Biodiversity and biogeographic significance of the Sierra Chinajá in Alta Verapaz, Guatemala: a...

18
PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by: [Bonham, Curan] On: 21 September 2009 Access details: Access Details: [subscription number 915125238] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK International Journal of Biodiversity Science & Management Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t907405630 Biodiversity and biogeographic significance of the Sierra Chinajá in Alta Verapaz, Guatemala: a first look Curan Bonham a ; Eduardo Sacayón b ; Mercedes Barrios c ; Sergio Perez d ; Carlos Vásquez-Almazán d ; José Cajas d ; Nicté Ordoñez b ; Enio Cano e ; Fredy Archila f a College of Forestry and Conservation, University of Montana, Missoula, MT, USA b Escuela de Biología, Universidad de San Carlos de Guatemala, Guatemala City, Guatemala c Centro de Datos para la Conservación, Centro de Estudios Conservacionistas, USAC, Guatemala City, Guatemala d Museo de Historia Natural, Escuela de Biología Universidad de San Carlos de Guatemala, Guatemala City, Guatemala e Laboratorio de Entomología, Universidad del Valle de Guatemala, Guatemala City, Guatemala f Estación Experimental Familia Archila, Coban, Alta Verapaz, Guatemala Online Publication Date: 01 September 2009 To cite this Article Bonham, Curan, Sacayón, Eduardo, Barrios, Mercedes, Perez, Sergio, Vásquez-Almazán, Carlos, Cajas, José, Ordoñez, Nicté, Cano, Enio and Archila, Fredy(2009)'Biodiversity and biogeographic significance of the Sierra Chinajá in Alta Verapaz, Guatemala: a first look',International Journal of Biodiversity Science & Management,5:3,115 — 131 To link to this Article: DOI: 10.1080/17451590903223236 URL: http://dx.doi.org/10.1080/17451590903223236 Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Transcript of Biodiversity and biogeographic significance of the Sierra Chinajá in Alta Verapaz, Guatemala: a...

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [Bonham, Curan]On: 21 September 2009Access details: Access Details: [subscription number 915125238]Publisher Taylor & FrancisInforma Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Biodiversity Science & ManagementPublication details, including instructions for authors and subscription information:http://www.informaworld.com/smpp/title~content=t907405630

Biodiversity and biogeographic significance of the Sierra Chinajá in AltaVerapaz, Guatemala: a first lookCuran Bonham a; Eduardo Sacayón b; Mercedes Barrios c; Sergio Perez d; Carlos Vásquez-Almazán d; JoséCajas d; Nicté Ordoñez b; Enio Cano e; Fredy Archila f

a College of Forestry and Conservation, University of Montana, Missoula, MT, USA b Escuela de Biología,Universidad de San Carlos de Guatemala, Guatemala City, Guatemala c Centro de Datos para laConservación, Centro de Estudios Conservacionistas, USAC, Guatemala City, Guatemala d Museo deHistoria Natural, Escuela de Biología Universidad de San Carlos de Guatemala, Guatemala City, Guatemala e

Laboratorio de Entomología, Universidad del Valle de Guatemala, Guatemala City, Guatemala f EstaciónExperimental Familia Archila, Coban, Alta Verapaz, Guatemala

Online Publication Date: 01 September 2009

To cite this Article Bonham, Curan, Sacayón, Eduardo, Barrios, Mercedes, Perez, Sergio, Vásquez-Almazán, Carlos, Cajas, José,Ordoñez, Nicté, Cano, Enio and Archila, Fredy(2009)'Biodiversity and biogeographic significance of the Sierra Chinajá in AltaVerapaz, Guatemala: a first look',International Journal of Biodiversity Science & Management,5:3,115 — 131To link to this Article: DOI: 10.1080/17451590903223236URL: http://dx.doi.org/10.1080/17451590903223236

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial orsystematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply ordistribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contentswill be complete or accurate or up to date. The accuracy of any instructions, formulae and drug dosesshould be independently verified with primary sources. The publisher shall not be liable for any loss,actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directlyor indirectly in connection with or arising out of the use of this material.

Biodiversity and biogeographic significance of the Sierra Chinaja in Alta Verapaz, Guatemala:a first look

Curan Bonhama*, Eduardo Sacayonb, Mercedes Barriosc, Sergio Perezd, Carlos Vasquez-Almazand, Jose! Cajasd,Nicte! Ordonezb, Enio Canoe and Fredy Archilaf

aCollege of Forestry and Conservation, University of Montana, Missoula, MT 59802, USA; bEscuela de Biologıa, Universidad de SanCarlos de Guatemala, Guatemala City, Guatemala; cCentro de Datos para la Conservacion, Centro de Estudios Conservacionistas, USAC,Guatemala City, Guatemala; dMuseo de Historia Natural, Escuela de Biologıa Universidad de San Carlos de Guatemala, Guatemala City,Guatemala; eLaboratorio de Entomologıa, Universidad del Valle de Guatemala, Guatemala City, Guatemala; fEstacion ExperimentalFamilia Archila, Coban, Alta Verapaz, Guatemala

A rapid biodiversity assessment was carried out in the Sierra Chinaja, Guatemala in order to support the conservation policiesof the national agency for protected areas management. This study represents the first systematic account of the flora and faunaof the area. The floristic composition was surveyed using 21 Whitaker plots and non-systematic sampling of other vegetativestrata. Bird communities were assessed using a system of point counts and mist nets. Bats were sampled with mist nets at 400 mand 600 m. For small terrestrial mammals, two transects with 90 traps each were established at low and high elevations.Reptiles and amphibians were collected through non-systematic walks through forest patches. Dung beetles were sampled withpitfall traps. A total of 309 plant species were found, including trees, orchids and bromeliads. The list of animal species includes20 bats, four rodents, one marsupial, 110 birds, 24 reptiles, 14 amphibians, and 20 dung beetles. The results indicate that theSierra Chinaja is an ecotone or transition zone from predominantly tropical lowland to a mix of montane environments.

Keywords: biodiversity; rapid ecological assessment; ecotone; low elevation cloud forest

Introduction

In 1989, the Sierra Chinaja was declared by Guatemala’sprotected areas management agency, the Consejo Nacionalde Areas Protegidas (CONAP), as a special protection area.This is a temporary classification, which, by law, requiresfurther technical studies in order to give the area operationalmanagement status. Although the Sierra Chinaja has beenrecognized as having natural resources of national impor-tance that warrant protection, this area still has not beenpermanently classified under Guatemala’s system of pro-tected area categories. Thus, it still lacks formal on-the-ground administration and management (Bonham et. al.2008). For this reason, and the chaos resulting from a30-year armed conflict, several indigenous communitieshave illegally settled in the Sierra Chinaja, which drasticallyaffect its natural resources.

The first step required by Guatemalan law to move theSierra Chinaja from being an area of special protection (a‘paper park’) to a functional protected area is the prepara-tion of an ‘Estudio Te!cnico’ or technical study, as mandatedby CONAP (1989). This study forms the baseline fromwhich management plans and other multiple-use/conces-sion plans can be formed. Part of the study involves anassessment of biodiversity. Prior to the research reportedin this paper, no efforts had been made to document thebiodiversity of the Sierra Chinaja. In order to assess thebiological diversity of the area, a variety of rapid assessmentmethodologies were adapted to gather basic information.Rapid assessments of biodiversity, although incomplete due

to limited time and financial constraints, are nonethelessuseful in identifying relevant biodiversity values and poten-tial management options (Sayre et al. 2000). The limitationsof any study that is time-bound are obvious; however, bytargeting certain taxa, through the use of indicator species,these studies can be used to tailor management plans toconserve areas with unique biogeographical value (Gastonand Blackburn 1995; Kerr et al. 2000; Oliver and Beattie1993).

In particular, dung beetles (family Scarabinae) areconsidered good ecological indicators because they arecommonly found in distinct assemblages with specificbiogeographical distributions (Favila and Halffter 1997).Additionally, amphibians are sensitive to habitat altera-tion and degradation due to climate change (Young et al.2001). The need for high humidity and microhabitatniches (e.g. tank bromeliads, coarse woody debris anddeep leaf litter) characteristic of mature forest limits thedistributional range of many amphibian species, particu-larly tree and leaf frogs, to forest habitat. Therefore,these species may serve as ecological indicators(Pearman 1997). Furthermore, some amphibians are con-fined to a home range near their place of birth andtherefore can be good indicators of local site conditions(Campbell and Vannini 1989).

The information gathered through this study is currentlybeing used by a local non-profit organisation (APROBA-SANK) to support CONAP in their efforts to change thestatus of the Sierra Chinaja to a more formal and exclusive

International Journal of Biodiversity Science & ManagementVol. 5, No. 3, September 2009, 115–131

*Corresponding author. Email: [email protected]

ISSN 1745-1590 print/ISSN 1745-1604 online# 2009 Taylor & FrancisDOI: 10.1080/17451590903223236http://www.informaworld.com

Downloaded By: [Bonham, Curan] At: 14:15 21 September 2009

category, and also to integrate the communities living in thearea into its conservation and management.

Study site

The Sierra Chinaja is located in the northern region of theMunicipality of Chisec in the department of Alta Verapaz,Guatemala (Figure 1). It comprises 12,833 ha of karstmountains, ranging from 200–765 m. Replete with dissolu-tion caves enshrouded by lowland and montane semi-decid-uous tropical forest, this isolated mountain range marks thelast massif between the Sierra Chama and the expansivenorthern lowland limestone plateau of the Pe!ten. Its steepslopes give way to an interior upland plain that providessuitable lands for both agriculture and a variety of unique

highland species. Seventeen communities from the Qeqchıethnic group (approximately 3220 inhabitants) live in theSierra Chinaja.

