyright ow

ner. Further

reproduction prohibited

without

permission.

C o re ID D e p th (cm ) Al As C a C o C r C u Fe K M * M n Na Ni P P b S Sb Si Ti U Z nM D L 0.070 0.120 0.055 0.007 0.016 0.012 0.100 0 0 5 2 0.010 0.010 0.074 0.059 0.268 0.213 0.568 0.167 0.022 0.010 0.868 0 .006U nits ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm

C O R E J 5 7.522.537.562 .577.592.5 103 1 IS 133 148

4.29E+045.54E+046.64E+047.30E+044.96E+058.34E+046.92E+048.08E+046.66E+047.49E+04

1.72E+03 2.27E+03 2.77E+03 5 .19E+03 2 77E+04 4 99E+03 5.88E+03 4 4 1 E + 0 3 4.11 E+02 6 43E+02

3.40E+04 4.13E+04 6.48E +04 7.22E+04 5.27E+05 9.98E-H34 7.16E+04 6 02E+04 2.48E+04 2.79E+04

4.85E +02 7.12E+02 7.60E+02 9.93E+02 7.13E+03 1.27 E+03 1.33E+03 8.01 E+02 1.15E+02 1.48E+02

1.78E+02 2.46E+02 3.00E+02 2.99E+02 2.03E+03 3.99E+02 3.82 E+02 2.86E+02 1.95 E+02 2.04E+02

2.3lE-K)2 2.92E+02 3.39E+02 6.75E+02 4.64E+03 6.37E+02 6.10E+02 7.21 E+02 1.05E+02 1.28E+02

4.34E+04 5.57E+04 7.23E+04 7.37E+04 4.79E+05 7.61E+04 6 8 0 E + 0 4 6.31 E+04 4.97E+04 4.93E+04

3.65E+03 5.36E+03 4.73E+03 5.12E+03 3.97E +04 7 .55E+03 4.81 E+03 1.01E+04 1.22E+04 1.46E+04

2.43 E+04 3.13E +04 4.01 E+04 4.16E +04 2 .70E+05 4.74E +04 4 J 3 E + 0 4 3.39E+04 2.23E +04 2.18E +04

I.20E + 03 1.64E+03 2.12E +03 2.20E+03 1.50E+04 2.80E+03 2.60E +03 1.88 E+03 9.64E + 02 1.02 E+03

1 24E+03 1.91 E+03 1.92E+03 2.38E+03 2.23E+04 5.15E+03 2.54E+03 1.94E+03 1.86E+03 2.06E+03

I.75E+02 2.42E+02 2.90E+02 5.13E+02 3.49E+03 5.I2E + 02 4.76E+02 3.49E+02 1.3 IE+02 1.37E+02

6.09E+02 8.55E+02 1 27E+03 1.06E+03 3 .19E+03 4.28E+02 5.62E+02 9.43 E+02 1.01 E+03 8.77E+02

2.13E +02 3 .32E +02 4.09E +02 4.93E +02 4.96E +02 5.89E +02 7.46E +02 8.41E +02 5.77E+01 1 09E +02

4.83E+03 6 .45E+03 7 .96E+03 8.96E+03 6 .82E + 04 1.16E+04 1.04E+04 9.8 5 E+03 1.78E+03 2 .45E+03

4.62E+016.05E+018.95E+019.50E+014.67E+029.07E+O11.99E+025.92E+016.80E+015.68E+01

3.04E+0I 1.15E+02 9.82E+01 I.20E+02 4.02E+02 2.73E+01 7.79E+01 7.46E+01 5.8IE+01 1 45E+02

2.80E+03 3.22 E+03 5.98E+03 3.37E+03 1.57E+04 2.72E+03 2.54E+03 2 .66E+03 3 .30E+03 2.37E+03

3.16E +02 2 .97 E+02 3.82E +02 4 .14E+02 4.23 E+02 4.61 E+02 3.81 E+02 3.87E+02 2 .35E +02 2 .75E+02

2.90E +02 3 .94E + 02 4.89E +02 6 .68E + 02 4 .90E +03 8.77E +02 9 .06E + 02 1.01 E+03 1 .77E+02 2 .32E +02

C O R E J 7 7 522.537.557.5

5.70E+046.86E+046.65E+047.47E+04

3.09E+032.19E+032 8 7 E + 0 33.60E+03

5.29E+04 6.34E +04 5 .69E+04 6.71 E+04

7.31E+02 8.31 E+02 7.53E+02 8 .30E+02

2.43 E+02 3.32E-KJ2 2.63 E+02 2.91 E-K)2

3.21 E+02 3.42E+02 3 .73E+02 4 .26E+02

7.03E+04 7 .77E+04 7 .82E+04 8.71 E+04

2.16E+034.27E+033.80E+034.13E+03

4.14E +04 4.61 E+04 4 .69E + 04 5.10E+O4

1.55E+031.77E+031.78E+031.99E+03

9 5 3 E + 0 2 3.53E+03 3.22E+03 I 28E+03

2.99 E+02 3.67E+02 3 .I3E + 02 3 46E+02

1.06E+03 6.68E+02 9.82E+02 1 4 1 E+03

6.08E +026.50E+O26.02E +026.29E + 02

4.29E+035.05E+035.02E+035.38E+03

7.51E+01 7.45E+01 8.41E+OI 8 34E+01

587E + 01 2.91 E+01 2.21E+01 8.50E+01

3.75 E+03 3.54E+03 4.59E+03 4.85E+03

3.79E+024 .35E + 024.32E +024 .62E + 02

6.09E + 026 .60E + 025.59E +026.13E + 02

C O R E J 8 40.057.572.587.5 103 118

6.83 E+04 5 .68E+04 5 .37E+04 5 .23E+04 5 .38E+04 3.65E+04

2.43 E+03 2.89E+03 1.66E+03 1.73E+03 1 66E+03 1.29E+03

7 .I8 E + 0 4 5.96E+04 5.16E+04 5.28E+04 5.31 E+04 3.74E+04

7.09E+02 7.97E +02 5.58E+02 5 .10E+02 5.44 E+02 4.21 E+02

3.73E+02 2.51 E+02 2 .28E+02 2.24E+02 2.46E+02 5.33E+03

4.09E +02 4.37E+02 3.97E+02 3.43 E+02 3 .33E+02 3 .I6 E + 0 2

7.65E+04 6 39E+04 5.81E+04 5.83E+04 6.02E+04 5.56E+04

4.54E+03 4.71 E+03 4 .67E+03 3.94E+03 3 .76E+03 2 .40E+03

4.46E +04 3.65E +04 3.35E +04 3.41 E+04 3.51 E+04 2 .43E +04

2.01 E+03 1.72E+03 1.48 E+03 I.52E + 03 1 .56E+03 1.44E+03

1.80 E+03 1.10E+03 1.13E+03 1 59E+03 1 28E+03 8 2 2 E + 0 2

4.07E+02 4.27E+02 2.63 E+02 2.62E+02 2.73E+02 2.87E+03

1.21 E+03 I.I3E + 03 9.96E+02 1.09E+03 8 .90E+02 8.07E+02

6.42E + 02 4 .63E + 02 4 .80E + 02 4 .5 IE + 02 5.44E +02 3.14E +02

8.64E+038.24E+036 .63E+036.57E+036 .56E + 034.42E+03

1.25E+027.43E+014.22E+016.87E+017.73E+014.03E+02

9.57E+013.00E+015.26E+017.56E+016.55E+011.39E+02

4.70E+03 3.70E+03 3.20E+03 3.74E+03 3.53 E+03 2.48E+03

4.14E +02 3 74E+02 3.50E +02 2 .90E+02 3 .49E + 02 2.81 E+02

6.60E +025.22E +025.10E +024.90E +024.96E +023.39E +02

C O R E J 9 27 542.557.575.5 89 .0

6.77E+046 .35E+047.51E+047.81E+048.56E+04

1.77E+032.48E+032.68E+032.16E+032.47E+03

2.85E+045.44E+045.29E+043.36E+043.60E+04

4.10E+02 9.91 E+02 9 .43E+02 4.27 E+02 5 .52E +02

2.85E+023.10E+026.35E+028.96E+022.66E+02

2.80E +025.06E+027.92E+023 .55E+023 .80E+02

5.09E+O46.15E+047.18E+044 7 6 E + 0 46.35E+04

7.18E+03 5 .14E+03 5 .15E+03 7.92E+03 1 09E+04

2.29E +04 3.51 E+04 3.92E+04 2.08E+O4 2 .92E+04

9.40E +021.57E+031.69E+038.16E +021.20E+03

9 .27E+02 3.33E+03 1 73 E+03 9.66E +02 1.35E+03

3.03E+024.94E+027.53E+026.80E+023.44E+02

9.10E+02 7 .28E+02 1.01E+03 1.01 E+03 1.15E+03

1.81 E+02 4 .94E + 02 5.88E+02 1 93E+02 4 .47 E+02

7.64E+03 8.99E+03 1.18E+04 7.1 IE+ 03 I.05E+O4

7.19E+01 7.24E+01 1 09E +02 1.02E+02 7.66E+01

3.59E+012.89E+011.10E+027.95E+018.81E+01

3.11 E+03 3.24 E+03 3.43 E+03 2.59E+034.08E+03

2 4 6 E + 0 23.55E+023.90E +022.38E +023.22E+02

2.82E +02 5.55E +02 6 .09E + 02 2.54E +02 3 75E+02

C O R E J 1C 36 055 .067.582.597.5 113

5.14E+04 8.50E+04 1.21 E+04 1.17E+04 I.69E+04 5.10E+03

3.80E+02 4 .19E+02 1.07E+03 1.05E+02 8.96E+01 1.58E+01

2.52E+04 2.52E+04 2 96E +041 98E +042 77E+04 5.71E+03

4.60E +02 4 .90E +02 2 .48E +02 3.77E+01 3.42E+01 9.01 E+00

2.42E+02 I.43E+03 1 09E+02 2.95E+01 1.02E+02 2 .25E+02

4 .66E+021.89E+035 .70E+021.17E+029.63E +0I2.06E+01

4 8 6 E + 0 4 7 .98E+04 1.31 E+04 594E + 03 1.05E+04 3.80E+03

4.36E+038.14E+037.39E+027.92E+021.66E+036.71E+02

2.77E+04 4.11 E+04 5.85E+03 2.67E+03 5 .17E+03 1.63 E+03

1.25E+03 1.82E+03 2 .62E +02 1.04 E+02 2.06E +02 9.15E+01

1.54E+038.35E+033.87E+022.38E+027 .I2E + 02I.39E+02

4.03 E+02 1.45E+03 4 .24E+02 6.06E+01 9.79E+01 1 34E+02

7.16E+02I.37E+ 022.29E+026.63E+025.62E+021.17E+02

4.01E +02 5 .80E +02 1 O0E+O2 2.20E+01

n d nd

4 .39E+035.10E+03I.52E + 046.20E+031.44E+042.59E+03

5.38E+01 1.56E+02 9.43E+01

n d I.54E+01 1 89E+01

5.15E+01 1.63 E+02 1.56E+0I 4.27E+01 8.06E+01 1.40E+01

2.52E+03 1.95 E+03 3.85 E+02 3 .42E+02 5 .66E+02 2 .09E+02

2.74E +024 .64E + 0272 6 E + 0 1

nmnmnm

5.32E+025.74E +021.19E+023.04E+016.70E+011.82E+01

C O R E S I 25 050.075.0

5.34E+042.77E+056.71E+04

3.49E+032.19E+031.56E+03

5.53E+044.05E +047 .33E+04

5.74E+02 5.43 E+02 5 .98E+02

2 .18E+02 2.01 E+02 2.62E+02

3.16E+02 1.98E+02 4.01 E+02

5 5 9 E + 0 45.30E+047.00E+04

4.25E+034.50E+038 .13E+03

2.37E+052.72E +054 .I2 E + 0 5

1.51 E+03 1.54E+03 1.99E+03

3.10E+043.24E+044.29E+04

4 .28E+021.51E+022.83E+02

nmnmnm

5.00E +022.05E +024.98E +02

5.22E+038.23E+039.10E+03

2.03E+02ndnd

2.67E+03 1.98E+03 2.81 E+03

2.06E+033.70E+034.58E+03

nmnmnm

3.60 E+02 3 .70E +02 6 .17E + 02

C O R E S2 25 050.075.0

6.89E+04 7.02E+04 6.51 E+04

6.91 E+02 I.64E+03 1.85E+03

6 .64E+04 8 .25E+04 8 .3 1 E+04

5.71 E+02 5.80E+025.30E+02

3.10E+022.92E+023.26E+02

2.57E+02 2 .85E +02 3.1 IE+ 02

7.33E+0478 5 E + 0 47.00E+04

7.03E+037.32E+038 .57E+03

6.99E +045.12E+052.67E +05

2 .3 IE + 0 3 2.54E +03 2.27 E+03

5.09E+O3 4.71 E+04 4.21 E+03

2.81 E+02 2 .91E+02 3.24 E+02

nmnmnm

4.48E + 02 3.84E +02 4 21E +02

5 .50E+03 7 .I7 E + 0 3 7.31 E+03

ndndnd

2.46E+03 3.71 E+03 2.66E+03

5.26E+036.26E+035.17E+03

nmnmnm

4.46E +02 4 .60E + 02 4 83E+02

C O R E S3 25 050.075.0

3.89E+04 3.96E+04 4.31 E+04

I 3QE+03 3.12E+03 3.49E+03

3.35E+044.43E+044.12E+04

6.31 E+02 4.12E +026.92E +02

3.80E+Q22.60E+022.20E+02

3.51 E+02 2.91 E+02 6.21 E+02

4.45 E+04 4.63E+04 3.90E+O4

4 .18E+033.36E+034 7 6 E + 0 3

2.30E+051.77E+051.38E+05

1.24E+03 1.22E+03 1.25 E+03

5.24E+044.18E +043.27E+04

2.9 IE+02 2.03E+02 3.40E+02

nmnmnm

3 46E + 02 4.49E + 02 6.04E + 02

4.60 E+03 4.48E +03 1.35E+04

9.02E+012.7IE+ 019.66E+01

2.82E+032.14E+032.54E+03

2.12E+03 1.88E+03 1.4 IE+03

n mnmnm

4.36E + 022.99E + 024.72E +02

C O R E S 4 25 050.075 .0 100

5.46E+046.14E+046.20E+046.36E+04

1 23 E+03 2.99E+03 1.47E+03 2.09E+03

6.23E +045.42E+044.77E +045.93E+04

3.90E+029.32E +025.16E +026.37E +02

5.47E+022.46E+023.69E+032.58E+03

2.60E +02 4.01 E+02 4.37E +02 5.28E +02

6.59E+047.00E+046.97E+046.96E+04

3.42E+034 0 7 E + 0 36.87E+037.20E+03

4.83E + 043.83E+053.76E +053.74E+05

1.70E+03 1.56E+03 1.74E+03 1 81E+03

5.48E+04 5.67E+04 5 .44 E+04 5.58E+04

3.00E+02 3.42E+02 2.0OE+O3 1 40E+03

nmnmnmnm

8.03E +025.12E +023.10E +023.21E+02

6.00E+037.43E+036.86E+037.84E+03

3.33E+OI4.63E+012.75E+022.80E+02

2.49E+033.23E+032.72E+032.88E+03

3.75E+033.96E+033.76E+033.84E+03

nmnmnmnm

6.28E +024.79E + 024.72E +024.53E +02

C O R E S S 25 050 .075 .0

5.66E+045.22E+045.47E+04

2.67E+034.07E+032.21E+03

6.27E+045.67E+045 3 4 E + 0 4

6.38E+029.47E+025.96E+02

2.41 E+02 4.01 E+03 2.71 E+02

2.79E+02 4 .I7 E + 0 2 4.7 IE + 02

6.00E+046.28E+045.85E+04

6.25E+033.69E+034.83E+03

3.39E +043.16E+053.33E+05

1 65E+03 1.62E+03 1.64E+03

1.62E+Q33.77E+033.96E+03

2.71E+02 2.21E+03 3.1 IE+ 02

nmnmnm

4.11 E+02 4.91E +02 3.93E+02

8.20E+031.04E+045.36E+05

3.99E+01 2.91 E+02 5.10E+01

7.10E+OI2.32E+032.33E+03

4.37E+033.85E+033.84E+03

nmnmnm

4.40E + 02 5.67 E+02 5.14E +02

Notes.M D L M ethod D etection Limit

nm N ot M easurednd N ot D etected

represents the top o f the tailings layer at this location which is likely the result of the

higher concentrations. It should also be noted that Si, Mg, and Na concentrations showed

notable differences between the June cores and September cores. For Si, the

concentrations reported for the September cores averaged at 2500 ppm and the highest

concentration from the June cores was 402 ppm. Similarly, much higher concentrations

were generally reported for Mg and Na in the September cores when compared to the

reported concentrations in the June cores. The analyses for all cores were conducted at

the same time and the blank samples did not indicate cross contamination (refer to

Appendix B, Table B4). Thus, the reason for such large differences is not known.

Figures 4-4a through to 4-4i present sediment concentration profiles with depth for

selected trace metals at each core location collected in June 2004. No observable trends

were noted for any of the metal profiles from the June cores. The sediment concentration

profiles for the cores collected in September 2004 (SI to S5) are based only on three or

four data points and therefore may not accurately represent any significant trends. As a

result the data are not present or discussed here.

4.3 Sequential Extractions

Sequential extractions were completed for five separate fractions o f the sediment:

exchangeables, carbonates, Fe and Mn oxides (oxides), organic matter (OM), and

residuals. Metals associated with the exchangeable fraction are highly mobile and are

often correlated with the cation exchange capacity (CEC) of the sediment (Grambrell et

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4-4a (i): Core J1 As, Co, Cu, Zn sediment concentrations

1000 2000

Concentration (ppm)

3000 4000 5000 6000 7000 8000

aa>a

o

20

40

60

80

100

120

140

XXA. • •A* ■ JX ♦X AX ■ A

u rn

m ♦ x a ■

XM PA ■ «► ♦

- m m a

♦♦

♦ ♦

♦ ♦

♦ As ■ Co a Cu x Zn

Figure 4-4a (ii): Core J1 - Mi, Pb, Sb sed im ent concentrations

Concentration (ppm)

0 500 1000 1500 2000n

oo ■ ■ ♦ ♦

20O 0

GD■ ♦

■ ♦

m ♦

40 O O ■ m ♦

?

£60

O o

ra n t ♦ « ■ ♦ ■ ■ ♦

■ ♦

+-<aa>a

80 O ♦ o ♦ ■ ■

100 C H O ♦ ♦

120■ ) ♦

o m

140 -

♦ Ni ■ Pb o Sb

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4-4b (i): Core J2 - As, Co, Cu, Zn sediment concentrations

1000

Concentration (ppm)

2000 3000 4000 5000 6000 7000 8000

250

A ■HA* HA ■ ♦

50+ A ■HAW ■

? 100 - h a m+ H A * B

•C HAA ■ ■CL A H®

Q 150M- ♦ A *■♦ a m

200 m ♦> ♦ A ■

♦ ♦♦

♦ ♦

♦ ♦♦

♦♦ ♦

♦ ♦

♦ ♦

♦ As ■ Co a Cu + Zn

Figure 4-4b (ii): Core J2 - Ni, Pb, Sb sediment concentrations

a0)o

50

100

150

200

250

ooo

oo00

oo(S3

O O(3DQDI O ♦«► OD

■ A®■ A O O

Concentration (ppm)

250 500 750 1000

♦ ♦

■ ♦♦ ■

♦ ■»■♦

♦ ■♦

♦ ♦

♦ ■

♦ Ni ■ Pb o Sr

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dept

h (c

m)

Dept

h (c

m)

Figure 4-4c (i) :Core J3 - As, Co, Cu, Zn sediment concentrations

500

Concentration (ppm)

1000 1500 2000 2500 3000

10

20

30

40

50

60

70

80

a ■ ♦ m

O A A O

O q k A ♦ ♦

O A ■ O A A

O 1 A

♦ As ■ Co a Cu o Zn

Figure 4-4c (ii): Core J3 - Ni, Pb, Sb sediment concentrations

0

10

20

30

40

50

60

70

80

100 200

Concentration (ppm)

300 400 500 600 700 800

A A

■ ♦

♦♦

■ ♦ ■ ♦

■ ♦

♦ Ni ■ Pb a Sb

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4-4d (i): Core J4 - As, Co, Cu, Zn sediment concentrations

1000

Concentration (ppm)

2000 3000 4000 5000 6000

Q .a>o

0

20

40

60

80

100

120

A •

I? O il

IB

I I P A I

♦ ♦

♦ ♦

<H*A ♦4 J " . ♦

m>+ oAumokm.

m a

♦ ♦

♦ As ■ Co a Cu o Zn

Figure 4-4d (ii): Core J4 - Ni, Pb, Sb sediment concentrations

Q .VQ

0

20

40

60

80

100

120

200Concentration (ppm)

400 600 800 1000 1200

* ♦

m a

A A A AA 4 4 J*Am A A AA AAA A * ■

AB A

A A

■ %A A A ■

AN i ■ Pb ASb

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4-4e (i): Core J5 - As, Co, Cu, Zn sediment concentrations

3000

Concentration (ppm)

6000 9000 12000 15000

0

20

40

— 60 E£ 80Q .0)Q 100

120

140

160

tm. ■ ♦♦

♦ ♦ ♦

tcm

▲a m. ■ a*x

r ♦■c ♦»

▲ X

♦♦♦

♦ ♦

♦ As ■ Co a Cu x Zn

Figure 4-4e (ii): Core J5 - Ni, Pb, Sb sediment concentrations

Eo

0

20

40

60

80Q .0)Q 100

120

140

160

x #■

X X

200Concentration (ppm)

400 600 800 1000 1200

♦ ■ ♦ ■ ♦

♦ ♦ i

xx

X

x xX X

XK ■ X«A■ ym

♦ ♦ ♦

♦♦

♦ Ni ■ Pb x Sr

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4-4f (i): Core J7 - As, Co, Cu, Zn sediment concentrations

Concentration (ppm)

3 500 1000 1500 2000 2500 3000 3500 4000 4500n

10 -M. > x m ♦ ♦

20 ■X ♦ ♦

(cm

)GO o

% 40 o

A >A ■ X ■ ♦ ♦

50

60 M. X X ■ ■ ♦ ♦

70 -

♦ As ■ Co a Cu x Zn

Figure 4-4f (ii): Core J7 - Ni, Pb, Sb sediment concentrations

0 100 200

Concentration (ppm)

300 400 500 600 700 8000

10

20

| 30

§■ 40 Q

50

60

70

♦ ♦

♦ ♦

♦ ■

▲ A ♦ ♦

♦ Ni ■ Pb a Sb

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4-4g (i): Core J8 - As, Co, Cu, Zn sed im ent concentrations

Concentration (ppm)

D 200 400 600 800 1000n i i iu

20

40 A A X ■ X ■

I 60 A X A X ■ ■

JO A X ■ A X ■& 80 -Q AA x m

100 - A A X * X ■

120 A ■ A X ■ ♦

140

♦ As ■ Co a Cu x Zn

Figure 4-4g (ii): Core J8 - Ni, Pb, Sb sediment concentrations

Concentration (ppm)

0 500 1000 1500 2000 2500 3000 3500 4000 45000

20

40

i 60

& 80

100

120

140

A ♦ * ■

A «* ■

♦♦ ■■

■A ■ A

♦ Ni m Pb AS b

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4-4h (i): Core J9 - As, Co, Cu, Zn sediment concentrations

1000

Concentration (ppm)

2000 3000 4000 50000

10 -

20

30

?o40

-C 50 -aa>a 60

70

80

90

100

JK ♦ *A

A<AX • m

XXA

♦ ♦

♦ ♦

■XA XA ■

♦ ♦

♦ As ■ Co a Cu x Zn

Figure 4-4h (ii): Core J9 - Ni, Pb, Sb sediment concentrations

200

Concentration (ppm)

400 600 800 1000 12000

102030

E 40 or soQ . ^a> 60 a

708090

100

■ ♦

♦ ♦

A A

A A M IA

A A A

♦ ♦

♦ ♦

■ ♦

♦ Ni ■ Pb AS b

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4-4i (i): Core J10 - As, Co, Cu, Zn sediment concentrations

500

Concentration (ppm)

1000 1500 2000 2500

Eo

Q .0)a

20

40

60

80

♦a x

♦ w x x

100

120 r

♦ As ■ Co a Cu x Zn

Figure 4-4i (ii): Core J10 - Ni, Pb, Sb sediment concentrations

Concentration (ppm)

0 200 400 600 800 1000 1200 1400 1600 1800

Eo

aQ

20

40

60

80

100

120

A A

AA ♦

AAA

A N i a P b A S b

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

al., 1991). Some metals, such as Pb and Co are known to have an affinity for carbonate

surfaces and as such it was important to include the carbonate fraction in the sequential

extraction analyses. The surfaces of oxides and OM are also prime adsorption sites for

metals. The residual fraction accounts for silicate minerals and sulfides. This is

important since one of the sinks for select metals is the formation of metal sulfide

precipitates under reducing conditions, thereby immobilizing metals.

Figures 4-5a through 4-5g present the results of the sequential extractions for selected

metals from the five cores collected in September 2004. The complete set o f analytical

results are provided in Appendix B. For several metals, at all locations, larger (greater

than 50%) fractions o f metals were associated with the residual fraction. Generally, for

metals that exhibited associations with Fe and Mn oxides, there were larger percentages

o f metals associated with this fraction at shallow depths than at deeper depths. A brief

discussion on specific metal trends observed at each core location is provided in the

following sections.

Arsenic

Arsenic had relatively constant associations with the residual fraction ranging from 35%

to 75%. The fraction o f As associated with the oxides fraction ranged from 31% to less

than 5% and typically the fraction o f As associated with oxides decreased with greater

depths. This could be attributed to reduced anounts of Fe and Mn oxides at depth due to

the development of reducing conditions. Fractions associated with OM increased with

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

depth at Core S1. This is associated with an increase in OM content at Core S1 with

depth. For the remaining cores, with the exception o f S3, OM fractions seemed to be

relatively constant ranging from 8% to 33%. At S3, for 50 cm depth, a large spike in

fractions associated with residuals was observed. The reason for this is not known,

however, the OM content o f this core at 50 cm depth was 6.6 %. For all locations

sampled, less than 15% of the As was associated with the exchangeable or carbonate

fractions

In general, As seemed to be retained predominantly in the residual fraction o f the

sediment as for all locations sampled, over 25% of the As was retained in this fraction.

Also, As was retained significantly by OM, even under low OM contents in the sediment.

This would indicate that if the OM content of the wetland increased, potentially higher

associations of As could be observed with OM. It was surprising that As was not

strongly associated with the Fe and Mn oxide fraction. This could be attributed to there

being small quantities of oxides present in the tailings. Alternatively there could also be

competition with OM for sorption sites. (Grambrell et al., 1991).

Cobalt

Cobalt associated with the OM fraction o f the sediment ranged from 22% to 80%. Cobalt

associated with the OM fraction increased with depth at Cores S2 and S3. At Core SI,

the fraction associated with OM decreased with depth. This resulted from increases in

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4-5a: Sequential Extractions Results for Arsenic

o 60

*5 405 30I 20

E E £ E E E £ E E E E E E E E Eo o o o o o o o o o o o o o o o

i n o m m o i n i n o m i n o i n o i n o i nCM i n N - CNI i n r - CM m N - CM i n r - o CM m e -

1 1 1 ■CM

■e g

iC\l

1CO

ICO

ICO

■■M-

i■M-

■■sr 1

ii n

1LO

1LO

CO CO CO CO CO CO CO CO CO CO CO COc o

CO CO CO

Location

■ Exchangeable ■ Carbonates □ Fe, Mn-oxides □ Organic 23 Residual

Figure 4-5b: Sequential Extractions Results for Cobalt

90Co 80c 70| 60£ 50.22 40 Q-£ 30 8 20 I 10

E E E E E E E E E0 0 0 0 0 0 0 0 0L O O L O L O O L O L O O L OC M i n r ^ c N i f i N - c M i n i ^

1 i i i i i i i i■ * - t- t - C \ | C M C M C O C O C OW W W t O W W W W W

E0LOCM

1

CO

E0oi n

1

CO

E0 i nN-

1

CO

Eooo

■M-co

Eoineg

■10CO

E0 olO

1LOCO

Eomh-

■i nco

Location

Exchangeable ■ Carbonates □ Fe, Mn-oxides □ Organic 0 Residual

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4-5c: Sequential Extraction Results for Zinc

^ 60

v 50

S 40

u U i U u l UE E E E E E E E E E E E E E E Eo o o o o o o o o o o o o o o o

i n o i n i n o i n i n o i n m o m o i n o mCM i n CM m f ' - CM i n r - CM i n h - o CM i n i''-

1 1 1 ■CM

iCM

iCM

1CO

■CO

Ic o

I I 11

■i n

im

1LO

CO CO CO CO CO CO CO CO CO CO CO CO ■'3-CO

CO CO CO

Location

Exchangeable ■ Carbonates □ Fe, Mn-oxides □ Organic 0 Residual

Figure 4-5d: Sequential Extractions Results - Copper

_ 100 -iIS 90 - n? 80 fl n£ 70 - d „ n

£ E E E E E E E E E E E E E E Eo o o o o o o o o o o o o o o o

m o i n i n o i n m o i n i n o i n o i n o i nCM i n CM i n n - CM i n h - CM m i^- o CM i n h -

1 1 1 1CNJ

■CM

■CM

1CO

1CO

ICO

■ ■ ■M" 1

■i n

ii n

■i n

CO CO CO CO CO CO CO CO CO CO CO CO ^ rt r \ CO CO COcoLocation

H Exchangeable ■ Carbonates □ Fe, Mn-oxides □ Organic 0 Residual

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4-5e: Sequential Extractions Results for Nickel

120

b 100

~ 80 3

X I

5 60wa~ 40oS 20

l l 1 1 1 i .i 1 1 1E £ E E £ £ E E E E E E E E E £o o o o o o o o o o o o o o o o

LO o in LO o LO LO o LO LO o m o LO o LOCM in r- CM in CM LO r- CM to c- o CM m h-1 i 1 1

CM1

CM CMi

COt

COi

COi 1 1

1i

LO1

LOi

LOCO CO CO CO CO CO CO CO CO CO CO c o S4 CO CO CO

Location

■ Exchangeable ■ C arbo n a te s □ Fe, M n-oxides □ O rgan ic 0 R esidua l

3

‘C■+-*CO

25c0)if

CL

Figure 4-5f: Sequential Extraction Results for Lead

80 3? 70§ 60

5040302010

0E Eo oin oC\| lO

E E Eo o o E E Eo o oin m o l o in oh - ( N LO 1 ^ 0 4 i n

E E E Eo o o oL O L O O LOr - c m i n r -

T - T - ' ! - O J O J 0 4 f 0 0 0 0 0 ' ^ - ' ^ - - ^ -c o c o c o c o c o c o c o c o c o c o c o c o in in inCO CO CO

Location

Exchangeable ■ C a rbo n a te s □ Fe, M n-ox ides □ O rga n ic E2 R esidua l

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4-5g: Sequential Extraction Results for Antimony

120SS — 100 c o

80- Q

'5 60_wS 40 cVa 0)

CL

20

E E E E E E E E E E E E E E E £o o o o o o o o o o o o o o o oLO o LO n o LO LO o LO LO o in o m o inCM in CM in h- CM in r» CM in i - o CM in i -1 t 1

CM1

CMi

CM■

CO100 i

COi

■M-f 1 1 1

LO1

LOt

LOCO CO CO CO CO C O CO CO CO CO CO CO

S4 CO CO CO

Location

■ Exchangeable ■ C arbo n a te s □ Fe, M n-oxides □ O rga n ic 0 R esidua l

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

carbonate and residual fractions at 50 cm and 75 cm depth, respectively. At core S4, the

fraction o f Co associated with OM increased from 45% at 25 cm depth to 60% at 50cm

depth and decreased to 38% at 75 cm depth. The decrease in Co associated with OM at

75 cm depth was attributed to an increase in Co associated with the residual fraction.

Cobalt associated with the residual fraction ranged from less than 5% to 40%. The

fraction of Co associated with the residual fraction generally remained constant or

increased with depth. Core S3 demonstrated a decrease in Co association with the

residual fraction between 50 cm and 75 cm depth, which was matched with a marked

increase in OM associations. Cobalt associated with the oxide fraction ranged from less

than 5% to 32%. For all core locations, the fraction of Co associated with oxides

decreased with depth. Cobalt associated with the carbonate fraction of the sediment

ranged from 8% to 30%. The fraction o f Co associated with carbonates remained

relatively constant with depth at cores S2, S4, and S5. At Core S3, the fraction o f Co

associated with carbonates decreased with depth. At core S 1, there was a spike up to

30% of Co associated with carbonates. The Co associated with the exchangeable fraction

of the sediment was always less than 10% for all core locations.

It is also known that Co has an affinity for carbonates and, thus, in the presence of

carbonates, it is likely that there was considerable competition for sorption sites between

carbonates and OM.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Zinc

Zinc associations with the residual fraction generally increased with depth ranging from

15% to 65%. The only exception was at core S3 at 75 cm depth where over 60 % of the

Zn was associated with OM. Also, Zn associations with the organic fraction o f the

sediment generally increased with depth. At core S1, the fraction of Zn associated with

the OM fraction decreased from 45% at 50 cm depth to approximately 35% at 75 cm

depth. This was matched with almost a 20% increase in Zn associated with the residual

fraction, thus there could be some competition between the formation o f Zn sulfides and

adsorption to OM. Zn associations with the Fe and Mn oxide fraction of the sediment

varied from 25 % to less than 10%. At Cores SI, S2, and S3, Zn associations with the

oxide fraction at 25 cm depth averaged at 20% with associations decreasing noticeably

with depth. At Cores S4 and S5, the Zn associated with the oxides fraction were

considerably less, with maximum percentage of Zn associated with the oxides fraction at

approximately 10%. Zn associated with the carbonates fraction o f the sediment ranged

from less than 5% to 20%. With the exception o f Core SI, the Zn associations with

carbonate minerals generally decreased with depth. At core S1, the Zn associations with

carbonates increased slightly with depth however for all depths the percentage of

associations with Zn remained below 10%. Associations with the exchangeable fraction

were only detected in cores S2, S3. At cores S2, approximately 8% of Zn was associated

with the exchangeable fraction only at the 25 cm depth. No Zn associations were found

at the two deeper depths. At Core S3, Zn associations were noted at all three depths with

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Zn associations ranging from 8% at 25 cm depth, to approximately 12% at 50 cm depth,

and dropping to less than 5% at 75 cm depth.

Based on the results from the sequential extractions, it appears that Zn was predominantly

associated with the residual and OM fractions o f the sediments and that there potentially

could be competition between these two fractions, most likely under reducing conditions

where Zn sulfides would be forming.

Copper

Copper associated with the residual fraction of the sediment ranged from less than 10% to

50%. Copper associated with the OM fraction o f the sediment ranged from 40% to 85%.

There appeared to be some competition between Cu associations with these fractions.

Generally, the Cu association with OM increased or remained relatively constant with

depth. This was not observed at cores SI and S4 due to marked increases in Cu

associations with the residual fraction. Copper associations with exchangeable and oxide

fractions were all less than 10%. The fraction o f Cu associated with the carbonate

fraction ranged from 20 % to less than 5%. Generally, Cu associated with the carbonate

fraction decreased with depth.

Based on the results of the sequential extractions, it appears that Cu was predominantly

adsorbed to OM and associated with the residual fraction.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Nickel

Nickel associated with the residual fraction of the sediment ranged from less than 10% to

100%. Associations with the residual fraction increased with depth at most locations. At

core S3, there was a sharp increase in association with OM at 75 cm depth which reduced

the amount o f Ni associated with the residual fraction. Nickel associated with the OM

fraction of the sediment was intermittent and ranged from less than 1% to 80%. There

appeared to be some competition between Ni associations with these fractions. Nickel

associations with the exchangeable and oxide fractions were also intermittent and ranged

from less than 1% to 20%. The fraction of Ni associated with the carbonate fraction

ranged from 23 % to less than 1%. Generally, higher percentages of Ni were associated

with the carbonate fraction at shallower depths.

Based on the results of the sequential extractions, it appears that Ni was predominantly

associated with the residual fraction of the sediment.

Lead

Lead was strongly associated with the carbonate fraction o f the sediment, with

associations ranging from 35% to 65%. No consistent trends were observed for Pb

associated with the carbonates fraction. Associations of Pb with the residual fractions

ranged from less than 1% to approximately 50%. Associations of Pb with the OM, oxide

and exchangeable fractions were sporadic and ranged from less than 1% to 40%. The

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

oxides were associated with cores SI, S2, and S3, however, none were found at S4 and

S5.

Based on the results o f the sequential extractions, it appears that Pb was predominantly

associated with the carbonate and to a lesser extent, the residual fraction of the sediment.

Antimony

Antimony was predominantly associated with the residual fraction. The associations of

Sb with the oxide fraction ranged from 42% to 62%, however, these were only

encountered at the 25 cm depths for cores SI, S2, and S3. The associations o f Sb with

the exchangeable fraction ranged from 22% to 45%. These associations were only noted

for cores SI, S3, and S4 intermittently. There were no associations o f Sb with the

carbonate or OM fractions o f the sediments.

4.4 Acid Volatile Sulfides (AVS) and Chromium Reducible Sulfides (CRS)

Extractions

AVS and CRS extractions were conducted on the five cores collected in September 2004.

The results for AVS and CRS for each core are provided in Figures 4-6a through 4-6e. In

all cases, the concentrations for AVS remained lower than 5 ppm. The AVS fraction

corresponds to reduced sulfur species (H2S) and monosulfides in the sediment. These

reduced sulfur species are both the product o f dissimilatory sulfate reduction and the

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

decomposition of organic sulfur, amorphous iron monosulfides, and crystalline iron

sulfides (Praharaj, 2004). The CRS fraction corresponds to pyrite and elemental sulfur in

the sediments.

The concentration of AVS in the sediments is a function of both the rate at which it is

produced and the rate at which it is lost by oxidation and diffusion (Oehm et al., 1997).

The concentrations o f AVS can vary therefore with the supply o f organic matter, the rate

of sulfate reduction, and the redox status of the sediments (Praharaj and Fortin, 2004).

The CRS concentrations from Core SI increased to 50cm depth and then began to

decrease. In core S2 the CRS concentrations showed a slight decreasing trend. CRS

concentrations measured at S3 increased with depth. At Core S4, the CRS concentrations

exhibited a decreasing trend to a depth of 75cm followed by increasing concentrations.

At core S5, the CRS concentrations showed sharp increases below a depth of 50cm.

The reported elemental sulfur concentrations with depth are presented in Table 4-1. As

shown, the elemental sulfur concentrations show a similar trend to the observed CRS

concentration profiles with depth. Previous work conducted by the GSC (1997) reported

that there were negligible amounts o f pyrite or pyrrhotite in these tailings. Therefore it is

possible that the sample size used for the analysis was not large enough to accurately

quantify the AVS fraction in the sediment. Based on the results, it is not possible to

determine if metal sulfides are being produced at these core locations. The porewater

chemistry results (presented in Sections 4.5 and 4.6) and geochemical speciation

modeling results (presented in Section 5.0) may provide some additional information.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4-6a: Core S1 - AVS and CRSConcentrations

0

10

?nA1 30W

40

50e

60

70

80

( p p m )

40

I ♦ AVS (ppm) ■ CRS (ppm)

Figure 4-6b: Core S2 - AVS and CRSConcentrations

C o n c e n t r a t i o n ( p p m )

0 10 20 30 40 50

10 20

J 30w4 40 #« 50 O

60

70

80

I ♦ AVS (ppm) ■ CRS (ppm)

Figure 4-6c: C ore S3 - AVS and CRS C o n cen tra tio n s

C o n c e n t r a t i o n ( p p m )

0 20 40 60

0

10

70

1V 30

•a 40*

50a

60

70

80

I ♦ A V S (ppm) ■ CRS (ppm)

Figure 4-6d: C ore S4 - AVS and CRS C o n cen tra tio n s

o20

40

60

80

100

120

C o n c e n t r a t i o n ( p p m )

20 30 40 50

I ♦ A V S ( p p m ) * CRS (ppm)

Figure 4 -6e: C ore S 5 - AVS and CRS C o n cen tra tio n s

o 10 •

20 -

30 -

40 -

50 -i

60 -

70 -

80 -

C o n c e n t r a t i o n ( p p m )

20 30 40 50

[ ♦ A V S (ppm) ■ CRS (ppm)

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 Porewater Metal Concentrations

Table 4-2 presents the dissolved metals concentrations extracted from the five cores

collected in September 2004 and from the 7 groundwater monitoring wells installed at the

site in June 2004, which were sampled in September 2004.

The porewater metals concentrations collected from MW5 appear slightly elevated for

As, Co and Zn compared to the remaining porewater data from the other monitoring

wells. MW5 was the only well installed away from the creeks or the waterlogged areas.

The only vegetation near MW5 was grasses. It is possible that the lack or organic

material and cattail vegetation could be influencing geochemical interactions at this

location. Nickel concentrations for all locations were reported below the method

detection limit of 0.06 mg/1. Also, lead was reported below the method detection limit of

0.21 mg/1 for all o f the monitoring wells. Lead was only detected at 45cm depth for core

SI, 75 cm and 135 cm depth for core S2, 50 cm depth for core S3, 23.5 cm depth for core

S4, and 50 cm depth for core S5. In all cases the reported lead concentrations were less

than 0.6 mg/1. Figures 4-7a through 4-7o present the concentration profiles with depth

for selected heavy metals. For all these cores, concentrations of Fe and Al were strongly

correlated, with correlation coefficients ranging from 98.2% to greater than 99.99%,

despite fluctuating concentrations with depth.

Zn concentrations demonstrated increasing concentrations with depth at cores SI and S3.

At core S5, Zn showed increasing concentrations to a depth of 50 cm followed by

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table

4-

2: Po

rew

ater

diss

olve

d me

tals

conc

entra

tions

o E* s

<0.036

<0.036

<0.036

i <0.036

<0.036

< n

nrvs

<0.036

<0.036

<0.036

<0.036

<nnvi

0.128

0.463

< nnra

0.085

0.296

0.124

0 647 8 8 ?

O O CdocV V V <

0.036

<0,036

<0,036

<0,036

0.040

<0.036

<0.036

i* o

ID O f (« N NJ) o n c N (D o o n o d d d d c

iK Sptf0 0 t- “ a o © o c

Cp O) CC O f- h- CM CO »~0 0 c

1— CM CD CD Q 0 *n CM V r COOdO

to CN DC CD n IT

ooc

^ ui Q 3) in CN »b 2 ®i’ S o 2 cm . »- CM (O e ” 0 *“ 0 d 0 d

a > :z : <9 cm d 9 it

00 «- CM O 1-

CD CO N’ CN c£ d °1. n crrlfi © N r

■*r m 5 r*» *_• r* in «- o>

CO Nj O) CD CO iri ® 1— co on

T- V C"O *

n- «

If) O CO N M ® S« v r n t » ^t- 05 05 o» in y~

*lA N f ID IOS T- o o> O 01 CM CM to CM CN

tr 0 h- ce co 0C4 CM t- CO 03

co rM cmCO CO CN CO CM CO

n n © v«- «0 ■*- CMto r-- d co

CO CD CN0 0 cM M IC

s s 2 § «. ElO C) t- q *M Cii

O) (j X | O O O d d c

V V V V V V

0 0 a 01 8 8 8 8 8 d d ^ 0 0V V V V

o> Ol 0 8 8 8 dOO V V V

O 05 O)8 S § 8O rl O O V V V

o> q>8 8 £ 0 dV V

8 8 8 «5 w 8 S9 9 9 0 ^ 9 9 O O O CM ° °V V V 0 V V

*1

o o> S 8 SR ® ® K o o ®. o * o o ® ^

O 00 t- CD rP'Pri J»- rt m cm

35 =0 ^ - 0

id n m >- © in t- o)© CO M O

n © CD n ^ ▼- t- in

8 8 fe § i 1 s 0 * 0 0 0 0 ^

o |

in ™ to co © T- to ^ o rs o d y d d ©

CN ^ ^ <J5 CNr- r- < v 0 O O O T- «“ dddOO

T-m 00 cn o ■«- c 0 0 0

0 co co n-o> Q (D T-0 1- <5 0 d o d o

S § 8O T* 1- dOO

CN CN _ CN __ CN CN r- ■r- O v CO »- t- O O 3 O O O

v, |o |

_ _ <0 <D „ ^ O 05 «— «— CO 05 2 i o o ^ ® ° ° o d ° °° ° V V ° °

CJ) $ P0 CM D-

. O ® '"IO O O O

O S CM Q °° V

co t- ° 2S 8 S °0 0 0 °

2 ^ h- O S N§ q 0v 0 0

tO CD CO CO CD CO (O OOOOOOO d d d 0 d d c jV V V V V V V

Co

Ppm IS 8 3 S 3 2

to ^ n o r5 rtoi o o o o

CD N r- S U) N •- m s aT— »— T— CO CMo d d d d

0 S CJ) O CM CM CM CO O Odd

>«t T- CO »-CM CM O ® CO ® CM O OOdO

OS «— CM 05 CO O) ^ ▼“ d od

<- 51 N S © CN OS 0 S 0 «0 0 0 d 0 0 0

uidd i

PO

d o d d o dV V V V V V

d d d 0 dV V V V V

i § §0 0 0V V V

8 S S 80 0 0 00 0 0 0V V V V

oddV V V

OOOOOOO V V V V V V V

3 |CN O r N O Ola> ^ j w if cn tf (O ® «r s ^

CD cp ■<— <0 S c8 oj in S

CM CD O

s s sCO TJ O COO) CO to

CO CO« 0 r 9 n © n id © ip a 0 0 m 2 i* 8 ® »* r *“

s 1Q.

M CN (N CN CN*CN CN CN CN CN CN CNv0 0 0 0 0 0 V V V V V V

CM 04 04 CM CM CM CM 04 CM CM

-M-o d d d dV V V V V

CM CM CM CM CM CM "T "T 'T OOd V V V

CM CM CM CM CM CM CM CM

d 0 0 o’ V V V V

CM CM CM CN CM CM ’TOO'O V V V

CMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCM

0 d 0 0 d 0 d O v v v v v v v v

Be

PPm 8 5 8 8 8 0

d § d d d §V V V V

8 8 8 8 5o o d o ^V V V V

8 8 8oddV V V

§ 8 8 8 o d d d V V V V

8 8 8 oddV V V

OOOOOOOOOOOOOO0 0 0 d 0 0 0V V V V V V V

« Em aN .. N <n N8 i 2 S ®Sd o 0 01 0

(OSN®-, CM CD CD lO .

O O CD -«T O O O O

S 3 <00 CM 0odd

N- h- O 5 OOOOd 0 d 0

n 0 n.

$288 ddo

CO D~- NT CD <T CD10 ® n m i> 5 inOOOOOOO0 0 0 0 0 d 0

* sto a a04 <0 CO CO r - r - 04 W) 0- VO 00 (0 1- T- O O O »“ddO'ddO

m CD O CO 0 CT) CD CM 04 O O O CD CMd d d o d

S cm n O T- 0odd

o» m m t- M ® M 0 t— CM CD CO0 * 0 0 d

CO CM 0 mo©<Z) T- r~0 0 0

S 0 g £ 5 S 3OOXOOOO0 d 0 0 0 0 o’

< 1Ol Ol 0 ) 9 O) O) OOOOOOd 0 d 0 0 0V V V V V V

(3) 05 05 Ol 05 OOOOOO ddddV V V V V

0 0 0oddV V V

05 05 05 05 OOOOd o d oV V V V

0 0 00 0 0V V V

05 O 05 O) 05 05 05 OOOOOOO 0 0 0 0 0 0 0 V V V V V V V

uidd 1

*V !

0 n 2 0 m 3 y o 2 n a 9 d n q in cb eg

8 o> J8 g §ifi CM Ol ° °0 0 d ^ ^

3«>nfo ® 9 <3 CO CM

5 S S «T* pi T" oi

*- O C35 r N ID *- CN F d ^ 0 0 05 d

? O r r >" 9

§ ! § § ! ! V W V V w w

O O O O £Do d d d ^V V V V

? CM 5

s ° sv ° ?

Jr-CD? 0 rM CM 0dSSov 0 0 V

So©0 3 9 d99 v 0 0

< M M M M M MOOOOOOO 0 0 0 0 0 0 0 V V V V V V V

* 1s s " ff s 2« - O O * ^

m 0 co <0 co _ o © ^T- CO n ^ CM

n ^ in n 11 co

. co d ° * 0

cn 0 in t O CM 05 3CD CD (O Q

in ^ m 9ri®

^CO O m . T- h. «- 0 d 0 0 0 d

faJZ*•Q

0 0 0 n 0 0 O If) O O K) n co n cd r- CN N S r

mom n 0 ni rs 10 s

f) O If) ^ O Q S •M M W ® *"

n 0 inno© cm in h~

Con

ID 51Mft£3

fOft»3

1»5J

nft05i>

r in n ^ N

5 5 5 2 5 5 5 z z z S z s z

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Zn

i co

m0.

165

0.56

6 <0

.006

0.

029

0.14

2 n

oftfl

0.18

10.

068

0.13

80.

354

n 0.05

10.

197

0 33

ft0.

170

0.20

1 0.

175

0 09

90.

129

0.24

6 0

137 <S <c oj <0 n cnQ O n O ’t r ro P o 5 - q o

y 0 0 0 0 0 0

„ E N § 0.

007

0.00

5 <0

.004

< 0

.004

0.

007

n 01

?0.

008

<0.0

04

0.01

2 0.

033

n nn

o0.

006

0.00

7<0

00

4<0

.004

0.

006

0.00

7 <

0 00

4<0

.004

0.

01

0 00

6

<0.0

04<0

.004

<0.0

04<0

.004

<0.0

04<0

.004

<0.0

04

= 1 a <0.6

66<0

.868

<0.8

68<0

.868

<0.

868

<08

68<

0.86

8 <0

.868

<

0,86

8 <

0.86

8 <

n ftf

ift

i l l0 0 0V V V <

0.86

8<

0.86

8<0

.868

<0.

868

<0.

868

<0.

868

<0

868

<0.

868

<0.

868

<0.

868

<0.

868

<0.

868

<0.

868

<0.

868

UJCWu

0.05

80.

176

<0.0

020.

007

0.05

50.

411

0.45

2 0.

073

0.08

7 1.

86

0 58

90.

009

0.08

70.

016

0.11

10.

091

0.13

50.

018

0.03

60.

293

0.09

3

0.01

<

0.00

2 0.

013

0.00

3 0.

011

0 .00

4 0.

002

! Th

!

ppm

<33

.2<

33.2

<33.

2<3

3.2

<33.

2<

33.2

<33.

2 <3

3 2

<33.

2 <3

3.2

<33.

2<3

3.2

<33.

2<3

3.2

<33

2 <3

3.2

<33.

2 <3

3.2

<33.

2 <3

3 2

<33.

2<3

3.2

<33.

2 <3

3.2

<33.

2 <3

3.2

<33.

2 <3

3.2

<33

2

a 1« a

| 0.

494

0.59

2 0.

308

3.52

0.

52

0.34

5 m u) >- s oi co cm <0 m M iO <D »- <*) O O O O O 1.

434.

013.

160.

944

1.28

2.

51

4 59

0.99

91.

031.

96

<0.1

666

<0.1

666

<0.1

666

<0.1

666

<0.1

666

<0.1

666

<0.1

666

Spp

m35

.1

11.8

65

8 69

.412

.1

14.1 if) t- (fi (D Ol

r r f W N ® CN VO 'C CD 117

132

71.5

151

217

84.9

123

202

52.7

66.5

7.70

8.78

7.41

7.48

26

.8

19.1

9.48

«5 § o

^ p ) 5 ( 0 « o n Q> CN 00 O CO CMO r l O r r r 0 0 0 0 0 0

CN Q ^ N8 8 3 2 80 0 0 0 0 0.

088

0.09

10.

171

0.17

40.

216

0.07

50.

080.

135

0.05

50.

044 if) (O S O If) N' If) If) N (N ^ « r t (O N t- t- CN

0 0 0 0 0 0 0

Se ppm

<0.

213

<0.

213

<0.

213

<0.

213

<0.

213

<0.2

11<0

.213

<0.

213

<0.

213

<0.

213

<0.

213

<0.

213

<0.2

13<

0.21

3<

0.21

3<

0.21

3<

0.21

3<

0.21

3<

0.21

3<

0.21

3<

0.21

3

<0.

213

<0.

213

<0.2

13<

0.21

3<

0.21

3<

0.21

3<

0.21

3

0.00

70.

006

<0.

002

<0.

002

<0.

002

0.00

50.

004

<0.0

020.

005

0.02

10.

012

<0.0

020.

004

<0.

002

0.00

20.

007

<0.0

02<

0.00

2 5000 9000

3000 > <

0.00

2<

0.00

2<0

.002

0.00

4<

0.00

2<

0.00

2<

0.00

2

- ECO ft ft

i 16

.728

.3

9.80

8.

4415

.4

44.8

21.2

9.51

11.6

37.5

38.1

5.50

18.4

5.18

16.1

15.6

11.7

1

5.35

; 8.

60

23.6

!

11.5

8.47

10.0

9.56

10.5

6.66

7.43

12.3

a e“ a <

0,32

0<

0.32

0<

0.32

0 <

0.32

0<

0.32

0 <

0.32

0<

0.32

0<

0.32

0 0.

552

0.32

4<

0.32

00.

419

< 0.

320

<0.

320

0.37

10.

362

<0.

320

<0.

320

0.32

5 <

0.32

0 <

0.32

0

<0.

320

<0.

320

< 0.

320

< 0.

320

0.39

8<

0.32

00.

486

* i“■ a

■ <

0.21

3 0.

549

<0.

213

<0

213

<0.

213

<0.

213

<0.2

13

<0.2

13

<0

213

0.36

7 0.

425

<0.2

130.

269

<0.

213

0.25

6 <0

.213

<

0.21

3 <0

.213

<0.2

13

0.40

5 <

0.21

3

<0.

213

< 0.

213

<0.

213

<0.

213

<0.

213

<0.

213

<0.

213

uidd 1

1 d

1

<0.

268

<0.

268

<0.

268

<0.2

68<0

.268

0.41

4<

0.26

8 <0

.268

6.

66

0.99

1 0.

425

<0.2

68

< 0.

268

<0.2

68<

0.26

8 <0

.268

<0

.268

<0

.268

< 0.

268

0.27

9 <0

.268

<0.2

68<0

.268

<0.2

68<0

.268

<0.2

68<0

.268

<0.2

68

_ Ez a

Q> O) O) A O) O) ui in iq m >o io o o o o o o o o d d c i dV V V V V V

650 0

> 650

0 >

6500 >

6500 >

650 0

>

650 0

> 650

0 >

650 0

>

650 0

> 650

0 >

650 0

> 650

0 >

6S0'0 >

650 0

> 650

0 >

650 0

> 650

0 >

650 0

> 650

0 >

650 0

> 650

0 >

6500 >

« §z a 9.50

335

11.4

453

13.0

13.6

3.98

1.19

4.89

5.46

3.72 N O r- - lO N

m ^ 8.59

8.00

8 59

9 22 CN ® t- C7) f-

r*4 «■> n! If) t— ® v 10 to s

Dept

h (c

m)

15.0

45.0

48

5 71

.585

.0

130 0 in m 0

r> n mr fN S Sf) O if) fO 0 (O N W S

f) O m r-r t d s ' NN If) ® T*

m o m r i d <6IN If) S

Core

ID r-

j)

? (

Nn03j

nftD5J

ifnD5_>

mf)D5

J

1“ CN r t V If) (D S

2 5 2 5 5 2 5

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0

Figure 4-7a: C ore S1 - Al, Fe p o r e w a te r co n c en tra tio n s

C o n c e n t r a t i o n ( p p m )

D 5 10 15 2 0 2 5

Figure 4-7b: C ore S1 - Pb, Zn p o r e w a ter c o n c en tra tio n s

C o n c e n t r a t i o n ( p p m )

0 0 .2 0 .4 0 .6

2 0 2 0 A

4 0

■ ► ♦ ■4 0i™.

fl£ 6 0 w, 6 0 -+ « ■a A& 8 0 i/ ♦ ■ a . 8 0 Ao a

100 100

120 ■ 120 -a» A

140 140

■ Fe~| [ ♦ Pb A Z n J

Figure 4-7c: C ore S1 - A s , Co, Sb p o r e w a te r c o n c en tra tio n s

C o n c e n t r a t i o n ( p p m )

0 2 4 6 8 10

20

4 0

6 0

8 0

100

120

140

j*♦■

♦ As ■ Co A Sb

Figure 4-7d: C ore S2 - Al, Fe p o r e w a te r c o n c en tra tio n s

C o n c e n t r a t i o n ( p p m )

) 10 2 0 3 0 4 0

020

4 0

T 6 0v

jT 80 *>

» 100 □120

140

160

60

Figure 4 -7e: C ore S2 - Pb, Zn p o r e w a ter c o n c en tra tio n s

C o n c e n t r a t i o n ( p p m )

0 0.1 0.2 0.3 0.4 0.5

0

20

40

1 60

WJt 80Ai

Q 100

120

140

160

Figure 4-7f: C ore S2 - A s , C o, Sb p o r e w a ter c o n c e n tr a tio n s

C o n c e n t r a t i o n ( p p m )

I 60

* 100

♦ As ■ Co A Sb

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4-7g: Core S3 - Al, Feporew ater concentrations

0

10

2 0

3 01

w 4 0rilA. 504>a 6 0

70

8 0

9 0

C o n c e n t r a t i o n ( p p m )

5 10

♦ Ai ■ Fe j

0

10

2 0

3 0fluw 4 0

& 504>

O 6 0

70

8 0

9 0

Figure 4-7h: Core S3 - Pb, Znporew ater concentrations

C o n c e n t r a t i o n ( p p m )

0 .1 0 .2 0 .3 0 .4

I ♦ Pb A Zn I

Figure 4-7i: C ore S3 - A s , Co, Sb p o r e w a te r c o n c en tra tio n s

C o n c e n t r a t i o n s ( p p m )

0 1 2 3 4

50

a 6070

8 0

♦ As ■ Co A Sb

Figure 4-7k: C ore S4 - Pb, Zn p o r e w a te r c o n c e n tr a tio n s

C o n c e n t r a t i o n ( p p m )

0.05 0.1 0.15 0.2 0.25 0.3

020

40mI£ 60

X 804a

100

120

140

A A

A

Figure 4-7j: C ore S 4 - Al, Fe p o r e w a te r c o n c e n tr a tio n s

C o n c e n t r a t i o n s ( p p m )

2 4 6 8

i 6 0

A. 8 0

♦ A l ■ Fe

L _ _ _

Figure 4-7I: C ore S 4 - A s, Co, Sb p o r e w a te r c o n c e n tr a tio n s

C o n c e n t r a t i o n s ( p p m )

D 1 2 3 4 5

0

20 ■ A ♦40

a| ■ A ♦v 60 -

4a

•4♦■

100

120 ■ ♦ ►

140

j" ♦ As ■ Co A Sb~j

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4-7m : C ore S5 - Al, Fe p o r e w a te r c o n c en tra tio n s

Figure 4-7n: C ore S 5 - Pb, Zn p o r e w a ter c o n c en tra tio n s

C o n c e n t r a t i o n ( p p m )

flW 4 0

C o n c e n t r a t i o n ( p p m )

0.1 0 .2 0 .3 0 .4

0

10

2 0

3 01V

w 4 0

600

O 6 0

70

8 0

9 0

Figure 4-7o: C ore S5 - A s , Co, Sb p o r e w a te r c o n c en tra tio n s

0

10

2 0

3 0fl

w 4 0Ja . 60v

Q 6 0

70

8 0

9 0

C o n c e n t r a t i o n ( p p m )

1 2

♦ A

♦ As ■ Co A Sb

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

decreasing concentrations. At core S2, Zn showed no observable trend in the

concentration profile and at core S4 Zn showed a decreasing concentration profile with

depth.

At cores SI, S3, S4 and S5, there was only one data point where Pb was reported above

the method detection limit and therefore no concentration profile trends were observed.

At Core S2, Pb concentrations demonstrated increasing concentrations with depth.

Antimony demonstrated relatively constant concentrations with depth at SI and S2.

Cores S4 and S5 demonstrated increasing concentrations to a depth of 50cm followed by

decreasing concentrations.

At cores S3 and S5, As and Co concentrations increased to a depth o f 50cm followed by

decreasing concentrations. At cores SI and S4 no trends were observed and at core S2

both As and Co concentrations increased with depth.

4.6 Porewater Field Parameters Chemistry

Table 4-3 presents the field chemistry results collected from the groundwater samples.

Concentrations of ferric iron and HS' were low. The maximum ferric iron (Fe(II))

concentration was reported at 2.0 mg/1 for MW4 and the maximum HS' concentration

was reported at 0.4 mg/1 for MW 1.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4-3: Monitoring wells groundwater field chemistry

Parameter Units MW1 MW2 MW3 MW4 MW5 MW6 MW7

HS mg/1 0.40 nd 0.10 0.10 nm 0.15 0.1

Fe(II) mg/1 1.0 nd 0.05 2.0 0.10 nd 0.80

S04 mg/1 1800 100 130 50 220 150 50

DO mg/1 2.23 0.34 0.25 3.52 3.68 2.92 4.98

cond uS/cm 349 346 80.0 53.0 198 386 593

pH 6.93 6.59 6.66 6.48 7.60 7.55 7.40

temp C 11.3 13.5 19.5 16.9 20.5 16.2 16.3

alk mg/1 230 266 130 423 nm 178 nm

Cl mg/1 nm 90 15 2.2 7.5 30 nm

Notes

nm not measured

nd not detected

Sulfate concentrations ranged from 50 to 220 ppm with the exception o f MW1, which

had an elevated concentration o f 1800 mg/1. It is not clear as to the reason for the

dramatic difference. Conductivity values ranged from 593 pS/cm at MW7 to 53 pS/cm

at MW4. The pH remained relatively similar for all monitoring wells, ranging from 6.5-

7.60.

Figures 4-8a through to 4-8o present the porewater concentration profiles for ferric iron,

sulfate, sulfide, alkalinity, pH, and dissolved oxygen with depth measured from the five

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4-8a:Core S1 - PorewaterSulfate and Alkalinity

Concentrations

C o n c e n t r a t i o n ( p p m )

0 100 2 0 0 3 0 0 4 0 0

0

10

2 0Aflw 3 0

J 4 06 .4> .SI)

a6 0

70

8 0

♦ S u lf a te (p p m ) ■ A lkalin ity (m g/l)

Figure 4-8b: Core S1 - PorewaterSulfide and Fe(ll) Concentrations

C o n c e n t r a t i o n ( p p m )

0 0 .0 5 0 .1 0 .15

0

10

2 0

1 3 0w

4 0A.« SI)

G

6 0

70

8 0

♦ S u lf id e (p p m ) ■ F e ( ll) (p p m )

Figure 4-8c: C ore S1 - P o rew a ter pH and D isso lv e d O xygen

C o n cen tra tio n s

0 1 2 3 4 5 6 7 8

0

10

2 0

fl 3 0V* 4 0&4>a 50

6 0

70

8 0

| ♦ D O (p p m ) ■ pH

Figure 4-8d: C ore S2 - P o rew a ter su lfa te and alkalinity c o n c en tra tio n s

C o n c e n t r a t i o n ( p p m )

100 2 0 0 3 0 0 4 0 0

flw 60& 8 0 4>a

♦ S u lfa te (p p m ) ■ A lkalin ity (p p m )

Figure 4 -8e: C ore S2 - P o rew a ter Figure 4-8f: C ore S2 - P o re w a te r pHSulfide and Fe(ll) C o n cen tra tio n s and D isso lv e d O xygen

C o n cen tra tio n s

C o n c e n t r a t i o n ( p p m )

3 0.1 0.2 0.3 0.4 0.5 3 2 4 6 8

20 1 20♦ ■

- 40«40 ♦ ■

| 1M 60 £ 60 -

\ 8 0 1t ♦ fc 80 4

♦ ■a e

100 1 100 ♦ ■120 120

I1 ♦ ■140 J 140

[ ♦ S u lfide (ppm ) ■ F e(li)(p p m ) ' " J ♦ DO(ppm) ■ pH

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4-8g: C ore S3 - P o rew a terSu lfate and Alkalinity

C o n cen tra tio n s

C o n c e n t r a t i o n ( p p m )

0 2 0 0 4 0 0 6 0 0nu

■ ♦2 0

« 4 0 -a ■ ♦

j 6 0

D 8 0■ ♦

1 0 0■ ♦

1 2 0 -

|"i S u lfa te (p p m ) ■ A lkalin ity (p p m )~ |

Figure 4-8h: C ore S3 - P o rew a ter Sulfide and Fe(ll) C o n cen tra tio n s

C o n c e n t r a t i o n ( p p m )

0 0 .2 0 . 4 0 . 6 0 . 8n i i i ' .

_ 1I ♦2 0

~ 4 0■ ■ ♦w

* 6 0 M&41

Q 8 0♦ ■

1 0 011 ♦

1 2 0

|~ e ~ S u lfid e (p p m ) ■ F e ([ l) (p p m )

Figure 4-8i: C ore S3 - P o re w a te r pH and D isso lv e d O xygen

C o n cen tra tio n s

o20

4 0

!£ 60 &4*a so

100

120

| ♦ D O (p p m ) ■ p H |

Figure 4-8j: C ore S 4 - P o re w a te r Sulfate and A lkalinity C o n cen tra tio n s

o0 H--

20

4 0Ivw

4 6 0M &4>

Q 6 0

100

120

C o n c e n t r a t i o n ( p p m )

2 0 0 4 0 0 6 0 0 8 0 0

► S u lf a te (p p m ) ■ A lkalin ity (p p m )

Figure 4-8k: C ore S4 - P o re w a te r Sulfide and Fe(ll) C o n cen tra tio n s

C o n c e n t r a t i o n ( p p m )

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

020

| 40v

. i 60 *a so

100

120

♦ ■

r♦ S u lf id e (p p m ) ■ F e ( l l) ( p p m )

Figure 4-8I: C ore S 4 - P o r e w a te r pH and D isso lv e d O xygen

C o n cen tra tio n s

o20

■j1 40v

4 60*

a so

100

120

I ♦ D O (ppm ) ■ pH

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4-8m : Core S5 - Porew aterSulfate and Alkalinity

Concentrations

C o n c e n t r a t i o n ( p p m )

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

0 20

4 0

!j T 6 0

a41a so

100

120

| ♦ S u lfa te (p p m ) ■ A lkalin ity (p p m )

Figure 4-8n: Core S5 - Porew aterSulfide and Fe(ll) Concentrations

C o n c e n t r a t i o n ( p p m )

0 0 . 2 0 . 4 0 . 6 0 . 8

0

20

4 0flv

* 6 0

eLV

° 8 0

100

120

II ♦

I ♦ S u lf id e (p p m ) ■ Fe(ll) (p p m )

Figure 4-8o: C ore S5 - P o re w a te r pH and D isso lv e d O xygen

C o n cen tra tio n s

o0

~ 4 0Iuw

* 6 0a .

° 8 0

100

120

I ♦ D O (p p m ) ■ p H I

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cores collected in September 2004. A reduction in sulfate concentration with depth was

observed in all o f the cores. Only cores S3, S4, and S5 showed increased or even

measurable concentrations o f Fe(II) and HS' with depth, a further indication o f the

development o f reducing conditions with depth.

The alkalinity was highly variable ranging from 10 mg HCO3/I to 415 mg HCO3/I.

Alternatively, the pH values were relatively consistent throughout the entire porewater

profile with the pH averaging 7.0 (std. dev 0.87).

Based on the above results, it appears that anoxic conditions have developed in cores SI,

S2, S4, and S5. At cores SI and S2, the dissolved Fe concentrations increased with depth

and the Zn and Pb concentrations decreased with depth. This may be indicative of the

formation of metal sulfides. Also, there would most likely be some competition among

Zn, Pb, and Fe for sulfide. This is further supported by the strong sulfate reduction

observed for these cores and the lack of measurable H2S concentrations at these core

locations. Cores S4 and S5 showed decreased concentrations of Fe, Zn, and Pb with

depth and measurable H2S with depth as well. There could be more reduced sulfides at

this location, which would allow all metals to form metal sulfide precipitates at this

location.

At Core S3, decreased concentrations o f As, Co and Fe were observed with depth and

increasing concentrations o f Zn were observed with increasing depth. This core is

located at the confluence o f Mill Creek with Farr Creek and as such, localized zones of

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

oxidation could be expected. This would suggest that Fe oxides exist and As and Co may

adsorb to or coprecipitate with these Fe oxides. H2S concentrations were measured at

this location and sulfate reduction was clearly occurring as well. There could also be

competition between As, Co, and Zn for sulfides and sorption sites onto OM.

4.7 Surface Water Chemistry

Table 4-4 presents the surface water chemistry analytical results for selected parameters.

Generally the concentrations of most compounds were consistent throughout the entire

wetland. The electrical conductivity measured throughout the wetland ranged from 69.4

to 308.6 pS/cm, which is typical of most freshwaters. SW9, located in the hummocky

area approximately 300 m northwest o f SW8 (Figure 3-3), showed elevated

concentrations relative to all of the remaining surface water samples. The dissolved

oxygen at this location was much lower (1.2 mg/1) than at the remaining sampling

locations. The surface water at this location was only a few cm deep and was not

connected to the rest of Farr Creek and Mill Creek. Therefore, the surface water

concentrations are most likely more representative of local geochemical transformations

between the surface water, porewater and sediments than the bulk stream flow

concentrations, as is the case for the rest o f the surface water samples collected.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tabl

e 4-

4: S

urfa

ce

wat

er

Che

mis

try

for

selec

ted

para

met

ers

Cr

mg/

1.0.

001

8 8 1 8 8 8 8 8 8 8 8 8 § 8 8 0 o ’ o ’ 0’ o ’ 0’ d © 0’ 0 0 0 0’ d 0

Ca mg/

L0.

020 ■«d-oe — Tj-—. 0000 — 0 — p ^ r - ' - p t A

i r i T t o i ' C v i f f i ^ O ' i d c ' i dM M n n M M i n M n M M N A C l C lCd mg/

L0.

001 8 8 8 8 8 8 1 1 1 8 8 8 § 8 §

d d d d d d d d d d d d o d d v v v v v v v v v v v v v v v

Bm

g/L

0.00

5 c i i n o o - v c o i C M v i i n M ' O ' O - c i ' ( N M M — f Sf SMM( N( N( Nf S O O O O O O O O O O O O O O Od d d d d d d d d d d d o d d

Bi mg/L

0.02

0

<0.0

20

<0.0

20

< 0

020

< 0

020

< 0.0

20

< 0.0

20

<0.0

20

< 0.0

20

< 0.0

20

< 0.0

20

<0.0

20

< 0.0

20

< 0.0

20

< 0.0

20

<0.0

20

Be

mg/

L0.

001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

Ba

mg/

L0.

001 ■ e i c i r i t n « r i v i ( S T ' t ' £ i ^ , *C50v0'Oo d o o o o — d d p d o o o o

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o' 0’ d d d 0’ d d d d 0 0 0 0 ©

As mg/

L0.

001

0.06

4 ■ 0

.074

0.

151

0.14

0.

141

0.14

2 1.

490

0.28

7 0.

283

0.34

7 0,

347

0.37

4 0.

378

0.50

0 0.

411

Sb mg/

L0.

001

0.00

20.

002

0.00

40.

004

0.00

40.

004

0.00

40.

004

0.00

50.

003

0.00

40.

004

0003

0006

0,00

3

Al

mg/

L0.

005

0.03

80.

044

0.03

40.

040.

044

0.03

60.

016

0.03

60.

041

0.03

40.

030

0.03

50.

033

0.02

70.

033

S04

mg/

L1.

000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o o o o o o p o p p p p p

d d c- t*w t-* r**- d d d d d d d d

Cl

mg/

L0.

500 O O O p O O O N O O O O O O O O O O — O O O ^ ^ p p r f — p ^ p

P P i/ i e s f s f - ' t ' t v i e d d - ' C

Har

dnes

s (a

s C

aC03

)m

g/L

1.00

0

73.0

75.0

85.0

83.0

85.0

84.0

20

289

.084

.098

.091

.099

.0

103

113

103

Alk

alin

itym

g/L

0.01

0

31.0

60.5

72.0

62.0

61

.0

68.0

17

272

.068

.075

.073

.083

.083

.532

.082

.0

Cond

uctiv

ityuS

/cm0.1

00

148

103

127

126

127

128

309

144

147

172

148

175

69.4

24

7 16

8

Tem

pC

0.010

12.3

11.7

12

.0

12.2

4.

10

12.2

13

.015

.817

.816

.417

.3

16.7

14.5

19.3

14.6

DO mg/

L0.0

10

9.30 11.4

11.3

11.5

11.4

11.5

1.

20

8.20

9.

68

6.70

U

.6

6.76

5.

96

10.7

7.

16

pHpH

units

0.0

10

8.37

8.

068.

138.

13

8 12

8

15

7.28

7.

68

7.72

7.

42

8.22

7.

477.

37

7.82

7.

53

Para

met

erU

nits

Detec

tion

Lim

it Sa

mple

IDC C

E d

_j o & gb © E o

* i l lE d

CL 'ob <E d

E o

5 '5b S E d

'a 8E d

-*<2 ^ Ed

£ > SE o

a ^ 8E o

« A t n » n i A i / >i » A ‘r ' i V h i A « A ‘A t n » A t Ao § 8 § § 8 8 § § 8 § 8 § 8 8 ® o d d d o o d o o o d o o d ° v v v v v v v v v v v v v V

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

8 8 8 9 8 8 8 8 8 8 8 8 0 8 8 d o d d d d d d d d d d o d d v v v v v v v v v v v v v v V

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0v y i / ' i t / ’t v T v i v t i / ' i v i v T V ’i t n i n v i v i i/"t O O O . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d v v v v v v v v v v v v v v v

(NMmr^rirri0^f,) ^ f ,i 5 5 ’ 5 rj- 0 0 0 0 0 0 — 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0so c i ^ t w O; f ic i c i’ c i c i O ' c i c i ifi

o - ci o iX vS ce

8 § §0© 8 8

OV

©V

dV

0*V ?

OV

8 8 8 8OV

dV

OV

dV

/ I ^ C > - C l 9 0 V 1 0 0 0 sO d tA 50 sG ia — rA »A S O O •** — fO — 00 <N

O O O o o 0 o 0 0 0 0 0 0 0N Ci ’t ' t Ci Ci Ci 0 0 0 0 0 0 —

O O O O O O O O O O O O O O Q O ^ c i ^ in « vfl tAd d d d d d o d

S 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 o

o o’ d o’ o o 0 0 0 0v v v v v v v v v v0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0V V V V V V

2 o 2 o — o

oV

X X X — © — X 0 0 0 0 — 0 0 d

v0 0 0 0 0V V V V V

0 0 0 0 00 0 0 0 0

0 0 0 0 0 0 0 o p o p p o p d d d 0 0 0 o d d o o’ o’ o o’ d

0 0 <75 8 Tf 00 •A <N — O'. «A0 0 O 0 0 0 0 O 0 O 0 0 Od o ’ d o ’ o ’ d d d d d 0 d o ’

^ ^ 10 Ifl VI Ifl

8 § 8 8 8 8OV

dV

o ’V

OV

o ’V

OV

o <s — r- 00 r* 0N Cl ' t Cl Cl Cl ~o o o p p o o0 d d o 0 0 0

w i t o s o i A ' O ' o r ^ ' O

o o o o © o o

C- OC Tt Cl 0 0 C) 0 0■£> q 0 0 ^ 0 0 -© © O O O <N —o d © d d d d

' a g E o

m c A f A f A C A < A o f,' > ,:r rr> 8 8 8 8 8 8 § 8 8 8 d d o ’ d d d .. O O O

,— .— A V A ' A V ) C A s p O r ^ - O N f ' ' A lA' Tro o o o o d r - o p o d o — — —p p o p p p © p p p p p p 0 od © d o ’ 0 o o ’ o ’ © o o o o ’ o ©

3 a § i1 1va

1 1 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.8 Vegetation

Table 4-5 presents the results of selected metal extractions from the cattail (Typha

latfolia) leaf samples collected (refer to Appndix B for the complete chemical analysis

results). As can be seen from the table, significant concentrations of selected metals were

taken up into the leaf samples. Much higher metal concentrations were extracted from

the leaf samples collected near the wetland inlet and MW1. Higher metal concentrations

are expected due to higher loadings at the wetland inlet. This observation is supported by

other studies (O’Sullivan et al, 2004; Miller et al., 1983). Background conditions were

not known for the Typha latfolia in the area, however, the vegetation was flourishing in

the area and thus it was not expected that the presence of metals at these concentrations

were having a negative effect on Typha latfolia. There was also considerable variability

between sample locations. This could most likely be attributed to variations in metal

loadings at each location.

