Applications of Confluent Hypergeometric Function in Strong ...

13
Citation: Oros, G.I.; Oros, G.; Rus, A.M. Applications of Con๏ฌ‚uent Hypergeometric Function in Strong Superordination Theory. Axioms 2022, 11, 209. https://doi.org/10.3390/ axioms11050209 Academic Editor: Sidney A. Morris Received: 18 April 2022 Accepted: 21 April 2022 Published: 29 April 2022 Publisherโ€™s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional af๏ฌl- iations. Copyright: ยฉ 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). axioms Article Applications of Con๏ฌ‚uent Hypergeometric Function in Strong Superordination Theory Georgia Irina Oros 1 , Gheorghe Oros 1 and Ancut , a Maria Rus 2, * 1 Department of Mathematics and Computer Science, Faculty of Informatics and Sciences, University of Oradea, 410087 Oradea, Romania; [email protected] (G.I.O.); [email protected] (G.O.) 2 Doctoral School of Engineering Sciences, University of Oradea, 410087 Oradea, Romania * Correspondence: [email protected] Abstract: In the research presented in this paper, con๏ฌ‚uent hypergeometric function is embedded in the theory of strong differential superordinations. In order to proceed with the study, the form of the con๏ฌ‚uent hypergeometric function is adapted taking into consideration certain classes of analytic functions depending on an extra parameter previously introduced related to the theory of strong differential subordination and superordination. Operators previously de๏ฌned using con๏ฌ‚uent hypergeometric function, namely Kummerโ€“Bernardi and Kummerโ€“Libera integral operators, are also adapted to those classes and strong differential superordinations are obtained for which they are the best subordinants. Similar results are obtained regarding the derivatives of the operators. The examples presented at the end of the study are proof of the applicability of the original results. Keywords: analytic function; starlike function; convex function; strong differential superordination; best subordinant; con๏ฌ‚uent (Kummer) hypergeometric function 1. Introduction The theory of strong differential subordination was initiated by Antonino and Roma- guera [1] as a generalization of the classical concept of differential subordination introduced by Miller and Mocanu [2,3]. The results obtained by Antonino and Romaguera for the case of strong Briotโ€“Bouquet differential subordinations inspired the development of the general theory related to strong differential subordination as seen for the classical case of differential subordination which is synthetized in [4]. The main aspects of strong differen- tial subordination theory were established in a paper published in 2009 [5] by stating the three problems on which the theory is based on and by de๏ฌning the notions of solution of a strong differential subordination and dominant of the solutions of the strong differential subordination. The class of admissible functions, a basic tool in the study of strong differ- ential subordinations, was also introduced in this paper. The theory developed rapidly especially through studies associated to different operators like Liuโ€“Srivastava operator [6], a generalized operator [7], multiplier transformation [8,9], Komatu integral operator [10], Sฤƒlฤƒgean operator and Ruscheweyh derivative [11] or a certain differential operator [12]. The topic is still interesting for researchers as it is obvious from the numerous publications in the last two years when multiplier transformation and Ruscheweyh derivative [13] or integral operators [14] were used for obtaining new strong subordination results. We can refer to [15,16] for applications of differential operators in the analyses of phenomena from mathematical biology. The dual notion of strong differential superordination was introduced also in 2009 [17] following the pattern set by Miller and Mocanu for the classical notion of differential superordination [18]. The special case of ๏ฌrst order strong differential superordinations was next investigated [19]. Strong differential superodinations were applied to a general equation [20] and they were also related to different operators such as generalized Sฤƒlฤƒgean Axioms 2022, 11, 209. https://doi.org/10.3390/axioms11050209 https://www.mdpi.com/journal/axioms

Transcript of Applications of Confluent Hypergeometric Function in Strong ...