According to Holdridge (cited by Barrios 1995), theSierra Chinaja belongs to the very wet sub-tropical warmforest life zone and is totally isolated from other mountainsystems due to its geographic location and the historicpattern of land conversion. The climate of the area hasbeen established from 9 years of observations at the nearestweather station in San Agustin Pe!ten, (16!04’00’’N, 90!

26’20’’W) at 140 m, collected by the national weatherforecast institution (INSIVUMEH). The mean annual tem-perature is 26!C, mean annual precipitation is 2252 mm andmean annual relative humidity is 83%. There are two sea-sons: the driest months (mean rainfall ,100 mm) occur

Figure 1. Location of Sierra Chinaja.

116 C. Bonham et al.

Downloaded By: [Bonham, Curan] At: 14:15 21 September 2009

from February to April; the wet season (mean rainfall.200 mm) occurs from June to December.

Materials and methods

Systematic sampling was conducted between June andOctober 2005. Several taxonomic groups were selectedbased on their perceived potential as indicator species andbiogeographic importance. Taxa were also chosen based onease of data collection methods and availability ofGuatemalan expert consultants and collaborators. Thisstudy focused on five groups: plants, avifauna, mastofauna,herpetofauna and entomofauna.

Four study sites were selected for sampling based ontheir degree of accessibility, forest integrity and habitattype. These sites were located in undisturbed primary forestinterspersed with a matrix of perennial and annual agricul-tural fields. The terrain possessed slopes between 25–35%,with well-drained, clayey soils. The study sites were: Site 1,Nueva Esperanza (400 m; Site 2, Mucbilha II (300 m); Site3, Nueva Chinaja (615 m); and Site 4, Tzulul Qeqchi(750 m). However, not all taxa were sampled at all sites.

The forest cover composition was inventoried in theareas surrounding each of the four study sites using fiverandomly located transects, with Whittaker plots of20 x 50 m established every 500 m (Comiskey 1999). Intotal, 21 plots were established to assess the diversity andabundance of mature forest at upper elevations (.400 m).Species height, form class and diameter at breast height(DBH) of all trees .10 cm DBH were recorded. Theseparameters were analysed to estimate species importanceon a per hectare basis. An importance value for each treespecies was calculated based on the frequency, density andbasal area (Matteucci and Colma 1982). The other plantstrata were sampled non-systematically through a series ofnon-random transects and reconnaissance walks in varioushabitats at the study sites. All flowering and fruiting specieswere collected, catalogued, preserved, identified and depos-ited in national herbaria at the Center for ConservationStudies (CECON) and the Faculty of Biology at theUniversity of San Carlos (BIGU).

Point count methodology and mist nets were used torecord bird species (USFS 2002). Thirty point counts werelocated along trails and roads in three sampling sites, NuevaEsperanza, Tzulul Qeqchi and Mucbilha. Each point wasseparated by 250 m, and 10 min was spent at each point toidentify birds present using audio or visual means. Alltransects were begun at 05:30 h, the approximate time ofsunrise, and ended no later than 10:00 h. In addition, anarray of six mist nets, 7 · 2 m, was used to sample thecryptic understorey avian community. Species were identi-fied according to Howell and Webb (1995).

For bats, the trapping configuration consisted of fivemist nets, each 12 m long, and one harp trap. The total effortat each of the three sites sampled (i.e. Tzulul Qeqchi,Mucbilha, Nueva Chinaja) was 100 h/net. These nets wereopened shortly after sunset (18:30 h) and closed 4.5 h later(23:00 h), so as to be operable during peak feeding activity.

On capture, the time was noted, the individual was identi-fied and reproductive condition determined using Medellınet al. (1997) and Reid (1997) before release.

Small terrestrial mammals were surveyed at two sites,Nueva Chinaja and Mucbilha II. In each site, a transect wasmade, placing alternately a Sherman, Museum special andVictor Rat Trap every 10 m following trails through forestpatches and cardamom plantations. Two additionalTomahawk traps were located in each transect. Ninety trap-ping stations were placed in Mucbilha II and 90 in NuevaChinaja. Bait consisted of oats, peanut butter and raisins in aproportion of 2:1:1. Each trap was baited each morning at06:00 h and was checked every evening. Animals collectedwere measured and identified with field guides and depos-ited at the mammal collection at the Natural HistoryMuseum of the University of San Carlos de Guatemala(MUSHNAT), where the identification was confirmed.

The reptile communities were sampled through diurnaland nocturnal walks in forest patches and along foot trails inMucbilha II and Nueva Chinaja. All specimens collectedwere identified and placed in the MUSHNAT collections.These walks lasted from 06:00 h to 10:00 h in the morningand from 18:00 h to 23:00 h in the evening, on five con-secutive days in the wet season in September.

The community of copronecrophagous beetle specieswas assessed in Nueva Esperanza, Mucbilha and TzululQeqchi through a system of pitfall transects. In each studysite, two transects were located along foot trails crossingforest patches. Each transect was 200-m long and had pitfalltraps consisting of a 450-ml plastic container (11 cmtall · 11 cm diameter at the opening) placed every 20 m.The traps were dug into the ground, half filled with soil andhorse dung in a 3:1 ratio, and partially covered with a lid thathad a wedge removed, about 25% of the surface area, toallow entry, but also to complicate the exit of any individuallured into the trap. In order to avoid confusion, florescentflagging was used to mark the location of the traps. Trapswere left for 24 h and recollected at 09:00 h on the followingmorning.

Although this study was a rapid analysis and registeredonly a small portion of the total distribution of diversity andabundance of species in the Sierra Chinaja, it was designedso as to permit multivariate statistical analysis. A clusteranalysis using the Simpson index was used to examine theevenness among biological communities and allow for aninterpretation of the affinities of the three study sites. Thisanalysis is presented in several dendrograms and rarefactioncurves, which were generated using the program PAST ver.1.81 (Hammer et al. 2001). Dendrograms were not gener-ated for all groups of taxa as some of the sampling methodsdid not lend themselves well to statistical analysis or thedata were too sparse.

Results

A total of 309 species of plants were found in the SierraChinaja: 77 trees, 141 shrubs, herbs and vines, 73 orchidsand 18 bromeliads (Tables 1 and 2). The 10 species with

International Journal of Biodiversity Science & Management 117

Downloaded By: [Bonham, Curan] At: 14:15 21 September 2009

Table 1. Plant species found in the Sierra Chinaja, according toVe!liz, M. and Archila, F.

Family Species

1 Acanthaceae Aphelandra aurantiaca2 Aphelandra deppeana3 Aphelandra scabra4 Justicia sp.5 Anacardiaceae Mosquitoxylum jamaicense6 Astronium graveolens7 Metopium brownei8 Rhus striata9 Annonaceae Annona scleroderma10 Cymbopetalum penduliflorum11 Desmopsis stenopetala12 Guatteria anomala13 Apocynaceae Aspidosperma cruentum14 Aspidosperma sp.15 Plumeria rubra16 Thevethia ahouai17 Tabernaemontana sp.18 Araceae Anthurium montanum19 Anthurium pentaphyllum var.

bombacifollium20 Anthurium sp.121 Anthurium sp.222 Anthurium sp.323 Anthurium sp.424 Monstera sp.25 Spathyphyllum blandum26 Syngonium podophyllum27 Araliaceae Dendropanax arboreus28 Oreopanax obtusifollium29 Oreopanax sp.30 Arecaceae Chamaedorea elegans31 Chamaedorea sp.32 Chamaedorea tepejilote33 Chryosophila argentea34 Asclepiadaceae Asclepias curasavica35 Asteraceae Ageratina sp.36 Melanthera nivea37 Neurolaena lobata38 Vernonia sp.39 Zexmenia salvinii40 Begoniaceae Begonia manicata41 Begonia nelumbiifolia42 Begonia sp. 143 Begonia sp. 244 Begonia sp. 345 Begonia sp. 446 Begonia sp. 547 Begonia sp.648 Bombacaceae Pseudobombax ellipticum49 Boraginaceae Cordia gerascanthus50 Cordia alliodora51 Bromeliaceae Aechmea bracteata52 Androlepis skinneri53 Billbergia sp.54 Billbergia viridiflora55 Catopsis sp.56 Catopsis hahnii57 Catopsis (pending identification)58 Greigia sp.59 Pitcairnia sp.60 Pitcarnia wendlandlii61 Tillandsia sp.62 Tillandsia butzii

(Continued )

Table 1. (Continued).

Family Species

63 Tillandsia juncea64 Tillandsia matudae65 Tillandsia schiedeana66 Tillandsia valenzuelana67 Tillandsia bulbosa68 Vriesia heliconoides69 Burseraceae Bursera simaruba70 Protium copal71 Caesalpinaceae Swartzia sp.72 Cactaceae Epyphillum oxypetalum73 Zygocactus sp.74 Clusiaceae Calophyllum brasiliensis75 Clusia guatemalensis76 Clusia sp.77 Garcinia sp.78 Vismia camparaguay79 Combretaceae Terminalia amazonia80 Comelinaceae Campelia zanonia81 Costaceae Costus ruber82 Costus pulverulentus83 Cyclantaceae Asplundia microphylla84 Cyperaceae Scleria sp.85 Dennstaedtiaceae Dennstaedtia sp.86 Dioscoreaceae Dioscorea sp.87 Dioscorea barttletii88 Ebenaceae Diospyros sp.89 Euphorbiaceae Acalypha costarricenses90 Acalypha glummifera91 Acalypha sp.92 Croton glabellus93 Dalechampia heteromorpha94 Disciphania calocarpa95 Euphorbia leucocephala96 Hieronyma alchorneoides97 Sebastiania longicuspis98 Fabaceae Acacia sp.99 Bauhinia divaricata100 Desmodium sp.101 Dialium guianense102 Lonchocarpus castilloi103 Lonchocarpus sp.104 Myroxylon balsamum105 Schizolobium sp.106 Swartzia sp.107 Swartzia standleyii108 Senna skinneri109 Senna sp.110 Vatairea lundellii111 Flacourtiaceae Casearia sp.112 Gesneraceae Allopectus vinaceus113 Gutiferae Vismia camparaguay114 Haemodoraceae Xiphidium caeruleum115 Pteridophyta Adiantum radiata116 Adiantum sp.1117 Adiantum sp.2118 Anthryphylum onsiforme119 Asplenium sp.120 Blechnum schedianum121 Campyloneuron sp.122 Displazium plantaginifolium123 Elaphoglossum sp.124 Pleopeltis lanceolata125 Pleopeltis sp.126 Pleopeltis sp.