4.9 Microbiology

Figures 4-9a through to 4-9e present the results from the bacterial enumerations. As can

be seen from these figures, the bacterial populations were relatively constant with depth.

Also, there appeared to be equally strong acid producing (oxidizing) bacteria as there

were reducing bacteria.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced

with perm

ission of the

copyright ow

ner. Further

reproduction prohibited

without

permission.

Table 4-5: Extracted metal concentrations from cattail samples

S a m p l e ID

E l e m e n t

UnitsAl

p p m

Asp p m

C o

p p m

C r

p p m

C u

p p m

F e

p p mHg

p p m

M n

p p m

Nap p m

S i

p p m

Znp p m

I N L E T ( l ) mg/1 4280 182 171 22.5 19.7 3020 663 1890 216 98 1C o r e S I mg/1 95.0 - 13.8 145 153 336 2390 217 52 2C o r e S 3 mg/1 201 146 9.38 11.3 11.9 335 678 1440 251 58 1MW1 mg/1 111 13.1 10.3 180 20.0 229 2230 311 66 6

M W 3 m g/l 138 184 10.0 7.50 212 8.13 375 1740 192 50 3M W 6 mg/1 872 23.1 15.0 14.4 1050 21.9 438 848 286 65 3M W 7 mg/l 302 80.0 13.4 15.6 380 8.75 218 2980 278 75.0

Figure 4-9a: C ore S1 - M icrobial Figure 4-9b: C ore S2 - M icrobialp o p u la tio n s w ith d ep th p o p u la tio n s w ith dep th

P op u la tion (CFU/gdw) Population (CFU/gdw)

1.00E-tOO 100E+02 100E+04 1.00E+06 1.00E-K180 i i i i 1.00E+00 1.00E+02 1.00E+04 1.00E+06

0 i i i

1010

20A ■ ♦ 20

_ 30£ojc 40 - +■* a

— 30 Eoxf 40

A ■ ♦

a>Q 50 ■ A A

Q.0)a 50 ♦ ■ A

60 60 -

70 -■ ♦ A

70 -■ A ♦

80 80 J

|"*APB ■ IRB ASRB~j | ♦ APB ■ IRB A SRB |

F igure 4-9c: C ore S3 - M icrobial Figure 4-9d: C ore S4 - M icrobialp o p u la tio n s w ith d ep th p o p u la tio n s w ith d ep th

Population (CFU/gdw) P opulation (CFU/gdw)

1.00E+00 1.00E+02 1.00E+04 1 .00E t06 1.00E+00 1.00E+02 1 .00E+04 1.00E+06n , , ( nU U

102 0

A ■ ♦20

■A A 4 0_ 30E E A ■ ♦o oIT 40 r 6 0<+») +*o0)

u>OQ 50 ■ ♦ A a ■ AA

80

60

100 - ■ A A70

■ A ♦80 120

j ♦ APB ■ IRB A SRB | | ♦ APB ■ IRB A SRB j

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4-9e: Core S5 - Microbialpopulations w ith depth

Population (CFU/gdw)

1 .OOE+OO 1.00E+02 1 00E+040

10

20

30£_o_£ 40 +■» o . a>D 50

60

70

80■ ♦ A

♦ A P B ■ IRB A S R B

1.00E+06

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

At core SI all three types of bacteria were prevalent with population densities ranging

from 100 MPN/(grams dry weight (gdw)) to greater than 107 MPN/gdw. APBs showed

the highest concentrations, however, they also exhibited a decreasing population trend

with depth. SRB populations decreased significantly below a depth o f 50 cm, whereas

the IRB population remained relatively constant throughout the depth of the core.

At core S2 all three types o f microbial populations demonstrated similar populations

averaging between 100 - 1000 MPN/gdw. The IRBs appeared to decrease in population

with depth and the SRB populations increased to a depth o f approximately 50 cm and

then began to decrease. The APB populations demonstrated a reversed trend to that of

the SRBs.

At core S3 all three types of microbial populations had similar population numbers,

ranging from 100 to 10,000 MPN/gdw. The SRBs remained relatively constant with

depth and the APB populations increased slightly with depth. The IRB populations

decreased to a depth o f 50 cm and then began to increase.

At core S4 all three microbial populations reported similar values ranging from 100 to

10,000 MPN/gdw. SRB populations exhibited a sharp increase below 45 cm. The IRB

populations remained fairly constant throughout the entire depth o f the core and the

APBs showed a slight increase with depth.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As with the other cores, all three microbial populations exhibited similar population

values at core S5. IRB and APB populations decreased slightly with depth. The SRB

population decreased to a depth o f 50 cm and then appeared to stabilize.

The presence of all three types o f microorganisms throughout the entire wetland and at

consistent concentrations with depth at each core location may suggest that both oxic and

anoxic conditions exist throughout the wetland.

4.10 Mass distribution of metals between phases

Table 4-6 presents the mass distribution o f As, Co, Cu, Sb, Pb, and Zn through the

sediments, porewater, surface water, and vegetation samples at each core location. For

most metals, over 80% of the total mass was tied up in the sediments, either as primary or

secondary minerals, precipitated sulfides, adsorbed onto organic, or on oxide fractions in

the sediments. This is consistent with a previous study conducted by O ’Sullivan et

al.(2004). Less than 5% of the total mass o f metals was associated with the porewater,

which indicates that this wetland appeared to be successful in immobilizing metals, at

least in the short term. Up to 20% of the metals have been taken up by Typha latfolia.

Studies have shown that metal uptake by plant materials can be over 90% o f the total

mass distribution (Mays and Edwards, 2001; Zayed et al., 1998; Jackson et al., 1991).

There was a large fluctuation (non-detect to 20%) of metals being taken up by Typha

latfolia at different core locations. This could be attributed to differential loading o f

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced

with perm

ission of the

copyright ow

ner. Further

reproduction prohibited

without

permission.

Table 4-6: M ass Distribution of Heavy metals between solid, dissolved and vegetative uptake phases

C o re IC o n c e n tr a t io n

AsD is tr ib u tio n

AsC o n c e n t r a t io n

C oD is tr ib u t io n

C oC o n c e n tr a t io n

C u

P e rc e n tD is t r ib u t io n

C uC o n c e n tr a t io n

Z n

P e rc e n tD is tr ib u tio n

Z nC o n c e n tr a t io n

S b

P e rc e n tD is t r ib u t io n

S bC o n c e n tr a t io n

P b

P e rc e n tD is t r ib u t io n

P bnd nd nd nd 12.1 3 .8 0 59 .4 11.67 nd nd nd ndS e d im e n t 2 4 2 0 9 9 .5 9 571 9 9 .9 5 305 9 6 .1 4 4 49 88 .28 203 9 9 .5 3 401 9 9 .8 6

P o r e W a te r 5.20 0.21 0 .2 9 4 0.05 0 .1 8 0 0 .0 6 0 .2 3 8 0.05 0 .9 6 3 0.47 0 .5 4 9 0 .1 4S u r fa c e W a te r 0.38 0 .02 0 .0 1 5 0 .0 0 0 .0 0 3 • 0 .00 nd nd 0 .0 0 3 0 .0 0 0.001 0 .0 0

to ta l 243 0 572 317 509 204 401C o r e 2

v e g e ta tio n 182 11.49 171 2 3 .3 9 19.7 6 .4 8 98.1 17.48 nd nd nd ndS e d im e n t 1400 88.43 561 7 6 .5 8 284 9 3 .4 9 463 8 2 .4 8 nd nd 4 17 9 9 .9 0

P o re W a te r 1.20 0.08 0 .2 2 4 0.03 0 .0 8 8 0.03 0 .2 1 8 0.04 0 .3 9 3 9 9 .4 9 0.425 0 .1 0S u r f a c e W a te r 0 .0 7 4 0.00 0.001 0.00 0.003 0 .0 0 nd nd 0 .0 0 2 0.51 0.001 0,00

to ta l 1583 73 2 304 561 0 .3 9 5 4 18C o re 3

v e g e ta tio n 113 4.10 15.3 2 .5 8 14.0 3.21 66.1 14.10 nd nd nd ndS e d im e n t 264 0 95.82 578 9 7 .3 9 421 9 6 .7 7 4 0 2 85.77 71 .3 96 .13 4 66 9 9 .9 4

P o re W a te r 2 .08 0 .08 0 .1 8 7 0.03 0.087 0 .0 2 0 .5 8 6 0.12 2 .8 7 3.87 0 .2 6 9 0 .0 6S u r f a c e W a te r 0.151 0.01 0 .0 0 6 0 .0 0 0.003 0 .0 0 nd nd 0 .0 0 4 0.01 0 .0 0 4 0 .0 0

to ta l 2755 594 435 4 69 74 .2 467C o re 4

v e g e ta tio n nd nd nd nd nd nd nd nd nd nd nd ndS e d im e n t 1940 9 9 .8 2 6 1 9 9 9 .9 3 407 9 9 .9 8 5 08 99 .97 159 98 .55 487 9 9 .9 5

P o re W a te r 2.12 0.11 0 .3 5 7 0 .0 6 0.068 0 .0 2 0.161 0.03 2.33 1.45 0 .2 5 6 0 .0 5S u r fa c e W a te r 1.43 0.07 0 .073 0.01 nd nd nd nd 0 .0 0 4 0 .0 0 nd nd

to ta l 1944 619 4 07 5 08 161 487C o re 5

v e g e ta tio n 184 5.82 nd nd 10.0 2.51 50.3 9 .02 nd nd nd ndS e d im e n t 298 0 94.11 72 7 99 .95 389 9 7 .4 7 507 90 .94 128 9 8 .9 6 4 32 99.91

P o r e W a t e r 1.83 0 .0 6 0 .3 7 4 0 .0 5 0.102 0.03 0.171 0.03 1.33 1.03 0.405 0 .0 9S u r fa c e W a t e r 0.29 0.01 0 .0 0 6 0.00 0.003 0 .0 0 nd nd 0 .0 0 4 0.00 nd nd

to ta l 316 7 72 7 3 99 557 129 432

Notes:

nd Not detected

metals in different locations of the wetlands or it could be associated with a mechanism

from the plant itself preventing metals from being taken into their leaves.

4.11 Discussion

This natural wetland appears to be an overall sink for metals, with the majority of the

metals being tied up in the sediments or being taken up into the leaves o f Typha latfolia.

A detailed mass balance would confirm this; however, insufficient data were collected for

such a calculation in this project, but would be worthwhile in future studies. The results

from the sequentially extracted metals (SEM) indicated that much of the metals were

associated with the residual and OM fractions o f the sediment.

Previous studies (Fuller et al., 1993; Lagmuir et al., 1999; Soprovich, 1995) have shown

that As has a high affinity for Fe oxides and oxyhydroxides. The results from the SEMs

indicated that much of the Fe was associated with the residual fraction of the sediment

and not the oxide fraction (refer to Appendix B). As a result, much of the As was

associated with the residual and OM fractions o f the sediment. These results may

indicate that As can be retained significantly under both reducing and oxidizing

conditions given sufficient quantities o f Fe oxides and OM. Also, Doyle and Otte (1999)

reported that in the presence o f Fe and Mn oxides and OM, metals will tend to be

associated with these fractions. Under more reducing conditions, where sulfate is not

limiting, metal sulfides are the predominant removal mechanism (Machemer et al., 1993;

Yu et al., 2001).

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Previous studies have concluded that most o f the extracted metals from treatment

wetlands for mine drainage are associated with the residual fraction of the sediment

(O’Sullivan et al., 2004; Sobolewski, 1996). Metals associated with the residual fraction

are likely in the form of metal sulfides and are relatively unavailable for uptake by

organisms (Allen et al., 1993).

Zinc and copper were predominantly associated with the OM and residual fractions o f the

sediments. Co and Pb were also predominantly associated with the residual fraction,

however, they were also significantly associated with carbonates. Both Pb and Co have

known affinities for carbonates (Brookins, 1988) and therefore competition for sorption

sites between OM and carbonates are likely. Nickel and antimony were both almost

soley associated with the residual fraction o f the sediment indicating that they were likely

still in the form of primary or secondary minerals from the tailings.

The porewater sulfate and sulfide concentrations profiles indicated that sulfate reduction

was occurring throughout the wetland. The microbiology results identified the presence

of APB populations in consistent numbers with the SRB and IRB populations. This may

indicate that all these bacteria are active and the acid produced by these populations is

immediately neutralized by the dissolution o f carbonate minerals within the tailings.

Above pH 6.3, which was the case throughout much of the study area, the dissolution of

one mole of calcite consumes one mole o f H+ as shown in the following equation:

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CaC03 + H+ -> Ca2+(aq) + H C 03'(aq) [Equation 4-1; Blowes et al., 1998]

2_|_ .This would also account for the elevated dissolved concentrations of Ca in the pore

water. It is also possible that APB populations are supported at depth throughout the

wetland in the vicinity o f vegetation root zones. Oxygen is transported by wetland plants

to the root zones generating localized zones o f oxidation. This could allow for

sustainable populations o f APBs throughout the wetland. In regions located away from

the root zones, conditions are likely anoxic which are favourable conditions for IRB and

SRB populations.

It is also likely from the microbiology results that there is considerable competition

between bacteria species for organic substrates. This was supported by changes in

population trends at different locations within the study area where there were only small

changes in sulfate and reduced Fe concentrations. Previous studies have shown the

competitiveness between SRBs and IRBs, which appears to be dependent on electron

donor availability and pore water chemistry (Rioux and Fortin, 2002). It should also be

noted that Fe reduction can occur both biotically and abiotically, whereas sulfate

reduction can only proceed with the aid o f SRBs (Fortin, 2002).

The AVS and CRS data reported herein were inconclusive in determining whether

biogenic metal sulfides were being produced within the wetland. Stable sulfur isotope

fractionation can be used as indicators for microbial sulfate reduction because biogenic

sulfides generally display a unique isotopic composition due to the fact that SRB

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

preferentially utilize the lighter sulfur isotope 32S, leaving pore fluids enriched in 34S

(Praharaj and Fortin, 2004). In order to accurately quantify the amount of sulfate being

reduced biogenically, stable sulfur isotope fractionation may be employed but was not

attempted in this thesis. Quantification of sulfate reduction simply based on

measurements o f porewater sulfate and sulfide concentrations is inaccurate due to

concurrent abiotic geochemical transformations such as the dissolution of gypsum

(CaSOQ, or the precipitation of reduced sulfur in the form of iron sulfides (Anderson and

Lovely, 2000). A wide range of factors may influence sulfur isotope fractionation. Such

factors include heterogeneity, carbon source variations and limitations, microbial

diversity, and geochemical reactions including changing redox conditions (Kleikemper et

al., 2004). Generally, at sites where re-oxidation is not important, determining sulfate

reduction rates using stable sulfur isotope fractionation may prove to be useful (Spence,

2001).

The results from the extraction o f metals from Typha latfolia leaf samples indicated that

up to 20% of the total mass of metals was taken up by the leaves. Previous studies have

reported metal uptake in both the leaves and root zones o f Typha latfolia and found much

higher percentages of metals associated with the roots than the leaves (Deng et al., 2004;

Jackson et al., 1993). This suggests that phytoremediation may be an even more

powerful source o f metal immobilization in this wetland. There has been conflicting

research on the ability o f wetland plants to immobilize metals in the long term. This is in

part due to the fact that plants transport oxygen to their root zones generating a zone of

radial oxygen loss. This can result in the generation of localized oxic conditions in the

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

immediate vicinity of the roots which can further cause reduced sulfur and iron species to

oxidize. Under these conditions metals such as As and Co may adsorb or coprecipitate

with the Fe oxides, however, metals such as Zn would likely remain mobilized in the

dissolved state (Jacob and Otte, 2004).

The wetland was covered with Typha latfolia and there did not appear to be any

limitation on the growth o f this plant species. It is possible, however, that the growth of

other wetland plants was inhibited due to elevated metal loading to the wetland system.

In addition, background metal concentrations in Typha latfolia and other vegetation

species in the area were not known. This would aid in determining the degree of metal

uptake by Typha latfolia as a direct result o f the mine tailings deposits.

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.0 GEOCHEMICAL SPECIATION MODELLING

The following section gives background information on MINTEQA2, a geochemical

speciation modeling program developed by the USEPA (Section 5.1), summarizes the

methodology employed for the modeled simulations (Section 5.2), provides the results of

the modeled simulations (Section 5.3), and presents and discusses the results of the

modeling and how it applies to each core location (Sections 5.4 and 5.5). Raw data

produced from the modeling runs are provided in Appendix C.

5.1 Background on MINTEQA2

MINTEQA2 was developed by the USEPA to predict equilibrium behavior o f various

metal species in dilute solutions. Input data required for the model consist o f the

chemical data o f the sample to be analyzed, such as dissolved concentrations of the

components o f interest, pH, pe, partial pressures o f gases or minerals (Allison et al.,

1991). Also included in the model is an extensive thermodynamic database for a wide

range of components o f interest to environmental systems, however, the user may add

new components and their corresponding thermodynamic information to this database.

The model solves equilibrium speciation problems by solving simultaneous solution of

nonlinear mass action expressions and linear mass balance equations (Allison et al.,

1991). The model uses initial estimates for the activity o f each component to calculate

the concentration of each species according to mass action expressions that are written in

terms of its component activities (Allison et al., 1991). The total mass of each

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

component is calculated, based on mass action expressions, and is then compared with

the known input total mass for each component. Once the calculated total mass for each

component is within the error tolerance limit for each component the corresponding

solution is accepted. After equilibrating the aqueous phase, the model then computes the

saturation indexes (SI) o f all the possible solids with respect to the solution. The solid

with the most positive SI is allowed to precipitate and the solution is then re-equilibrated

after the mass has changed in the aqueous phase. This iteration is repeated until the

change in SI indices for all species does not result in a species becoming precipitated or

dissolved (Allison et al., 1991).

MINTEQA2 can also incorporate an adsorption routine into the model. MINTEQA2 has

seven different adsorption models to choose from: activity Kd model, activity Langmuir

model, activity Freudlich model, ion exchange model, constant capacitance model, triple

layer model, and diffuse layer model.

An adsorption surface is created by the user with specific adsorption site information.

Reactions are then defined by the user between components and the adsorption site(s).

The solution is equilibrated with the surface species treated mathematically as aqueous

species with constraints specified by the adsorption model. When the equilibrium

composition is determined, the equilibrated mass distribution between dissolved, sorbed,

and solid phases is computed and reported (Allison et al., 1991).

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Model Runs

27 model runs were performed, 9 of which included adsorption. Table 5-1 lists the

locations and depths for each run.

Table 5-1: Location and depth for each modeled run

Location Depth (cm)MW1 49MW2 87MW3 81MW4 107MW5 34MW6 49MW7 105SI* 45SI* 75S2 15

S2* 45S2 130

S3* 45S3* 75S4* 23.5S4* 45S5* 23.5S5* 75

Notes:

* Additional modeled run including adsorption (activity Kd model)

The depths that were selected from the September cores to be included in the

geochemical modeling were those that had adequate cation and anion input parameters

for the model. The activity Kd adsorption model was used for the adsorption runs. No

specific adsorption experiments were conducted. The results from the sequential

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

extractions indicated significant heavy metal enrichments in the organic matter fractions

of the sediment. It was also observed that significant metal adsorption occurred onto iron

and manganese oxide surfaces and carbonate mineral surfaces. As such, the results from

the sequential extractions were used to derive Kd sorption coefficients for use in the

activity Kd adsorption model. The output files from all the modeling results are provided

in Appendix C. The following assumptions were made for modeling purposes:

1) The pore water analytical chemistry was representative of equilibrium conditions

2) The Kd sorption coefficient was calculated from the sequential extraction data. It

was assumed that heavy metals (specifically As, Co, Cu, Sb, and Zn) associated

with the carbonate, Fe and Mn oxide, and organic matter fractions o f the sediment

were involved in adsorption/coprecipitation reactions and that these

concentrations were in equilibrium with the dissolved phase concentrations. The

Kd values were calculated for each o f the above mentioned metals at each

location modeled, by summing up their solid phase concentration from the

carbonates, oxides, and organic matter fractions and dividing this number by the

corresponding dissolved phase porewater concentration, as shown in equation 5-1

below:

Kd = E ( M »C+ M ,o + M som) [Equation 5-1 ]2 X *

Where:

Msc = Concentration of metals associated with carbonate fraction (mg/kg)

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Mso = Concentration of metals associated with Fe and Mn oxides fraction (mg/kg)

Msom = Concentration o f metals associated with organic matter fraction (mg/kg)

Maq = Concentration of metals in porewater (mg/l)

3) MINTEQA2 requires the user to input As, Fe and Sb concentrations in either their

more oxidized form or more reduced form. For As, it was assumed that As was

predominantly in the form of H3 ASO4 based on the eh-pH condition. H3 ASO3 was

also included as a component in the model in the form of a redox reaction with

H3ASO4. It was assumed that most o f the dissolved Fe was in its reduced form o f

"Vi 1 1

Fe , however, Fe was also included as a component via its redox reaction.

Similarly Sb was assumed to be primarily in the form of Sb(OH)3 based on the

Eh-pH condition, however Sb/OFfE" was also included as a component via its

redox reaction with Sb(OH)3. These species were chosen based on the Eh and pH

conditions of the porewater (Brookings, 1988).

4) Assumed value for sediment bulk density was 2 kg/L based on literature (Brady

and Weil, 1996).

5.3 Results

5.3.1 Modeled Runs without Adsorption

Generally, all 18 modeled runs without adsorption showed very little difference in all

dissolved phase concentrations. The one exception with almost every run was the pH.

The modeled pH differed significantly from the initial field measured pH. In

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MINTEQA2, the user can fix the pH such that it will not change throughout the modeling

process. This was attempted; however, the model was unable to reach equilibrium

conditions when this was specified. Table 5-2 summarizes the pH differences between

initial field measured pH and modeled pH results.

The differences in pH change between measured and modeled values ranged from 0.09 to

3.99. There appeared to be a slightly better convergence in the core pore water samples

than those obtained from the monitoring well data. It should also be noted that the

modeled pH was lower than the initial pH for all the core samples with the exception of

SI at 75 cm depth, S2 at 15 cm depth and S5 at 23.5 cm depth. Conversely, the modeled

pH was higher than the initial pH for all monitoring wells.

All of the modeled runs reported the formation of iron and manganese oxides and

oxyhydroxides, aluminum oxides, antimony hydroxides, and carbonate minerals. Sulfide

precipitates were only reported for core S4 at a depth of 23.5cm, core S5 at a depth of

75cm, MW1, MW3, MW4, MW6, and MW7. This may indicate that at these locations,

strongly reducing conditions were maintained.

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5-2: Percent Difference of pH values for modeled runs without adsorption

Location Depth (cm) Initial pH Modeled pH DifferenceMW1 49 7.55 9.39 1.84MW2 87 6.6 10.13 3.53MW3 81 6.66 9.77 3.11MW4 107 6.48 10.47 3.99MW5 34 7.6 9.8 2.2MW6 49 7.55 10.34 2.79MW7 105 6.6 10.19 3.59

SI 45 7.1 5.3 -1.8SI 75 6.8 9.48 2.68S2 15 6.18 6.27 0.09S2 45 7.2 5.48 -1.72S2 130 7.48 6.91 -0.57S3 45 7.9 6.36 -1.54S3 75 7.97 7.05 -0.92S4 23.5 7.6 5.51 -2.09S4 45 7.64 5.97 -1.67S5 23.5 5.42 8.96 3.54S5 75 5.92 5.68 -0.24

5.3.2 Modeled runs with Adsorption

The dissolved phase concentrations for components involved in adsorption (As, Co, Cu,

Zn) showed significant differences from the measured concentrations. In some instances,

the dissolved phase concentrations o f the modeled species were up to four orders of

magnitude smaller than the actual measured concentrations. This was attributed to the

very large Kd sorption coefficients calculated. The assumption that the solid phase

concentrations are in equilibrium with the aqueous phase and the assumption that there

are an infinite number of sorption sites was probably presumptuous. It is likely that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

adsorption sites are limited and best represented by a more detailed model than a linear

adsorption isotherm model.

With respect to the precipitates formed, there were only minor changes. Generally there

were less precipitates formed under the adsorption conditions. Only Co, Zn, and Cu

precipitates were affected.

5.4 Discussion of Modeling Results from Each Core Location

Core SI

The geochemical speciation modeling results from Core S1 did not show the production

o f sulfide precipitates, however, the results from MW1, also located within 30 m o f core

SI indicated the formation of metal sulfide precipitates, including orpiment, CoS, and

FeS at a depth of 49 cm. At this location, there was over 30 cm of standing water which

would enhance the establishment of reducing conditions.

Core S2

The geochemical modeling results for core S2 showed the formation o f iron oxide

minerals and carbonate precipitates, an indication that oxic conditions may have been

present at greater depth.

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Core S3

The results from the geochemical modeling from this core location did not indicate the

precipitation o f metal sulfides. The detected pore water concentrations of sulfides and

reduced Fe may suggest that there was insufficient concentrations o f metals and sulfides

to form precipitates. There may also be competition with metals adsorbing onto the

organic matter as the organic matter content o f the sediments at this location increased

with depth. A significant number of oxide minerals were reported to be supersaturated

from the modeling results. The geochemical modeling results for MW6 (49 cm depth)

and MW 7 (105 cm depth), both located near core S3 did report the formation of metal

sulfide precipitates.

Core S4

Geochemical speciation modeling analysis completed for this core location indicated the

production of metal sulfides near the surface (23.5 cm); however, no sulfide precipitates

were reported at 45 cm depth. It is suspected that sulfide precipitates were being formed

at deeper depths in light of the sulfate and reduced iron pore water chemistry. Several

iron oxides and carbonate minerals were also reported to be supersaturated with respect

to their dissolved concentration, which could equally have provided metals with

additional adsorption sites.

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Core S5

The geochemical modeling completed for this core reported the formation o f metal

sulfide precipitates at a depth o f 75 cm. The modeling results from MW3, also located

near core S5, reported the formation o f metal sulfide precipitates at a depth o f 81 cm.

The organic matter profile for the core noted over 30% organic matter content near the

surface, followed by a rapid decrease with depth. The presence o f such high organic

matter contents near the surface most likely enhanced the formation of reducing

conditions with depth.

5.5 Discussion

The modeling results from some o f the cores clearly indicated the formation of metal

sulfides (cores SI, S4, and S5). At all core locations Fe, Mn and Al oxides and/or

oxyhyroxide precipitates were reported. This would suggest that both oxic and anoxic

conditions existed throughout the wetland. This statement is further supported by the

results from the microbiological analysis where both oxidizing and reducing bacteria

were present at similar population levels. The porewater chemistry also noted consistent

sulfate reduction throughout the wetland and the formation of H2S.

Core S2 was collected just upstream of a make-shift washed out gravel dam. This dam

separates Crosswise Lake from Farr Creek. It is possible that aerobic lake water seeps

through the sediment generating intermittent oxic conditions in the vicinity of core S2. In

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

addition, core S3 is located at the confluence of Mill Creek with Farr Creek and it is

likely that some localized oxidation arises due to the mixing of these waters. Therefore,

in the vicinity of these cores there may have been limited formation o f permanent sulfide

precipitates due to the existence of localized zones of oxidation. Any sulfides that may

have formed likely diffused to areas o f low sulfide concentrations and quickly became re­

oxidized to sulfate. Thus, metal movement and distribution under these conditions were

likely regulated by other geochemical processes, such as adsorption to OM, carbonates,

and/or oxides surfaces, and uptake by vegetation.

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.0 CONCLUSIONS

The metals o f concern for this wetland system were As, Co, Cu, Zn, Pb, and Sb. This

wetland is clearly a sink for these metals, with over 75% of the metals tied up in the

sediments. The results of the current study also indicated that several mechanisms have

been responsible for the metal attenuation within this wetland system. Phytoremediation,

specifically with cattails (Typha latfolia), appeared to attenuate significant quantities o f

selected metals. The results from the microbiological analysis indicated that both

oxidizing and reducing bacteria were abundant throughout the wetland system and the

reported populations of APB, SRB and IRB were all within an order o f magnitude of

each other. This would suggest that both oxic and anoxic geochemical processes were

prevalent throughout this system. It is likely that the presence o f localized oxic zones in

the vicinity o f root zones o f Typha latfolia, supported the APB populations observed.

The modeling data further supported the occurrence of concurrent oxic and anoxic

conditions throughout the study area as both Fe, Mn and A1 oxides and/or oxyhydroxides

and metal sulfide precipitates were reported throughout the wetland system. The

porewater chemistry also reported consistent sulfate reduction profiles.

The SEM results indicated that much of the metals retained in the sediments were

associated with the residual and OM fractions. Arsenic was most strongly associated

with the residual and OM fractions of the sediment. However, it has been well

documented in the literature that As adsorbs to or coprecipitates with Fe and Mn oxides

quite readily, thus given the presence of adequate Fe and Mn oxides under oxidizing

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

conditions and adequate sulfides or OM under reducing conditions, As is likely to be well

attenuated in this wetland. Lead and Co were mainly associated with the residual, OM,

and carbonates fraction o f the sediments. Both Co and Pb have known affinities for

carbonates and as such there was likely competition between OM and carbonates for

sorption sites.

The data collected suggests that this is a relatively stable system. Should the current state

o f the system change, such as the input o f waste stream elevated in organic substrate, it is

likely that a considerable amount o f the metals retained within this system would become

mobilized in the short term. Over time, the geochemical processes regulating metal

mobilizations throughout the system would change resulting in different biogeochemical

controls on the metals throughout this system.

Alkaline drainage systems are geochemically different than acidic drainage systems.

Alkaline drainage systems can immobilize metals under both oxic conditions, such as

adsorption onto OM or oxide precipitates and uptake by wetland vegetation, and under

anoxic conditions via microbial transformations such as biogenic sulfate reduction

generating reduced sulfides which can then form metal sulfide precipitates. Acidic

drainage systems typically require the formation o f strongly reducing conditions in order

to immobilize metals.

These results have indicated that it is important to consider both the geochemical

condition of the wetland or system being used to treat the mine drainage as well as have a

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

detailed understanding of the metals of concern within the mining waste, because

different metals will have different geochemical interactions based on redox condition,

presence o f sulfides, Fe and Mn oxides, and organic matter.

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.0 RECOM M ENDATIONS

The following study characterized the biogeochemistry o f the wetland area in question,

demonstrating that several biogeochemical processes are occurring within this system.

Further research is required, however, to verify and provide more specific information on

the interplay between the various attenuation pathways active at this site.

Recommendations for future work are outlined below:

1. Conduct stable isotope fractionation studies to quantify sulfate reduction rates.

2. Collect vegetation samples from both the shoots and roots to fully characterize the

ability o f such vegetation to both uptake metals and/or immobilize them through

their root zones.

3. Characterize the difference in metal sediment concentrations within the root zones

of wetland plants and in the bulk sediments away from these areas to determine

the influence o f adsorption onto Fe and Mn oxides and/or oxyhydroxides and

organic matter in this region.

4. Conduct a detailed mass balance on the system to verify that this wetland is a net

sink for metals. The mass balance should include both summer and winter

sampling to assess the effect seasonality may have on the wetland system.

5. Sample several different types o f wetland vegetation in the area to determine if

certain species of vegetation are more tolerant o f metals than others. It is known

that Typha latfolia is quite metal tolerant.

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. Conduct more detailed adsorption studies to better quantify adsorption isotherms

for metals of concern to OM, carbonate, and oxide fractions of the sediment. It

would also be of interest to determine how significant competition for sorption

sites among those three fractions is for metals o f interest

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.0 REFERENCES

Allen, HE, Fu, G, Deng, B., 1993. Analysis o f acid volatile sulfide (AYS') and simultaneously extracted metals 1SEM) for the estimation of potential toxicity in aquatic sediments. Environmental toxicology and chemistry, 12, 1441-1453.

Allison, J.D., Brown, D.S., Novo-Gradac, K.L., 1990. MINTEOA2/PRODEFA2. a geochemical assessment model for environmental systems: User’s Manual. Environmental Research Laboratory. Office o f Research and Development, US EPA, Athens, GA.

Anderson, R.T., Lovely, D.R., 2000. Anaerobic bioremediation of benzene under sulfate reducing conditions in a petroleum-contaminated aquifer. Environmental Science and Technology, 34 (11) 2261-2266.

Agency for Toxic Substances and Disease Registry (ATSDR), 1992. Toxicological Profile for Antimony. US Department of Health and Human Services, Public Health Service, Atlanta, GA.

August, E.E., McKnight, D.M., Hmcir, D.C., Garhart, K.S., 2002. Seasonal variability of metals transport through a wetland impacted by mine drainage in the rocky mountains. Environmental Science and Technology, 36, 3779-3786.

Berghom, G.H. and Hunzeker, G.R., 2001. Passive Treatment Alternatives for Remediating Abandoned-Mine Drainage. John Wiley and Sons, USA.

Boyle, R.W., Dass, A.S., 1971. The geochemistry of the supergene processes in the native silver veins of the Cobalt-South Lorrain area. Ontario. In Berry, L.G. (ed.), The silver-arsenide deposits o f the Cobalt-Gowganda Region, Ontario. The Canadian Mineralogist, Vol. 11, Pt. 1, pp. 358-390.

Boyle, R.W., Dass, A.S., Church, D., Mihailov, G., Durham, C., Lynch, J., Dyck, W., 1967. Research in Geochemical Prospecting Methods for Silver Deposits. Cobalt Area, Ontario. 1966. Geological Survey o f Canada, Paper 67-35, Ottawa.

Blowes, D.W., Jambor, J.L., Hanton-Fong, C.L., 1998. Geochemical, mineralogical and microbiological characterization o f a sulfide-bearing carbonate-rich gold mine tailings impoundment, Joutel, Quebec. Applied Geochemistry13 (6), 687-705.

Brookings, Douglas G., 1988. Eh-pH Diagrams for Geochemistry. Springer-Verlag, USA.

Canadian Council o f ministers o f the Environment (CCME), 2003. Canadian Environmental Quality Guidelines.

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chague-Goff, C., Rosen, M., 2001. Using sediment chemistry to determine the impact o f treated wastewater discharge on a natural wetland in New Zealand. Environmental Geology, 40, 1411-1423.

Cochran, W.G., 1950. Estimation of bacterial densities by means of the most probable number. Biometrics, 6, 105-116.

Cook, R.B., Kelly, C.A., Schindler, D.W., Turner, M.A., 1986. Mechanisms of hydrogen ion neutralization in an experimentally acidified lake. Limnology and Oceanography, 31, 134-148.

Doyle, M., and Otte, M., 1997. Organism-induced accumulation of iron, zinc and arsenic in wetland soils. Environmental Pollution, 96, 1-11.

Dumaresq, C.G., 1993. The occurrence o f arsenic and heavy metal contamination from natural and anthropogenic sources in the Cobalt area of Ontario. M.Sc Thesis, Department of Earth Sciences, Carleton University, Ottawa.

Engler, R.M., and Patrick Jr., W.H., 1975. Stability of sulfides o f manganese, iron, zinc, copper, and mercury in flooded and non-flooded soil. Soil Science, 119(3), 217-221.

Fortin, D. 2003. GE05147 Geochemistry o f natural waters Course notes.

Fortin, D., Davis, B., Beveridge, T.J., 1996. Role of Thiobacillus and sulfate-reducing bacteria on iron biocvcling in oxic and acidic mine drainage. FEMS Microbiology Ecology, 21, 11-24.

Fuller et al., (1993). Surface Chemistry o f Ferrihvdrite: Part 2. Kinetics o f Arsenate Adsorption and Coprecipitation. Geochimica et Cosmochimica Acta, Vol. 57, pp. 2271- 2282.

Gambrell, R.P., 1994. Trace and toxic metals in wetlands - A review. Journal of Environmental Quality, 23, 883-891.

Gambrell, R.P., Wiesepape, J., Patrick Jr., W., Duff, M., 1991. The effects o f pH. redox, and salinity on metal release from a contaminated sediment. Water, Air, and Soil Pollution, 57-58, 359-367.

Hunter, Kimberly S., Wang, Yifeng, Van Cappellen, Philippe, 1998. Kinetic modeling of microbiallv-driven redox chemistry o f subsurface environments: coupling transport, microbial metabolism and geochemistry. Journal o f Hydrology, 209, 53-80.

Jackson, L.J., Kalff, J., Rasmussen, J.B., 1993. Sediment pH and redox potential affect the bioavailability o f Al, Cu. Fe, Mn and Zn to rooted aquatic macrophvtes. Can. J. Fish. Aquat. Sci., 50, 143-148.

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Jacob, D.L., Otte, M.L., 2004. Long-term effects o f submergence and wetland vegetation on metals in a 90 year old abandoned Pb-Zn mine tailings pond. Environmental Pollution, 130, 337-365.

Jacob, D.L., Otte, M.L., 2004. Influence of Typha latfolia and fertilization on metal mobility in two different Pb-Zn mine tailings types. Science o f the total environment, 333, 9-24.

Jacob, D.L., Otte, M.L., 2003. Conflicting processes in the wetland plant rhizosphere: metal retention or mobilization? Water, Air, and Soil Pollution Focus, 3, 91-104.

Jambor, J.L., 1971. General geology. In Berry, L.G. (ed.): The silver-arsenide deposits of the cCobalt-Gowganda Region. Ontario. The Candian Mineralogist, Vol. 11, Pt. 1, pp. 12-33.

Kirby, C.S., Thomas, H.M., Southam, G., Donald, R., 1999. Relative contribution of abiotic and biotic biological factors in Fe(II) oxidation in mine drainage. Applied Geochemistry, 14, 511-530.

Kleikemper, J., Schroth, M.H., Bemasconi, S.M., Brunner, B., Zeyer, J., 2004. Sulfur isotope fractionation during growth o f sulfate-reducing bacteria on various carbon sources. Gechimica et Cosmochimica Acta, 68 (23), 4891-4904.

Krupka, K.M., Seme, R.J., 2002. Geochemical Factors Affecting the Behavior of Antimony. Cobalt. Europium, Technetium, and Uranium in Yadose Sediments. Pacific Northwest National Laboratory, TN.

Lagmuir,D., Mahoney, J., MacDonald, A., and Rowson, J., (1999). Predicting Arsenic Concentrations in the Porewaters o f Buried Uranium Mill Tailings. Geochimica et Cosmochimica Acta, Vol. 63, No. 19/20, pp. 3379-3394.

Machemer, S., Reynolds, J., Laudon, L., Wildeman, T., 1993. Balance of S in a constructed wetland built to treat acid mine drainage, Idaho Springs, Colorado, USA. Applied geochemistry, 8, 587-603.

Machemer, S. and Wildeman, T., 1992. Adsorption compared with sulfide precipitation as metal removal processes from acid mine drainage in a constructed wetland. Journal of Contaminant Hydrology, 9, 115-131.

Miller, W., McFee, W., Kelly, J., 1983. Mobility and retention o f heavy metals in sandy soils. Journal of Environmental Quality, 12(4), 579-584.

Morel, F.M.M., Hering, J.G., 1993. Principles and applications o f aquatic chemistry.John Wiley and Sons Inc., NY.

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Oehm, N.J., Luben, T.J., Ostrofsky, M.L., 1997. Spatial distribution of acid volatile sulfur in the sediments of Canadohta Lake. PA. Hydrobiologia, 345, 7-85.

O’Sullivan, A.D., Moran, B.M., Otte, M.L., 2004. Accumulation and fate of contaminants IZn, Pb, Fe and SI in substrates of wetlands constructed for treating mine wastewater. Water, Air, and Soil Pollution, 157, 345-364.

Praharaj, T., Fortin, D., 2004. Determination o f acid volatile sulfides and chromium reducible sulfides in Cu-Zn and Au mine tailings. Water, air, and soil pollution, 155, 35- 50.

Praharaj, T., Fortin, D., 2004. Indicators of microbial sulfate reduction in acidic sulfide- rich mine tailings. Geomicrobiology, 21, 457-467.

Petruk, W., 1971b. Geochemistry o f the ores. In Berry, L.G. (ed.): The silver-arsenide deposits of the Cobalt-Gowganda Region, Ontario. The Canadian Mineralogist, Vol. 11, Pt. 1, pp. 140-149.

Reimann, Clement., de Caritat, Patricia., 1998. Chemical Elements in the Environment. Springer, Germany.

Rioux, J.P., and Fortin, D., 2002. Microbial activity of iron-reducing bacteria and sulfate reducing bacteria isolated from mine tailings in the presence o f various electron donors. Department of Earth Sciences, University of Ottawa, Ottawa.

Rudd, John W.M., Kelly, C.A., St. Louis, Vincent, Hesslein, R.H., Furutani, A., Holoka, M.H., 1986. Microbial consumption of nitric and sulfuric acids in an acidified north temperate lake. Limnology and Oceanography, 31, 1280-1986.

Schnoor, J., 1996. ‘Modeling trace metals’, in J. Schnoor and A. Zehnder (eds) Environmental Modeling: Fate and Transport o f Pollutants in Water. Air. Soil. Wiley, New York, 381-451.

Sobolewski, A., 1996. Metal species indicate the potential o f constructed wetlands for long-term treatment o f metal mine drainage. Ecological Engineering, 6, 259-271.

Soprovich, E., (1995). Arsenic Release From Oxide Tailings Containing Scordite, Fe-Ca Arsenates, and As-Containing Goethites. Environmental Protection Branch - Yukon Division, Environment Canada, Whitehorse, Yukon.

Spence, M.J., Bottrell, S.H., Thornton, S.F., Lemer, D.N., 2001. Isotopic modeling of the significance of bacterial sulfate reduction for phenol attenuation in a contaminated aquifer. Journal o f Contaminant Hydrology, 53 (3-4), 285-304.

Tessier, A., Fortin, D., Belzile, N., DeVitre, R, Leppard, G.G., 1996. Metal sorption to diagenic iron and manganese Oxyhydroxides and associated organic matter: narrowing

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the gap between field and laboratory measurements. Geochimica et Cosmochimica Acta, 60, 387-404.

Tipping, E., Thompson, D.W., Davidson, W., 1984. Oxidation products o f Mn(II) in lake waters. Chemical Geology, 44, 359-383.

Trolldenier, G., 1988. Visualization o f oxidizing power o f rice roots and of possible participation o f bacterial in iron deposition. Z. Pflanzenemaehr. Bodenkd, 151, 117-121.

Weiss, J.V., Backer, S., Megonigal, J.P., Emerson, D., 2001. ‘Enumeration o f Fe- oxidizing and Fe-reducing bacteria in the wetland plant rhizosphere: implications for a rhizosphere Fe cycle’ in Proceedings o f the Seventh International Symposium on Biogeochemistry o f Wetlands, Duke University Wetland Center, Nicholas School o f the Environment and Earth Sciences, Duke University, Durham, North Carolina, USA, 17- 20.

Yee, N., Fein, J.B., 2001. Cd adsorption onto bacterial surfaces: A universal adsorption edge. Geochimica et Cosmochimica Acta, 65, 2037-2042.

Yee, N., Fein, J.B., Daugney, C.J., 2000. Experimental study of the pH. ionic strength, and reversibility behavior of bacteria-mineral adsorption. Geochimica et Cosmochimica Acta, 64, 609-617.

Yu, K-C., Tsai, L.-J., Chen, S.-H., Ho, S-T., 2001. Chemical binding of heavy metals in anoxic river sediments. Water Research, 35(17), 4086-4094.

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A

BOREHOLE LOGS

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Borehole Logs

Core J1Location 47.405833 N; 79.653933 W

Depth (cm) Description0-6060-100100-110110-120

grey to brown sandy tailings varved grey to brown silty clay dark organic layer with woodchips brown clay

End of hole

Core J2Location 47.406200 N; 79.653717 W

Depth (cm) Description0-137 very wet, grey to brown silty and sandy tailings137-139 dark organic layer139-208 Light brown clay with intermittent woodchips and rooiEnd of hole

Core J3Location 47.407617 N; 79.652717 W

Depth (cm) Description0-70 Grey silty, sandy tailings70-71 coarse sandEnd of hole

Core J4Location 47.403317 N; 79.655383 W

Depth (cm) Description0-70 Brown silty, sandy tailings70-71 coarse sand71-97 varved grey clay97-100 dark organic layerEnd of hole

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Core J5Location 47.402767 N; 79.656267 W

Depth (cm) Description0-105 grey to brown silty, sandy tailings105-112 dark organic layer112-142 varved grey clayEnd of hole

Core J7Location 47.406967 N; 79.655300 W

Depth (cm) Description0-65 grey to brown silty, sandy tailingsEnd of hole

Core J8Location 47.408367 N; 79.654150 W

Depth (cm) Description0-100 grey to brown silty, sandy tailings, very wetEnd of hole

Core J9Location 47.415933 N; 79.646700 W

Depth (cm) Description0-20 water cover20-67 grey to brown silty, sandy tailings, very wet67-84 dark organic layer84-94 grey clayEnd of hole

Core J10Location 47.414150 N; 79.646883 W

Depth (cm) Description0-22 water cover22-42 dark organic layer42-60 grey to brown silty, sandy tailings, very wet60-128 dark organic layer with woodchipsEnd of hole

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B

SUMMARY OF FIELD AND LABORATORY CHEMICAL ANALYSIS

RESULTS

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table Bl: Sediment Water Contents and Organic Matter Contents from June and September Cores

Location Depth (cm) Water Content (%) OC (%)Core J1 15 54.7 15.0

7.5 40.8 4.822.5 32.9 2.337.5 31.2 2.952.5 26.4 2.167.5 27.7 2.382.5 24.9 2.1too 27.0 3.6115 50.8 15.5125 40.4 6.9

Core J2 7.5 33.1 3.422.5 34.5 3.537.5 26.5 1.752.5 25.3 1.767.5 27.0 1.882.5 24.4 1.797.5 25.1 1.7112.5 28.4 1.9127.5 31.7 2.3138 65.3 24.5

147.5 28.3 2.3162.5 39.2 7.7177.5 42.5 13.8192.5 60.8 22.3204 47.0 11.5

Core J3 7.5 35.7 3.622.5 33.6 3.037.5 25.3 1.552.5 22.7 1.667.5 20.5 1.6

Core J4 7.5 26.7 1.957.5 25.8 1.722.5 25.1 1.872.5 20.7 1.237.5 26.6 1.877.5 29.8 1.957.5 26.4 1.590 31.1 1.8

97.5 71.0 31.190 35.6 1.7106 63.6 27.4

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Location Depth (cm )__________ W a te r Content (% )_________ O C (% )

Core J5 7.5 22.9 1.622.5 24.3 1.537.5 22.0 1.562.5 27.1 2.377.5 23.3 1.592.5 22.2 1.1102.5 25.7 2.2117.5 41.5 9.3132.5 35.4 3.9147.5 37.1 3.5

Core J7 7.5 24.2 1.022.5 21.8 1.137.5 20.2 1.057.5 21.1 1.0

Core J8 40 22.1 1.057.5 23.2 1.672.5 17.9 1.087.5 19.5 1.2102.5 18.4 1.0117.5 17.7 0.8

Core J9 27.5 44.5 6.742.5 32.0 4.557.5 41.7 12.275.5 52.9 15.189 31.3 3.1

Core J10 36 41.0 4.455 59.7 13.2

67.5 86.3 75.282.5 82.2 66.997.5 88.5 32.8112.5 58.3 22.8

Core S1 25 29.5 2.550 39.3 2.875 21.9 0.8

Core S2 25 22.1 0.850 21.0 3.3

71.5 22.8 3.2Core S3 25 15.9 3.7

50 24.3 6.675 65.2 13.0

Core S4 25 14.6 0.850 10.0 0.875 11.5 0.2

87.5 7.6 0.6125 17.1 0.8

Core S5 25 23.9 0.850 22.5 1.075 19.8 1.1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tab

le

B2:

Sed

imen

t M

etal

C

once

ntra

tion

s E

xtra

cted

fro

m Ju

ne

and

Sep

tem

ber

2004

Co

res

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? rn hi fii fi] rn m rii fri rri iii fri m m ni rii i n fti rii [jj (jjO oo - ■ « t o e > r i r * 'W * > 0 ' C 4 f ^ — « h o oe vfi -N V ) O N ^ « - 9 ' 6 0 0 ' ' » n » - O O M ^ t f t i n O r r —’ r i — - r i — C1' Is-' r i —' o ' K N - - oe (N ^ m

U J U U J U U U J U J U U U J b J U J U U U l U U U W U J U U ^h N n t o © ' 0 0 ' p o c ^ - j \ v i f t n n N O ' N i f l f f ' Vr s i © © © < N f M v » f * i © r i —■ v i o e r - © © © o o © i - ' © » n ■“ ’ • “ v : so v> —' — K v •*' •*" —" -*•’

U J L U U J U J U J Q J b J U J L i J U J U J U J L i J U J U J L L l U J U J U J U ^ L J Jp ' O o / i - ' 6 N 5 ' O e 9 ' O Q ’t t ' ^ n o e ^ f i O ' ' r i - >

i »r (J> i a iri »t —S ^ * ^ © f n o o © « r i © v i — ©

r ' v o o ' ^ o o o i f t ' C o o i f t o

M N N N N N N N I N N N N N N N M I N N N N M N : : N r J M N N M N N f S ( S M N M ( N N ( N M N N N N

v v v v v v v v v v v v v v v ? ?

o o « o r o ^ » ^ o © 0 ' ,^ o s — C ' i r - * t N © r - - ' ,© © < N © © o o CD - i f l ' O w r ^ ^ o > ^ ; ' r ! N O ^ ; N n < o n " ! - ; r » h ; n <

' f ' - <S Tf (N - - f ' M N N - ' N rs' - O' - — — - -

N ( N — n r i M - — - M I N - - — N - M M M M M N? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?U J U J U J U C U a j U J U J U i C L l U J U J U J U J U J U J U J U J U J U J L l J U J M

g r - r - ' - ' ^ v ’s r - i f N — f ’s ^ - © ,3 - © e r - v i > n v i ^ ' 0 0 © © UJ —■ 0 - ^ 0 0 0 © © < / " ) O i r > © T r — urSTj , r - - r ^ ) r - * i r - - © r i ffi " N — \ o n m - oe vi oe N (N / I 1 0 N N

N N N N N N N N - N M M N N N f S N N N N N M? ? ? ? ? ? + + ? ? ? ? ¥ + + + ? ? ? + ? ?W W W U J U J U J W W U J U J U J W W U J U J U J W U J U J U J W U J c am r - — o Q > ' 0 ^ o o # h i f t - i-- ^ r*i © ~“ — — ^ • n n M O o e r ' N N O h - o — ' 4 ' © ^ r i ' O N N « f S ( N ^ « 6 ' b f s i w N N ( N N

Os Os Os © © 0s © © © © Os © © © © © © © © © ©0 © 0 0 © 0 0 © 0 0 0 0 0 © 0 0 0 0 0 0 © © o © o © © c o o o © o © o ©’ © ' ©‘ © ' o ' o ' o o o "w y v v v v v v v v v v v v v v v v v v v v

+ ? ? + ? ¥ ? ? + ?+ + + ? + ? ? + + +? + „ u J W U J i i J t i J w u J u J u j u J U J U j a J u J u j u J t t J u J U J u j t i J L i J j p r s i r ^ s o r » - * n © © ' © f s i r ' © ,5 9 © — <n © © «n — *n — v> ^ o o i r i ' i ^ n - ' t o a ' a o O N h m ^ ^ o o C T t r i T t - ' b N N K v i w M ' n \ O N N N r i s j ’ W O ' - - r i N - -

m cm

U J l i l l l l l l J l l J U l O O L l l O O O O O t i l O O O OTf St

U J L U W U J U U J O O L U O O O O O U J O O O O O O O ^ '■ * ' C , t 5 C ! o 6 M 6 6 6 6 d f ' d o G i o o d d

— ..........................V “ V V V V V V V$ n « t »i n© oo fM © ©

—i Tf uS H ' r s

f I f I f I f I f I f f I f I f f I f I f f _U J L U U J U J U J U J I jJ U J U J I lJ U J U J U J U J L U L iJ U J U J U J U J U J U J - ^

sO — so so — — i- - r - © © ■ vs © © © ©

V i V | V > V l V » V > V > V > © o © © © o or i ^ k r i n K f~- r i <si ^ r>‘ K S <n <si 2 2 2 12— — ^ 1 ( N N n c s i f t i A O ' e ' O s O M o e r r -

© 00 *o ^ _ i/s m r - irt n© o © ©i © © ©

? r*>—" V > < - ~ © © © O r ' > ^ © v * © © © — © © n v s i / ) h ' 0 * " i / s » 0 ' 0 v s

© © © © ©

n N m o o m » i n ^ fir n n < r > O N O ' ' £ ) s t s ^r - r - © © r - © o c o c — © > © > c > © i © © © © ^

N N N w w m N N n m m w N N N n n n N N n w N? ¥ ? ? ? ¥ ? ? ? + ? ? ? ? ? ? ? ? ? ? ? ? +U U U U J U U U U U U U J U U b J W U U U J U b J U U US v » f s | f * % © o o — n ^ n f ' M N N ' O ' f t - r » © © — v> ^ ,

v s r - o v s — © © ^ r — r s © © — r - © © r s i u - i f s j ( N O ©

: g ? :U U I U U U U U U U U U W W U U M U U U U U U U — ^ v> — n n - © r - © ~ r * i r ^ s o < s c j < s p s » o e > n v i o o ©© ' / ' i r - o o r - i s o o / N f - — —' T j - r ' j © - * © v > v s © » n r - ; o c o ©’ vi -* v> oe f*S r»‘ v> r*-‘ © oei ©'?<■> H v | r i H ***> r<> ^ r»' ©* —‘

I f I f I f I f I f I f f I f I f I f I f I fLULi J U J U J U J U J U J U J U J U J U J L lJ U J U J L iJ U I U J U J U J U J U J U U J ' '■‘ o o r - o o ' O o o © © s © © T f — ■ ^ « n r - © f s * r s‘ V > o e r s j o o

0 ’t K i n r > N N m © o 4 i f t ' O v i ^ - - 0 9 ' - M OW l ' O ' O O O ^ ^ J C h N

o ’ o ’ ^ o ' o * o o ' o o ' © © ©' *2 ©V V *>. V V v v v v v v v

— rs (N

? 0 O N (S N N N+ + psj (N <N <N psj

oo i/> h o ' o ' o © ©v v v v v

f ? ? f ? ? f f ? ? ? gU J U U U U J U U J U U J U J U J U J U I U U U U U J U J U U U J S © oo ~ oo © £> — © r s j ^ r - r s f ^ < s © s < j ' t s r - © r s » < N r ~ ' ' ~ - v i r t O o c i r t O N i s i r j O j O M e * * * * " ■ * * * — — — —

K — <sj._ « » n w . .

« i — ( N —: r A( N — —’ ~ ‘ r s i f s i r ^

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? U U J U U l U U U J U U U U J U J U J U U U U U U U U U t Q r - / r j T t © < ^ - , r ^ r ^ - v i o o o o ' ^ - ' i t o o r ^ r ^ r ^ i n © r } - r o f N m m o ^ O ' O O ^ s J - s r c e N c i o r r i N o e r j M M ' O N - o o - r-’ r-' r i so - - a sc r s i ^ s t s t r in' >ri' vb od iri - — ^

? + ¥ ? ? ? ? ¥ ¥ ? ? ? ? ? ? ¥ ¥ ? ? ? ¥ + ¥ U U U J U J U U U U U U U U U U U U U U J U U U U U v s o o o r - r s r ' / N v j — o o © r s i — © r N o o © m — © t t ©

psi r j - - <N rW rW r4 —’ r s fsj H r i H r's f' i — rW —•

Os © © © © © © © © © © © © ^ > © C ^ ^ © © © © S o o u o o u o o o o o o w w o i u u u j o o o o i i i o o ^ 6 o ’ 5 o ' o ' o o o ’ o " f " o ' ^ 2 o ’ o o o tV V V ^ V V V V V V ^ V “ V V v°®

—‘ f s r i r i fsi fsi rW Os

? + + ? ? ? + + ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? U J U J L t i L U U J U J U J U J U J U J U J U J U J U J U J U J U J U J L i j t l j U J U J L U TOrr-, r s j © — © © © m o o m o o © © ^ © r ^ f N © m — r i

S - c e x ^ O N © t ' Ifl O - M N V M - | s a Nr i N - n sf' vs m i > s r w iri iri iO n ‘ «»' v i »f r<s

r-i « n n N (S r i ^ ^ f s N n r^i -*t c>

O O u l O O W U J U U W O O l j J U W W U W O O W U J U J d o t o ' o ' “ ® N r - ^ 6 d ^ 2 f ' , - ^ C ! © 0 '5 © M V V ° V V a ' “ <N-,3' ~ V V r" * wri ,* 0® P v v * r ! r ^ " 1

© *-■ H r-i © ©' oe — r i r i r i f^i fsi —

I I I I f I f f I f f ? ? ? ? ? ? f I I f I fU J U U U U U J U l U l U J L U U U J U U U I t U U J U U U U U U ) -- o r - r - m © f M © © v 1 T f r f s c r ' V i © r - © © r ' o e v ( N

si « o - r - — r ^ r * % © o e s o m r - < n f n r * * ^ ; © f ^ < s | > o © v t v > c - i v > o © s © s b ’*: r-: v ! s o v i v i ' « s : v » v i v j r ^ f ' 4t '-i r >' ' © r s i

v> v» v> vs I in i/i i/i / i vs i/i in V S V > V » V S © © V > V k V »

< N f s j M t ^ v j v j © © o e o o © ©

© ( N © f N © { N 0 0 —I ^ t © o o r s f N c n o o c N f - v s ^ - — “ © ■ « t r " V s © © o © © r -

o ' © —‘ o ' c> © ©i ©I © ©

0 0 - 0 9 ^ ^ ^1 - ' O - s o o f s n r - v s r - ~ © r - o o r - r - ©© c > © © ' © © © > © > — © © © © >

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N N N - - « S ( S n < S¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥U J U J U J U J lU lU U J U J L Uirii —i — »*■> — © O; m

? ? ? ? ? ? ? ? ?U J U J U J U J L U U J U J L U U J r i r" © — r - r-" © o© r*i ' C N T I 0 0 O - O V 1 N i a i a ^ - - < s n K < s

? ? ? ¥ ? ? ? ? ¥UUJUUUUJUUUO l ^ n r N i n ' D ’T ' O f ^i f t i r t N o o o p o o e ' f i wi n i n i n N N V i r i K r i

N ( S N N N N N N ( SN N N N N I N N N N

: © o ' © p ©9 ? ■ 9 9

S ^ S o g o o S o

N - • oo «

N N - " V ^ ^ N «■>

N N N N N N N n N¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥uujujuu^ uuju;

? ? ? ? ? ? , . . U U U L U U U J U U l U e D M « 0 0 O 5 ' W « 0 - ' O n - O - ^ n O ^ - ; ^<N <N <N —’ — - 9» r i -

©©©©^©©©©

o o o o u j o o o o Sd d d d g d o d d * 1-V V V V P V V V V

n n n N M N N n N? ? ? ? ? ? ? ? ?UUUUUUUUJUJ>© « n r 4 ^ © f ' i ’' © t - * © * 1-o e o c - o o o o o / i M O

? ? 2 2 ? 2 - 2 ?U l i l O O U J O O O Us s ? ? $ ? ? ? &

UUUUUUUU1 LU7— ©«/*l — ro — © 0 0 i ©\ 6 vi irt n r i n N r-- m

i n i r i i o / i i n v i i r i o on K K K K n n ? ? £' O r ' - r - r - r - - © © © © ’— — — — — — — — rN<N ~

S ' O M ^ t ' t n o c i r i N c * i ' C i © < / ‘i n i / " i © t ' ~ - _

O O h h - O f l ' f f ' f ^ -

N M M M M r i N N N N N¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥UUUUUIUUUUUPJS m ^ s o - H f n « ^ r > » 0 ' © o e ^ n v f s ^ ^ i a h-« 00 d - - - « » O' » -

LU UJ UU LU UU LUvi r » wi o © ooo n n - n t

© © © © —? ? ? ? < ? UJ UJ LU LU UJ© — r-> © )Si— — \Q 00— co d t*5

U J U U O J U U U U J U U U r ' - ,© ^ m - r ' o m ^ ' n \ 0 N LI

tt d rt- i/-i in —’ r r * r *t —

LU UJ ■** '• t UJ‘ 9 » O O "

(n rs i o n O N) + (N + N‘ UJ ■*» UJ 9fi N o ’ h o

<N \ / <N v— — <N

8 8 8 8 8 8 5 8

' n M N Is N N -i ^

- N —' N N N - — CS — —'¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥L U L U lU L U L U U J U J L U lU U J L U

S — ^ N i r i ' O h g ^ M © N n « - ^ O N N

— oe — — — d © «—• © <n

. , N ( N N N N N N ( N N -¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ U U U U J U J b J U J U J U u J i i l f f ' ' 0 n 0 \ 0 ~ ’t o r ' 0 ' h O' « 00 » h m h in ri mN N N N n ’ >f « r i N n K

^ 9 ' ^ 9 ' 9' 0 § ^ 0 ' ^ ^

u i © u j o o a i w u j o u J U J > / © \ 7 v «o o o m V m m

n n n n m N n r i n N¥ ¥ ? ? ? ? ? ? ? ? ?U U U U i U U U U U J U U >— ' O r ' l / ' I O O — f ~ ' < / i r N 0 O ^ -Is —' rn h N r f n a> 1/1 fl\ ’ t

- — — m‘ r i d — — — d

c*i¥ 2 ¥ ¥ ? ¥ ? ? ? ? ? U O l i j t t ) U w W W U l u l u > -

i f ' M ^ v o v i i n i n a ' O ' ^ ? N N O ' O n - H ' - ^ N

— rs — r-’ — — — cj

¥ ¥ + ¥ ¥ + + ¥ ¥ ¥ ¥ _ r>l ril ill frl r*l r t 1 iri m ill fil ftl

l f l i n i n r ' O C h - l O ' 8 ' r t "

i n i n i n i n

r - - © r o - H r ' i o o © © c ^ <

© © © © © © ■

N N N N N M N N N N N M N N N W N N N N - M N¥ ¥ ? ¥ ¥ ? ? ? ¥ ? ¥ ? ¥ ? ? ¥ ¥ ¥ ? ¥ ¥ ¥ ¥ U J U U U U U J U U U U U U U U U U U l U U U U U J U r-* *n — ^ o e N ' O o e O ' h - ' p p r - - v i © © © © < s — vor ^i © m — ^t, r ~ - r ^ - o o © r s ( N C ' o e o o « o e o ' < 3 ' — — ^ T t r ^ v o so 00 © oci d K d vi d 00 d 00 d d 00 d — © — —

8 8 : ? ? ?'l U J L U U J L U U J L U U J U J U J U J U J U J t U l U l U U J U J l U U J '

l O r N f - f ^ r - — r » r < — o o » " - © o — © © r > ‘ ' ©C' j , • - — — r l ' O — t ^ f N " 3 - ^ © © 0 © — 90 ^ © ©

2 “ o

^ T i ’O N m ' e n N n ^ N ' ' O » O iri « w M ■

m m i m m m m ? mU J L U L U L U L U U J L U L U U J U J U J L U U J L U U J U J U J U J t U U J U J U J U J « / ' > © r - e © © r " i « / i t - r - v i v ’,i ' ^ ’ NOv’i © v ‘i — o n — © —• ' O © © ' O — O ^ n n — o o o h - r ' t r i f N — i f i s e m o ' n f f i g e t f i " * iri vi o io r» iri iri >© v ^ K o i f l n Tt (N n iri n

N N N + N N NTf t ' t [i j ' t Tf Tf?? p s s p p ??

— <N¥ ¥ UJ UJ

d d d d d d d d r’-C>ddddV V V V V V V V ^ . 0 . v v v v

? ? o S o o S o o o ' ? ? 9 9 ? 9L U L U l U U J U J u j U J l U u j U J U J U J u J U J U J U J U J l U U j U j U J u j W , *

l f t N O “ ( N ' S M M “ ^ ' C g \ - N 9 N V l < f l S N O ' “ ffln ^ o ' f l ' O ' 6 " , © 0 “ ,f l o « 6 h O i n ( n ' « ' « , l ; - t

- r j — ( N N I N N M - — — M f S I N N — “ f S f S Q - ' N¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ g j U J U U U U U J U U U U U U J U U J U J U J U U I U U U U N ' t f s t N N M f ' O e O ' o o Q ^ n f i o © *so © — © ^ <nr o r ^ f N ' C r v i © © — > n © ^ © « o — © r o 00T00 — t - r - r~ -*f

— — —’ —’ —' K K « i' — — — — «ri d — <N K 06 (N

( S N < N r J N r i n N N N M ( N r J ( N N N N N N N > - ' N N_ ¥ ¥ ¥ ¥ ¥ ? ¥ ¥ ¥ ¥ ? ? ¥ ¥ ? ? ¥ ¥ ¥ ¥ ¥ ¥U J U U U J b J U U J U J U J U U U J U L j U J U U U U U U U U c QN ^ g r ; 0 » N ( N N ^ X ^ ' t r ' ^ n 0 V } N ( N i n M

© © © u j u j © u j u j u j © l u l u © © © © © u j u j u j © © © 3 d d d ® o d © ' ® vo

Y V ®, ^ V H h ,N ri N ri N

_ U J U J O O O O © W U U O O

9 § 8 9 9 9 9 9 8 9 S » °(N — <N <*4 —

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥[jj [T] frl ftl ft ' ftl f t| III III fil fj) fjj fj ) [jj frl ft] fil 111 li frl ft 1 -:— *«. <*■) — C ' j ' O O ' O ' S ’ C M r - ' O ' m ' A a o — ^ v i ^ v ' i f o © ' © ’ '

' • s O m N ' i — N ' T O s O O M O n W O ' - M n O ' O i ’T ' t J J ( S J n J H n 9 9 «• >■ N N N N ^ m

t w w n n n n N n <n fo ^f ¥ ? ¥ ? ? ¥ ? ¥ 3 ¥ 2 ¥ ffil fT) fr~| frl ill fil f fil fil n ff f*1 fil Til© 5 — © r » — ' © i ^ r ' o ^ d ' © " "

O >B O N VI M » O v « V “ ®.ri d © — d

m M M N f*%¥ ¥ 2 ¥ ¥ ¥ ¥ 2 2 U J U O U J b J U U J O O M n o h - ' - o i i / ^ c i d

N w r i r i r j n

III 111 ftl 111 111 111 111 fil m 111 frl f*l 111 fil r«l 111 111 fil frl frl frl frl 111 "1TM tM f’ l P I *M f’ 1 rM fM f' 1 fM t*1 f ' 1 f*1 f ' j f' 1 f' * l'*> ~ fS i r o o ^ r ' — M — r - > o — — o o ' ^ M ' r M ' n v o v o —© r< f - O' © *“ — — — — — — — —oo m f ni / l O ' C i f

; r ^ < s f S f s ' f s ’ r>'‘ r ^ K K K K d d K dv > r N f » r > 4 r - f <' ) r - f <i r ' > n i n © © © o o ' 8 8 S | f

f ^ s o ^ n ' 0 © ^ ' A N 9 ' ' 0 ' o ) 9 0 « N ^ O » M N © ' C 0 9 ' A O i » ^ w ~ ( i n ' O u ~ i i n r ^ ' C ' o r ~ - © ' O r ^

© © © © © © © © © © d o © © ©

0 0 1 0 N N 0 9 Mi ^ r f ' n - © 5 ' O O r ~ ' f N - ©© r - ' o r - ' O o o m © —© d © © — © d © jjf

t j g j j ¥ ¥ ¥ UJ UJ UJ

? ? ?UJ UJ LU© © 90 Tf ^ (N

N N N IN N N ■*}■ ■*?

9 9 9

, 9 9UJ UJ UJ •O C> r->

. ¥ ¥ UJ UJ UJ° $ 3

<N — <S? ? ? UJ UJ UJS3 00 ©ri d —•

n m n? ? ? UJ UJ UJ3 3 3

in n m

? ? ? UJ UJ UJ

???UJ UJ LU i/I M o 90 ^ r , d — Tf'

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

¥ ? ¥ ¥ ¥ ¥ ? ? ? ? ? ¥ ? ?M N N N M n

¥ ¥ ? : ? " ......................................U U J U U U J U U U U U U U U l i J U U U J L U U ) — o © N O' N M " t 80 O' - - O t N “ ' C n i n f S - - O ^ 0 0 N ' O - * “ *

I ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ,U U U J U U O J U J U l U U J U U U J U U U b J b J b J ^ © — © — © r i P M © * ) © —' e e i n » - N - “ - h ^ n ^ a n ^ ( n f ^ o e >f >n ■- >n v o «^ i n M N v c i \ D i >' o 6 ' © K K i r l o e t ' - ^ ’ n n N r i

S W t » -H VvO vO " f""

t* »n" r~' © oo 00 © «-« oo

( N N N O N N N N M N N N N N M N N N N N C J N + r J N N M N N N N N N N N N N N^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 4* •*+ w¥ *"9 9 9 ‘ £ 9 9 © 9

N N N N* ’ * ' N N i n n

© o ' © © o ' © © o ' o ©'v v v v v v v v v v

9 9 •u> uj :

o 8 § i; UJ UJ UJ UJ UJ UJ UJ UJ U J U J U j U J b J U U J u J m

- n ' n M N - N N - N r i o U > - N

N - - " N N M N N ( N N N ( S N N N N N N¥ + ¥ ? ¥ ¥ ¥ ? ¥ ¥ ¥ ? ¥ ¥ ¥ ¥ ¥ ¥ ? U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J — O' — — ' P 9 > n 5 ' f l 9 ' O ' ^ ^ ( S f ^ n ^ r > r ) 0 0 O ^ ^ O N « ^ « M O N N N N O >0—• oo © oo - - - - —J - J —' — ! r i r i i « "t M5

N M N N N N M M N N N N N N N N N N N¥ ¥ ? ¥ ? ? ¥ ? ¥ ¥ ¥ ? ¥ ¥ ? ? ? + ¥ U J U J U J U J U J U J U J U J U J*U U J U J U J U J U J U J U J U J U J C Q i N o ^ ^ c c ' C ^ - ^ ^ Q o e u > r ) f s c e f f > f o o o © ^ N n o C ^ N O M O O W O C h M N O v ^ - P*)' fs| ^ M N N Pi' fW pm n n W N N M N - N (N

0 i 0 \ 0 ^ 0 ' 0 ' 0 ' 0 ' 0 ' 5 ' 0 > 0 ' 0 ' 0 ' ^ ^ ^ j 9 '© o u j u i o o o o o o o o o o u o o u j o ; d d ’t f ' d d o ’ o ’ d d d d o d ^ d d "v v 9 9 v ° 7 v V 7 7 v 7 V 9 ° v

r i m pm N <o ^ M m w m PM m¥ 2 ¥ ? 2 ¥ ? ? ¥ ? ¥ ? 2 2 ¥ 2 2 ¥ 2 ; l U O U J U i © U U J U J U J U U l W © 0 | i l © © W © v

i © O r^ f^ C J ^ ' ® ' ^ - ^ © ’ © * — a ei M o ^I Ml >T IM ^ hi. «* V V ^PM

^ so n <ri ©'

Tf o 10 0 6 -

<sPM

? ¥ ¥ ¥ ¥ ? ¥ ¥ ¥ ¥ ¥ ? ? ¥ ¥ ¥ ? ¥ ?fil (jj f i yj fh ftl ri) r») ft) ii> ri) ri) ri) fil rif fi] fti fi) 'M o o o n r ' o o © r ,' 0 — o e o O ' o n w ' n r ' ' o ^ I-** © po *» •— — —‘ r ,' © r ' ; © p ' © « n © c M © ^ « nso « K « ' oo' oo ol ob « od oo Ti oo oo K K o ' K K

Ifl m /I V) W V) VI 1 v ) m i n * n « n « n i n i n .

00 © —Os m f S .

r* r> ©o e © © ^ - r * ) © © « n

3n n so d r -r-~ oo r - oe [-'(■—© © © © © © © © © © © © © © ©

»n — r - r - at^ ^ •—r * « « so *j©' © © c> ^

< S N N « N N ( S N¥ ¥ ? ? ? ? ? ? U J U J U J U J U J U J U J U J . - , © r - — — N M N oo ^ ^ O N t O O N O O hr-‘ r--' oo oc «n © oo K

? ? ? ¥ ? ? ? ? U J U J U J U J U J U J U J U J r - © r ^ — o o o r - T j - r t — r4 Tt f s — o ^ mi v> © © *r r--' ©

N N N f N N M N N W N N ( N M N N N , "it ' t "it Tf tT rp9 9 9 9 9 9 9 9

8 8 ? mfil fi) [jl ftl ri) ftl frl fil• " - n M O s ^ n n © © « n i n « n « n © w

-< pm pm —* pm pm —

¥ ¥ ¥ ? ¥ ¥ ¥ ? U J U J U J U J U J U J U J U J ^ ~ © p - i r - m r - i n r - 3-1

O i f l oo ^ i rt M n « w >0 v£) r i oe S / !

N M N N N N M M ¥ ¥ ¥ ? ¥ ? ¥ ? U J U J U J U J U I U J U J U J f f l - n N t o o e c r i r t T i n © o e o i 0 0 r i i / i PM PM PM PM — fn f*l" fW

© © © © © © © ©

? ¥ ¥ ?