(Continued )

118 C. Bonham et al.

Downloaded By: [Bonham, Curan] At: 14:15 21 September 2009

Table 1. (Continued).

Family Species

127 Polypodium sp.128 Tectaria heraclifolia129 Thelypteris sp.130 Heliconiaceae Calathia unsigues131 Heliconia latispatha132 Heliconia sp.133 Labiaceae Salvia sp.134 Lauraceae Licaria capitata135 Licaria sp.136 Nectandra globosa137 Ocotea licaria138 Liliaceae Dracaena americana139 Malphigiaceae Mascagnia sp.140 Maranthaceae Calathea allouia141 Melastomataceae Clidemia petiolaris142 Clidemia sp.143 Conostegia xalapensis144 Miconia sp.1145 Miconia sp.2146 Topobea calicularis147 Topobea lavrigata148 Urera sp.149 Meliaceae Guarea glabra150 Swietenia macrophylla151 Trichilia glabra152 Trichilia sp.1153 Trichilia sp.2154 Menispermaceae Hyperbaena Mexicana155 Mimosaceae Cassia sp.156 Pithecelobium sp.157 Inga sp.158 Moraceae Dorstenia lindleyana159 Ficus radula160 Brosimum alicastrum161 Coussopoa sp.162 Trophys racemosa163 Ficus sp.164 Myristicaceae Virola guatemalensis165 Myrsinaceae Ardisia sp.166 Parathesis sp.167 Myrtaceae Eugenia sp.168 Eugenia sp.169 Nyctaginaceae Guapira sp.170 Ochnaceae Ouratea lucens171 Olecaceae Olecaceae sp.172 Orchidaceae Brassia caudate173 Campylocentrum scheidei174 Catasetum integerrimum175 Chysis bractescens176 Coelia bella177 Coelia sp.178 Corymborkis forcipigera179 Cranichis sp.180 Elleanthus capitatus181 Elleanthus caricoides182 Elleanthus graminifolius183 Elleanthus poiformis Schltr.184 Encyclia (Prosthechea) cochleata185 Encyclia (Prosthechea) pygmaea186 Encyclia asperula187 Encyclia sp.188 Epidendrum cf. veroscriptum189 Epidendrum isomerum190 Epidendrum nocturnum

(Continued )

Table 1. (Continued).

Family Species

191 Epidendrum polyanthum192 Epidendrum rigidum193 Eurystyles sp.194 Gongora cassidea195 Goodyera sp.196 Hexadesmia imbricata197 Isochilus linearis198 Jacquiniella cobanensis199 Jacquiniella equitantifolia200 Lepidanthus pasanticus201 Maxillaria aciantha202 Maxillaria brunnea203 Maxillaria crassifolia204 Maxillaria densa205 Maxillaria meleagris206 Maxillaria muricata207 Maxillaria pulchra208 Maxillaria scorpioidea209 Maxillaria sp.210 Maxillaria uncata211 Maxillaria variabilis212 Mormolyca ringens213 Nidema boothii214 Notylia barkeria215 Oncidium oerstedii216 Ornithocephalus bicornis217 Pleurothalis grobyii218 Pleurothalis lewisii219 Pleurothalis pansamalae220 Pleurothalis sanchoi221 Pleurothalis segoviensis222 Pleurothallis yucatanensis223 Pleurothallis sp.224 Polystachia cerea225 Polystachya masayensis226 Ponera juncifolia227 Ponera striata228 Prostechea cochleata229 Prostechea fragans230 Prostechea pygmaea231 Sarcoglottis sp.232 Scaphyglothis lendyana233 Scaphyglothis sp.234 Scaphyglottis crurigera235 Sobralia fragrans236 Sobralia sp.237 Stanhopea aff. Oculata238 Stelis sp. 1239 Stelis sp. 2240 Stenorrhynchus coloratus241 Trichosalpinx violacea242 Trigonidium egertonianum243 Vittaria graminifolia244 Zootrophyon tribuloide245 Passifloraceae Passiflora biflora246 Passiflora sp.1247 Piperaceae Peperomia pellucida248 Peperomia sp.1249 Peperomia sp.2250 Peperomia sp.3251 Piper aduncum252 Piper auritum253 Piper peltatum254 Piper sp.

(Continued )

International Journal of Biodiversity Science & Management 119

Downloaded By: [Bonham, Curan] At: 14:15 21 September 2009

highest importance values were: Terminalia amazonia,Bursera simaruba, Manilkara zapota, Pouteria amygda-lina, Blomia pisca, Pouteria sp., Psidium sartorianum,Desmopsis stenopetala, Pseudobombax ellipticum andLonchocarpus guatemalensis.

A total of 77 tree species (578 individuals) wererecorded in 21 plots. The standard error was 0.42 and the

corresponding sampling error was 2.5%. A cluster analysisusing the Simpson index was used to compare the similarityamong the three sub-sites sampled: Nueva Esperanza,Tzulul Qeqchi and Mucbilha. These three sub-sites arecompared in the Figures 2 and 3 using the diversity oftrees, birds, beetles and the three groups combined asmetrics for describing the degree of similarity among thesub-sites. The figures consistently group Nueva Esperanzaand Mucbilha (sites A and C). Tzulul Qeqchi is the outlier,having an assemblage of species more specifically distrib-uted to that particular area.

The survey also revealed 110 bird species, 24 reptilespecies, 14 amphibian species, 20 bat species, five smallterrestrial mammal species and 20 dung beetle species(Tables 3–8). Species accumulation curves were created toanalyse and estimate the total diversity of all taxa sampled(Figure 3). None of the curves presented are approachingtheir asymptotes, which suggests that more sampling wouldprovide a clearer understanding of total species diversity.The beetle and rodent curve is particularly steep, indicatingsignificant diversity left to be recorded.

Discussion

Biogeographic status of Chinaja

The Sierra Chinaja is structurally and floristically similar toboth the limestone mountains to the east in Belize and to thewest in Mexico (Breedlove 1981; Meerman and Matola,2003). Because of the interface between lowland and mon-tane habitats, many species that are commonly separatedexist together in the Sierra Chinaja. The rapid nature of thisinvestigation provides just a glimpse into the floristics anddiversity of the Sierra Chinaja. The region may contain asmany as 4,000 plant species (Martinez et al. 1994). Thesuitability of the habitat provided by the Sierra Chinaja toboth lowland and highland species explains its speciesrichness. Its biogeographic isolation is another factor thatmakes this mountainous forest likely habitat for endemicpopulations, which further contributes to its potential spe-cies richness.

The majority of bird species (Table 3) are characteristicof the tropical lowlands of the Pe!ten, as evidenced by thepresence of individuals of typical lowland families such asFurnariidae, Formicariidae, Cotingidae, Thraupinae (Stotzet al 1996; Howell and Webb 1995). Nevertheless, 16 spe-cies are characteristic of upland tropical forest avian com-munities. This is likely to reflect changes in habitat type dueto the orographic uplift in this isolated mountain chain. Insuch ranges, ecological zones are often compressed, result-ing in the distribution of high montane species at lowerelevations (Grubb 1971; Whitmore 1998). This uplift haseffectively isolated these 16 montane species as if they wereon an island.

Twenty bat species were recorded, of which Carolliasowelli was the most abundant (Table 4). The compositionof the bat community of the Sierra Chinaja is similar to thatof the bat communities of the Atlantic lowlands (Perez, S.

Table 1. (Continued).

Family Species

255 Poaceae Lasiacis divaricada256 Muhlenbergia sp.257 Olyra lalifolia258 Polygonaceae Coccoloba sp.1259 Polypodiaceae Polypodium sp.260 Rubiaceae Alseis yucatanenses261 Cephaelis tomentosa262 Chiococca alba263 Guettarda combsii264 Hamelia patens265 Hamelia rovirosae266 Hoffmania sp.267 Morinda sp.268 Psychotria chiapensis269 Psychotria sp.1270 Psychotria sp.2271 Psychotria sp.3272 Psychotria sp.4273 Psychotria sp.5274 Rondeletia buddleioides275 Rondeletia sp.1276 Rondeletia sp.2277 Simira salvadorensis278 Rutaceae Zanthoxylum belizense279 Sapindaceae Paullinia sp.280 Cupania belizensis281 Cupania sp.282 Sapotaceae Pouteria sp.283 Chrysophyllum mexicanum284 Manilkara zapota285 Sideroxylon capiri286 Sauraureaceae Saurauia sp.287 Simaroubaceae Picramnia sp.288 Simarouba glauca289 Solanaceae Cestrum nocturnum290 Lycianthes sp.291 Solanum sp.292 Witheringia sp.293 Theaceae Ternstroema tepezapote294 Tiliaceae Mortoniodendron sp.295 Luehea candida296 Heliocarpus donnellsmithii297 Trichospermum galliothi298 Ulmaceae Trema micrantha299 Ampelocera hottlei300 Urticaceae Pilea sp. 1301 Phenax hirtus302 Verbenaceae Cornutia sp.303 Vitex gaumerii304 Violaceae Rinorea guatemalensis305 Vitaceae Cissus sp.306 Vochisiaceae Vochysia guatemalensis307 Zamiaceae Zamia monticola308 Ceratozamia robusta309 Zamia tuerckheimii

120 C. Bonham et al.

Downloaded By: [Bonham, Curan] At: 14:15 21 September 2009

personal communication 2005).While most of these specieshave a lowland affinity, several species were characteristicof highland bat communities. Dermanura tolteca is a spe-cies that commonly inhabits mountains of medium eleva-tion.D. tolteca shares the Sierra with two other species fromthe same genus, both characteristic of the lowlands:D. phaeotis and D. watsoni. This elevated diversity maysuggest a relatively complex system of niche partitioningworthy of further study.

Another indicator that Chinaja posesses elements of lowmontane cloud forest is the presence of Sturnira ludovici.This species, representative of medium-sized mountains,was found sympatrically with S. lilium, the sister speciesmore typical of the lowlands (Perez et al. 2005).

Of the five species of small terrestrial mammals found,the most important was Peromyscus mexicanus (Table 5).This is found in mountains of medium elevation and isabsent in the adjacent lowland jungles of the Pete!n. This is

a new distribution record according to the mammal collec-tion of the MUSHNAT, reaching its most northern distribu-tion in the Sierra Chinaja.

The total of 14 species of amphibians and 24 of reptilescollected (Tables 6 and 7) is likely to be only a fraction ofthe total herpetofaunal diversity in the area. The majority ofthe Sierra Chinaja is generally below 600 m, thus the pre-dominant herpetofaunal species are widely distributed in theCaribbean lowlands of Mesoamerica (Campbell andVannini 1989).

The presence of Agalychnis moreletii and A. callidryasis another example of lowland and montane habitat overlap.According to Campbell and Vannini (1989), A. moreletii hasa relatively restricted distribution, occurring in mesic forestsalong streams flowing through mountainous regions and,therefore, it is less likely to be found than A. callidryas. Itoccurs from central Veracruz and northern Oaxaca, Mexico,southward on Atlantic slopes to Guatemala and Belize. In

Table 2. Tree strata data from Whitaker plots at Sierra Chinaja. Bonham, C.

Common name Scientific name Family V/ha BA total F total D/ha Bar Fr Dr IV N

Canxan Terminalia amazonia Combretaceae 34.01 8.38 0.62 8.57 10.24 2.94 1.89 15.07 18Palo jiote Bursera simaruba Burseraceae 14.78 3.89 0.48 36.19 4.75 2.27 7.98 15.01 76Chico zapote Manilkara zapota Sapotaceae 20.79 4.81 0.76 18.10 5.88 3.60 3.99 13.47 38Silion Colorado Pouteria amygdalina Sapotaceae 18.67 4.76 0.57 21.90 5.82 2.70 4.83 13.35 46Qeqitzol Blomia pisca Sapindaceae 12.25 3.71 0.71 20.48 4.54 3.36 4.52 12.42 43Zapotillo Pouteria sp. Sapotaceae 6.88 1.97 0.90 20.00 2.41 4.27 4.41 11.09 42Paata che Psidium sartorianum Myrtaceae 7.68 1.81 0.57 22.38 2.21 2.70 4.94 9.85 47Cacaute Desmopsis stenopetala Annonaceae 8.18 2.54 0.43 17.14 3.11 2.04 3.78 8.92 36Mapola Pseudobombax ellipticum Bombacaceae 14.13 3.68 0.33 10.95 4.49 1.56 2.42 8.47 23Palo gusano Lonchocarpus guatemalensis Fabaceae 5.61 1.49 0.43 17.14 1.82 2.04 3.78 7.64 36Palo algodon Ochroma lagopus Bombacaceae 7.38 2.26 0.48 11.43 2.76 2.27 2.52 7.56 24Aqal Eugenia spp. Myrtaceae 3.37 0.88 0.57 15.24 1.08 2.70 3.36 7.14 32Tamarindo Dialium guianense Fabaceae 7.90 2.29 0.43 9.52 2.80 2.04 2.10 6.93 20Colay Sickingia salvadorensis Rubiaceae 7.07 1.70 0.43 10.95 2.08 2.04 2.42 6.53 23Tem Sideroxylon capiri Sapotaceae 11.88 3.03 0.29 4.76 3.70 1.37 1.05 6.13 10Amate Ficus radula Moraceae 8.08 2.58 0.38 5.24 3.16 1.80 1.16 6.11 11Ramon blanco Brosimum alicastrum Moraceae 6.03 1.43 0.43 8.57 1.75 2.04 1.89 5.68 18Palo lagarto Zanthoxylum belizense Rutaceae 5.50 1.34 0.38 8.10 1.64 1.80 1.79 5.23 17Chechen blanco Sebastiania longicuspis Euphorbiaceae 5.28 1.36 0.38 7.14 1.67 1.80 1.58 5.04 15Laurel de montana Cordia alliodora Boraginaceae 4.12 0.80 0.33 8.57 0.97 1.56 1.89 4.43 18Jocote Spondias mombin Anacardiaceae 2.17 0.55 0.43 7.14 0.68 2.04 1.58 4.29 15Chilecayote Sapium spp. Euphorbiaceae 8.83 2.12 0.19 2.86 2.59 0.90 0.63 4.12 6Manax Hieronyma alchorneoides Euphorbiaceae 3.06 0.65 0.33 7.62 0.80 1.56 1.68 4.04 16Santa Maria Calophyllum brasiliensis Clusiaceae 3.86 0.89 0.38 5.24 1.08 1.80 1.16 4.04 11Aguacatillo Nectandra globosa Lauraceae 3.99 1.13 0.24 5.24 1.38 1.14 1.16 3.67 11Balsamo Myroxylon balsamum Fabaceae 5.97 1.46 0.24 3.33 1.79 1.14 0.74 3.66 7Pok xik Coccoloba spp. Rubiaceae 2.07 0.57 0.38 3.81 0.69 1.80 0.84 3.34 8Izote Dracaena americana Liliaceae 3.12 0.59 0.33 4.76 0.72 1.56 1.05 3.33 10Valerio blanco Aspidosperma megalocarpon Apocynaceae 1.66 0.37 0.38 4.76 0.45 1.80 1.05 3.30 10Copal pom Protium copal Burseraceae 1.45 0.36 0.29 6.67 0.44 1.37 1.47 3.29 14Pomte 1.39 0.37 0.33 5.24 0.46 1.56 1.16 3.18 11Escobo negro 1.32 0.35 0.33 5.24 0.42 1.56 1.16 3.14 11Luin hembra Cordia gerascanthus Boraginaceae 1.35 0.32 0.29 5.71 0.40 1.37 1.26 3.03 12Cansin Lonchocarpus castilloi Fabaceae 2.89 0.69 0.29 2.86 0.85 1.37 0.63 2.85 6Faisan 1.16 0.33 0.33 3.33 0.41 1.56 0.74 2.71 7Anonillo Guatteria anomala Annonaceae 0.61 0.21 0.18 2.86 0.25 0.85 0.63 1.74 6Anona de monte Annona scleroderma Annonaceae 1.08 0.26 0.15 2.38 0.31 0.71 0.53 1.55 5Valerio Colorado Aspidosperma cruenta Apocynaceae 0.64 0.14 0.10 1.90 0.17 0.47 0.42 1.07 4Medallo Vatairea lundellii Fabaceae 1.03 0.22 0.05 0.95 0.27 0.24 0.21 0.71 2

Note: D/ha = Density per hectare; Bar = Relative basal area; F = Frequency; Fr = Relative frequency; BA = Basal area; IV = Importance value; V/ha = Volumeper hectare.

International Journal of Biodiversity Science & Management 121

Downloaded By: [Bonham, Curan] At: 14:15 21 September 2009

Guatemala, the species ranges from 500 m to 2130 m(Campbell and Vannini 1989). A. callidryas is commonlyfound in the Atlantic lowlands and foothills from southernVeracruz and northern Oaxaca, Mexico, southward throughMexico, Guatemala, Belize and eastern Panama. InGuatemala, this species ranges from near sea level toabout 950 m (Campbell and Vannini 1989).

The presence of Eleutherodactylus xucanebi is furtherevidence of the montane character of the Sierra Chinaja, asits distribution ranges between 500 and 1500 m. Thus,biogeographic isolation and biodiversity concentrationcould be occurring in the Sierra since it is an island ofmontane habitat surrounded by lowland forest habitat thatis unlikely to support these highland species.

Among the 20 species of dung beetle (Table 8), thepresence of Copris laeviceps and Copris nubilosus sug-gests once again that Sierra Chinaja is an ecotone orarea of transition, because these species are character-istic of two distinct biogeographic areas: the highlandsof Alta Verapaz and the the lowlands of the Pe!ten.Copris nubilosus was first described in 2003

(Kohlmann et al. 2003) and until now was only reportedfrom colder high-elevation cloud forests between 1350and 1800 m, in the Sierra Cuchumatanes and Sierra delas Minas. Copris laeviceps is a characteristic lowlanddung beetle recorded from sites in the Atlantic lowlandforests of Izabal as well as the Pe!ten Plateau to thenorth (Kohlmann et al. 2003).

Status of rare and endemic species

One notable endemic population is that of Ceratozamiarobusta (a member of the Cycad family). This Neotropicalgenus is distributed in mountainous parts of Mexico, Belizeand Guatemala (Jones 1993). The species reaches its south-ernmost distribution in Guatemala and is a rare ornamental(Jones 1993). The conservation of rare endemics of marketvalue is of principal importance to conservation and landmanagement efforts.