, , . ¥ ¥ ¥ ? ¥ fi) fi l fif t»l fil f i ) f»l ftl ^

po pm" pm" pm pm <n rn

Pl N N Pi Pl PS2 2 ¥ ? f ¥ ¥ ?© © U J U J U J U I U J U J O O M P^ f"" O' ^v V -------

? ? ¥ ? ? ? ? ? U J U J U J U J U J U J U J U J : — © © r - r - p M © o o © V) r - © © © © oo vS vri © '© '» • ’ oo’ oo ©

I p IP) Pi i p PI t rt •

© © © ' © > © ' © ‘ © ' © ^

PMPMPMPMPMPMPMPMPMPMPMPM? ¥ ? ? ¥ ¥ ¥ ? ? ? ? ¥ UJbJUJUJbJUJUJUJUJUJUJUJr-' PM © © «n •«» — © p i Q 00 n O' w

© © © P-" Tf «ri in" ^ ©i © pm

U J U J U J U J U J U J U J U J U J U J U J U J T ^ p i * — o o © m — o o © © r ' - ^ © ' - > 'PM Ip| — © ^ ■ © ^ p n © 0 0 © © p - ' O i p i i r i ' T r i r i r i ^ ’ i r l f S f S

I ? ? ? ? ? ? ? ? ? ? ? .U J U J U J U J U J U J U J U J U J U J U J U J f ,P ' © © © ' t O O O O Q O © « n O O © U J«n 00 © PM P^ in PM pm © © rn ©>p-' © vi © © po vi m’ «n *n pm

PMPMPMPMPMPMPNPMPMPMPMPM PMPMPMPMPMPMPMPMPMPMPMPM _

O ©'©©©' o' O © © © ©"V V V V V V V V V V V

+ ? 9 + ? 9 9 9 + ? 9 9U J U J U J U J U J U J U J U J U J U J U J U J f • “ P l O f f i i p i O O O N O i ' ' 1 ® © © r r S o ' t o o o o ^ p © ©

' - J t - ~ ^ J - J r - - i n — - J —' © m

¥ ¥ ¥ ¥ ¥ ¥ + ¥ ? ? ¥ ¥ U J U J U J U I U J U J U J U J U J U J U J U J r t i i O * P l P ' © © N O O O ' © ' 0 0 ' “ UJ ~ PI O PS 00 PM VI - 00 N 0<

© oo © © mi vi r~’ © © v> n

i i P M P S f S P S N f M N P S P S P M P M¥ ¥ ? ¥ ? ¥ ? ? ? ? ? ?UJUJUJUJUJUJUJUJUJUJUJUJCQ' " ' t N t ' O O i P i a o r ' — — o o ® i n ^ i n © o o © © © m — ©

PS PS PM PM PI PM W -■ rs’ '}■’ —

© © © © ^ > © ^ ^ © © 0 ©r ’ O 0 © U J 0 U U 1 0 © U 0 3

"' o ’ S o t ; ci d S o ^V V V V ©

PM PM

cn m m ¥ ¥ ¥ r

, . P P P Pl P P PS ¥ ¥ ¥ ¥ ? ¥ ¥ ¥S O ©

oo © Tt 00 OO 00PM PS PS PI PS « '

© o o o u o o o o o o o© 0 © © 0 0 © © C > © C > ©w v v v h v v v v v v v

? ? ? ? ? ? ? ? ? ? ? ? ^ U J U J U J U J U J U J U J U l U J U J U J U J ^ p - “ ' 0 © i P O O O O P - l P l © P M O ' " t — — © P~- © in P-; © PS ©

D mi © © pn mi in" 'O* © mi pm"

o o i p i p i p i p i n m i n i n *pi ipi

oo s f sc ip n —oo — r - tj- © r -U1 © © IPi V) ©O © © O © © © © ©

P- Pi PS Q i p O' ecS © in © — © w

© 00 © © © <-© -■ §

PS PS PS P) PM PS N¥ ¥ ¥ ¥ ¥ ¥ ¥ UJ UJ UJ UJ UJ UJ UJ— © © m — ©© M ^ © © ©— r J oo —J oo © vi

? f ? ? ? ? ?UJ UJ UJ UJ UJ UJ UJ © © in © © pm © — oo oo ^ pm © ©in ' t Tp © © © Tf

? ? $ ? ? ? ?UJ UJ UJ UJ UJ UJ UJ

? ? ? ? ? ? '

UJ UJ UJ UJ UJ UJ UJ— pn oo © m © r*ins — rn —' r s r**> m—• — — PM PN PM PM

PM PM PM PM PM PM PM¥ ¥ + ¥ ¥ ¥ ¥ ■ UJ UJ UJ UJ UJ UJr— o © m o p -m m © © © oo

. . PM PM PM PS PM PM ¥ ? ? ¥ ? ¥ ¥ UJ UJ UJ UJ UJ UJ UJO » - P i t P oo

© © *n ^ © —' pm pm' pm' pm pm pm

PM m m n n m m¥ ¥ ¥ + ¥ ¥ ¥ fi] ti) fr) f>l f t 1 fil ftl— © P** © Tf PMoe pm cn *n »n oo ©PM I PM PM PM PM PM

2 ¥ 2 ¥ ¥ 2 ¥© UJ o UJ UJ o UJ

‘ -• ©' ve o o ' o®» v « ^ v ^- PM PN -J

m m ?UJ UJ U UJ UJ UJ UJ00 © — © © © —© ^ m pm © © oor— © in K r - oe

m © © tT —© — p- © —© r - r - r~ ©© © © ©

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

¥ ¥ ¥ ¥ ¥ ? ? ¥u j l u l u u j l u u j i u u j ,®S a 2 8 S 3 * £

' I f f ? ? ? ? .I LU UJ UJ LU LU UJ UJ ,

? ? ? ? ? ? ? ?L U L U L U L U L U L U L U L U © r - o o v - i v i © ^ © N » w w oo - O n w r i H <f r i »t' v V

N M N N N - - - 1- - ®¥¥ ¥ ¥ ? ¥ ¥ ¥ ¥ ¥ ¥L U t U L U L U L U L U L U L U U J U J l U ,

>d r i <ri f4 r i n r i a>

8 8 !u: u u uj u j < “ 2 JC o (

: 9 f ? s „> UJ uJ LU O

V V V V V

i a? f' 9 UJ UJ

)' © ©

- - N N I

1 ? ¥ ¥ ! U UJ UJ

¥ ¥ ? ¥ UJ UJ LU LU

N N N N N M M N? ¥ ¥ ¥ ¥ ¥ ? ¥LULULULUl Ul Ul Ut Uc O

L U O O O O O t U L UIS o o o' o' c *2 Qv v v v v 9

¥¥¥¥¥?¥¥U J U J U J U J U J U J U J U J

¥ i ? f 2 2 f ?UJ © UJ LU O © UJ UJ

? ? ? 5 ? ? 5 5L U L U L U U J U J L U iU lU 'S n $ 2 8 - S 3 ? '

o h Tf O OS — ^ —— r i f N ' ^ - o e o - ^ - r © O' O' >A I/| '© IPi V. _—‘©'©©©©©®j£

? ? ? ? ? ? ? ? ? $ ?L U L U L U U J l U l U U J l U U J U J t U ,

n n n m n n n n n n nN N N N N N N M M M M

9 9 9 9 9 9 9 9 9 9 9

— ©©__, , 9 ? ? 9 9 ‘UJ UJ LU UJ UJ UJ I© 2 '*■ «“» S' S2 '“• «*i r+i m © ®® <

N M N (S N (N¥¥? ¥¥¥ LU LU UJ UJ LU LUo oo — os r-

b / i « o oov© if- cW so v i

f f ? f ? f

I ? I ¥ ¥ f

¥¥¥¥¥¥ UJ LU LU UJ LU LU

« N N N «¥ ¥ ¥ ¥ ¥UJ LU UJ LU UJ*t f - © 00 ^

¥ ¥ ' ’¥¥¥¥¥¥¥O' W N b I

© © Os Os ^ o O © O' O’ © O O O O O U J U J O O O O¥ ¥ 9 9 9 s 9 9 9 9

¥ ¥ ¥ ¥ ¥l u l u l u l u l u i u l u l u l u l u l u . ^-— • « • • - r ' p p ^ r i r ^ r - i - ' f ' i o o ' ^ - © © O O o e r - i ' O v .

rJ r j f sf ? S f 2 2

U J U J O O O U J W O H J O O

2 S 9 9 9 « R 9 =! 9 ?oo oo v> © r»j

¥ ¥ :

? ? ¥ ¥ ¥ ? ¥ ¥ ¥ ¥ ¥ L U L U L U L U L U I U L U U J U J L U L U ^ " O r ^ N O S — ' O f ' r ' — i J n O ^

r - <n © r~- •

© 0 9 © V | V > V | V | V > . .© © v > v i c ' « i f N C ' i f ' r " » £ J £ i ^ — — < ^s »r s ' oooooO' 0 ' __ s

© © © — O '

f f 9 9 f fLU UJ W UJ uj LU■ ; = S r s

¥¥¥¥¥¥ UJ UJ UJ LU UJ UJ

M N N M N (N¥¥¥?¥¥ til til r.l It' fil fi] — (J. O - N

LU LU UJ li] UJ UJv i fM oo m n r-*1 O' N N r t «

; <

N N N N I S N ¥ ¥ ¥ ¥ ¥ ? LU LU LU LU LU LU© fS — ©. © VIt'» h> oo r - r i <n

v i v i v i v i v i

? ? ? ? ? ?LU LU LU LU LU LU00 00 PI © © — _•*■ —; n © r- © IS

s s s X X 2+,+. + + + +Tt © ©

| ? 9 ? 9LJ uj uj UJ uj UJ

¥ ¥ ¥© © © ©

- N N f l N M N ¥¥¥¥¥¥¥LU LU LU LU LU UJ LU “ •“ — t~- O vs _

os © ~ - ,® rJ v-i «

oo © >

9 f \ ss;LU LU UJ LU LU LU LU “ w «e <o v i oo r>

«n mU J - - - H w

? ? ? ? ? ? ?UJ LU LU LU LU LU LU» Tt r t h M - M

> oo N f s n ■

¥ ¥ ¥ ¥M <S LU UJ N U UJr-> <-•» t-' M v i r*ss f t r r — —- - - -

9 9 9 9 9 9?U UJ LU LU U LU moc oo vi © oo c-j PT© i © © n © v i 2

o’ « « « K U

¥¥¥? ? ¥ ¥ ¥ L U L U U J L U U J I U I U U J r s m o o v i © — t - t —— r i © © © PI n PI .•»T r i oo’ © ’ v i v> © ’ sb

¥¥¥¥¥¥ UJ LU LU LU LU LU

? ? ? ? $ !

00 • © “ •

U

N N N N N (S? ? ? ? ? ? LU UJ LU LU LU LU' > v> — n ©

I O' O' 90 Vi

? ? ? ? ? ?

. . - I N M M N?????? LU LU LU LU UJ LU f - <N © r i fsl 'J-

? ? ? ? ? ? LU LU LU UJ LU UJS r» <8 ^ © vi

^ ^ ^ ^ ^¥¥¥¥¥¥

© © © © © .

¥¥¥¥¥? ¥ LU LU LU UJ LU LU LUN S O SO “ —© © x —i ^ © — i © — ^

4- +1 i u UJ LU LU LU UJ

- 1 v> P4 ni © c i r~ v^

— — — r i

? f I ¥?¥¥LU LU LU LU LU LU LU- N O' >t M O VlO O oo i r m n ©

; - o< - <-i <

¥¥¥¥¥¥¥ LU LU LU LU LU LU LUo s = = 8 f “

<n m m f*s f*s po r*i? ? ? ¥ ¥ ¥ ¥LU UJ LU lU lU LU lU■ - © oo <n © oo rsfM © <N ^ © — J-rs — ■'f — rj

? ? ? ? ? ? $LU UJ LU LU LU UJ LU

© © © © © © ©- ! -*i vS ©i ©■ vS vS - -N N N Vi ift P- p- g

;? ? ? s

? ? ? ? ? ? ? ?L U U J L U L U L U L U L U L U r - 4 T v - > ^ © — r-1 © © • “ P ' © O V > © © .

M n - pi?¥¥¥. . .N UJ (U LU UJ M IN N M 0 \ ' 0 — O M M

LU LU UJ LU LU UJ IS TP © PN P © < « © © « — •

¥¥¥¥?¥ LU LU LU LU LU UJvs — © © © —^ r - oo t*> © —

¥ ¥ LU UJpp —

. N N N N N N N ¥¥? ¥¥¥¥¥ LU LU LU LU UJ UJ

m ^ v i oe Vi N-----------------‘ M VI JQr t « n w « r t

• © r*i *

M N N N P . . ¥ ¥ ¥ ¥ ? ¥ UJ LU LU LU LU LUPS 9 Pi — © ©oo © r j r~ oo ©v i © © ©‘ *ri ©’

: f fLU UJ LU LU LU UJ-* “ © «» © ^I Pj P; ’*

i r> pi

? ? ! ? ! ?LU lU LU LU UJ LU© 00 VI — © Mp^ f © — o ©v i © Tf-’ © Vi

. ¥¥¥¥¥¥¥ lU lU lU iU lU lU i ul U c s « n ^ - © © © — <s v i © o o r “ © o o © P 4

¥ ¥ ¥ ¥ ? ¥ ¥ ?lU lU lU lulU lU lU lu' O P O P W P O ' » p s i o o o — r p ' 3 - — ©— — 04 —’ —’ fsj —■

¥¥¥+¥? ? ¥U J U J U J U J U J U J U J U J© p s | T t r % v > o O —- 0 0 © T r o c r - p - i r - T f ©«n‘ p i p i V p~ r ‘ r»‘ "pt

? ? ? I 5555L U L U L U L U L U L U L U L U

t vi p- - « p i n v i j r v i © sb © ©i sb

© © 9 0 0 9 0 © S ©’ © vi vS © © I V Ip P P O O

S Pi b Pi p Vi O

S OO © PM 9P V) VI VI V ,o ’ © ’ © © ’ ©■ ©’ ©' © ’ .

, S P «si r4 r-’ o ““

' ? ? ? ? ? UJ LU LU UJ LU

? ? ? ? ? $LU LU LU LU LU UJ b p i p i © ^ b

? ? ? ? ? ? LU UJ LU LU LU UJ

? ? ? ? ? ? LU UJ lU LU UJ LU© 00 fp| — © Ps|- t 40 tf> N M -psj psi vb »r f

¥ ¥ E ¥ ? ¥LU LU “ J UJ UJ LU00 00 U O M 00©« J N f *

? ? ? ? ? ?

9 © © © © © irt © d v ’PI v i Vi r

9 0 0 0 9 ©

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

'o o § ^ q o 8 8 8 o o 3 8 (n + + f ' i T + + + + + + + + + + + + + r ' i r ,i© U J t i j © U J L U U J U J L L J U J L U U J U J U J U J U J U J L U © © U J , ~ s i - ~ s p . ~ j ' Q © C ' i f ' ' —- r - - o o ,* * © © r o e c ' > 1/1 y — © \ / ' 0 © ‘r r - r - c ’i — O' r - — m — oo >n

r i ao — — O' oo r i r i — O' © — — — — vi

n r ^ i r ’i n m o o m f S r v f ' i c ' i m r ^ i c o r ' i r ' i r ’i m m o f ' i? ? ? ? ? ? ? ? ? ? ? ? ¥ ¥ ? ? ? ? ? ? ? ?fit fil Ml frl ftl Til Ftl fil 111 fil fil ril ril ril [i3 ril ril (il ti fi rrl li .o e © r - > n » < ’> 5 ' ‘/“> o o t ~ » s © v %r ' ' — r*i © — «n © oo © © oo ,~ — •** — “ j j « f i m i n « o > o m o e o v i v i N o - < o -

— r i — — i n — O ' —’ — — — —O' 90 ' O O' n

? ¥ ? ¥ ? ? ¥ ¥ ? ? ? ? ? ? ? ? ? ? ? ? ? ? « r.l r.i r.i r.l r.l r.l r.l r.l r.l r.l r.l r.l r.l r.l r.l r.l r.l r.l r.l r.l r.l r.l _*5U J U J U U J U U U U U U U U J U U J U J C l J U U J l l J U U U J oe « n O' 99 " "■*3- © © r<i n

— r> ^ r*

' O o o O M r i O ' f f ' ' t r l v i O ' 2 r t ^ N O W l O O O N O - ' O O S N M O -

O i t ^ r i i f ' t n - - r J N r )

¥ + ¥ ¥ ¥ ¥ ? + ? ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ + ? ¥ + U J U J U J U J U U J U U J U J U U U J U l i J U U J U U U U b J U3 - ^ o o r ' 0' © o o © © o o v i v - i — f N c - 4 f * ' i r - T j - v i T } - © © r N T j -—■r ‘1 — O O O O O r o r N r r f N ^ t O ' — i n r vl 0 ' 0 ' V > — © © r - -

^ ^ » ’ t "d r i - - — © ’ ■ ^ ■ r i r i t / ’i f d i r i © — — r-’ r

S S S S $ S :© © © ©V V V V

© O 10 0 ' © 0 © 0 0 0 0 0 <v v v v v v v v v v

O' O' 8 8,

m m m m m s m mU J U U U U t i l U U U U U U U U U J U i U U U J U l i J U , n h o c o o o w M ' O t N M - o o m v ’ f ' - ^ r J n m O ' O ' 1 O h - ^ N N h ^ - N ' O O V - i A f O ' C O ' O V ' O n O O r-' — ©’ r - - r r ' o r j — K oo v i K K i n r i ■<}■' ir i iri <«t ^

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? . . . . U J U U U U U U U U U U U U U U U U U U J U U U J , o c v > © — © o o r f © — © 0 ( N r - - © o e — © © t } - ^ — © ' — w*|f>’i © r © © f ,’i © ,« r © ^ } ; ^ t O ' M t - r ' > O ' r - 0 0 v - i r ' )

— r - ' o e — — © v i r i — v i © i b o d — o ^ r i c s —’ — r i r d

n n r i f M r j r j r o n — n n r 4 f s r ) n < s n n r j n r s n¥ ¥ ¥ ¥ ¥ ¥ + + ¥ ¥ ¥ ¥ ? ? ? ¥ ? ? ¥ ¥ ¥ ? ^ U J U J U J L U U J U J U J L L l L U L U U J U J l J J U J U J U J L j J U J U J U J U J U J r i

8 r i —• — oo — r - n — v i r ,- « r t - ' « r o © 0 ' — h oc n r w ' 0 ' 0 3 ' J | © f ,' M ^ “ 0 ' “ C ; o e O N ^ h ^ C h ^o ' r i r i - r ’ f ^ r i r i o d ' b r i r i — r i r i r i o i ’ r i r i r i — —

— © © — — — — — — — — — — — — N N N fS n n s¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ■ 1 L U U J U J U J l l l U J U J U J U J U J L L ] L i J U J U J U J L U U J L ! J U U J U J l U _ e © O O O ' n ^ i r i ^ n ^ i / i ^ ^ ' n i n i n o o i n ^ i n ^ ' 5 i r i i / i i n / i r s r i t N; r ^ N N t ^ l s ts t ' M n O O ' - ’“ C N N D.

' — r*' r>‘ r i r i f d r ^ « r i v i \ b \ b ' b ' b o d o d — — — — — — q

. 9 9 9 9 9 9 ^ 9 9 9 9 9 9 9 9 9 9 9 9 9 U U U U U J U J U U b j U U U U U U U U J U J U J U U U ^ © » r ' a ' V M - m i o o o ' 0 © w M N < f t o e m o ' n ^ O ’

r - — — v i ‘/ i ' 0 ‘/ " > t ~ ' ' t - ~0' 0' r - ' 0 o©oe

888; ? ? f ? ? ? ? ? ? ? ? ? ? ? ?U U U U U U U J t i U U U U ] U U U ] U U U ) U © O ' — o e o o r n ' f i f ' r O f l e O ' ^ o © ^ , 'fl r t v o o ' o o o o o ^ o o ' f l — r o ' ' 0 o r ^ r ' 0 O' O'- d oo r i r i 1 — — n

i r*i r*i r r <N? ? ? ? ¥ ¥ ¥ ¥ ? ¥ ? ¥ ? ¥ ¥ ¥ ¥ ¥ ¥ U U U U U l U & J U U U U U U U U t u U U t U © w % © 0 ' f o — © © m v i O ' v i v i w ’i ^ - r - r ' C ' J ^ ' o ^ o o r f ' t o r ' t ' i f s r — r r / i i n r r r ^ o o — — © — r i r i — — r i —' r i — — — — — — r i o i

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?Ml rrl ril fil [i) fj) r.l frl ril frl rrl frl rrl fr] ril fil ril ril ri^— © o» r - r j oo r-i — N r ' < n h o e O i W ' C » h - N' O ’ f I f O O f f - O >C - O Tt i J r f Nw n - m v i i f ro n ■ f M ' t m r i r i r i r i r i i t - -

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥frl rrl rrl fil fil [il fil [il []J fil ril fi [i] fr [i [il fil [il— — - i i n n c ' c O O N ' O j ' i n h h n i n i C i n o O

; — © v> r i p- © © © © — © •'$; v> 9 — O'■ r i >© «

© O' O' © i■ uj o 8 u ; : g g g g ? ? S ? ? ? SO O O O U J U J O U J U J U J O

9 ' o ’ Q Q 'O O r i i t 'O r jV v V ^ ® * ' ' . v “ r ‘! l“" ! v

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?U J U J U J U J U J L i J L i J L U L i J U J U J U J U J U J U J U J L i l l i J U

© © <s © O' t"-- r -

N N N N N r i r i N f O N N r i r i r i r i N N N N¥ ¥ ? ¥ ¥ ¥ ? ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ? ¥ ¥ ¥U J U J U J C l J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J

' O n « ’O h « ^ r ) ' e o O ' r * © « r r » O i ' o r - 1

( N N n r j n n r i N r ' i N n ( N n r j n n ( N N ( N? ? ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ frl frl rrl ril fil fil ril fil ril r.l frl [i] [;] rrl f*l ffl r»* fTl P** ' 0 « ' t ' O r i ^ r i ’ t ^ M N © ' t o o O ' ' J O Q

o O n t o o ' O O N ^ - i n i n - O M ' o m f r i r i — r i r i r i r i r i r i r i r r r i r i r i r i r i r i r i o '

? ? ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ U J U J i i J U U U b J U U J C i J U U J U J ( i J i i J U J t i J b l L i J © © i f t i f t i f t i n i n i f t ^ i n i n y i i n i r t M M O o o o o e— « n n n r ' r * ' n r j r * r ' n n r » r » — — n n n r K r i r i n n ' d i d ' d ' d o d o e O ' O ' - — - — »■

9 9 9 9 9 9 9 9 9 9 9 9 9 9 ^ U L U u U U U U U U U U U J U U a J U U J U J u j

r -' oo r - ’ r--’ © —

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.12

E-0

1 1.

38E

+02

1.54

E+0

2 6.

86E

+02

4.22

E+0

4 <0

.009

1.

79E

+03

2.15

E+0

4 1.

13E

+03

<0.

036

7.09

E-0

1 1.

48E

+02

3.38

E+0

2 1.

04E

+03

8.18

E+0

4 <0

.009

5.

04E

+03

4.48

E+0

4 2.

33E

+03

1.48

E+

01

7.08

E-0

1 1.

48E

+02

2.95

E+0

2 8.

84E

+02

7.06

E+0

4 <0

.009

5.

24E

+03

3.90

E+0

4 2.

08E

+03

1.31

E+

018.

01E

-01

1.63

E+0

2 1.

78E

+02

8.09

E+

01

2.09

E+0

4 1.

53E

+02

3.17

E+0

3 9.

49E

+03

4.81

E+0

2 1.

73E

+01

S f ?+■ 4- r> m UJUJLlIOOOOUJO l A f l ' f t A A / J Q j d

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥; 8

m m m * ,U b J U U U U U U l u v » ,O O N h N ? i n ' C 5 N O ' O O M ' t - O ’ t N M H N O' O' ■ “

¥ ¥ UJ UJ I

. ¥ ¥ ¥ ¥ ¥ ' i UJ UJ UJ UJ LU UJ ^

in <n i n >n r * n '

& Ov O' 91 9 9\ O' Os Os8 8 8 8 5 8 8 88°«|g> © © ©" ” 0 <“s"1 o o o o 1v v v v

5 5 5 5 5 5 5 5 5U J U J U U U U U U U J , —■ — v o« r - ?s © © 1“ • ' O N O ' f l ' M N n l ^© v v - - —• p-i cm’ oo r s

N N N - - - - N N ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ U J U J U J U J U J U J U J U J U J , © © 0 > P ' * © ^ 0 ' © © 1 O' ^ n ^ oo ' t o iri n ^ 9> O' oe —’

N N ( S - - N N N N¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥U J U J U J U J U J U J U J U J U J ; ^

M - O - O O N - N N M ffi Os’ —• o —’

NNNDNNNNN C¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ! U J U J U J U J U J U J U J U J U J j s n » o e o c o O r t M ? ? s ^ o r ^ r ' r - ' f ' - o O ' O O &

9 9 0 8 8 0 0 0 9 * 5UUJWUJUJWUJUJU)'—

8 « N O « n M * ^ M 9

oc r-’ K —‘ — o ’ O' vo

j o S sO O o O O O '1 + + r- ■ -

UJ c

n v ^ V ^ v? © © ©

r*i + vu j p u j u i p u j p u j p u j p

® ' O b ' * , b ® ' b " “ b-* -* . . . . fvj . . . .OO O'

r - s v f ’i M r ' n f ’s p ' i f ' i r n r i C ' i? ? ? ? ? ? ? ? ? ? ? U J U J U J U J U J U J U J U J U J U J U J ^ r-- - O ' h O N - O ' M n n ^ ■r >e ^ o ^ - <o 'O h-_ 'O or« - - M N N VI

5 ? 5 ? ? 5 5 ? 5 5 ? «U J U J U J U J U J U J U J U J U J U J U J r - n — w o e h t o e M O n n n r j ^ o s i n n O' so ^ fW w r i ^ r i r i r i »

? ? ? ? ? ? ? ? ? ? ?ri r>i r»i ril ri ri fi yj m f 11 [ii ■>>

r i ’ t r ^ - w r i o o ' O o o ’f ^ ■ v i f > * > © t ~ » ‘ © - H i r i v i v i

? sUJ ©2 o•* V n

: ¥ ¥ ¥ $ ¥ + > UJ UJ LU © UJ UJ

? 5 ? 5 5 ? ? ? ? 5 ?til ill ril rit fts m rts ns ril [jj m ~ M V S n M - N v O s p ' t O ' 1

© i-- oc o© —1 n ® ^v v v i r - 00 1 1 N \ C »C ifl -

. . . N f S N N N N N N N N ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ U J U J U J U J U J U J U J U J U J U J U J , v o r - ' 0 0 ’O o o o ' O r v- 0 ' O f N ( r - ' « t s o o O ' < ^ o s q — r~ —

♦ v i K r ^ K - ^ v s o v i —

NNNNNNNMN-? ? ? ? ? ? ? ? ? ? ? U J U J U J U J U J U J U J U J U J U J U J , w s n ' O w i ^ i s e r i o e — ' O t ^ - f S - O M O ' N t ' O T O ' N r i r i f ' i r i N - ' N f S f s / i

U J U J U J U J U J U J U J U J U J U J U JO O v s ' r t i n ' A ^ i r t ' n i r i Ov v f N C ' j r - r - C ' i r j r - ' r - ' V

v so © t->

0 0 0 0 9 0 8 9 9 0 8U J U J U J U J U J U J U J U J U J U J U J 0 t ' O n - N O C ^ C ^ N g - . ^

:f ? ? ? ? ? ¥ ¥ 3 ? ¥SU J O O U J U J U J U J U J U J O U J U J U J U J U J U J U J U J U J O U J U J O 'm o o v — © ~ < N r -> © M f n f n O ' C ' ) r - v « » < N o f * > r ' - © ' c ‘ v v ~ ‘ ‘ ® “ ‘ P ““ v c^ ,^ <s* ' o ,o ^ < ““ P v - ; crj v

n n n n n n n w¥ ¥ ¥ ¥ ¥ ¥ ¥ ? ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ frl [jj ff1 tfS frl rrl Til fit Til Til ftl Tt> ri> frl fr) fi frl frl fr TtI ril ril .v r-~ <N — O' © — © ^ © '

n (N <S — —

? 5 ? ? ? ? ? 5 ? ? ? 5 ? ? ? 5 5 ? ? 5 5 5 ?

— © o — f-* •** — 1P*> O O f' J 00 V V I

_■ © 'o o ^ o r _ o <n 9 '^ w n ^ m w w n w r i W n n <N n N >« f i v •—’

c*» m m r*> v ■ V (N r o r s

U J U J U J U J U J U J U J L U U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J ^ :

^ M ' O V i ' O ' C ' O M n N ' O ' O 1

S S S ¥ ¥ S ¥ ¥ ¥ S ¥ ¥ S g S S :O O O U J U J O U J U J U J O U J U J O O O O '

b 6 r ‘ w 6 l r t lC, i r | o O ' O o ' b b 6 |v v v v v^ m n ^ r-i

¥ ¥ ¥ : 1 UJ UJ UJ ‘

fis f»s frl til fil ril m riS ris r<s rtS rrl rrl ris fts ftl ril ftl tis nl ris rtl rtSJ i M ' 6 x t » h ' » O ’“ 6 0 0 " N « n O ' f l h ' C 9 ' f

r - © o «/i r s <

. . . r i M N r ' i N N N f S M N N m n n M n n f s - r j N¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ri l t i l fi1 r,> r>1 ri1 fTl rTl rTi fT l u (t) [t i n j fT 1,11

- - ' “ ^ * * ' ^ < r t r ' r ' r ' r ' r ' O f ^ o o v s o o ^ j , o o f ^ r ^ n o o o ^ - )oi © oci n © ^i Vi © Tf wi

h r ' O n O O V S O O T f O O N h N Q M 1 O 06 ^ OS N - O O' ^ • O >n O N

© ^ ^ r~" — —* © n ’ v> v i —J r«J ob —

NNNNN<NNN(SNNNfSNNNNNC<n(NN¥ ¥ ¥ o o ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥

fil fil frS fTS frl fil fTl fTl FtS TtI TtS ril fiS [jj QJ fjj frS til l»1 TtS TtS til >»cs — o r ' f s r ' © ^ - ! — m ce 5 h 9 oc - — o ^ © n n ni N © w o ' f - - - © 0 ' . o e ^ o o f f ' i O ' O N - r j - O ' m N N N (S N M N <S N - - - r i N N - r i ^

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥[jj fjj HI til fil 111 111 fii TtS fil ril [fll fil frl frS frS 111 111 fTS m ril ^V O V V V , v v v v v , i A i « r , « ^ 0 O V O O V O O O © P^ ^ r ] n n n h ^ r ' 9 f - © o 9 0 0 9 0 0 0 © gm' h ift r i f ' N K n K m K vi »i 0> b b M so b oi oi oi q

9 9 9 = ? =f c? cP 9 < ? 9 < ? 9 9 9 9 c f <f <? c? ¥ ¥ ? 9U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J u i U J U J U J — T f v , r ~ © T t f n © 0 ' r ) - V < N O ' © V O ' © © © S < N © - * ^ ^ ^ ^ ^ ^

r - © © r - ©

¥ ¥ ¥ UJ UJ UJ O' — f”> oo N n

5 5 ?UJ UJ UJ N 5 O' 00 O o

¥ ¥ ¥ UJ UJ UJ N O ' ' ? © <S V) © —’ vi

5 5 5UJ uj uj 1— 00 © 00 00 (N © —’ "f

N N f S

¥ ¥ ¥ UJ UJ UJ

rs — r-i ¥ ¥ ¥ UJ UJ UJ © V Or** © © r-i oc r4

9 ? 9UJ UJ w

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o o — — — o — o o o © P P © P P P P ' 0 ' © P P \ O P © P \ 0 ' D © ' © + + + + t + + M « + + n + w + n n M M H j l i l U U i U U j t i j O O U J U O U J O U O O O O

vt © © — o — © © S f ' ^ ' p C * © * S t © © © ©

m m f ^ f r r r r r ^ - m r r n n n r i r ' i n n r i c N r i ¥ ? ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ U l U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J 0 ^ ^ _ — . . ^

U J U J U J t U U J U J U J L U U J U J U j U J U J U J U J U J U J U J L l J ' O ' © f ' ^ o 0 ^ r - ' j D © - ^ ' £ r - © m v ' © \ © \ © © 80 i a ^ < nO n O; <0 O O N ' fl •■ w ^ O m r i r i Tf r i W ^ r i w*i i / i r i W r i r i r i r i n n

M r l r ■ > r » m r ^ ^ , ^ r r ) r ^ r ^ r > n ^ r i ^ ■ « • ^ ■ ^ ■

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥"¥ ¥ ¥ ¥ ¥ ¥ + + ¥ ¥ I l i j UJ UJ llJ UJ tiJ UJ UJ UJ UJ UJ UJ UJ UJ

CN fNV O' p o > © + + > P LU UJ i O © ■""~ © o ' o '

' © o p

1 8 8 b > © p *0

r i r i? ?

i ifl N vO 00 _i tf i m K s o o e <6 r m >ri

r i N N M N M m n N N N N N M N - N N M? ? ? ? ? ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ U U U J U J b J U U J U U J U b J U U U U U U L U U J i v i 0 » 0 ' M 0 ' r i ^ < f i r — iri n r n o O' — ^ n ' r r o ' - M r i n r ' O - O ' O j N f t ' n r m " ' ^ m pi « * r r «o oe o ' « ’ ^ ^*' r - ’ r - ’ ><5 r-' — — —

N N N M N N W N N N ( N ( N N N N ( S N N N

? ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ U U U l U U U U U U J U U U J l i J U U J U U J U U , - o ^ h N v i M ’j c e o r i ' C c e ' - Q ' r i ^ N r

i w w ^ n r n n i s - “ - _r i « ' r i f i w r i r i ^ r i ^ :

— — — — — — — — — — — < N f N r ' i f N r J M f N f N¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ - f >l f i ) r i l m f r l r . l f t i f t l f i l r r l f > 1 r i l m r r t i t ) r r l f t l i r i r . l

. «. - - - N O N N q o - - n r ^ ^O ' © © © — — — — — — — — /

o o o oUJ UJ UJ UJ — _f" P 00 © — \Q© O © n N Of i >6 r r r

p p g p p p o o p o o o o p p ^U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J ' ' ” '- ' p ' T O ' O ' j f ^ O ' O n — m — r r - N O O O ' t n n v O N T f r n t ' f i O ^ j

i vO r oo r ee r r jc r yb e '

„ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ 0 ” fTl Tfl fi i Tt\ TtI Tt1 ftl f i l ^ ¥ ¥ ? ? ¥ £ ¥ ¥ ? ? ¥ ¥ 0 uj u j uj u j u j © t j U j Uj uj uj uj «LU LU LU — LU LU

« ' 0 ' 0 ^ ^ ^ o e r - < £f N O N 4 O N iCl iCl ' 5 — — 2 N a s a N ' O y — - N ' 6 ' O ©— r i r- ’ 00 — — — 00 © — v i

r r r i r > n c o r i n n

c ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ c ^ U J U J U J U J U J U J U J U J ^

f l M f l W n W M m M f l f l N

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ c U J U J U J U J U J U J U J U J U J U J U J U J « ^

p ^ r ~ oo f N r i — oo — © « r $ ' © o S S ? v 5 ? r ? © < § r i — — — — r i 00

^ ' U J U J U J U J U J U J U J U J ^ ' ■ i N ' C r ' ^ p ^ r o e ^

r » © v> p ^ © «n sor i r r ^ r i v i v i ^ 4

.70

E+

04

4.2

3E

+0

4

3.I

8E

+0

4

4.1

3E

+0

4

4.3

4E

+0

4

2.3

7E

+0

4

3.4

2E

+0

4

3.3

9E

+0

4

3.0

7E

+0

4

3.9

6E

+0

4

3.5

1E

+0

4

1.3

4E

+0

4

Mg

N.

2.0

8E

+0

3

2.2

4E

+0

3

4.1

3E+

03

4.4

2E

+0

3

2.0

7E

+0

3

5.5

3E

+0

3

4.8

2E

+0

3

3.4

5E

+0

3

K

5.0

4E

+0

3

4.0

5E

+0

3

4.7

2E

+0

3

4.7

0E

+0

3

6.U

E+

03

3.2

3E

+0

3

3.1

3E

+0

3

4.7

5E

+0

3

3.6

4E

+0

3

3.8

8E

+0

3

3.1

3E

+0

3

1.6

7E

+0

3

K

"g

<0

.00

9

<0

.00

9

<0

.00

9

<0

.00

9

<0

.00

9

<0

.00

9

<0

.00

9

<0

.00

9

Hg

<0

.00

9

<0

.00

9

<0

.00

9

<0

.00

9

5.1

4E

+0

1

<0

.00

9

4.1

2E

+0

1

39

6E

+0

2

<0

.00

9

<0

.00

9

6.0

1E

+0

1

<0

.00

9

Hg

re

7.3

1E

+0

4

6.7

5E

+0

4

7.7

7E

+0

4

7.7

7E

+0

4

5.7

5E

+0

4

9.8

9E

+0

4

9.4

8E

+0

4

7.9

3E

+0

4

Fe

8.0

3E

+0

4

7.2

6E

+0

4

5.5

3E

+0

4

7.2

4E

+0

4

7.4

8E

+0

4

4.1

4E

+0

4

5.8

5E

+0

4

5.8

1E

+0

4

5.2

5E

+0

4

6.7

8E

+0

4

8.0

8E

+0

4

3.0

4E

+0

4

Fe

N N N N N N N N

, ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ _. ^ U J U J U J U J U J U J U J U J , ^' ' i f l o e - M M ' f - C N W

r> © i v> © — r i r i p i r i r i ^ ^ ^ 4

.25

E+

02

3.9

3E

+0

2

3.2

6E

+0

2

5.4

8E

+0

2

5.5

4E

+0

2

2.4

0E

+0

2

3.3

6E

+0

2

3.5

1E

+0

2

2.7

1E

+0

2

3.9

4E

+0

2

4.5

1E

+0

2

1.8

2E

+0

2

Cu

2.5

2E

+0

2

2.3

3E

+0

2

3.1

4E

+0

2

3.5

0E

+0

2

1.8

8E

+0

2

3.3

9E

+0

2

3.0

9E

+0

2

2.7

4E

+0

2

Cr

3.4

0E

+0

2

4.0

7E

+0

2

2.4

1E

+0

2

2.6

1E

+0

2

2.9

3E

+0

2

1.6

3E

+0

2

2.2

4E

+0

2

2.2

4E

+0

2

2.1

3E

+0

2

2.7

8E

+0

2

7.7

8E

+0

3

2.8

9E

+0

3

Cr

5 f f ° ¥ ¥ ¥ ¥ ¥ l- U J U J U J U J U J U J U J U J _ cj o o v i v i v i v i v i v i —

4.0

0E

+0

1

4.0

0E

+0

1

5.7

5E

+0

1

5.7

5E

+0

1

7.2

5E

+0

1

7.2

5E

+0

1

8.7

5E

+0

1

8.7

5E

+0

]

1.0

3E

+0

2

1.0

3E

+0

2

I.1

8E

+0

2

1.1

8E

+0

2

Dep

th

(cm

)

^ f i i c i N f S b r r r “ ■ } K r~' r i r i r i r i v i v i £

2 ^ 0 0 0 0 9 9 9 - 2■ ' U J U J U J U J U J U J U J U J ' ” '' ' t o o T f N r ' O n © ^

5.8

8E

-01

6.1

4E

-01

6.7

6E

-01

5.4

5E

-01

5.9

3E

-01

6.7

1E

-01

6.4

7E

-01

6.63

E

-01

8.5

2E

-01

6.6

0E

-01

6.1

5E

-01

2.0

0E

+0

0

Wt(

g)

• / ^ © © ^ ■ © ^ © e e j jvo o ' f i 'f i r r i ♦

r -

a

00

aaCw)

U- j( j

£ $ ? ? ? ? ?o o u a i u i u uo o co a « f i m V v - n o r r s

N M ( ? f l W <*1 W

¥ ¥ ¥ ¥ ¥ ¥ ¥ UJ UJ UJ W UJ UJ UJr~ r - r - o cn 'O ©o - r r r Or-J —; —' — —’ —’

? ? ? ? ? ? ? UJ UJ UJ LlJ UJ UJ UJ\C — «r> r - s o oo o e—i r-. p © r* o 'O

> r i r i r i r i ^ r i

r w n n « n r¥ ¥ ¥ ¥ ? ¥ ¥ UJ UJ UJ UJ UJ UJ UJT f n oo © r - <n r -m o ©_ n r f l Nf < K v i v i ©

? ? ? ? ? ? ?UJ UJ UJ UJ UU UJ UJv i ^ <N © v i — r>S- f - r r © © Tf- w-i

Tt v i *ri 'O © r - <ri

- N N N N N N

¥ ¥ ¥ ¥ ¥ ¥ ¥ UJ UL) UJ UJ UJ UJ UJ© r r n — f" \ 0 Or e v ^ n « oo i ^ f i r s o ici

( N N M N (N fS M

¥ ¥ ¥ ¥ ¥ ¥ ¥ UJ UJ UJ UJ UJ UJ UJo e — © — © © r~n n « 06 n m vr'i N r i f i 'O 'O (N

¥ ¥ ¥ ¥ ¥ ¥ ¥

N N <t ^ f i ^ h

© p p p p o p

r - \ c © i** r - Is* ©

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

? ?? ?:J U J U 1 U J O O O O

? ? ¥ ¥ ¥ ¥ ¥ ¥L U L U L U I U I U L U L U U J ^o v * » » . n « N O > r ~ r s' - tr-i » » r ' © 0 0 ' t r n m

? ? ? ? ? ? ? ? U J U J U J U J U J U J U J U J ^ ' rs — ^ ■ r ' - r - o o — «n «e m oo \0 o >o w «

U J U J U J U J U J U J U J U J ^^ ^ O O i r t ^ W N O Oia vo -c — o - "■,80 >0 K — "• •• 90 O'

¥ g O' O' O' © ©w w 8 8 s a 2

J S ^ I f ^ S Su u u u m u u m uM O « t e r i ^ o «© m en r- O' r s on o v v V r-' « wS vo

¥ ? ? ? ¥ ¥ ¥ ¥ U J U J U J U J U J U J U J U J ^ O w o e n C O ' ^ o '- 1 N t t ' C c e ^ —

N M M N N N N N? ¥ ¥ ¥ ¥ ¥ ¥ ? _ U J U J b J U J U U J U J U J r j - 5 > ' O 9 ' W W W 0 C v O' r-> r- — — m —« —— — - f ‘ N H (N r j

? ? f ? ? ? ? ? gL U L U L U L U L U L U L U L U . .l A m w ^ O O O O Q - s

gr~' r-’ K oo' m n n - q

$ 9 9 9 0 0 0 0 ^ U J t U L U L U L U l U l U l U ' ' - S r - ^ o o o — o i N N ' r » o * r ^ j _. P P iri «/i ©' i/*i «ri

o 0 « 0 0 0

¥ ?UJ UJ .

N O $ 9

© © © © <

n N n n M N M N M N -? ? ? ? ? ? ? ? ? ? ? c w u u u u l u l u l u l u l u l u J

S IN CS CS O r- © I O' S O O O O '

? ¥ ? ? ? ? ? ? ? 'L U L U L U L U L U L U L U L U L U LW ' f l n o n ' t o f f i ' r iO ' v i r i 0 ' 0e © f - r s © c

1 m m m r s <’ ¥ ¥ ¥ ¥ ? ...........

L U L U L U L U L U L U L U L U L U L U L U S l - © r - o N O ' ^ o o m © — 3 j n M O # i r t h N ^

no <s 00 K r»' 0© K — — r i no

+ + ¥ ¥ ? ¥ ? ? ¥ ? ? U J U J U J U J U J U J U J U J U J U J U J - ■ J ( N ' f - f f v O ' « K \ N O ' ^ V l r O M O > i O N » 0 0

? ? ? ? ? ? ¥ ¥ ¥ ¥ ¥ U u u u j u j u j b j i i j u j u u j i — • o © o o © r ’> r s r s © m © 1 ■1 o r - — r i © — — 0

s r i — <ri -J — r-’ — -© r i

NNMMN---NNN¥ ? ¥ ¥ ¥ ? ¥ ? ? ¥ ¥ ^ U J U J U J U J U J U J U J U J U J U J U J ' ^ ■- © o o r - O ' r n r ' r s o o N m

n i f t N O O ' ^ W ' i w N— — —' — r i rs’ >t - J i j n

? + ? ? “ “ uj UJ UJ u 3 ?oe h r 9^ J J •0 M ! < < 2K — Vt >T) > >■

m m m rs m r>? ? ¥ ¥ ? ? UJ UJ UJ UJ UJ UJM N - NO WN —00 0 o n o> 000 — —'

¥ ¥ ¥ ¥ ¥ ? ¥ ¥ ¥ ¥ ¥ ■" J fft [ ' ) UJ {_!_} fT) f'l *'1 tT1 *'1 '*1 O O O O i r i W i v ' i i r i ' O m c ' i - © © m t r i t - ' r s r s r - r - — — —

' - - £no 00 00 o o

— — —0 0 0 0 — 0UJUIUJuJUJUJUJUJaj — NO —

?3— — UJ ~- s ^ I

m mUJ UJ UJ UJ UJ UJ00 © rs © - “ ^O' —■ 08 <7> — 00

1 ¥ ¥ '

¥ ¥ ¥ ¥ ? ¥ ii] rn rr n l il l rilr- rs no no o oo ,NO rs tJ; — © r- ■i n x i o i r i o i nt

? ? ? ? ? ?UJ UJ UJ UJ UJ UJN 10 ^ N O' ..^ IA| n N N F> Vr i K r i N r*' no

¥ ¥ ¥ ¥ ¥ ¥' ‘ UJ UJ UJ UJ UJNO r- - t O

P 00 «>» —r 00 .

+ + , . . .LU UJ UJ UJ UJ UJ© © m O'* O' r iT O f S O 'O ^ .

¥ ¥ ¥ ? ? ¥ • = uj uj uj uj uj Uj *■o c g o o o

n » i w K K

8 o 8 S o o' LU m £ LU LU eS

= 2 “ “ S 5 r■rt- rs *t ^ ^0 — — w*i «0 P

UJ UJ UJ UJ UJ UJ3 3 3 3 3 3) __J - J _) - J J -J 2< < < < < < 2 > > > > > >

¥ ¥ ¥ ¥ ? ? Uj uj uj Uj uj Uj» nO N Nt ™ 4

m :. . . . ? ?Uj uj Uj Uj uj Ujo o n o ©T m rs © On ^r i Tf Tt v ^ r i ^

¥ ¥ ¥ ¥ ¥ ¥ Uj uj uj Uj uj Uj - • n O' ^ ON >0n :

O no NO 08 08

UJ UJ UJ UJ UJ UJ w= s

m mIrl Ml fil fr] f i ] l i ]1*1 ? O' <N 8 -*0 © 00 00 — 08 .

¥ ¥ ¥ ¥ ¥ ¥ LU LLj UJ LU Uj LU“ - 06 N On r t

r - r - On on r s .

. . . s r s r s r s rs ¥ ¥ ¥ ¥ ¥ ¥ UJ UJ UJ UJ LU UJ<o v> no r— “ “— © r-- p — ,r i r i i s r i r i r

¥ ¥ ¥ ¥ ¥ ¥ ■ = ■ UJ LU LU LU LU LU “ 1O O © O © O

>0 © o <o w]r i r s «ri tri r-’ P

? 9 9 9 9 9 _UJ UJ UJ UJ UJ UJ ’m— -N r s r i © O' s—*

' © O' © — —f ■** -Nt v i tri >

? “ “ + ? + ?LU 3 3 LU LU LU LU _ ^ < < ^ » < o o o S - ' > > « oe « oe

It! li] l»] fil f il 111 ]»N— — nO nO «T> — ©

- “ “ “ © </“(«ri © no oe r»

? ? ? ? ? ¥ ¥ IU LU LU LU LU LU LUN O n « ^ O N- T l 08 10 O- O'

' ? ? ® ^ ?I LU LU UJ UJ LU UJ

? ? ? ? ? ? ? L U L U L U L U L U L U L U Mn i f l N O f l M I N ^ y l v ' O ' O Q O N r ' — i

? ? ? ? ? ? III 111 flN ]ll HI UJrs © •— u-i © —W - 8 !A N r> - 6 .N N N r N n ’ n

¥ ? ? ? ? ? ? LU LU LU LU LU LU LUO' m « n © N ©6 - N « w -■ r ,

si r s r s r s wS r»’

— — r s — r s <m ¥ ? + ? ¥ ¥LU LU LU LU LU LUn ir> »n — »n ."t n - 9 O n [ ,

O' O' on O' r s r*

¥ ¥ ¥ ¥ ¥ ¥ ■ LU LU LU LU LU LU LU© © © © © © © -<o ir> 10 © © «n >nr i r s r s «ri «ri r- r- ’ ’

© © © © © — —; ¥ ¥ ¥ ¥ § ¥ S i S S S S l l g•• ‘i 4 n n ™ . • ?

J _J - J —' © t - >

¥ ? ¥ ¥ ¥ ¥ ¥ ¥ L U L U L U L U L U L U L U L U h s e r - N » « 0 ' . i — N o >o ^ N - <0 2 U oe r i rs' U - r i -

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ L U L U L U L U L U L U L U L U f - — © > O ' V > n r * 1 0 8 t N M O ' f t O ' O ' O '

? ? ? ? ? ? ? !frl 111 111 111 III 111 HI 111o o r - - ' © o e o o o ^ - > / ‘>’t O ' o e i r i r i ' i ' © 'r i r i f ^ ^ - r i r i r i ^ '

© © © © © © ©L U L U L U L U L U L U L U L U- n i r i o - n M O 'o c w f f ' - r j V N r i ^r i r s r i « o ’ r ^ © N O N d

? ? ? ? ? ? ? ? L U L U L U L U L U L U L U L U -*O ' V - i O ' r ' i r ' i - ' T r i r i ^ J

? ? ? $ ? ? ? ?- • LU LU LU UJ UJ LU LU

S rs r* r~ — © »r> . .vs p r ~ r~ — «

i r i / N N d r ~ P P P r ~

¥ ¥ ' ¥ ¥ ¥ ¥ ¥ ¥ ril it) til iiN tt! m h i m- ^ p r - -

r s n r s n r s r s r s n? ? ? ? ? ? ? ?* ' 'U UJ LU LU UJ LU UJ

t © — — © \Q 08' n r n r « r* I— r i r i r s rs r s c-i

? ? ? $ ? ? ? ? - = ■“ “ g g g g H H li n i n o o m i n o O .

9 9 9 9 9 9 9 9 _L U L U L U L U L U L U L U L U ^w N i f l n f f i r r ' i r i O S 'N N ' O M ' O N t ' t -r - ' r - ' i r i T j - w i i r i i r i i r i ^

¥ ¥ ¥ ? ? ? LU UJ LU UJ LU LUS r. no O' © ©— © 08 — ©

¥ ¥ ? ? ¥ ¥ LU LU LU LU LU LUrs r - 1? r - —<A r» r > © v

? ? ? ? ? ?UJ LU UJ UJ UJ LU© r- r s © r s 00— © — >n © n

? ¥ ¥ ¥ ¥ ¥ LU LU LU LU LU LU in NO © O' NO —

¥ ¥ ¥ ¥ ? ¥ LU LU LU LU LU LU— © to — 00 ©oe © m r- -

? ? ? ? ? ? LU LU LU UJ LU ' '

^ m © m «o r s wn

© m no t o ©

? ? ¥ ? ¥ ¥ lU LU LU LU l U LU‘ 3 S S S *

. . . s r s r s r s r s ? ¥ ¥ ¥ ¥ ¥ LU LU LU LU LU LUO n « © N-■ © © eo —

rs - h r s r s c s

¥ ¥ ¥ ¥ ¥ ¥ UJ LU LU LU LU LU© © © © © ©10 to © © «o 10

ti <ri iri r K

9 0 0 0 0i.'l U] rt] i n ri] t»i

I © © © <0

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

— — rs rs — —¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ T r o e r - s O f i o e f ' i O ' — i s o « ' n « m o — r " » n — o —— P O " 3 - 0 ' , * T C ' j r ' i r - ~ ' 4 t 0 0 P c " ' , ■*r r - — — fN K - iri O' ^ ^ - vi vi r i v iri *f oe s \

? ? f ? ¥ ? ¥ ? ? ¥ ? ¥ ?U U U U U U U U U O U J U U U l i J U U U l i J U J U U r A

N T f n fy » N Tf O '

r i ^ ‘O ' f ' I © Os V> t~>

v v v v v v v v v v v v v v v v v v v v v v

¥ ¥ 1 ’ ¥ ¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥UJ UJ UJ UJ UJ UJ til UJ f*v-ir-tO'O'CCOOr'i , ..................v ^ M N O ^ N O ; o e n i f l v i t >> - o o v i 9 i W « r j O O » ' vo’ —' ' i i — > 4 'C ' t ' - ■ — p p t*-* «r> v*i ^ H ^ ^

NN-NNNN-N«---i-HNfSMM----¥ ¥ ¥ ? ¥ ? ? ? ? ? ? ? ? ? ? ? ? ? ? ¥ ? ? .f t l 111 f i ] f t ] r i l f t l TtI ft3 f t l f r l Tt3 f t ] ( j ] f r l f i l f t ] f t l t i l f t l r i l f t l [ j j . O

S o o ^ - o c r - ^ j - r ' , v % ( N T t ^ — O N ' C ' n ( N C ' r ~ - r ~ - r ri O k n ' ’'r ’OO0'M--^-^NlO0C^ON-'O^NN»K N -- \C - - - — N N O' oci so O' iri »■ -' N r» f' >o «

¥ ¥ ¥ ¥ + ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ + ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥U U U U U U l U U U M U U U U J U U J U U U U J U l U y i^ N O M » « W 1 ^ ? ' A N M M a > - ' C 0 6 W h p - ' p 'M N h O N M M O ' O m O - 8 8 “ N 0 0 N m ' 0 ® n *

n « ’ - r i " » K w r i - - h o o « h w o> ^

C S f S ? M M M M W N M N < N ? N N

P oo O o ’ O ft» © O O Q © S © ©V ' ^ v v v v v v v v v p v v

- — - — M M - '¥ ¥ ¥ ¥ ¥ ¥ ¥ W UJ UJ UJ W UJ UJ

N n N M M N N N N n ( N N N M ( N N N N - - N r )¥ ? ¥ ¥ ¥ ¥ ¥ ? ? + ¥ ? ¥ ? ? ¥ ¥ ¥ ? ¥ ? ? f t l I I ] f t l f t ! r i l r i l r t l f t ] f r l Ir3 f t ] ( j j f r l f t3 f t l It ! m r i l f t l f i l r r l f r l I•— f f , o — r — S ' r - n O ' O o o a . T t a ' O O O — ' C — oo

- — o o © — « o o o o — —• o o T r ^ t ^ p o ^ r ' - r -pi V> 00 P» — — pi — —

? ¥ ? 1UJ UJ UJ UJ UJ

O' ^ N O - -J - - - ' t N N

o o p o o o o o o o o o o o o p p+ + + + + + + + + + + + + + + T +f i l f t ] f t l Trl f t l f r l Til f t l f i l f t l f t l f i l r h f t ] [^} f t l f r l ,1- ~ J- ' ' O r N r <r) p V ' > 0 0 — ^ - > / “) 0 C * OTt n ee - —; r- © p ■ “ *

— <n — © ' p i — r - i v i

N n N N M m N N N M N N N N N N N M N N N N¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ U U U U U J U U J U J U U U U U U U U J U U U J U U U J 7 foorioo — pr oOfnviO'orN — 00— p>r r--r~c -poo — — ’w m vl vd rf « — -« —i — ri

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥f t ] f t ) f t ] f t ] f i t f f i l f i l f i l [ J j [j_] f i ) [ j ) f | ] f t ] f t ] f r l f t ] f i ] f t ] 111 r i l .p p « n f n p f o P f S f N f ^ O ' p m r ~ - o O ' 3 , r ~ r ^ o o — O P '— • O P O ' O C f N P —■ O O O ' * — © ■ ^ • © f t ' t f ' t p — © f ^ f N C * !— iri — — p ~ r o — — f ^ p " — — p — m — — — — 00

' ¥ ¥ ' ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥( j j r t l i t l m ttI r t7 f r l f t l f t l f t l f t l r i l r i l rt> r t l f t ) r t l ft7 m r t l f t l f r lO O O O ' o ^ v i ' n i n v ' i n ' A ^ i A ^ ^ O Q ^ ' n W ' A s •* ■* ■- ■* -■ *-■ *- ■“- ^ o o — — r s <s ca

0 0 ^ ) 0 0 0 p 0 c ^ 0 0 0 0 0 0 0 0 0 0 0 0 ' 2 U J U J W U J U J U J U J u j t U a i U J U J U J U J U J U J U J U J U J U J U J s- ' oe r - ^ ^ r i - ■ v » \ © © © p © r i r ’> r M v ,‘3 0 0 > / ‘> C ' P i ,^ . i '

r<i *o v> c- — « / i « n p w " > r — t ' - o p r - p o o o ©

> ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥J U J U J U J L l J U J U J U J U J U J U J U J U J U J U J U J U J U Ji i n o i c a c u n i n N ' f l N M O N O o e i A T tUJ UJ UJ UJ UJ UJ U U U u u

a ' f ^ « A O P o e c ' M * r » ( N P < s o o o r ^ o o o w * » T T n i r ) p ^ ^ ' t P a e o » N ^ M i > M o e ( N O ' i - i

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ? ¥ ¥ ¥ L l J U J U J U J U J U J E J j U J U J U J U J U J U J U J U J b J U J U J U J <N P J— 00 — — ocriO'f*'. f'lOf'i- 50fN“ "JN pdO — r*f^ppooe— ««npp — r*> 00— tri « ia vi 'f K - vi pi *ri <n — in ri ri

N f S N N N f S P j N N N N l0 0 0 0 0 0 0 0 0 o o <v v v v v v v v v v v

ri (N (M N in N O O O O O OV V V V V V

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ U U l U U U J U l U U U U J U J U l U U J U b J U U J U >00 — r--TfOf oooN M N ' C P f f ' O ' ^ i “ “ ■*

JSCS-- — — — —■ — N N N N “ “ — C* <N •— <N¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ UUJUUJUUJUUJUUUUUUaJULUUUJ o c f - - 0 ' ' r ' j < N O ,> — vt — p p r ^ . r - - —< © f * i m o o © N D 0 « ' O - - T f T f 0 \ - ^ ^ N r i p . q - n Mm rs’ - K a oe' « ri - - m ri ci m

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥? * ” ..........................................f t l r t] i n f t ] r r l f r l f t l r t l i t ] i t l n l f t l r t l r t l t i l f r l t i l r i l mJ £ S £! iP — _ - — - - * ^ . _ -

O' 00 oe — r- © cm

NNNNMNM?(N w n r i n r ) r i M | T j W

¥ ¥ ¥ ¥ ¥ ¥ C: ¥ ¥ g ¥ ? ¥

M N ( S N N N N N N N N ( N ( N ( S N N N N N¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥U U U U J b J U U J U U t t l U U W U U U W P J Uo c v t a o o o r - m v - i O ' r ' i — r N O f N ' o v t o r ' - p c M

, , , n N m M N¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥

U U U i U J U U U U U U U W U J U U U U t J j U c M o o p O s o r - C ' F - r M P — r - - r N O < N P o e p — _ ^ _ ._ t n m —* — <*%c m p p

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ft] ft] ti] ti] ft] ft] fi] fil ftl rtl ftl ril rtl rrl til ft] itl rtl lil - o p o o r - o p o o ^ - o ^ t p — f ^ o o o ^ t o o o o O ' P < yi \ © ,' t O P r ' > P O < N r N * t , f<i r - *

^ ^ N v i i r t ^ n p i S i A ' b ' r i ' t M / ' O r ' a ^

. . . ~ i < N < N r * i c i m f n m m C ' i C ' i C M C M < r > r M f O f ' i C M ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ U J U J U J U J U J U J O J U J U J U J U J U J U J U U U i U J U U U J - ' - O ' T i h h ' t - O O ' O ' O i r t ' t - O O O ' P V r t — o o ' r - r ' i c - J O ' V ' t r - f N C ' i o o o o P C ' j r - - — r - o eS' - N P N ■ — — 00 f - I

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ? ¥ ¥ . . U U J U J U U L U t J U U U U U t U U U U U U 0 0 ' ^ > w%* A> Aw%, i ‘ i P P ' o » r i ,o r ^ « ^ ) o e o o o o t n « o ( N r s P ' r v- r 4 ( N r ~ r ~ - f S < s r ' r ~ — — n n m ' n n ri ri iri vi >o 'fii m cc' O' ffl «'-'*•-*■

p ? © p p o p © 9 9 9 9 9 9 9 9 91 i - f i . t t T i T T T T T T T T T +U U U U U J L U U U U U U U U J U U U U U U P ( N m P - J P < N o e — > ^ o o p — p p r ~ ^ » 9 - o“ — . r t 00 N h; W - P O “ « O N ^ Is; «I r' w*» p p 00 p r’ p" K p 00 1 i'' p —

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.12

E-0

1 1.

38E

+02

6.01

E+0

2 6.

40E

+02

5.80

E+0

2 5.

16E

+02

<0.3

2 2.

45E

+04

4.37

E+0

2 2.

94E

+01

<0

.213

8.

32E

+OI

5.92

E+

017.

09E

-01

1.48

E+0

2 1.

62E

+03

6.84

E+0

2 9.

09E

+02

9.25

E+0

2 <0

.32

1.94

E+0

4 1.

33E

+02

6.15

E+

01

<0.2

13

1.62

E+0

2 7.

66E

+01

7.08

E-0

1 1.

48E

+02

1.99

E+0

3 5.

91E

+02

6.79

E+0

2 7.

92E

+02

6.46

E+

01

M0E

+O4

1.36

E+0

2 5.

70E

+01

<0

.213

7.

32E

+01

6.99

E+

018.

01E

-01

1.63

E+0

2 5.

43E

+02

1.62

E+0

2 6.

96E

+02

4.64

E+

01

<0.3

2 4.

08E

+03

<0.1

67

1.51

E+0

1 <0

.213

7.

95E

+01

8.54

E+

01

— N M N N N M N N

? ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥— <n so sp> © r-j »n ^ r* — o o —oo — <n

¥ ¥ ¥ ¥ ¥ ¥ ¥ + ¥O I U U U U U J U U U ^( N o e ^ O ' O N M ' C - 7 '

i m r>*» t+> c*i

¥ ? ¥ ? ? ¥ ¥ ¥ ? U J U J U J U J U J U J U J U J U J . «/“> r -- s o ^ < N C ' i © 0 ' < N M N M ' C r ' j o r ' M - Tf' rt- —' — — —‘ no r i

? ? ? ¥ ¥ ¥ ¥ ¥ ¥ U J U J U J U J U J U J U J U J U J ' — o r ^ r ' C s O ' s o o r s i - M - - * 0 ' C O O ^ N K ' b K r i ( s n n - ' t '

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥W W U U U J U U J U J U J vjN - r s ^ c e o o r f m w

- f' - « oe o» <fi - vi

? ? ¥ ¥ ? ? ? ¥ ¥ ¥ ¥L U U J U J U J U J U J U J U J U J U J U J , *- r - M r i o n c o ' c m O ' t

irt \ 0 v i

U J U U U J U U U U U U U ^ n - O ' r ' r ' v o c o ^ ' O w r - ^N h n r t Msfl t s r i s£» i

SO 00 sp 00 I« ‘O 4 \ 0 >0 1

? <N ? .T. r o .T«

—- r ^ o V V c-4 V t--

(N N N - — — CsJ —? ? ? ? : ? ? ? ?U U J U J U N U l i J U J U f 1• O o o r - r - o ' m r - i r ' r rf N O r ' y r i N N O ;■rt- d d rl *n «/-> sd sd

N N M N N N N n N¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥u j u a u j u j u j w u j u j u j a .OO-rfspOsOoOOOOCfN9 s o e — o o s o s o o — oo

N(NfS----M-¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ fii iri [ h fi i fi i r n m rii m ; M m o o h O C ^ s O < r p ' m sf o so in p oe a> n m «r! <1 oo oe vi O'

n M M N N N N M M¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥U U U U J U I U I U W U 7U1 - — N ^ i / S M ' A s O ^— o r s i o o o o s t ~ - ^ - r ~ - -i ■« - d «’ tfi d - ■■

MNNNNNNNN C¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ! U J U J U J U J U J U J U J U J U J . ^

r - S P O' 1

~ < 3

0 9 0 8 S 0 0 S 9 -U U U l u j U j U l U I U J U wg N © < N © i r \ f N O C V “i f ' ) —

n ' 0 - o N v l 5oe O' os ' t ' C

N N N N N N N < N N ( S No o o o 0 o p o 0 o o’V V V V V V V V V V V

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥u u u a i u u j u u u u u“ sflNNM-O'M'O-O « O ^ « oe so O ^ nrt sd r-’ so — *n tri v> —

r-> © r - ©sO + so + ,— lij — t il UJ UJ — — U) — — *°

? ? ? ? ? ? ? ? ? ? ? U J U J U U U U U U J U J U J U J m u - s o s c ) - ^ - o e « n — r - o c r - — s o o o w i O O O s c i « n r - o s o sd d l*»’ — — O' d 00’ 00 00' —

— Cs|I N N (N r s N

N M M N N N N N M N -¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ „ U J U J U U U U J b j l i j L U U U r o o O ' « n s o © o o m — s n r - ~ - W ' O O ' O M h ^ P l M O r m ri ri ia d id - 01

r t N N M N N N ^ f S N N ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ U J U J U J U J U J U J U J U J U J U J U J r - ' i r ' j s o r ^ o r - ' r j m r - f - r s i ONM'OPri'ONrsJ — 00

d « i O N O ' N « 0 ' d O ' -

N N N f S N N N I N M M N¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ b J U U U l U U U U U J U U ? r-* O' 00 ■«¥ *n v~i — rt h o N n N O / i s e o N - t - — ■ - ^ d ' d d d d r i d d T r ' —

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ L U Q J U J U J U J U J U J U J U J U J W . N-sONNOviOMON O' - * - - - N K 00 - N

? ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ + U J U J L U U J U J U J U J U J U J U J U J © o m ^ ' i A » r > « n « / “t > ^ i W ) © * s « ‘O N N h h N N h Ifl g. •» ri n n n vi d sdsd r- q

9 9 0 0 9 9 0 0 0 9 U U U U U U u U U U u — o m - N « 0 * 0 ' N O - i ;

' f O ' W O ' ^ i Z o e m O ' - . Js o d d d ^ d . J v i d d d

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥U U U U U U U U U U L J U U J U J U U U j U U U U l i J U J ^

(N »0 > O IT) N r , n co M m <N O ' r - © s : ; 3 ii r i ' 0 ' O i r > r ‘ s e f * s o h i A i ^ o e s o v t p ' n ^ s o - < ^ i n —

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ri> rt' fti f<T fn ^ fti f»< tx) [ll Cl] f*1 fM f*l fM *'1 f' l l'*l f'* fMs D o o o s r - Q s r - o — r - r - O ' - t - ' t — — r s o o s < / - s — O s O s m so *¥ — r- 0 os © 00 00 v — -*■» — >n psj ^ M 06 08 —

c"! r*i <*■> <N M N M N N N N ( N N P < < S N < S M M N N N N N N M© d d © d d d © o ’ o ’ © © o ’ d © d d d d © © d o ’v v v v v v v v v v v v v V v v v v v v v v v

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ + ¥ ¥ tti m rri fti ti? fi> rii fii f<l rn rii rii rn rii tt' til rii ni rii rii rii til riir ' j s c - < ± o o o c < N m f ' > 0 ' r ^ r ' ' > / - ' 0 ' r - - © r - o c < N o < N > / ~ , t - ' ' f l - r ' V ' N n ( N l f l i A ^ 0 9 O O O ' ' n N l f l 8 6 < t 0 0 N n N ( S V >

d d * r i so d ^ T cm «r> so «ri d m s j ' s t N > t sd cm

— — CN CM — — — — (N CN CN — — — — — — fs <N —, ¥ ¥ £ ¥ ? ? ¥ + ¥ ¥ £ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ? ¥ ¥ ¥ .

W W W - U J U J U J U J U J U J U J — U U U J L J b J U J U U U J U U ^ “ ^ c m - O ' ^ s - o o o — t ^ w - i e 3 f ^ > f s i o o O ' ^ r > — oe © o c i ^

^ N ^ O O q e e N - N O y - ' O r i M O ' r i O O ' ^ ^ C d so - « d o< h m - d - so d r i T f r i - rs' »i

r-> • n n n ' t t n n M n n n n m¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥0 0 0 0 0 0 0 ..........................................

U U U a i U U U U U J t U U J U J U U U J U U u J b J U U U M - " S - i ^ r s — r ^ i O > ^ O f ^ ) > A O — ( N o c o r ^ r - ' O — m * T f ' i — O ' O ' t r ' ^ ^ r s i ' ^ N O f ' f N f ^ r ' O ^ i N T r

00 — 0 ' h ' K d r s i ^ f ' > d s d v i O ' - — d d oe 00 d 00 — d

N ? N M N N M N ?

o ’ d os o o d o 0 o S' o ’V V S V V V V V V ^ V

(N(N(NfS(N?N(N(N(SN?

N n N N N N N N N n N N N N N N N N N - - N “¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ „u i a i u u j u u u u u u j u i u i i i u i i j u u u i u j u u u u f

N N m M P ' n n n m n M M N N N N n m n - n M¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥

U J U U U l i l U J U J U J U U U U U U J U U l l l U U U U U U Q .“ ' 0 « r j o o ^ r ^ o o ^ O ' 0 ' 0 0 ' A j < ^ « N o r < o r ^ w % o e » ^ 0 ' ON' f M n s f i r s r j ^ r , o n f N « M n o o t ' f N ' O e « i n hO s s O ^ — — — — — — — O' ■ I*- «o *r> r s — 00 -

N N N I S M M N N M M N M N N M N N M N N N N N¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ U b J U J U J U J U U U m U U L i J U J U U J U U U U U J U J U J U ' j r O N n ^ o o N O N O i f t ^ s o - O ' r ~ f M 0 0 O ' O ' * n — 1/1 n t O' O O' CO 't O so O h « 06 - N tri N

^ ^ n r i Tf' n m s j n n N v*i sd <d r i w n - sd o« «

? ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥U U U U U J U U J U U U U U U U U U J U U U U U U U '« q o c — r * - ><NOs c ' i — t - ' t a s — — © O ' - * * — ( N r - ' r - m r - 'o o ^ * o r ~ - m ' / ^ o o < N » s t > r ' r ^ > ^ ' * A i O f N f s } < N m ^ f r ^ v s— O' <s — «dod — oioo — sd

¥ + ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥U J U l L U U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J L l J U J U J U J

n t ' cj r - h w h i o m O ' O ' ^ j e o B O ' O ' O ' ^ — |

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 'U U U U t t l U U U U U U J M U U U U U U l U u U J U J U ' — — w ^ r ^ ' 0 ^ , r ^ ,0 0 ' ^ , « A < S O ' s O ^ » 0 ' 0 0 ' 0 ^ f N O ^ . o 5s 'O o 00 r- pm ,dK sd fs d is - 00 d d '

? ? ?UJ UJ UJ

— — ps|

¥ ¥ ¥ UJ W UJ

? ? ?

? ? ? UJ UJ UJ

??? W UJ UJ

S a ?

? ? ? UJ UJ UJ M O' s ? n w n

<N (N (N¥ ¥ ¥ UJ UJ UJ

r-4 — fM¥ ¥ ¥ UJ UJ UJCN — © r- O' 00 «N d —

w m m ¥ ¥ ¥ UJ b j UJn s— «ri r4

+ ? ¥ UJ UJ UJ O O V* - 1/1 fS

UJ UJ UJ3 8 Sd — K

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<N — — <N .? ¥ ¥ ? ? ¥ ? ? ? ? ? ¥ ? ¥ ¥ ¥ ? ? ?u u u u ^ u u i i u u u j u u j u u u u u u j i j j u j ;

' — - - - - - ' • O tF f

N - N N N P 'J —i — — © — f ' l —■i N - — fNC-i¥ ¥ ¥ ¥ ¥ £ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ U J U J L l J U J U J © U J U J U J C i J U J U J U J U J U J U J U J U J U J n O ' W O ' O o N r i i O i n N M « » t » n M X © r - —■c s i «— \ ? © ' © v ' r ' j © ' © © ^ ( N O © r - ' © r ' j K — — — »t 't is ri Tt ia - n - \b -

N N N N N N N M N N N N N N N N f S N N© q © q p © o ’ © o ’ © © © © © p © o ' o ' dv v v v v v v v v v v v v v v v v v v

o ?¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥

U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J co r*i © p r**> o r-. so ©s —' « >e n o m ia d d d d d d r-’ d r**' f- m \6 «S ri ri d d

— (S) — <S| — <S — - N N - (N — — — — —. —¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ „u u u u u u u u J u u u a j t i J U L i j u u u i u 4r» — n n a -■ ir> —i n N M - M ^ V O C 0 O O ' t M » O ' ^ « - Nh ’ - w w - w o d o e ' C > - ’ - ' b M ' c ^ : ' o r ‘ ' e i f t

¥ ¥ ? ? ? ? ? + + + ? + + ? ? ? ? ? ? U U U J U U U l U U U U U J U U U U U U U J l i J M — r ^ s o ' ^ > ' o r ^ w ^ r % o e — e o ^ N O O s f s — v o —‘ O'r J - h O X - N ' O - M O e - N O M ' J - N ' O ce ^ 96 06 o>’ - O' O' 09 -< •" CO " ’ N N <s

I N (S N N I ¥ ?<n rsi? 5 * 1

o o o © © o oV V V V V V V o 00 so V <t i s

N fS n fS (N rs N N IN N N >1 M M — — — s -«¥ ¥ ¥ ¥ ¥ ¥ £ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ „ U U l U U U U J N U U U U l i J U l U U U U U U f 0 '0 < s i m r ^ ' 0 < - j O ' f n Q n O ' < N r ~ ' O f ^ f S f ^ — *** n/i'O’t'tawO'N'C'^ n ’ t ' f ifl >}

n n W M N N M M N N ...........................¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥U J U L U U U U U U J U U l i J U U U U U a J U U J .■ < r i O s o o ' O t ^ » r i r ~ - — — v ^ c s i f N T f — o r ^ s o ^~ — ~ - M - (SJ -J

— •— — O ' ■** 1 . r - s© — — O ' oo oo

NNNNNNnNNNNNMMMNNNN¥ ? ? ? ? ? ¥ ? ? ? ? ? ? ? ? ? ? ¥ ?U J U J U J L U U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J ^S 00 — I r t l N M N O e h ^ - f n O ^ ^ 0 0 « / 1 f - 4 —' *-Tt m so so <n ^ r~_ vi o ^ " —- —d d d d d d no d^d d

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ U U I U U U U J U U U U U U U U J U U U J U U . ' 0 0 ' ^ 0 ' 0 ^ « N N W O i n N » 0 - - 9 r ' ' r ~ r ~ - o o r - ~ r ^ o o f s j v ' — r ~ - o o o o o o o < 7 s d —"

¥ ¥ ? ? ? ¥ ¥ ? ? ? ? ¥ ? ? ¥ ¥ ? ? ¥ » U J U U U U U J L y U U U U U : u J U U J U J U J U J U r i r t i / ' i o ^ ' ^ ^ l |n O ' A i r i m r o o o M n n o c » 5 v N h h N N h; h N O N N O O - - M n V N W « ' C NO K h O' O' O' "

............................... 9 9 9 9 9 9 9 9 9 mU U J U J U J U U U U U U U J U U I U U U J U U U ^ r ~ o o o o ' — s o - ^ - o o T t ^ o s o ^ — — r - r - - r' © © 0 ' c ‘i f ' J © o o ^ , c’> c " i s o r J ^ » ‘ r - f ' i ' * r s O © T f ^ v i v e ^ S K K w >c K » ^ oe f s K oe K « o o «

¥ ¥ ? ¥ ? ? ¥ ?U J U J U J U J U J U J U J U J , *r s f s i » r t i n O ' O i A s© -*r © © r-_ — r r sot* d d d d d d

o o o o o o o c + + + + +- + + HU U U U J I U U U U ^ r ' h s ' O r - ^ O ' O O r ^ i ^ - ' ^ » r ; O 00 IT) ve MK w - — r i m —

NNMNNNNINo d d

V V V V

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥U J U J U J U J U J t U U J U J ,* N O ' f ^ o ' O r s s O ( v i * M ' O ^ i n v© •O

d irf d d ^ oo K if!

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ „U J U J U J U J U J U J U J U J ! ®

N Os OS ' O M M Ttr»‘ d K ^ - oi d

. . r i m r*> t*i t*> r*¥ ¥ ¥ ¥ ¥ ¥ ¥ + u j u j t u u j u j u j u j u j t / jM r ' n o e ' t O ' f ' i ' ?

O' — d P") f - ©V ^ v i n '0 v i i n

o o o o o o ©V V V V V V V

M N M M M M M M¥ ? ¥ ? ? ¥ ? ? . l i l U U U J U l U U b i r m i ^ T f f N — r - —

o s i n ^ r t s o r - oo ■£) ^ d s d ' t K v o >n

(N M N M (? ( 6 M

U J U J U J U J U J U J U J U J o - ' t ( S h « 0 0 ' « 0 ' —i O s —. — r ^ r s J T f r ^ i — O s s d r ^ s d * — —• —

M N M M M N M r s l¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ U J U J U J U J U J U J U J U J ' ■ M m m O' t s a e

3; m » n 06 ^ «r i m ‘ n ' m N M m r i

N N W M M M n n¥ ¥ ¥ ? ? ¥ ? ? , U J U J U J U J U J U J U J U J - ? © ' 0 '0 0 ' m o o r ~ ' 0 ^ n h « oo < w n N O ' O ' d d o d d —

§ 5 j f S 3 S |U J U J U J U J U J U J U J U J ^© © i / ^ m v " » « n « n * n ' 5■ - iri n n f s f s f s D. S f ^ N N n r i i n ' i r f Q

O O O O O O O - ^U J U J U J U J U J U J U J U J '—’ ^ o o ^ N h ' D M O ' i ; «*»0 ' 0 ' « » © ^ 0 ' 0 0 ^ sd ' b vi > c V r i ^

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ U J U J U J U J U J U J U J U J U J U J U J U J ^ ^ ( N ' O ’r - ^ o . ' o ^ T j - © — i n ^ J » O - 1 n ' t iri O; n 1 ; 06 O',O VO vi O SO M ^ t t IA "

¥ ¥ ¥ ? ¥ ¥ ¥ ? ¥ ¥ ¥ ¥p j u j u j u j u j u j u j u j u j u j u j u j ^;—-i i- i ■* i n r-» ■* m ns m% m ins m

M N N N N N I N N N N N No d d o © d d o" d o ' d dv V V V V v v v v v v v

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ „ U J U J U J U J U J U J U J U J U J U J U J U J . y n-S6(N0'-O'(7'O'O'‘ANl/J O N S Tf 16 M Od so •*¥ d so d •*t, d d d ^ t d

f s r s — — - ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ „ U J U J C D U J U J U J U J U J U J U J U J U J ; ® m o o - t t f ^ r s - s o Q m o e o o r s o o V3 O O' 5\ O n 4 Oi N- - « K 1 - m’ oo o oo iri N

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥U l U J U J U J U J U J U J U J U J U J U J U J c / ih O O O O X » n N 5 0 V ‘T 7 'O l N M - M O ' ^ ' O ' D ’t N ' AO s o e d d o o T t - d d d d d d

l D N N ? n N N n M N

! o d o oo d o d o o ' o orfV V V ^ V V V V V V

N ( N N N ( N N r s | ( N ( S N N N? ¥ ¥ + ? ? ¥ ? ? ? ? ¥ . U J U J U J U J U J U J U J U J U J U J U J U J £ ( N f s o r - ^ s o o c f ^ s p — a s o s 0- o o © m r - » r ' i 6' » v ‘i ^ t o o o T f r "S© SO • T so M «T V '

M M N M M N M n N M n M¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥u j u j u j u j u j u j u j u j u j u j u j u j a .r - ' . * / " i O o o c s i u - i © 0 ' © o r - . r - -- - - i r s n / i t s - . q N ' O N ^

— oo —! —! ^ - oo oi « pi

<n <n — pj¥ ¥ ¥ ¥ ¥ ¥ ¥ UJ UJ UJ UJ UJ UJ UJ^ t CO a f6 ^ oN N CO vfl O 00 «-■ - iri f s f s K -

¥ ¥ ¥ ? ? ¥ ? UJ UJ UJ UJ UJ UJ UJfp sO <N r - — m ©sO' 04 «rii (N s© p ©r i r i r i r i • • d i / i

r i c**> m r i ro r<>N <S N N N N Mo d o d d d d

? ? ? ? ? ? ? UJ UJ UJ UJ UJ UJ UJ© ^ 00 — ^ s© fS- - f* O ‘ t M Spd d d d d d d

? ¥ ¥ ? ¥ ? ? UJ UJ UJ UJ UJ UJ UJO 00 sO fN 00 SO V~ih- o o ' t i n m nd d d d O' - - d

? ? ? ? ? ¥ ¥ UJ UJ UJ UJ UJ UJ UJr - r - v*i Tt O' O' O'v*> r» ■/> o pi r»> <s

d d — — O' oo'

M N M ? ? N 9

? ? ? g 2 9 ;

^ N N M N N N¥ ¥ ? ? + ¥ ¥ UJ UJ UJ UJ UJ UJ UJ- m vi r - o r»

— — m psi ood f" d iri d <N

N N (N N N M M? 0 O O O O

+ + + + +UJ UJ UJ UJ UJ UJ UJr o r s oo O' r** i o r io — rsj <n v*> O OO' O' O' — —

N t S N N ^ N N N N N M M¥ ¥ ¥ ¥ ¥ ¥ ¥ ? ? ¥ + + U J U J U J U J U J U J U J U J U J U J U I U J 7 U4 UJI M — ( N n - ' A O O m ' O - ' O ' T ^ ' T r - 1 . _ _oo n in O ^ oo ^ v w - N ift —> o>_ r ^ i O O s O n Tt n’ ir| n -- n n n n ^ - <n ^ vi t-*’ f*-! d

n n n i s n M n n n n n N¥ ? ¥ ? ¥ ¥ ¥ ? ? + ¥ ¥U J U J U J U J U J U J U J U J U J U J U J U J '

? ? ? ¥ ? ? ¥ ¥ ? ¥ ¥U J U J U J U J U J U J U J U J U J U J U J U J n -

8^ i r t i f t i f t i f t i r t < n M o e o o ? r ^ r - r N r - j r - r - o o — — d d d r ^ r ^ c o o o - - — — —

9 9 9 9 9 9 9 9 9 9 9 ? 9U J U J U J U J U J U J U J U J U J U J U J U J ' ^ M ^ ' C n M - h n N O w o s ' oo •— tj- o r-s Tf © «o d — o ^v*i d d d d d d d oo d d <>4

, . N N N N M N¥ ¥ ¥ ¥ ? ¥ ¥ UJ UJ UJ UJ UJ UJ UJ

. . ? ¥ ? ¥ ¥UJ UJ UJ UJ UJ UJ UJO rt Ifl N h 06 n — r - O' Tf o nf s - • r i r i - - -

¥ ¥ ¥ ¥ ¥ ¥ ¥ UJ UJ UJ UJ UJ UJ UJvi ifi Vi irt « ift i nr - r - fN r - u-,r i r i » ^ d d K

9 9 9 9 9 9 9UJ UJ UJ UJ UJ UJ UJ

^ r*) s© Os ^ —psj s© © — .K d o r - r - r " d

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥

? ¥ ¥ ? ¥ ¥ ¥ ?Uj Uj UIUJUi Uj Ui LUn f ' — r'oersscr', oe~p'Oo©p'^r-_ Ovr^Ovve—Jvi^-'vi

I N M M 04 (

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥UJUJUJUJUJUJUJUJgiN'Coor^^'OM

¥ ? ¥ ¥ ¥ ¥ ¥ ! UJ UJ U) UJ UJ UJ UJ •ifl # t - o <e n i^ Vi •© IN — P) ©t* i — _J on >©' —« •*

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥UJUJUJLUUJUJLULlI oO

P) ? ?£ UJ UJ0 5 0 V vC v

© O © ® f >? S

M N N r tN n M n? ¥ ¥ ¥ ¥ ¥ ¥ ¥UJUJUJUJUIL2JUJUJ0.

NNMNNNNNo ? ? o o ¥ ¥ ?UJUJUJUJUJUJUJUJ'^ f f o ^ ’tr'vCoo

© © © © © o o ©+ 4- + -T + + + “F UJUJUJUJUJUJUJUJ-? ( S ' C - ^ M ’tNor - ' dsd-oi i c iAr

? © © © © © © S § + + + + + + + “

UJUJUJUJUJUJUJUJ vvv§v§\$iv!§ g

9 9 0 9 0 0 0 0 - 2UJUJUJUJUJUJUJUJ' — p- rp © 00 — * — z © PI PI 00 ©

? f f ? f ? ? ? § ? ¥fil 111 ft) fil It I til fil fil frl rr > fil XTiMNm — N i>c«ri«'plo r ' h - ' o r ' o o ^ o o ^ K cJ'CkSO'--- — ri — M

? f ? ? f ? ? § ? ? ?UJUJUJUJUJUJUJUJUJUJUJc- * r 4 n « ' C - ^ i r t ' 0 ^ o

^ f t n i n ' t - p j ' O N ^

¥ ¥ ¥ ¥ ¥ ¥ ¥ f ? ? ?LUUJLULUUJUJUJUJUJLULU y vi — p- © e© ■«» p~ — pi v

S'C'nxr'h-'oo — — n

— pi pi —© © © © p. r- <+ T T + ®

UJ UJ UJ UJ UJ — — tN -<f O N M O O •- n 9 ^ - t 9 V 1

¥ ¥ ? ¥ ¥ ¥ UJ U UJ UJ UJ ur-- en r-- p~ vp r~X M Ov ^ ® «PI vi PI PI >« v©

pi pi — — — pi ¥ ¥ ¥ ¥ ¥ ¥ UJ UJ UJ UJ UJ UJ — p- pi © m —

¥ ¥ ¥ ¥ ¥ ¥ ^ UJ UJ UJ U u

? ? ? ------------9 © ujJjujWWW£ £ - o J § 2 p 3 3 j - * - - "» - ^ - < < < "■

> > >

5 5 2 5 5 5 5 5 5 5 5UJUJUJLULUUJUJLUUJUJUJco — r jvovnv^inoooxo' v o n o v v — p» — r ~ © v vO' p i v i r p — v©v f i i - H- - - J p i

! © © © © <v v © v v v v

© © + +UJ UJ

I PI PI —¥ ? UJ UJ

¥ 2 ? :UJ N UJ I O o <~© v ‘pi v© v —

? ? ¥ ? ? ¥ ¥ ¥ ¥ ¥ ¥aiujujujujujujujujujuje.PI— V)P|rr00P»©00-

' t - -> P4 ' O >C "9- r-' - v -

. . . . n n M — •- - M N N ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ UJUJUJUJUJUJUJUJUJUJUJ'-?— •....................... - — V 40 ^ +•

— Vi O'© vO Vi •v pi — • 1 ^ — r-> —

. , .j n n N N N N n N N¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥Hi Hi frl Iri Itl III 111 ft) III 111 111vOPi©©p--rppi©pi©©Z*• --ooa>oopivo©p~p

©vbr**iPIPirt-Jv© —

© o o © © © © © © © ©+ + + +-TT + + + + + — U J U J U J U J U J U J U J U J U J U J U J x - ^ m ^

© © oujujujujiiil jt ljujujujw“©\c© — p-p-p-v©oov©-£ r^piopivop-p-r-. — ©r-;J p - © o o o o ’ - J - J — - J r - ' - J - J

¥ ¥ ¥ ¥ ¥ ¥ UJ UJ UJ UJ UJ UJp- p- © — — ©© pi © P- r»i ©*j> © pJ vi ©’ oo

© o o o © ©V V V V V VN N f4 N N N© © ©+ + +UJ UJ UJ

? ¥ ‘ UJ UJ (

m N N M M¥ ¥ ¥ ¥ ¥ ¥ fr| ft I Itl til fil li— © Pi © © Pi-«■ V© © — © I

- vi -j -j

¥ ¥ ¥ ¥ ¥ ¥UJ UJ UJ UJ UJ UJoo © vi v© © v© _© v so pi © r-

¥ ¥ ¥ ¥ ¥ ¥ UJ UJ UJ UJ UJ UJ© — V © — .1 00 p*

I — ~J ^

¥ ¥ ¥ ¥ ¥ ¥ = ■ UJ UJ UJ UJ UJ UJ c® 3 8 8 S $

8 0 8 8 0 c uj y uj uj ^ ”3

“1 W N 3 3 y■. n “ j;J —1 —‘ 'S ' «i #

? © © © © ©Hr + + + +UJ UJ UJ UJ UJ UJ

¥ ¥ ¥ ¥ ¥ ¥ UJ UJ UJ UJ UJ UJ n S ? 8 n n ;

N N N N N N ? ? ? ? ? ?

? ? ? ? ? ? UJ UJ UJ UJ UJ UJ

? ?W w « w £ “D 3 j 9- o 3' J J N M J -

< < * * < ‘> > >

M M M <*)? © © © ©

+ + 4- -rUJ UJ UJ UJ UJ UJ -f) $ X - ^

O fN *-■_ © cri 1" pJ pJ \£>

© © © © © <“ V V V V 1

¥ ? ? ¥ ? ? ? UJ UJ UJ UJ UJ UJ UJ

¥ ? ? ? ? ? ?UJ UJ UJ UJ UJ UJ UJ*1 (H N ift rt V rtN O; Vj 00 n « q jvi SO *9“ vi \© P» vi

? ? ? ? ? ? ?

? ¥ ¥ ¥ ¥ ¥ ¥fti frl trl fli fTl r-ilM P - » p n r°®. -r — « -: ^ ^ &- N N N M N n

1 hM kM U4=> 3 D r - ) J J J 00

: < < < - > > >

? ? ? ? ? ? ? ? UJUJUJUJUJUJUJUJ - > t M © n - H X N ©p»>o — P~©©©

- N N N - f H — (N? ? ? ? ? ? ? ? UJUJUJUJUJUJUJUJ ©©vi — rN\G>f*if-~ ff>"Nnoon>CN © fN — — 00 -J pJ —

: ? ? ? ¥ ¥ ? ¥

? ? ¥ ¥ ? ? ? ¥UJUJUJUJUJUJUJUJ

? --------------5 5 f 5 - 5 § ?UJ w w UJ UJ UJ UJ ujujujujEIujujujvc^>-)3r-~ooJ5 ©©'i- — -J©2 ©

¥ ? ? ' . . . .UJ U] UJ Li] UJ UJ UJ - — — ©

9 <0 •- — © (

? ? UJ UJ

? ¥ ■ UJ UJ [

o 'C 00 ec 1

^ n M P4 N (N ¥ ¥ ¥ ¥ ¥ ¥ UJ UJ UJ tij UJ UJ— — «n — —* N rn O N IN I

•—i <c © vi ©

s * ;N N N N I

¥ ¥ ¥ ¥ ¥ ¥ in n 1 rii Ml nl rt 1'•I W © >o 5■1 © 00 Vi © g

5 5 5 5 5 5 .ill rii rii rii ill I■1 O O g g O O >

©OOO© ©U) UJ UJ uj U) UJ ‘H• * "> N n O © w

- iO © © — V-

> © © 0 0- v V V V

¥ ¥ UJ UJ

¥ ? UJ UJ ? © <

+UJ UJ I

N M N M C4 N N ¥ ¥ ¥ ¥ ¥ ¥ ¥LU UJ UJ UJ UJ UJ UJ P4 © so © vi © «n o©ooot}- — r-CL ri ri rJ vi rp vi K

0 0 0 0 8 8 8+ + + 4- + + +UJ UJ UJ UJ UJ UJ UJ© © 00 so ri rj © :

¥ ¥ ¥ ¥ ¥ ¥ ¥ u uj uj uj u u m■1 V O O M X »1 M O f i — W Tf .i vi vi •— \0 © •—1 '

UJ LU UJ UJ UJ UJ UJ o o o g g o o -

8 8 8 8 8 0 0UJLDUJUJuj^^^ © © ■ « — o S 2 ^

n 't M n ^ V -j —: -J — —■ © i"* >

© J N I 8 5 v ^ p vi

>

r’H PH C'l V fO f> ffl ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ UJUJUJUJUJUJUJUJ m O P X X x O © N 4 © » P M » X vO vi « P O VO p-' pJ

I fS P4 , ? ¥

I UJ UJ¥ ¥ ¥ ¥ ¥UJ UJ UJ UJ UJp- 00 — P- vOP4 P ; « © g

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ UJUJUJUJUJUJUJUJ — - o O P VO N X—' © —' —' — -J —

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥UJUJUJUJUJUJUJUJ

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ■ ■ UJ UJ UJ UJ UJ UJ UJ. . n v © v «» — oeTT © p- v — —

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ - dUJUJUJUJUJUJUJUJ “ OOOOOOQO©. P | © © V V © © _

S vi vi P P - - ^

0 0 0 0 0 0 9 9 ©0 0 9 0 ©UJUUUUUUJUJfiiUUJblUJUlUJ VVP1 ©f<iP'V©'-©©©P^*NV VO 00 9 N 4 5 ^ 4 O 4 P P O p-p-vi *}-vi vi vi vi ^ >o vi v©’ v© ©

¥ ¥ ¥ ¥ ¥ ¥ »•■ rii til fil rii ri

© © ^ © © ^UJ UJ UJ UJ UJ UJ

\0 — — © —n » O n » n

¥ ¥ ¥ ¥ ¥ ¥ lu uj uj uj uj Ujp*i ^ P~ ©'T —© © © P- V ©

¥ ¥ ¥ ¥ ¥ ¥ tij uj Uj Uj lu Uj

” t- © © r

¥ ¥ ¥ ¥ ¥ . l u Ui Uj Uj l u uj

g © © © - 00 © © p- 00 © —• oe

P4 PI¥ ¥ LU U

¥ ¥ ' UJ UJ I

n w n m r . . ,¥ ¥ ¥ ¥ ¥ ¥ •-» -ii m 111 rii rii

, - l N N N , , ¥ ¥ ¥ ¥ ¥ ¥ ■ ■ ’ Uj Uj uj Uj Uj„ 4 X P - op flv O n x -

' H p i*i N

¥ ¥ ¥ ¥ ¥ ¥ UJ U UJ UJ UJ UJvo x n N P ■'^ P~- V © r r

¥ ¥ ¥ ¥ ¥ ¥ Uj Uj Uj Uj uj Uj o o g g o o

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

¥ ? ? ? ¥ ? ? ? ? ? ¥ ? ? ? ? ¥ ? ¥ ? ¥ ¥ ? u U U U UJ L i 3 U J U J U 4 U J U j U J U J U J U J l J J U J U J W L i J L i J U J - - v i — C ' s r \ o e r - - r - - r N r - r - a ' r - 4 r - ) O o m o o T f r ' - < 7 ' s p r - ' ' t t ^ n ^ ' t N (N h M -- O' - « 5; - 9; h if » »Os — ifii ce n oo oe vd N - »e o o v f i r i ^ r i o\ o> «ri v5

..............................................................................N N N N N N N N N N¥ ? ? + + ? ? ? ? + + + ? ? ? ? ? + ? ? ? +U U U U U U l W U U U U U U U U U U U l U U L l l U J . - io c ^ O f ' N ' n N ' O - — o o o r - o — f > r - © ' T » n o s r ' - rsJ C ' \ 0 ^ c M < N O © s - - © s r n s © r ' i r - © r M C ^ T * o © r - i - ' \ o ©K - « - K « v i - - ^ K K » « r i n n n n r i

¥ ? ¥ ? ? ? ? + + + ? ? ? ? ? ? ? + ? ? ? ?U U U L U U U U J U J U U J U J U J U U U U U J U U U U J U J - )r f O ' n ^ ^ i n ' O M ^ ' t O ' c e O r i ’T N c e M ' f f N Q O

a w V K Tf t f r i — so <t n rs’ n « n ’ -■ N <s n r i N

<*% ^ r*i < ¥ ? ? f r t M M M f n n n n r i M r t n

¥ ? ¥ ? ? ? ? ? ? ? ? ?m f*3 r

. . . ? ¥ ¥ ¥ ...........................................................................................U J U J U J t i l U J U J U J U J U J U J U J U J U J L l J U J U J U J U J U J U J W L i J C

P ^ I , ‘ ^ O N ' 0 -“ N * r i 0 ^ i f t s D f ' ' 0 N — n M / i r i ’ t’ n o c — ^ T f r i w n N r i r i w w r i

i w n n n n u j n u i w W r, ? 9 5 l ? ' ? a ' ? S 7 S p

f o — — — — — — — — — — — — N fS N N (S fS¥ ¥ ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? .

U J U J U J L lI U J U J U J U J W W U J U J U J U J U J U J W U J U J U J I jJ L iJ^ ) i A i < y - i r ^ r ^ r ~ r ^ - r N f N r ^ r ~ r ^ r ' ( N r j o o — — f S f ' i &

0 0 0 0 0 0 0 ^ 9 9 9 9 9 9 9 0 9 9 0 0 0 0 ^ W U J U j U J U J U J U J U a j U J U J U J U J L l J U J U J U J W [ J j P J U J L l J w © 0 0 h - O' ^ r o - ■ i f l i n O O ' O p M M M ' ^ O O i n f f s i f l ^ i '

r f >o iai h ^ O' ^ i - - 5> ^ n m r ; O N 9 ; ' C fi \ C « n r - - r ~ a ' © r ' s D c c i

¥ ¥ ¥ ¥ ¥ ? ? ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ? ? ?U l U J U U U U U U L U l i J U U U J U U J U l U J U Wn © ' t < f t O ' ' O ^ t n ^ ( N 0e M ' O « ) O ' - i ^ -vo — — — o s & o o o ^ r - — © o o * n ' 0 ^ , r - F -

<si «ri ov o© vO «W s o i n v"i «ri f-‘ tr i —i O' wS ^

f S C S N N N N N M N N N N N N M N N N M¥ ? ? ? ? ? ? ? ? ? ¥ ? ? ? ? ? ? ? ?t u u t i u u u i u u b j u u i j j i i j u j u j u u j u u :M t w O r n O O C O ' O N ^ - h - 90 © 00 ^5 i n N 0 \ o O M N f , i n o o o s c \ O i s- f 4 ' C o e — N ^ h ' ' i s/-i s/S r - i sb 0 0 -o r - ' -O ee -o oo sri sri s©’ w-i so v i

................................................................ N fS N (N (S¥ ¥ ¥ ? ? ¥ ¥ ¥ + ? ? ¥ ¥ ¥ ¥ ¥ ¥ ? ¥ U U U U U U J U U U J U J U U U J U U U U J U J U J O S O T l O O O ' N i r O O W O s ' n - r t M O O ' f l O e O O r » p ^ o o ^ - o r * » v * > © i ^ ; » r > v o w % o o i s* » - © o r-« «/7 n ’ n •■' n vi n w r i cb w ^ fb ^ —

u j u j l u u j u j u j u j u j u j u j u j u j u u ^ u j u j u j u j u j'0 f s r ~ ' 0 o o r - r ^ o o ' 0 «ri — © « r i ^ — » ^ r —.

v " v

^ o o o ? ? ? ? ? ¥ o ? ? o ? o ? ¥ u u u u u u u u u u u u u u u u u u uo o m m v i i n i r t i r i ' r i ^ v i i n v i w n n o c o e o c i n i ^ N N ^ f ^ N N h r ' N N h ; f ^ - ~ N « N M

' - f s i r i r i r i > b ' A ' i i s b o 6 o d c v O ' " * " " - " - - - *

9 0 9 9 9 0 0 0 9 9 9 0 0 0 9 9 9 ? u u u u ; u u a i u u u j u J u J t L i t L ) U M U U ( i j ^ n m m « n o o - ^ © © © — © © r - 5 ^ © o c n ^ n o f t N ^ i r j ^ « r ^ o - ' O O N v N H so so — K «/7 © © C6 b K i b h b K 00 f~~ r~- sO

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.12

E-01

1.3

8E+0

2 <3

3.1

1.61E

+03

7.07

E-02

4.

89E+

017.

09E-

01

1.48E

+02

<33.1

2.

94E+

03

4.72

E+02

9.

99E+

02

8.81

E+01

7.08

E-01

1.4

8E+0

2 <3

3.1

2.58

E+03

4.4

5E+0

2 8.

47E+

02

2.66

E+01

8.01

E-01

1.6

3E+0

2 <3

3.1

1.47E

+03

1.30E

+02

3.31

E+01

8.00

E-01

1.6

3E+0

2 <3

3.1

2.78

E+03

3.

71E+

02

6.32E

+02

7.75

E+01

7.36

E-01

1.7

8E+0

2 <3

3.1

2.35E

+03

2.96

E+02

5.

25E+

02

7.54

E+01

7.62

E-01

1.78E

+02

<33.1

3.

00E+

03

2.85

E+02

4.

63E+

02

7.40

E+01

1.10E

+00

1.78E

+02

<33.1

1.5

6E+0

3 1.1

8E+0

2 4.

05E+

011.0

5E+0

0 I.7

8E+0

2 <3

3.1

1.64E

+03

1.14E

+02

4.50

E+01 ¥ ¥ ¥

Ov i A

(N N N N© © © ©+ + + T-UJ UJ UJ UJ ^v© <© O' c-> n

? ? ¥UJ UJ UJ 3

? fN »T>>ri f -

w r i n n¥ ¥ ¥ ¥UJ UJ UJ UJ £- ^ N A rr - <© oo rs—’ —" r i r i

( S n M M p¥ ¥ ¥ ¥UJ UJ UJ UJ .^ fA ’T ^ t ;©\ © ©- - N N ^

9 9 9 9 *3UJ UJ UJ UJ wN « IA N fN i n © r-; ^S' O ' ' O

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ U J U J U J U J U J U J U J U J U J U J U J ' n r - n r i r A © — f M n o o © 1 f S A ' M f s o c O T ' O - o e o ^ O' n n oo - K (s’

N N N N N N N N N N N¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥U J U J U J U J U J U J U J U J U J U J U J^ 0 " - n N O \ O s o o o o n0 \ 0 6 N 0 0 ( N ' O ' O ^ t ' - 0 v -

¥ ¥ ¥ ¥ ¥ ¥ UJ UJ UJ UJ UJ UJ' O ’t - a M AN Tl fS vij n 80cm CM n v ' t IA

n n n¥ ¥ ¥ UJ UJ UJ r* ©v — A r i ' t r i r i

r r r r r r N r i n n N¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ fr] frl fr7 fil frl frl fil Irl fil li M3r - » n v O » r i \ © © © \ © o o r ,- C M p"'— — a r i v o ^ n o v o v o

— C M r M C M C M ^ r i r i r i v i

r i r r r r i r i r r i u j r i i n r i r i r r i n A « f ) 'V V V V V V V « r > V

? ? ? ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ! U J U J U J U J U j U J U J U J U J U J U J _ e o © w * » v i v A * n * n * n w A w A © * - i c i v - i r MC Mr - r - f N C Me - ' r - ' WA ft

p» r i r i r i r i <a »a vO vd p> q

© © o S ^ ^ Q © ^ ! ^ ? ^U J U J U J U J U J U J uJ ^ ^ J U J uJ wr ~ © f A —M O O r f C ' r N C - r

VO 1© « A A - IA A J

¥ ¥ ¥ ¥ ’ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥[ U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J

h — f s 0 ' 0 ' © i > r i \ 0 r 4 0 ^ l v »r> © fA — 00rii lil M 1 Til frl m m m i n m n i r 11 ni m i u rjj m o c r i ^ C A ^ - f s O ' a o o ' n ^ O A j Q f f A N O © < A > A ' A f >‘ r i ^ V ' 0 © i A « e © 0 \ O f ' O i ' 6 - - ^ ' 6 ' d f ' ,t n r i \ 6 O i p ‘ 0Ci

_ . n cm os ^© >© cm r---' c^

f S N N N N N N N N N N N N r i n N M N N N - N N¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥U J U J U J U J U L J U J U J U J U J U J U J U J b J U J U J U J U J U J U J U J U J U J U J ^— - ■ ^ n e o ^ O N ^ i A — M © . - o i A » © ^ o e o v N r ' NC ' - ' O r < \ 0 ( N O ,A O O f f ' A i c o — o o e i A A f r ' o e o O ' O ^ v i i A T i ; r ) ' e i ^ : , t N ^ ; r i r i f l e - ’ —i ' d r i ' A « r i - J i f i \ © N

M N M N M N M f S N N N N N N N N N N N N¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ rii ro frl rn lil rii r»l ri> rii fit ri) ri> rii lil rii fil i n ft2 fil o o v h r o e O ' O O ' - © f A n r ^ o e n a o r ^ o o i r i c Mi v f >> n o e o ' 0 (2' —

i V n r i r i ^ r i r i v N N

f A N P o e r i j e f v o e i A N" C ' i A r o e s o r 4 r ' ' C r i— n ^ r i N a ) r i r i —

M CM¥ ¥UJ UJ 3 N h

n r r r r r r i r r i r r r r i r i r r i r i r i r i n f s r r? ¥ ¥ + ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J ' L J ;

Sn g o a i ^ O T O o o ( N r 4 ' O h r r ' o e ? i Q i A A r rvfi o S p* n » oj — oo n t*> © os n «a © v r*

r i r i < s r i r i ^ r i r i r i r i r i - r i ( S N - « " ’ N N - * J ^ ; - -

n r> ca rA n i i w r r r i r n n n r i r r r7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 ^

i o j ^ j j j j j j S o S f o S S S S ^ IU J U J U J U J U J U J U J U J U J U - l U J U J U J U J U J U J U J U J U J U J U J U J U J r - ! A O ,A i A i A i A i A A « A ' A ' A i A ' A O O < A O O i A O O O ' f l « r - u A r - f N ( N ( N f N r ' r ' r ~ r - r ' r - © © r ' © © r - : © © © © ft IA K IA N K pi K r i N r i h vi wi O' f f i oi 00 00 O' O' S'1 O'

0 ^ ^ © 0 © < ^ © © © © 0 © © © 0 © © © 0 © ^ > © - ^U J U J U J U J U U U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J W’t ' f A r ' ' a ’j r ' C O ' t ' A ( N C ' ' 5 A O ' 0 ( ? \ Q r f N O t t ‘• * i o ^ e o N O ' « o e n N © ' C i M i A o a ; ^ ^ * o * i >'. ' © » o « r i v S « r i ' © » A i « S r J ' © v © K ' © ' © K ’> £ > K \ © r ^ - J o e v i o '

¥ ¥ ¥ UJ UJ UJ m i n N

cm <N cm

¥ ¥ ¥ UJ UJ UJ

¥ ¥UJ UJ

¥ ¥ ¥

r i r r i- 7 7

© © -H

¥ ¥ ¥ UJ UJ UJ © © «r> •A <A M^ K c i

9 ? 9UJ UJ u j

5 8 $

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.67

E-0I

2.

25E+

01

<33.1

4.6

3E+0

3 3.7

9E+0

2 5.0

7E+0

2 6.

33E+

016.

00E-

01

3.75

E+01

<3

3.1

5.69

E+03

3.

40E+

02

4.31

E+02

5.

52E+

014.

98E-

01

3.75

E+01

<3

3.1

6.27E

+03

4.24

E+02

5.4

7E+0

2 6.

57E+

017.

39E-

01

6.25

E+01

<3

3.1

2.94

E+03

3.7

0E+0

2 5.9

9E+0

2 1.

71E+

017.

21E-

01

6.25

E+01

<3

3.1

3.80

E+03

4.5

8E+0

2 7.3

7E+0

2 5.

22E+

01 ¥ ¥ ¥ ¥ ? ? ? ¥ ? ? ¥ ? ? ¥

¥ ¥ ? ? ¥ ? ? ? ? + + ? ? ?U U U U U J U L U U U J U U U U U I . - ,

O O - © r - J r r © — © © 0 0 © vr - © O' - - N N

?U

N N N N N N N N N N N N

¥ ¥ ? ? ? ? ? ? ? ? ? ¥U U J U J W W L i l U J U W U t i J i i j n

g- ’t h w o s ' C o e o o ^ ' O' f - C C O / i ' O O n r r i A O '1 m vi r f r t 4t M r s fS r j (N

■ r*T f*T r*T r«Tm ^ f*r f> <*r r r f*r , ...........................

¥ ¥ ¥ ? ¥ ? ¥ + + + ¥ ¥ ¥ ?U J L U U J U J U J U J U J U J U J U J U J U J U J U J ;

© — cs © •* - v T o o c T f s r - © © © "

UJ LU LU UJ c_ - O' - 3 t ^

r j <s i M f S M N W N w n N r

¥ ¥ ¥ ¥ ? ¥ ¥ ¥ ¥ ¥ ? ? ¥ ? IU J U J U J U J U J U J U J U J U J U J U J U J U J U ) m i n ' f t O v i i f l n n o t o e n n M o # is» r ^ r ' i © P M r 4 © © — — m m ^ t ' - t - - © © © © — — — — — — — —

^ O O O ^ O O O O O O O O O - JW Q J L L I U J W W W W U J U U J U J U U ^^ ’^ - © © ’T c ' T C ' O V T — VT — I " -!" -- .? "

_ o o - t n n >o r i Tt ^ n \ 0 oK W ® K 00 1- 00 1 K 89 h « 08 «

¥ ¥ ? ¥ ? ? ? ¥ _ U U U U J U U U J U J o • f<j —- os \ o —

r f O ' SO SO m ov i © ’ r*-i <n <n © oo

s s

N N N N N N N N

¥ ¥ ? ? ? ? ? ? U J U J U J U J U J U J U J U J ^ m oe yo i r t <n o i r i n © ^ s b s d ' ^ ' d ' b w S

N M M N N N N N¥ ¥ ? ¥ ¥ ? ¥ ?U J U J U J U J U J U J U J U J ^S oo v r © v> o c r s r-4

VT — V> © © O f-J3t r i rt- r4 i n r f

. r r r*r r~> o r r o r r n

¥ ¥ ? ? ? ? ? ? U J U J U J U J U J U J U J U J ^ : ' O n o o o « l ' f f » N r M ' O N O O O O M t Nw n m n <n vO «ri

M M r i n M r i r i r i ^

U J U J U J U J U J U J U J U J ^© © V T V T W * > V T V > V > “

h K f s r i w r ! v i iri .

O O O O O C S O O ' JU J U J U J U J U J U J U J U J '—' ‘ to ’S - r s j r - s o o O ' . —

SO ' O Vl <0 f ' N " t V

¥ ¥ ? ? ? ¥ ? ¥ + + + ?U J U J U J U J U J U J U J U J U J U J U J U J p of f ' » ^ 0 0 ' 0 ^ 9 ' n n a » l>lo o o i ' O O ' N o e ' i - i f t ^ ' o ©© v i v i © © f * i v i ^ v i H

N r N ( N M ( N ( N f S ( N ( N M M N

¥ ¥ ¥ ¥ + ¥ ? + ¥ ¥ + ¥U J U J U j U J U J U J U J U J U J U J U J U J ,r ' f ' T © r r v T v t ^ © © < N o o © 1O N ' J O ' t ^ - o u T T r ^ r -

¥ ¥ ¥ ¥ ? ¥ ? ¥U J U J U J U J U J U J U J U J U J U J U J U J - ^' f t n N ' 0 f S r ' O O © 8 0 ' 6 v D~ - - © P - C - l o e © — 0 0 © V T

r r m r r ' n n n n n r i n

¥ ¥ ? ¥ ¥ ¥ ¥ + ¥ ? ? ¥ U J U J U J U J U J U J U J U J U J U J U J U J i O ' N ' T i ' f i ^ ' O ' O N n n © ' * 1 O' C“> © <N - - — —M 06 rr t

V w r f ' t i

n n n i

— — — — — — — (N N M M C? ? ? ? ? ? ? ? ? ? ? |

U J U J U J U J U J U J U J U J U J U J U J U J ^§ Q » s i A | i n i n / i v T n n a o M —

© r - r - r N r s r - f - * © © — — g- <a-' v i v i r - ' r - i oo oc — — —’ — q

: o o o o o o o o o o ? ^ jU J U J U J U J U J U J U J U J U J U J U j L i J ' —o o ' t - a i r i r i - h n N O i n o <00 — I ' - T f © r ' r f ' 0 V »\O - © ?v i ©' © v i v i ©" s d © 00 © © <r|

¥ ¥ ¥ ? ? ¥ ¥ uj uj uj uj uj uj Ujvt fS f*r r*r r - — —r« —; «—; v> oo •'T oo© s d v i ©» © r~- f~*

N N (N N (N N N? ¥ ? ? ? ¥ ¥ Li) Li) 6 ) (iJ© vr © vr vrvr — r-- m r ~ tp r*r— ^ © Vt © f*i

N (N M N N N N¥ ¥ ¥ + ¥ ? + Uj Uj UJ UJ UJ UJ UJJ t 2 t

I f*T I r r r r

¥ ¥ ? ¥ ¥ ¥ ? Uj Uj Uj Uj Uj Ui uj- n — I** n « ©r - v t — t*\ — —fsj t+i t*i M ( 6 r t M

? - ■Uj n m w w wS V ' ? " 7

¥ ¥ ? ? ? ? ? Uj Uj Uj Uj Uj Uj UjVs V> Vl VT VT VT V)r - I-- in r s r - »"• v rr s fs i ■*}■' v i v i K

© © © © p o p UJ UJ UJ UJ UJ UJ UJ

S £> © Os «* —© i — © —

© © K h- ©

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced

with perm

ission of the

copyright owner.

Further reproduction prohibited

without perm

ission.

ONO©

l.U lt+ W9.27E-019.24E-015.40E-OI5.88E-016.0IE -015.44E-0I5.41E-01

W t(g )

< J i , l7.55E+01 <33.1 7.55E+01 <33.1 8.90E+01 <33.1 8.90E+01 1.78E+04 3.50E+01 <33.1 3.50E+01 <33.1 1.00E+00 <33.1

D epth (cm ) Th

2.b4h+0J2.35E+03 2.27E+03 5.1 IE+03 3.04E+03 2.81E+03 2.46E+03 2.06E+03

Ti

2.65 h+022.12E+022 .U E + 0 24.49E+021.96E+023 .5IE + 023.49E+022.94E+02

U

2 .9 5 t+ 0 22 .0 1 E+ 0 2

1.84E+02 5.79E+02 1.71E+02 3.64E+02 3.51E+02 3.77E+02

Z n :

b.42fc+Ul6.28E+016.39E+018.82E+017.86E+012.16E+011.36E+017.12E+01

ZrCO R E 10 7.70E-01 3.60E+01 <33.1 3.46E+03 3.85E+02 7.47E+02 . 6.93E+01

9.36E-01 3.60E+01 <33.1 1.58E+03 1.63E+02 3.18E+02 2.75E+0I8.06E-01 5.50E+01 <33.1 1.21E+03 4.78E+02 6.00E+02 8.45E+018.2 IE-01 5.50E+01 <33,1 2.70E+03 4.49E+02 5.47E+02 7.52E+OI1.67E+00 6.75E+01 <33.1 3.85E+02 7.26E+01 1 19E+02 1.31E+011.77E+00 8.25E+01 <33.1 3.45E+02 2.89E+01 1.29E+011.77E+00 8.25E+01 <33.1 3.39E+02 3.20E+01 1.29E+011.76E+00 9.75E+01 <33.1 4.46E+02 5.49E+01 1.86E+017.I3E-01 9.75E+01 <33.1 6.87E+02 7.91E+01 2.37E+011.09E+00 1.13E+02 <33.1 1.19E+03 7.30E+01 2.99E+011.79E+00 1.13E+02 <33.1 2.09E+02 1 82E+01 6.22E+00

W t(g ) Depth (cm ) Th Ti U Zn Z rC ore S 1 1.4IE+00 2.50E+0! <33.1 1.31E+03 2.35E+02 2.82E+02 2.75E+01

8.15E-01 2.50E+01 <33,1 2.42E+03 4.28E+02 4.37E+02 2.06E+011.23E+00 5.00E+01 <33.1 1.45E+03 1.76E+02 2.80E+02 3.06E+011.42E+00 5.00E+01 <33.1 9.19E+02 I.63E+02 2.43E-KI2 2.57E+015.44E-01 7.50E+01 <33,1 1.54E+03 4.46E+02 6.53E+02 7.08E+015.43E-01 7.50E+01 <33.1 1.62E+03 2.78E+02 5.82E+02 7.22E+01W t(g ) D epth (cm ) Th Ti U Zn Z r

C ore S2 5.75E-01 2.50E+01 <33.1 9.07E+02 3.09E+02 3.57E+02 6.28E+014.79E-01 2.50E+01 <33.1 8.40E+02 4.93E+92 4.36E+02 7.78E+014.62E-01 5.00E+01 <33.1 4.19E+03 3.81E+02 4.70E+O2 7.24E+014.93E-01 5.00E+01 <33.1 5.28E+03 4.03E+02 4.49E-K12 6.62E+015.06E-01 7.50E+01 <33.1 1.57E+03 3.85E+02 4.62E+02 8.47E+015.19E-01 7.5QE+01 <33.1 3.18E+03 3.56E+02 4.05E+O2 7.78E+01W t («) D epth (cm ) Th Ti u : Zn : Z r

C ore S3 1.39E+00 2.50E+01 <33.1 1.37E+03 9.97E+01 4.23E+01 2.80E+011.39E+00 2.50E+01 <33,1 7 .9IE + 02 1.34E+02 2.36E+02 3.14E+011.44E+00 2.50E+01 <33.1 6.46E+02 1.28E+02 2.30E+02 3.07E+0J1 .2 1 E+ 0 0 5.00E+01 <33.1 1.39E+03 1.93E+02 2.05E+02 4.08E+011.39E+00 5.00E+01 <33.1 1.25E+03 1.31E+02 1.71E+02 3.05E+019.98E-01 7.50E+O1 <33.1 1.23E+03 1.27E+02 3.82E+02 3.13E+017.50E-01 7.50E+01 <33,1 1.59E+03 2.65E+02 5.61E+02 4.78E+01W t(K ) D epth (cm ) Th Ti u : Zn Z r

C ore S4 7.25E-01 2.50E+01 <33.1 3.45E+03 3.92E+02 6.14E+02 5.30E+017.25E-01 2.50E +0I <33.1 2.69E+03 2.60E+02 5.19E+02 4.04E+015.63E-01 5.00E +0I <33.1 3.35E+03 3.75E+02 4.17E+02 5.80E+014.89E-01 5.00E+01 <33.1 4.22E+03 3 .9IE + 02 5.40E+02 8.08E+015.63E-01 7.50E+01 <33.1 3.64E+03 3.31E+02 3.71E+02 6.73E+015.27E-01 7.50E+01 <33.1 3.94E+03 3.56E+02 5.74E+02 7.02E+015.45E-01 1.00E+02 <33.1 3.81E+03 3.14E+02 4.04E+02 7.25E+015.40E-01 1.00E+02 <33.1 3.87E+03 3.63E+02 5.02E+02 7.57E+01W t(g ) D epth (cm ) Th Ti u : Z n : Z r

C ore S5 6.49E-01 2.50E-H31 <33.1 4.06E+03 2.68E+02 4.02E+02 6.07E+015.99E-01 2.50E+01 <33.1 4.67E+03 4.13E+02 4.78E+02 6.78E+016.49E-01 5.00E+01 <33.1 3.14E+03 2.87E+02 5.42E+02 4.39E+016.73E-01 5.00E+01 <33.1 4.55E+03 4.20E+02 5.92E+02 6.57E+0I6.72E-01 7.50E+OI <33.1 3.85E+03 2.77E+02 4.73E+02 5.I9E + 015.65E-01 7.50E+01 <33.1 3.82E+03 2.87E+02 5.55E+02 6.08E+01

Table B3: Metal Sequential Extraction Results from September 2004 Cores

C o re ID E x tra c tio n W t( g ) D e p th (cm ) Al A g As . A u B B aC o re S I Exchangeable 1.41E+00 2.50E+01 3.I2E+01 2.62E+02 1.03E+02 1 <0.019 5.57E+00 5.04E +00

C arbonate 1.41E+00 2.50E+01 I.23E+02 <0.014 1.93E+02 2.04E +00 2.92E +00 6.46E + 00Fe, M n O xides 1.41E+00 2.50E+01 I.I5E + 03 6.06E+01 5.60E+O2 1 <0.019 1.57E+OI 2.04E + 00O rganic M atter 1.41E+00 2.50E+01 6.30E+02 1.42E+02 2.42E +02 ( <0 .019 4.87E + 00 1.33E+00

Residual 1.41E+00 2.50E+01 3.56E+04 1.20E+03 1.56E+03 1.51E+01 1.87E+02 3 92E+01Exchangeable 8 15H-01 2.50E+01 5.17E+01 1.36E+03 1.23E+02 ( <0.019 3.20E+01 5.75E + 00

C arbonate 8.15E-01 2.50E+01 2.32E+02 <0.014 1.87E+02 ( <0.019 2.17E+01 6 2 8 E + 0 0Fe, M n O xides 8 15E-01 2.50E+01 1.86E+03 1.20E+02 5.07E+02 ( <0 .019 1.52E+01 2.12E + 00O rganic M atter 8.15E-01 2.50E+01 9.71E+02 8.02E+01 2.14E+02 ( <0 .019 < 0.012 7.96E-01

Residual 8.15E-01 2.50E+01 6.61E+04 3.00E+03 1.47E+03 1.45E+01 1.78E+02 4 7 1 E + 0 1Exchangeable 7.69E-01 5.00E+01 4.00E+01 1.27E+01 I.17E+01 ( <0.019 3.98E +00 5.75E +00Exchangeable 7.69E-01 5.00E+01 1.32E+01 4.66E+01 <0,124 '( <0 .019 2 4 8 E + 0 0 2.74E +00

C arbonate 7.69E-01 5.00E +0I I.08E+02 <0.014 3.47E+01 i( <0 .019 6.99E + 00 4.42E + 00Carbonate 7.69E-01 5.00E+01 1.47E+02 <0.014 6.09E+01 '1 <0.019 4.78E + 00 2.21E + 00

Fe, M n O xides 7.69E-0I 5.00E+01 4.68E-F02 < 0 0 1 4 2.39E +02 i[ <0.019 1.22E+01 1 15E+00Fe, M n Oxides 7.69E-01 5.00E+0! 1.72E+02 <0.014 3.97E+01 1 <0.019 3.89E + 00 7.08E-01Organic M atter 7.69E-01 5.00E+01 I.08E+03 1.09E+02 3.84E+02 ( <0 .019 4.16E + 00 6.19E-01Organic M atter 7.69E-01 5.00E+01 4.21E+02 2.16E+02 1.42E+02 i[ <0.019 5.22E +00 3.54E-01

Residual 8.15E-0I 5.00E+01 3.70E+04 8.08E+02 4.91E + 02 7.43E +00 1.21E+02 2.51E+01Exchangeable 5.86E-0I 5.00E+01 3.52E+01 9.38E+O0 1.90E+01 i1 < 0 019 9.82E + 00 1.24E+00

C arbonate 5.86E-01 5.00E+01 9.83E+01 1.11E+02 1 .1 1E+02 II <0.019 6.55E + 00 7.70E + 00Fe, Mn Oxides 5.86E-01 5.00E+01 5.63E+02 <0.014 3.34E +02 li <0.019 1.03E+01 2.39E + 00O rganic M atter 5.86E-01 5.00E+01 4.92E+02 7.97E+01 2.41E+02 1 < 0.019 3.54E+O0 6 .19E-01

Residual 5.86E-01 5.00E+01 5.16E+04 9.91E+02 5.33E+02 9.64E + 00 1.22E +02 3 I0E+01Exchangeable 5.44E-0I 7.50E+01 2.87E+02 1.04E+02 1 56E+01 1 < 0.019 4.25E + 00 3.63E + 00

Carbonate 5.44E-01 7.50E+01 5 0 1 E + 0 2 6.42E+01 2.85E+01 l <0.019 6.46E + 00 3 54E +00Fe, M n O xides 5.44E-01 7.50E+0I 5.77E+02 7.83E+01 4.45E+01 ! <0 .019 2.74E +00 1.06E+00O rganic M atter 5.44E-01 7.50E+01 6.59E+02 1.93E+02 1.73E+02 ! <0 .019 <0.012 9.73E-01

Residual 5.44E-01 7.50E+01 6.11E+04 8.77E+02 2.65E +02 7.79E+00 1 33E +02 3.67E+01Exchangeable 5.43E-0I 7.50E+01 3.20E+02 1.32E+02 1.24E+01 1 <0.019 5 31E +00 3.45E+O0

C arbonate 5.43E-01 7.50E+01 4.49E+02 5.34E+01 3.12E+01 1 <0.019 2.65E + 00 3.45E +00Fe, M n Oxides 5.43E-01 7.50E+01 5.36E+02 4.29E+01 5.60E+01 ( <0 .019 6 72E+00 1.24E+00O rganic M atter 5.43E-01 7.50E+01 4.44E+02 1.I7E + 02 1.44E+02 ( < 0 0 1 9 2.48E + 00 5.31E-01

Residual 5.43E-01 7.50E+01 6.07E+04 2.26E+03 4.34E +02 7.34E +00 1.27E+02 4.I5E + 01C ore ID E x tra c tio n W t( g ) D e p th (cm ) A) A g As . A u B B aC o re S2 Exchangeable 5.75E-01 2.50E+01 2.61E+02 6 .16E+01 <0.124 ( <0 .019 1.68E+01 4 .16E+00

C arbonate 5.75E-01 2.50E+01 3.70E+02 7.28E+01 1.83E+01 ( <0 .019 3.63E +00 1.68E+00Fe, Mn O xides 5.75E-01 2.50E+01 4.26E+02 3.71E+OI 4.26E+01 ( <0 .019 4.87E + 00 8.85E-01O rganic M atter 5.75E-01 2.50E+O I 5.50E+02 8.67E+01 6.90E+01 ! < 0 0 1 9 6.28E + 00 70 8 E -0 1

Residual 5.75E-01 2.50E+01 5.89E+04 7.49E+02 1.43E+02 1.24E+01 1.36E+02 3.93E+01Exchangeable 4.79E-01 2.50E+01 2.37E+02 2.92E+01 <0.124 1 < 0 0 1 9 2.92E + 00 4 .34E + 00

C arbonate 4.79E-01 2.50E+01 4.20E+02 3.22E+01 1.75E+01 t <0 .019 2.04E + 00 1.24E+00Fe, Mn O xides 4.79E -0I 2.50E+01 6.19E+02 7.26E+02 5.03E+01 J <0.019 4.96E + 00 9.73E-01O rganic M ayer 4.79E-01 2.50E+01 8.33E+02 1.48E+02 7.40E+01 I <0.019 4.34E + 00 1.06E+00

Residual 4.79E-01 2.50E+01 6.86E+04 3.85E+02 9.91E+01 1.25E+01 I.40E + 02 3.87E+01Exchangeable 4.62E-01 5.00E+01 4.87E+02 1.15E+02 3.58E+01 1 < 0 0 1 9 3.19E +00 3.27E + 00

Carbonate 4.62E-01 5.00E+01 6.33E+02 7.1IE + 01 5.33E+01 1 < 0 0 1 9 2.74E +00 3.10E + 00Fe, M n O xides 4.62E-01 5 00E+01 8.27E+02 2.71E +0I 6.80E+01 1 <0.019 7.17E +00 1 50E+00O rganic M atter 4.62E-01 5.00E+01 7.33E+02 I.15E + 02 1.49E+02 1 <0.019 <0.012 9.73E-01

Residual 4.62E-01 5.00E+01 6.89E+04 < 0 0 1 4 2.63E+02 1.I4E+01 1.31E+02 3.09E+01Exchangeable 4.93E -0I 5.00E+01 4.80E+02 I.21E + 02 3 .82E + 0I f <0 .019 7.17E +00 2 8 3 E + 0 0

C arbonate 4.93E-01 5 00E+01 5.05E+02 7.33E+OI 4.80E+01 1 <0.019 2.83E + 00 2.83E +00Fe. M n O xides 4.93E-01 5.00E+01 6.34E+02 1.10E+O2 1.18E+02 I <0 .019 <0.012 7.08E-01O rganic M atter 4.93E-01 5.00E+01 6 90E+02 3.46E+01 6.82E+01 1 < 0 019 6.02E + 00 1 59E+00

Residual 4.93E-01 5.00E-H)1 5.91E+04 2.80E+02 2.69E+02 1.08E+01 1.23E+02 3 .75E + 0IExchangeable 5.06E -0I 7.50E+O1 2.33E+02 3.15E+OI 2.18E+01 ; <0.019 2.57E + 00 5.13E + 00

C arbonate 5.06E-01 7.50E+01 3.43E+02 2.52E+01 7.13E+01 1 < 0 0 1 9 5.57E +00 1.15E+O0Fe, M n O xides 5.06E-01 7.50E+01 7.63E+02 1.95E+01 7.05E+O I 1 <0.019 7.43E +00 1.33E+00O rganic M atter 5.06E-01 7.50E +0I 6.42E +02 1.43E+02 1.88E+02 t <0 .019 < 0 0 1 2 8.85E -0I

Residual 5.06E-01 7.50E+01 5.63E+04 8.09E+02 3.47E+02 9.82E + 00 1 19E+02 3.96E+01Exchangeable 5.I9E-O I 7.50E+01 3.23E+02 3.06E+01 1.77E+01 1 <0.019 4.87E + 00 5.22E +00

C arbonate 5 .I9E -01 7.50E+01 3.23E+02 2.57E +0I 4.22E+01 1 <0.019 2.83E + 00 3.19E +00Fe, M n O xides S. 19E-01 7.50E +0I 7 .34E+02 1.73E-H32 6.18E+01 ( < 0 0 1 9 6.55E + 00 1.24E+00O rganic M atter 5.19E-01 7.50E+01 6.67E+02 8.45E+01 1.70E+02 t <0.019 3.01E + 00 7.96E-01

Residual 5.19E-01 7.50E+01 6.53E+04 2.31E+02 3.53E +02 1.04E+01 I.32E + 02 5.34E+01C o re ID E x tra c tio n W t( g ) D e p th (cm ) Al Ag As A u B B aC o re S3 Exchangeable 6 .10E-01 2.50E +0I 4.33E+02 7.72E+02 1.39E+01 ( < 0 0 1 9 6 4 6 E + 0 0 8.94E +00

Exchangeable 6 I0E-01 2.50E+01 3.44E+02 6.21E+02 <0.124 t <0 .019 2.83E + 00 3.89E + 00C arbonate 6 .10E-01 2.50E+01 2.21E+02 6.94E+01 2.93E+01 t <0 .019 4 6 9 E + 0 0 2.21E + 00C arbonate 6 .10E-01 2.50E+OI 2.89E+02 < 0 0 1 4 4.12E+01 ( <0 .019 4.34E + 00 9.73E-01

Fe, M n O xides 6 10E-01 2.50E +0I 7.05E+02 2.06E +0I 1.54E+02 1 <0.019 7.70E+00 I.06E+O0Fe, M n Oxides 6 .10E-01 2.50E +0I 3.44E+02 I.65E+01 3 .34E + 0I ! <0 .019 5.13E +00 8.85E-01O rganic M atter 6 .10E-01 2.50E+01 1.64E+03 1.70E+02 3.25E +02 ! < 0 0 1 9 5.66E +00 1.24E+00O rganic M atter 6.10E-01 2.50E+01 6.01E+02 2.79E +02 7.59E+01 1 < 0 0 1 9 2.30E + 00 7.08E-01Exchangeable 5.58E-01 2.50E+01 3 .6 IE + 0 I <0.014 <0.124 1 <0.019 4.34E + 00 9.03E + 00

C arbonate 5.58E-01 2.50E+01 1.37E+02 I.58E+01 5.37E+01 1 <0.019 2.21E + 00 4 .69E + 00Fe, M n O xides 5.58E-01 2.50E+01 1.18E+03 5.21E+01 3.01E + 02 I <0 .019 9.56E +00 2 6 5 E + 0 0O rganic M atter 5.58E-01 2.50E+01 7.04E+02 1.32E+02 1.54E+02 ( <0 .019 <0.012 9.73E-01

Residual 5.58E-OI 2.50E+01 4.57E +04 1.05E+03 2.26E+02 5.75E +00 1 04E + 02 3.80E-H31Exchangeable 6 .55E -0I 5.00E+01 1 67E+02 5.04E+0I 1.37E+01 I <0.019 7.34E +00 4.07E + 00

C arbonate 6 .55E -0J 5 .00E+0! 3.76E+02 <0.014 7.I5E + 01 ( <0.019 2.57E + 00 1.06E+00Fe, M n O xides 6.55E-01 5.00E+01 6.94E+02 1.37E+02 9.03E+01 I < 0 0 1 9 5.66E +00 I.15E + 00O rganic M atter 6.55E-01 5.00E+01 6.09E+02 1.19E+02 2.04E + 02 1 <0.019 3.36E + 00 8.85E-01

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C or* S4

C o re S5

Residual 6.55E-01 5.00E+0I 4.22E +04 I.83E + 02 4.52E +02 5.75E+00 1.20E+02 I.50E+01Exchangeable 7.98E-0I 5.00E+01 2.04E+02 7.62E +0I <0.124 1 <0.019 3.72E+00 3.54E +00Exchangeable 7.98E-01 5.00E+01 2.38E+02 I.42E + 02 I.22E + 0I t <0.019 3.27E+O0 1.15E+O0

C arbonate 7.98E-01 5.00E+01 2.71E+02 2.04E +0I 3 .50E +0I t <0.019 4.5 IE + 00 7.08E-01C arbonate 7.98E-0I 5.00E+O1 3.40E+02 4.73E+01 8.27E+01 1 <0.019 4.96E+00 5.31E-01

Fe, M n Oxides 7.98E-01 5.00E+01 4.32E+02 6.33E+01 4.21E+01 ( <0 .019 5.13E+00 5.31E-01Fe, M n Oxides 7.98E-01 5.00E+01 3.26E+02 6.82E+01 <0.124 [ <0 .019 5.22E+00 6.19E-01Organic M atter 7.98E-0I 5.00E+01 9.46E+Q2 2.25E+02 5.15E+02 [ <0 .019 4.78E+00 5.31E-01Organic M atter 7.98E -0I 5.00E+01 3.45E +02 2.92E+02 4.81E+01 ( <0 .019 2.48E+00 I.77E-01

Residual 7.98E-01 5 OOE+Ol 2.76E +04 2.08E+02 5.06E+O1 6 .I9 E + 0 0 1.03E+02 I.34E+01Exchangeable 1.25E+00 7.50E+01 1.92E+01 <0.014 1.38E+02 t <0 .019 7.26E+00 2.42E+01

C arbonate 1.25E+00 7.50E+01 4.01E+01 <0.014 4.11 E+02 ( <0 .019 5.40E+00 1.46E+01Fe, M n Oxides 1.25E+O0 7.50E+01 2.03E+03 5.04E+00 2.70E +02 1 <0.019 5.75E+00 1.08E+O1O rganic M atter 1.25E+00 7.50E+0I 2.45E+03 2.77E+01 9.20E+02 [ <0 .019 7.70E+00 5.22E+00

Residual I.25E-MX) 7.50E+01 I.84E + 04 2.19E+03 8.05E+02 8.23E +00 8.37E+01 4.6IE + 01Exchangeable 1 01E+00 7.50E+01 2.14E+01 4.80E+01 2.09E+01 ( < 0 0 1 9 3.36E+00 1.73E+0IExchangeable I.01E + 00 7.50E+01 I 48E + 0I 5.12E+01 2.79E +0I ( <0 .019 2.83E+00 7.34E+00

Carbonate 1.01E+00 7.50E+01 I.54E + 02 <0.014 9.11E +0I ( <0 .019 3.27E+00 6 .8 IE + 0 0Carbonate 1.01E+00 7.50E+01 2.77E +02 <0.014 2.76E+02 1 <0.019 6.72E+00 2.12E +00

Fe, M n Oxides 1.01E+00 7.50E+01 1.S9E+03 <0.014 4.74E +02 1 <0.019 1.I7E+01 2.39E +00Fe, M n O xides 1.01E+00 7.50E+O1 4.47E + 02 1.07E+01 9.56E+01 [ <0 .019 8.32E+00 9.73E-01O rganic M atter I.01E + 00 7.50E+01 1.79E+03 1.05E+02 7.57E+02 [ <0 .019 4.51E+00 1.68E+00Organic M atter 1.01E+00 7.50E+01 6.35E +02 2.88E +02 2.27E +02 l1 <0 .019 5.22E+00 7.96E-01

Residual I 01E+00 7.50E+01 3.37E +04 3.00E+03 2.67E+03 1.06E+01 1.50E+02 4 .79E + 0IE x tra c tio n W t( * ) D e p th (cm ) Al A g As A u B B a

Exchangeable 7.25E-01 2.50E+01 I.97E + 02 2.01E+02 <0 124 1: < 0 0 1 9 8.76E+00 3.36E +00C arbonate 7.25E -0I 2.50E+01 3.74E+02 3.73E+01 7.32E+01 I: <0 .019 9.03E+00 2.83E +00

Fe, M n O xides 7.25E -0! 2.50E+01 4.14E+02 2.89E+01 4.16E+01 i: <0 .019 6.37E+00 8.85E-01O rganic M atter 7.25E -0I 2.50E+0I 2.78E +02 5.59E+01 1.23E+02 I <0 .019 2.83E+00 3.54E-01

Residual 7.25E-01 2.S0E+01 3.93E+04 1.85E+02 2.50E+02 7.96E+00 1.26E+02 1.31E+01Exchangeable 4 .99E -0I 2.50E+01 2.93E+02 3.22E+02 < 0.124 1 < 0.019 7.26E+O0 3.36E+O0

C arbonate 4 .99E -0I 2 .50E +0I 6.01 E+02 3.86E+01 8.01E+01 1 < 0.019 6.19E+00 2.92E +00Fe, M n O xides 4.99E-01 2.50E+0I 6.74E +02 3.69E+01 4.02E+01 l < 0 .019 2.92E+00 7.96E-01O rganic M atter 4.99E-01 2.50E+01 6.42E +02 7.81E+01 1.01E+02 1 < 0.019 2.83E+00 3.54E-01

Residual 4 .99E -0! 2.50E+01 6.64E +04 3.48E+01 3.08E+02 9.56E + 00 1.39E+02 1 77E+01Exchangeable 5.63E-0J 5.00E+01 1 81 E+02 1.10E+02 1.92E+01 1 <0.019 1.27E+01 2.57E +00

Carbonate 5 63E-01 5.OOE+Ol 6.57E +02 1.50E+02 6.28E+01 I <0 .019 3.89E+00 2.39E +00Fe, M n O xides 5.63E-01 5.00E+01 6.17E +02 8.94E+01 3.77E+01 ( <0 .019 2.74E+00 1.15E+00O rganic M atter 5 63E-0I 5 OOE+Ol 6.42E +02 1.39E+02 2.04E + 02 ( <0 .019 1.86E+00 4.42E-01

Residual 5.63E -0I 5.00E+01 5 .1 1E+04 5.24E+02 3.10E +02 1.00E +0I 1.24E+02 1.58E+01Exchangeable 4.89E-01 5.OOE+Ol 4.58E +02 1.89E+02 3 .13E + 0! ( <0 .019 8 .I4E + 00 2.74E +00

C arbonate 4.89E-01 5.00E+01 5.58E+02 8.39E+01 5.94E+01 ( <0 .019 4.07E+00 I.95E + 00Fe, M n Oxides 4.89E-01 5.OOE+Ol 7.01E+02 8.30E+01 2.97E+01 I <0 .019 5.13E+00 9.73E-01O rganic M atter 4 .89E -0I 5 00E+01 5.30E+02 9.38E+01 2.25E + 02 ( <0 .019 2.39E+00 4.42E-01

Residual 4.89E-01 5.00E+01 5.86E+04 <0.014 5.75E+02 7 .6 IE + 0 0 1.18E+02 1.97E+01Exchangeable 5.63E-01 7.50E+01 1.96E+02 3.71E+02 1.22E+01 t <0 .019 4.25E+00 4.42E +00

C arbonate 5.63E-01 7.50E+01 6.04E +02 2.23E+02 5.19E+01 ! <0 .019 3.10E+00 1.95E+00Fe, M n O xides 5.63E -0I 7.50E+01 5.84E+02 1.25E+02 2.60E+O1 ( <0.019 9.20E+00 1.15E+O0O rganic M atter 5.63E-01 7.50E+01 5.55E+02 2.35E+02 1.35E+02 ( <0 .019 2.57E+00 4 .5 tE + 0 0

Residual 5.63E-01 7.S0E+01 4.67E +04 < 0 0 1 4 2.27E +02 1.04E+01 1.42E+02 2.48E+01Exchangeable 5.27E-01 7.50E+0I 1.01 E+02 3.19E+02 < 0.124 ( <0 .019 4.42E+00 4.25E +00

C arbonate 5.27E-01 7.50E+0I 4.77E +02 1.04E+02 4.73E+01 ( <0 .019 3.10E+00 1.68E+00Fe, M n O xides 5.27E-01 7.50E+01 6.71 E+02 9.82E+01 2.34E+01 ( <0 .019 1.OOE+Ol 1.33E+00O rganic M atter 5.27E-01 7.50E+01 3.01 E+02 2.49E+02 9.38E+01 ( <0 .019 5.75E+00 5.31E-OI

Residual 5.27E-01 7.50E+OI 5.88E+04 2.12E+03 3.80E+02 9.38E + 00 1.27E+02 2.58E+01Exchangeable 5.45E-01 I.00E + 02 2.45E+02 2.56E+02 3.72E+01 t <0 .019 1.36E+01 2.04E + 00

C arbonate 5.45E-01 1.00E+02 7.15E+02 1 92E+02 1.01E+02 ( <0 .019 <0.012 2.04E + 00Fe, M n O xides 5 45E-01 1 00E+02 7.08E+02 1 96E+02 4.41E+01 ( <0 ,019 6.02E+00 1.15E+O0O rganic M atter 5.45E-01 1.00E+02 1.95E+02 9 .9 IE + 0 2 2.12E + 02 f <0 .019 2.48E+00 2.65E-01

Residual 5 45E-01 1.00E+02 4.95E +04 <0.014 5.06E+02 1.07E+O1 I.38E+02 3.42E+O IExchangeable 5.40E-01 I.00E + 02 2.62E+02 2.18E+02 3.32E+01 ( < 0 .019 5.49E+00 2.04E +00

C arbonate 5.40E-01 1.00E+02 5.14E+02 1.08E+02 7.59E+01 ( <0 .019 4.16E+00 1.68E+00Fe, M n O xides 5.40E-01 1.00E+02 6.88E +02 5.65E+01 3.48E+01 t < 0 .019 9.82E+00 1 15E+00O rganic M atter 5 40E-01 1.00E+02 4.95E +02 I.02E + 02 1.30E+02 < < 0.019 <0.012 3.54E-01

Residual 5.40E-01 1.00E+02 5.95E+04 3 95E+01 3.46E+02 8.94E+O0 1.31 E+02 3.40E+01E x tra c tio n W t( g ) D ep th (cm ) Al A g AS A u B Ba

Exchangeable 6.49E-01 2.50E+01 2.08E+02 1.73 E+02 2 .42E + 0I < < 0 0 1 9 6.28E+O0 4.34E + 00C arbonate 6.49E-01 2.50E +0I 2.89E +02 1.68E+00 9.03E+01 { <0.019 5.84E+00 3.27E +00

Fe, M n O xides 6.49E-01 2.50E+01 4.24E +02 3.32E+OI 5.23E+O I < <0.019 2.74E+00 1.42E+00O rganic M atter 6.49E-01 2.50E+01 8.01E+02 1.80E+02 2.47E +02 ( <0 .019 1.06E+00 6.19E-01

Residual 6.49E-01 2 50E+01 4.78E +04 4.57E+02 5.99E+02 8.05E +00 1.27E+02 2 57E+01Exchangeable 5.99E-01 2.50E+01 1.98E+02 1.48E+02 3.50E+01 ( <0 .019 9.56E+00 4.78E + 00

C arbonate 5.99E-01 2.50E+01 2.77E+02 3 36E +00 8.20E+01 ( <0.019 6.02E+00 2.83E +00Fe, M n O xides 5.99E-01 2.5OE+0I 4.46E +02 1 23E+01 6.08E+01 f <0 .019 6.19E+00 1.59E+00O rganic M atter 5 99E-01 2.50E +0I 6 .I9 E + 0 2 I.24E + 02 2.96E +02 ( <0 .019 <0.012 1.06E+00

Residual 5.99E-01 2.50E+01 5.26E+04 <0.014 6.63E +02 1.02E+01 1 38E+02 2.93E+01Exchangeable 6 .49E -0I 5.OOE+Ol 2.22E +02 1.16E+02 2.80E+01 ( <0 .019 3.10E+00 2.74E +00

C arbonate 6.49E-01 5.00E+01 3.78E+02 6.49E+01 9.56E+01 ( <0 .019 3.89E+00 2.48E +00Fe, M n O xides 6 .49E -0I 5 OOE+Ol 4.74E +02 6.29E+01 4.19E+01 ( <0 .019 4.07E+00 8.85E-01O rganic M atter 6.49E-01 5. OOE+Ol 5.40E+02 I.37E + 02 4.51 E+02 I <0 .019 <0.012 4.42E-01Exchangeable 6.73E-01 5.00E+01 1.74E+02 9.56E+01 2.61E+01 ( <0 .019 3.80E+00 3.10E +00

C arbonate 6 73E-0I 5 00E+01 3.25E+02 62 3 E + 0 1 1.02E+02 ( <0 .019 2.83E+00 2.21E +00Fe, M n O xides 6 73E-01 5.OOE+Ol 5.16E+02 4.95E+01 3.92E+01 ( < 0 0 1 9 5.75E+00 8.85E-01O rganic M atter 6.73E-01 5.OOE+Ol 3.77E+02 4.28E+01 3.73E +02 : <0 .019 5.84E+00 3.54E-01

Residual 6.73E-01 5.00E+0I 4.25E +04 <0.014 1.11E+03 1.03E+01 1.48E+02 1.52E+01

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Exchangeable 6.72E-01 7.50E+OI 1.63E+02 5.22E+02 <0.124 <0.019 9.03E +00 3.19E+00Carbonate 6.72E-01 7.50E +0I 3.15E+02 5.43E+01 4.83E+01 <0.019 3.01E +00 2.04E +00

Fe, M n O xides 6.72E-01 7.50E+01 3.76E+02 5.26E+01 2.59E+01 <0.019 5.57E +00 7.96E-01O rganic M atter 6.72E-01 7.50E+01 4.36E+02 1 28E+02 1.83E+02 <0.019 3.89E +00 5.31E-01

Residual 6.72E-01 7.50E+01 3.83E+04 2.96E+02 3.82E+02 6.90E +00 1.01E+02 2.24E+01Exchangeable 5.65E-01 7.50E+01 2.45E+02 5.34E+02 <0.124 <0.019 1.02E+01 3.01 E+00

Carbonate 5.65E-01 7.50E+01 5.35E+02 1.02E+02 5.I9E+01 <0.019 3.80E +00 2.30E +00Fe, Mn O xides 5.65E-01 7.50E+01 4.60E+02 4.84E+01 2.83E+01 <0.019 6.81E +00 8.85E-01Organic M atter 5.65E-01 7.50E+01 5.44E+02 1.36E+02 2.22E+02 <0.019 <0.012 4.42E -0I

Residual 5 65E-01 7.50E +0I 5.13E+04 3.50E+0I 5.76E+02 9 .1 1E+00 1 .I9E + 02 1.50E+0IT o ta l D igestions

C o re ID E x tra c tio n W t (B) D e p th (cm ) Al A g As A u B B aC o re SI 1.41E+00 2.50E+OI 3.41E+04 5.61E+02 2 .1 1E+03 1.55E+01 1 83E +02 3.83E+01

8.15E-01 2.50E+01 7.20E+04 6.77E+02 3.15E+03 2.92E+01 3.73E+02 7.33E+011.23E+00 5.00E+01 2.99E+04 4.33E+01 1.32E+03 1.28E+01 1 69E+02 5.54E+011.42E+00 5.00E+01 2.51E+04 4 74E+02 8.29E+02 ! 23E+01 I.40E + 02 4.96E+015.44E-01 7.5OE+01 6.92E+04 1 51E+03 1.56E+03 23 2 E + 0 1 3.91 E+02 1.23E+025.43E*0I 7.50E+01 6.51E+04 2.02E+03 1.57E+03 2.37E+01 3.52E+02 1.19E+02

C o re S2 5.75E-01 2.50E+01 6 .1 1E+04 7.00E+02 5.07E+02 2.70E+01 3.33E+02 9.46E+014.79E-01 2.50E +0I 7.67E+04 1.71E+03 6.42E+02 3.81E+01 4.25E+02 1.31E+024.62E-01 5.00E+01 7.16E+04 3.05E+03 9.00E+02 3.43E+01 3.95E+02 1.15E+024 93E-01 5.OOE+Ol 6.88E +04 1.70E+02 1.23E+03 3 .10E + 0I 3.91E+02 1.03 E+025.06E-01 7.50E+0I 6.67E+04 2.52E+03 6.72E+02 3.18E+01 3.83E+02 1.39E+025.19E-01 7.50E+01 6.36E+04 3.54E+03 7.34E+02 2.62E+01 3.56E+02 1.37E+02

C o re S3 1 39E+00 2.50E+01 1.94E+04 3.96E+02 1.97E+02 1.01E+01 1.24E+02 3.02E+011.39E+00 2.50E+01 2.42E +04 2.26E+03 4.88E+02 8.62E +00 1.32E+02 S.07E+011.44E+00 2.50E +0I 2.32E +04 1.58E+03 3.81E+02 9.87E +00 I.32E + 02 5.00E+011.21E+00 5.OOE+Ol 2.89E +04 4.22E+03 9 41 E+02 I.44E+01 165E + 02 3.38E+011.39E+00 5.OOE+Ol 2.34E+04 1.40E+03 8.00E+02 9.52E + 00 1.32E+02 2.04E+0I9.98E-01 7.50E+01 3.47E+04 2.08E+03 3.07E+03 1.3OE+0I 1.72E+02 9.19E +0!7.50E-01 7.50E+01 5.15E+04 1.I2E+ 03 3.91 E+03 2.05E+01 2.53E +02 1.41E+02

C o re S4 7.25E-01 2.50E+01 5.40E+04 2.69E+03 1.26E+03 2.52E+01 3.07E+02 6.45E+017.25E-01 2.50E+01 4.42E +04 2.42E+03 1.07E+03 1.95E+01 2.40E +02 3.71E+015.63E-0I 5.00E+01 5.53E+04 3.84E +02 2.80E+03 2.84E+01 3.13E +02 4.80E+014.89E-01 5.OOE+Ol 6.75E +04 4 73E+03 3.17E+03 2.76E+01 3.84E+02 8.39E+015.63E-01 7.50E+01 6.15E +04 7.35E+03 I.48E+03 2.69E+01 3.35E+02 1 0 6 E + 0 25.27E-0I 7.50E+01 6.24E+04 7.78E+03 1.47E+03 2.80E+01 3.58E +02 9.11E+015.45E-0I 1 00E +02 6.21E+04 7.41E+03 2.19E+03 2.61E+01 3.35E+02 8.83E+015.40E-01 1.00E+02 6.50E+04 4.98E+03 1.98E+03 3.22E+01 3.52E+02 9.21E+01

C o re S5 6.49E-01 2.50E+01 5.16E+04 4.68E+03 2 46E+03 2.21E+01 2.79E +02 9.59E+015.99E-01 2.50E+01 6.15E+04 3.48E-^03 2.88E+03 2.48E+01 3.32E+02 1.11E+026 4 9 E -0 ) 5 OOE+Ol 4.65E +04 <0.014 3.93E+03 1.93E+01 2.62E+02 3.99E+016.73E-01 5.00E+01 5 79E+04 1.20E+03 4.21 E+03 2.32E+01 3.30E+02 8.02E+016.72E-01 7.50E+01 5.12E+04 3.22E+03 2.29E+03 2.21E+01 2.74E+02 7.05E+015.65E-01 7.50E+01 5.81E+04 2.68E+03 2.12E+03 2.52E+01 3.16E+02 8.58E+01

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C o re ID E x tra c tio n Be Bi C a C d C o C r C u FeC o re SI Exchangeable <0.0001 1.50E+02 3.00E+03 <0.006 4.69E +00 5.84E+00 3.36E+00 2.77E+01