While six migratory bird species were recorded, includ-ing streaked flycatcher (Myodinastes maculates), northernwaterthrush (Seiurus noveboracensis), black-and-white

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Sim

ilarit

y

C B A

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 40.72

0.75

0.78

0.81

0.84

0.87

0.9

0.93

0.96

0.99S

imila

rity

C A B

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 40.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sim

ilarit

y

C A B

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 40.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95S

imila

rity

C A B

Index value Index value

Index value Index value

Birds

Coleoptera Trees

All 3 groups

Figure 2. Dendrograms of the Simpson Index for taxa analyzed in the 3 sites sampled in the Sierra Chinaja, Guatemala from June toOctober 2005. (Sites: A-Nueva Esperanza (380 m), B-Tzulul Qeqchi (750 m), C-Mucbilha (400 m)).

122 C. Bonham et al.

Downloaded By: [Bonham, Curan] At: 14:15 21 September 2009

warbler (Mniotilta varia), Kentucky warbler (Oporornisformosus), Canadian warbler (Wilsonia canadensis) andBaltimore oriole (Icteus galbula), more are expected touse the area as a wintering ground. It is worth mentioningthat local residents recognized the horn-billed guan(Oreophasis derbianus), a rare endemic typical of highlandforests, from illustrations presented to them and claimed it isfound in the highest parts of the mountains. Similar resultswere recorded by Jolon (2003) in the nearby CandelariaCaves National Park.

The presence of several unique Chiroptera speciessuch as Mimon cozumelae, Trachops cirrhosus andTonatia saurophila, restricted to well-developed mature

lowland forests, is also an indicator of the healthy stateof forests in the Sierra Chinaja (Fenton et al. 1992). Dueto their habitat specificity, these species have been pro-posed as ecological indicators (Fenton et al. 1992). It isimportant to mention the presence of Diphylla ecaudatain Nueva Chinaja, an uncommon species in human-asso-ciated areas because it feeds on the blood of non-domes-ticated animals (Uieda 1992).

The fact that two new Coleoptera species of thegenera Canthydium and Onthophagus were found, aswell as at least one new species of Passalid beetle(Passalidae) (Schuster, personal communication), sug-gests that the Sierra Chinaja may already have given

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8Samples

0

3

6

9

12

15

18

21

24

27T

axa

(95%

con

fiden

ce)

Beetles

6 12 18 24 30 36 42 48 54Samples

0

8

16

24

32

40

48

56

64

72

Tax

a (9

5% c

onfid

ence

)

Birds

1.2 1.8 2.4 3 3.6 4.2 4.8 5.4 6 6.6Samples

0

0.8

1.6

2.4

3.2

4

4.8

5.6

6.4

7.2

8

Tax

a (9

5% c

onfid

ence

)

Rodents

5 10 15 20 25 30 35 40 45Samples

0

2

4

6

8

10

12

14

16

18

Tax

a (9

5% c

onfid

ence

)

Amphibians

6 12 18 24 30 36 42 48 54Samples

0

4

8

12

16

20

24

28

32

36

Tax

a (9

5% c

onfid

ence

)

Reptiles

4 8 12 16 20 24 28 32 36Samples

0

3

6

9

12

15

18

21

24

27

Tax

a (9

5% c

onfid

ence

)

Bats

Figure 3. Species accumulation curves of taxa sampled in Sierra Chinaja, Guatemala from June to October 2005.

International Journal of Biodiversity Science & Management 123

Downloaded By: [Bonham, Curan] At: 14:15 21 September 2009

Table 3. Bird species found in the Sierra Chinaja. According to Bonham, C. with collaboration from Stewart, S. and Tenes, D.

Scientific name Common name

Methodof

detection Site Sensitivity*Relative

abundance* Cntab*Conservationpriority* Endemic* Habitat*

Amazilia candida Whitebelliedemerald

PC, MN 1,2,3 M C LT 4 F1,F7

Amazilia tzacatl Rufoustailedhummingbird

PC, MN 1,2,3 L C LT 4 F1E,F15,F7

Amazonaautumnalis

Redlored parrot PC 1,2 M C LT 3 F1E,F15,F,F8

Aratinga astec Aztec parakeet PC 1,2,3 L C LT 4 F1E,F15Arremonaurantrirostris

Orangebilledsparrow

PC, MN 2 M F LT 4 F1

Arremonopschloronotus

Greenbackedsparrow

PC 2,3 L C LT 4 Y F1E,F7,F15

Attila spadiceus Brightrumpedattila

O – M F LT 4 F1,F7,F4

Aulacorhynchusprasinus

Emeraldtoucanet

O – M F UT 4 F4,F1

Automolusochrolaemus

Buffthroatedfoliagegleaner

PC 1 M C LT 4 F1,F2

Basileuterusculicivorus

Goldencrownedwarbler

O – M C HT 4 F1,F4,F15

Bubulcus (Ardeola)ibis

Cattle egret O – L C LT 4 N13,N6

Buteo (Asturina)nitidus

Grey hawk O – M F LT 4 F8,F7,F1E,F3

Buteo magnirostris Roadside hawk O – L C LT 4 F1E,F7,F8,F3,Campephilusguatemalensis

Palebilledwoodpecker

PC 1,2,3 M F LT 4 F1E,F8,F15,F7

Campylopteruscurvipenis

Wedgetailedsaberwing

MN – M F LT 4 Y F1,F15

Campylorhynchuszonatus

Bandbackedwren

PC 2 L C UT 4 F11,F4E,F1E

Caryothraustespoliogaster

Blackfacedgrosbeak

PC 1,3 M F LT 4 Y F1,F15

Cathartes aura Turkey vulture PC 1 L C LT 4 N14,F7,F8,F15Ceryle torquata Ringed

kingfisherO – L C LT 4 A8,A6,A11,F14

ChloroceryleAmericana

Green kingfisher O – L C LT 4 A9,A6,A8,F14

Chlorophanes spiza Greenhoneycreeper

PC 2 M F LT 4 F1,F2,F15,F8

Columbanigrirostris

Shortbilledpigeon

O – M F LT 4 F1,F4

Columbinatalpacoti

Ruddygrounddove

PC 3 L C LT 4 N14,N11,N1

Contopus cinereus Tropical peewee PC 2 L F/P HT 4 F1E,F4E,F7,F8Coragyps atratus Black vulture O – L C LT 4 N16,N6,N1,N13Crotophagasulcirostris

Groovebilled ani PC 1,2,3 L C LT 4 N14,N11

Crypturellusboucardi

Slatybreastedtinmous

PC 1,2,3 M F LT 4 F1,F15

Cyanerpes cyaneus Redleggedhoneycreeper

PC 2,3 L C/P LT 4 F1,F15,F8

Dendrocinclahomochroa

Ruddywoodcreeper

MN 2 H F LT 4 F1,F4,F7

Dendrocolaptescerthia

Barredwoodcreeper

PC 2 H F LT 4 F1

Dives dives Melodiousblackbird

PC 2 L C LT 4 F1E,F15,F8

Dryocopus lineatus Lineatedwoodpecker

O – L C LT 4 F3,F8,F15

Dysithamnusmentalis

Plain antvireo O – M C UT 4 F4,F1

Egretta thula Snowy egret O – L C LT 4 A1,A2

(Continued )

124 C. Bonham et al.

Downloaded By: [Bonham, Curan] At: 14:15 21 September 2009

Table 3. (Continued).

Scientific name Common name

Methodof

detection Site Sensitivity*Relative

abundance* Cntab*Conservationpriority* Endemic* Habitat*

Elaenia flavogaster Yellowbelliedelaenia

PC 3 L C LT 4 N14,N11,F15E

Elanus leucurus Whitetailed kite O – L U/P LT 4 N13,N14,N6Eupherusa e.eximia Stripetailed

hummingbirdMN 2 M U UT 4 F1,F15

Euphonia goldi Olivebackedeuphonia

PC 1,2 M F LT 4 Y F1

Euphoniahirudinacea

Yellowthroatedeuphonia

PC 1,3 L C LT 4 F1E,F8,F15

Falco rufigularis Bat falcon PC 2,3 L F LT 4 F1E,F7E,F8EFormicarius analis Blackfaced

antthrushPC,MN 3 M C LT 4 Y F1,F2

Galbula ruficauda Rufoustailedjacamar

PC 2 L C LT 4 F1E,F

GeotrygonMontana

Ruddy quaildove O – M F LT 4 F1,F4,F7

Glaucidiumbrasilianum

Pygmy owl O – L C LT 4 N1,N2,N14

Glyphorprhyncosspirurus

Wedgebilledwoodcreeper

PC 3 M F LT 4 F1,F4

Habia fuscicauda Redthroatedanttanager

PC 1,2 M F LT 4 F1E,F2,F15

Habia rubica Redcrownedanttanager

O – H F LT 4 F1

Heliothrix barroti Purplecrowndfairy

PC 2 M U LT 4 F1,F15

Henicorhinaleucoprhrys

Greybreastedwoodwren

O – M C UT 4 F4

Henicorhinaleucosticte

Whitebreastedwoodwren

PC 1,2,3 M F HT 4 F1,F4

Hylomanesmomotula

Tody motmot O – H U HT 4 F1,F4

Icterusdominicensisprosthemelas

Blackcowledoriole

PC 2 L F LT 4 Y F1E, F15

Icteus galbulabullockii

Baltimore oriole O – L C UT 4 F8,F7,F15

Lanio aurantius Blackthroatedshriketanager

O – H F LT 3 Y F1

Laniocerarufescens

Speckledmourner

PC 1 M U/P LT 3 F1

Laterallus rubber Ruddy crake PC 2 L F LT 4 A1Lepidocolaptessouleyetti

Streakheadedwoodcreeper

PC 3 L L LT 4 F7,F8,F1,

Leptopogonamaurocephalus

Sepiacappedflyacatcher

PC,MN 3 M F LT 4 F1,F15

Leptotila casinii Greychesteddove

PC 2 M F LT 4 F7,F8,F1

Leptotila verreauxi Whitetippeddove

PC 2 L C UT 4 F7,F8,F15

Leucopternisalbicollis

White hawk PC 3 H F LT 4 F1,F4,F7

Lipaugus unirufus Rufous piha MN 2 M F LT 4 F1Malacoptilapanamensis

Whitewhiskeredpuffbird

O – M F LT 4 F1,F15

Manacus candei Whitecollaredmanakin

PC,MN 1,2 M F LT 3 Y FIE,F15

Melanerpesaurifrons

Goldenfrontedwoodpecker

PC 1,2,3 L C LT 4 N1,N2,F8

Melanerpespucherani

Blackcheekedwoodpecker

PC 2,3 M C LT 4 F1,F15

Microcerculusphilomela

Nightingale wren O – H F HT 3 Y F1

(Continued )

International Journal of Biodiversity Science & Management 125

Downloaded By: [Bonham, Curan] At: 14:15 21 September 2009

Table 3. (Continued).