C arbonate 1.77E-01 8.41E+01 3.02E+04 <0 00 6 5.79E+01 1.42E+00 3.63E+00 2.31E+02Fe, M n Oxides 1 77E-01 <0.422 7.90E+02 <0.006 8.S4E+01 4.87E +00 <0.012 1 94E+03O rganic M atter 8.85E-02 <0.422 9 .1 1E+02 <0.006 2.42E +02 2.30E+00 1.29E+02 4.20E +02

Residual 6.19E-01 <0.422 7.28E+03 • 1.33E+00 4.00E + 0I 1.42E+02 2.18E+01 3.65E+04Exchangeable <0.0001 9.91E+01 3.36E+03 <0.006 4.42E +00 5.49E+00 I.95E + 00 3.62E+01

C arbonate 8.85E-02 6 .50E + 0I 2 .80E+04 <0.006 5.65E+01 <0.016 3.36E+00 2.37E +02Fe, M n O xides 1.77E-01 <0.422 8.49E+02 <0.006 7.75E +0I 4.51E+00 1.33E+00 1.77E+03O rganic M atter 8.85E-02 <0.422 6.I7E + 02 <0.006 2.34E +02 1.86E+00 1.21E+02 2.84E+02

Residual 6.19E-01 <0.422 6.69E+03 1.24E+00 3.86E+01 1.31 E+02 2.06E+01 3.34E+04Exchangeable <0.0001 1.04E+02 3.88E+03 <0.006 1.97E+01 4.51E+00 <0.012 2.99E+01Exchangeable <0.0001 1.09E+02 1 IIE + 0 3 <0.006 I.07E + 0I 4.51E+00 1.15E+00 1.79E+01

C arbonate <0.0001 4 .23E + 0I 5.78E+03 <0.006 9.47E+01 <0.016 4.34E +00 1.73E+02C arbonate <0.0001 <0.422 2.29E+03 <0.006 4.27E+01 <0.016 3.36E+00 2.73E+02

Fe, Mn O xides <0.0001 <0.422 2.72E+02 <0.006 2.73E+01 I.68E + 00 < 0.012 1.52E+03Fe, M n O xides <0.0001 <0.422 I.27E+02 <0.006 7 .43E+00 <0.016 <0.012 3.07E+02O rganic M atter 8 85E-02 <0.422 5.61E+02 <0.006 1.88E+02 2.74E +00 1.44E+02 8.14E+02O rganic M atter <0.0001 <0.422 6.90E+02 < 0 006 2.12E+01 < 0.016 1.03E+01 2.34E +02

Residual <0.0001 <0.422 1.01E+04 8.85E-01 2.37E+01 9.82E+01 1.02E+01 2.32E +04E xchangeable <0.0001 8.49E+01 1.32E+03 < 0 006 9.03E +00 1.68E+00 <0.012 1.64E+01

C arbonate <0.0001 8.58E+OI 9.38E+03 < 0.006 9.9IE + 01 2 .2 IE + 0 0 4.69E +00 1.40E+02Fe, M n O xides <0.0001 < 0.422 6.61 E+02 <0.006 4.88E+01 1.86E+00 1.06E+00 1.69E+03O rganic M atter <0.0001 <0.422 1.33E+03 <0.006 1.06E+02 <0.016 7.37E+01 2.91E+02

Residual <0.0001 <0.422 1.00E+04 9 .73E -0I 4.77E+01 8.63E +0I 2.20E+01 2.32E+04Exchangeable <0.0001 1.20E+02 1.69E+03 <0.006 5.75E+00 5.13E+00 <0.012 1.28E+02

C arbonate <0.0001 7.48E+01 1.32E+04 <0.006 3.02E+01 1.68E+00 4.07E +00 3.44E+02Fe, M n Oxides <0 0001 < 0 4 2 2 5.52E+02 <0.006 2.31E+01 1.42E+00 1.50E+00 4.26E +02O rganic M atter 8.85E-02 <0.422 1.64E+03 <0.006 8.14E+01 1.50E+00 7.95E+01 3.57E+02

Residual 1.77E-01 <0.422 1.06E+04 1.I5E + 00 6.33E+01 9.29E+01 3.42E+01 2.50E+04Exchangeable <0.0001 1.08E+02 1.62E+03 <0.006 5.31E+00 5.04E+00 1.06E+00 1.40E+02

C arbonate 8.85E-02 9.20E+01 1.45E+04 <0.006 3.27E+01 1.68E+00 5.84E+00 3.38E+02Fe, M n Oxides <0.0001 <0.422 6.12E+02 <0.006 2.89E+01 1.50E+00 1.68E +00 4.66E +02Organic M atter <0.0001 <0.422 1.35E+03 <0.006 7.97E+01 < 0 0 1 6 7.26E+01 2.13E+02

Residual <0.0001 <0.422 1.06E+04 1 06E +00 63 5 E + 0 1 9.20E+01 2.86E+OI 2.42E+04C o re ID E x tra c tio n Be Bi C a C d C o C r C u FeC o re S2 Exchangeable <0,0001 <0.422 6.24E+03 <0.006 1 40E +0I <0.016 1.85E+01 1.28E+02

C arbonate <0.0001 <0.422 4.64E+03 <0.006 4.00E+01 <0.016 2.05E+01 2.18E+02Fe, M n Oxides <0.0001 <0.422 4.11 E+02 <0.006 5 9 5 E + 0 I 1.59E+00 3.54E +00 4.06E +02O rganic M atter 8.85E-02 <0.422 1.41 E+03 <0.006 4 I2E + 0I <0.016 3.60E+01 2.33E+02

Residual <0.0001 <0.422 1.26E+04 1.15E+00 5.35E+OI 9.91 E+01 1.74E+OI 2.62E +04Exchangeable <0.0001 <0.422 5.93E+03 <0.006 1.24E+01 <0.016 1.69E+01 1.02E+02

C arbonate <0.0001 <0.422 3.98E+03 <0.006 3 .92E + 0I < 0 0 1 6 1.86E+01 2 .18E+02Fe, M n O xides <0.0001 <0.422 4.96E+02 <0.006 6.88E+01 1.77E+00 3.80E+00 4.67E +02O rganic M atter 8.85E-02 <0.422 1.31E+03 < 0 006 4.51E+01 1.42E+00 3.99E+01 2.96E +02

Residual* <0.0001 <0.422 1.23E+04 1.15E+00 4 .86E + 0I 9.38E+01 1.50E+01 2.54E +04Exchangeable <0.0001 I.21E + 02 1.79E+03 <0.006 8.23E+00 5.75E+00 <0.012 2.06E+02

C arbonate 8 85E-02 9.38E+01 1.36E+04 <0.006 4 .42E + 0I 2.48E +00 5.57E+00 3.44E +02Fe, Mn O xides <0.0001 <0.422 5.60E+02 < 0.006 4 .20E + 0I 2.39E +00 1.86E+00 5.02E+02O rganic M atter 8 .85E -02 <0.422 1.28E+03 < 0.006 6 .34E + 0I <0.016 4.72E+01 2.48E +02

Residual <0.0001 <0.422 I .I IE + 0 4 1.06E+00 4.58E +0I 9.38E+01 3.12E+01 2.51E +04Exchangeable <0.0001 1.20E+02 1 78E+03 < 0.006 8.58E +00 5.57E+00 1.33E+00 1.76E+02

C arbonate < 0.000t 1.09E+02 1.32E+04 <0.006 4.09E +0I 2.57E +00 5 .3 tE + 0 0 3.09E +02Fe, M r O xides 8.85E-02 <0.422 1.14E+03 <0.006 5.81E+01 < 0.016 4.75E+01 2.44E+02O rganic M atter <0.0001 <0.422 6 6 1 E + 0 2 <0.006 4.34E+01 2.12E +00 < 0.012 4.62E+02

Residual <0.0001 <0.422 1.06E+04 9.73E-01 3.67E+01 8.66E+01 1.82E+01 2.27E+04Exchangeable <0.0001 <0.422 6.44E+03 < 0.006 • 8 .94E+00 < 0.016 7.17E +00 1.04E+02

C arbonate <0.0001 <0.422 I.29E + 04 <0.006 2.78E+01 < 0.016 3.80E +00 2.25E +02Fe, M n O xides <0.0001 <0.422 4.89E+02 <0.006 2.89E+01 2.92E + 00 <0.012 5.08E+02O rganic M atter 8.85E-02 <0.422 1.25E+03 <0.006 6.65E+01 1.59E+00 4.37E+01 2.29E +02

Residual <0.0001 <0.422 9.82E+03 9.73E-01 4.65E+01 1.08E+02 3.65E+01 2.28E +04Exchangeable <0.0001 1 04E + 02 2.04E+03 <0.006 4.96E +00 5.57E+00 <0.012 1.29E+02

C arbonate <0.0001 1.03E+02 1.42E+04 <0.006 2.80E+01 2.30E +00 3.72E +00 2.25E+02Fe. M n O xides <0.0001 <0.422 4.85E+02 <0.006 3.02E+01 3.01E+00 1.86E+00 4.65E +02Organic M atter <0.0001 <0.422 1.03 E+03 <0.006 6.48E+01 1.42E+00 5.26E+01 2.79E+02

Residual <0.0001 <0.422 1.16E+04 I.15E + 00 5.40E+01 1 19E+02 5.71E+01 2.58E +04C o re ID E x tra c tio n Be Bi C a C d C o C r C u FeC o re S3 Exchangeable <0.0001 1.11E+02 2.81E+03 <0.006 2.88E+01 5.04E +00 7.96E+00 2.10E+02

Exchangeable <0.0001 9.38E+01 1.04E+03 <0.006 1.39E+0I 5.31E + 00 3.63E+00 1 63E+02C arbonate <0.0001 5 30E+01 4.02E+03 <0.006 5.97E+01 1.77E+00 2.OOE+Ol I.65E + 02C arbonate <0.0001 <0.422 2.66E+03 < 0 006 4.51E+01 <0.016 1 13E+01 2.37E +02

Fe, M n O xides <0.0001 <0.422 3.25E+02 <0.006 5.80E+01 1.50E+00 2.48E +00 8.85E+02Fe, M n Oxides <0.0001 <0.422 1.90E+02 <0.006 1 86E+01 <0.016 1.59E+00 2.96E+02O rganic M atter 8 .85E -02 <0.422 7.20E+02 <0.006 1.23E+02 3.IO E+00 1.70E+02 9.38E+02O rganic M atter <0.0001 <0.422 7.42E+02 < 0.006 1.39E+01 <0.016 1.53E+01 2.47E+02Exchangeable <0.0001 <0.422 5.31E+03 <0.006 2.40E+01 < 0 0 1 6 1.14E+01 1.72E+01

C arbonate 8 85E -02 <0.422 5.00E+03 < 0.006 9 2 0 E + 0 I <0.016 3 20E+OI 1.25E+02Fe, M n O xides 8.85E -02 <0.422 1.04E+03 <0.006 1.38E+02 2.21E +00 8.85E +00 1.58E+03Organic M atter 8 .85E -02 < 0.422 2.C3E+03 <0.006 7.74E +0I <0.016 9 .56E + 0I 2.55E +02

Residual 1.77E-01 <0.422 7.21E+03 7.96E-01 5.01E+01 7.21E+01 3.53E+01 1.86E+04Exchangeable <0.0001 <0.422 6.16E+03 <0.006 9.64E + 00 <0.016 1 17E+01 8 .2 IE + 0 I

C arbonate 8.85E-02 <0.422 1.98E+04 <0.006 2.56E+01 <0.016 6.28E +00 2.44E+02Fe, Mn O xides 8 .85E -02 <0.422 7.06E+02 <0.006 2.03E+OI 1.42E+00 < 0.012 5.23E+02O rganic M atter 8 .85E -02 <0.422 1 59E+03 <0.006 1.46E+02 <0.016 1 19E+02 2.98E+02

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Residual 2.65E-0I <0.422 4.39E+03 I.06E + 00 6.16E+01 9.20E+01 4.15E+01 2.40E +04Exchangeable <0.0001 7.79E+01 1.64E+03 <0.006 4.25E +00 4.96E+00 <0.012 1.27E+02Exchangeable <0.0001 1.03E+02 1.32E+03 <0.006 3.89E +00 5.40E+00 < 0.012 1.46E+02

C arbonate 8.85E-02 3.84E+01 1.64E+04 <0.006 I.74E+01 2.12E+00 2.74E+00 2.20E +02C arbonate <0.0001 <0.422 2.88E+03 <0.006 2.08E+01 <0.016 4.51E + 00 2.85E+02

Fe, M n O xides <0.0001 <0.422 1.47E+02 <0.006 7.34E+00 <0.016 1.77E+00 3.51E +02Fe, M n O xides <0 0001 < 0 4 2 2 l.OOE+02 <0.006 2.39E +00 1.59E+00 < 0 012 2.39E +02O rganic M atter 8 85E-02 <0.422 3.60E +02 - <0 .006 2.07E+02 2.04E+00 1.65 E+02 8.15E +02O rganic M atter <0.0001 <0.422 5.63 E+02 <0.006 1.93E+01 <0.016 I.04E+01 2.04E +02

Residual 2.65E-01 <0.422 3.80E+03 7.96E-01 1.03E+0! 7.01E+O1 2.65E +00 1.90E+04Exchangeable <0.0001 <0.422 1.41E+04 < 0 006 1.68E+00 <0.016 < 0 0 1 2 1.79E+01

C arbonate <0.0001 <0.422 1.26E+04 <0.006 4.79E+01 <0.016 <0.012 I.09E+01Fe, M n O xides 1.77E-01 <0.422 3.79E+03 < 0 006 S.57E+00 5.04E+00 I 24E + 00 1 34E+03O rganic M atter 1.77E-01 < 0 4 2 2 8.84E +02 6.19E-01 3.54E+02 9.56E+00 3.36E+02 2.27E+03

Residual I.77E-01 5.34E+01 7.35E+03 <0.006 2.61E+01 7.54E+01 3.33E+01 1 49E +04Exchangeable <0.0001 9.56E+01 4.66E+03 <0.006 2.92E +00 4.51E +00 < 0 0 1 2 2.61E+01Exchangeable <0.0001 9.82E+01 2.43E+03 <0.006 2.39E+00 4.78E+00 < 0 0 1 2 I.05E+01

C arbonate 8.85E-02 5.I6E+01 2.72E+04 <0.006 5.34E+01 1.50E+00 2.30E + 00 I.58E + 02C arbonate 8.85E-02 <0.422 4.80E+03 < 0 006 7.03E+01 <0.016 2.48E +00 3.30E +02

Fe, M n O xides 1.77E-01 <0.422 5.68E+02 <0.006 2.34E+01 3.72E+00 <0.012 2.09E+03Fe, M n O xides <0.0001 <0.422 1.94E+02 <0.006 7.96E+00 <0.016 <0.012 4.42E + 02O rganic M atter 1.77E-01 <0.422 3.27E+02 6.19E-01 7.4 IE + 02 4.42E +00 4.36E +02 4.34E + 02O rganic M atter 8.85E-02 <0.422 3.48E+02 < 0.006 7.88E+01 1.68E+00 4.05E+01 2.24E +02

Residual 7.08E-01 <0.422 7.82E+03 5,3 IE-01 4.88E+01 2.02E+02 2.86E+01 2.59E +04E x tra c tio n Be Bi C a C d C o C r C u Fe

Exchangeable <0.0001 9.91E+01 1.53E+03 < 0.006 6.37E +00 5.66E+00 1.42E+00 1.49E+02C arbonate 8.85E-02 3.86E+01 1.33E+04 < 0.006 3.39E+01 1.50E+00 8.32E +00 9.03E +02

Fe, M n Oxides <0.0001 <0.422 7.57E+02 < 0.006 2 .1 1E+01 1.50E+00 1.15E+00 4.89E +02O rganic M atter <0.0001 <0.422 1.49E+03 <0.006 6.57E+01 < 0.016 5.57E+01 1.25E+02

Residual 1.77E-01 <0.422 6.65E+03 9.73E -0I 3.21E+01 3.94E+02 2 75E+01 2.42E+04Exchangeable <0.0001 1.17E+02 1.40E+03 <0.006 5.93E +00 5.84E+00 1 33E +00 1 25E+02

C arbonate 8 85E-02 4.48E+01 1.54E+04 <0,006 3.71E+01 1.77E+00 9.56E +00 9.82E +02Fe, M n Oxides <0.0001 <0.422 7.38E+02 <0.006 1.96E+01 1.77E+00 1.59E+00 4.95E +02O rganic M atter 8.85E-02 <0.422 1.50E+03 <0.006 6.52E+OI <0.016 6.14E+01 2.11 E+02

Residual 1.77E-01 <0.422 8.65E+03 1.33E+00 3.81E+01 I.00E + 02 2.14E+01 2.69E+04Exchangeable <0.0001 1.10E+02 1.28E+03 <0.006 5.13E+O0 5.22E+00 <0.012 7.71E+01

C arbonate 8 85E-02 4.68E+01 1.04E+04 <0.006 2.99E + 0I 1.42E+O0 5.31E +00 4.34E + 02Fe, M n O xides <0.0001 <0.422 6.43E+02 <0.006 1.50E+01 <0.016 1.59E+00 3.67E+02O rganic M atter 8.85E-02 <0.422 1.19E+03 <0.006 1.21E+02 <0.016 7.6OE+0I 2.27E +02

Residual 8.85E-02 <0.422 6.41 E+03 1.06E+00 5.49E +0I 8.94E+01 4 .51E + 0I 2 3 4 E + 0 4Exchangeable <0.0001 1.06E+02 1.21E+03 <0.006 8.05E +00 5.49E+00 1 33E+00 1 73E+02

Carbonate 8.85E-02 5.95E+01 I.00E + 04 <0.006 2.67E+01 < 0 0 1 6 4.51E + 00 3.49E+02Fe, M n O xides <0.0001 <0.422 6 5 1 E+02 <0.006 1.33E+01 <0.016 <0.012 3.73E+02O rganic M atter 8.85E-02 <0.422 1.19E+03 <0.006 1.31E+02 <0.016 6.OOE+Ol 1.42E+02

Residual <0.0001 <0.422 7.22E+03 9.73E-01 4.75E+01 8.25E+01 3.54E+01 2 3 0 E + 0 4Exchangeable <0.0001 1.I5E + 02 1 09E+03 <0.006 8.85E +00 5.57E+O0 1.15E+00 7.66E+01

C arbonate 8.85E-02 3.96E +0I 8.85E+03 <0.006 2.80E+01 <0.016 8.85E+00 3.43E +02Fe, M n O xides <0.0001 <0.422 5.57E+02 <0.006 I.12E+01 <0.016 < 0.012 3.09E+02O rganic M atter 8.85E-02 < 0.422 1 04E+03 <0.006 7.06E+01 <0.016 8.11E+01 2.31E+02

Residua! 2 .65E -0I <0.422 6.47E+03 6.19E -0I 6.84E+01 2.80E+03 1.07E+02 2.75E +04Exchangeable <0.0001 1.22E+02 9 3 8 E + 0 2 <0.006 7.52E +00 5.04E+00 <0.012 3.66E+01

C arbonate 8.85E-02 <0.422 8.74E+03 <0.006 2.51E+01 <0.016 8.05E+00 2.67E +02Fe, M n Oxides <0,0001 <0.422 6.34E +02 <0.006 I.I7E + 01 < 0 0 1 6 1.24E+00 3.16E +02O rganic M atter <0 0001 <0.422 9.11 E+02 < 0.006 3.91E+01 <0.016 3.74E+01 1.43E+02

Residual 1.77E-01 < 0 4 2 2 7.53E+03 9.73E-01 6.86E+01 I.12E + 02 4.72E+01 2.46E+04Exchangeable <0 0001 1.20E+02 1.26E+03 <0.006 8.67E +00 5.49E+O0 1.42E+00 9.64E+01

C arbonate 8.85E-02 <0,422 1.19E+04 < 0.006 3 81E+01 1.50E+00 9.38E + 00 3.92E+02Fe, M n Oxides <0.0001 <0.422 7.52E+02 < 0.006 1.62E+01 <0.016 1.06E+00 3.63E +02O rganic M atter <0.0001 <0.422 1.25E+03 <0.006 6.85E+OI <0.016 6.06E+01 9.38E+01

Residual I.77E-01 <0.422 8.46E+03 6.19E-01 8.46E+01 I.88E+03 6.55E+01 2.52E +04Exchangeable <0.0001 1.04E+02 1.34E+03 <0.006 8.23E+00 5.49E+00 I.33E + 00 1.05E+02

C arbonate 8.85E-02 <0.422 1.02E+04 <0.006 3.33E+01 < 0.016 7.79E +00 3.10E+02Fe, M n O xides <0.0001 <0.422 6.91 E+02 <0.006 1 60E+01 <0.016 < 0 0 1 2 3.56E +02O rganic M atter 8.85E-02 <0.422 1.06E+03 <0.006 7.55E+01 < 0.016 8.17E+01 1.42E+02

Residual 1.77E-01 <0.422 8.66E+03 1.06E+00 5.71E+OI 1.00E+02 6.68E+01 2.43E +04E x tra c tio n Be Bi C a C d C o C r C u Fe

E xchangeable <0.0001 1.43E+02 1.62E+03 <0.006 7.26E+00 6.28E +00 3 .I9 E + 0 0 1.05E+02C arbonate 8 .85E -02 5.72E+01 1.30E+04 <0.006 3.67E+01 1.50E+00 5.84E+00 3.25E+02

Fe, M n O xides <0.0001 <0.422 8.41E +02 <0.006 2.22E+01 I.59E+O0 1.33E+00 3.77E+02O rganic M atter 8.85E-02 <0.422 1.62E+03 <0.006 1 19E+02 2.12E + 00 6.44E+01 3.26E+02

Residual <0.0001 <0.422 1.01E+04 9.73E-01 3.77E+01 9.38E+01 1.50E+01 2.43E +04Exchangeable <0.0001 1.09E+02 1.71 E+03 <0.006 6.46E +00 5.04E+00 1.15E+00 9.11E+01

C arbonate 8.85E-02 5.51E+01 1.21E+04 <0.006 3.45E+01 <0.016 5.84E +00 2.96E +02Fe, M n O xides <0.0001 <0.422 1.I4E + 03 < 0.006 2 .7IE + 01 1.68E+00 <0.012 4.26E +02O rganic M atter 8.85E-02 <0.422 1.87E+03 <0.006 1.30E+02 1.77E+00 6.58E+O I 1.74E+02

R esidual <0.0001 <0.422 9.91E+03 9.73E-01 4 .13E+01 5.61E+02 2.36E+01 2.57E +04E xchangeable <0.0001 1.49E+02 1 56E+03 < 0.006 7.08E +00 6 .81E + 00 3 .I0 E + 0 0 1.19E+02

C arbonate 8.85E-02 6.25E+01 1.46E+04 < 0.006 3.34E+01 <0.016 3.72E +00 3 .43E+02Fe, M n O xides <0.0001 <0.422 1.00E+03 <0.006 I.73E+01 < 0 0 1 6 <0.012 3.84E+02O rganic M atter 8.85E-02 <0.422 1.34E+03 <0.006 2.27E +02 1.42E+00 9.64E+01 2 .85E+02E xchangeable <0.0001 1.49E+02 1.57E+03 <0.006 7.17E+00 6.46E +00 2.92E+00 1.03E+02

C arbonate 8.85E-02 6 .33E + 0I 1.48E+04 <0.006 3.44E+01 < 0 0 1 6 3.36E +00 3 .I9 E + 0 2Fe, M n O xides <0.0001 <0.422 6 72E+02 <0.006 1.68E+01 1.50E+00 <0.012 4.26E + 02O rganic M atter 8.85E -02 <0.422 1.25E+03 <0.006 2.28E +02 < 0 0 1 6 9.64E+01 1.38E+02

R esidual <0.0001 <0.422 8.29E+03 7.08E-01 8.66E+01 1.90E+03 5.45E+01 2.88E+04

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Exchangeable <0.0001 I.04E+02 1.52E+03 <0.006 7.87E+00 5.84E+00 I.68E + 00 9 73E+01C arbonate 8.85E-02 4.88E+01 1.21E+04 <0.006 3.75E+01 <0.016 7.70E+00 3.01E+02

Fe, Mn O xides <0.0001 <0.422 5.80E+02 <0.006 2 .00E+01 <0.016 <0.012 3.25E +02O rganic M atter 8 .85E-02 <0.422 I.19E+03 <0.006 1.04E+02 1.42E+00 9.56E+01 1.82E+02

Residual <0.0001 <0.422 7.97E+03 7.96E-0I 4.19E+01 7.95E+01 2.42E+01 19 7 E + 0 4E xchangeable < 0 0001 1.22E+02 1.50E+03 <0.006 7.96E+00 5.40E +00 1.95E+00 1.13E+02

C arbonate <0.0001 4.67E+01 I.24E + 04 <0.006 4.06E+O1 <0.016 8.58E+00 3.80E +02Fe, M n O xides <0.0001 <0.422 5.61 E+02 . <0 .006 2 .18E+01 <0.016 <0.012 3.27E+02O rganic M atter 8.85E-02 <0,422 1.27E+03 <0.006 1 .I6E + 02 <0.016 1.19E+02 2.00E +02

Residual 1 77E -0I <0.422 6.98E+03 9.73E-01 5.64E+01 1 40E+02 3.33E+01 2.34E +04T o ta l D igestions

C o re ID E x tra c tio n Be Bi C a C d C o C r C u FeC o re SI 1 15E+00 4.80E+01 2 .92E+04 1.86E+00 4.70E+02 1.40E+02 2.35E+02 3.62E+04

2.61E+00 8.99E+01 5.29E +04 3 .68E+00 6.68E+02 2.96E +02 3.96E +02 7.57E+046.08E-01 5.45E+01 2.80E +04 1.92E+00 4.51E +02 1 .23E+02 1.87E+02 3.35E +047.95E-0I <0.422 2 .22E+04 1.59E+00 3.64 E+02 1.02E+02 1.54E+02 2.74E+042.53E+00 <0.422 6 .71E+04 4 .37E+00 6.09E +02 2.69E +02 4.14E +02 7.22E+042.30E+00 <0.422 6.44E+04 4 .14E+00 5.87E+02 2.53E+02 3.89E+02 6.79E +04

C o re S2 2 .17E+00 <0.422 4.98E+04 3.48E+00 4.76E +02 3.15E +02 2.28E +02 6.63E +043 .I3 E + 0 0 <0.422 6.13E+04 4.18E+00 5.72E+02 3.05E+O2 2.71E+02 8.04E+04I.08E + 00 I.I5 E + 0 2 7.22E+04 4.33E +00 5.81E+02 2.76E+02 2.78E+02 7.89E+042.54E-01 <0.422 7 .13E+04 4.06E+00 5.79E+02 2.97E +02 2.92E +02 7.82E+042.22E+O0 1.79E+02 7.1 IE + 04 3.70E+00 5.36E+02 3.41 E+02 2.99E+02 7.16E+049.63E-01 <0.422 6.89E +04 3.61E+00 5.25E+02 3.1 IE + 02 3.23E+02 6.81E +04

C o re S3 8.98E-02 <0.422 8.19E+03 8 08E-01 2.87E+01 9.52E +02 2.69E+01 2.32E +048.08E-0I <0.422 I.94E + 04 1.53E+00 3.65E+02 9.43E+01 2.13E+02 2.60E +048.65E-01 5 77E+01 1 84E+04 1.38E+00 3.51E+02 9.35E+01 2.26E +02 2.51E +048.30E-01 5.84E+01 3.27E +04 1.66E+00 3.54E+02 1.15E+02 2.53E +02 3.25E +048.08E-01 <0.422 2.73E +04 1.35E+00 2.97E+02 9.61E+01 2.30E+02 2.75E+047.52E-01 1.55E+02 3.31E +04 1.38E+00 5.69E+02 2.04E +02 5.12E+02 3.19E +04I.17E+00 2.23E+02 4.93E +04 2.33E +00 8.15E+02 2.35E +02 7.30E+02 4.61E +04

C o re S4 I.04E + 00 <0.422 4.92E +04 3.97E+00 4.12E +02 2.17E +02 2 83E+02 5.95E+041.04E+00 <0.422 4.14E +04 3.28E+00 3.33E+02 1.74E+02 2.38E +02 5 04E+044.66E+00 1.49E+02 4.75E +04 3.11E +00 8.68E+02 2.20E +02 3.78E+02 6.42E +041.02E+00 I.96E + 02 5.94E+04 3.84E+00 9.95E+02 2.71E +02 4.25E+02 7.57E+041.33E+00 9.7IE + 01 4.09E +04 3 .1 1E+00 5.00E+02 2.51E +02 4.44E +02 6.47E +041.19E+00 1 09E+02 4.S1E+04 3.79E+00 5.31E+02 2.70E+02 4.29E +02 6.71E+041.15E+00 < 0.422 4.93E +04 3.21E+00 6.37E +02 2.66E +02 4.93E+02 6.76E +041.16E+00 <0.422 5.00E+04 3.70E +00 6.37E+02 2.78E +02 5.63E+02 7.15E+04

C o re S5 <0.0001 <0.422 5.76E+04 2.70E+00 5.82E+02 2.20E+02 2.54E+02 5.55E+042.09E-01 9.07E+01 6.78E +04 3.13E +00 6.94E+02 2.63 E+02 3.04E+02 6.44E +047 .7 IE -0 I 1.05E+02 4.95E +04 2.89E+00 9.23E +02 1.91 E+02 3.99E+02 5.53E+04<0.0001 1.22E+02 6 .11E+04 3.34E +00 9.71E+02 2.30E +02 4.34E+02 6.29E +041.86E-01 <0.422 5.06E+04 2.79E +00 5.86E+02 2.12E +02 4.75E+02 5.55E +044.42E-01 <0.422 5.62E+04 3.54E +00 6.06E+02 2.81E+02 4.66E+02 6.15E +04

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Core ID__________ Extraction Hg__________K__________ Mg_________ Mil_________Mo_________ Na_C o re SI Exchangeable <0.009 I.34E + 02 1 25E+05 2 I5E+01 8.05E+00 I.41E + 04

C arbonate <0.009 1.85E+02 2.34E+04 2.78E+02 <0.036 <0.1Fe, M n O xides <0.009 4.50E+01 8.94E+02 5 I3E+01 <0.036 < 0 1O rganic M atter 2 .65E+00 4.18E+01 7.57E+02 2 .13E+0I <0.036 1.89E+03

Residual 2.24E+01 2.45E +03 1.91E+04 7.87E+02 5.31E+00 3.62E+03Exchangeable 2.79E+01 1.52E+02 1.33E+05 2.50E+01 6.99E +00 1.68E+04

C arbonate 9.03E+00 I.70E + 02 2.41E+04 2.72E+02 <0.036 <0.1Fe, M n O xides <0.009 5 .21E +0I 9.38E+02 4.88E +0I <0.036 <0.1O rganic M atter <0.009 3.90E-H31 4.03E+02 1.72E+0I <0.036 1.25E+03

Residual 1 89E+0I 2.84E+03 1.74E+04 7.10E+02 4.34E +00 6.45E+03Exchangeable 2.27E+01 9.20E+01 1.15E+05 1.84E+0I 6.19E +00 2.04E+04Exchangeable 2 .36E+0I 5.33E+01 1.18E+05 1.34E+01 6.19E+O0 2.01E +04

Carbonate 1.36E+0I 8.28E+01 1.68E+04 1.81E+02 <0.036 <0.1C arbonate < 0 009 8.36E +0I 2.96E+03 5.46E+01 <0.036 <0.1

Fe, M n O xides <0.009 2.37E+01 2.59E+02 1.1 IE+01 <0.036 < 0 1Fe, M n O xides <0.009 2.29E +0I 8.78E+01 3.72E+00 <0.036 <0.1Organic M atter <0.009 3.24E+01 5.13E+02 1 85E+0I 4.25E +00 2.52E+03Organic M atter 7 .02E +0I 1.78E+01 1.68E+02 6.46E +00 <0.036 1.52E+02

Residual 1.28E+01 I.74E + 03 I.27E+04 5.25E+02 <0.036 6.20E +02Exchangeable 1.70E+01 2 .79E + 0I 5.57E+04 1.14E+01 3.54E +00 4.87E+03

C arbonate 1.75E+01 1.20E+02 5.41E+04 1.90E+02 <0.036 <0.1Fe, M n O xides <0.009 3.62E+01 1.69E+03 2.94E +0I <0.036 <0.1O rganic M atter <0.009 9 .1 IE + 0 0 4.26E+02 1.58E+01 <0.036 8.80E +02

Residual 1.15E+02 2.07E+03 1.26E+04 5.58E+02 3.63E +00 6.95E +02Exchangeable 2.I1E + 01 8.94E+01 1.24E+05 2.04E+01 6.64E +00 1.47E+04

C arbonate 9 .U E + 0 0 1.61 E+02 2.62E+04 1.19E+02 <0.036 <0.1Fe, Mn Oxides <0.009 3.97E +0I 5.91E+02 1.09E+01 <0.036 <0.1O rganic M atter <0.009 2.71E+01 4.88E+02 1.72E+01 <0.036 1.19E+03

Residual 1.50E+02 2.50E+03 1.35E+04 6.11E+02 <0.036 8.08E+02Exchangeable 2.22E+01 7.59E +0I 1.18E+05 1.96E+01 5.93E+00 1 41E+04

C arbonate <0.009 1.66E+02 2.12E+04 1.25E+02 < 0.036 <0.1Fe, M n O xides <0.009 3.75E+01 5.3 IE + 02 1 22E +0I < 0.036 <0 1O rganic M atter <0.009 1 63E +0I 3.75E+02 1 36E+01 < 0.036 1 I2E+03

Residual I.22E+01 2.80E+03 1.30E+04 5.83E+02 4.78E +00 1.13E+03C o re ID E x tra c tio n H r K M r M n M o N aC o re S2 Exchangeable 4.69E +00 6.95E+01 9.38E+03 4 .6 IE + 0 I <0.036 <0.1

Carbonate <0.009 6.72E+01 2.83E+03 4.58E+01 <0.036 <0.1Fe, M n O xides < 0.009 2.12E+01 2.00E+02 9.47E +00 <0 036 <0.1O rganic M atter 4.81E+01 2.28E+01 3.50E+02 1 37E+01 <0.036 7.03E +02

Residual 1 65E+01 2.50E+03 1 40E+04 7.51 E+02 <0.036 1.02 E+03Exchangeable 5 31E+00 6.48E+01 8.73E+03 4.30E+01 <0.036 <0 1

C arbonate <0.009 5.93E+01 2.05E+03 4.18E+01 <0.036 <0.1Fe, M n O xides <0.009 I 65E+01 2.36E+02 1.16E+01 <0.036 <0.1O rganic M atter < 0 009 2.34E+01 3.85E+02 1.55E+01 <0.036 9.73E +02

Residual 1.70E+01 2.34E+03 1.37E+04 7.35E+02 < 0 036 1 04E+03Exchangeable 2.13E +0I 6 .95E +0J 1.26E+05 2.03E+01 6.72E +00 1.50E+04

C arbonate <0.009 1.53E+02 3.26E+04 1.09E+02 <0.036 <0.1Fe, M n O xides <0.009 3.08E+01 8.19E+02 1.36E+01 <0.036 <0.1O rganic M atter < 0 009 3 18E+01 3.34E+02 1.31E+01 <0.036 9.91 E+02

Residual 1.34E+01 2.03E+03 1 31E+04 7.36E+02 <0.036 7.09E+02Exchangeable 2.96E+01 6.03E+01 1.25E+05 2.0IE + 01 6 .28E + 00 1.53E+04

Carbonate <0.009 1.47E+02 3.50E+04 1.04E+02 <0.036 <0.1Fe, M n Oxides <0.009 3.20E+01 3.13E+02 1.I4E+01 <0.036 ' 1.19E+03Organic M atter <0.009 3.92E+01 I.14E+03 1.33E+01 <0.036 <0 1

Residual 1.39E+01 2.36E+03 1.I9E + 04 6.71 E+02 <0.036 7.53E+02Exchangeable 5 .13E+00 8.18E +0I 8.48E+03 4.12E+01 <0.036 <0 1

C arbonate 1.57E+01 5.90E+01 1.47E+03 9.56E+01 <0.036 <0.1Fe, M n O xides <0.009 3.45E+01 2.11 E+02 I.I9E + 01 <0.036 <0.1O rganic M atter <0.009 5.07E+OI 2.99E +02 I.I0E + 01 <0.036 7.00E+02

Residual 1.40E+0I 2.22E+03 1.2IE + 04 6.27E+02 < 0.036 6.86E +02Exchangeable 2.25E+01 1.19E+02 1.23E+05 1.70E+01 6.28E+O0 I.45E + 04

Carbonate < 0.009 1.55E+02 3.56E+04 1.02E+O2 3.19E +00 < 0 1Fe, Mn O xides 1.06E+00 4.07E+01 5.70E+02 1.11E+0I < 0.036 < 0 1O rganic M atter <0.009 1.57E+01 2.78E+02 1.10E+01 < 0.036 6.82E +02

Residual 1.33E+01 3.19E+03 I.40E + 04 7 .19E+02 < 0.036 9.91E +02C o re ID E x tra c tio n H r K M r M n M o N aC o re S3 Exchangeable 4.6IE + 01 7.80E+01 1.I4E + 05 5.77E +0I 5.93E +00 1 96E +04

Exchangeable 2.19E+OI 3.37E+OI 1.23E+05 2.04E+01 6.64E + 00 2.19E +04C arbonate 9 29E+00 4.03E+01 1.9IE + 04 6 I8E+01 <0.036 <0.1Carbonate <0.009 5.22E+01 2 .2IE + 03 2.79E+01 <0.036 <0 1

Fe, Mn O xides <0.009 3.03E +0I 2.01E+02 I.05E+01 <0.036 <0.1Fe, M n O xides <0.009 2.83E+01 I.02E + 02 4 6 0 E + 0 0 <0.036 <0.1O rganic M atter <0 .009 3.73E+OI 5.94E+02 2.05E+01 3 .19E+00 2.62E+03O rganic M atter <0 .009 1 82E+01 1.65E+02 6.55E + 00 <0.036 2.05E +02Exchangeable 6 90E+00 6.46E+01 6.52E+03 8 53E+01 <0.036 <0.1

C arbonate <0.009 5.92E+01 2. II E+03 8.49E+01 <0.036 <0.1Fe, Mn O xides <0 009 3.13E+OI 3.91E+02 2.90E+01 <0.036 < 0 1O rganic M atter <0.009 2.47E+01 6.48E+02 1 81E+01 <0.036 1.07E+03

Residual 2.43E+01 2 33E+03 9.56E+03 4.35E +02 <0.036 7.96E+02Exchangeable 3.89E +00 6 .I8E + 01 6.90E+03 4.57E+01 <0.036 <0.1

C arbonate <0.009 4.56E+01 1.70E+03 1.83E+02 < 0.036 <0.1Fe, M n Oxides <0.009 1.74E+01 2.47E+02 I.59E+01 < 0.036 <0 1O rganic M atter <0 .009 9.56E +00 4.77E+02 2.23E+01 < 0.036 7.32E+02

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C o re I P

Residual 1.42E+01 1.02E+03 1.26E+04 4.78E+02 5 8 4 E + 0 0 4.80E +02Exchangeable 2.23E+01 3.57E+01 1.17E+05 1.31E+01 6.72E+00 2.07E+04Exchangeable 2.14E+01 2.29E+01 1.24E+05 1.19E+01 6.37E+00 2.15E+04

C arbonate 3.45E +00 4.42E+01 8.94E+03 1.41 E+02 <0.036 <0.1C arbonate < 0.009 5.34E+01 1.31E+03 4.05E+01 <0.036 <0.1

Fe, M n Oxides < 0.009 2.65E+01 1.43E+02 5.84E+00 <0 036 <0 1Fe, Mn Oxides <0.009 2 29E+01 1.19E+02 4 .5 IE + 0 0 <0.036 <0 1O rganic M atter <0.009 2.24E+01 5.59E+02 I.42E+01 6.28E+00 4.24E+03O rganic M atter <0.009 1.24E+01 I.43E+02 5.57E+00 <0.036 5 .I5E + 02

Residual 8 75E+01 9.47E+02 I.O0E+04 3.85E+02 <0.036 3.19E+02Exchangeable 6.64E +00 1.47E+02 7.20E+03 5.22E+01 <0.036 <0.1

C arbonate 9 73E-01 8.09E+01 2.96E+03 1.25E+02 <0.036 <0.1Fe, Mn Oxides <0.009 4.82E+01 7.44E+02 5.76E+OI <0.036 <0 1O rganic M atter <0.009 6.10E+01 1.25E+03 5.66E+01 <0.036 2 40E+03

Residual 9 .47E + 00 2.24E+03 8.76E+03 4.36E+02 <0.036 8.57E+02Exchangeable 2.44E+01 1.01 E+02 1.16E+05 3.75E+01 6.19E+00 2.04E+04Exchangeable 2.37E+01 5.05E+01 1.25E+0S 2.05E +0I 6.55E+00 2.21 E+04

C arbonate <0.009 1.39E+02 1.91E+04 1.89E+02 < 0 0 3 6 <0.1C arbonate 7.70E+00 6.39E+01 2.57E+03 4.42E+01 <0.036 <0.1

Fe, M n O xides <0.009 4.69E+01 4.41 E+02 3.04E+01 <0.036 <0.1Fe, M n Oxides 3.36E+O0 2.96E+01 1.55E+02 7 .96E+00 <0.036 <0.1O rganic M atter 1.73E+02 4.88E+01 6.58E+02 2 96E+01 4.96E+00 1.60E+03O rganic M atter <0.009 2 .1 1E+01 2.66E+02 1.06E+01 <0.036 5.25E+02

Residual 2.90E+01 2.88E+03 1.22E+04 5.33E+02 <0.036 7.80E+02E x trac tio n H g K M r M n M o Na

Exchangeable 2.73E+01 7.49E+01 1.30E+05 1.38E+01 6.90E+00 2.06E +04C arbonate 3.86E+01 1.72E+02 4.52E+03 1.34E+02 <0.036 <0.1

Fe, M n O xides <0.009 2.88E+O I 3.31E+02 I.49E+01 <0.036 <0.1Organic M atter <0 .009 1.08E+0I 4 .41E+02 I.65E+01 <0.036 8.68E+02

Residual 1.05E+02 8.94E+02 I.29E + 04 4.86E+02 7.79E+00 4.98E +02Exchangeable 2.19E+01 7.64E+01 1.32E+05 1.24E+01 6.90E+00 2 .12E+04

C arbonate <0.009 2.00E +02 5.70E+03 1.51E+02 <0,036 <0.1Fe, Mn Oxides <0.009 4.42E+01 3.47E+02 1.36E+01 <0.036 <0.1Organic M atter < 0 .009 1.65E+01 5.11E+02 1 84E +0I <0.036 1.48E+03

Residual 1.81E+0I 1.27E+03 1.50E+04 5.49E+02 <0.036 8.25E+02Exchangeable 2.68E+01 7.41E+01 1.26E+05 9.73E+00 6.81E+00 1.96E+04

C arbonate <0.009 1.31E+02 3.00E+03 9.38E+01 <0.036 <0.1Fe, Mn O xides <0.009 3.45E+01 2.96E+02 I.09E+01 <0.036 <0.1O rganic M atter <0.009 1.96E+0I 4.38E+02 1 46E + 0I 3.89E+00 I.40E+03

Residual 1.57E+01 1.07E+03 1.33E+04 4.39E+02 <0.036 6.55E+02Exchangeable 2.83E+O I 7.13E+01 1.23E+05 I.06E+01 6.55E +00 I.88E+04

C arbonate <0.009 1 19E+02 4.32E+03 8.65E+01 <0.036 <0.1Fe, M n Oxides <0.009 3.57E+01 3.54E+02 1.16E+01 <0.036 <0.1O rganic M atter 1.15E+00 1.67E+01 4.09E+02 1.34E+01 3.89E+00 9.91 E+02

Residua] 1.42E+01 1.35E+03 I.30E + 04 4.65E +02 <0.036 6.45E+02Exchangeable 2.38E+01 7.75E+01 I.30E+05 8.58E+00 6.99E+00 2.07E+04

C arbonate <0.009 1.37E+02 4.80E+03 7.67E+01 <0.036 <0.1Fe, M n Oxides 3.10E +00 3.76E+01 2.57E+02 I.04E+01 < 0 0 3 6 <0.1Organic M atter 7.96E-01 1.06E+01 3.73E+02 I.39E+01 <0.036 8.70E+02

Residual 1.86E+0I I.82E + 03 1.08E+04 6.31 E+02 5.58E+01 3.62E+02Exchangeable 2.I7E + 01 6.49E+01 1.25E+05 7 .17E+00 6.64E+00 1.92E+04

C arbonate <0 009 1.39E+02 5.52E+03 7.50E+01 <0.036 <0.1Fe, Mn Oxides 4 .22E +0I 45 5 E + 0 1 2.94E+02 1.09E+0I <0.036 <0.1O rganic M atter 8 .14E + 00 4.78E +00 2.42E+02 6.81E + 00 <0.036 4.92E+02

Residual 1.57E+01 1.90E+03 1.30E+04 5.04E+02 <0.036 3.73E+02Exchangeable 2 .27E +0I 7.28E+01 1 27E+05 1.04E+01 6.72E+00 - 1.97E+04

C arbonate <0.009 1.44E+02 3.65E+03 1.04E+02 <0.036 <0.1Fe, M n O xides <0.009 4.98E+01 3.01E+02 1 34E+01 <0.036 <0.1Organic M atter 9.73E-01 1 42E+01 3.22E+02 1.12E+01 < 0.036 1.27E+02

Residual I.73E+01 2.50E+03 1.10E+04 5.85E+02 3.62E+01 5.97E+02Exchangeable 2.29E+01 7.84E+01 1.28E+05 1.09E+01 6.99E+00 2.06E+04

C arbonate <0.009 1.32E+02 3 92E+03 9 .U E + 0 I <0.036 <0.1Fe, Mn O xides 1.27E+01 4.32E +0I 3.00E+02 1.24E+01 <0.036 <0.1O rganic M atter <0.009 2.22E+01 3.24E+02 1.20E+01 <0.036 1.17E+03

Residual 1.73E+01 2 .48E+03 1.28E+04 5.44E+02 <0.036 6.34E+02E x tra c tio n H r K M r M n M o Na

Exchangeable 4.88E+01 8.03E+01 I.24E+05 1 13E+01 7.52E+00 1.88E+04C arbonate 1 18E+02 1.42E+02 1.03E+04 1.14E+02 <0.036 <0.1

Fe, M n Oxides <0.009 2.81E+01 5.34E+02 1.19E+0I <0.036 <0.1O rganic M atter <0 .009 3.21E +0I 6.05E+02 1.81E+01 <0.036 2.20E+03

Residual 1.45E+0I 1.77E+03 1.28E+04 5.49E+02 <0.036 7.87E+02Exchangeable 2 89E+01 7.I7E + 01 1.25E+05 I.17E + 0I 6.19E +00 1.95E+04

C arbonate 3 .03E +0I 1.32E+02 8.48E+03 I.03E + 02 <0.036 <0.1Fe, Mn O xides <0.009 3.05E+01 7.11 E+02 1.51E+0! <0.036 <0.1Organic M atter <0 .009 2.85E+01 5 58E+02 1.67E+0I <0.036 1.65E+03

Residual 1.50E+01 I.97E+03 1.27E+04 5 .82E+02 I.06E+01 8.16E+02Exchangeable <0 009 9.38E+01 1 33E+05 1.17E+01 8.05E+00 2.04E+04

C arbonate < 0.009 1.66E+02 5.83E+03 1.22E+02 <0.036 <0.1Fe, Mn O xides < 0.009 3.64E+01 4.72E+02 1.40E+01 <0.036 <0 1O rganic M atter < 0 .009 2.63E+01 4.72E+02 1 56E+01 3.63E+O0 1.43E+03Exchangeable <0.009 I.40E + 02 1.26E+05 1.I7E+01 7.87E+00 <0.1

C arbonate <0.009 I.59E + 02 5.10E+03 1.20E+02 <0.036 <0.1Fe, M n O xides <0.009 3.11E+01 3.42E+02 1.24E+01 <0.036 <0.1Organic M atter 7.61E +00 I.14E + 0I 4 02E+02 1.42E+01 3 .45E+00 1.06E+03

Residual 1.72E+01 9.56E +02 I.27E+04 6 .10E+02 3.80E+01 5 20E+02

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Exchangeable 2.29E+01 1 30E+02 1.29E+05 1.22E+0I 7.43E +00 <0.1C arbonate <0,009 1.46E+02 5.49E+03 1 08E+02 <0.036 <0.1

Fe, M n O xides <0.009 3 06E+01 2.85E +02 1.07E+01 <0.036 <0.1O rganic M atter <0.009 I.98E+01 3.85E+02 1.48E+01 <0.036 1.17E+03

Residual 1.21E+01 I.50E+03 1.03E+04 4 6 5 E + 0 2 <0.036 4.79E+02Exchangeable 2.4IE + 01 1.31E+02 1.25E+05 1.23E+01 7.26E+00 <0.1

C arbonate <0.009 1.42E+02 6.22E+03 1.I5E + 02 <0.036 <0.1Fe, M n O xides <0.009 1.94E+01 2.80E+02 1.07E+01 <0.036 <0.1O rganic M atter <0.009 3 OOE+Ol 3.93E+02 1.49E+01 <0,036 1 28E+03

Residual 1.58E+01 8.62E+02 1.24E+04 5.25E+02 <0.036 4 9 7 E + 0 2T o ta l D igestions

C o re (D E x tra c tio n H r K M r M n M o NaC o re S I 2 .67E +0I 2.26E+03 1.98E+04 9.82E+02 7.08E+00 2 59E+03

5.22E +0I 4.3OE+03 4.IO E+04 1.92E+03 1.37E+01 4.71E+032.46E+01 2.93E+03 1.82E+04 1.01E+03 5.57E+00 9.65E+022.16E+01 2.75E+03 1.50E+O4 8.36E+02 5.39E+00 8.39E+022.00E +02 8.20E+03 4 .1 1E+04 1.95E+03 < 0 0 3 6 I.81E+034.78E+02 8.05E+03 3.84E+04 I.81E+03 <0.036 1.71E+03

C o re S2 4 .1 1E+0I 5.72E+03 3.70E+04 1.88E+03 <0.036 1.74E+035.09E+01 8.35E+03 4.49E+04 2.36E+03 <0.036 2.32E+035.24E+01 6.79E+03 4.33E+04 2.42E+03 <0.036 2.05E+034.82E +0I 6 14E+03 4.24E+04 2.34E+03 <0 036 1.89E+034.69E+02 8.89E+03 4.00E+04 2.11E+03 <0.036 1 56E+034.24E+01 8.26E+03 3.90E+04 2.06E+03 <0.036 2.04E+03

C o re S3 1.43E+01 2.02E+03 I.I2 E + 0 4 5.40E+02 1.57E+01 5.32E+02I.65E+01 2.54E+03 1.50E+04 6.83E+02 <0.036 5.84E+021.66E+0I 2.60E+03 1.43E+04 6.56E +02 <0.036 5.66E+022.02E +0I 2.15E+03 1.85E+04 8.66E+02 6.53E +00 1.36E+031.98E+0I 1.27E+03 1.54E+04 7.25E+02 8.80E+00 6.13E+021.72E+01 3.70E+03 1.99E+04 1.01E+O3 6 6 4 E + 0 0 9.38E+023.15E+01 5.83E+03 2.92E+04 1.50E+03 8.83E+00 1.48E+03

C o re S4 4 .I9 E + 0 I 3.81E+03 3.48E+04 1.47E+03 1.17E+01 1.45E+033.05E+01 2.35E+03 2.97E+04 1.21E+03 8.28E +00 1.02E+034 .49E + 0I 2.95E+03 3.86E+04 1.39E+03 2.07E+01 9.73E+025.47E+01 5.19E+03 4.58E+04 1.69E+03 2.61E+01 1.59E+034.55E+01 7.31E+03 3.58E+04 I.55E+ 03 1.42E+01 1.15E+032.47E+02 6.43 E+03 3.70E+04 1.63E+03 1.28E+OI 1.14E+033.94E+01 6.28E+03 3.74E+04 1.63 E+03 2.18E+01 I.21E + 034.65E+01 6.39E+03 4.05E+04 1.68E+03 1.69E+01 1.28E+03

C o re SS 3.OOE+Ol 5.95E+03 3.I0E+O 4 1.52E+03 1.04E+01 1 46E+033.80E+01 6.76E+03 3.67E+04 1.77E+03 1.17E+01 1.78E+034.05E+01 2.29E+03 3.12E+04 1.34E+03 1.66E+0I 1.53E+034.3IE + 01 5.09E+03 3.56E+04 1.67E+03 1.89E+01 2.02E+033.28E+01 4.36E+03 3.02E+04 1.54E+03 1.10E+01 1.47E+033.76E+01 5.31 E+03 3.38E+04 1.73E+03 1.06E+01 1.72E+03

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Core IP__________ Extraction_________Ni__________ P__________ Pb_________ Rb__________S » Sb 1 Sc_________ Se__________SiC o re SI Exchangeable 1 01E+01 <0.268 <0.213 <0.32 3.24E+02 3.04E+OI 3.54E-01 2.09E+01 1.19E+02

C arbonate 6.95E+01 <0.268 1.91 E+02 <0.32 9.56E +02 2.24E +0I 1.42E+00 <0.213 1.93 E+02Fe, M n Oxides 5.60E+01 3.38E+OI 1.07E+02 3.80E+01 8.36E+01 6.97E+01 2.30E +00 <0.213 1.17E+03Organic M atter 7.43E+01 5.72E+0I 4.23E+01 <0.32 1.62E+03 <0.167 1.15E+00 <0.213 5 .1 IE + 0 2

Residual 7.70E+01 6.28E+02 3.85E+01 < 0.32 5.01 E+02 2 .IIE + 0 1 2.80E +0! <0.213 1.83E+01Exchangeable <0.059 <0.268 <0.213 <0.32 3.79E+02 4.35E +0I 7.08E-01 2.63E+01 1 .I4E + 02

C arbonate 5 .6 IE + 0 I <0.268 1.88E+02 <0.32 9.64E+02 2.52E+01 1.42E+00 <0.213 1 74E+02Fe, M n O xides 5.00E +0I 3.37E+01 1 02E+02 <0.32 7.49E +0I 6.21E+01 1.95E+00 <0.213 1 13E+03O rganic M atter 3 91E +0I <0.268 3.44E+01 <0.32 1.59E+03 <0.167 3.54E-01 <0.213 4.76E +02

Residual 7 .16E+0I 5.66E+02 3.31E+01 <0.32 4.58E+02 1 99E+OI 262E + 01 <0.213 2.65E+01Exchangeable <0 059 <0.268 < 0 2 1 3 <0.32 2.25E+03 <0.167 <0.002 2.28E+01 9.64E+01Exchangeable <0.059 <0.268 <0.213 < 0.32 2.97E+02 <0.167 <0.002 2.65E+01 5.68E+01

C arbonate 1.69E+01 <0.268 4.49E+0I < 0.32 2.50E+02 <0.167 6.19E-01 < 0 2 1 3 I.70E + 02C arbonate 6 .37E+00 <0.268 3.34E+01 4.06E+01 1.34E+02 <0.167 1.77E-01 < 0 2 1 3 1 34E+02

Fe, M n Oxides <0.059 1.68E+02 3.56E+01 <0.32 1.43E+02 <0.167 9.73E-01 <0,213 4.06E+O2Fe, M n O xides <0.059 3.25E+01 <0.213 <0.32 5.21E+OI <0.167 <0.002 <0.213 2 .1 8E+02O rganic M atter 5.84E +00 <0.268 4.13E+01 <0.32 2.72E+03 <0.167 4.42E-01 <0.213 5.94E+02O rganic M atter 9.56E +00 1.55E+02 <0.213 <0.32 3.72E+02 <0.167 4.42E-01 <0.213 3.97E+02

Residual 4.30E+01 3.35E+02 3.46E+01 < 0.32 6.11 E +02 <0.167 2.04E+01 <0.213 3.07E+01Exchangeable <0.059 <0,268 <0.213 <0.32 7.59E+02 <0.167 <0.002 <0.213 6.72E+01

C arbonate 1.99E+01 <0 268 4.38E+01 <0.32 1.09E+03 <0.167 I.77E-01 1.96E+01 1 19E+02Fe, M n O xides <0.059 I.98E + 02 5.42E+01 <0.32 2.04E+02 1 92E+01 6 19E-01 <0.213 4.24E +02O rganic M atter 1.31E+01 6.12E+01 3.11E+01 <0.32 1.61E+03 <0.167 1.77E-01 <0.213 2.10E+02

Residual 4.20E+01 2.83E +02 4.47E+01 <0.32 7.69E+02 <0.167 2.08E+O1 <0.213 2.49E+01Exchangeable <0.059 <0.268 <0.213 3.08E+01 2.75E+02 <0.167 <0.002 2.67E+01 2.32E +02

Carbonate <0.059 <0.268 7.25E+01 <0.32 4.72E+02 <0.167 7.08E-01 <0.213 2.68E +02Fe, M n Oxides < 0 0 5 9 <0.268 1.90E+01 < 0 32 <0.568 <0.167 4.42E-01 <0.213 3.47E+02O rganic M atter <0.059 1.31 E+02 4.52E+01 <0.32 1.30E+03 <0.167 2.65E-01 <0.213 2.76E+02

Residual 4.67E+O I 1.96E+02 4.43E+01 <0.32 8.57E+02 <0.167 2.32E+01 <0.213 1.75E+01Exchangeable <0.059 <0.268 <0.213 <0.32 2.58E+02 <0.167 1.77E-01 2.22E+01 2.45E+02

C arbonate 2.I9E + 01 <0.268 8.34E+01 <0.32 4.94E+02 <0.167 7.08E-01 <0.213 2.32E+02Fe, M n Oxides <0.059 <0.268 2.40E+01 3 .80E + 0I 7.54E+01 <0.167 5 31E-OI < 0 2 1 3 3.56E+02Organic M atter 1.17E+01 6 .77E + 0I 3.90E+01 3.39E +0I 1.22E+03 <0.167 1.77E-01 < 0 2 1 3 1.74E+02

Residual 4.54E+01 2.85E+02 4.93E+01 <0.32 9.64E+02 1.48E+01 2 .I9E + 01 <0.213 I.68E+01C o re ID E x tra c tio n Ni P P b R b S Sb Sc Se SiC o re S2 Exchangeable <0.059 <0.268 2.74E+01 < 0.32 5.76E+02 <0.167 2.65E-01 <0.213 1.81E+02

C arbonate 1.44E+0I <0.268 9.29E+OI < 0.32 2.67E+02 <0.167 5.31E-01 <0.213 2.11 E+02Fe, M n O xides 6.02E +00 <0.268 2.43E+01 4.36E+01 5 19E+01 <0.167 4.42E-01 <0.213 2.71 E+02O rganic M atter 1.45E+01 2.33E+02 <0.213 <0.32 5.15E+02 <0.167 7.08E-01 <0.213 2.45E+02

Residual 4 .65E + 0) 1.90E+02 2.51E+01 <0.32 6.14E +02 1.66E+0I 2.60E+01 <0.213 1.59E+01Exchangeable <0.059 <0.268 2.32E+01 <0.32 5.54E+02 <0.167 <0.002 <0.213 1.35E+02

C arbonate 1.36E+01 <0.268 9.03E+01 <0.32 2.31 E+02 <0.167 4.42E-01 <0.213 I.84E + 02Fe, M n O xides 8 94E+00 <0.268 2.66E+01 3.05E+01 7.16E+01 <0.167 5.31E-01 <0.213 2.72E+02Organic M atter <0.059 I.73E + 02 <0.213 <0.32 5.79E+02 <0.167 3.54E-01 <0.213 2.93E+02

Residual* 4.67E+01 1.94E+02 2.23E+OI < 0.32 6.08E+02 <0.167 2.52E+01 < 0 2 1 3 1.78E+01Exchangeable <0.059 <0,268 <0.213 <0.32 2.73E+02 <0.167 <0.002 2.26E +0I 3.18E+02

C arbonate 1 86E+01 <0.268 692E + 01 <0.32 4.70E +02 <0 167 6 .19E-01 < 0 2 1 3 2.96E+02Fe, M n O xides <0.059 <0.268 <0.213 < 0 3 2 6.93E+01 <0.167 4.42E-01 <0.213 4.26E+02O rganic M atter < 0 .059 1.73 E+02 < 0 2 1 3 <0.32 7.87E+02 <0.167 2.65E-01 <0.213 2.32E+02

Residual 4.41E+01 2.04E+02 3.83E+01 <0.32 7.02E+02 1.61E+01 2.36E +0J <0.213 2.17E+01Exchangeable < 0.059 <0.268 <0.213 <0.32 2.38E+02 <0.167 6 .19E-01 2.52E+01 3.53E+02

C arbonate 1.63E+01 <0.268 6.76E+01 <0.32 4.65E+02 <0.167 6.19E-01 <0.213 2.21E+02Fe, M n O xides <0.059 1.36E+02 <0.213 <0.32 7.49E+02 <0 167 2.65E-01 <0.213 2.27E+02O rganic M atter <0.059 <0.268 1.88E+01 3.85E+01 6.81E+01 <0.167 4.42E-01 <0.213 3.85E +02

Residual 3.90E+01 2.04E+02 2.93E+01 <0.32 5.95E+02 <0.167 2.27E+01 <0.213 231E + 01Exchangeable <0.059 <0.268 <0.213 <0.32 4.19E+02 <0.167 : <0.002 <0.213 1.27E+02

C arbonate 1.81E+01 <0.268 5.48E+01 <0.32 4.62E +02 <0.167 8.85E-01 < 0 2 1 3 1.34E+02Fe, M n O xides <0.059 <0.268 <0.213 < 0.32 5.12E+01 <0.167 4.42E-01 <0.213 4 30E+02O rganic M atter <0 .059 1.77E+02 3.23E+01 < 0.32 9.29E+02 < 0 167 1.77E-01 <0.213 2.18E+02

Residual 4.80E+01 2.60E+02 5.23E+01 < 0.32 7.87E+02 < 0 167 I.89E+01 <0.213 1.98E+01Exchangeable <0.059 <0.268 <0.213 < 0 3 2 2.35E+02 <0.167 1.77E-01 2.55E+O I 2.59E+02

C arbonate 1.98E+01 <0.268 4.58E+01 < 0.32 4.98E+02 < 0.167 5.3 IE-01 < 0 2 1 3 1.18E+02Fe, M n Oxides <0.059 <0.268 <0.213 <0,32 <0.568 <0.167 1.06E+00 <0.213 3.64E+02O rganic M atter <0 .059 1.30E+02 4.I8E + 01 <0.32 8.69E+02 <0.167 1.77E-01 <0 213 2 2 6 E + 0 2

Residual 5.47E+01 2.98E +02 5.26E+01 <0.32 1.11 E+03 1.58E+01 2.25E+01 < 0 2 1 3 3.58E+01C o re ID E x tra c tio n Ni P P b R b s ; S b i Sc Se SiC o re S3 Exchangeable < 0 0 5 9 <0.268 <0.213 <0.32 3.79E +02 1.72E+0I 4.42E-01 2.45E+01 3.03E+02

Exchangeable <0.059 <0.268 <0.213 <0.32 8.26E+01 <0.167 1 <0.002 2.59E+01 2.75E+02C arbonate 2.04E+OI <0.268 5.72E+01 <0.32 1.65E+02 <0 167 1.77E-01 <0.213 1.50E+O2C arbonate 1 03E +0I <0.268 2.34E +0I 3.99E+01 1.I8E + 02 <0.167 1.77E-01 <0.213 1.41 E+02

Fe, M n O xides 1.36E+0I 7 73E+01 2.80E+01 3 .99E + 0I 7.53E+01 <0.167 5.31E-01 <0.213 3.73E +02Fe, M n O xides <0.059 2.77E+01 < 0 213 <0.32 6.87E+01 <0.167 1.77E-01 <0.213 2.78E+02O rganic M atter <0 .059 <0.268 <0.213 < 0.32 1.57E+03 <0.167 5.3 IE-01 <0.213 6.50E+02O rganic M atter <0 .059 I.83E + 02 <0.213 3.84E+01 2.20E+02 <0.167 ( <0.002 <0.213 3.85E+02Exchangeable 8.76E +00 < 0.268 <0.213 <0.32 3 8 IE + 0 2 < 0.167 ( <0 .002 <0.213 9.56E+01

C arbonate 4.23E+01 <0.268 9.03E+01 <0.32 2.29E+02 <0.167 1 77E -0I < 0 213 1.07E+02Fe, M n Oxides 5.26E+01 1.48E+02 8.57E+01 <0.32 1.25E+02 1.99E+01 6.19E-01 < 0 2 1 3 4.61E +02O rganic M atter 8.32E+00 4.54E+01 < 0 2 1 3 3.03E+01 1.05E+03 <0.167 1.77E-01 < 0 2 1 3 2.65E +02

Residual 4.82E+01 2.31E+02 2.61E+01 < 0.32 6.49E+02 <0,167 1.73E+01 < 0 2 1 3 2.97E+01Exchangeable 5.84E+00 <0.268 3.23E+OI < 0.32 5.22E+02 <0.167 ( <0 .002 <0.213 1.25E+02

C arbonate <0.059 <0.268 1.3IE + 02 < 0.32 7.34E+02 <0 167 1.06E+00 <0.213 1.87E+02Fe, M n O xides <0.059 <0.268 3.49E+01 3.69E+01 7.03E+01 <0.167 6.19E-01 <0.213 3 94E+02O rganic M atter 2 .I9E + 01 9.91E+01 2.46E+01 <0.32 1.I3E+03 <0.167 I.77E-01 <0.213 2.90 E+02

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Residual 5.49E+01 2.1 1 E+02 2.85E+OI <0.32 4 .9 i t+ 0 2 < 0 .1 6 / 1.8 lfc+-Ul <0.213 3.45E+01Exchangeable <0.059 <0.268 <0.213 <0.32 2.63E+02 < 0.167 1.77E-01 2.I9E + 01 2.11 E+02Exchangeable <0.059 <0.268 <0.213 <0.32 9.29E+01 <0.167 <0.002 2.22E+01 2.58E +02

C arbonate 6 .19E+00 <0.268 8.34E+0I 3.24E+01 5.48E+02 <0.167 7 96E-01 <0.213 1.43E+02C arbonate <0.059 <0.268 2.94E+01 3.84E+01 1.47E+02 <0.167 4.42E-OI <0.213 2.44E+02

Fe, M n Oxides <0.059 <0.268 <0.213 <0.32 <0.568 < 0.167 2.65E-01 <0.213 3.23E+02Fe, Mn Oxides <0.059 <0.268 < 0 .2 13 3.31E+01 <0.568 < 0.167 1 77E-01 <0.213 2.91E+02Organic M atter 1.59E+01 <0.268 3.37E+01 3.54E+01 1.28E+03 < 0.167 5.31 E-01 <0.213 5.55E+02Organic M atter < 0 0 5 9 1.75E+02 <0.213 4 .19E + 0I 1.81 E+02 < 0.167 <0.002 <0.213 2.80E+02

Residual 3.15E+01 1.50E+02 <0.213 <0.32 2.19E+02 < 0.167 1 50E+01 <0.213 3 .1 1E+01Exchangeable < 0 0 5 9 <0.268 <0.213 < 0 3 2 1.14E+03 3.37E+0I <0.002 <0.213 4.47E+01

C arbonate 1.49E+-01 <0.268 1.29E+02 <0.32 6.16E+02 <0.167 1.77E-01 <0.213 2 .I9 E + 0 2Fe, M n O xides <0.059 6.55E +0I 1.57E+02 <0.32 4.84E+02 3.23E+OI 2.21E +00 <0.213 9.20E+02O rganic M atter <0.059 <0.268 1.50E+02 3.51E+01 6.61 E+03 < 0.167 1.24E+00 <0.213 1 29E+03

Residual 3.58E+01 2.73 E+02 4 .57E + 0I <0.32 6.44E+02 <0.167 I.24E + 0I <0.213 1.50E+01Exchangeable <0.059 <0.268 <0.213 <0.32 1.01 E+03 3.33E+OI <0.002 2.65E+01 6.12E+01Exchangeable <0.059 <0.268 <0.213 <0.32 2.51 E+02 1.94E+01 <0.002 2.37E+01 6.26E+01

Carbonate 4.75E+01 <0.268 1.43E+02 <0.32 8.83E+02 <0.167 4.42E-01 <0.213 2.07E+02C arbonate 2.54E+01 <0.268 6.49E+01 4 .89E + 0I 2.12E+02 <0.167 7.08E-01 <0.213 2.07E+02

Fe, Mn Oxides <0.059 6.90E+OI 7.30E+01 <0.32 1.32E+02 5.85E+01 2.04E+00 <0.213 9 0 3 E + 0 2Fe, Mn Oxides <0.059 5.04E+01 2 I4E + 0I 3.54E+01 6.66E+01 <0.167 8.85E-01 <0.213 5.03E+02Organic M atter 1.85E+02 <0.268 6.14E+OJ <0.32 4.34E+03 <0 167 7.96E-01 <0.213 9.64E+02Organic M atter <0.059 <0.268 3.19E+01 <0.32 8.64E+02 <0.167 2.65E-01 <0.213 4.96E+02

Residual I.18E+02 5.13E+02 8.09E+01 < 0.32 8.50E+02 1.93E+01 1.88E+01 <0.213 3.41E+01C o re ID E x tra c tio n Ni P P b R b S Sb Sc Se SiC o re S4 Exchangeable <0.059 <0.268 2 2 6 E + 0 I < 0.32 3.42E+02 <0.167 7.96E-01 2.54E+01 2.08E+02

Carbonate 1.81E+01 <0.268 1.9IE + 02 <0.32 4.59E+02 <0.167 1.24E+00 <0.213 2.61E+02Fe, Mn Oxides <0.059 <0.268 2.72E+01 < 0.32 5.56E+01 <0.167 3.54E-01 <0.213 3.50E +02O rganic M atter 7.26E+00 2.32E+02 2.72E+01 <0.32 9.82E+02 <0.167 <0.002 <0.213 1.56E+02

Residual 1.97E+02 4 62E+02 6.26E+01 <0.32 5.78E+02 3.36E+01 2.09E+01 <0.213 4.16E+01Exchangeable <0.059 <0.268 2.04E+01 <0.32 3.49E+02 <0.167 <0.002 2.48E+01 1.28E+02

C arbonate 2.05E+01 <0.268 2.06E +02 <0.32 5.26E+02 <0.167 9.73E-01 < 0 2 1 3 3.06E +02Fe, M n Oxides <0.059 <0.268 2.27E+01 <0.32 <0.568 <0.167 4.42E-01 <0.213 3.80E+02O rganic M atter <0.059 1.88E+02 3.20E+01 <0.32 9.91E+02 <0.167 <0.002 <0.213 2.23E +02

Residual 4.31E+01 6.09E +02 5.80E+01 <0.32 7.44E+02 < 0 167 2.49E+OI <0.213 2 .33E + 0IExchangeable <0.059 <0.268 <0.213 <0.32 1.71E+02 <0.167 5.31E-01 2.65E+01 1.72E+02

C arbonate 2.34E+01 < 0 268 6.80E+OI <0.32 3.67E+02 <0.167 7.96E-01 <0.213 3.57E+02Fe, M n O xides <0.059 <0.268 <0.213 <0.32 < 0.568 <0.167 3.54E-01 < 0 2 1 3 3.69E +02O rganic M atter 9.56E+00 2.11 E+02 2.80E+01 <0.32 7.95E+02 <0.167 2.65E-01 <0.213 2.97E +02

Residual 5.21E+01 4.85E +02 6.44E+01 <0.32 8.01E+02 1.57E+01 1.73E+01 < 0 2 1 3 6.21E+01Exchangeable <0,059 <0.268 <0,213 <0.32 1.71E+02 <0.167 6.19E-01 2.52E+01 2.89E+02

C arbonate 2.0IE+01 <0.268 6.15E+01 <0.32 3.53E+02 <0.167 I.15E + 00 <0.213 2.61E+D2Fe, M n Oxides <0.059 <0.268 <0.213 3.01E+01 <0,568 <0.167 3.54E-01 <0.213 3.72E+D2O rganic M atter 3.14E+01 2.70E+02 2.83E +0! <0.32 7.54E+02 <0,167 ( <0.002 <0.213 1.92E+02

Residual 4.44E+01 5.13E+02 6.24E+01 <0.32 7.17E+02 1.59E+01 1.83E+01 <0.213 2.88E+O IExchangeable <0.059 <0.268 < 0 2 1 3 <0.32 2.46E+02 < 0.167 ( <0.002 2.46E+O I 1 60E +02

C arbonate 2.34E+OI <0.268 5.60E+01 <0.32 3.20E+02 <0.167 6.19E-01 <0.213 3 6 1 E + 0 2Fe, M n O xides <0.059 <0.268 <0.213 < 0.32 <0.568 <0.167 7.96E-01 <0.213 3.86E +02O rganic M atter 2 52E+01 2.73E+02 <0.213 < 0.32 6.80E+02 <0.167 1.77E-01 <0.213 2.82E +02

Residual 1.48E+03 4.31 E+02 5.73E+01 < 0.32 9.1! E+02 2.01E+02 1.51E+01 <0.213 1.98E+01Exchangeable <0.059 <0.268 <0.213 <0.32 2.11 E+02 <0.167 1 <0.002 2.44E+01 9.56E+01

C arbonate 1.98E+01 <0.268 4.91E+01 <0.32 3.07E+02 <0,167 6.19E-01 < 0 2 1 3 2.29E + 02Fe, M n Oxides <0.059 <0.268 <0.213 <0.32 6.12E+01 <0 167 1.06E+00 <0.213 4.20E + 02Organic M atter <0.059 2.37E+02 < 0 2 1 3 <0.32 3.65E+02 <0.167 8.85E-01 <0.213 1.23E+02

Residual 6.77E+01 4.49E +02 5.51E+01 <0.32 9.20E+02 1.68E+01 1 80E+01 <0.213 2.95E+01Exchangeable <0.059 <0.268 <0.213 <0.32 3.09E+02 2.04E+01 1.77E-01 2.31E+01 1.95E+02

C arbonate 1.16E+01 <0.268 6.51E+01 <0.32 3.98E+02 I.53E+01 7.96E-01 <0.213 3.32E+-02Fe, M n Oxides <0.059 <0.268 <0.213 4.85E+01 6.58E+01 <0.167 3 54E-01 <0.213 4.33E +02O rganic M atter 1.83E+-01 3.92E +02 <0 213 < 0 3 2 5.27E+02 <0.167 I <0.002 <0.213 1.04E+02

Residual 9.64E+02 3 .6 IE + 0 2 4.57E+01 <0 32 8.08E+-02 1.51E+02 1.76E+01 <0.213 7.74E+01Exchangeable <0.059 <0.268 <0.213 <0.32 3 .1 1E+02 2 .1 1E+01 [ < 0 002 2.32E+01 1.95 E+02

C arbonate 1.52E+01 <0.268 5.77E+01 <0.32 3.88E+02 <0.167 7.08E-01 <0.213 2.36E +02Fe, Mn Oxides <0.059 <0.268 <0.213 <0.32 <0.568 <0.167 9.73E-01 <0.213 4.21E + 02O rganic M atter I.23E+01 1.74E+02 <0.213 3.43E+01 1.08E+03 <0.167 ( <0.002 <0.213 1.88E+02

Residual 5.72E+01 6.43E +02 5.52E+01 <0.32 1.09E+03 2.30E+01 1.99E+01 <0.213 3.06E+01C o re ID E x tra c tio n Nt P Pb R b s ; sb ; Sc Se Si

Exchangeable 8.41E+00 <0.268 <0.213 <0.32 3.54E+02 <0,167 4.42E-01 2.12E+01 2.88E +02C arbonate 1.04E+01 <0.268 9 .1 1E+-01 <0.32 4.88E+02 <0.167 I.24E + 00 <0.213 1.76E+02

Fe, M n O xides <0.059 <0.268 <0.213 <0.32 <0.568 <0.167 3.54E-01 <0.213 3.12E +02O rganic M atter <0.059 2.04E+02 3.01E+01 <0.32 1.30E+03 <0.167 1.77E-0I <0.213 4 .0 IE + 0 2

Residual 4.27E+01 5.44E+02 3.86E+01 <0.32 7.57E+02 <0.167 1.96E+01 <0.213 2.81E+01Exchangeable <0.059 <0.268 <0.213 <0.32 3.64E+02 < 0 167 5.31E-01 2.44E+01 2.09E +02

Carbonate 2.04E+01 <0.268 8.66E+01 <0.32 4 .I5 E + 0 2 <0.167 9.73E-01 <0.213 1.60E+02Fe, M n Oxides <0.059 <0.268 2.08E+01 3.39E+01 7.56E+01 <0.167 3.54E-01 <0.213 3.09E +02O rganic M atter 1.31E+01 2 9 2 E + 0 2 2.53E+01 <0 32 1.51E+03 < 0.167 1 <0.002 <0.213 2.53E +02

Residual 2.83E+02 6 19E+02 4.88E+01 <0.32 8.73E+02 4.36E+01 2.02E+01 <0.213 7.50E+01Exchangeable 8 .32E+00 <0.268 <0.213 < 0.32 2.60E+02 < 0 167 I.77E-01 <0.213 2.21E +02

C arbonate 262E + 01 <0.268 8.08E+01 < 0.32 4.95E+02 < 0 167 8.85E-01 <0.213 2.39E +02Fe, Mn Oxides <0.059 <0.268 <0.213 <0.32 <0.568 <0 167 4.42E-01 <0.213 3.57E +02O rganic M atter 3.05E+01 1.39E+02 5.10E+01 <0.32 194E + 03 <0 167 1.77E-01 <0.213 2.71E+-02Exchangeable 7 .79E+00 <0.268 < 0 2 1 3 < 0.32 2.66E+02 <0.167 2.65E-01 1.96E+01 2.03E +02

C arbonate 2.74E+01 < 0 2 6 8 8.17E+01 <0.32 4.99E+02 <0 167 7.96E-01 < 0 2 1 3 2.00E +02Fe, M n Oxides <0.059 <0.268 <0.213 <0.32 5.15E+01 <0.167 3.54E -0I <0.213 4 .00E + 02O rganic M atter 3.78E+OI 1 12E+02 4.57E+01 <0.32 2.02E+03 <0.167 7.96E-01 <0.213 1 78E+02

Residual 9.82E+02 6.09E+02 7.92E+01 <0.32 1.10E+03 1.39E+02 1.79E+0! <0.213 4.90E+01

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Exchangeable <0.059 <0.268 2.49E+01 <0.32 2.37E+02 : <0 167 1.77E-01 2.24E+01 1.66E+02C arbonate 2.78E+01 <0.268 6 I5E+01 <0.32 4.26E+02 <0.167 7.08E-01 <0.213 1.98 E+02

Fe, M n Oxides <0.059 <0.268 <0.213 <0.32 <0.568 <0 167 2.65E-01 < 0 2 1 3 3.03E+02O rganic M atter 1.87E+01 1.66E+02 2.85E+01 3.61E+01 1 24E+03 <0.167 1.77E-01 <0.213 2.28E +02

Residual 4.30E+01 4.39E+02 4.50E+01 <0.32 8.29E+02 <0.167 1.50E+OI <0.213 2.68E+01Exchangeable <0.059 <0.268 2.45E+01 <0.32 2.24E+02 <0.167 1.77E-01 2.40E+01 2.18E+02

C arbonate 1 .I2E+01 <0.268 6.61E+01 <0.32 4.50E+02 <0.167 7.08E-01 <0.213 2 .94E+02Fe, M n Oxides <0.059 <0.268 <0.213 <0.32 <0.568 <0.167 2.65E-01 <0.213 3.03E+02O rganic M atter 1.79E+01 1.49E+02 2.73E+0I <0.32 1.48E+03 <0.167 ( <0.002 <0.213 2.19E+02

Residual 7.85E+01 5.01 E+02 6 .18E+0I <0.32 9.91 E+02 <0.167 1.44E+01 <0.213 5.72E+01T otal D igestions

C o re ID E x tra c tio n Ni P Pb R b S ; S b 1 Sc Se SiC o re SI 2 .98E+02 6 I1E + 02 2.85E+02 <0.32 4.07E+03 2.68E+01 2.89E +0I <0.213 1.41E+02

5.59E+02 1.19E+03 5.51E+02 < 0 3 2 6.37E+03 4.54E+01 580E + 01 <0.213 1.17E+021.65E+02 5.63E+02 2.26E+02 <0.32 7.09E+03 1.73E+01 2.84E+01 <0,213 8.63E +0I1.36E+02 2.99E+02 1.84E+02 <0.32 5.71E+03 <0.167 2.37E+0I <0.213 2.50E+012.90E +02 1.19E+03 5 22E+02 <0.32 9.31 E+03 <0.167 6.80E+01 <0.213 6.25E+012.76E+02 1.03 E+03 4.74E+02 <0.32 8.90E+03 <0.167 6.23E+01 <0.213 2.21E+02

C o re S2 2.96E+02 1.01 E+03 3.04E+02 <0.32 4.57E+03 <0.167 6.24E+01 <0.213 8.37E+012.66E+02 1.21 E+03 3.65E+02 <0.32 5.35E+03 <0.167 7.99E+01 <0.213 1.62E+022.92E+02 6.35E+02 3.84E+02 <0.32 7.06E+03 <0.167 7.43E+01 < 0 213 8.49E+012.89E+02 9.03E+O2 3.83E+02 <0.32 7.28E+03 4.29E+01 7.36E+01 <0.213 6 9 0 E + 0 23.16E+02 5.21E+02 4.35E+02 <0.32 7 11 E+03 4.30E+01 6.22E+01 <0.213 2.31E+023.32E+02 6.21 E+02 4.07E+02 <0.32 6.94E+03 . <0.167 6.00E+01 < 0 213 1.27E+02

C o re S3 4.98E+02 2.62E+02 2.39E+01 <0.32 4.75E+02 7.36E+01 I.88E+01 <0.213 5.25E+011.92E+02 2.99E+02 1.66E+02 <0.32 2.42E+03 <0.167 2.17E+01 <0.213 6.93E+011.83E+02 2.86E+02 1.69E+02 <0.32 2.41E+03 <0.167 2.1 IE+01 <0.213 4.52E+011.63E+02 5.09E+02 2.41E+02 <0.32 3.62E+03 <0.167 2.68E+01 <0.213 5.86E+011.38E+02 4.45E+02 2.01E+02 <0.32 3.11 E+03 1.87E+01 2 ,17E+01 < 0 2 1 3 6.23E +0I2 .23E+02 5.19E+02 4.87E+02 <0.32 1.11E+04 3 .U E + 01 2.53E+01 <0.213 7.84E+012.95E+02 7.75E+02 7.21 E+02 <0.32 1.60E+04 4.48E+01 3.73E+01 < 0 2 1 3 5.03E+02

C o re S4 1.91 E+02 1.10E+O3 5.61E+02 <0.32 6.23E+03 3.36E+01 5.74E+01 <0.213 6.99E+011.64E+02 9.11 E+02 4.88E+02 <0.32 5.40E+03 3.29E+01 4.50E+01 <0.213 2.19E +023.18E+02 I 20E+03 4.97E+02 <0.32 6.97E+03 4.24E+01 4.77E+01 <0.213 1.25E+023.66E+02 1 36E+03 5.27E+02 <0.32 7.88E+03 5.01E+01 6.29E+01 <0.213 1.31E+022.98E+02 1.17E+03 2.78E+02 < 0.32 6.78E+03 <0.167 5.07E+0I <0.213 8.82E+013.18E+02 1.36E+03 3.41E +02 <0.32 6.88E+03 4.29E+01 5.12E+01 <0.213 1.36E+023.67E+02 1.42E+03 3.37E+02 <0.32 7.80E+03 7.04E+01 5.32E+OI <0.213 7.63E+013.70E+02 1.28E+03 3.06E+02 <0.32 7.89E+03 5.90E+01 5 .6 7 E + 0 I ' <0.213 1.27E+02

C o re S3 2.48E+02 9.67E +02 3.81E +02 <0.32 7.49E+03 3.54E+01 4.93E+O I <0.213 7.34E+012.94E+02 1.17E+03 4.40E+02 < 0.32 8.90E+03 4.44E+01 5.94E+01 <0.213 6.86E+013.08E+02 1.01E+03 4.76E +02 < 0.32 9.89E+03 4.01E+01 4.07E+01 <0.213 1.01 E+023.34E+02 1.I4E + 03 5.07E+02 < 0.32 1.09E+O4 5.07E+01 5.79E+01 <0.213 5.31E+012.81 E+02 I.05E+03 3.54E+02 <0.32 8.00E+03 6.33E+01 4.34E+01 <0.213 6.89E+013.40E+02 1.I1E+ 03 4.18E+02 <0.32 8.33E+03 3.87E+O I 4 .9 IE + 01 < 0 2 1 3 4 .3 IE + 0 I

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Core ID__________ Extraction_________Sr_________ Til__________Ti__________ U ' ZnC o re SI Exchangeable 5.22E+00 <33.2 7.96E-01 <0.868 1 <0.006 6.19E-01

C arbonate I.73E-MH <33.2 1.77E-01 <0.868 1.55E+01 <0.004

Fe, M n O xides 9.73E-01 <33.2 1.49E+01 <0 868 5.37E+01 2.57E+00

O rganic M atter 1.59E+00 <33.2 3.10E+O0 <0.868 1.10E+02 7.08E-01

Residual I.59E+01 <33 2 1.60E+03 2:61 E+02 8.82E+01 3.83E -01

Exchangeable 5.84E+O0 <33.2 9.73E-01 <0.868 : <0.006 7.08E-0I

C arbonate 1.67E+01 <33.2 6.19E-01 <0.868 1.47E+01 \ 9 S E -0 0

Fe, M n O xides 1.15E+00 <33.2 1.45E+01 <0.868 5.03E+O1 2.57E-KK)

O rganic M atter 7.96E-0I < 33.2 2.65E-01 <0.868 9 56E+01 <0.004

Residual 2.27E+01 <33.2 1.42E+03 1 83E+02 7.89E+01 2.03E -01

Exchangeable 2.57E+00 <33.2 1.77E-01 <0.868 ( <0.006 <0.004

Exchangeable 6 19E-01 < 33.2 3.54E-01 <0,868 5 <0.006 5.31E-01

C arbonate 2.65E+00 <33.2 5.3IE-01 < 0 868 2.93E+01 <0.004

C arbonate 9.73E-01 <33.2 2.12E+00 <0.868 1.6IE+01 <0.004

Fe, M n O xides 3.54E-0I <33.2 4 .34E +00 < 0 868 1.63E+01 6.19E-01

Fe, M n O xides 3.54E-0I <33 2 1.50E+00 <0,868 4.87E +00 <0.004

O rganic M atter 5.31E-01 <33.2 1. OOE+Ol <0.868 1.40E+02 <0.004

O rganic M atter 8.85E-01 <33.2 6 .46E +00 <0.868 3.03E +0I 7.08E-01

Residual 1.65E+01 <33.2 1.63E+03 8 .80E +0I 4 .47E + 0I 2.38E+01

Exchangeable 7 .96E-0I <33.2 2.65E-01 <0.868 1 <0.006 <0.004

C arbonate 4 .51E+00 <33.2 <0.002 <0.868 1.48E+01 <0.004

Fe, M n O xides 7.08E-01 <33.2 3 .89E+00 <0.868 2.59E+01 4.42E-01

O rganic M atter 7.96E-01 <33.2 7 .96E -0I <0.868 7.56E+01 <0.004

Residual 1.70E+01 <33.2 1.81E+03 9 .82E +0I 7.57E+01 2.37E+01

Exchangeable l.SOE+OO <33.2 1.95E+00 <0.868 1 <0.006 <0.004

C arbonate 6.02E+00 <33.2 2 .12E+00 <0.868 1.44E+01 <0.004

Fe, M n O xides 9.73E-01 9.64E+03 3.89E+00 <0.868 1.48E+01 6 19E-0I

O rganic M atter 1.15E+00 <33.2 2.74E+00 <0.868 6.85E+01 <0.004

Residual 1.88E-K)! <33.2 1.5IE+ 03 1 .I9E + 02 1 02E+02 2.54E+0!

Exchangeable 1.33E+00 <33.2 2 .39E +00 <0.868 ( <0.006 <0.004

C arbonate 6.55E+00 <33.2 1.33E+00 <0.868 1.89E+01 <0.004

Fe, M n O xides 7.96E-QI <33.2 3 .72E +00 <0 868 1.89E+01 8.85E -0I

O rganic M atter 8.85E-01 <33.2 1.06E+00 <0 868 7.18E+01 <0,004

Residual I.92E + 0I <33.2 1.99E+03 1 .I9E + 02 9.29E+01 2.40E+01

C o re ID E x tra c tio n S r T h Ti U Z n Z r

C o re S2 Exchangeable 3 .19E+00 < 33.2 2.21 E+00 <0.868 1.30E+01 5.31E-01

C arbonate 2.30E+00 < 33.2 I.59E + 00 <0.868 2.32E+OI 6.19E-01

Fe, M n O xides 5.31E-0I < 33.2 3.I0E+O 0 <0.868 3.70E+01 <0.004

O rganic M atter 1.33E+00 <33.2 2.04E+00 <0.868 2 .52E + 0I 6 .19E-01

Residual 2.05E+OI < 33.2 2.27E+03 1.50E+02 6.57E+01 2.43E+01

Exchangeable 3.10E+00 < 33.2 2.04E+00 <0.868 1.10E+OI 2.04E +00

C arbonate 1.95E+00 < 33.2 I.86E + 00 <0.868 2 .29E + 0I <0.004

Fe, M n O xides 5.3 IE-01 <33.2 3 .80E+00 <0.868 4 .29E + 0I 6 .19E-01

O rganic M atter 9.73E-01 <33.2 1 86E+00 <0.868 2.52E+01 <0,004

Residual* 2.0IE+01 <33.2 1 66E+03 1.51E+02 6 .35E + 0I 2.34E+01

Exchangeable 1.24E+00 <33.2 4 .78E + 00 <0.868 ( <0.006 <0.004

C arbonate 6 .02E+00 <33.2 2.74E +00 <0.868 2.16E+01 <0.004

Fe, M n O xides 7.96E-01 < 33.2 5.93E+00 <0.868 2.61E+01 <0.004

O rganic M atter 1.06E+00 < 33.2 I.50E + 00 <0.868 3.49E+01 <0.004

Residual 1 .9 IE + 0I < 33.2 2.00E+03 I.05E + 02 6.92E+01 2.33E+01

Exchangeable 1.24E+00 <33.2 4.60E+00 <0.868 1 <0.006 6.19E-01

C arbonate 5 .93E+00 <33.2 2 .74E +00 <0.868 1.95E+01 <0.004

Fe, M n O xides 8.85E-01 <33.2 1.42E+00 <0.868 3.50E+01 <0.004

O rganic M atter 7.96E-01 < 33.2 4.87E +00 <0.868 2 .68E + 0I 796E -01

Residual I.77E + 0I < 33.2 2.20E+03 1 .1 1 E+02 5.92E+01 2.09E+01

Exchangeable 3.I9E-H30 < 33.2 1.86E+00 <0.868 3.27E+00 <0.004

C arbonate 5 .31E+00 < 33.2 1.06E+00 <0.868 9.91 E+00 8.85E-01

Fe, M n O xides 7 08E-01 < 33.2 4 .69E +00 <0.868 1.18E+01 5.31E-01

O rganic M atter 1 .I5E + 00 < 33.2 I.15E + 00 <0.868 4.59E+01 <0.004

Residual 2.I5E+O I < 33.2 2 .1 1E+03 1.27E+02 9.11E+01 2.51E+01

Exchangeable 1.42E+00 <33.2 4.07E +00 <0 868 i: <0.006 6.19E -0I

C arbonate 5.57E+00 < 33.2 3.54E-01 <0.868 3.98E+00 <0.004

Fe, M n O xides 7.08E-01 < 33.2 5.22E+00 <0.868 1 .19E+01 9.73E-01

O rganic M atter 8.85E-01 < 33.2 1.59E+00 <0.868 4.90E+01 <0.004

Residual 2.52E+01 < 33.2 I.62E+03 1.12E+02 1.27E+02 2.87E+01

C ore ID E x tra c tio n S r T h T i U Z n Z r

C ore S3 Exchangeable 3 10E+00 < 33.2 3.63E +00 <0.868 1 <0.006 7.08E-01

Exchangeable 8.85E-OI < 33.2 2.65E +00 < 0,868 i; <o .oo6 <0.004

C arbonate 1.95E+00 <33.2 1 59E+00 <0.868 3.54E+01 <0.004

C arbonate 1.06E+00 < 33.2 2.92E+00 < 0 868 2.54E+01 <0.004

Fe, M n O xides 5.31E-OI < 33.2 5 .31E+00 <0.868 4.03E+01 5.31E-01

Fe, M n Oxides 4.42E-01 <33.2 4 .96E + 00 <0.868 1 43E+01 6 .19E-0I

O rganic M atter 7.96E-01 <33.2 2.71E+01 <0.868 6.08E+01 < 0 004

O rganic M atter 8 .85E -0! < 33.2 6.37E +00 <0.868 1.50E+01 8.85E -0I

Exchangeable 4.25E + 00 < 33.2 4.42E-01 <0.868 1.08E+01 <0.004

C arbonate 2 .65E +00 <33.2 6 19E-01 <0.868 4.90E+01 6 .19E -0I

Fe, M n O xides 8.85E-OI <33.2 6 .37E +00 <0.868 9.03E+01 8.85E-01

O rganic M atter 1.24E+00 < 33.2 1.33E+00 <0.868 3.40E+01 <0.004

Residual 1.71E+0I < 33.2 9.73E +02 9.47E+01 6 .57E + 0I 2.72E +0I

E xchangeable 3.89E+00 < 33.2 1.15E+00 <0.868 1.78E+0! <0.004

Carbonate 1.02E+01 <33.2 3 54E-01 <0,868 1.75E+01 <0.004

Fe, M n O xides 7.08E-01 <33 2 3.89E+00 <0.868 2.56E+01 8.85E-01

O rganic M atter 1.06E+00 < 33.2 1.50E+00 <0.868 4.72E+01 <0.004

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Residual 6.11 E+00 <33.2 1.34E+03 1.17E+02 7.03E+01 2.56E+01

Exchangeable 1.42E+00 <33 2 2 2 IE + 0 0 <0.868 ( <0.006 <0.004

Exchangeable 7.96E-01 <33.2 2 .57E+00 <0.868 ! < 0 006 <0.004

C arbonate 8 .14E+00 <33.2 1.24E+00 <0.868 1.77E+01 <0 004

C arbonate 1.24E+00 <33.2 4.16E+00 <0.868 I.43E+01 <0.004

Fe, Mn Oxides 2 65E-01 <33.2 3.80E +00 <0.868 1.17E+01 7.96E-01

Fe, Mn Oxides 3 .54E-0I <33.2 3 .10E+00 <0.868 4.42E+00 <0.004

O rganic M atter 4.42E-01 <33.2 1.22E+01 <0.868 6.01E+01 <0.004

O rganic M atter 4 4 2 E -0 I <33.2 4.60E +00 <0.868 1.67E+01 <0.004

Residual 4 .78E+00 <33.2 9.47E +02 8.57E+01 3.58E+01 2 64E+C1

Exchangeable 3.05E+01 <33.2 6.19E-01 <0.868 4.87E+00 <0.004

C arbonate 1.45E+01 <33.2 <0.002 < 0 868 4.02E+01 <0.004

Fe, M n Oxides 4.96E +00 <33 2 8 .58E +00 <0.868 5.32E+01 1.95E+00

O rganic M atter 1.95E+00 <33 2 2 .21E +00 <0.868 1.65E+02 7.08E-01

Residual 1.62E+0) <33 2 5.48E+02 8.70E +0I 5.27E+01 3.45E+00

Exchangeable 1.08E+01 < 33.2 1 06E+00 <0.868 II <0.006 4.42E-01

Exchangeable 3 .01E+00 <33.2 2.65E-01 < 0.868 ii <0.006 4.42E-01

C arbonate 1.62E+01 <33.2 6.19E-01 <0.868 4 .10E+01 9.73E-01

C arbonate 2 .30E+00 <33.2 2.74E +00 <0.868 3.69E+01 6 .19E-01

Fe, Mn Oxides 8 85E-01 <33.2 1.37E+01 <0.868 6.37E+01 3.63E+00

Fe, M n Oxides 6 19E-01 < 33,2 6 .19E + 00 <0.868 1.44E+01 1.33E+OQ

Organic M atter 7.08E-01 < 33.2 1.30E+01 <0.868 2.74E+02 7.08E-01

Organic M atter 7.08E-01 <33.2 4 .07E +00 <0.868 8.52E+01 <0.004

Residual 2 .0IE+01 <33.2 5.87E+02 1.43E+02 6.55E+01 3.27E+01

Extraction Sr Th Ti U Zn ZrExchangeable 1.50E+00 <33.2 2 .39E +00 <0.868 ( < 0 .006 7.96E-01

C arbonate 6 .64E+00 < 33.2 2 .30E + 00 <0.868 5.43E+01 7.96E-01

Fe, M n Oxides 7 .08E-0! < 33.2 3.89E +00 <0.868 2.33E+01 5.3IE-01

O rganic M atter 8.85E-01 <33.2 3 .27E +00 <0.868 9.29E+01 <0.004

Residual I.IOE+O l <33.2 1.40E+03 1 26E+02 7.63E+01 1.83E+01

Exchangeable 1 42E+00 <33.2 2 .74E +00 < 0.868 ( < 0 .006 4.42E-01

C arbonate 7.79E +00 <33.2 2 .57E + 00 <0.868 5.03E+01 <0.004

Fe, M n Oxides 7.96E-01 <33.2 4 .25E +00 <0.868 2.49E+01 <0.004

Organic M atter 8.85E-01 <33.2 4 .78E + 00 <0.868 9.20E+01 <0.004

Residual 1.35E+01 <33 2 I.66E+03 1.30E+02 1.06E+02 2.25E+01

Exchangeable 1.24E+00 <33.2 2 .12E +00 <0.868 1 <0.006 5.31E-01

C arbonate 5.31E+00 <33.2 3 .72E +00 < 0 868 2.06E+01 <0.004

Fe, M n O xides 7 .96E -0I <33.2 5.22E +00 <0.868 1.04E+0I 7.08E-01

O rganic M atter 7.96E-01 <33 2 6 .19E +00 <0.868 5.02E+0I <0.004

Residual 1.10E+01 <33.2 1.25E+03 1.04E+02 7.52E+01 2 .I9 E + 0 I

Exchangeable 1.24E+00 <33.2 3 .63E +00 <0.868 1 < 0.006 4.42E-01

C arbonate 5.04E+00 <33.2 3 .72E + 00 <0.868 2.19E+OI 5.3 IE-01

Fe, M n O xides 7.96E-01 <33.2 5 .40E +00 <0.868 9 .64E+00 5.3IE -01

O rganic M atter 7 .08E -0I <33.2 3 .19E + 00 <0.868 5.01E+0I <0.004

Residual 1.30E+01 <33.2 I.63E+ 03 1.05E+02 5.95E+OI 2.35E+01

Exchangeable 1.15E+00 <33.2 2 .30E + 00 <0.868 I <0.006 <0,004

C arbonate 4 .87E +00 <33.2 4 .69E + 00 <0.868 I.56E+01 5.31E-01

Fe, Mn O xides 7.08E-01 <33.2 6.81 E+00 <0.868 6 .55E+00 1.06E+00

O rganic M atter 8.85E-01 <33.2 6 .90E + 00 < 0 868 6.88E+0I 4.42E-01

Residual 1.04E+01 <33.2 1 .I4E + 03 1.26E+02 5.49E+0I 2.05E+01

Exchangeable 9 .73E -0I <33.2 1.06E+00 <0.868 1 <0.006 4.42E-01

C arbonate 4 .42E + 00 <33.2 3.01 E +00 < 0 8 6 8 1.43E+01 6.19E-01

Fe, Mn O xides 7.08E-01 <33.2 7 .17E +00 <0.868 7.26E+00 1.06E+00

O rganic M atter 6.19E-01 < 33.2 4 .60E + 00 < 0 868 2.18E+0I 4.42E-01

Residual 1.14E+01 <33.2 I.43E+ 03 1.21 E+02 5.04E+OI 2.42E+01

Exchangeable 1.15E+00 <33.2 2 .39E + 00 <0.868 l: <0 .006 5.31E-01

C arbonate 6 .28E + 00 <33 2 3.72E +00 <0.868 2.13E+01 <0.004

Fe, M n O xides 7.96E-01 <33.2 6 .72E + 00 <0.868 8.94E+00 4.42E-01

Organic M atter 7.96E-01 <33.2 2 .39E +00 <0.868 4.52E+0I <0.004

Residual 1.25E+01 <33.2 1.27E+03 1.11 E+02 4.23E+0I 3.06E+01

Exchangeable 1.24E+00 <33.2 2 .39E + 00 < 0 8 6 8 i: <0 .0 0 6 <0.004

C arbonate 5 .13E +00 <33.2 2 .12E + 00 <0.868 1 97E+01 <0,004

Fe, Mn O xides 7.08E -0I <33.2 6 .28E + 00 <0.868 9.38E+00 1.06E+00

O rganic M atter 7.96E -0I <33.2 3 .54E + 00 <0.868 3.41E+01 < 0 004

Residual 1.42E+01 <33 2 1.59E+03 1.29E+02 6.92E+OI 2.57E+01

Extraction S r Th Ti U Zn Z rExchangeable 1.33E+00 < 33.2 2 .48E + 00 <0.868 1 <0.006 6.19E-01

C arbonate 5.49E +00 <33.2 1 .I5 E + 0 0 <0.868 2.12E+01 5.31E-01

Fe, M n O xides 7 .96E -0I <33.2 4 07E +00 <0.868 1.34E+01 <0.004

O rganic M atter 1.15E+00 <33.2 3 .54E + 00 < 0 868 6.10E+01 <0.004

Residual I.83E+01 <33.2 1.95E+03 1.38E+02 6.65E+01 2.56E+01

Exchangeable 1.24E+00 < 33.2 2 .21E + 00 <0.868 1 <0.006 7.08E-0I

C arbonate 5 .I3 E + 0 0 < 33.2 1 .59E+00 <0.868 2.06E+01 7.08E-01

Fe, M n O xides 7.96E-01 < 33.2 3 .63E +00 <0.868 1.64E+01 <0.004

O rganic M atter 1.24E+00 <33.2 5 .75E +00 <0.868 7.35E+01 4.42E-01

Residual 1 86E+01 <33.2 1.96E+03 I.62E + 02 6.34E+0I 2.71E+01

E xchangeable 1.06E+00 <33.2 2 .92E +00 <0.868 1 <0.006 <0.004

C arbonate 6.37E +00 <33.2 2 .48E +00 <0.868 1.42E+01 <0.004

Fe, M n O xides 7.96E-01 <33.2 4 .96E + 00 <0.868 9.11E +00 5.31E-01

O rganic M atter 8.85E-01 <33.2 4 .60E + 00 <0.868 1.02E+02 <0.004

Exchangeable 1.24E+00 <33.2 2 .48E + 00 <0.868 1 <0.006 5.31E -0I

C arbonate 6.28E +00 <33 2 1 95E + 00 <0.868 1.38E+01 <0.004

Fe, M n O xides 6 .19E -0I <33 2 5 .31E + 00 <0.868 9.82E+00 5.31E-01

O rganic M atter 7 .08E -0I < 33.2 2 .21E +00 <0.868 I.06E + 02 4.42E-01

R esidual 1.49E+01 < 33.2 I.50E + 03 1.26E+02 8.80E+01 1 96E+01

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Exchangeable 1 .I5E + 00 <33.2 2 .57E+00 <0.868 ( < 0 006 5.31E-01C arbonate 5.31 E+00 <33.2 2 .30E+00 <0.868 2.38E+01 4.42E -0I

Fe. M n O xides 5.31E-01 <33 2 4.07E+00 <0.868 1.27E+01 <0.004Organic M atter 7.96E-01 <33.2 3.36E+00 <0.868 7.64E+01 <0.004

Residual 1 40E+01 <33.2 1.29E+03 8.83E+01 6.98E+01 2.04E+01Exchangeable 1 I5E + 00 <33.2 2 .30E+00 <0.868 { <0.006 <0.004

C arbonate 5.66E+00 <33.2 3.19E+00 <0.868 2.73E+01 <0.004Fe, M n O xides 5.31E-01 <33.2 3.89E+00 <0.868 1.39E+01 <0.004Organic M atter 7.96E-01 <33.2 3.27E+00 <0.868 7.97E+01 <0.004

Residual I.16E + 0I <33.2 1.I8E+03 I.33E+02 8.55E+01 1.90E+01T o ta l D igestions

C o re ID E x tra c tio n S r T h T i U Z n Z rC o re SI 2.87E+01 <33.2 1.31E+03 2.35E+02 2.82E+02 2.75E+01

5.23E+01 <33.2 24 2 E + 0 3 4.28E+02 4.37E +02 2.06E+012.97E+01 <33.2 1.45E+03 1.76E+02 2.80E+02 3.06E+012.47E+01 <33.2 9 .I9E + 02 1.63E+02 2.43E+02 2.57E+OI6.96E+01 <33.2 1.54E+03 4.46E +02 6.53E +02 7.08E+0I6.67E+01 <33.2 1.62E+03 2.78E+02 5.82E +02 7.22E+01

C o re S2 5.91E+01 <33 2 9.07E+02 3.09E+02 3.57E+02 6.28E+017.31E+OI <33.2 8 .40E+02 4 .93 E+02 4.36E +02 7.78E+017.46E+01 <33 2 4 19E+03 3.8IE-K)2 4.70E + 02 7.24E +0I7.08E+01 <33 2 5 28E+03 4.03E +02 4.49E +02 6.62E +0I7.97E+01 <33.2 1.57E+03 3.85E+02 4.62E + 02 8.47E+017.80E+01 <33 2 3 .18E+03 3.56E+02 4.05E +02 7.78E+01

C o re S3 1.60E+01 <33 2 1.37E+03 9.97E+01 4.23E+01 2.80E+012.54E+01 <33.2 7.91E+02 1.34E+02 2.36E+02 3 .14E+012.41E+01 <33.2 6.46E+02 1.28E+02 2.30E+02 3.07E +0I2.31E+01 <33.2 1.39E+03 1.93E+02 2.05E +02 4.08E+011.82E+01 <33.2 1.25E+03 1.31 E+02 1.71E+02 3.05E+015.87E+OI <33.2 1.23E+03 1.27E+02 3.82E +02 3.13E+018.83E +0I <33.2 1.59E+03 2.65E+02 5.61E+02 4.78E+01

C o re S4 4.6IE + 01 <33.2 3.45E+03 3.92E+02 6.14E +02 5.30E+013.74E+01 <33.2 2.69E+03 2.60E +02 5.19E+02 4.04E+014.62E+01 <33.2 3.35E+03 3.75E+02 4 .I7 E + 0 2 5.80E+016.19E+01 <33.2 4.22E+03 3.91 E+02 5.40E+02 8.08E+014.73E+01 <33.2 3.64E+03 3.31E+02 3 .7 IE + 0 2 6.73E+014.91 E+01 <33.2 3.94E+03 3.56E+02 5.74E +02 7 .02E +0I4.98E+01 <33 2 3 81E+03 3.14E+02 4.04E +02 7.25E+0J5.02E+01 < 33.2 3.87E+03 3.63E+02 5.02E+02 7.57E+01

C o re S5 5.80E+01 < 33.2 4.06E+03 2.68E +02 4.02E +02 6.07E+016.92E+01 <33.2 4.67E+03 4.I3 E + 0 2 4.78E +02 6.78E+014.47E+01 <33.2 3.14E+03 2.87E+02 5.42E+02 4.39E+016.37E+01 <33.2 4.55E+03 4.20E+02 5.92E+02 6.57E+015.04E+01 <33.2 3.85E+03 2.77E+02 4.73E +02 5.19E+015.66E+01 <33.2 3.82E+03 2.87E+02 5.55E+02 6.08E+01

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as

UJ*35VS

r tCD

.C

H

m w o s s

cc

t rc

r*C C

r*C

r rc

C"8

C"R

rr

Rr r©

r r©

t ro

r r©

fC©

<rR

r r©

t rc

tr©

r r©

S o ' o c c c c c C c C © C © © © © © © © © © © © dV V V V V V V V V V V V V V V V V V V V V V V V

r c m c*<C VI fV*

c-•c r*'

Vr*v

<«■«fi

rrvr

mv~

r rV r rIC r rV) t rV

t r«c

t r«c

fCVI t rIC

r r1C

r cIC

ClIC

r e1C

t rv>

^ © d c c © c © © © © © © © © © © © © © o © © © dV V V V V V V V V V V V V V V V V V V V V V V V

o oR R

oo

oo

oo

o© 8 s §

oR

©o

©©

©o

©©

©© 8

£©R

©©

©©

©©

©©

£ o d o o © © © © © o © © © © © © © © © © © o o ©V V V V V V V V V V V V V V V V V V V V V V V V

R © © o © © © 2 © © © © © © © 2 R © © © © © © ©v 2 * d

q — — “ — - - - — — — — - - - — —V v V V V V V V V V V V V \? V V V V

c i N fN Cl fN Cl fN fN fN fN fN fN fN fN fN fN fN fN fN fN Cl Cl fN Cl

J § D © o © © © © © ©©V

© © © © © © © © © © © © © ©

V V V V V V V V V V V V V V V V V V V V V V V

VO o o VO o >o © VO VO vO o vO vO VO vO vO vO vO vO s o vO VO vO vO

Ui ° => o o © © © © © © © © © © © © © © © © © o © ©o o o o © © © © © © © © © © © © © © © © © © © ©V >/ V V V V V V V V V V V V V V V V V V V V V V

r -r, R {

-- r - z> o

c-o

c~©

c-©

r -©

r -R

c-©

h~R

r~-© ©

r -©

r -©

f -©

r -©

r -R

c2

c -©

r -©

d <=> o d © d © © © d d o © d © d © © d d © © d di/ V V V V V V V V V V V V V V V V V V V V V V

, * § §8

0 >©

vO©

©©

VO©

vO©

vO©

vOR 5

vO©

>o©

vO©

VO©

VO©

vC©

O© 8 S

V©©

vO©

d o d d © o d d ©' o ' © ’ d d ©' © o d ©' © © © d d dV ✓ V V V V V V V V V V V V V V V V V V V V V V

• c •< i c wC v> c i c

v>V> •C

*cVCv»

*/•)•c

• c• c v>

If)V*)

VCIC «c

«c !cVC j ; VI

VI1CVI

Vi 1CIC

ViIC

Vl*c

Vl VI ICV)

J d J? d d © © ' d © d d © d © o ' © d d d © d o ' d d dV \t V V V V V V V V V V V V V V V V V V V V V V

c i r c i c

n c iN Cl

fNCl

nfN

Clc i

fNfN

fNfN

fNfN

fNfN

fNfN

fNfN

fNfN

fNfN

fNfN

fNfN

fNfN

fNCl

fNfN

fNCl

ClfN

fNCl

ClCl

ClCl

* o ' c 5 o O d d d d ©' o ' © d o d © © o © o ' © o ' © d ©V \ t V V V V V V V V V V V V V V V V V V V V V V

{ § i 8 ©o

©©

©©

©©

©©

©© 8 8 ©

©©©

©©

©©

©©

©©

©© 8 8 8 ©

©©©

©o

* o c > O o © o © © © © © © o © © © © © © © © © © ©V V V V V V V V V V V V V V V V V V V V V V V

o c 1 o c i 8 i ©

©©©

oo

©©

©©

©© 8 8 i ©

©©©

©©

©o

©©

©o

©o i i

8* d c ■ o o © © © © o © © © © © © © © © © © © © © ©

V V V V V V V V V V V V V V V V V V V V V V V V

r i r J c i c i cs Cl fN fN fN fN fN fN fN fN fN (N fN fN fN Cl fN fN fN Cl

q c o o © © © © © © © © © © © © © © © © © © © ©o c o o © © © © © © © © © © © © © © © © © © © ©V V V V V V V V V V V V V V V V V V V V V V V V

O ' o o o o o o o o © © © © © © © © © © © © © © ©© c o o © o © © © © © © © © © © © o © © © © © ©o c o o © © © © © © © © © © © © © © © © © © © ©V V V V V V V V V V V V V V V V V V V V V V V V

r r r} C l C r r

fN Clrt-Cl

r rCl

-*rfN

Tj-fN

-T<N (N

TTfN

r rfN

TfN

r*-fN r ffN 'T

fNTffN

r rfN fN

r rCl Cl Cl

r tCl

rTfN

d C d o ' d © © d d © d d d d © d d d d ©' ©' © © ©V V V V V V V V V V V V V V V V V V V V V V V V

r f ic \£i r - 00 o © _ fN m VC vO 00 © © _ fN rT r r 1C © t -© o o © © © © © © © © © © © © © © © © © © © © ©

? V V V V V V V V V V V V V V V V V V V V V V

— CMr— c rec -

rf c~~

©c-

c--

50 o ©00 10

fN>0 «

r f00

VI00

vO00

r-~oo

0000

©00

©© © >

fC©

r r©

d o o ' © © © © d d d d d d d d d o ' d d d d d ©' dV V V V V V V V V V V V V V V V V V V V V V V V

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Zr

< 0.

004

< 0.

004

<0

004

< 0.

004

< 0.

004

< 0

004

< 0.

004

<0

004 rj

c©©V

c©©V

rtcccV

rt©©©V

rt©©©V <0

00

4 rt©©©V <

0 00

4<

0 00

4 rf©©©V <0

.004

<0.0

04

rt©©©V

rf©©©V <

0.00

4<0

.004

|

Zn<

0.00

6 <0

.006

<0

00

6 youu>

9000 >

9000 >

wu

u>

900

0 >

SC

©V

900 0

>

SC§©V

900 0>

900 0>

900 0

>900

0 >

900 0

>900

0 >

900 0>

<0.0

06

• 900 0

> <0.0

06

900 0>

900*0 >

I <0

.006

U<0

86

8 <0

86

8 <0

86

8<0

.868

<0

.868

<0

86

8<

0.86

8 <0

86

8<0

86

8<

0.86

8 898 0>

898 0>

<0.

868

< 0.

868 00o

00©V <0

.868 00sc

00©V <0

.868

898 0

>898

0 >

898 0>

ooSOOf©V

898*0 >

00SO00©'V

Ti<0

00

2 <0

.002

<0

.002

<0.0

02

<0.0

02

< 0.

002

< 0.

002

<0

002

<0.0

02<0

.002

<0.0

02<0

.002

<0.0

02<0

.002

<0.0

02

fN

8©V

fN

8©V

fN©©©V <0

.002

<0.0

02

1<0

.002

300 0

> <0.0

02<0

.002

Th<3

3,2

<33.

3<3

3.4

<33.

5<3

3.6

<33.

7<3

3 8

<33.

9<3

3.10

<33.

11<3

3.12

i <3

3.13

1 <3

3.14

<33.

15

©nmV

1 <3

3.17

<33.

18<3

3.19

<33.

20<3

3.21

<33.

22

nfNmmV <3

3.24

1 <3

3.25

I

Sr<0

.001

<0.0

01<0

.001 § § §

o o oV V V <0

.001

<0.0

01

100 0

> I

s©V

1 1000

>

1 <0

.001

<0.0

01<0

.001

<0.0

011

<0.0

01

CV

cV <0

.001

<0.0

01 I©V

8©V

8©V

1 <0

.001

1

Si<0

.022

<0

.022

<

0.02

2!

<0.0

22

< 0.

022

< 0.

022

<0.0

22<0

.022 fN

fN©©V

1 <0

.022

<0.0

22

fNfN©ciV

fNfNOciV

fNfNOciV

t <0

.022

I <0

.022

<0.0

22<0

.022

<0

022

<0.0

22 fNfN©©V <0

.022 fN

fN©©V

fNfN©©V

Se<0

.213

<0.2

13<

0213

<0.2

13<0

.213

<0.2

13<0

.213

<0.2

13<0

.213

mfNoV

1 <0

.213

1

1 <0

,213

1

1 <0

.213

1

nfN©V

l<

0.213

1

I <0

.213

1

<0.2

13<0

.213

1 <0

.213

1

I <0

.213

1

1 <0

.213

1

nfN©V

1__<

0.213

1

1 <0

.213

1

Sc<

0.00

2 <

0.00

2 <

0.00

2<

0.00

2 <

0.00

2 <

0.00

2<

0.00

2 <

0.00

2I

<0.0

02

1

fN©©©V

1 <0

.002

1

I <0

.002

1

1 <0

.002

1

[ <0

.002

1

I <0

.002

I

1 <0

.002

1

1 <0

.002

1

1 <0

.002

1

I <0

.002

1

1 <0

.002

1

1 <0

.002

1

1 <0

.002

1

I <0

.002

|

1 <0

.002

I

Sb

<0.1

67<0

.167

<0.1

67<0

.167

<0.1

67<0

.167

<0.1

67<0

.167

1 <0

.167

I

1 <0

.167

|

<0.1

67

I1

<0.1

67

|1

<0.1

67

|1

<0.1

67

1<0

.167

I

I <0

.167

|

r-sO©V

1 <0

.167

1

1 <0

.167

|

I <0

.167

|

1 <0

.167

i

r-s©©V

I <0

.167

|

1 <0

.167

I

S

< 0.

568

< 0

568

< 0

568

< 0

568

< 0.

568

< 0.

568

< 0.

568

< 0.

568

1 <0

.568

|

I <0

.568

|

1 <

0.568

I

f <

0.568

|

i <0

.568

|

1 <0

.568

I

<0.5

68

1|

<0.5

68

|1

<0.5

68

I1

<0.5

68

11

<0.5

68

|I

<0.

5681

I <0

.568

|

I <0

.568

|

1 <0

.568

|

1 <0

.568

I

Rb

<0.3

20<0

.320

<0.3

20< 0

.320

<0.3

20<0

.320

<0.3

20<0

.320

1 <

0.32

0H ©fNm©*V <0

.320

I

1 <0

.320

1

1 <0

.320

]

< 0.3

20

1[

<0.3

20

II

<0.

320H

1 <0

.320

I

©fNnciV

1 <0

.320

|

©fNn©V

[ <

0.32

0HI

<0.3

20

|[

<0.3

20

|f

<0.3

20

I

Pb

<0.2

13<0

.213

<0.2

13<0

.213

<0.2

13<0

.213

<0.2

13<0

.213

nfNOV

nfN©V

rifN©V

nfNoV

nfN©V <0

.213

I

fN©V

nfN©V

1 <

0.213

I

1 <0

.213

1[

<0.

213n

1 <0

.213

1

1 <0

.213

I

1 <

0.213

|

i <

0.21

311

<0.2

13

I

P

< 0.

268

< 0.

268

< 0.

268

<0.

268

< 0.

268

< 0.

268

< 0.

268

<0.

268

I <0

.268

|

oo80fNC>V

1 <0

.268

1

I <0

26

8 |

1 <0

26

8 I

1 <0

,268

1

00SCfN©V

1 <0

.268

I

ooso(NdV

00soCNciV

00sOfN©V

ooorN©V

1 <0

.268

1

00SOfNo'V

ooSOfN© 'V

00sofNOV

Ni<

0.05

9 <0

.059

<0

.059

< 0.

059

< 0.

059

<0.0

59<

0.05

9<

0.05

9<0

.059

I <0

.059

j <0

.059

1 <0

.059

<0.0

59<0

.059

I

<0.0

59<0

.059

I

I <0

.059

|

I <0

.059

|

I <0

.059

j

Os«/l©C)V

1 <0

.059

Os

©©V

Os•41©©iV

Os•41©©'V

Na

<0.0

75<

0.07

5<

0.07

5<0

.075

<

0.07

5 <0

.075

<0.0

75

< 0.

075

<0.0

75<0

.075

<0.0

751

<0.0

75<0

.075

<0.0

75<0

.075

<0.0

75 £©©V <0

.075

<41r--©©V

1 <0

.075

1 <0

.075

I

■41f-©CiV <0

.075

1 <0

.075

I

Mo

< 0.

036

< 0.

036

< 0.

036

<0.0

36<

0.03

6<

0.03

6 80 'Or i n © © © ©V V <0

.036

<0.0

36<0

.036

<0.0

36<0

.036

<0.0

36<0

.036

<0.0

36

SOri©©V <0

.036

<0.0

361

<0.0

36<0

.036

<0.0

361

<0.0

36

1 9C0

0 >

1

Mn

<0.0

01<0

.001

<0.0

01<

U.UU

1

<0.0

01

<0.0

01<

U.U

UI

<0

.00

1 ©©©V

©©©V

©©©V

©©©V

©©©V

©©©V

100*0 >

1 100

0 > <0

.001

<0

.00

1

<0

.00

1

<0

.00

1

<0

.00

1

<0

.00

1

<0.0

01 ©©ciV

185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced

with perm

ission of the

copyright owner.

Further reproduction prohibited

without perm

ission.

Table B5: Acid Producing Bacteria, Sulfate Reducing Bacteria, and Iron Reducing Bacteria Populations Measured from September 2004 Cores

Location Depth (cm) WC APB IRB SRB DW (g) APB IRB SRBCore S1 25 0.295 1.10E+05 1.70E+04 2.20E+02 0.705 1.56E+05 2.41 E+04 3.12E+02

50 0.393 7.00E+06 2.20E+04 7.90E+05 0.607 1.15E+07 3.62E+04 1.30E+0675 0.219 3.30E+04 1.10E+03 1.30E+05 0.781 4.23E+04 1.41 E+03 1.66E+05

Core S2 25 0.22 4.90E+04 1.40E+04 2.20E+03 0.78 6.28E+04 1.79E+04 2.82E+0350 0.201 4.90E+02 1.70E+03 4.90E+03 0.799 6.13E+02 2.13E+03 6.13E+0375 0.222 4.90E+03 1.40E+02 7.90E+02 0.778 6.30E+03 1.80E+02 1.02E+03

Core S3 25 0.159 3.30E+04 2.30E+04 2.20E+05 0.841 3.92E+04 2.73E+04 2.62E+0550 0.191 1.30E+04 4.60E+02 3.30E+04 0.809 1.61 E+04 5.69E+02 4.08E+0475 0.652 1.30E+05 1.10E+04 4.90E+04 0.348 3.74E+05 3.16E+04 1.41 E+05

Core S4 25 0.146 7.90E+03 7.90E+02 2.20E+02 0.854 9.25E+03 9.25E+02 2.58E+0250 0.100 2.30E+04 7.90E+02 1.10E+02 0.900 2.55E+04 8.77E+02 1.22E+0275 0.115 4.90E+04 1.30E+02 2.80E+04 0.885 5.54 E+04 1.47E+02 3.16E+04100 0.171 7.90E+04 3.30E+02 2.30E+04 0.829 9.53E+04 3.98E+02 2.77E+04

Core S5 25 0.239 1.30E+05 1.80E+03 3.50E+04 0.761 1.71E+05 2.37E+03 4.60E+0450 0.225 2.30E+03 3.30E+02 2.20E+03 0.775 2.97E+03 4.26E+02 2.84E+0375 0.198 7.90E+02 1.30E+02 2.20E+03 0.802 9.85E+02 1.62E+02 2.74E+03

Notes:

WC - W ater Content

APB - Acid producing bacteria

SRB - Sulfate reducing bacteria

IRB - Iron reducing bacteria

DW - Dry weight

Table B6: Acid Volatile Sulfide (AVS) and Chromium Reducible Sulfide (CRS)Sediment Extractions for September 2004 Cores

Location Depth (cm) AVS (ppm) CRS (ppm)Core SI 25 2.78 56

50 2.74 70.375 2.76 46.5

Core S2 25 2.73 55.450 2.76 46.275 2.76 46.3

Core S3 25 2.76 28.850 2.76 46.575 2.76 72.2

Core S4 25 2.74 56.350 2.77 46.375 2.74 28.3too 2.94 55.8

Core S5 25 2.82 28.750 2.74 29.375 3.14 56.7

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced

with perm

ission of the

copyright owner.

Further reproduction prohibited

without perm

ission.

Table B7: Porewater Dissolved M etals Concentrations Collected from June and September 2004 C ores and all Onsite M onitoring W ells Installed in June 2004 and Sampled in September 2004.

Core ID Depth (cm)A1

ppmAg

PP-nAs

PP">Au

ppmB

ppmBa

ppmBe

PPmBi

ppmCa Cd

ppmCo

ppmCr Cu Fe Hg

Core SI 1.50E+014.50E+014.85E+017.15E+018.50E+011.30E+02

5.53E+001.36E+011.78E-017.98E-014.61E^002.14E+0I

<0.01353.60E-02<0.0135<0.01353.10E-022.90E-02

8.40E+005.03E+006.49E-015.20E+008.95E+002.94E+00

<0.0186<0.0186<0.0186<0.0186<0.0186<0.0186

I.22E-0I1.56E-0I7.30E-025.60E-028.10E-021.61E-01

9.20E-028.46E+021.85E-012.70E-022.18E+009.37E-01

< 0 0001 1.00E-03 <0.0001 <0.0001 <0.0001 1.00E-03

<0.4216<0.4216<0.4216<0.4216<0.4216<0.4216

4.92E+016.10E+013.41E+024.52E+017.40E+014.99E+01

< 0.0056< 0.0056< 0.0056< 0 0056< 0.0056< 0.0056

3.75E-01 < 0.0071 3.64E-0I 2.50E-02 3.94E-01 3.13E-01

2.00E-027.90E-02<0.0156<0.01562.30E-028.90E-02

1.6 IE-01 3.25E-01 <0.0118 1.50E-02 I.73E-01 2 26E-01

4.83E+00 1.79E+01 6.40E-02 9.80E-01 6.88E+00 2 09E+01

<0.0087<0.0087< 0.0087 <0.0087 <0.0087< 0 0087Core S2 1.50E+01

2.35E+01 7.15E+01 7.50E+01 1.35E+02

1.15E+013.30E+004.58E+004.46E+012.73E+0I

<0.0135 <0.0135 < 0.0135 <0.0135 3.60E-02

5.80E-012.95E-019.86E-012.05E+002.08E+00

<0.0186<0.0186<0.0186<0.0186<0.0186

9.50E-023.60E-021.20E-013.23E-012.00E-0I

1.26E-0I3.70E-023.20E-023.59E-011.43E+01

<0.0001<0.0001<0.0001<0.00011.00E-03

<0.4216<0.4216<0.4216<0.4216<0.4216

5.04E+013.88E+013.26E+015.11E+015.08E+01

< 0.0056< 0.0056< 0.0056 <0.0056< 0.0056

1.78E-01I.17E-011.51E-013.77E-012.95E-01

4.90E-02<0.01563.30E-021.92E-011.27E-01

7.20E-027.40E-024.40E-02I.49E-011.02E-01

I.10E+01308E+005.51E+004.36E+012.84E+01

< 0.0087 <0.0087 1.85E+00< 0.0087< 0 0087Core S3 2.35E+01

5.00E+017.65E+01

4.55E-019.4IE+008.35E-01

<0.01357.20E-02<0.0135

3.82E-013.85E+002.01E+00

<0.0186<0.0186<0.0186

8.40E-021.21E-015.70E-02

6.80E-022.04E-013.30E-02

<0.0001<0.0001<0.0001

<0.4216<0.4216<0.4216

8.42E+017.53E+015.60E+01

< 0.0056< 0.0056< 0 0056

2.06E-013.27E-012.90E-02

<0.01564.40E-022.40E-02

5.10E-021.87E-012.40E-02

4.52E-011.17E+018.10E-01

< 0.0087< 0.0087< 0.0087Core S4 2.35E+01

5.00E+018.75E+011.21E+02

6.02E+006.29E+003.95E+008.47E-01

<0.01352.70E-022.60E-02<0.0135

1.61E+003.31E+001.34E+002.20E+00

<0.0186<0.0186<0.0186<0.0186

149E-012.85E-013.45E-0I3.91E-01

7.10E-027.10E-026.00E-024.60E-02

<0.0001 <0.0001 <0.0001 < 0 0001

<0.4216<0.4216<0.4216<0.4216

8.43E+0II.04E+024.00E+014.83E+01

< 0.0056< 0.0056< 0 0056< 0 0056

3.24E-018.21E-012.03E-018.10E-02

3.30E-023.10E-022.00E-02<0.0156

9.00E-021.03E-016.30E-021.70E-02

8.86E+00 8 53E+00 4.14E+00 9 .10E-01

< 0.0087 1.37E+00 <0.0087< 0.0087

Core S5 2.35E+015.00E+017.65E+01

1.65E+001.34E+014.65E+00

<0.01354.00E-022.60E-02

1.11E+002.70E+001.69E+00

<0.0186<0.0186<0.0186

5.30E-02 1.82E-01 1 80E-01

1.35E-016.90E-029.70E-02

<0.0001<0.0001<0.0001

<0.4216<0.4216<0.4216

1.19E+024.83E+013.35E+01

<0.0056< 0.0056< 0.0056

4.99E-014.31E-011.92E-01

<0.01567.70E-022.70E-02

5.40E-02 1.45E-01 1 08E-01

1.45E+001.78E+015.79E+00

< 0.0087< 0.0087 1.65E+00

MW-1MW-2MW-3MW-4MW-5MW-6MW-7

6.10E-019.30E-021.32E+001.38E-017.73E-011.37E-011.60E-01

<0.0135<0.0135<0.0135<0.0135<0.0135<0.0135<0.0135

4.34E-012.10E+001.96E-012.77E-019.24E+007.25E-0I1.30E+00

<0.0186<0.0186<0.0186<0.0186<0.0186<0.0186<0.0186

5.30E-029.10E-025.00E-027.10E-029.10E-028.30E-029.40E-02

5.60E-028.70E-023.70E-022.40E-021.90E-024.40E-025.60E-02

<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001

<0.4216<0.4216<0.4216<0.4216<0.4216<0.4216<0.4216

6.62E+0I1.50E+026.61E+018.89E+011.03E+021.08E+021.47E+02

< 0.0056< 0.0056< 0.0056< 0.0056< 0.0056< 0.0056 <0.0056

4.10E-021.89E-014.70E-027.70E-025.88E-01I.62E-011.30E-01

<0.0156<0.0156<0.0156<0.0156<0.0156<0.0156<0.0156

<0.0118<0.01184.90E-02<0.01186.30E-02<0.0118<0.0118

2.97E-018.60E+008.75E-019.23E-0I9.11E-011.90E-017.85E+00

<0.0087< 0.0087< 0.0087 2.05E+00 2.12E-01< 0.0087< 0.0087

Reproduced

with perm

ission of the

copyright owner.

Further reproduction prohibited

without perm

ission.

00vO

C ore ID Depth (cm)K

ppmMgppm

MnJ>pm

Moppm

Nappm

Nippm

Pppm

Pbppm

Rbppm

Sippm

Sc Se Sr S

Core S 1 1.50E+014.50E+014.85E+017.15E+018.50E+011.30E+02

2 .15E+00 2.07E+00 1.71E+01 3.95E+00 2.05E+00 2.97E+00

8.6IE+001.25E+012.01E+015.36E+00l.ME+011.58E+01

2.56E-016.10E-014.00E-035.90E-023.37E-014.67E-0I

< 0.036< 0.036< 0.036< 0.036< 0 036 <0.036

9.50E+003.35E+011.14E+014.53E+021.30E+011.36E+01

< 0.059< 0.059< 0.059< 0 059< 0.059< 0.059

< 0.268 < 0.268 < 0.268 < 0 268 < 0.268

4 .14E-01

<0.2135.49E-01<0.213<0.213<0.213<0.213

< 0.320< 0.320 <0.320< 0.320 < 0 320 <0.320

1.67E+012.83E+019.80E+008.44E+001.54E+014.48E+01

7.00E-03 6.00E-03 < 0.002 < 0.002 < 0.002

5.00E-03

<0.213 <0.213 <0.213 < 0 213 <0.213 <0.213

9.10E-02 1.23E-01 3.84E-01 1.03E-01 1.38E-01 1 23E-01

3.51E+01 1.18E+01 6.58E+02 6.94E+01 1.21E+01 1 41E+01Core S2 1.50E+01

2.35E+017.15E+017.50E+011.35E+02

2.64E+00 2.11E+00 1.19E+01 6.47E+00 3 38E+00

1.06E+015.98E+006.44E+002.52E+011.86E+01

3.46E-017.90E-021.89E-011.13E+009.56E-01

< 0.036< 0.036< 0.036< 0.036< 0.036

3.98E+00 1.19E+00 4 89E+00 5.46E+00 3.72E+00

<0.059< 0.059< 0.059< 0.059< 0.059

<0.268 < 0.268

6.66E+00 9.91E-01 4.25E-01

<0.213<0.213<0.213

3.67E-014.25E-01

< 0.320< 0.320

5.52E-01 3.24E-01 <0.320

2.12E+01 9.51E+00 1 16E+01 3.75E+01 3.81E+01

4.00E-03 <0.002

5.00E-03 2 .10E-02 1.20E-02

<0.213<0.213<0.213<0.213<0.213

9.20E-026.00E-024.20E-021.21E-016.70E-02

2.15E+01 5.31E+01 4.36E+01 1.76E+01 6 89E+00Core S3 2.35E+01

5.00E+017.65E+01

3.33E+002.32E+003.22E+00

5.74E+001.15E+019.38E+00

2.08E-013.79E-011.78E-01

1.28E-0!4.63E-0I< 0.036

4.72E+005.53E+004.71E+00

< 0.059< 0.059< 0.059

<0.268 < 0.268 < 0.268

<0.2132.69E-01<0.213

4 19E-01 <0.320 <0.320

5.50E+001.84E+015.18E+00

<0.002 4.00E-03 < 0.002

<0.213<0.213<0.213

8.80E-029.10E-021.71E-01

1.17E+021.32E+027.15E+01

Core S4 2.35E+015.00E+0I8.75E+011.21E+02

6.17E+007.83E+009.18E+008.24E+00

1.38E+011.54E+018.89E+008.83E+00

2.64E-01 4.3 IE-01 1.02E-01 5.30E-02

8.50E-022.96E-011.24E-015.47E-01

8.59E+008.00E+008.59E+009.22E+00

< 0.059< 0 059 <0.059 <0.059

< 0.268 < 0.268 < 0.268 < 0.268

2.56E-01<0.213<0.213<0.213

3.71E-01 3.62E-01 < 0.320 <0.320

1.61E+011.56E+011.17E+015.35E+00

2.00E-03 7.00E-03 < 0.002 < 0.002

<0.213<0.213<0.213<0.213

1.74E-012.16E-017.50E-028.00E-02

1.51E+02 2 .17E+02 .8.49E+01 1.23E+02

Core S5 2.35E+015.00E+017.65E+01

4.53E+004.96E+006.02E+00

1.01E+011.44E+018.23E+00

1.36E-014.52E-011.58E-01

<0.036 < 0 036 < 0.036

7.12E+005.98E+007.71E+00

< 0.059 <0.059< 0.059

< 0.268 2.79E-01 < 0.268

<0.2134.05E-01<0.213

3.25E-01<0.320<0.320

8.80E+002.36E+011.15E+01

< 0.002 6.00E-03 5.00E-03

<0.213<0.213<0.213

1.35E-015.50E-024.40E-02

2.02E+025.27E+016.65E+01

MW-1 MW-2 MW-3 MW-4 MW-5 MW-6 MW-7

8.90E-013.06E+001.12E+003.87E-013.60E+002.50E+002.12E+00

1.25E+01 1.43E+01 9.13E+00 9.27E+00 9.44E+00 5.38E+00 1 47E+01

2.82E-011.15E+001.90E-012.19E-016.77E-014.02E-011.40E+00

< 0.036 <0.036< 0.036 <0.036

4.00E-02< 0.036< 0.036

5.96E+001.15E+016.51E+004.74E+005.03E+005.10E+007.90E+00

< 0.059< 0.059< 0.059 <0.059 <0.059< 0.059< 0.059

< 0.268 < 0.268 <0.268 < 0.268 <0.268 <0.268 < 0.268

<0.213<0.213<0.213<0.213<0.213<0.213<0.213

< 0.320< 0.320 <0.320 <0.320

3.98E-01 <0.320

4.86E-01

8.47E+001.00E+019.56E+001.05E+016.66E+007.43E+00I.23E+01

<0.002 < 0.002 <0.002

4.00E-03 <0.002 <0.002 <0.002

<0.213<0.213<0.213<0.213<0.213<0.213<0.213

1.55E-012.26E-011.27E-011.40E-011.55E-011.34E-012.35E-01

7.70E+008.78E+007.41E+007.48E+002.68E+011.91E+019.48Et00

Reproduced

with perm

ission of the

copyright owner.

Further reproduction prohibited

without perm

ission.

M 3O

Core ID Depth (cm)Sb

ppmTh

ppmTi

ppmU

ppmZr

ppmZn

PpmCore SI 1.50E+01 4.94E-01 <33.2 5.80E-02 <0.868 7.00E-03 1.65E-01

4.50E+01 5.92E-01 <33.2 1.76E-01 < 0.868 5.00E-03 5.66E-014.85E+01 3.08E-01 <33.2 <0.0019 < 0.868 <0.004 <0.0067.15E+0I 3.52E+00 <33.2 7.00E-03 <0.868 <0.004 2.90E-028.50E+01 5.20E-01 <33.2 5.50E-02 <0.868 7.00E-03 1.42E-011.30E+02 3.45E-01 <33.2 4.1 IE-01 <0.868 1.20E-02 2.88E-01

Core S2 1.50E+01 2.85E-01 <33.2 4.52E-01 <0.868 8.00E-03 1.81E-012.35E+01 5.35E-01 <33.2 7.30E-02 < 0.868 <0.004 6.80E-027.15E+01 6.21E-01 <33.2 8.70E-02 < 0.868 1.20E-02 1.38E-017.50E+01 1.67E-01 <33.2 1.86E+00 <0.868 3.30E-02 3.54E-011.35E+02 3.59E-01 <33.2 S.89E-01 < 0.868 9.00E-03 3.50E-0I

Core S3 2.35E+01 1.43E+00 <33.2 9.00E-03 < 0.868 6.00E-03 5.10E-025.00E+01 4.01E+00 <33.2 8.70E-02 < 0.868 7.00E-03 1.97E-017.65E+01 3.16E+00 <33.2 1.60E-02 < 0.868 < 0.004 3 38E-01

Core S4 2.35E+01 9.44E-01 <33.2 l.UE-01 < 0.868 < 0.004 1.70E-015.00E+01 1.28E+00 <33.2 9.10E-02 <0.868 6.00E-03 2.01E-018.75E+01 2.51E+00 <33.2 1.35E-0I <0.868 7.00E-03 1 75E-01I.21E+02 4.59E+00 <33.2 1.80E-02 <0.868 < 0.004 9.90E-02

Core S5 2.35E+01 9.99E-01 <33.2 3.60E-02 < 0.868 <0.004 1.29E-015.00E+01 1.03E+00 <33.2 2.93E-0I < 0.868 1.00E-02 2.46E-017.65E+01 1 96E+00 <33 2 9.30E-02 < 0.868 6.00E-03 1.37E-01

MW-1 <0.167 <33.2 I.00E-02 < 0.868 < 0.004 <0.006MW-2 <0.167 <33.2 <0.002 <0.868 < 0.004 6.00E-03MW-3 <0.167 <33.2 1.30E-02 <0.868 <0.004 3.20E-02MW-4 <0.167 <33.2 3.00E-03 <0.868 <0.004 6.00E-03MW-5 <0.167 <33.2 1.10E-02 <0 868 <0.004 1.43E-0IMW-6 <0.167 <33.2 4.00E-03 < 0.868 <0.004 1.10E-02MW-7 <0.167 <33.2 2.00E-03 <0.868 <0.004 1.20E-02

Reproduced

with perm

ission of the

copyright owner.

Further reproduction prohibited

without perm

ission.

Table B8a: Porewater Field Chemistry Collected from September 2004 Cores

Location Depth (cm)Sulfate(ppm)

Sulfide(ppm) Fe(II) (ppm)

Alkalinity (mg H2C03/L)

Alkalinity (mgCaC03/L)

DO(ppm) pH

Core SI 25.5 125 0.10 0.10 nm nm 1.87 7.1545.0 375 nd nd 10.6 17.1 2.10 7.1075.0 250 nd nd 29.1 46.8 1.90 6.80

Core S2 15.0 313 nd nd 421 679 1.95 6.1845.0 238 nd nd 87.2 141 2.00 7.3275.0 213 0.10 nd 65.2 105 2.00 7.21105 200 nd nd 150 242 2.50 7.20130 50.0 nd nd 146 235 1.00 7.48

Core S3 15.0 325 0.20 nd 13.1 21.1 2.00 7.7045.0 313 0.20 0.10 39.6 63.9 1.49 7.9075.0 438 0.10 0.50 76.8 123.8 0.69 7.97105 214 0.70 nd 10.7 17.2 2.15 6.96

Core S4 23.5 525 0.60 0.10 2.00 7.6045.0 438 0.15 0.20 16.5 26.6 1.68 7.6475.0 588 0.10 0.10 45.8 73.8 1.49 7.78105 163 0.10 0.30 15.8 25.4 1.50 7.78

Core S5 23.5 425 nd nd 2.00 5.3645.0 350 0.10 nd 22.5 36.3 1.60 5.4275.0 166 0.50 nd 8.32 13.4 0.900 5.92105 100 0.70 nd 12.4 19.9 0.680 6.24

Table B8b: Groundwater Field Chemistry Collected from all Onsite Monitoring Wells Intalled in June 2004 and Sampled in September 2004

MWID MW1 MW2 MW3 MW4 MW5 MW6 MW7HS 0.400 nd 0.1 0.1 nm 0.15 0.100

Fe(II) 1.00 nd 0.05 2.00 0.100 nd 0.80S04 1750 100 125 50.0 >200 150 50.0DO 2.23 0.34 0.25 3.52 3.68 2.92 4.98

cond 349 346 80 53.0 198 386 593pH 6.93 6.59 6.66 6.48 7.60 7.55 7.40

temp 11.3 13.5 19.5 16.9 20.5 16.2 16.3alk 230 266 130 423 nm 178 nmCl nm 90 15 2.20 7.5 30.0 nm

Notesnm Not measurednd Not detected

Table B9: Monitoring Well Details

MWID Total Depth (m) Screened Interval (m) Water Elevation (maal) Vetical Gradient

MW1 0.65 0.341-0.646 97.25 -1.08MW2 1.02 0.719-1.021 98.26 -0.03MW3 0.96 0.657-0.962 98.29 0.01MW4 0.85 0.238-0.543 98.29 0.01MW5 0.43 0.127-0.432 101.03 NDMW6 0.79 0.184-0.489 98.30 0.02MW7 1.21 0.901-1.206 98.67 0.01

Notesnd Not determined

192

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CO O IO O ) (M O8 ? c o s ^ i n o o o o o

oCO(O (0 t Ifl s

in o > CM

O O O

i n^ CD co m cot l CD 0 0 CDP O O CM COo o o o d

c d r -O )

t - COo o

co o o Jf2 ^ d d

D )

o o

oCO

l f i l f ) C O ( D O O C D S ( Dt- t - C N I C O x- t - C M t- CO

o o

CMCM

LU LU _J —I E S S

193

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

O ) <JiS S l O O O O ^ C O C O O O O J O l O O O o > ^ ^ ^ ^ *-o d "

O) <J> a > o > o >O )

< 0 O O M O < 0

0 0 ) 0 ) ^ (M O i f i ^ i n o a > c o m t- m m

LL

CN

Ot < J > W O ) O C O t O ) N

o o o o o o o o oCN (N CO

O O O O

c o < o < o —. < o < oT - r O r r ^ r rO ^ J ^ O O ^ O O

0 0

< o o o

CO V - O O T - T -l o O P © o oo O © © o o

o o o o oo o o

CD CO (D CO c p c o c p c o c o c o c o c o c o c oo o o o o o o o o o

N I O M C O 0 ( M C O O ) O )o o i n c N o o c o c N c b c O N '

CO CO r - t — c oCO CN CO CD CO CN CN CO COCO CO

U J U J - I - I

194

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CN CN CN CN CM CN CM CNn

i n N O ) C O C O ( J 5 T f ( D t - • - * - - ( D I D CO ^

CN CN CO COCN CO CO CO CN CN •*”

0) 0) 0 0 ) 0) 0) 0) 0) 0) 0) 0) 0) 0)

r n O O S o o o ) bH uo co^ CN CO

N t - C O O N ’ O ^ C O ^ r - C O C O l D C N C N C O ® ^ CN CN * 1 “ — —CN CN

C O C O C O C D C O C D C D C Oc o c o c o c o c o r o c o c o CO CO CO CO CD CO CO CO CO CO

t oCNc o i o c o o o o r ^ c N c o o o c o

a >

o o c _ ) o o o o o , 7 ; ; nl D r - C O O C N ( D ® C O S S _ C N M O O O O O C N O a m O O ) T - T - T - ( N T - T - C M C N U W C N t -

tin tin CMr N r N ? ? ? > ? > o o o o

s s s

195

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CO o

■' t u S o S u S o o o oT— m ^ i n (D CO

c o < 0

O) < 0 c o 0 0 < 0 O t < ? ® o ^ N < j ) ( o 3 i

cn Tf CO T- cd xr cd co Is-. co

c o c o c o c o c o c o c o c o c o c o c o c o c o c o

1 0 o i n o o i o e q c q c o q^ S O O N f O C O ^ d^ - r - t - i - N C M n C O CM CM

0 0 CO CO CD CO M" CO 0 5 S CO CM CM CM CO CM

0 0 CD CD CO----------------- „ ^ Ol N OC M C M C M C M C M C M C O C M

C O C O C O C O C O C O C O C O C O C O C O C O C O C O

CM CM CM CM CM CMS o o m o o o 0 0

O O CM O O O 0 0co o in m

C D C D C D C D C O C D C D C D C D C D C D C D C D C DS i

^ t ( O C O C O C O C O ( 0 ( O C O ( O C O C O < 0o o o o o o “ ~ ~ ~ ~ ' ~ ~ ~

+ + +U J U J UJ LU LU U J LUU J LU

CO CO CO CD

CO

11 i l l COUj UJ o o o o

1 9 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX C

MODELLING RESULTS

RAW DATA

197

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MW1 - No Adsorption

INPUT DATA BEFORE TYPE MODIFICATIONS

ID Name ACTIVITY GUESS log GUESS ANAL330 H+l 1.000E-07 -7.000 2.818E-0830 AI+3 2.239E-05 -4.650 2.261E-0561 H3As04 5.754E-06 -5.240 5.793E-0690 H3B03 4.898E-06 -5.310 4.903E-06100 Ba+2 4.074E-07 -6.390 4.078E-07150 Ca+2 1.660E-03 -2.780 1.652E-03200 Co+2 6.918E-07 -6.160 6.957E-07280 Fe+2 5.370E-06 -5.270 5.318E-06410 K+l 2.291E-05 -4.640 2.276E-05460 Mg+2 5.129E-04 -3.290 5.144E-04470 Mn+2 5.129E-06 -5.290 5.133E-06500 Na+1 2.570E-04 -3.590 2.592E-04770 H4Si04 3.020E-04 -3.520 3.015E-04800 Sr+2 1.778E-06 -5.750 1.769E-06731 S 2.399E-04 -3.620 2.401E-04871 Tl(OH)3 2.089E-07 -6.680 2.089E-07732 S04-2 1.738E+03 3.240 1.822E-03281 Fe+3 1.000E-07 -7.000 O.OOOE+OO1 E-l 1.000E-07 -7.000 O.OOOE+OO

60 H3As03 1.000E-07 -7.000 0.000E+00730 HS-1 1.000E-07 -7.000 1.209E-05870 Tl+l 1.000E-07 -7.000 0.000E+00471 Mn+3 1.000E-07 -7.000 0.000E+00140 C03-2 2.291E-04 -3.640 2.300E-042 H20 1.000E+00 0.000 0.000E+00

Charge Balance: UNSPECIATED

Sum of CATIONS= 4.709E-03 Sum of ANIONS = 4.116E-03

PERCENT DIFFERENCE = 6.721E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

----------- EQUILIBRATED MASS DISTRIBUTION-----------

IDX Name DISSOLVED SORBED PRECIPITATED mol/L percent mol/L percent mol/L percent

140 C03-2 30 AI+3 471 Mn+3 90 H3B03 100 Ba+2 150 Ca+2 200 Co+2280 Fe+2 410 K+l 460 Mg+2 470 Mn+2 500 Na+1 770 H4Si04 800 Sr+2731 S61 H3As04 730 HS-1 871 TI(OH)3732 S04-2 2 H201 E-l

281 Fe+3 60 H3As03

330 H+l 870 Tl+l

2.300E-04 100.0 0.000E+00 2.261E-05 100.0 O.OOOE+OO

1.215E-37 100.0 0.000E+00 4.903E-06 100.0 O.OOOE+OO

4.078E-07 100.0 0.000E+00 1.652E-03 100.0 O.OOOE+OO 6.957E-07 100.0 0.000E+00 5.316E-06 100.0 0.000E+00 2.276E-05 100.0 O.OOOE+OO 5.144E-04 100.0 O.OOOE+OO 5.133E-06 100.0 0.000E+00

2.592E-04 100.0 0.000E+00 3.015E-04 100.0 O.OOOE+OO

0.0 O.OOOE+OO 0.0 0.000E+00

0.0 0.000E+00 0.0 O.OOOE+OO

0.0 0.000E+00 O.OOOE+OO 0.000E+00 O.OOOE+OO 0.000E+00 0.000E+00

0 . 0

0 . 0

0 . 0

0 . 0

0 . 0

0.0 0.000E+00 0.0 0.000E+00

0.0 O.OOOE+OO 0.0 0.000E+00

0 . 0

0 . 0

0.00.0

0.00.00.00.00 . 0

0 . 0

0 . 0

0 . 0

0 . 0

0 . 01.769E-06 100.0 O.OOOE+OO2.401E-04 100.0 0.000E+00 0.0 0.000E+00 0.0

3.485E-09 100.0 O.OOOE+OO 0.0 0.000E+00 0.01.059E-05 100.0 0.000E+00 0.0 0.000E+00 0.0

5.511E-37 100.0 0.000E+00 0.0 O.OOOE+OO 0.01.823E-03 100.0 0.000E+00 0.0 0.000E+00 0.0

1.129E-04 100.0 0.000E+00 0.0 0.000E+00 0.03.372E-75 100.0 0.000E+00 0.0 0.000E+00 0.0

1.522E-09 100.0 0.000E+00 0.0 0.000E+00 0.05.789E-06 100.0 0.000E+00 0.0 0.000E+00 0.0

1.317E-06 100.0 0.000E+00 0.0 0.000E+00 0.02.089E-07 100.0 0.000E+00 0.0 0.000E+00 0.0

Charge Balance: SPECIATED

198

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sum of CATIONS = 4.000E-03 Sum of ANIONS 3.407E-03