Scientific name Common name

Methodof

detection Site Sensitivity*Relative

abundance* Cntab*Conservationpriority* Endemic* Habitat*

Microrhopiasquixensis

Dotwingedantwren

PC 1,2,3 M C/P LT 4 F1

Mionectesoleaginous

Ochrebelliedflycatcher

MN 2 M F LT 4 F1,F2,F15

Mniotiltavaria

Black andWhite warbler

O – L – MIGRANT 4 F1,F4,F15

Momotusmomota

Bluecrownedmotmot

PC 1,2 M C LT 4 F1,F4,F15

Myadestes unicolor Slatecoloredsolitaire

PC 2 M F UT 3 Y F4,F11

Myiobiussulphureipygius

Sulphurrumpedflycatcher

PC 2 M F LT 4 F1,F8,F15

Myiozetetes similes Social flycatcher O – L C LT 4 F1E,F7EMyodinastesmaculates

Streakedflycatcher

PC 2 L C LT 4 F1E,F15

Nyctidromusalbicollis

Pauraque PC 1,2 L C LT 4 F1E,F15

Oncostomacinereigulare

Northernbentbill

PC,MN 2,3 L F LT 4 F1E,F7

Onychorhynchusmexicanus

Royal flycatcher PC 1 H U LT 4 F1

Oporornis formosus Kentuckywarbler

O – – – MIGRANT – –

Ortalis vetula Plain chachalaca PC 1,2,3 L C LT 4 Y F1E,F8Pachyramphuscinnamomeus

Cinnamonbecard

PC 3 L F LT 4 F1E,F15

Passerinacyanoides

Blueblackgrosbeak

PC 2 M F LT 4 F1,F15

Phaeochroacuvierrii

Scalybreastedhummingbird

O – L C LT 4 F15,F1E

Phaethornislongemareus

Little hermit PC,MN 1,2,3 M F LT 4 F1,F15

Phaethornissuperciliosus

Longtailedhermit

PC,MN 2,3 H C LT 4 F1,F4,F7

Piaya cayana Squirrel cuckoo O – L C LT 4 F1,F7,F15Pionopsittahaematotis

brownhoodedParrot

O – M F LT 4 F1,F4

Pipra mentalis Redcappedmanakin

PC 1,2 M F LT 4 F1

Piranga leucoptera Whitewingedtanager

PC 3 M F UT 4 F4,F1,F11

Pitangussulphuratus

Great kiskadee PC 1,2 L C LT 4 F15,F8

Psarocoliusmontezuma

Montezumaoropendola

O – M C LT 4 Y F1,F15

Psarocolius wagleri Chestnutheadedoropendola

PC 3 M F LT 4 F1,F15

Psilorhinus morio Brown jay PC 1 L F LT 4 F8,F15Pteroglossustorquatus

Collared aracari PC 1,2,3 M C LT 4 F1,F15

Quiscalusmexicanus

Greattailedgrackle

O – L C LT 4 N14,N13

Ramphastossulfuratus

Keelbilled tucan PC 1,2,3 M C LT 4 F1,F15

Ramphocaenusmelanurus

Longbilledgnatwren

PC 3 L FP LT 4 F1E,F15

Ramphoceluspaserinii

Scarletrumpedtanager

PC 1,2 L C LT 4 Y F1E,F15,N14

Ramphocelussanguinolentus

Crimsoncollaredtanager

PC 1 L F LT 4 Y F1E,F15

Rhytipternaholerythra

Rufous mourner O – M F LT 4 F1,F15

(Continued )

126 C. Bonham et al.

Downloaded By: [Bonham, Curan] At: 14:15 21 September 2009

rise to speciation, and raises the question to what extentit has served as a refuge through epochs of geologic andclimatic change.

Cross-site comparison

The Simpson indices consistently group the study sitesMucbilha II and Nueva Esperanza, while separating out

Table 3. (Continued).

Scientific name Common name

Methodof

detection Site Sensitivity*Relative

abundance* Cntab*Conservationpriority* Endemic* Habitat*

Saltator atriceps Black-headedsaltator

PC 1,3 M F LT 3 F1E,F15

Saltatorcoerulescens

Greyish saltator PC 1 L C LT 4 N14,N12

Saltator maximus Buffthroatedsaltator

PC 2 L C LT 4 F1E,F15

Sclerurusguatemalensis

Scalythroatedleaftosser

O – H U LT 3 Y F1,F4

Seiurusnoveboracensis

Northernwaterthrush

PC 2 M – MIGRANT 4 F1,F15,F14

Sittasomusgriseicapillus

Olivaceouswoodcreeper

PC 1 M C LT 4 F1,F2,F4

Sporophilatorqueola

Whitecollaredseedeater

PC,MN 2,3 L C LT 4 N14,N1,N11

Streptoprocnezonaris

Whitecollaredswift

PC 1,2 L F LT 4 F4,F1,F15

Tangara larvata Goldenhoodedtanager

PC 3 L C LT 4 F1E, F15

Tapera naevia Striped cuckoo PC 2 L C LT 4 N14,N6,N11Thamnophilusdoliatus

Barred antshrike PC 1,3 L C LT 4 N4,N11

Thraupis abas Yellowwingedtanager

PC 1,2,3 L C LT 4 F1E,F15,F8

Thraupis episcopus Bluegray tanager O – L C LT 4 F1E,F15Thryothorusmaculipectus

Spotbreastedwren

PC 1 L F LT 4 F1E,F15,F7

Tiaris olivacea Yellowfacedgrassquit

PC 1 L C LT 4 N14,N1

Tityra semifasciata Masked tatyra PC 1,2 M C LT 4 F1,F4,F15Tolmomyiassulphurescens

Yellowoliveflycatcher

PC 1 M F LT 4 F1,F4,F7

Trogon collaris Collared trogon PC 1,2 M C LT 4 F1,F4,F2,F7Trogon Massena Slatytailed

trogonO – M F LT 4 F1,F15

Trogon violaceus Viloaceoustrogon

PC 1,2,3 M F LT 4 F1,F15

Turdus assimils Whitethroatedthrush

PC 1,2 M F UT 4 F4,F1,F7

Turdus grayi Claycoloredrobin

PC 2 L C LT 4 F1E,F7,F15

Tyrannusmelancholicus

Tropicalkingbird

PC 2 L C LT 4 F15,F8,F3

Tyrannus savanna Forktailedflycatcher

O – L C LT 4 N6,N7,N13

Veniliornisfumigatus

Smokybrownwoodpecker

PC 1,2 L C UT 4 F4,F1,F15

Volatinia jacarina Blueblackgrassquit

PC 1,2,3 L C LT 4 N4,N6,N1

Wilsoniacanadensis

Canada warbler O – M – MIGRANT 4 F4,F15,F1

Xiphorhynchusflavigaster

Ivorybilledwoodcreeper

PC 1,2 M C LT 4 F1,F4,F7

Note: *According to Stotz et al. (1996) Center of Abundance: LT – Lower tropical (,500 m), LS – Lower subtropical (,500 m), HT-Hill tropical (500–900 m),UT – Upper tropical (900–1600 m), US – Upper subtropical (500–1600 m), MM – Middle montane (1600–2600 m), UM – Upper montane (.2600 m)Conservation Priority: 1 – Urgent, 2 – High, 3 – Medium, 4 – Low Endemic: Y = yes.

International Journal of Biodiversity Science & Management 127

Downloaded By: [Bonham, Curan] At: 14:15 21 September 2009

Tzulul Qeqchi. This may reflect the unique species assem-blages present at Tzulul Qeqchi, which is located at a sig-nificantly higher elvevation. Tzulul Qeqchi and NuevaChinaja represent the highest and best-conserved forests ofthe Sierra; correspondingly, the bat species richness is con-siderably higher. In Mucbilha II, the presence of vampirebat species, including the common widespread speciesSturnira lilium, underscores the degree of environmental

perturbation. These species are commonly associated withzones of forest regeneration or areas that have been mana-ged for agriculture (Fenton et al. 1992). Thus it is notsurprising to find these species as well as D. rotundus,often associated with ranching, occurring sympatrically.

P. mexicanus found in the upper elevations, was absentin the lower elevation sampling site of Mucbilha II and is

Table 6. Reptiles registered in the Sierra Chinaja. According toVasquez, C. with colaboration from Acevedo, M.