PERCENT DIFFERENCE = 8.008E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

EQUILIBRIUM IONIC STRENGTH (m) = 7.116E-03

EQUILIBRIUM pH = 9.393

EQUILIBRIUM pe = -6.080 or Eh = -353.63 mv

Saturation indices

ID No Name SI

1006000 ORPIMENT 7.7091020001 CoS (alpha) 5.1091020002 CoS (beta) 8.7391028000 FeS (ppt) 1.5981028001GREIGITE 6.9621028002 MACKINAWITE 2.2811028003 PYRITE 9.5422077002 QUARTZ 0.4512003001 BOEHMITE 0.1982003002 DIASPORE 1.9472003003 GIBBSITE 0.5522028000 WUSTITE 1.4052028102 GOETHITE 2.5843020002 CoFe20 4 21.6573028000 MAGNETITE 15.5893028001HERCYNITE 7.5273028100 HEMATITE 7.5453028101 MAGHEMITE 0.1273028102 LEPIDOCROCITE 1.8853046001MAGNESIOFERRITE 4.105 5047000 RHODOCHROSITE 0.294 5015000 ARAGONITE 0.5125015001CALCITE 0.6665015002 DOLOMITE (ordered) 0.918 5015004 DOLOMITE (disordered) 0.348 6010000 BARITE 0.5357210000 Ba3(As04)2 9.2348603000 HALLOYSITE 0.9078603001 KAOLINITE 3.1478628000 GREENALITE 11.2668646000 CHRYSOTILE 5.8408646003 SEPIOL1TE 3.6238646004 SEPIOLITE (A) 0.944

MW2 - No Adsorption

INPUT DATA BEFORE TYPE MODIFICATIONS

ID Name ACTIVITY GUESS log GUESS A330 H+l 1.000E-07 -7.000 2.512E-0730 AI+3 3.467E-06 -5.460 3.447E-0661 H3As04 2.818E-05 -4.550 2.803E-0590 H3B03 8.511E-06 -5.070 8.418E-06100 Ba+2 6.310E-07 -6.200 6.335E-07150 Ca+2 3.715E-03 -2.430 3.743E-03200 Co+2 3.236E-06 -5.490 3.207E-06280 Fe+2 1.549E-04 -3.810 1.540E-04410 K+l 7.762E-05 -4.110 7.826E-05460 Mg+2 5.888E-04 -3.230 5.885E-04470 Mn+2 2.089E-05 -4.680 2.093E-05500 Na+1 5.012E-04 -3.300 5.002E-04770 H4Si04 3.548E-04 -3.450 3.560E-04800 Sr+2 2.570E-06 -5.590 2.579E-06731 S 2.754E-04 -3.560 2.738E-04

199

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

950 Zn+2 732 S04-2 180 Cl-l 140 C03-2 281 Fe+3

1 E-l60 H3As03

471 Mn+3 730 HS-1 201 Co+32 H20

9.120E-08 1.047E-03

2.512E-03 2.239E-03

1.000E-07 1.000E-07

1.000E-07 1.000E-07

1.000E-07 1.000E-07

1.000E+00

-7.040 9.177E-08 -2.980 1.041 E-03

-2.600 2.539E-03 -2.650 2.260E-03

-7.000 0.000E+00 7.000 O.OOOE+OO

-7.000 O.OOOE+OO -7.000 O.OOOE+OO

-7.000 O.OOOE+OO -7.000 O.OOOE+OO 0.000 O.OOOE+OO

Charge Balance: UNSPECIATED

Sum of CATIONS= 9.615E-03 Sum of ANIONS = 9.141E-03

PERCENT DIFFERENCE = 2.527E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

EQUILIBRATED MASS DISTRIBUTION ■

IDX Name DISSOLVED SORBED PRECIPITATED mol/L percent mol/L percent mol/L percent

330 H+l30 AI+3732 S04-290 H3B03100 Ba+2150 Ca+2200 Co+2280 Fe+2410 K+l460 Mg+2470 Mn+2500 Na+1770 H4Si04800 Sr+2731 S950 Zn+261 H3As04180 Cl-l140 C03-2471 Mn+32 H20

201 Co+3281 Fe+360 H3As031 E-l

730 HS-1

-1.614E-05 100.0 0.000E+00 0.0 0.000E+00 0.03.447E-06 100.0 0.000E+00 0.0 iO.OOOE+OO 0.0

1.041E-03 100.0 0.000E+00 0.0 0.000E+00 0.08.418E-06 100.01 O.OOOE+OO 0.0 0.000E+00 0.0

6.335E-07 100.0 0.000E+00 0.0 0.000E+00 0.03.743E-03 100.0 O.OOOE+OO 0.0 0.000E+00 0.03.207E-06 100.0 0.000E+00 0.0 O.OOOE+OO 0.01.376E-04 100.0 0.000E+00 0.0 0.000E+00 0.07.826E-05 100.0 O.OOOE+OO 0.0 0.000E+00 0.05.885E-04 100.0 0.000E+00 0.0 O.OOOE+OO 0.02.093E-05 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

5.002E-04 100.0 O.OOOE+OO 0.0 0.000E+00 0.03.560E-041 100.0 0.000E+00 0.(11 0.000E+00 0.0

2.579E-06 100.0 0.000E+00 0.0 0.000E+00 0.02.738E-04 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

9.177E-08 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.01.983E-05 100.0 0.000E+00 0.0 O.OOOE+OO 0.0

2.539E-03 100.0 0.000E+00 0.0 0.000E+00 0.02.260E-03 100.0 0.000E+00 0.0 0.000E+00 0.0 1.951E-36 100.0 0.000E+00 0.0 0.000E+00 0.0

5.034E-04 100.0 0.000E+00 0.0 0.000E+00 0.0 1.068E-36 100.0 0.000E+00 0.0 0.000E+00 0.01.639E-05 100.0 0.000E+00 0.0 0.000E+00 0.0

8.197E-06 100.0 0.000E+00 0.0 0.000E+00 0.0-1.914E-66 100.0 0.000E+00 0.0 0.000E+00 0.0

3.116E-17 100.0 0.000E+00 0.0 0.000E+00 0.0

Charge Balance: SPECIATED

Sum of CATIONS = 7.004E-03 Sum of ANIONS 6.530E-03

PERCENT DIFFERENCE = 3.501E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

EQUILIBRIUM IONIC STRENGTH (m) = 1.136E-02

EQUILIBRIUM pH = 10.126

EQUILIBRIUM pe = -5.502 or Eh = -320.03 mv

200

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Saturation indices

29.442 24.354 6.460

14.262 6.843

5.244 12.260

ID No Name SI2077002 QUARTZ 0.2422003002 DIASPORE 0.3892020002 Co(OH)2 0.0652028000 WUSTITE 3.4232028001 Fe(OH)2 1.5872028100 FERRIHYDRITE 3.2042028101 Fe3(OH)8 8.1582028102 GOETHITE 3020002 CoFe2043028000 MAGNETITE3028001 HERCYNITE3028100 HEMATITE3028101 MAGHEMITE3028102 LEPIDOCROCITE 3046001 MAGNESIOFERRITE 4128100 Fe(OH)2.7CI.3 5.8245028000 SIDERITE 1.6625047000 RHODOCHROSITE 2.186 5046002 MAGNESITE 0.5625015000 ARAGONITE 2.1055015001 CALCITE 2.2595015002 DOLOMITE (ordered) 3.828 5015004 DOLOMITE (disordered) 3.2575015003 HUNTITE 2.5866010000 BARITE 0.3357247000 Mn3(As04)2:8H20 1.4137210000 Ba3(As04)2 18.4328628000 GREENALITE 16.9948646000 CHRYSOTILE 9.7358646003 SEPIOLITE 5.8728646004 SEPIOLITE (A) 3.193

MW3 - No Adsorption

INPUT DATA BEFORE TYPE MODIFICATIONS

ID Name ACTIVITY GUESS log GUESS A330 H+l 2.188E-07 -6.660 2.188E-0730 AI+3 4.898E-05 -4.310 4.893E-0561 H3As04 2.630E-06 -5.580 2.616E-0690 H3B03 4.677E-06 -5.330 4.625E-06100 Ba+2 2.692E-07 -6.570 2.694E-07150 Ca+2 1.660E-03 -2.780 1.649E-03200 Co+2 7.943E-07 -6.100 7.976E-07280 Fe+2 1.585E-05 -4.800 1.567E-05410 K+l 2.884E-05 -4.540 2.864E-05460 Mg+2 3.715E-04 -3.430 3.757E-04470 Mn+2 3.467E-06 -5.460 3.458E-06500 Na+1 2.818E-04 -3.550 2.832E-04770 H4Si04 3.388E-04 -3.470 3.403E-04800 Sr+2 1.445E-06 -5.840 1.449E-06731 S 2.291E-04 -3.640 2.311E-04871 TI(OH)3 2.692E-07 -6.570 2.715E-07950 Zn+2 4.898E-07 -6.310 4.894E-07730 HS-1 3.020E-06 -5.520 3.023E-06732 S04-2 1.288E-03 -2.890 1.301E-03180 Cl-l 4.266E-04 -3.370 4.231 E-04140 C03-2 1.288E-03 -2.890 6.499E-04281 Fe+3 1.000E-07 -7.000 O.OOOE+OO

1 E-l 1.000E-07 -7.000 0.000E+0060 H3As03 1.000E-07 -7.000 O.OOOE+OO471 Mn+3 1.000E-07 -7.000 O.OOOE+OO2 H20 1.000E+00 0.000 0.000E+00

Charge Balance: UNSPECIATED

201

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sum of CATIONS= 4.553E-03 Sum of ANIONS = 4.328E-03

PERCENT DIFFERENCE = 2.529E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

EQUILIBRATED MASS DISTRIBUTION

IDX Name DISSOLVED SORBED PRECIPITATED mol/L percent mol/L percent mol/L percent

61 H3AsQ4 6.303E-09 100.0 0.000E+00 0.0 0.000E+00 0.030 AI+3 4.893E-05 100.0 O.OOOE+OO 0.0 0.000E+00 0.0

471 Mn+3 3.671 E-38 100.0 0.000E+00 0.0 O.OOOE+OO 0.090 H3BQ3 4.625E-06 100.0 0.000E+00 0.0 O.OOOE+OO 0.0100 Ba+2 2.694E-07 100.0 O.OOOE+OO 0.0 0.000E+00 0.0150 Ca+2 1.649E-03 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0200 Co+2 7.976E-07 100.0 O.OOOE+OO 0.0 0.000E+00 0.0280 Fe+2 1.563E-05 100.0 0.000E+00 0.0 O.OOOE+OO 0.0410 K+l 2.864E-05 100.0 0.000E+00 0.0 0.000E+00 0.0460 Mg+2 3.757E-04 100.0 0.000E+00 0.0 0.000E+00 0.0470 Mn+2 3.458E-06 100.0 0.000E+00 0.0 0.000E+00 0.0500 Na+1 2.832E-04 100.0 0.000E+00 0.0 O.OOOE+OO 0.0770 H4Si04 3.403E-04 100.0 0.000E+00 0.0 0.000E+00 0.0800 Sr+2 1.449E-06 100.0 0.000E+00 0.0 O.OOOE+OO 0.0731 S 2.311E-04 100.0 0.000E+00 0.0 O.OOOE+OO 0.0871 TI(OH)3 2.715E-07 100.0 0.000E+00 0.0 0.000E+00 0.0950 Zn+2 4.894E-07 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0730 HS-1 2.375E-06 100.0 0.000E+00 0.0 0.000E+00 0.0732 S04-2 1302E-03 100.0 0.000E+00 0.0 0.000E+00 0.0180 CI-1 4.231 E-04 100.0 O.OOOE+OO 0.0 0.000E+00 0.0140 CQ3-2 6.499E-04 100.0 O.OOOE+OO 0.0 0.000E+00 0.02 H20 2.607E-04 100.0 O.OOOE+OO 0.0 0.000E+00 0.01 E-l -1.100E-73 100.0 O.OOOE+OO 0.0 0.000E+00 0.0

281 Fe+3 3.567E-08 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.060 H3AsQ3 2.610E-06 100.0 0.000E+00 0.0 0.000E+00 0.0

330 H+l 8.311E-07 100.0 0.000E+00 0.0 0.000E+00 0.0

Charge Balance: SPECIATED

Sum of CATIONS = 3.725E-03 Sum of ANIONS 3.500E-03

PERCENT DIFFERENCE = 3.108E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

EQUILIBRIUM IONIC STRENGTH (m) = 6.541E-03

EQUILIBRIUM pH = 9.772

EQUILIBRIUM pe = -6.415 or Eh = -373.13 mv

Saturation indices

ID No Name SI

1006000 ORPIMENT 2.7951095000 ZnS (am) 1.8291095001 SPHALERITE 4.2711095002 WURTZITE 1.7451020001 CoS (alpha) 4.2181020002 CoS (beta) 7.8481028000 FeS (ppt) 1.3481028001GREIGITE 5.0541028002 MACKINAWITE 2.0311028003 PYRITE 8.1342077002 QUARTZ 0.3982003001 BOEHMITE 0.1562003002 DIASPORE 1.905

202

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2003003 GIBBSITE 0.5102028000 WUSTITE 2.3892028001 Fe(OH)2 0.5352028100 FERRIHYDRITE 0.8862028101 Fe3(OH)8 2.4692028102 GOETHITE 3.6243020002 CoFe204 24.0923028000 MAGNETITE 18.6653028001HERCYN1TE 8.4393028100 HEMATITE 9.6253028101 MAGHEMITE 2.2063028102 LEPIDOCROCITE 2.925 3046001MAGNESIOFERRITE 6.806 4128100 Fe(OH)2.7CI.3 3.3815028000 SIDERITE 0.6965047000 RHODOCHROSITE 0.8455015000 ARAGONITE 1.2305015001 CALCITE 1.3845015002 DOLOMITE (ordered) 2.223 5015004 DOLOMITE (disordered) 1.652 6010000 BARITE 0.2127210000 Ba3(As04)2 9.9528603000 HALLOYSITE 0.7168603001KAOLINITE 2.9568628000 GREENALITE 14.1488646000 CHRYSOTILE 7.5978646003 SEPIOLITE 4.7068646004 SEPIOLITE (A) 2.027

MW4 - No Adsorption

INPUT DATA BEFORE TYPE MODIFICATIONS

ID Name ACTIVITY GUESS log GUESS ANAL330 H+l 3.311E-07 -6.480 3.311E-0730 AI+3 5.129E-06 -5.290 5.115E-0661 H3As04 3.715E-06 -5.430 3.697E-0690 H3B03 6.607E-06 -5.180 6.568E-06150 Ca+2 2.239E-03 -2.650 2.218E-03200 Co+2 1.318E-06 -5.880 1.307E-06280 Fe+2 1.660E-05 -4.780 1.653E-05410 K+l 1.000E-05 -5.000 9.898E-06460 Mg+2 3.802E-04 -3.420 3.815E-04470 Mn+2 3.981E-06 -5.400 3.986E-06500 Na+1 2.042E-04 -3.690 2.062E-04770 H4Si04 3.715E-04 -3.430 3.738E-04800 Sr+2 1.585E-06 -5.800 1.598E-06731 S 2.344E-04 -3.630 2.332E-04871 TI(OH)3 6.310E-08 -7.200 6.266E-08950 Zn+2 9.120E-08 -7.040 9.177E-08730 HS-1 3.020E-06 -5.520 3.023E-06732 S04-2 5.248E-04 -3.280 5.205E-04180 Cl-l 6.166E-05 -4.210 6.206E-05140 C03-2 4.266E-03 -2.370 2.500E-03281 Fe+3 1.000E-07 -7.000 0.000E+00

1 E-l 1.000E-07 -7.000 O.OOOE+OO60 H3As03 1.000E-07 -7.000 0.000E+00100 Ba+2 1.738E-07 -6.760 1.748E-072 H20 1.000E+00 0.000 0.000E+00

Charge Balance: UNSPECIATED

Sum of CATIONS= 5.478E-03 Sum of ANIONS = 6.106E-03

PERCENT DIFFERENCE = 5.421 E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

----------- EQUILIBRATED MASS DISTRIBUTION----------

203

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IDX Name DISSOLVED SORBED PRECIPITATED mol/L percent mol/L percent mol/L percent

330 H+l 1.134E-06 100.0 O.OOOE+OO 0.0 0.000E+00 0.030 Al+3 5.115E-06 100.0 0.000E+00 0.0 O.OOOE+OO 0.061 H3As04 2.974E-08 100.0 O.OOOE+OO 0.0 0.000E+00 0.090 H3B03 6.568E-06 100.0 O.OOOE+OO 0.0 0.000E+00 0.0150 Ca+2 2.218E-03 100.0 0.000E+00 0.0 0.000E+00 0.0200 Co+2 1.307E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0280 Fe+2 1.643E-05 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0410 K+l 9.898E-06 100.0 O.OOOE+OO 0.0 0.000E+00 0.0460 Mg+2 3.815E-04 100.0 0.000E+00 0.0 O.OOOE+OO 0.0470 Mn+2 3.986E-06 100.0 0.000E+00 0.0 0.000E+00 0.0500 Na+1 2.062E-04 100.0 O.OOOE+OO 0.0 0.000E+00 0.0770 H4Si04 3.738E-04I 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0800 Sr+2 1.598E-06 100.0 0.000E+00 0.0 O.OOOE+OO 0.0731 S 2.332E-04 100.0 0.000E+00 0.0 O.OOOE+OO 0.0871 TI(OH)3 6.266E-08: ioo.o o.oooe+oo 0.0 0.000E+00 0.0950 Zn+2 9.177E-08 100.0 0.000E+00 0.0 0.000E+00 0.0730 HS-1 2.119E-06 100.0 0.000E+00 0.0 0.000E+00 0.0732 S04-2 5.214E-04 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0180 Cl-l 6.206E-05 100.0 iO.OOOE+OO 0.0 O.OOOE+OO 0.0140 C03-2 2.500E-03 100.0 0.000E+00 0.0 0.000E+00 0.0100 Ba+2 1.748E-07 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.02 H 20 3.016E-04 100.0 0.000E+00 0.0 0.000E+00 0.01 E-l -1.549E-71 100.0 O.OOOE+OO 0.0 0.000E+00 0.0

281 Fe+3 1.015E-07 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0 60 H3As03 3.667E-06 100.0 0.000E+00 0.0 0.000E+00 0.0

Charge Balance: SPECIATED

Sum of CATIONS = 3.401E-03 Sum of ANIONS 4.029E-03

PERCENT DIFFERENCE = 8.452E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

EQUILIBRIUM IONIC STRENGTH (m) = 6.720E-03

EQUILIBRIUM pH = 10.471

EQUILIBRIUM pe = -7.268 or Eh = -422.73 mv

Saturation indices

ID No Name SI

1006000 ORPIMENT 0.2241095000 ZnS (am) 0.9601095001 SPHALERITE 3.4021095002 WURTZITE 0.8751020001 CoS (alpha) 4.0711020002 CoS (beta) 7.7011028000 FeS (ppt) 0.7331028001GREIGITE 2.3461028002 MACKINAWITE 1.4161028003 PYRITE 6.6572003002 DIASPORE 0.2262028000 WUSTITE 2.4042028001 Fe(OH)2 0.4732028100 FERRIHYDRITE 0.6692028101 Fe3(OH)8 1.9742028102 GOETHITE 3.4082046000 BRUCITE 0.0143020002 CoFe20 4 24.065

3028000 MAGNETITE 18.1703028001 HERCYNITE 5.0193028100 HEMATITE 9.1923028101 MAGHEMITE 1.7733028102 LEPIDOCROCITE 2.709

204

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3046001 MAGNESIOFERRITE 7.665 4128100 Fe(OH)2.7C1.3 2.705

5028000 SIDERITE 0.1225047000 RHODOCHROSITE 1.701 5046000 ARTINITE 0.3305046002 MAGNESITE 0.6115015000 ARAGONITE 2.0995015001 CALCITE 2.2535015002 DOLOMITE (ordered) 3.870 5015004 DOLOMITE (disordered) 3.3005015003 HUNTITE 2.7275080000 STRONTIANITE 0.0377210000 Ba3(As04)2 11.8168628000 GREENALITE 13.2328646000 CHRYSOTILE 10.7418646003 SEPIOLITE 6.1938646004 SEPIOLITE (A) 3.514

MW5 - No Adsorption

INPUT DATA BEFORE TYPE MODIFICATIONS

ID Name ACTIVITY GUESS log GUESS A330 H+l 2.512E-08 -7.600 2.512E-0830 Al+3 2.884E-05 -4.540 2.865E-0561 H3As04 1.230E-04 -3.910 1.233E-0490 H3B03 8.511E-06 -5.070 8.418E-06100 Ba+2 1.380E-07 -6.860 1.384E-07150 Ca+2 2.570E-03 -2.590 2.570E-03200 Co+2 1.000E-05 -5.000 9.978E-06280 Fe+2 1.622E-05 -4.790 1.631E-05410 K+l 9.120E-05 -4.040 9.207E-05460 Mg+2 3.890E-04 -3.410 3.885E-04470 Mn+2 1.230E-05 -4.910 1.232E-05500 Na+1 2.188E-04 -3.660 2.188E-04770 H4Si04 2.344E-04 -3.630 2.371E-04800 Sr+2 1.778E-06 -5.750 1.769E-06731 S 8.318E-04 -3.080 8.357E-04871 Tl(OH)3 2.291 E-07 -6.640 2.297E-07950 Zn+2 2.188E-06 -5.660 2.187E-06732 S04-2 2.630E-03 -2.580 2.602E-03180 Cl-l 2.138E-04 -3.670 2.116E-04140 C03-2 1.000E-03 -3.000 1.000E-03281 Fe+3 1.000E-07 -7.000 0.000E+00

1 E-l 1.000E-07 -7.000 0.000E+0060 H3AsQ3 1.000E-07 -7.000 O.OOOE+OO471 Mn+3 1.000E-07 -7.000 0.000E+00730 HS-1 1.000E-07 -7.000 0.000E+002 H20 1.000E+00 0.000 0.000E+00

Charge Balance: UNSPECIATED

Sum of CATIONS= 6.399E-03 Sum of ANIONS = 7.416E-03

PERCENT DIFFERENCE = 7.357E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

----------- EQUILIBRATED MASS DISTRIBUTION-----------

IDX Name DISSOLVED SORBED PRECIPITATED mol/L percent mol/L percent mol/L percent

330 H+l -4.220E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.030 AI+3 2.865E-05 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

732 S04-2 2.602E-03 100.0 0.000E+00 0.0 0.000E+00 0.090 H3BQ3 8.418E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

205

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100 Ba+2 1.384E-07 100.0 O.OOOE+OO 0.0 0.000E+00 0.0150 Ca+2 2.570E-03 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0200 Co+2 9.978E-06 100.0 O.OOOE+OO 0.0 0.000E+00 0.0280 Fe+2 1.207E-05 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0410 K+l 9.207E-05 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0460 Mg+2 3.885E-04 100.0 0.000E+00 0.0 0.000E+00 0.0470 Mn+2 1.232E-05 100.0 0.000E+00 0.0 0.000E+00 0.0500 Na+1 2.188E-04 100.0 0.000E+00 0.0 O.OOOE+OO 0.0770 H4Si04 2.371E-04 100.0 0.000E+00 0.0 0.000E+00 0.0800 Sr+2 1.769E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0731 S 8.357E-04 100.0 O.OOOE+OO 0.0 0.000E+00 0.0871 TI(OH)3 2.297E-07 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0950 Zn+2 2.187E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.061 H3As04 1.212E-04 100.0 0.000E+00 0.0 0.000E+00 0.0180 Cl-l 2.116E-04 100.0 0.000E+00 0.0 O.OOOE+OO 0.0140 C03-2 1.000E-03 100.0 0.000E+00 0.0 0.000E+00 0.0471 Mn+3 1.802E-35 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

2 H 20 2.130E-04 100.0 0.000E+00 0.0 0.000E+00 0.0730 HS-1 1.398E-23 100.0 O.OOOE+OO 0.0 0.000E+00 0.0281 Fe+3 4.245E-06 100.0 O.OOOE+OO 0.0 0.000E+00 0.060 H3As03 2.122E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.01 E-l -2.028E-64 100.0 0.000E+00 0.0 O.OOOE+OO 0.0

Charge Balance: SPECIATED

Sum of CATIONS = 4.872E-03 Sum of ANIONS 5.889E-03

PERCENT DIFFERENCE = 9.445E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

EQUILIBRIUM IONIC STRENGTH (m) = 1.013E-02

EQUILIBRIUM pH = 9.803

EQUILIBRIUM pe = -4.292 or Eh = -249.61 mv

Saturation indices

ID No Name SI2077002 QUARTZ 0.2262003002 DIASPORE 1.6342003003 GIBBSITE 0.2392095003 Zn(OH)2 (gamma) 0.2032095004 Zn(OH)2 (epsilon) 0.1582095005 ZnO (active) 0.4832095006 ZINCITE 0.3352020002 Co(OH)2 0.4342028000 WUSTITE 2.2842028001 Fe(OH)2 0.4212028100 FERRIHYDRITE 2.9262028101 Fe3(OH)8 6.4352028102 GOETHITE 5.6643020002 CoFe204 29.2543028000 MAGNETITE 22.6323028001HERCYNITE 7.7843028100 HEMATITE 13.7053028101 MAGHEMITE 6.2873028102 LEPIDOCROCITE 4.965 3046001 MAGNESIOFERRITE 10.8984128100 Fe(OH)2.7CI.3 5.3204147000 MnCI2:4H20 -15.3704150000 HALITE -9.0205095000 SMITHSONITE -1.5965028000 SIDERITE 0.6925047000 RHODOCHROSITE 1.5125015000 ARAGONITE 1.5225015001 CALCITE 1.6775015002 DOLOMITE (ordered) 2.637 5015004 DOLOMITE (disordered) 2.0665015003 HUNTITE 0.178

206

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6010000 BARITE 0.1457247000 Mn3(As04)2:8H20 1.7127210000 Ba3(As04)2 17.5378603001 KAOLINITE 2.0728628000 GREENALITE 13.4638646000 CHRYSOTILE 7.2908646003 SEPIOLITE 4.2158646004 SEPIOLITE (A) 1.536

MW6 - No Adsorption

INPUT DATA BEFORE TYPE MODIFICATIONS

ID Name ACTIVITY GUESS log GUESS A330 H+l 2.818E-08 -7.550 2.818E-0830 Al+3 5.129E-06 -5.290 5.078E-0661 H3As04 9.772E-06 -5.010 9.677E-0690 H3B03 7.762E-06 -5.110 7.678E-06100 Ba+2 3.236E-07 -6.490 3.204E-07150 Ca+2 2.692E-03 -2.570 2.695E-03200 Co+2 2.754E-06 -5.560 2.749E-06280 Fe+2 3.388E-06 -5.470 3.402E-06410 K+l 6.457E-05 -4.190 6.394E-05460 Mg+2 2.239E-04 -3.650 2.214E-04470 Mn+2 7.244E-06 -5.140 7.317E-06500 Na+1 2.188E-04 -3.660 2.208E-04770 H4Si04 2.630E-04 -3.580 2.645E-04800 Sr+2 1.514E-06 -5.820 1.529E-06731 S 5.888E-04 -3.230 5.956E-04871 TI(OH)3 8.318E-08 -7.080 8.354E-08950 Zn+2 1.698E-07 -6.770 1.682E-07730 HS-1 4.571E-06 -5.340 4.534E-06732 S04-2 1.549E-03 -2.810 1.561E-03180 Cl-l 8.511E-04 -3.070 8.463E-04140 C03-2 1.778E-03 -2.750 1.500E-03281 Fe+3 1.000E-07 -7.000 O.OOOE+OO

1 E-l 1.000E-07 -7.000 O.OOOE+OO60 H3As03 1.000E-07 -7.000 0.000E+00

471 Mn+3 1.000E-07 -7.000 0.000E+002 H 20 1.000E+00 0.000 0.000E+00

Charge Balance: UNSPECIATED

Sum of CATIONS= 6.164E-03 Sum of ANIONS = 6.973E-03

PERCENT DIFFERENCE = 6.159E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

EQUILIBRATED MASS DISTRIBUTION -

IDX Name DISSOLVED SORBED PRECIPITATED mol/L percent mol/L percent mol/L percent

61 H3As04 30 AI+3 471 Mn+3 90 H3B03 100 Ba+2 150 Ca+2 200 Co+2 280 Fe+2 410 K+l 460 Mg+2 470 Mn+2 500 Na+1 770 H4Si04 800 Sr+2

8.046E-08 100.0 0.000E+00 5.078E-06 100.0 0.000E+00

1.595E-38 100.0 0.000E+00 7.678E-06 100.0 0.000E+00

3.204E-07 100.0 0.000E+00 100.0 100.0 100.0 100.0 100.0

2.695E-03 2.749E-06 3.379E-06 6.394E-05 2.214E-04 7.316E-06 100.0 0.000E+00

2.208E-04 100.0 0.000E+00 2.645E-04 100.0 O.OOOE+OO

1.529E-06 100.0 O.OOOE+OO

O.OOOE+OOO.OOOE+OO0.000E+00O.OOOE+OO0.000E+00

0.0 0.000E+00 0.00.0 0.000E+00 0.0

0.0 0.000E+00 0.00.0 0.000E+00 0.0

0.0 O.OOOE+OO 0.00.0 O.OOOE+OO 0.00.0 0.000E+00 0.00.0 O.OOOE+OO 0.00.0 0.000E+00 0.00.0 0.000E+00 0.00.0 0.000E+00 0.0

0.0 O.OOOE+OO 0.00.0 0.000E+00 0.0

0.0 0.000E+00 0.0

207

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

731 S 5.956E-04 100.0 0.000E+00 0.0 O.OOOE+OO 0.0871 TI(OH)3 8.354E-08 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0950 Zn+2 1.682E-07 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0730 HS-1 2.138E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0732 S04-2 1.563E-03 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0180 Cl-l 8.463E-04 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0140 C03-2 1.500E-03 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.02 H 20 2.064E-04 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.01 E-l -1.739E-71 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

281 Fe+3 2.319E-08 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.060 H3As03 9.596E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

330 H+l 2.402E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

Charge Balance: SPECIATED

Sum of CATIONS = 4.415E-03 Sum of ANIONS 5.225E-03

PERCENT DIFFERENCE = 8.393E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

EQUILIBRIUM IONIC STRENGTH (m) = 8.681E-03

EQUILIBRIUM pH = 10.336

EQUILIBRIUM pe = -7.057 or Eh = -410.44 mv

Saturation indices

ID No Name SI

1006000 ORPIMENT 1.6011095000 ZnS (am) 1.2541095001 SPHALERITE 3.6961095002 WURTZITE 1.1701020001 CoS (alpha) 4.4851020002 CoS (beta) 8.1151028000 FeS (ppt) 0.2411028001 GREIGITE 1.1231028002 MACKINAWITE 0.9241028003 PYRITE 6.4172003002 DIASPORE 0.3522020002 Co(OH)2 0.0732028000 WUSTITE 1.8312028100 FERRIHYDRITE 0.1562028101 Fe3(OH)8 0.3562028102 GOETHITE 2.8943020002 CoFe204 23.3523028000 MAGNETITE 16.5523028001HERCYNITE 4.6823028100 HEMATITE 8.1643028101 MAGHEMITE 0.7463028102 LEPIDOCROCITE 2.1953046001 MAGNESIOFERRITE 6.165 4128100 Fe(OH)2.7CI.3 2.5715047000 RHODOCHROSITE 1.658 5046002 MAGNESITE 0.1035015000 ARAGONITE 1.9295015001 CALCITE 2.0835015002 DOLOMITE (ordered) 3.192 5015004 DOLOMITE (disordered) 2.6225015003 HUNTITE 1.0336010000 BARITE 0.2887210000 Ba3(As04)2 13.2668628000 GREENALITE 11.3538646000 CHRYSOTILE 9.2208646003 SEPIOLITE 5.0908646004 SEPIOLITE (A) 2.411

MW7 - No Adsorption

208

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

INPUT DATA BEFORE TYPE MODIFICATIONS

ID Name ACTIVITY GUESS log GUESS ANAL330 H+l 2.512E-07 -6.600 2.512E-0730 AI+3 5.888E-06 -5.230 5.930E-0661 H3As04 1.738E-05 -4.760 1.735E-0590 H3B03 8.710E-06 -5.060 8.696E-06100 Ba+2 4.074E-07 -6.390 4.078E-07150 Ca+2 3.631E-03 -2.440 3.668E-03200 Co+2 2.188E-06 -5.660 2.206E-06280 Fe+2 1.413E-04 -3.850 1.406E-04410 K+l 5.370E-05 -4.270 5.422E-05460 Mg+2 6.026E-04 -3.220 6.049E-04470 Mn+2 2.570E-05 -4.590 2.548E-05500 Na+1 3.467E-04 -3.460 3.436E-04770 H4Si04 4.365E-04 -3.360 4.379E-04800 Sr+2 2.692E-06 -5.570 2.682E-06731 S 2.951E-04 -3.530 2.956E-04871 TI(OH)3 4.169E-08 -7.380 4.177E-08950 Zn+2 1.820E-07 -6.740 1.835E-07730 HS-1 3.020E-06 -5.520 3.023E-06732 S04-2 2.291 E-03 -2.640 2.290E-03180 Cl-l 2.138E-04 -3.670 2.116E-04140 CQ3-2 4.786E-03 -2.320 2.500E-03281 Fe+3 1.000E-07 -7.000 0.000E+00

1 E-l 1.000E-07 -7.000 0.000E+0060 H3As03 1.000E-07 -7.000 O.OOOE+OO

471 Mn+3 1.000E-07 -7.000 0.000E+002 H 20 1.000E+00 0.000 0.000E+00

Charge Balance: UNSPECIATED

Sum of CATIONS= 9.305E-03 Sum of ANIONS = 9.795E-03

PERCENT DIFFERENCE = 2.565E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

----------- EQUILIBRATED MASS DISTRIBUTION----------

IDX Name DISSOLVED SORBED PRECIPITATED mol/L percent mol/L percent mol/L percent

61 H3As04 30 AI+3 471 Mn+3 90 H3B03 100 Ba+2 150 Ca+2 200 Co+2280 Fe+2 410 K+l 460 Mg+2 470 Mn+2 500 Na+1 770 H4Si04 800 Sr+2731 S871 TI(OH)3 950 Zn+2 730 HS-1732 S04-2 180 Cl-l 140 C03-22 H20 1 E-l

281 Fe+3 60 H3As03

2.917E-06 100.0 0.000E+00 0.0 0.000E+00 0.05.930E-06 100.0 0.000E+00 0.0 0.000E+00 0.0

5.155E-37 100.0 O.OOOE+OO 8.696E-06 100.0 0.000E+00

4.078E-07 100.0 O.OOOE+OO 0.000E+00 0.000E+00 0.000E+00 O.OOOE+OO 0.000E+00

100.0100.0100.0100.0100.0

0.0 0.000E+00 0.0 0.000E+00

0.0 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

0 . 0

0 . 0

0 . 0

0 . 0

0 . 0

0 . 0

0 . 0

0 . 0

0 . 0

0 . 0

0 . 0

0 . 0

0 . 0

0 . 0

0 . 0

0 . 0

0 . 0

3.668E-03 2.206E-06 1.359E-04 5.422E-05 6.049E-042.548E-05 100.0 O.OOOE+OO 0.0 O.OOOE+OO

3.436E-04 100.0 0.000E+00 0.0 0.000E+004.379E-04 100.0 0.000E+00 0.0 0.000E+00

2.682E-06 100.0 O.OOOE+OO 0.0 0.000E+002.956E-04 100.0 O.OOOE+OO 0.0 0.000E+00 0.0

4.177E-08 100.0 0.000E+00 0.0 0.000E+00 0.01.835E-07 100.0 0.000E+00 0.0 0.000E+00 0.02.459E-12 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.02.293E-03 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

2.116E-04 100.0 O.OOOE+OO 0.0 0.000E+00 0.02.500E-03 100.0 O.OOOE+OO 0.0 0.000E+00 0.0

4.976E-04 100.0 0.000E+00 0.0 0.000E+00 0.01.877E-68 100.0 O.OOOE+OO 0.0 0.000E+00 0.0

4.681 E-06 100.0 0.000E+00 0.0 O.OOOE+OO 0.01.443E-05 100.0 0.000E+00 0.0 0.000E+00 0.0

209

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

330 H+l -1.407E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

Charge Balance: SPECIATED

Sum of CATIONS = 6.116E-03 Sum of ANIONS 6.606E-03

PERCENT DIFFERENCE = 3.851E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

EQUILIBRIUM IONIC STRENGTH (m) = 1.175E-02

EQUILIBRIUM pH = 10.186

EQUILIBRIUM pe = -6.138 or Eh = -356.98 mv

Saturation indices

ID No Name SI

1095001 SPHALERITE 0.4591020002 CoS (beta) 2.2372077002 QUARTZ 0.2952003002 DIASPORE 0.5642028000 WUSTITE 3.4032028001 Fe(OH)2 1.5592028100 FERRIHYDRITE 2.6012028101 Fe3(OH)8 6.9252028102 GOETHITE 5.3403020002 CoFe20 4 28.0873028000 MAGNETITE 23.1213028001HERCYNITE 6.7833028100 HEMATITE 13.0563028101 MAGHEMITE 5.6383028102 LEPIDOCROCITE 4.641 3046001 MAGNESIOFERRITE 11.1444128100 Fe(OH)2.7C1.3 4.8795028000 SIDERITE 1.6005047000 RHODOCHROSITE 2.3235046002 MAGNESITE 0.6185015000 ARAGONITE 2.1325015001 CALCITE 2.2875015002 DOLOMITE (ordered) 3.911 5015004 DOLOMITE (disordered) 3.3405015003 HUNTITE 2.7815080000 STRONTIANITE 0.0456010000 BARITE 0.4857247000 Mn3(As04)2:8H20 0.0087210000 Ba3(As04)2 16.2648603001 KAOLINITE 0.0708628000 GREENALITE 17.0178646000 CHRYSOTILE 10.1128646003 SEPIOLITE 6.2128646004 SEPIOLITE (A) 3.533

Core SI - 45cm Depth - No Adsorption

INPUT DATA BEFORE TYPE MODIFICATIONS

ID Name 330 H+l 30 Al+3 61 H3As04 150 Ca+2

Fe+2 K+l

ACTIVITY GUESS log GUESS ANAL TOTAL

280410460 Mg+2

1.000E-07 5.012E-04

6.761 E-05 1.514E-03

3.236E-04 5.248E-05 5.129E-04

-7.000 7.943E-08 -3.300 5.041 E-04

-4.170 6.714E-05 -2.820 1.522E-03 -3.490 3.205E-04 -4.280 5.294E-05 -3.290 5.144E-04

210

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

470 Mn+2 1.122E-05 -4.950 1.I10E-05500 Na+1 1.445E-03 -2.840 1.457E-03770 H4Si04 1.000E-03 -3.000 1.007E-03800 Sr+2 1.413E-06 -5.850 1.404E-06731 S 3.715E-04 -3.430 3.679E-04871 TI(OH)3 3.715E-06 -5.430 3.676E-06950 Zn+2 8.710E-06 -5.060 8.657E-06730 HS-1 3.020E-06 -5.520 3.023E-06732 S04-2 3.890E-03 -2.410 3.903E-03140 C03-2 1.413E-04 -3.850 1.400E-04231 Cu+2 5.129E-06 -5.290 5.114E-06740 Sb(OH)3 4.898E-06 -5.310 4.862E-06281 Fe+3 1.000E-07 -7.000 0.000E+00

1 E-l 1.000E-07 -7.000 O.OOOE+OO60 H3As03 1.000E-07 -7.000 O.OOOE+OO741 Sb(OH)6- 1.000E-07 -7.000 O.OOOE+OO471 Mn+3 1.000E-07 -7.000 O.OOOE+OO2 H 20 1.000E+00 0.000 0.000E+00

Charge Balance: UNSPECIATED

Sum of CATIONS= 7.789E-03 Sum of ANIONS = 8.089E-03

PERCENT DIFFERENCE = 1.892E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

EQUILIBRATED MASS DISTRIBUTION

IDX Name DISSOLVED SORBED PRECIPITATED mol/L percent mol/L percent mol/L percent

61 H3As04 5.173E-05 100.0 0.000E+00 0.0 0.000E+00 0.030 AI+3 5.041E-04 100.0 O.OOOE+OO 0.0 0.000E+00 0.0471 Mn+3 3.543E-28 100.0 0.000E+00 0.0 0.000E+00 0.0150 Ca+2 1.522E-03 100.0 0.000E+00 0.0 0.000E+00 0.0280 Fe+2 3.205E-04 100.0 O.OOOE+OO 0.0 0.000E+00 0.0410 K+l 5.294E-05 100.0 O.OOOE+OO 0.0 0.000E+00 0.0460 Mg+2 5.144E-04 100.0 0.000E+00 0.0 0.000E+00 0.0470 Mn+2 1.110E-05 100.0 O.OOOE+OO 0.0 0.000E+00 0.0500 Na+1 1.457E-03 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0770 H4Si04 1.007E-03 100.0 0.000E+00 0.0 O.OOOE+OO 0.0800 Sr+2 1.404E-06 100.0 O.OOOE+OO 0.0 0.000E+00 0.0731 S 3.679E-04 100.0 0.000E+00 0.0 0.000E+00 0.0871 TI(OH)3 3.676E-06 100.0 0.000E+00 0.0 0.000E+00 0.0950 Zn+2 8.657E-06 100.0 O.OOOE+OO 0.0 0.000E+00 0.0730 HS-1 8.518E-40 100.0 O.OOOE+OO 0.0 0.000E+00 0.0732 S04-2 3.906E-03 100.0 0.000E+00 0.0 0.000E+00 0.0140 C03-2 1.400E-04 100.0 0.000E+00 0.0 0.000E+00 0.0231 Cu+2 5.114E-06 100.0 O.OOOE+OO 0.0 0.000E+00 0.0740 Sb(OH)3 1.546E-06 100.0 0.000E+00 0.0 0.000E+00 0.02 H 20 2.040E-04 100.0 O.OOOE+OO 0.0 0.000E+00 0.0

330 H+l 6.403E-06 100.0 0.000E+00 0.0 0.000E+00 0.0281 Fe+3 1.343E-08 100.0 0.000E+00 0.0 O.OOOE+OO 0.060 H3As03 1.541E-05 100.0 0.000E+00 0.0 O.OOOE+OO 0.0741 Sb(OH)6- 3.316E-06 100.0 0.000E+00 0.0 O.OOOE+OO 0.0

1 E-l -3.402E-71 100.0 0.000E+00 0.0 0.000E+00 0.0

Charge Balance: SPECIATED

Sum of CATIONS = 5.909E-03 Sum of ANIONS 6.209E-03

PERCENT DIFFERENCE = 2.479E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

EQUILIBRIUM IONIC STRENGTH (m) = 1.122E-02

EQUILIBRIUM pH = 5.301

211

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

EQUILIBRIUM pe = 3.027 or Eh = 176.05 mv

Saturation indices

ID No Name SI

2074102 Sb02 5.7362074001 Sb204 0.8392077000 CHALCEDONY 0.6132077001 CRISTOBALITE 0.4142077002 QUARTZ 1.0712003000 Al(OH)3 (am) 0.1102003001 BOEHMITE 2.3122003002 DIASPORE 4.0612003003 GIBBSITE 2.6662087100 AVICENNITE 2.1332087101 Tl(OH)3 0.0072028102 GOETHITE 1.3033003000 AI203 2.0593028000 MAGNETITE 6.7323028001 HERCYNITE 5.4603028100 HEMATITE 4.9833028102 LEPIDOCROCITE 0.6043023100 CUPRIC FERRITE 2.3506003000 A10HS04 1.1686003001 AI4(OH)10SO4 8.9648603000 HALLOYSITE 6.3758603001 KAOLINITE 8.615

Core SI - 45cm Depth - Adsorption

INPUT DATA BEFORE TYPE MODIFICATIONS

ID Name ACTIVITY GUESS log GUESS ANAL330 H+l 1.000E-07 -7.000 7.943E-0830 Al+3 5.012E-04 -3.300 5.041E-0461 H3As04 6.761 E-05 -4.170 6.714E-05150 Ca+2 1.514E-03 -2.820 1.522E-03280 Fe+2 3.236E-04 -3.490 3.205E-04410 K+l 5.248E-05 -4.280 5.294E-05460 Mg+2 5.129E-04 -3.290 5.144E-04470 Mn+2 1.122E-05 -4.950 1.110E-05500 Na+1 1.445E-03 -2.840 1.457E-03770 H4Si04 1.000E-03 -3.000 1.007E-03800 Sr+2 1.413E-06 -5.850 1.404E-06731 S 3.715E-04 -3.430 3.679E-04950 Zn+2 8.710E-06 -5.060 8.657E-06730 HS-1 3.020E-06 -5.520 3.023E-06732 S04-2 3.890E-03 -2.410 3.903E-03140 C03-2 1.413E-04 -3.850 1.400E-04231 Cu+2 5.129E-06 -5.290 5.114E-06740 Sb(OH)3 4.898E-06 -5.310 4.862E-06281 Fe+3 1.000E-07 -7.000 0.000E+00

1 E-l 1.000E-07 -7.000 O.OOOE+OO60 H3As03 1.000E-07 -7.000 O.OOOE+OO741 Sb(OH)6- 1.000E-07 -7.000 O.OOOE+OO471 Mn+3 1.000E-07 -7.000 O.OOOE+OO811 ADS1TYP1 1.000E+00 0.000 0.000E+002 H20 1.000E+00 0.000 0.000E+00

Charge Balance: UNSPECIATED

Sum of CATIONS= 7.789E-03 Sum of ANIONS = 8.089E-03

PERCENT DIFFERENCE = 1.892E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

212

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

EQUILIBRATED MASS DISTRIBUTION

IDX Name DISSOLVED SORBED PRECIPITATED mol/L percent mol/L percent mol/L percent

471 Mn+3 3.502E-28 100.0 0.000E+00 0.0 0.000E+00 0.030 AI+3 5.041E-04 100.0 0.000E+00 0.0 0.000E+00 0.061 H3As04 5.100E-05 98.6 7.362E-07 1.4 0.000E+00 0.0150 Ca+2 1.522E-03 100.0 0.000E+00 0.0 0.000E+00 0.0280 Fe+2 3.205E-04 100.0 O.OOOE+OO 0.0 0.000E+00 0.0410 K+l 5.294E-05 100.0 0.000E+00 0.0 0.000E+00 0.0460 Mg+2 5.144E-04 100.0 O.OOOE+OO 0.0 0.000E+00 0.0470 Mn+2 1.110E-05 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0500 Na+1 1.457E-03 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0770 H4Si04 1.007E-03 100.0 0.000E+00 0.0 O.OOOE+OO 0.0800 Sr+2 1.404E-06 100.0 0.000E+00 0.0 0.000E+00 0.0731 S 3.679E-04 100.0 0.000E+00 0.0 O.OOOE+OO 0.0950 Zn+2 7.426E-08 0.9 8.583E-06 99.1 O.OOOE+OO 0.0730 HS-1 9.041 E-40 100.0 O.OOOE+OO 0.0 0.000E+00 0.0732 S04-2 3.906E-03 100.0 0.000E+00 0.0 0.000E+00 0.0140 C03-2 1.400E-04 100.0 0.000E+00 0.0 O.OOOE+OO 0.0231 Cu+2 1.995E-08 0.4 5.094E-06 99.6 0.000E+00 0.0740 Sb(OH)3 1.560E-06 100.0 0.000E+00 0.0 O.OOOE+OO 0.0

2 H 20 2.048E-04 100.0 O.OOOE+OO 0.0 0.000E+00 0.060 H3As03 1.540E-05 100.0 O.OOOE+OO 0.0 0.000E+00 0.0

741 Sb(OH)6- 3.302E-06 100.0 0.000E+00 0.0 O.OOOE+OO 0.01 E-l -3.333E-71 100.0 0.000E+00 0.0 0.000E+00 0.0

330 H+l 6.391E-06 100.0 O.OOOE+OO 0.0 0.000E+00 0.0281 Fe+3 1.336E-08 100.0 O.OOOE+OO 0.0 0.000E+00 0.0

Charge Balance: SPECIATED

Sum of CATIONS = 5.886E-03 Sum of ANIONS 6.213E-03

PERCENT DIFFERENCE = 2.708E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

EQUILIBRIUM IONIC STRENGTH (m) = 1.120E-02

EQUILIBRIUM pH = 5.302

EQUILIBRIUM pe = 3.022 or Eh = 175.78 mv

Saturation indices

ID No Name SI2074102 Sb02 5.7372074001 Sb204 0.8402074004 Sb(OH)3 1.0982074006 SENARMONTITE 0.2542077000 CHALCEDONY 0.6132077001 CRISTOBALITE 0.4142077002 QUARTZ 1.0712003000 Al(OH)3 (am) 0.1132003001 BOEHMITE 2.3152003002 DIASPORE 4.0642003003 GIBBSITE 2.6692028102 GOETHITE 1.3023003000 AI20 3 2.0653028000 MAGNETITE 6.7323028001 HERCYNITE 5.4683028100 HEMATITE 4.9813028102 LEPIDOCROCITE 0.6036003000 A10HS04 1.1696003001 AI4(OH)10SO4 8.9748603000 HALLOYSITE 6.381

213

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8603001 KAOLINITE 8.621

Core SI - 75cm Depth - No Adsorption

INPUT DATA BEFORE TYPE MODIFICATIONS

ID Name ACTIVITY GUESS log GUESS ANAL330 H+l 1.585E-07 -6.800 1.585E-0730 AI+3 2.951E-05 -4.530 2.958E-0561 H3As04 6.918E-05 -4.160 6.941E-05150 Ca+2 1.122E-03 -2.950 1.128E-03200 Co+2 1.000E+00 0.000 4.242E-07280 Fe+2 1.738E-05 -4.760 1.755E-05410 K+l 1.000E-04 -4.000 1.010E-04460 Mg+2 2.188E-04 -3.660 2.206E-04470 Mn+2 1.072E-06 -5.970 1.074E-06770 H4Si04 3.020E-04 -3.520 3.005E-04800 Sr+2 1.175E-06 -5.930 1.176E-06731 S 2.188E-03 -2.660 2.164E-03871 TI(OH)3 1.445E-07 -6.840 1.462E-07950 Zn+2 4.467E-07 -6.350 4.436E-07732 S04-2 2.630E-03 -2.580 2.602E-03140 CQ3-2 4.677E-04 -3.330 4.667E-04231 Cu+2 2.344E-07 -6.630 2.360E-07740 Sb(OH)3 2.884E-05 -4.540 2.891E-05281 Fe+3 1.000E-07 -7.000 0.000E+00

1 E-l 1.000E-07 -7.000 0.000E+0060 H3As03 1.000E-07 -7.000 O.OOOE+OO

741 Sb(OH)6- 1.000E-07 -7.000 0.000E+00471 Mn+3 1.000E-07 -7.000 0.000E+00730 HS-1 1.000E-07 -7.000 0.000E+00500 Na+1 1.950E-03 -2.710 3.000E-0390 H3B03 5.129E-06 -5.290 5.180E-06100 Ba+2 1.950E-07 -6.710 1.966E-072 H20 1.000E+00 0.000 0.000E+00

Charge Balance: UNSPECIATED

Sum of CATIONS= 5.929E-03 Sum of ANIONS = 6.137E-03

PERCENT DIFFERENCE = 1.725E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

----------- EQUILIBRATED MASS DISTRIBUTION-----------

IDX Name DISSOLVED SORBED PRECIPITATED mol/L percent mol/L percent mol/L percent

330 H+l 1.168E-06 100.0 0.000E+00 0.0 0.000E+00 0.030 AI+3 2.958E-05 100.0 0.000E+00 0.0 O.OOOE+OO 0.090 H3B03 5.180E-06 100.0 0.000E+00 0.0l O.OOOE+OO 0.0150 Ca+2 1.128E-03 100.0 0.000E+00 0.0 0.000E+00 0.0200 Co+2 4.242E-07 100.0 O.OOOE+OO 0.0 0.000E+00 0.0280 Fe+2 1.632E-05 100.0 0.000E+00 0.0 0.000E+00 0.0410 K+l 1.010E-04 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0460 Mg+2 2.206E-04 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0470 Mn+2 1.074E-06 100.0 0.000E+00 0.0 0.000E+00 0.0770 H4Si04 3.005E-04 100.0 0.000E+00 0.0 O.OOOE+OO 0.0800 Sr+2 1.176E-06 100.0 0.000E+00 0.0 0.000E+00 0.0731 S 2.164E-03 100.0 0.000E+00 0.0 O.OOOE+OO 0.0871 Tl(OH)3 1.462E-07 100.0 0.000E+00 0.0 0.000E+00 0.0950 Zn+2 4.436E-07 100.0 0.000E+00 0.0 0.000E+00 0.0732 S04-2 2.602E-03 100.0 0.000E+00 0.0 0.000E+00 0.0140 C03-2 4.667E-04 100.0 0.000E+00 0.0 O.OOOE+OO 0.0231 Cu+2 2.360E-07 100.0 0.000E+00 0.0 0.000E+00 0.0740 Sb(OH)3 2.667E-05i 100.0 0.000E+00 0.0 0.000E+00 0.0500 Na+1 3.000E-03 100.0 0.000E+00 0.0 O.OOOE+OO 0.0

214

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

471 Mn+3 3.472E-36 100.0 0.000E+00 0.0 O.OOOE+OO 0.061 H3As04 6.655E-05 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0100 Ba+2 1.966E-07 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.02 H 20 1.356E-04 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

730 HS-1 1.997E-23 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0281 Fe+3 1.231E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.060 H3As03 2.855E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

741 Sb(OH)6- 2.239E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.01 E-l -1.176E-66 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

Charge Balance: SPECIATED

Sum of CATIONS = 5.238E-03 Sum of ANIONS 5.446E-03

PERCENT DIFFERENCE = 1.948E+00 (ANIONS - CATIONS)/(AN!ONS + CATIONS)

EQUILIBRIUM IONIC STRENGTH (m) = 8.884E-03

EQUILIBRIUM pH = 9.480

EQUILIBRIUM pe = -3.942 or Eh = -229.30 mv

Saturation indices

ID No Name SI2074102 Sb02 4.1822074004 Sb(OH)3 2.3302074006 SENARMONTITE 2.717 2077002 QUARTZ 0.4302003001 BOEHMITE 0.2242003002 DIASPORE 1.9732003003 GIBBSITE 0.5782023100 Cu(OH)2 0.4932023101TENORITE 1.4982028000 WUSTITE 1.9902028001 Fe(OH)2 0.1472028100 FERRIHYDRITE 2.6782028101 Fe3(OH)8 5.6662028102 GOETHITE 5.4173020002 CoFe204 27.1533028000 MAGNETITE 21.8633028001HERCYNITE 8.1883028100 HEMATITE 13.2103028101MAGHEMITE 5.7923028102 LEPIDOCROCITE 4.7183046001MAGNESIOFERRITE 9.534 3023100 CUPRIC FERRITE 14.8975023101 MALACHITE 0.8665028000 SIDERITE 0.5635015000 ARAGONITE 0.6915015001CALCITE 0.8455015002 DOLOMITE (ordered) 1.0815015004 DOLOMITE (disordered) 0.510 6010000 BARITE 0.3657210000 Ba3(As04)2 16.9278603000 HALLOYSITE 0.9188603001KAOLINITE 3.1588628000 GREENALITE 13.0498646000 CHRYSOTILE 5.0908646003 SEPIOLITE 3.0888646004 SEPIOLITE (A) 0.409

Core SI - 75cm Depth - Adsorption

INPUT DATA BEFORE TYPE MODIFICATIONS

ID Name ACTIVITY GUESS log GUESS ANAL TOTAL

215

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

330 H+l 1.585E-07 -6.800 1.585E-0730 AI+3 2.951E-05 -4.530 2.958E-0561 H3As04 6.918E-05 -4.160 6.941E-05150 Ca+2 1.122E-03 -2.950 1.128E-03200 Co+2 1.000E+00 0.000 4.242E-07280 Fe+2 1.738E-05 -4.760 1.755E-05410 K+l 1.000E-04 -4.000 1.010E-04460 Mg+2 2.188E-04 -3.660 2.206E-04470 Mn+2 1.072E-06 -5.970 1.074E-06770 H4Si04 3.020E-04 -3.520 3.005E-04800 Sr+2 1.175E-06 -5.930 1.176E-06731 S 2.188E-03 -2.660 2.164E-03950 Zn+2 4.467E-07 -6.350 4.436E-07732 S04-2 2.630E-03 -2.580 2.602E-03140 C03-2 4.677E-04 -3.330 4.667E-04231 Cu+2 2.344E-07 -6.630 2.360E-07740 Sb(OH)3 2.884E-05 -4.540 2.891E-05281 Fe+3 1.000E-07 -7.000 O.OOOE+OO

1 E-l 1.000E-07 -7.000 0.000E+0060 H3As03 1.000E-07 -7.000 0.000E+00741 Sb(OH)6- 1.000E-07 -7.000 O.OOOE+OO471 Mn+3 1.000E-07 -7.000 0.000E+00730 HS-1 1.000E-07 -7.000 O.OOOE+OO500 Na+1 1.950E-03 -2.710 3.000E-0390 H3B03 5.129E-06 -5.290 5.180E-06100 Ba+2 1.950E-07 -6.710 1.966E-07811 ADS1TYP1 1.000E+00 0.000 O.OOOE+OO2 H 20 1.000E+00 0.000 O.OOOE+OO

Charge Balance: UNSPECIATED

Sum of CATIONS= 5.929E-03Sum of ANIONS = 6.137E-03

PERCENT DIFFERENCE = 1.725E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

EQUILIBRATED MASS DISTRIBUTION

IDX Name DISSOLVED SORBED PRECIPITATED mol/L percent mol/L percent mol/L percent

330 H+l 30 AI+3 471 Mn+3 150 Ca+2 200 Co+2280 Fe+2 410 K+l 460 Mg+2 470 Mn+2 770 H4Si04 800 Sr+2731 S 950 Zn+2 90 H3B03 140 C03-2 231 Cu+2740 Sb(OH)3 100 Ba+2 500 Na+161 H3As04732 S04-2 2 H20

741 Sb(OH)6- 1 E-l

730 HS-1281 Fe+3

1.142E-06 100.0 O.OOOE+OO 2.958E-05 100.0 0.000E+00

3.420E-36 100.0 O.OOOE+OO 1.128E-03 100.0 0.000E+00

0.0 O.OOOE+OO 0.0 0.000E+00

0.0 O.OOOE+OO 0.0 0.000E+00

3.715E-10 0.1 4.238E-07 99.9 0.000E+001.630E-05 100.0 0.000E+00 0.0 O.OOOE+OO1.010E-04 100.0 O.OOOE+OO 0.0 0.000E+002.206E-04 100.0 0.000E+00 0.0 O.OOOE+OO 1.074E-06 100.0 O.OOOE+OO 0.0 0.000E+003.005E-04 100.0 O.OOOE+OO 0.0 0.000E+00

1.176E-06 100.0 0.000E+00 0.0 O.OOOE+OO2.164E-03 100.0 0.000E+00 0.0 0.000E+00

2.969E-09 0.7 4.406E-07 99.3 0.000E+00

0.00.0

0.00.0

0.00.00.00.00.00.0

0.00.0

0.05.180E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.04.667E-04 100.0 0.000E+00 0.0 0.000E+00 0.02.228E-08 9.4 2.137E-07 90.6 0.000E+00 0.0

2.668E-05 100.0 0.000E+00 0.0 0.000E+00 0.01.966E-07 100.0 0.000E+00 0.0 0.000E+00 0.03.000E-03 100.0 0.000E+00 0.0 0.000E+00 0.0

6.655E-05 100.0 1.122E-13 0.0 0.000E+00 0.02.602E-03 100.0 O.OOOE+OO 0.0 0.000E+00 0.0

1.346E-04 100.0 O.OOOE+OO 0.0 0.000E+00 0.02.231E-06 100.0 0.000E+00 0.0 O.OOOE+OO 0.0

1.187E-66 100.0 O.OOOE+OO 0.0 0.000E+00 0.02.081 E-23 100.0 0.000E+00 0.0 0.000E+00 0.01.248E-06 100.0 0.000E+00 0.0 O.OOOE+OO 0.0

216

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60 H3As03 2.855E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

Charge Balance: SPECIATED

Sum of CATIONS = 5.237E-03 Sum of ANIONS 5.447E-03

PERCENT DIFFERENCE = 1.968E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

EQUILIBRIUM IONIC STRENGTH (m) = 8.884E-03

EQUILIBRIUM pH = 9.484

EQUILIBRIUM pe = -3.949 or Eh = -229.68 mv

Saturation indices

ID No Name SI

2074102 Sb02 4.1792074004 Sb(OH)3 2.3302074006 SENARMONTITE 2.7172077002 QUARTZ 0.4292003001 BOEHMITE 0.2212003002 DIASPORE 1.9692003003 GIBBSITE 0.5742023101TENORITE 0.4752028000 WUSTITE 1.9962028001 Fe(OH)2 0.1522028100 FERRIHYDRITE 2.6812028101 Fe3(OH)8 5.6772028102 GOETHITE 5.4193020002 CoFe20 4 24.1043028000 MAGNETITE 21.8733028001HERCYNITE 8.1863028100 HEMATITE 13.2163028101MAGHEMITE 5.7973028102 LEPIDOCROCITE 4.7203046001 MAGNESIOFERRITE 9.547 3023100 CUPRIC FERRITE 13.8795028000 SIDERITE 0.5645015000 ARAGONITE 0.6945015001CALCITE 0.8485015002 DOLOMITE (ordered) 1.087 5015004 DOLOMITE (disordered) 0.516 7210000 Ba3(As04)2 16.9348603000 HALLOYSITE 0.9098603001 KAOLINITE 3.1498628000 GREENALITE 13.0638646000 CHRYSOTILE 5.1108646003 SEPIOLITE 3.1008646004 SEPIOLITE (A) 0.421

COre S2 - 15cm depth - No Adsorption

INPUT DATA BEFORE TYPE MODIFICATIONS

ID Name ACTIVITY GUESS log GUESS A330 H+l 1.000E-07 -7.000 6.607E-0730 AI+3 4.266E-04 -3.370 4.262E-0461 H3As04 7.762E-06 -5.110 7.742E-0690 H3B03 8.710E-06 -5.060 8.788E-06100 Ba+2 9.120E-07 -6.040 9.175E-07150 Ca+2 1.259E-03 -2.900 1.257E-03200 Co+2 3.020E-06 -5.520 3.021E-06231 Cu+2 1.122E-06 -5.950 1.133E-06280 Fe+2 1.950E-04 -3.710 1.970E-04

217

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

410 K+l 6.761E-05 -4.170 6.752E-04460 Mg+2 4.365E-04 -3.360 4.362E-04470 Mn+2 6.310E-06 -5.200 6.298E-06500 Na+1 1.738E-04 -3.760 5.731E-04770 H4Si04 7.586E-04 -3.120 7.547E-04800 Sr+2 1.047E-06 -5.980 1.050E-06731 S 6.761E-04 -3.170 6.704E-04871 TI(OH)3 9.333E-06 -5.030 9.440E-06950 Zn+2 2.754E-06 -5.560 2.768E-06732 S04-2 3.236E-03 -2.490 3.253E-03140 C03-2 6.761E-03 -2.170 6.770E-04740 Sb(OH)3 2.344E-06 -5.630 2.341E-06281 Fe+3 1.000E-07 -7.000 0.000E+00

1 E-l 1.000E-07 -7.000 0.000E+0060 H3As03 1.000E-07 -7.000 O.OOOE+OO741 Sb(OH)6- 1.000E-07 -7.000 0.000E+00471 Mn+3 1.000E-07 -7.000 0.000E+00730 HS-1 1.000E-07 -7.000 0.000E+002 H 20 l.OOOE+OO 0.000 0.000E+00

Charge Balance: UNSPECIATED

Sum of CATIONS= 6.338E-03 Sum of ANIONS = 7.860E-03

PERCENT DIFFERENCE = 1.072E+01 (ANIONS - CATIONS)/(ANIONS + CATIONS)

EQUILIBRATED MASS DISTRIBUTION

IDX Name DISSOLVED SORBED PRECIPITATED mol/L percent mol/L percent mol/L percent

330 H+l 30 AI+3 471 Mn+3 90 H3B03100150200231

Ba+2 Ca+2 Co+2 Cu+2

280 Fe+2 410 K+l 460 Mg+2 470 Mn+2 500 Na+1 770 H4Si04 800 Sr+2731 S871 TI(OH)3 950 Zn+2 61 H3As04 140 C03-2740 Sb(OH)3732 S04-2 2 H20

730 HS-1281 Fe+3 60 H3As03

741 Sb(OH)6- 1 E-l

2.202E-06 100.0 O.OOOE+OO 4.262E-04 100.0 0.000E+00

6.645E-30 100.0 O.OOOE+OO 8.788E-06 100.0 O.OOOE+OO

9.175E-07 100.0 O.OOOE+OO 100.0 100.0 100.0

100.0 100.0 100.0

1.257E-03 3.021E-06 1.133E-06 1.970E-04 6.752E-04 4.362E-04 6.298E-06 100.0 0.000E+00

5.731E-04 100.0 O.OOOE+OO 7.547E-04 100.0 0.000E+00

1.050E-06 100.0 O.OOOE+OO

O.OOOE+OO0.000E+000.000E+00O.OOOE+OO0.000E+00O.OOOE+OO

0.0 O.OOOE+OO 0.0 0.000E+00

0.0 O.OOOE+OO 0.0 0.000E+00

0.0 O.OOOE+OO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

0.00.00.00.00.00.00.0

0.0 O.OOOE+OO 0.0 0.000E+00

0.0 0.000E+00

0.00.0

0.00.0

0.00.00.00.00.00.00.00.0

0.00.0

0.06.704E-04 100.0 0.000E+00 0.0 0.000E+00 0.0

9.440E-06 100.0 O.OOOE+OO 0.0 0.000E+00 0.02.768E-06 100.0 O.OOOE+OO 0.0 0.000E+00 0.0

6.163E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.06.770E-04 100.0 0.000E+00 0.0 0.000E+00 0.0

7.745E-07 100.0 O.OOOE+OO 0.0 0.000E+00 0.03.253E-03 100.0 O.OOOE+OO 0.0 0.000E+00 0.0

1.022E-03 100.0 O.OOOE+OO 0.0 0.000E+00 0.01.022E-37 100.0 0.000E+00 0.0 0.000E+00 0.02.533E-08 100.0 0.000E+00 0.0 O.OOOE+OO 0.0

1.579E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.01.566E-06 100.0 0.000E+00 0.0 0.000E+00 0.0

1.519E-69 100.0 0.000E+00 0.0 0.000E+00 0.0

Charge Balance: SPECIATED

Sum of CATIONS = 4.546E-03 Sum of ANIONS 6.068E-03

PERCENT DIFFERENCE = 1.434E+01 (ANIONS - CATIONS)/(ANIONS + CATIONS)

218

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

EQUILIBRIUM IONIC STRENGTH (m) = 9.668E-03

EQUILIBRIUM pH = 6.271

EQUILIBRIUM pe = 1.560

Saturation indices

ID No Name SI

2074102 S b 0 2 4.9402074004 Sb(OH)3 0.7942077000 CHALCEDONY 0.4882077001 CRISTOBALITE 0.2892077002 QUARTZ 0.9462003000 AI(OH)3 (am) 1.5822003001 BOEHMITE 3.7842003002 DIASPORE 5.5332003003 GIBBSITE 4.1382087100 AVICENNITE 2.9522087101 TI(OH)3 0.4172028102 GOETHITE 2.5493003000 A I203 5.0033020002 C oFe204 16.2443028000 MAGNETITE 10.9653028001 HERCYNITE 10.1463028100 HEMATITE 7.4753028101 MAGHEM ITE 0.0563028102 LEPIDOCROCITE 1.8503023100 CUPRIC FERRITE 6.0996003001 A14(OH)10SO4 12.8907210000 Ba3(A s04)2 9.1078603000 HALLOYSITE 9.0698603001 KAOLINITE 11.308

Core S2 - 45cm Depth - No Adsorption

INPUT DATA BEFORE TYPE MODIFICATIONS

ID Name ACTIVITY GUESS log GUESS ANAL330 H + l 6.310E-08 -7.200 6.310E-0830 Al+3 1.698E-04 -3.770 1.698E-0461 H 3A s04 1.318E-05 -4.880 1.316E-05150 Ca+2 8.128E-04 -3.090 1.000E-03200 Co+2 2.570E-06 -5.590 2.562E-06231 Cu+2 6.918E-07 -6.160 6.924E-07280 Fe+2 9.772E-05 -4.010 9.866E-05410 K +l 3.020E-04 -3.520 3.043E-04460 Mg+2 2.630E-04 -3.580 2.650E-04470 Mn+2 3.467E-06 -5.460 3.440E-06500 Na+1 2.138E-04 -3.670 2.127E-04770 H 4Si04 4.169E-04 -3.380 4.130E-04800 Sr+2 4.786E-07 -6.320 4.793E-07731 S 1.349E-03 -2.870 1.360E-03740 Sb(OH)3 5.129E-06 -5.290 5.101 E-06871 Tl(OH)3 1.820E-06 -5.740 1.817E-06950 Zn+2 2.089E-06 -5.680 2.111 E-06730 HS-1 3.020E-06 -5.520 3.023E-06732 S04-2 2.188E-03 -2.660 2.212E-03140 C 03-2 2.399E-03 -2.620 8.000E-05281 Fe+3 1.000E-07 -7.000 0.000E+00

1 E -l 1.000E-07 -7.000 0.000E+0060 H 3A s03 1.000E-07 -7.000 0.000E+00

741 Sb(OH)6- 1.000E-07 -7.000 0.000E+00471 Mn+3 1.000E-07 -7.000 0.000E+00

2 H 2 0 1.000E+00 0.000 O.OOOE+OO

219

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Charge Balance: UNSPECIATED

Sum o f CATIONS= 3.772E-03 Sum o f ANIONS = 4.587E-03

PERCENT DIFFERENCE = 9.746E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

EQUILIBRATED MASS DISTRIBUTION

IDX Nam e DISSOLVED SORBED PRECIPITATED m ol/L percent mol/L percent mol/L percent

61 H 3A s04 30 Al+3

471 Mn+3 150 Ca+2 200 Co+2 231 Cu+2280 Fe+2 410 K + l 460 Mg+2 470 Mn+2 500 Na+1 770 H 4Si04 800 Sr+2731 S740 Sb(OH)3 871 TI(OH)3 950 Zn+2 730 HS-1732 S 0 4-2 140 C 03-22 H 2 0

330 H + l281 Fe+3 60 H 3A s03

741 Sb(OH)6- 1 E -l

8.535E-07 100.0 0.000E+00 0.0 O.OOOE+OO 0.01.698E-04 100.0 0.000E+00 0.0 O.OOOE+OO 0.0

7.999E-30 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.01.000E-03 100.0 0.000E+00 0.0 O.OOOE+OO 0.02.562E-06 100.0 O.OOOE+OO 0.0 0.000E+00 0.06.924E-07 100.0 0.000E+00 0.0 0.000E+00 0.0

9.866E-05 100.0 0.000E+00 0.0 O.OOOE+OO 0.03.043E-04 100.0 0.000E+00 0.0 O.OOOE+OO 0.02.650E-04 100.0 0.000E+00 0.0 0.000E+00 0.03.440E-06 100.0 0.000E+00 0.0 0.000E+00 0.0

2.127E-04 100.0 0.000E+00 0.0 O.OOOE+OO 0.04.130E-04 100.0 0.000E+00 0.0 O.OOOE+OO 0.0

4.793E-07 100.0 0.000E+00 0.0 0.000E+00 0.01.360E-03 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

4.887E-06 100.0 0.000E+00 0.0 0.000E+00 0.01.817E-06 100.0 0.000E+00 0.0 0.000E+00 0.0

2.111E-06 100.0 O.OOOE+OO 0.0 0.000E+00 0.06.993E-33 100.0 0.000E+00 0.0 O.OOOE+OO 0.02.215E-03 100.0 0.000E+00 0.0 O.OOOE+OO 0.08.000E-05 100.0 0.000E+00 0.0 0.000E+00 0.0

1.469E-04 100.0 0.000E+00 0.0 O.OOOE+OO 0.03.299E-06 100.0 O.OOOE+OO 0.0 0.000E+00 0.08.347E-10 100.0 0.000E+00 0.0 O.OOOE+OO 0.0

1.231E-05 100.0 0.000E+00 0.0 0.000E+00 0.02.141E-07 100.0 0.000E+00 0.0 O.OOOE+OO 0.0

1.101E-74 100.0 0.000E+00 0.0 0.000E+00 0.0

Charge Balance: SPECIATED

Sum o f CATIONS = 3.018E-03 Sum o f ANIONS 3.832E-03

PERCENT DIFFERENCE = 1.189E+01 (ANIONS - CATIONS)/(ANIONS + CATIONS)

EQUILIBRIUM IONIC STRENGTH (m) = 6.543E-03

EQUILIBRIUM pH = 5.480

EQUILIBRIUM pe = 1.919 or Eh = 111.62 mv

Saturation indices

ID No Name SI

2074102 S b 0 2 5.3072074004 Sb(OH)3 1.5942074006 SENARMONTITE 1.2442077000 CHALCEDONY 0.2262077001 CRISTOBALITE 0.0262077002 QUARTZ 0.6832003000 Al(OH)3 (am) 0.1702003001 BOEHMITE 2.3722003002 DIASPORE 4.120

220

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2003003 GIBBSITE 2.7252087100 AVICENNITE 1.5202028102 GOETHITE 0.2853003000 A1203 2.1783020002 C oF e204 10.1153028000 M AGNETITE 4.6073028001 HERCYNITE 5.4903028100 HEM ATITE 2.9476003000 A 10H S 04 0.7056003001 AI4(OH)10SO4 8.6798603000 HALLOYSITE 5.7198603001 KAOLINITE 7.959

Core S2 - 45cm Depth - Adsorption

INPUT DATA BEFORE TYPE MODIFICATIONS

ID Name ACTIVITY GUESS log GUESS ANAL330 H +l 6.310E-08 -7.200 6.310E-0830 AI+3 1.698E-04 -3.770 1.698E-0461 H 3A s04 1.318E-05 -4.880 1.316E-05150 Ca+2 8.128E-04 -3.090 1.000E-03200 Co+2 2.570E-06 -5.590 2.562E-06231 Cu+2 6.918E-07 -6.160 6.924E-07280 Fe+2 9.772E-05 -4.010 9.866E-05410 K + l 3.020E-04 -3.520 3.043E-04460 Mg+2 2.630E-04 -3.580 2.650E-04470 Mn+2 3.467E-06 -5.460 3.440E-06500 Na+1 2.138E-04 -3.670 2.127E-04770 H 4Si04 4.169E-04 -3.380 4.130E-04800 Sr+2 4.786E-07 -6.320 4.793E-07731 S 1.349E-03 -2.870 1.360E-03740 Sb(OH)3 5.129E-06 -5.290 5.101E-06950 Zn+2 2.089E-06 -5.680 2.111E-06730 HS-1 3.020E-06 -5.520 3.023E-06732 S04-2 2.188E-03 -2.660 2.212E-03140 C 03-2 2.399E-03 -2.620 8.000E-05281 Fe+3 1.000E-07 -7.000 O.OOOE+OO

1 E -l 1.000E-07 -7.000 0.000E+0060 H 3A s03 1.000E-07 -7.000 0.000E+00

741 Sb(OH)6- 1.000E-07 -7.000 0.000E+00471 Mn+3 1.000E-07 -7.000 0.000E+00811 ADS1TYP1 1.000E+00 0.000 0.000E+00

2 H2Q 1.000E+00 0.000 O.OOOE+OO

Charge Balance: UNSPECIATED

Sum o f CATIONS= 3.772E-03 Sum of ANIONS = 4.587E-03

PERCENT DIFFERENCE = 9.746E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

-------------EQUILIBRATED MASS D ISTR IBU TIO N ------------

IDX Name DISSOLVED SORBED PRECIPITATED mol/L percent mol/L percent mol/L percent

61 H 3A s04 8.238E-07 95.7 3.669E-08 4.3 0.000E+00 0.030 AI+3 1.698E-04 100.0 0.000E+00 0.0 O.OOOE+OO 0.0

471 M n+3 7.854E-30 100.0 0.000E+00 0.0 0.000E+00 0.0150 Ca+2 1.000E-03 100.0 O.OOOE+OO 0.0 0.000E+00 0.0200 Co+2 4.312E-09 0.2 2.558E-06 99.8 O.OOOE+OO 0.0231 Cu+2 4.801 E-10 0.1 6.919E-07 99.9 0.000E+00 0.0280 Fe+2 9.866E-05 100.0 0.000E+00 0.0 0.000E+00 0.0410 K + l 3.043E-04 100.0 0.000E+00 0.0 0.000E+00 0.0460 M g+2 2.650E-04 100.0 O.OOOE+OO 0.0 0.000E+00 0.0

221

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.440E-06 100.0 0.000E+00 0.0 O.OOOE+OO 0.02.127E-04 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

4.130E-04 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0 4.793E-07 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

1.360E-03 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0 4.894E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

4.400E-09 0.2 2.107E-06 99.8 O.OOOE+OO 0.08.048E-33 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.02.215E-03 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.08.000E-05 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

1.470E-04 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.02.071 E-07 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

1.027E-74 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0 3.291 E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.08.205E-10 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

1.230E-05 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

Charge Balance: SPECIATED

Sum o f CATIONS = 3.008E-03 Sum o f ANIONS 3.834E-03

PERCENT DIFFERENCE = 1.206E+01 (ANIONS - CATIONS)/(ANIONS + CATIONS)

EQUILIBRIUM IONIC STRENGTH (m) = 6.535E-03

EQUILIBRIUM pH = 5.480

EQUILIBRIUM pe = 1.911 o r E h = 111.16 mv

470 Mn+2500 Na+1770 H 4Si04800 Sr+2731 S 1740 Sb(OH)3950 Zn+2730 HS-1732 S04-2140 C 03-22 H 2 0

741 Sb(OH)6-1 E -l -1

330 H + l281 Fe+360 H 3A s03

Saturation indices

ID No Name SI

2074102 S b 0 2 5.3002074004 Sb(OH)3 1.5942074006 SENARMONTITE 1.246 2077000 CHALCEDONY 0.2262077001CRISTOBALITE 0.0262077002 QUARTZ 0.6832003000 Al(OH)3 (am) 0.1702003001BOEHMITE 2.3722003002 DIASPORE 4.1212003003 GIBBSITE 2.7262028102 GOETHITE 0.2783003000 AI203 2.1783020002 C oFe204 7.3273028000 MAGNETITE 4.5933028001 HERCYNITE 5.4913028100 HEMATITE 2.9336003000 A I0H S 04 0.7056003001 AI4(OH)10SO4 8.6808603000 HALLOYSITE 5.7208603001KAOLINITE 7.960

S2 - 130cm Depth - No Adsorption

INPUT DATA BEFORE TYPE M ODIFICATIONS

ID Name ACTIVITY GUESS log GUESS ANAL TOTAL330 H + l 3.311E-08 -7.480 3.311E-0830 Al+3 1.023E-03 -2.990 1.012E-0361 H 3A s04 2.754E-05 -4.560 2.776E-0590 H 3B 03 1.862E-05 -4.730 1.850E-05100 Ba+2 1.047E-04 -3.980 1.041E-04150 Ca+2 1.259E-03 -2.900 1.267E-03200 Co+2 5.012E-06 -5.300 5.006E-06

222

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

231 Cu+2 1.622E-06 -5.790 1.605E-06280 Fe+2 5.129E-04 -3.290 5.085E-04410 K +l 8.710E-05 -4.060 8.645E-05460 Mg+2 7.586E-04 -3.120 5.650E-04470 Mn+2 1.738E-05 -4.760 1.740E-05500 Na+1 1.622E-04 -3.790 1.618E-04770 H 4Si04 1.349E-03 -2.870 1.356E-03800 Sr+2 7.586E-07 -6.120 7.647E-07731 S 2.138E-04 -3.670 2.148E-04740 Sb(OH)3 2.951E-06 -5.530 2.949E-06871 TI(OH)3 1.230E-05 -4.910 1.230E-05950 Zn+2 5.370E-06 -5.270 5.353E-06732 S04-2 5.248E-04 -3.280 5.205E-04140 C 03-2 2.344E-03 -2.630 2.995E-03281 Fe+3 1.000E-07 -7.000 0.000E+00

1 E -l 1.000E-07 -7.000 O.OOOE+OO60 H 3A s03 1.000E-07 -7.000 O.OOOE+OO

741 Sb(OH)6- 1.000E-07 -7.000 O.OOOE+OO471 Mn+3 1.000E-07 -7.000 0.000E+00730 HS-1 1.000E-07 -7.000 0.000E+00

2 H 2 0 1.000E+00 0.000 O.OOOE+OO

Charge Balance: UNSPECIATED

Sum o f CATIONS= 8.234E-03 Sum o f ANIONS = 7.031E-03

PERCENT DIFFERENCE = 7.879E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

EQUILIBRATED MASS DISTRIBUTION

IDX Name DISSOLVED SORBED PRECIPITATED mol/L percent mol/L percent mol/L percent

330 H+130 AI+3

471 Mn+3 90 H 3B 03 100 Ba+2 150 Ca+2 200 Co+2 231 Cu+2280 Fe+2 410 K + l 460 Mg+2 470 Mn+2 500 Na+1 770 H 4Si04 800 Sr+2731 S740 Sb(OH)3 871 TI(OH)3 950 Zn+261 H 3A s04 140 C 03-2732 S04-2

2 H 2 0730 HS-1281 Fe+3 60 H 3A s03

741 Sb(OH)6- 1 E -l

2.072E-06 100.0 0.000E+00 0.0 0.000E+00 0.01.012E-03 100.0 0.000E+00 0.0 0.000E+00 0.0

2.826E-30 100.0 0.000E+00 0.0 0.000E+00 0.01.850E-05 100.0 0.000E+00 0.0 0.000E+00 0.0

1.041E-04 100.0 0.000E+00 0.0 O.OOOE+OO 0.01.267E-03 100.0 0.000E+00 0.0 O.OOOE+OO 0.05.006E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.01.605E-06 100.0 O.OOOE+OO 0.0 0.000E+00 0.0

5.083E-04 100.0 0.000E+00 0.0 0.000E+00 0.08.645E-05 100.0 0.000E+00 0.0 O.OOOE+OO 0.05.650E-04 100.0 0.000E+00 0.0 0.000E+00 0.01.740E-05 100.0 0.000E+00 0.0 O.OOOE+OO 0.0

1.618E-04 100.0 0.000E+00 0.0 0.000E+00 0.01.356E-03 100.0 O.OOOE+OO 0.0 0.000E+00 0.0

7.647E-07 100.0 0.000E+00 0.0 O.OOOE+OO 0.02.148E-04 100.0 0.000E+00 0.0 0.000E+00 0.0

6.843E-07 100.0 0.000E+00 0.0 0.000E+00 0.01.230E-05 100.0 0.000E+00 0.0 O.OOOE+OO 0.0

5.353E-06 100.0 0.000E+00 0.0 0.000E+00 0.02.538E-05 100.0 0.000E+00 0.0 0.000E+00 0.0

2.995E-03 100.0 0.000E+00 0.0 O.OOOE+OO 0.05.205E-04 100.0 O.OOOE+OO 0.0 0.000E+00 0.0

3.568E-03 100.0 O.OOOE+OO 0.0 0.000E+00 0.06.139E-38 100.0 0.000E+00 0.0 0.000E+00 0.02.264E-07 100.0 O.OOOE+OO 0.0 0.000E+00 0.0

2.378E-06 100.0 0.000E+00 0.0 O.OOOE+OO 0.02.265E-06 100.0 O.OOOE+OO 0.0 0.000E+00 0.0

2.449E-67 100.0 0.000E+00 0.0 0.000E+00 0.0

Charge Balance: SPECIATED

Sum o f CATIONS = 5.097E-03 Sum o f ANIONS 3.894E-03

223

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PERCENT DIFFERENCE = 1.338E+01 (ANIONS - CATIONS)/(ANIONS + CATIONS)

EQUILIBRIUM IONIC STRENGTH (m) = 7.271E-03

EQUILIBRIUM pH = 6.907

EQUILIBRIUM pe = 0.717 or Eh = 41.71 mv

Saturation indices

ID No Nam e SI

2074004 Sb(OH)3 0.7402077000 CHALCEDONY 0.7422077001CRISTOBALITE 0.5432077002 QUARTZ 1.2002003000 AI(OH)3 (am) 1.9592003001BOEHM ITE 4.1612003002 DIASPORE 5.9102003003 GIBBSITE 4.5152087100 AVICENNITE 3.1812087101 Tl(OH)3 0.5322028100 FERRIHYDRITE 1.3892028102 GOETHITE 4.1283003000 A1203 5.7563020002 C oF e20 4 20.9453028000 MAGNETITE 15.9093028001HERCYNITE 12.6863028100 HEM ATITE 10.6323028101MAGHEM ITE 3.2143028102 LEPIDOCROCITE 3.4293046001MAGNESIOFERRITE 2.294 3023100 CUPRIC FERRITE 10.2175023101 MALACHITE 0.0465028000 SIDERITE 0.5736003001 AI4(OH)10SO4 12.3216010000 BARITE 2.3777210000 Ba3(A s04)2 18.6528603000 HALLOYSITE 10.3308603001KAOLINITE 12.5708628000 GREENALITE 4.463

Core S3 - 45cm Depth - No Adsorption

INPUT DATA BEFORE TYPE MODIFICATIONS

ID Name ACTIVITY GUESS log GUESS A330 H + l 1.259E-08 -7.900 1.259E-0830 Al+3 3.467E-04 -3.460 3.488E-0461 H 3A s04 5.129E-05 -4.290 5.139E-05150 Ca+2 1.862E-03 -2.730 1.879E-03200 Co+2 5.495E-06 -5.260 5.549E-06231 Cu+2 2.951E-06 -5.530 2.943E-06280 Fe+2 2.089E-04 -3.680 2.095E-04410 K +l 5.888E-05 -4.230 5.934E-05460 Mg+2 4.786E-04 -3.320 6.733E-04470 Mn+2 6.918E-06 -5.160 6.898E-06500 Na+1 2.399E-04 -3.620 2.405E-04770 H 4Si04 6.607E-04 -3.180 6.550E-04800 Sr+2 1.047E-06 -5.980 1.039E-06731 S 4.074E-03 -2.390 4.116E-03740 Sb(OH)3 3.311E-05 -4.480 3.294E-05871 TI(OH)3 1.820E-06 -5.740 1.817E-06950 Zn+2 3.020E-06 -5.520 3.013E-06730 HS-1 6.026E-06 -5.220 6.046E-06732 S 04-2 3.236E-03 -2.490 3.253E-03140 C 03-2 6.310E-04 -3.200 6.369E-04281 Fe+3 1.000E-07 -7.000 0.000E+00

224

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 E - l60 H 3A s03

741 Sb(OH)6- 471 Mn+3

2 H 2 0

1.000E-07 -7.000 0.000E+001.000E-07 -7.000 O.OOOE+OO1.000E-07 -7.000 O.OOOE+OO

1.000E-07 -7.000 O.OOOE+OOl.OOOE+OO 0.000 O.OOOE+OO

Charge Balance: UNSPECIATED

Sum o f CATIONS= 6.909E-03 Sum o f ANIONS = 7.786E-03

PERCENT DIFFERENCE = 5.969E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

61 H 3A s04 1.955E-05 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.030 AI+3 3.488E-04 100.0 0.000E+00 0.0 0.000E+00 0.0

471 Mn+3 2.101E-30 100.0 0.000E+00 0.0 0.000E+00 0.0150 Ca+2 1.879E-03 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0200 Co+2 5.549E-06 100.0 O.OOOE+OO 0.0 0.000E+00 0.0231 Cu+2 2.943E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0280 Fe+2 2.095E-04 100.0 O.OOOE+OO 0.0 0.000E+00 0.0410 K + l 5.934E-05 100.0 0.000E+00 0.0 0.000E+00 0.0460 Mg+2 6.733E-04 100.0 0.000E+00 0.0 O.OOOE+OO 0.0470 Mn+2 6.898E-06 100.0 0.000E+00 0.0 0.000E+00 0.0500 Na+1 2.405E-04 100.0 O.OOOE+OO 0.0 0.000E+00 0.0770 H 4S i04 6.550E-04 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0800 Sr+2 1.039E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0731 S 4.116E-03 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0740 Sb(OH)3 2.529E-05 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0871 TI(OH)3 1.817E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0950 Zn+2 3.013E-06 100.0 O.OOOE+OO . 0.0 O.OOOE+OO 0.0730 HS-1 3.107E-34 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0732 S 04 -2 3.259E-03 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0140 C 03-2 6.369E-04 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.02 H 2 0 8.668E-04 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

330 H + l 1.369E-05 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0281 Fe+3 1.165E-08 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.060 H 3A s03 3.184E-05 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

741 Sb(OH)6- 7.648E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.01 E -l -5.709E-71 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

Charge Balance: SPECIATED

Sum o f CATIONS = 4.974E-03 Sum o f ANIONS 5.851E-03

PERCENT DIFFERENCE = 8.103E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

EQUILIBRIUM IONIC STRENGTH (m) = 1.037E-02

EQUILIBRIUM pH = 6.363

EQUILIBRIUM pe = 1.009 or Eh = 58.69 mv

Saturation indices

ID No Name SI

2074102 S b 02 5.9952074001 Sb204 1.3552074004 Sb(OH)3 2.3082074006 SENARMONTITE 2.673 2077000 CHALCEDONY 0.426

EQUILIBRATED MASS DISTRIBUTION

IDX Name DISSOLVED SORBED PRECIPITATED mol/L percent mol/L percent mol/L percent

225

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2077001 CRISTOBALITE 0.2272077002 QUARTZ 0.8842003000 AI(OH)3 (am) 1.5412003001 BOEHM ITE 3.7432003002 DIASPORE 5.4922003003 GIBBSITE 4.0962087100 AVICENNITE 1.5212028102 GOETHITE 2.3013003000 A I203 4.9203020002 CoFe2Q4 16.1973028000 MAGNETITE 10.6823028001 HERCYNITE 10.2753028100 HEM ATITE 6.9803028102 LEPIDOCROCITE 1.6033023100 CUPRIC FERRITE 6.1936003000 A IO H S04 0.4286003001 AI4(OH)10SO4 12.5158603000 HALLOYSITE 8.8638603001 KAOLINITE 11.102

Core S3 - 45cm Depth - Adsorption

INPUT DATA BEFORE TYPE M ODIFICATIONS

ID Name ACTIVITY GUESS log GUESS ANAL330 H +l 1.259E-08 -7.900 1.259E-0830 AI+3 3.467E-04 -3.460 3.488E-0461 H 3A s04 5.129E-05 -4.290 5.139E-05150 Ca+2 1.862E-03 -2.730 1.879E-03200 Co+2 5.495E-06 -5.260 5.549E-06231 Cu+2 2.951 E-06 -5.530 2.943E-06280 Fe+2 2.089E-04 -3.680 2.095E-04410 K +l 5.888E-05 -4.230 5.934E-05460 Mg+2 4.786E-04 -3.320 6.733E-04470 Mn+2 6.918E-06 -5.160 6.898E-06500 Na+1 2.399E-04 -3.620 2.405E-04770 H 4Si04 6.607E-04 -3.180 6.550E-04800 Sr+2 1.047E-06 -5.980 1.039E-06731 S 4.074E-03 -2.390 4.116E-03740 Sb(OH)3 3.311E-05 -4.480 3.294E-05950 Zn+2 3.020E-06 -5.520 3.013E-06730 HS-1 6.026E-06 -5.220 6.046E-06732 S04-2 3.236E-03 -2.490 3.253E-03140 C 03-2 6.310E-04 -3.200 6.369E-04281 Fe+3 1.000E-07 -7.000 0.000E+00

1 E -l 1.000E-07 -7.000 0.000E+0060 H 3A s03 1.000E-07 -7.000 O.OOOE+OO

741 Sb(OH)6- 1.000E-07 -7.000 0.000E+00471 Mn+3 1.000E-07 -7.000 0.000E+00811 ADS1TYP1 1.000E+00 0.000 0.000E+00

2 H2Q 1.000E+00 0.000 O.OOOE+OO

Charge Balance: UNSPECIATED

Sum o f CATIONS= 6.909E-03 Sum o f ANIONS = 7.786E-03

PERCENT DIFFERENCE = 5.969E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

EQUILIBRATED MASS DISTRIBUTION

IDX Name DISSOLVED SORBED PRECIPITATED mol/L percent mol/L percent mol/L percent

61 H 3A s04 1.954E-05 99.9 1.151E-08 0.1 O.OOOE+OO 0.0

226

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30 Al+3 3.488E-04 100.0 0.000E+00 0.0 O.OOOE+OO 0.0471 M n+3 2.096E-30 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0150 Ca+2 1.879E-03 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0200 Co+2 2.337E-08 0.4 5.526E-06 99.6 O.OOOE+OO 0.0231 Cu+2 8.550E-09 0.3 2.934E-06 99.7 O.OOOE+OO 0.0280 Fe+2 2.095E-04 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0410 K + l 5.934E-05 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0460 M g+2 6.733E-04 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0470 M n+2 6.898E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0500 Na+1 2.405E-04 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0770 H 4Si04 6.550E-04 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0800 Sr+2 1.039E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0731 S 4.116E-03 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0740 Sb(OH)3 2.530E-05 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0950 Zn+2 1.218E-08 0.4 3.001E-06 99.6 O.OOOE+OO 0.0730 HS-1 3.124E-34 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0732 S 04 -2 3.259E-03 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0140 C 03-2 6.369E-04 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.02 H 2 0 8.670E-04 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

741 Sb(OH)6- 7.644E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.01 E -l -5.715E-71 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

330 H + l 1.369E-05 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0281 Fe+3 1.165E-08 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.060 H 3A s03 3.183E-05 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

Charge Balance: SPECIATED

Sum o f CATIONS = 4.955E-03 Sum of ANIONS 5.855E-03

PERCENT DIFFERENCE = 8.326E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

EQUILIBRIUM IONIC STRENGTH (m) = 1.035E-02

EQUILIBRIUM pH = 6.364

EQUILIBRIUM pe = 1.008 or Eh = 58.64 mv

Saturation indices

ID No Name SI

2074102 S b 0 2 5.9942074001 S b 204 1.3552074004 Sb(OH)3 2.3082074006 SENARMONTITE 2.6732077000 CHALCEDONY 0.4262077001 CRISTOBALITE 0.2272077002 QUARTZ 0.8842003000 Al(OH)3 (am) 1.5412003001 BOEHMITE 3.7432003002 DIASPORE 5.4922003003 GIBBSITE 4.097.2028102 GOETHITE 2.3023003000 A 120 3 4.9203020002 C oF e204 13.8233028000 MAGNETITE 10.6843028001HERCYNITE 10.2763028100 HEMATITE 6.9813028102 LEPIDOCROCITE 1.6033023100 CUPRIC FERRITE 3.6586003000 A I0 H S 0 4 0.4276003001 AI4(OH)10SO4 12.5158603000 HALLOYSITE 8.8638603001 KAOLINITE 11.103

Core S3 - 75cm Depth - No Adsorption

227

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

INPUT DATA BEFORE TYPE MODIFICATIONS

ID Name ACTIVITY GUESS log GUESS ANAL330 H +l 1.072E-08 -7.970 1.072E-0830 AI+3 3.090E-05 -4.510 3.095E-0561 H 3A s04 2.692E-05 -4.570 2.683E-05150 Ca+2 1.413E-03 -2.850 2.687E-03200 Co+2 4.898E-07 -6.310 4.921E-07231 Cu+2 3.802E-07 -6.420 3.777E-07280 Fe+2 1.445E-05 -4.840 1.450E-05410 K +l 8.318E-05 -4.080 9.200E-05460 Mg+2 3.890E-04 -3.410 8.000E-04470 Mn+2 3.236E-06 -5.490 3.240E-06500 Na+1 2.042E-04 -3.690 4.000E-04770 H 4Si04 1.862E-04 -3.730 1.844E-04800 Sr+2 1.950E-06 -5.710 1.952E-06731 S 2.239E-03 -2.650 2.229E-03740 Sb(OH)3 2.570E-05 -4.590 2.595E-05871 Tl(OH)3 3.311E-07 -6.480 3.342E-07950 Zn+2 5.129E-06 -5.290 5.170E-06730 HS-1 3.020E-06 -5.520 3.023E-06732 S04-2 4.571E-03 -2.340 3.500E-03140 C 03-2 1.230E-03 -2.910 1.200E-04281 Fe+3 1.000E-07 -7.000 0.000E+00

1 E -l 1.000E-07 -7.000 O.OOOE+OO60 H 3A s03 1.000E-07 -7.000 O.OOOE+OO

741 Sb(OH)6- 1.000E-07 -7.000 0.000E+00471 Mn+3 1.000E-07 -7.000 O.OOOE+OO

2 H 2 0 1.000E+00 0.000 O.OOOE+OO

Charge Balance: UNSPECIATED

Sum o f CATIONS= 7.610E-03 Sum o f ANIONS = 7.243E-03

PERCENT DIFFERENCE = 2.473E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

------------- EQUILIBRATED MASS D IST R IB U TIO N ------------

IDX Name DISSOLVED SORBED PRECIPITATED mol/L percent mol/L percent mol/L percent

61 H 3A s04 30 AI+3

471 Mn+3 150 Ca+2 200 Co+2 231 Cu+2280 Fe+2 410 K +l 460 Mg+2 470 Mn+2 500 Na+1 770 H 4Si04 800 Sr+2731 S740 Sb(OH)3 871 TI(OH)3 950 Zn+2 730 HS-1732 S04-2 140 C 03-22 H 2 0

330 H +l281 Fe+3 60 H 3A s03

741 Sb(OH)6- 1 E -l

1.094E-05 100.0 0.000E+00 0.0 O.OOOE+OO 0.03.095E-05 100.0 O.OOOE+OO 0.0 0.000E+00 0.0

7.255E-32 100.0 0.000E+00 2.687E-03 100.0 O.OOOE+OO

0.000E+00 O.OOOE+OO

0.000E+00 0.000E+00 0.000E+00

100.0100.0

100.0100.0100.0

0.0 0.000E+00 0.0 0.000E+00

0.000E+00 0.000E+00

0.000E+00 0.000E+00 0.000E+00

0.00.0

0.00.00.0

0.00.00.00.0

0.00.00.00.0

0.00.0

0.0

4.921E-07 3.777E-07 1.450E-05 9.200E-05 8.000E-043.240E-06 100.0 0.000E+00 0.0 0.000E+00

4.000E-04 100.0 O.OOOE+OO 0.0 0.000E+001.844E-04 100.0 O.OOOE+OO 0.0 0.000E+00

1.952E-06 100.0 0.000E+00 0.0 0.000E+002.229E-03 100.0 O.OOOE+OO 0.0 0.000E+00 0.0

2.215E-05 100.0 O.OOOE+OO 0.0 0.000E+00 0.03.342E-07 100.0 0.000E+00 0.0 0.000E+00 0.0

5.170E-06 100.0 0.000E+00 0.0 O.OOOE+OO 0.01.268E-31 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.03.503E-03 100.0 0.000E+00 0.0 O.OOOE+OO 0.01.200E-04 100.0 0.000E+00 0.0 0.000E+00 0.0

9.167E-05 100.0 0.000E+00 0.0 0.000E+00 0.06.834E-06 100.0 0.000E+00 0.0 O.OOOE+OO 0.01.363E-09 100.0 0.000E+00 0.0 0.000E+00 0.0

1.589E-05 100.0 0.000E+00 0.0 O.OOOE+OO 0.03.802E-06 100.0 0.000E+00 0.0 0.000E+00 0.0

1.978E-70 100.0 0.000E+00 0.0 0.000E+00 0.0

228

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Charge Balance: SPECIATED

Sum of CATIONS = 6.140E-03 Sum of ANIONS 5.773E-03

PERCEN T DIFFERENCE = 3.083E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

EQUILIBRIUM IONIC STRENGTH (m) = 1.160E-02

EQUILIBRIUM pH = 7.045

EQ UILIBRIUM pe = -0.137 or Eh = -7.98 mv

Saturation indices ID No Name SI

207410220740012074004207400620770022003000200300120030022003003 2087100 2028102 3003000 302000230280003028001 3028100 3028102 3023100 600300186030008603001

S b 0 2 5.472S b 2 0 4 0.311Sb(OH)3 2.250SENARM ONTITE 2.558QUARTZ Al(OH)3 (am) BOEHMITE DIASPORE GIBBSITE AVICENNITE GOETHITE A1203 C oF e204 M AGNETITE HERCYNITE HEMATITE LEPIDOCROCITE CUPRIC FERRITE AI4(OH)10SO4 HALLOYSITE KAOLIN ITE

0.333 0.353

2.555 4.304

2.909 0.051

2.031 2.545

15.961 10.336 8.094

6.439 1.332

6.057 6.409

5.386 7.626

Core S3 - 75cm Depth - Adsorption

INPUT DATA BEFORE TYPE MODIFICATIONS

ID Name ACTIVITY GUESS log GUESS AI330 H +l 1.072E-08 -7.970 1.072E-0830 AI+3 3.090E-05 -4.510 3.095E-0561 H 3A s04 2.692E-05 -4.570 2.683E-05150 Ca+2 1.413E-03 -2.850 2.687E-03200 Co+2 4.898E-07 -6.310 4.921E-07231 Cu+2 3.802E-07 -6.420 3.777E-07280 Fe+2 1.445E-05 -4.840 1.450E-05410 K + l 8.318E-05 -4.080 9.200E-05460 Mg+2 3.890E-04 -3.410 8.000E-04470 Mn+2 3.236E-06 -5.490 3.240E-06500 Na+1 2.042E-04 -3.690 4.000E-04770 H 4Si04 1.862E-04 -3.730 1.844E-04800 Sr+2 1.950E-06 -5.710 1.952E-06731 S 2.239E-03 -2.650 2.229E-03740 Sb(OH)3 2.570E-05 -4.590 2.595E-05950 Zn+2 5.129E-06 -5.290 5.170E-06730 HS-1 3.020E-06 -5.520 3.023E-06732 S04-2 4.571E-03 -2.340 3.500E-03140 C 03-2 1.230E-03 -2.910 1.200E-04281 Fe+3 1.000E-07 -7.000 0.000E+00

1 E -l 1.000E-07 ■7.000 O.OOOE+OO60 H 3A s03 1.000E-07 -7.000 0.000E+00

741 Sb(OH)6- 1.000E-07 -7.000 O.OOOE+OO

229

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

471 Mn+3 1.000E-07 -7.000 O.OOOE+OO811 ADS1TYP1 1.000E+00 0.000 O.OOOE+OO

2 H 2 0 l.OOOE+OO 0.000 0.000E+00

Charge Balance: UNSPECIATED

Sum o f CATIONS= 7.610E-03 Sum o f ANIONS = 7.243E-03

PERCENT DIFFERENCE = 2.473E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

------------- EQUILIBRATED MASS DIST R IB U TIO N -------------

IDX Name DISSOLVED SORBED PRECIPITATED mol/L percent mol/L percent mol/L percent

61 H 3A s04 1.436E-05 100.0 4.809E-09 0.0 0.000E+00 0.030 AI+3 3.095E-05 100.0 O.OOOE+OO 0.0 iO.OOOE+OO 0.0

471 Mn+3 1.048E-31 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0150 Ca+2 2.687E-03 100.0 0.000E+00 0.0 0.000E+00 0.0200 Co+2 1.431E-10 0.0 4.920E-07 100.0 0.000E+00 0.0231 Cu+2 1.237E-10 0.0 3.776E-07 100.0 0.000E+00 0.0280 Fe+2 1.450E-05 100.0 0.000E+00 0.0 0.000E+00 0.0410 K + l 9.200E-05 100.0 O.OOOE+OO 0.0 0.000E+00 0.0460 Mg+2 8.000E-04 100.0 0.000E+00 0.0 0.000E+00 0.0470 Mn+2 3.240E-06 100.0 0.000E+00 0.0 0.000E+00 0.0500 Na+1 4.000E-04 100.0 0.000E+00 0.0 O.OOOE+OO 0.0770 H 4Si04 1.844E-041 100.0 0.000E+00 0.0 0.000E+00 0.0800 Sr+2 1.952E-06 100.0 O.OOOE+OO 0.0 0.000E+00 0.0731 S 2.229E-03 100.0 0.000E+00 0.0 0.000E+00 0.0740 Sb(OH)3 1.236E-06 4.8 2.435E-05 95.2 0.000E+00 0.0950 Zn+2 2.023E-08 0.4 5.150E-06 99.6 0.000E+00 0.0730 HS-1 1.189E-32 100.0 0.000E+00 0.0 0.000E+00 0.0732 S04-2 3.503E-03 100.0 O.OOOE+OO 0.0 0.000E+00 0.0140 C 03-2 1.200E-04 100.0 0.000E+00 0.0 0.000E+00 0.02 H 2 0 1.115E-04 100.0 O.OOOE+OO 0.0 0.000E+00 0.01 E -l -5.295E-70 100.0 O.OOOE+OO 0.0 0.000E+00 0.0

330 H + l 3.395E-06 100.0 O.OOOE+OO 0.0 0.000E+00 0.0281 Fe+3 1.739E-09 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.060 H 3A s03 1.246E-05 100.0 0.000E+00 0.0 O.OOOE+OO 0.0

741 Sb(OH)6- 3.689E-07 100.0 0.000E+00 0.0 0.000E+00 0.0

Charge Balance: SPECIATED

Sum o f CATIONS = 6.130E-03 Sum o f ANIONS 5.775E-03

PERCENT DIFFERENCE = 2.984E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

EQUILIBRIUM IONIC STRENGTH (m) = 1.159E-02

EQUILIBRIUM pH = 7.018

EQUILIBRIUM pe = 0.023 or Eh = 1.31 mv

Saturation indices

ID No Name SI

2074102 S b 02 4.3522074004 Sb(OH)3 0.9972074006 SENARMONTITE 0.2077002 QUARTZ 0.3332003000 Al(OH)3 (am) 0.3712003001 BOEHMITE 2.5732003002 DIASPORE 4.3222003003 GIBBSITE 2.926

230

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20281023003000302000230280003028001 3028100 3028102 3023100 600300186030008603001

GOETHITE A I203 C oF e204 MAGNETITE HERCYNITE HEM ATITE LEPIDOCROCITE CUPRIC FERRITE A14(OH)10SO4 HALLOYSITE KAOLINITE

2.112 2.580

12.533 10.444 8.077

6.600 1.413

2.687 6.533

5.421 7.661

Core S4 - 23cm Depth - No Adsorption

INPUT DATA BEFORE TYPE MODIFICATIONS

ID Name ACTIVITY GUESS log GUESS ANAL330 H +l 2.512E-08 -7.600 2.512E-0830 AI+3 2.239E-04 -3.650 2.231E-0461 H 3A s04 2.138E-05 -4.670 2.149E-05150 Ca+2 2.089E-03 -2.680 2.103E-03200 Co+2 5.495E-06 -5.260 5.498E-06231 Cu+2 1.413E-06 -5.850 1.416E-06280 Fe+2 1.585E-04 -3.800 1.586E-04410 K+l 1.585E-04 -3.800 1.578E-04460 Mg+2 5.623E-04 -3.250 7.700E-04470 Mn+2 4.786E-06 -5.320 4.805E-06500 Na+1 3.715E-04 -3.430 3.736E-04770 H 4Si04 5.754E-04 -3.240 5.732E-04800 Sr+2 1.995E-06 -5.700 1.986E-06731 S 4.677E-03 -2.330 4.708E-03740 Sb(OH)3 7.762E-06 -5.110 7.754E-06871 TI(OH)3 2.344E-06 -5.630 2.318E-06950 Zn+2 2.570E-06 -5.590 2.600E-06730 HS-1 1.820E-05 -4.740 1.814E-05732 S04-2 5.495E-03 -2.260 3.300E-03140 C 03-2 1.514E-03 -2.820 1.000E-04281 Fe+3 1.000E-07 -7.000 0.000E+00

1 E -l 1.000E-07 -7.000 0.000E+0060 H 3A s03 1.000E-07 -7.000 0.000E+00

741 Sb(OH)6- 1.000E-07 -7.000 O.OOOE+OO471 Mn+3 1.000E-07 -7.000 0.000E+00

2 H 2 0 1.000E+00 0.000 0.000E+00

Charge Balance: UNSPECIATED

Sum o f CATIONS= 7.297E-03 Sum o f ANIONS = 6.818E-03

PERCENT DIFFERENCE = 3.389E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

■ EQUILIBRATED MASS DISTRIBUTION

IDX Name DISSOLVED SORBED PRECIPITATED mol/L percent mol/L percent mol/L percent

61 H 3A s04 8.052E-13 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.030 AI+3 2.231 E-04 100.0 0.000E+00 0.0 0.000E+00 0.0

471 Mn+3 7.856E-33 100.0 0.000E+00 0.0 0.000E+00 0.0150 Ca+2 2.103E-03 100.0 0.000E+00 0.0 0.000E+00 0.0200 Co+2 5.498E-06 100.0 0.000E+00 0.0 0.000E+00 0.0231 Cu+2 1.416E-06 100.0 0.000E+00 0.0 0.000E+00 0.0280 Fe+2 1.586E-04 100.0 O.OOOE+OO 0.0 0.000E+00 0.0410 K + l 1.578E-04 100.0 0.000E+00 0.0 0.000E+00 0.0460 Mg+2 7.700E-04 100.0 O.OOOE+OO 0.0 0.000E+00 0.060 H3AsQ3 2.149E-05 100.0 0.000E+00 0.0 0.000E+00 0.0

500 Na+1 3.736E-04 100.0 0.000E+00 0.0 0.000E+00 0.0

231

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

770 H 4S i04 5.732E-04 100.0 0.000E+00 0.0 O.OOOE+OO 0.0800 Sr+2 1.986E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0731 S 4.708E-03 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0740 Sb(OH)3 7.754E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0871 TI(OH)3 2.318E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0950 Zn+2 2.600E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0741 Sb(OH)6- 7.256E-14 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0732 S 0 4 -2 3.305E-03 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0140 C 0 3 -2 1.000E-04 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

2 H 2 0 1.743E-04 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0730 HS-1 1.277E-05 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0281 Fe+3 9.211E-13 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

1 E -l -4.815E-87 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0330 H + l 5.397E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0470 M n+2 4.805E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

Charge Balance: SPECIATED

Sum o f CATIONS = 5.755E-03 Sum o f ANIONS 5.276E-03

PERCENT DIFFERENCE = 4.337E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

EQUILIBRIUM IONIC STRENGTH (m) = 1.070E-02

EQUILIBRIUM pH = 5.512

EQUILIBRIUM pe = -1 .2 6 9 or Eh = -73.79 mv

Saturation indicesID No Name SI

1006000 ORPIM ENT 11.0981095000 ZnS (am) 0.3621095001 SPHALERITE 2.8041095002 W URTZITE 0.2781023101COVELLITE 12.9581023102 CHALCOPYRITE 19.1271020002 CoS (beta) 2.6711028003 PYRITE 6.2952074102 S b 0 2 1.9512074004 Sb(OH)3 1.3942074006 SENARM ONTITE 0.8452077000 CHALCEDONY 0.3682077001 CRISTOBALITE 0.1692077002 QUARTZ 0.8262003000 AI(OH)3 (am) 0.2942003001 BOEHMITE 2.4962003002 DIASPORE 4.2452003003 GIBBSITE 2.8492087100 AVICENNITE 1.7323003000 A1203 2.4263020002 C oFe204 4.5963028001 HERCYNITE 5.9606003000 A 10H S 04 0.8676003001 A14(OH)10SO4 9.2138603000 HALLOYSITE 6.2538603001 KAOLINITE 8.493

Core S4 - 23cm Depth - Adsorption

INPUT DATA BEFORE TYPE MODIFICATIONS

ID Name ACTIVITY GUESS log GUESS ANAL TOTAL330 H + l 2.512E-08 -7.600 2.512E-0830 AI+3 2.239E-04 -3.650 2.231E-0461 H 3A s04 2.138E-05 -4.670 2.149E-05

232

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150 Ca+2 2.089E-03 -2.680 2.103E-03200 Co+2 5.495E-06 -5.260 5.498E-06231 Cu+2 1.413E-06 -5.850 1.416E-06280 Fe+2 1.585E-04 -3.800 1.586E-04410 K + l 1.585E-04 -3.800 1.578E-04460 Mg+2 5.623E-04 -3.250 7.700E-04470 Mn+2 4.786E-06 -5.320 4.805E-06500 Na+1 3.715E-04 -3.430 3.736E-04770 H 4Si04 5.754E-04 -3.240 5.732E-04800 Sr+2 1.995E-06 -5.700 1.986E-06731 S 4.677E-03 -2.330 4.708E-03740 Sb(OH)3 7.762E-06 -5.110 7.754E-06950 Zn+2 2.570E-06 -5.590 2.600E-06730 HS-1 1.820E-05 -4.740 1.814E-05732 S04-2 5.495E-03 -2.260 3.300E-03140 C 03-2 1.514E-03 -2.820 5.000E-05281 Fe+3 1.000E-07 -7.000 0.000E+00

1 E -l 1.000E-07 -7.000 O.OOOE+OO60 H 3A s03 1.000E-07 -7.000 0.000E+00

741 Sb(OH)6- 1.000E-07 -7.000 O.OOOE+OO471 Mn+3 1.000E-07 -7.000 O.OOOE+OO811 ADS1TYP1 1.000E+00 0.000 O.OOOE+OO

2 H 2 0 1.000E+00 0.000 0.000E+00

Charge Balance: UNSPECIATED

Sum o f CATIONS= 7.297E-03 Sum of ANIONS = 6.718E-03

PERCENT DIFFERENCE = 4.127E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

EQUILIBRATED MASS DISTRIBUTION

IDX Name DISSOLVED SORBED PRECIPITATED mol/L percent mol/L percent mol/L percent

61 H 3A s04 30 AI+3

471 Mn+3 150 Ca+2 200 Co+2 231 Cu+2280 Fe+2 410 K + l 460 Mg+2 470 Mn+2 500 Na+1 770 H 4Si04 800 Sr+2731 S740 Sb(OH)3 950 Zn+2 730 HS-1732 S 04 -2 140 C 03-2

2 H 2 0741 Sb(OH)6-

1 E -l330 H +l281 Fe+3 60 H 3A s03

5.195E-13 96.1 2.098E-14 3.9 0.000E+002.231E-04 100.0 0.000E+00 0.0 O.OOOE+OO

1.343E-32 100.0 0.000E+00 0.0 O.OOOE+OO2.103E-03 100.0 0.000E+00 0.0 O.OOOE+OO2.206E-08 0.4 5.476E-06 99.6 0.000E+001.090E-08 0.8 1.405E-06 99.2 0.000E+001.586E-04 100.0 0.000E+00 0.0 0.000E+001.578E-04 100.0 0.000E+007.700E-04 100.0 O.OOOE+OO4.805E-06 100.0 0.000E+00

3.736E-04 100.0 0.000E+005.732E-04 100.0 O.OOOE+OO

0.0 0.000E+00 0.0 0.000E+00 0.0 0.000E+00

0.0 O.OOOE+OO 0.0 0.000E+00

0.0 0.000E+00

0.00.0

0.00.0

0.00.00.00.00.00.0

0.00.0

0.01.986E-06 100.0 0.000E+004.708E-03 100.0 0.000E+00 0.0 0.000E+00 0.0

7.754E-06 100.0 0.000E+00 0.0 0.000E+00 0.06.544E-09 0.3 2.593E-06 99.7 0.000E+00 0.0 1.277E-05 100.0 0.000E+00 0.0 0.000E+00 0.03.305E-03 100.0 O.OOOE+OO 0.0 0.000E+00 0.05.000E-05 100.0 0.000E+00 0.0 0.000E+00 0.0

8.374E-05 100.0 O.OOOE+OO 0.0 0.000E+00 0.0 2.342E-14 100.0 0.000E+00 0.0 O.OOOE+OO 0.0

7.704E-88 100.0 0.000E+00 0.0 0.000E+00 0.05.398E-06 100.0 0.000E+00 0.0 0.000E+00 0.05.838E-13 100.0 0.000E+00 0.0 O.OOOE+OO 0.0

2.149E-05 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

Charge Balance: SPECIATED

Sum o f CATIONS = 5.767E-03 Sum o f ANIONS 5.207E-03

PERCENT DIFFERENCE = 5.098E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

233

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

EQUILIBRIUM IONIC STRENGTH (m) = 1.066E-02

EQUILIBRIUM pH = 5.296

EQUILIBRIUM pe = -1.036 or Eh = -60.27 mv

Saturation indices ID No Nam e SI

1095001 SPHALERITE 0.0671023101 COVELLITE 10.5171023102 CHALCOPYRITE 16.5501020002 CoS (beta) 0.1381028003 PYRITE 6.4852074102 S b 0 2 1.6592074004 Sb(OH)3 1.0852074006 SENARM ONTITE 0.2282077000 CHALCEDONY 0.3682077001 CRISTOBALITE 0.1692077002 QUARTZ 0.8262003001 BOEHM ITE 1.9902003002 DIASPORE 3.7392003003 GIBBSITE 2.3443003000 A I203 1.4143020002 C oF e20 4 0.9423028001HERCYNITE 4.5186003000 A IO H S04 0.7886003001 AI4(OH)10SO4 7.6178603000 HALLOYSITE 5.2418603001KAOLINITE 7.481

Core S4 - 45em Depth - No Adsorption

INPUT DATA BEFORE TYPE MODIFICATIONS

ID Name ACTIVITY GUESS log GUESS AI330 H +l 2.291E-08 -7.640 2.291E-0830 Al+3 2.344E-04 -3.630 2.331 E-0461 H 3A s04 4.467E-05 -4.350 4.418E-05150 Ca+2 2.570E-03 -2.590 2.595E-03200 Co+2 1.380E-05 -4.860 1.393E-05231 Cu+2 1.622E-06 -5.790 1.621 E-06280 Fe+2 1.514E-04 -3.820 1.527E-04410 K +l 1.995E-04 -3.700 2.003E-04460 Mg+2 6.310E-04 -3.200 6.337E-04470 Mn+2 7.762E-06 -5.110 7.845E-06500 Na+1 3.467E-04 -3.460 3.480E-04770 H 4Si04 5.495E-04 -3.260 5.554E-04800 Sr+2 2.455E-06 -5.610 2.465E-06731 S 6.761E-03 -2.170 6.766E-03740 Sb(OH)3 1.047E-05 -4.980 1.051E-05871 TI(OH)3 1.905E-06 -5.720 1.901E-06950 Zn+2 3.090E-06 -5.510 3.074E-06730 HS-1 4.571E-06 -5.340 4.534E-06732 S04-2 4.571E-03 -2.340 4.554E-03140 C 03-2 2.630E-04 -3.580 2.650E-04281 Fe+3 1.000E-07 -7.000 0.000E+00

1 E -l 1.000E-07 -7.000 0.000E+0060 H 3A s03 1.000E-07 -7.000 0.000E+00

741 Sb(OH)6- 1.000E-07 -7.000 0.000E+00471 Mn+3 1.000E-07 -7.000 0.000E+00

2 H2Q 1.000E+00 0.000 0.000E+00

Charge Balance: UNSPECIATED

Sum o f CATIONS= 8.068E-03 Sum o f ANIONS = 9.643E-03

234

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PERCENT DIFFERENCE = 8.889E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

EQUILIBRATED MASS DISTRIBUTION

IDX Name DISSOLVED SORBED PRECIPITATED m ol/L percent mol/L percent mol/L percent

61 H 3A s04 2.218E-05 100.0 O.OOOE+OO 0.0 0.000E+00 0.030 AI+3 2.331 E-04 100.0 O.OOOE+OO 0.0 0.000E+00 0.0

471 M n+3 1.310E-29 100.0 O.OOOE+OO 0.0 0.000E+00 0.0150 Ca+2 2.595E-03 100.0 0.000E+00 0.0 O.OOOE+OO 0.0200 Co+2 1.393E-05 100.0 O.OOOE+OO 0.0 0.000E+00 0.0231 Cu+2 1.621E-06 100.0 0.000E+00 0.0 0.000E+00 0.0280 Fe+2 1.527E-04 100.0 0.000E+00 0.0 0.000E+00 0.0410 K + l 2.003E-04 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0460 M g+2 6.337E-04 100.0 O.OOOE+OO 0.0 0.000E+00 0.0470 M n+2 7.845E-06 100.0 0.000E+00 0.0 0.000E+00 0.0500 Na+1 3.480E-04 100.0 O.OOOE+OO 0.0 0.000E+00 0.0770 H 4S i04 5.554E-04 100.0 0.000E+00 0.0 0.000E+00 0.0800 Sr+2 2.465E-06 100.0 0.000E+00 0.0 0.000E+00 0.0731 S 6.766E-03 100.0 0.000E+00 0.0 0.000E+00 0.0740 Sb(OH)3 6.645E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0871 TI(OH)3 1.901 E-06 100.0 0.000E+00 0.0 0.000E+00 0.0950 Zn+2 3.074E-06 100.0 0.000E+00 0.0 0.000E+00 0.0730 HS-1 4.470E-36 100.0 O.OOOE+OO 0.0 0.000E+00 0.0732 S 0 4 -2 4.558E-03 100.0 0.000E+00 0.0 0.000E+00 0.0140 C 03-2 2.650E-04 100.0 0.000E+00 0.0 O.OOOE+OO 0.02 H 2 0 4.011E-04 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

330 H + l 8.393E-06 100.0 O.OOOE+OO 0.0 0.000E+00 0.0281 Fe+3 6.786E-09 100.0 O.OOOE+OO 0.0 0.000E+00 0.060 H 3A s03 2.200E-05 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

741 Sb(OH)6- 3.865E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.01 E -l -3.671E-71 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

Charge Balance: SPECIATED

Sum o f CATIONS = 5.980E-03 Sum o f ANIONS 7.554E-03

PERCENT DIFFERENCE = 1.163E+01 (ANIONS - CATIONS)/(ANIONS + CATIONS)

EQUILIBRIUM IONIC STRENGTH (m) = 1.312E-02

EQUILIBRIUM pH = 5.969

EQUILIBRIUM pe = 1.740 or Eh = 101.22 mv

Saturation indices

ID No Name SI

2074102 S b 0 2 5.7512074001 S b 2 0 4 0.8682074004 Sb(OH)3 1.7282074006 SENARM ONTITE 1.5132077000 CHALCEDONY 0.3552077001 CRIST OBALITE 0.1562077002 QUARTZ 0.8132003000 Al(OH)3 (am) 1.0372003001 BOEHMITE 3.2392003002 DIASPORE 4.9882003003 GIBBSITE 3.5932087100 AVICENNITE 1.5612028102 GOETHITE 1.6703003000 AI203 3.9133020002 C oFe204 14.510

235

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3028000 MAGNETITE 8.4523028001HERCYNITE 8.3003028100 HEM ATITE 5.7173028102 LEPIDOCROCITE 0.9713023100 CUPRIC FERRITE 3.8866003000 A I0 H S 0 4 0.8316003001 AI4(OH)10SO4 11.4078603000 HALLOYSITE 7.7138603001KAOLINITE 9.953

Core S4 - 45cm Depth - Adsorption

INPUT DATA BEFORE TYPE MODIFICATIONS

ID Name ACTIVITY GUESS log GUESS ANAL330 H +l 2.291E-08 -7.640 2.291E-0830 AI+3 2.344E-04 -3.630 2.331E-0461 H 3A s04 4.467E-05 -4.350 4.418E-05150 Ca+2 2.570E-03 -2.590 2.595E-03200 Co+2 1.380E-05 -4.860 1.393E-05231 Cu+2 1.622E-06 -5.790 1.621E-06280 Fe+2 1.514E-04 -3.820 1.527E-04410 K +l 1.995E-04 -3.700 2.003E-04460 Mg+2 6.310E-04 -3.200 6.337E-04470 Mn+2 7.762E-06 -5.110 7.845E-06500 Na+1 3.467E-04 -3.460 3.480E-04770 H 4Si04 5.495E-04 -3.260 5.554E-04800 Sr+2 2.455E-06 -5.610 2.465E-06731 S 6.761E-03 -2.170 6.766E-03740 Sb(OH)3 1.047E-05 -4.980 1.051E-05950 Zn+2 3.090E-06 -5.510 3.074E-06730 HS-1 4.571E-06 -5.340 4.534E-06732 S04-2 4.571E-03 -2.340 4.554E-03140 C 03-2 2.630E-04 -3.580 2.650E-04281 Fe+3 1.000E-07 -7.000 0.000E+00

1 E -l 1.000E-07 -7.000 0.000E+0060 H 3A s03 1.000E-07 -7.000 O.OOOE+OO

741 Sb(OH)6- 1.000E-07 -7.000 0.000E+00471 Mn+3 1.000E-07 -7.000 0.000E+00811 ADS1TYP1 1.000E+00 0.000 0.000E+00

2 H 2 0 LOOOE+OO 0.000 0.000E+00

Charge Balance: UNSPECIATED

Sum o f CATIONS= 8.068E-03 Sum o f ANIONS = 9.643E-03

PERCENT DIFFERENCE = 8.889E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

EQUILIBRATED MASS D IST R IB U T IO N ------------

IDX Name DISSOLVED SORBED PRECIPITATED mol/L percent mol/L percent mol/L percent

61 H 3A s04 2.204E-05 99.31 1.493E-07 0.7 0.000E+00 0.030 AI+3 2.331E-04 100.0 0.000E+00 0.0 0.000E+00 0.0

471 Mn+3 1.303E-29 100.0 0.000E+00 0.0 0.000E+00 0.0150 Ca+2 2.595E-03 100.0 O.OOOE+OO 0.0 0.000E+00 0.0200 Co+2 6.143E-08 0.4 1.387E-05 99.6 0.000E+00 0.0231 Cu+2 2.416E-09 0.1 1.619E-06 99.9 0.000E+00 0.0280 Fe+2 1.527E-04 100.0 O.OOOE+OO 0.0 0.000E+00 0.0410 K +l 2.003E-04 100.0 0.000E+00 0.0 0.000E+00 0.0460 Mg+2 6.337E-04 100.0 0.000E+00 0.0 0.000E+00 0.0470 Mn+2 7.845E-06 100.0 O.OOOE+OO 0.0 0.000E+00 0.0500 Na+1 3.480E-04 100.0 0.000E+00 0.0 0.000E+00 0.0770 H 4Si04 5.554E-041 100.0 0.000E+00 0.0 O.OOOE+OO 0.0800 Sr+2 2.465E-06 100.0 0.000E+00 0.0 0.000E+00 0.0

236

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

731 S 6.766E-03 100.0 O.OOOE+OO 0.0 0.000E+00 0.0740 Sb(OH)3 6.659E-06 100.0 0.000E+00 0.0 O.OOOE+OO 0.0950 Zn+2 1.174E-08 0.4 3.062E-06 99.6 O.OOOE+OO 0.0730 HS-1 4.585E-36 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0732 S 0 4 -2 4.559E-03 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0140 C 0 3 -2 2.650E-04 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.02 H 2 0 4.013E-04 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

741 Sb(OH)6- 3.851E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0 1 E - l -3.638E-71 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

330 H + l 8.402E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0281 Fe+3 6.771E-09 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.060 H 3A s03 2.199E-05 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

Charge Balance: SPECIATED

Sum o f CATIONS = 5.949E-03 Sum o f ANIONS 7.560E-03

PERCENT DIFFERENCE = 1.193E+01 (ANIONS - CATIONS)/(ANIONS + CATIONS)

EQUILIBRIUM IONIC STRENGTH (m) = 1.310E-02

EQUILIBRIUM pH = 5.969

EQUILIBRIUM pe = 1.738 or Eh = 101.11 mv

Saturation indices

ID No Name SI

2074102 S b 0 2 5.7512074001 S b 2 0 4 0.8672074004 Sb(OH)3 1.7292074006 SENARM ONTITE 1.5152077000 CHALCEDONY 0.3552077001 CRISTOBALITE 0.1562077002 QUARTZ 0.8132003000 AI(OH)3 (am) 1.0382003001 BOEHM ITE 3.2402003002 DIASPORE 4.9882003003 GIBBSITE 3.5932028102 GOETHITE 1.6703003000 A1203 3.9143020002 C oF e204 12.1553028000 M AGNETITE 8.4523028001HERCYNITE 8.3023028100 HEM ATITE 5.7163028102 LEPIDOCROCITE 0.9713023100 CUPRIC FERRITE 1.0596003000 A 10H S 04 0.8316003001 AI4(OH)10SO4 11.4098603000 HALLOYSITE 7.7148603001 KAOLINITE 9.954

Core S5 - 23cm Depth - No Adsorption

INPUT DATA BEFORE TYPE M ODIFICATIONS

ID Name 330 H + l 30 AI+3 61 H 3A s04 150 Ca+2 200 Co+2 231 Cu+2 280 Fe+2 410 K+l 460 Mg+2 470 Mn+2

ACTIVITY GUESS log GUESS ANAL TOTAL3.802E-06

6.166E-051.479E-05

2.951E-038.511E-068.511E-07

2.570E-051.148E-044.169E-042.455E-06

-5.420 3.802E-06 -4.210 6.116E-05

-4.830 1.482E-05 -2.530 2.969E-03 -5.070 8.468E-06 -6.070 8.497E-07

-4.590 2.596E-05 -3.940 2.160E-04 -3.380 6.170E-04 -5.610 2.475E-06

237

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

500 Na+1 3.090E-04 -3.510 3.097E-04770 H 4Si04 3.162E-04 -3.500 3.133E-04800 Sr+2 1.549E-06 -5.810 1.541E-06731 S 6.310E-03 -2.200 6.299E-03740 Sb(OH)3 8.128E-06 -5.090 8.205E-06871 Tl(OH)3 7.586E-07 -6.120 7.519E-07950 Zn+2 1.995E-06 -5.700 1.973E-06732 S 0 4-2 4.467E-03 -2.350 3.400E-03140 C 03-2 3.631E-04 -3.440 3.612E-04281 Fe+3 1.000E-07 -7.000 O.OOOE+OO

1 E -l 1.000E-07 -7.000 0.000E+0060 H 3A s03 1.000E-07 -7.000 0.000E+00741 Sb(OH)6- 1.000E-07 -7.000 0.000E+00471 Mn+3 1.000E-07 -7.000 O.OOOE+OO730 HS-1 1.000E-07 -7.000 0.000E+00

2 H 2 0 1.000E+00 0.000 O.OOOE+OO

Charge Balance: UNSPECIATED

Sum of CATIONS= 7.968E-03 Sum o f ANIONS = 7.522E-03

PERCENT DIFFERENCE = 2.874E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

EQUILIBRATED MASS DISTRIBUTION

IDX Name DISSOLVED SORBED PRECIPITATED mol/L percent mol/L percent mol/L percent

0.0 0.000E+00 0.00.0 0.000E+00 0.0

0.0 0.000E+00 0.00.0 0.000E+00 0.0 O.OOOE+OO 0.0 0.000E+00

0.0 0.000E+00 0.0 0.000E+00 0.0 0.000E+00 0.0 0.000E+00

0.0 0.000E+00 0.0 0.000E+00

0.00.00.0

0.00.00.00.0

0.00.0

330 H + l 4.389E-06 100.0 0.000E+0030 AI+3 6.116E-05 100.0 0.000E+00

471 M n+3 5.751 E-35 100.0 O.OOOE+OO 150 Ca+2 2.969E-03 100.0 0.000E+00200 Co+2 8.468E-06 100.0 0.000E+00231 Cu+2 8.497E-07 100.0 0.000E+00280 Fe+2 2.576E-05 100.0 0.000E+00410 K + l 2.160E-04 100.0 0.000E+00460 Mg+2 6.170E-04 100.0 0.000E+00470 M n+2 2.475E-06 100.0 0.000E+00500 Na+1 3.097E-04 100.0 0.000E+00770 H 4S i04 3.133E-04 100.0 0.000E+00800 Sr+2 1.541E-06 100.0 0.000E+00 0.0 O.OOOE+OO 0.0731 S 6.299E-03 100.0 0.000E+00 0.0 0.000E+00 0.0740 Sb(OH)3 7.416E-06 100.0 O.OOOE+OO 0.0 0.000E+00 0.0871 TI(OH)3 7.519E-07 100.0 0.000E+00 0.0 0.000E+00 0.0950 Zn+2 1.973E-06 100.0 0.000E+00 0.0 0.000E+00 0.061 H 3A s04 1.393E-05 100.0 0.000E+00 0.0 0.000E+00 0.0140 C 03-2 3.612E-04 100.0 0.000E+00 0.0 0.000E+00 0.0732 S 0 4-2 3.400E-03 100.0 0.000E+00 0.0 O.OOOE+OO 0.0

2 H 2 0 2.542E-04 100.0 0.000E+00 0.0 0.000E+00 0.0730 HS-1 2.624E-25 100.0 0.000E+00 0.0 O.OOOE+OO 0.0281 Fe+3 2.023E-07 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.060 H 3A s03 8.901E-07 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

741 Sb(OH)6- 7.889E-07 100.0 0.000E+00 0.0 O.OOOE+OO 0.01 E -l -3.986E-67 100.0 0.000E+00 0.0 0.000E+00 0.0

Charge Balance: SPECIATED

Sum o f CATIONS = 6.340E-03 Sum o f ANIONS 5.895E-03

PERCENT DIFFERENCE = 3.638E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

EQUILIBRIUM IONIC STRENGTH (m) = 1.176E-02

EQUILIBRIUM pH = 8.964

EQUILIBRIUM pe = -3 .1 2 0 or Eh = -181.49 mv

238

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Saturation indices

ID No Name SI

2074102 S b 0 2 3.9332074004 Sb(OH)3 1.7752074006 SENARM ONTITE 1.6072077000 CHALCEDONY 0.0672077002 QUARTZ 0.5252003001BOEHM ITE 1.0502003002 DIASPORE 2.7982003003 GIBBSITE 1.4032087100 AVICENNITE 0.7532095005 ZnO (active) 0.0992023100 Cu(OH)2 0.8402023101TENORITE 1.8452028000 W USTITE 1.2512028100 FERRIHYDRITE 2.2622028101 Fe3(OH)8 4.1092028102 GOETHITE 5.0003020002 C oF e20 4 26.8673028000 MAGNETITE 20.3063028001HERCYNITE 9.1153028100 HEMATITE 12.3763028101MAGHEM ITE 4.9583028102 LEPIDOCROCITE 4.3013046001MAGNESIOFERRITE 8.097 3023100 CUPRIC FERRITE 14.4105023101 M ALACHITE 2.0065028000 SIDERITE 0.2865015000 ARAGONITE 0.5095015001 CALCITE 0.6635015002 DOLOMITE (ordered) 0.7425015004 DOLOMITE (disordered) 0.171 6023101BROCHANTITE 2.2156023102 LANGITE 0.0608603000 HALLOYSITE 2.7588603001KAOLINITE 4.9988628000 GREENALITE 11.0708646000 CHRYSOTILE 3.4708646003 SEPIOLITE 2.167

Core S5 - 23cm Depth - Adsorption

INPUT DATA BEFORE TYPE M ODIFICATIONS

ID Name ACTIVITY GUESS log GUESS ANAL330 H + l 3.802E-06 -5.420 3.802E-0630 AI+3 6.166E-05 -4.210 6.116E-0561 H 3A s04 1.479E-05 -4.830 1.482E-05150 Ca+2 2.951E-03 -2.530 2.969E-03200 Co+2 8.511E-06 -5.070 8.468E-06231 Cu+2 8.511E-07 -6.070 8.497E-07280 Fe+2 2.570E-05 -4.590 2.596E-05410 K +l 1.148E-04 -3.940 2.160E-04460 Mg+2 4.169E-04 -3.380 6.170E-04470 Mn+2 2.455E-06 -5.610 2.475E-06500 Na+1 3.090E-04 -3.510 3.097E-04770 H 4Si04 3.162E-04 -3.500 3.133E-04800 Sr+2 1.549E-06 -5.810 1.541E-06731 S 6.310E-03 -2.200 6.299E-03740 Sb(OH)3 8.128 E-06 -5.090 8.205E-06950 Zn+2 1.995E-06 -5.700 1.973E-06732 S 04-2 4.467E-03 -2.350 3.400E-03140 C 03-2 3.631E-04 -3.440 3.612E-04281 Fe+3 1.000E-07 -7.000 0.000E+00

1 E -l 1.000E-07 -7.000 O.OOOE+OO

239

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60 H 3A s03 1.000E-07 -7.000 O.OOOE+OO741 Sb(OH)6- 1.000E-07 -7.000 O.OOOE+OO471 Mn+3 1.000E-07 -7.000 O.OOOE+OO730 HS-1 1.000E-07 -7.000 O.OOOE+OO811 ADS1TYP1 l.OOOE+OO 0.000 O.OOOE+OO

2 H 2 0 l.OOOE+OO 0.000 O.OOOE+OO

Charge Balance: UNSPECIATED

Sum o f CATIONS= 7.968E-03 Sum of ANIONS = 7.522E-03

PERCENT DIFFERENCE = 2.874E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

EQUILIBRATED MASS DISTRIBUTION

IDX Name DISSOLVED SORBED PRECIPITATED mol/L percent mol/L percent mol/L percent

330 H + l 4.343E-06 100.0 O.OOOE+OO 0.0 0.000E+00 0.030 AI+3 6.116E-05 100.0 O.OOOE+OO 0.0 0.000E+00 0.061 H 3A s04 1.394E-05 100.0 9.811E-13 0.0 0.000E+00 0.0150 Ca+2 2.969E-03 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0200 Co+2 6.497E-08 0.8 8.403E-06 99.2 0.000E+00 0.0231 Cu+2 4.622E-08 5.4 8.035E-07 94.6 O.OOOE+OO 0.0280 Fe+2 2.573E-05 100.0 0.000E+00 0.0 0.000E+00 0.0410 K +l 2.160E-04 100.0 O.OOOE+OO 0.0 0.000E+00 0.0460 Mg+2 6.170E-04 100.0 0.000E+00 0.0 O.OOOE+OO 0.0470 Mn+2 2.475E-06 100.0 0.000E+00 0.0 0.000E+00 0.0500 Na+1 3.097E-04 100.0 0.000E+00 0.0 0.000E+00 0.0770 H 4Si04 3.133E-04 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0800 Sr+2 1.541 E-06 100.0 0.000E+00 0.0 0.000E+00 0.0731 S 6.299E-03 100.0 0.000E+00 0.0 0.000E+00 0.0740 Sb(OH)3 7.439E-06 100.0 0.000E+00 0.0 O.OOOE+OO1 0.0950 Zn+2 1.028E-08 0.5 1.963E-06 99.5 0.000E+00 0.0471 Mn+3 5.121E-35 100.0 0.000E+00 0.0 O.OOOE+OO 0.0140 C 03-2 3.612E-04 100.0 0.000E+00 0.0 0.000E+00 0.0732 S 04 -2 3.400E-03 100.0 0.000E+00 0.0 O.OOOE+OO 0.0

2 H 2 0 2.511E-04 100.0 0.000E+00 '0.0 0.000E+00 0.0741 Sb(OH)6- 7.663E-07 100.0 O.OOOE+OO 0.0 0.000E+00 0.0

1 E -l -4.263E-67 100.0 O.OOOE+OO 0.0 0.000E+00 0.0730 HS-1 3.636E-25 100.0 0.000E+00 0.0 0.000E+00 0.0281 Fe+3 2.258E-07 100.0 O.OOOE+OO 0.0 0.000E+00 0.060 H 3A s03 8.792E-07 100.0 0.000E+00 0.0 0.000E+00 0.0

Charge Balance: SPECIATED

Sum o f CATIONS = 6.323E-03 Sum of ANIONS 5.900E-03

PERCENT DIFFERENCE = 3.459E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

EQUILIBRIUM IONIC STRENGTH (m) = 1.175E-02

EQUILIBRIUM pH = 8.993

EQUILIBRIUM pe = -3 .1 7 0 or Eh = -184.39 mv

Saturation indices

ID No Name SI

2074102 S b 02 3.9132074004 Sb(OH)3 1.7762074006 SENARMONTITE 1.6102077000 CHALCEDONY 0.0652077002 QUARTZ 0.523

240

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2003001 BOEHMITE 1.0212003002 DIASPORE 2.7702003003 GIBBSITE 1.3752 023101TENORITE 0.5992028000 W USTITE 1.3042028100 FERRIHYDRITE 2.2932028101 Fe3(OH)8 4.2262028102 GOETHITE 5.0323020002 C oF e204 24.8653028000 M AGNETITE 20.4223028001HERCYNITE 9.1113028100 HEMATITE 12.4403028101 MAGHEM ITE 5.0213028102 LEPIDOCROCITE 4.3333046001 MAGNESIOFERRITE 8.218 3023100 CUPRIC FERRITE 13.2285028000 SIDERITE 0.3095015000 ARAGONITE 0.5365015001 CALCITE 0.6905015002 DOLOMITE (ordered) 0.796 5015004 DOLOMITE (disordered) 0.2258603000 HALLOYSITE 2.6968603001 KAOLINITE 4.9368628000 GREENALITE 11.2248646000 CHRYSOTILE 3.6378646003 SEPIOLITE 2.274

Core S5 - 75cm Depth - No Adsorption

INPUT DATA BEFORE TYPE MODIFICATIONS

ID Name ACTIVITY GUESS log GUESS ANAL330 H + l 1.202E-06 -5.920 1.202E-0630 Al+3 1.738E-04 -3.760 1.723E-0461 H 3A s04 2.239E-05 -4.650 2.256E-05

150 Ca+2 8.318E-04 -3.080 8.358E-04200 Co+2 3.236E-06 -5.490 3.258E-06231 Cu+2 1.698E-06 -5.770 1.699E-06280 Fe+2 1.047E-04 -3.980 1.037E-04410 K + l 1.549E-04 -3.810 1.540E-04460 Mg+2 3.388E-04 -3.470 3.387E-04470 Mn+2 2.884E-06 -5.540 2.876E-06500 Na+1 3.388E-04 -3.470 3.354E-04770 H 4Si04 4.074E-04 -3.390 4.094E-04800 Sr+2 5.012E-07 -6.300 5.022E-07731 S 2.089E-03 -2.680 2.074E-03740 Sb(OH)3 1.622E-05 -4.790 1.610E-05871 TI(OH)3 1.950E-06 -5.710 1.942E-06950 Zn+2 2.089E-06 -5.680 2.095E-06730 HS-1 1.514E-05 -4.820 1.511E-05732 S04-2 1.738E-03 -2.760 1.727E-03140 C 03-2 1.349E-04 -3.870 1.336E-04281 Fe+3 1.000E-07 -7.000 0.000E+00

1 E-l 1.000E-07 -7.000 O.OOOE+OO60 H 3A s03 1.000E-07 -7.000 0.000E+00

741 Sb(OH)6- 1.000E-07 -7.000 0.000E+00471 Mn+3 1.000E-07 -7.000 0.000E+00

2 H 2 0 1.000E+00 0.000 O.OOOE+OO

Charge Balance: UNSPECIATED

Sum o f CATIONS= 3.585E-03 Sum of ANIONS = 3.736E-03

PERCENT DIFFERENCE = 2.070E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

-------------EQUILIBRATED MASS D IST R IB U TIO N ------------

241

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IDX Name DISSOLVED SORBED PRECIPITATED mol/L percent mol/L percent mol/L percent

61 H 3A s04 1.145E-12 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.030 AI+3 1.723E-04 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

471 M n+3 2.827E-33 100.0 O.OOOE+OO 0.0 0.000E+00 0.0150 Ca+2 8.358E-04 100.0 0.000E+00 0.0 O.OOOE+OO 0.0200 Co+2 3.258E-06 100.0 0.000E+00 0.0 0.000E+00 0.0231 Cu+2 1.699E-06 100.0 0.000E+00 0.0 0.000E+00 0.0280 Fe+2 1.037E-04 100.0 O.OOOE+OO 0.0 0.000E+00 0.0410 K + l 1.540E-04 100.0 0.000E+00 0.0 0.000E+00 0.0460 Mg+2 3.387E-04 100.0 0.000E+00 0.0 O.OOOE+OO 0.0470 Mn+2 2.876E-06 100.0 0.000E+00 0.0 O.OOOE+OO 0.0500 Na+1 3.354E-04 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0770 H 4Si04 4.094E-04 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0800 Sr+2 5.022E-07 100.0 0.000E+00 0.0 0.000E+00 0.0731 S 2.074E-03 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0740 Sb(OH)3 1.610E-05 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0871 TI(OH)3 1.942E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0950 Zn+2 2.095E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0730 HS-1 9.470E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0732 S 0 4 -2 1.733E-03 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0140 C 03-2 1.336E-04 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

2 H 2 0 2.253E-04 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0330 H + l 6.838E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0281 Fe+3 9.855E-13 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.060 H 3A s03 2.256E-05 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

741 Sb(OH)6- 3.916E-13 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.01 E -l -1.234E-86 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

Charge Balance: SPECIATED

Sum o f CATIONS = 2.902E-03 Sum o f ANIONS 3.053E-03

PERCENT DIFFERENCE = 2.545E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

EQUILIBRIUM IONIC STRENGTH (m) = 5.645E-03

EQUILIBRIUM pH = 5.681

EQUILIBRIUM pe = -1.454 or Eh = -84.54 mv

Saturation indices

ID No Name SI

1095000 ZnS (am) 0.2751095001 SPHALERITE 2.7161095002 W URTZITE 0.1901023101COVELLITE 13.4311023102 CHALCOPYRITE 19.4211020002 CoS (beta) 2.4461028003 PYRITE 5.6802074102 S b 0 2 2.5422074004 Sb(OH)3 2.0012074006 SENARM ONTITE 2.0592077000 CHALCEDONY 0.2222077001 CRISTOBALITE 0.0232077002 QUARTZ 0.6802003000 AI(OH)3 (am) 0.5822003001 BOEHMITE 2.7842003002 DIASPORE 4.5332003003 GIBBSITE 3.1372087100 AVICENNITE 1.5783003000 A1203 3.0023020002 CoFe2Q4 5.193

242

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 028001HERCYNITE 6.7616003000 A I0 H S 0 4 0.6236003001 A14(OH)10SO4 9.8338603000 H ALLOYSITE 6.5368603001KAOLINITE 8.775

Core S5 - 75cm Depth - Adsorption

INPUT DATA BEFORE TYPE MODIFICATIONS

ID Name ACTIVITY GUESS log GUESS ANAL330 H +l 1.202E-06 -5.920 1.202E-0630 Al+3 1.738E-04 -3.760 1.723E-0461 H 3A s04 2.239E-05 -4.650 2.256E-05150 Ca+2 8.318E-04 -3.080 8.358E-04200 Co+2 3.236E-06 -5.490 3.258E-06231 Cu+2 1.698E-06 -5.770 1.699E-06280 Fe+2 1.047E-04 -3.980 1.037E-04410 K +l 1.549E-04 -3.810 1.540E-04460 Mg+2 3.388E-04 -3.470 3.387E-04470 Mn+2 2.884E-06 -5.540 2.876E-06500 Na+1 3.388E-04 -3.470 3.354E-04770 H 4Si04 4.074E-04 -3.390 4.094E-04800 Sr+2 5.012E-07 -6.300 5.022E-07731 S 2.089E-03 -2.680 2.074E-03740 Sb(OH)3 1.622E-05 -4.790 1.610E-05950 Zn+2 2.089E-06 -5.680 2.095E-06730 HS-1 1.514E-05 -4.820 1.511E-05732 S04-2 1.738E-03 -2.760 1.727E-03140 C 03-2 1.349E-04 -3.870 1.336E-04281 Fe+3 1.000E-07 -7.000 0.000E+00

1 E -l 1.000E-07 -7.000 0.000E+0060 H 3A s03 1.000E-07 -7.000 O.OOOE+OO

741 Sb(OH)6- 1.000E-07 -7.000 0.000E+00471 Mn+3 1.000E-07 -7.000 0.000E+00811 ADS1TYP1 l.OOOE+OO 0.000 0.000E+00

2 H2Q l.OOOE+OO 0.000 0.000E+00

Charge Balance: UNSPECIATED

Sum o f CATIONS= 3.585E-03 Sum o f ANIONS = 3.736E-03

PERCENT DIFFERENCE = 2.070E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

EQUILIBRATED MASS D IST R IB U TIO N ------------

IDX Name DISSOLVED SORBED PRECIPITATED mol/L percent mol/L percent mol/L percent

61 H 3A s04 30 AI+3

471 Mn+3 150 Ca+2 200 Co+2 231 Cu+2 280 Fe+2 410 K +l 460 Mg+2 470 Mn+2 500 Na+1 770 H 4Si04 800 Sr+2731 S740 Sb(OH)3 950 Zn+2 730 HS-1732 S04-2

1.119E-12 98.7 1.442E-14 1.3 0.000E+00 0.01.723E-04 100.0 O.OOOE+OO 0.0 0.000E+00 0.0

2.766E-33 100.0 0.000E+00 0.0 0.000E+00 0.08.358E-04 100.0 O.OOOE+OO 0.0 0.000E+00 0.06.659E-09 0.2 3.251E-06 99.8 O.OOOE+OO 0.03.851E-09 0.2 1.695E-06 99.8 0.000E+00 0.01.037E-04 100.0 0.000E+00 0.0 0.000E+00 0.01.540E-04 100.0 0.000E+00 0.0 0.000E+00 0.03.387E-04 100.0 0.000E+00 0.0 O.OOOE+OO 0.02.876E-06 100.0 0.000E+00 0.0 0.000E+00 0.0

3.354E-04 100.0 0.000E+00 0.0 O.OOOE+OO 0.04.094E-04 100.0 O.OOOE+OO 0.0 0.000E+00 0.0

5.022E-07 100.0 0.000E+00 0.0 0.000E+00 0.02.074E-03 100.0 0.000E+00 0.0 0.000E+00 0.0

1.610E-05 100.0 0.000E+00 0.0 0.000E+00 0.03.854E-09 0.2 2.091E-06 99.8 0.000E+00 0.09.470E-06 100.0 0.000E+00 0.0 0.000E+00 0.01.733E-03 100.0 0.000E+00 0.0 0.000E+00 0.0

243

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140 C 03-2 1.336E-04 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.02 H 2 0 2.235E-04 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

741 Sb(OH)6- 3.493E-13 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.01 E -l -1.192E-86 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

330 H + l 6.840E-06 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0281 Fe+3 9.770E-13 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.060 H 3A s03 2.256E-05 100.0 O.OOOE+OO 0.0 O.OOOE+OO 0.0

Charge Balance: SPECIATED

Sum o f CATIONS = 2.890E-03 Sum o f ANIONS 3.056E-03

PERCENT DIFFERENCE = 2.785E+00 (ANIONS - CATIONS)/(ANIONS + CATIONS)

EQUILIBRIUM IONIC STRENGTH (m) = 5.636E-03

EQUILIBRIUM pH = 5.683

EQUILIBRIUM pe = -1.463 or Eh = -85.08 mv

Saturation indices

ID No Name SI

1006000 ORPIMENT 10.0671095001 SPHALERITE 0.0331023101 COVELLITE 10.7691023102 CHALCOPYRITE 16.811028003 PYRITE 5.7662074102 S b 0 2 2.4962074004 Sb(OH)3 1.9612074006 SENARMONTITE 1.9812077000 CHALCEDONY 0.2222077001 CRISTOBALITE 0.0232077002 QUARTZ 0.6802003000 AI(OH)3 (am) 0.5862003001 BOEHMITE 2.7882003002 DIASPORE 4.5372003003 GIBBSITE 3.1423003000 A1203 3.0113020002 C oFe204 2.5073028001 HERCYNITE 6.7756003000 A 10H S04 0.6226003001 AI4(OH)10SO4 9.8468603000 HALLOYSITE 6.5448603001 KAOLINITE 8.784

244

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.