Site

SpeciesMucbilha

IINuevaChinaja Total

1 Ameiva festivaWiegmann, 1834

5 5

2 Ameiva undulataLichtenstein, 1856

4 4

3 Atropoides nummiferRuppel, 1845

3 3

4 Basiliscus vitattusWiegmann, 1828

1 1

5 Boa constrictor Linnaeus,1758

1 1

6 Bothriechis schlegeliiBerthold, 1846

1 1

7 Coniophanes fissidensGunther, 1858

1 1

8 Dryadophis melanolomusCope, 1868

1 1

9 Drymobius margaritiferusSchlegel, 1837

1 1

10 Eumeces sumicrastiCope,1866

1 1

11 Eumeces schwartzei 112 Imantodes cenchoa

Linnaeus, 17582 2 4

13 LeptodeiraseptentrionalisGunther, 1895

1 1

14 Leptophis aheatullaLinnaeus, 1758

1 1

15 Ninia sebae Dume!ril,Bribon, andDume!ril,1854

2 2

16 Norops biporcatusDume!ril, Bribon, andDume!ril, 1854

3 3

17 Norops capito Peters,1863

1 1

18 Norops uniformis Cope,1885

7 4 11

19 Pliocercus elapoidesCope, 1860

1 1

20 Rhadinaea decorataGunther, 1858

1 1

21 Sceloporus teapensisGunther, 1890

4 4

22 Sibon sanniola Cope,1867

2 2

23 Sphenomorphus cherrieiCope, 1867

3 3

24 Xenodon rabdocephalusWied, 1824

2 2

Total individuals captured 21 35 56Richness n = 9 sp. n = 17 sp. n = 24 sp.

Table 5. Small terrestrial mammals found in the Sierra Chinajaaccording to Ordonez, N. and Pe!rez, S.

Site

Species Mucbilha II Nueva Chinaja

1 Peromyscus mexicanus 22 Oryzomys sp. 13 Sigmodon hispidus 14 Heteromys desmarestianus 15 Didelphis marsupiales 2

Total individuals captured 1 6

Table 4. Bat species found and their relative abundances accord-ing to Ordonez, N. Pe!rez, S. and Cajas, J.

Site

SpeciesMucbilha

IINuevaChinaja

TzululQeqchi Total

1 Carolliaperspicilliata

3 3

2 Carollia sowelli 7 10 173 Carollia

brevicauda10 10

4 Dermanura azteca 3 25 Dermanura

phaeotis2 2

6 Dermanura tolteca 2 3 57 Dermanura

watsoni1 5 6

8 Desmodusrotundus

1 1

9 Diphylla ecaudata 2 210 Glossophaga

soricina1 1

11 Mimon cozumelae 1 112 Myotis arbescens 3 313 Platyrrhinus

helleri1 1

14 Pteronotus helleri 1 115 Pteronotus

parnelli2 2

16 Sturnira ludovici 2 217 Tonatia saurophila 2 218 Trachops cirrhosus 1 119 Uroderma

bilobatum1 1

20 Sturnira lilium 4 4

Total individualscaptured

8 38 22 67

Richness 4 13 6 20

128 C. Bonham et al.

Downloaded By: [Bonham, Curan] At: 14:15 21 September 2009

also absent in the vicinities of Laguna Lachua NationalPark, a low-elevation tropical wet forest in the same region(Perez, S. personal communication 2005). Thus, P. mexica-nus may now be isolated in the upper elevations of theSierra Chinaja.

At Tzulul Qeqchi (750 m), a community of sevenspecies of hummingbirds (Trochilidae) included:Amazilia candida, Amazilia tzacatl, Phaethornis super-ciliosus, Phaethornis longuemareus, Campylopteris cur-vipennis, Eupherusa eximia and Phaeocroa cuvierrii.Based on the total number of species and the numberof endemic species, Tzulul Qeqchi was identified as themost important site, with the greatest number of montanespecies. This is most likely because this site occupies thehighest parts of the Sierra and has maintained a largedegree of forest integrity.

Conclusions

An ecotone of elevated biodiversity

This rapid assessment of biodiversity underscores theimportance of the Sierra Chinaja as an ecotone betweenthe Verapaz highlands and the Pe!ten lowlands, serving ashabitat for both lowland and highland species. Due to itsisolated position on the northern edge of the southernorographic uplift of Guatemala, the Sierra Chinaja maybe one of the lowest elevation cloud forests inMesoamerica where biogeographic speciation may beoccurring. This assertion is warranted not only by thedata, but also by the so-called Massenerhebung effectdescribed by Grubb (1971), which causes the formationof montane forest conditions at lower elevations on nar-row and isolated mountain ranges (Flenley 1995).

Many characteristic highland species are distributed atthe upper elevational sites (.600 m) of Tzulul Qeqchi andNueva Chinaja. These areas of lowland and highland eco-system overlap are of primary conservation importancebecause of their elevated species richness. The presence of16 typically highland avian species suggests a highlandaffinity of the avian community at higher sites. Not only isthis pattern evident in birds, but also in dung beetles, whereCopris nubilosus was found, a species previously reportedonly in Purulha, Alta Verapaz, a cloud forest habitat atapproximately 1,200 m. The presence of this species inSierra Chinaja is not only a new record, but also suggeststhe ecological importance of this mountain chain. The samepattern is true for Mastofauna, such as Dermanura tolteca,Sturnira ludovici and Peromyscus mexicanus, which aretypical inhabitants of upland forests (Perez et al. 2005).The records of the leaf frogs Agalychnis moreletii, A. calli-dryas and Eleutherodactylus xucanebi are additional

Table 8. Dung beetles found in the Sierra Chinaja. According toE. Cano systematic entomology lab at Universidad del Valle.

Site

SpeciesMucbilha

IINueva

EsperanzaTzululQeqchi Total

1 Ateuchus sp. 8 82 Bdeliropsis

bowditchi50 4 54

3 Canthonmontanus

1 1

4 Canthydium sp.* 3 35 Copris laeviceps 9 31 30 706 Copris nubilosus 3 37 Deltochilum

bowditchi6 6

8 Deltochilumpseudoparile

1 1

9 Dichotomiusagenor

3 3 6

10 Dichotomiussatanas

1 8 6 15

11 Eurysternusangustulus

8 8

12 Eurysternuscaribaeus

1 1

13 Ontherusmexicanus

2 2

14 Onthophagussp.*

1 1

15 Onthophagussp.1

2 2

16 Onthophagussp.2

1 1

17 Onthophagussp.3

1 1

18 Phanaeusendymium

1 1

19 Uroxys boneti 3 320 Uroxys micro 2 2

Total abundance 78 53 58 189

Note: *Undescribed species (E. Cano, systematic entomology lab atUniversidad del Valle).

Table 7. Amphibians found in the Sierra Chinaja, according toVasquez, C. with help from Acevedo, M.

Site

EspecieMucbilha

IINuevaChinaja Total

1 Agalychnis callidryas 1 12 Agalychnis morelleti 1 13 Bufo valliceps 17 3 204 Eleutherodactylus alfredi 15 Eleutherodactylus chac 3 36 Eleutherodactylus

laticeps2 2

7 Eleutherodactyluspsephosypharus

4 4

8 Eleutherodactylusxucanebi

6 6

9 Hyla microcephala 2 210 Leptodactylus labiales 1 111 Leptodactylus

melanonotus2 2

12 Rana berlandieri 1 113 Rana vaillanti 1 114 Smilisca baudini 3 3 6

Total abundante 25 26 51Richness n = 6 sp. n = 10 sp. n = 14 sp.

International Journal of Biodiversity Science & Management 129

Downloaded By: [Bonham, Curan] At: 14:15 21 September 2009

evidence of the highland nature and greater species richnessof Sierra Chinaja as compared to adjacent lowland or high-land ecosystems.

While the majority of the Sierra Chinaja is habitat forpredominantly lowland species, all the previously men-tioned species are found only above 500 m and thusrestricted to habitat that corresponds to less than 25%of the Sierra Chinaja; hence, populations of these speciesexist in an isolated highland community surrounded bylowland ecosystems. This suggests that they have per-sisted since the genetic flow between the mountainousareas of the Sierra Chama to the south was cut off. Ittherefore further suggests that speciation has been occur-ring within these populations for some time and that theprobability of the existence of new endemic species ishigh. Nevertheless, some highland species may be able tomigrate through, or seasonally occupy, lowland habitat,while some lowland species may be able to utilize high-land habitat. The degree of habitat permeability or theability of a species to freely pass from one side of thisecotone to the other warrants further study, and couldcontribute discoveries to biogeographic theory.

The Sierra Chinaja illustrates an important ecologicalprinciple about the permeability of ecological boundariesand its effect on species distribution. The ecotone frompredominantly tropical lowlands to a mix of montaneenvironments is an enigma, and remains poorly under-stood by ecologists (Whitmore 1998). In the SierraChinaja, species assemblages change as one penetratesthe interior highlands of the mountain massif. Thechange in elevation, and its corresponding effect uponspecies composition from predominantly lowland to pre-dominantly highland communities, creates sympatricregions with habitat suitable for both lowland and high-land species. As recognized by others (Wake 1987;McCain 2004, 2005), instead of increased competitionleading to the exclusion of certain species, these datasuggest that increased biodiversity results.

Conservation importance

The Sierra Chinaja is the ecotone between the LacandonJungles and Verapaz Highlands, two areas of high biodi-versity and conservation priorities for multi-million dollarbiodiversity conservation finance programmes developedby international conservation organisations. Nevertheless,the Sierra Chinaja has not been the target of internationalconservation investments, despite possibly possessing asmuch or more ecological value as these two areas.

Although the Sierra Chinaja is located in a remotezone with low population and has an average slope of,30%, with shallow, rocky infertile soils, largelyunsuited for agriculture, it has recently come under sig-nificant threat by land invasion, expansion of plantationsand small-scale agriculture, illegal hunting and logging,unlicensed collection of ornamental plants, oil explora-tion and limestone mining. The inequitable distributionof agricultural lands in the more suitable adjacent

lowlands has caused widespread dispersed settlementand resource extraction of this marginal area. For thisreason, forest coverage is a mosaic of stand types indifferent successional stages, with only a few blocks ofthe most remote and inaccessible forest remaining inmature, well-developed cover.

The upper elevational range (.500 m) of the SierraChinaja, where much of the unique biodiversity occurs,occupies very little surface area (,25% of the totalrange). Consequently, conservation of the highestforested slopes of the Sierra Chinaja should be a toppriority for government agencies and conservation orga-nisations. These forests provide habitat for many speciesdependent upon mature forests, as illustrated above. Theyalso contain many valuable timber and nontimber forestresources (Salafsky et al. 1993). The exploitation offorest species has a long history in the lowlands of thePe!ten (Schwartz 1990). Timber species such as Swieteniamacrophylla and Cedrela odorata have been selectivelylogged from these areas since colonial times (Snook1999). For this reason, and given the current globalmarket for high-value tropical timber, these species arethreatened throughout much of their range (Snook 1999).The Sierra Chinaja also provides habitat to many well-known non-timber forest product species such as chicle(Manilkara sapota), allspice (Pimienta dioica), xate(Chamaedorea spp.), ramon (Brosimium alicastrum), sar-saparilla (Smilax sp.) and a variety of medicinal plants.The abundance and value of non-timber forest productsin this region is a reason to assess development andconservation plans that take advantage of the sustainablemanagement of these high-value species.

The basic understanding of the biodiversity profile ofthis unique area provides a basis for government autho-rities to give it the attention it currently lacks and togrant it the management status that will assure its long-term continuity.

AcknowledgementsWe would like to thank the following institutions and personnelthat helped to make this study possible: Manuel Vinicio Lopez,Teodoro Maas from APROBA-SANK, Reginaldo Reyes and theNational Fund for Nature Conservation FONACON, RosaMaria Chang from PROPETEN, Mario Veliz at the BIGUHerbarium, Students and faculty members from the vertebratezoology department and the School of Biology from theUniversidad de San Carlos who assisted in the fieldwork,Manuel Acevedo for his collaboration in the collection ofherpetofauna, Daniel Tenes, who helped in bird surveys, JulioMorales and Miguel Flores from CECON Herbarium and theanonymous reviewers for providing invaluable and insightfulinput, which vastly improved this manuscript.

ReferencesBarrios R. 1995. 50 Areas de Intere!s Especial para la Conservacion

en Guatemala. CDC-CECON. The Nature Conservancy(TNC). Guatemala. 32.

130 C. Bonham et al.

Downloaded By: [Bonham, Curan] At: 14:15 21 September 2009

Bonham C, Sacayon E, Tzi E. 2008. Protecting imperiled ‘‘paperparks’’: potential lessons from the Sierra Chinaja, Guatemala.Biodivers Conserv. 17(7):1581–1593.

Breedlove DE. 1981. Introduction to the Flora of Chiapas. InBreedlove DE, editors. Flora of Chiapas. Part 1. SanFrancisco: California Academy of Sciences. p. 35.

Campbell JA, Vannini JP. 1989. Distribution of amphibians andreptiles inGuatemala andBelize.West FoundVertebr Zool. 4(1).

Comiskey J, Dallmeier E, and Mistry S. 1999. Protocolo de mues-treo de vegetacion para la Selva Maya. Pp. 18–27 in: Carr III,A. and A.C. de Stoll (eds.) Monitoreo Biologico en la SelvaMaya. U.S. Man and the Biosphere Program & WildlifeConservation Society. PDF document, U.S.-MAB Program,Washington, 51 pp.

CONAP. 1989. Decreto 4–89. Ley de Areas Protegidas, reformas ala ley Decretos 18–89, 110–96 y 117–97, y reglamento.Congreso de la Republica de Guatemala. Guatemala.

Favila ME, Halffter G. 1997. The use of indicator groups formesuring biodiversity as related to community structure andfunction. Acta Zool Mex. 72:1–25.

Flenley JR. 1995. Cloud forest, the Massenerhebung effect, andultraviolet insolation. In: Hamilton LS, Juvik JO, Scatena FN,editors. Tropical montane cloud forests. Ecolgical studies(Vol. 110), New York: Springer-Verlag. pp. 150–155.

Fenton M, Acharya L, Audet D, Hickey MBC, Merriman M,Obrist M, Syme D, Adkins B. 1992. Phyllostomid Bats(Chiroptera: Phyllostomidae) as Indicators of HabitatDisruption in the Neotropics. Biotropica. 24:440–446.

Gaston K, Blackburn B. 1995. Mapping biodiversity using surro-gates for species richness: macros-scales and New Worldbirds. Proc R Soc Lond. 262:335–341.

Grubb PJ. 1971. Interpretation of the ‘Massenerhebung’ Effect onTropical Mountains. Nature. 229:44–45.

Hammer Ø, Harper D, Ryan D. 2001. PAST: Paleontologicalstatistics software package for education and data analysis.Palaeontol Electronica. 4:9.

Howell S, Webb S. 1995. A guide to the birds of Mexico andNorthern Central America. New York: Oxford UniversityPress. p. 851.

Jolon M. 2003. Biodiversidad en el Area del Las Cuevas deCandelaria: Fauna. Informe Final de Consultoria. FIPA.Guatemala. 25.

Jones D. 1993. Cycads of the World. Washington (DC):Smithsonian Institution Press. pp. 255.

Kerr J, Sugar A, Packer L. 2000. Indicator taxa, rapid biodiversityassessment, and nestedness in an endangered ecosystem.Conserv Biol. 14:1726–1734.

Kohlmann B. Cano E. Delgado L. 2003. New species and recordsof Copris (Coleoptera: Scarabaeidae; Scarabaeinae) fromCentral America. Zootaxa. 167:1–16.

Matteucci S, Colma A. 1982. Metodologıa para el estudio de lavegetacion. OEA. Serie biologıa. Monografıa. 22:168.

Martinez E, Ramos C, Chiang C. 1994. Lista Floristica del laLacandona, Chiapas, Mexico. Boletin de la sociedadBotanica de Mexico. 54:99–175.

McCain C. 2004. The mid-domain effect applied to elevationalgradients: species richness of small mammals in Costa Rica.J Biogeogr. 31:19–31.

McCain C. 2005. Elevational gradients in diversity of small mam-mals. Ecology. 8:366–372.

Medellın RA, Arita HT, Sanchez O. 1997. Identificacion de losmurcie!lagos de Me!xico,clave de campo. Me!xico, DF: TalleresOffset Rebosan, S.A. p. 83.

Meerman, JC, Matola S. (eds.), 2003. The Columbia River ForestReserve: Little Quartz Ridge Expedition, A BiologicalAssessment. Columbia University Printing Services. 93 pp.

Oliver I, Beattie A. 1993. A possible method for the rapid assess-ment of biodiversity. Conserv Biol. 7:562–568.

Pearman P. 1997. Correlates of amphibian diversity in an alteredlandscape of amazonian ecuador. Conserv Biol. 11:1211–1225.

Perez S, Castillo J, Echeverrria J, Masaya L, Jolon M. 2005. Lascolleciones de mamiferos y las areas silvestres protegidas deGuatemala. Museo de Historia Natural. Universidad de SanCarlos de Guatemala.

Reid FA. 1997. A field guide to the mammals of Central America andSoutheast Mexico. New York: Oxford University Press. p. 334.

Salafsky N, Dugelby B, Terborgh J. 1993. Can extractive reservessave the rain forest? an ecological and socioeconomic compar-ison of nontimber forest product extraction systems in Peten,Guatemala, and West Kalimantan, Indonesia. Conserv Biol.7:39–52.

Sayre R, Roca E, Sedaghatkish G, Young B, Keel S, Roca R,Shepard S. 2000. Nature in focus: rapid ecological assessment.the nature conservancy. Washington DC: Island Press.

Schwartz NB. 1990. Forest society: a social history of Peten,Guatemala. Philadelphia: University of Pennsylvania Press.

Snook, L. 1999. Aprovechamiento sostenido de caoba (Swieteniamacrophylla King) de las selvas de la penınsula de Yucatan,Me!xico: pasado, presente y futuro. In Primack, RB; Bray, D;Galletti, HA; Ponciano, I. eds. La Selva Maya: conservacion ydesarrollo. Me!xico, DF., Siglo XXI. p. 89–119.

Stotz D, Fitzpatrick J, Parker T, Molkovits M. 1996. Neotropicalbirds: ecology and conservation. Chicago: The University ofChicago Press. p. 480.

Uieda W. 1992. Periodo de Atividade Alimentar e Tipos de Presados Morcegos Hematofagos No Sudeste do Brasil. Rev BrasilBiol. 52(4):563–573.

United States Forest Service. 2002. Bird Monitoring Techniques.Pacific Southwest Reesearch Station. General TechnicalReport: PSW-GTR-144

Wake DB. 1987. Adaptive radiation of salamanders in MiddleAmerican cloud forests. Annals of the Missouri BotanicalGarden. 74(2):242–264.

Whitmore T. 1998. An introduction to tropical rain forests. Oxford:Oxford University Press. p. 282.

Young B, Lips K, Reaser J, Ibanez R, Salas A, Cedeno J, ColomaL, Ron S, La Marca E, Meyer J, Munoz A, Bolanos F, ChavesG, Romo D. 2001. Population declines and priorities foramphibian conservation in Latin America. Conserv Biol.15:1213–1223.

International Journal of Biodiversity Science & Management 131

Downloaded By: [Bonham, Curan] At: 14:15 21 September 2009