Citation: Oros, G.I.; Oros, G.; Rus,

A.M. Applications of Confluent

Hypergeometric Function in Strong

Superordination Theory. Axioms 2022,

11, 209. https://doi.org/10.3390/

axioms11050209

Academic Editor: Sidney A. Morris

Received: 18 April 2022

Accepted: 21 April 2022

Published: 29 April 2022

Publisherโ€™s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: ยฉ 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Applications of Confluent Hypergeometric Function in StrongSuperordination TheoryGeorgia Irina Oros 1 , Gheorghe Oros 1 and Ancut,a Maria Rus 2,*

1 Department of Mathematics and Computer Science, Faculty of Informatics and Sciences,University of Oradea, 410087 Oradea, Romania; [email protected] (G.I.O.);[email protected] (G.O.)

2 Doctoral School of Engineering Sciences, University of Oradea, 410087 Oradea, Romania* Correspondence: [email protected]

Abstract: In the research presented in this paper, confluent hypergeometric function is embeddedin the theory of strong differential superordinations. In order to proceed with the study, the formof the confluent hypergeometric function is adapted taking into consideration certain classes ofanalytic functions depending on an extra parameter previously introduced related to the theory ofstrong differential subordination and superordination. Operators previously defined using confluenthypergeometric function, namely Kummerโ€“Bernardi and Kummerโ€“Libera integral operators, arealso adapted to those classes and strong differential superordinations are obtained for which they arethe best subordinants. Similar results are obtained regarding the derivatives of the operators. Theexamples presented at the end of the study are proof of the applicability of the original results.

Keywords: analytic function; starlike function; convex function; strong differential superordination;best subordinant; confluent (Kummer) hypergeometric function

1. Introduction

The theory of strong differential subordination was initiated by Antonino and Roma-guera [1] as a generalization of the classical concept of differential subordination introducedby Miller and Mocanu [2,3]. The results obtained by Antonino and Romaguera for thecase of strong Briotโ€“Bouquet differential subordinations inspired the development of thegeneral theory related to strong differential subordination as seen for the classical case ofdifferential subordination which is synthetized in [4]. The main aspects of strong differen-tial subordination theory were established in a paper published in 2009 [5] by stating thethree problems on which the theory is based on and by defining the notions of solution of astrong differential subordination and dominant of the solutions of the strong differentialsubordination. The class of admissible functions, a basic tool in the study of strong differ-ential subordinations, was also introduced in this paper. The theory developed rapidlyespecially through studies associated to different operators like Liuโ€“Srivastava operator [6],a generalized operator [7], multiplier transformation [8,9], Komatu integral operator [10],Sฤƒlฤƒgean operator and Ruscheweyh derivative [11] or a certain differential operator [12].The topic is still interesting for researchers as it is obvious from the numerous publicationsin the last two years when multiplier transformation and Ruscheweyh derivative [13] orintegral operators [14] were used for obtaining new strong subordination results. We canrefer to [15,16] for applications of differential operators in the analyses of phenomena frommathematical biology.

The dual notion of strong differential superordination was introduced also in 2009 [17]following the pattern set by Miller and Mocanu for the classical notion of differentialsuperordination [18]. The special case of first order strong differential superordinationswas next investigated [19]. Strong differential superodinations were applied to a generalequation [20] and they were also related to different operators such as generalized Sฤƒlฤƒgean

Axioms 2022, 11, 209. https://doi.org/10.3390/axioms11050209 https://www.mdpi.com/journal/axioms

Axioms 2022, 11, 209 2 of 13

and Ruscheweyh operators [21], new generalized derivative operator [22], or certain generaloperators [23]. This notion is still popular as it can be proved by listing a few more papersthan already shown, published recently [24โ€“26].

In 2012 [27], some interesting new classes were introduced related to the theoryof strong differential subordination and superordination. They are intensely used forobtaining new results ever since they were connected to the studies.

The study presented in this paper uses those classes which we list as follows:For U = z โˆˆ C : |z| < 1 the unit disc of the complex plane, there are some notations

used: U = z โˆˆ C : |z| โ‰ค 1 and โˆ‚U = z โˆˆ C : |z| = 1. H(U) denotes the class ofholomorphic functions in the unit disc.

Let H(U ร—U

)denote the class of analytic functions in U ร—U.

The following subclasses of H(U ร—U

)are defined in [27]:

Hฮถ [a, n] =

f โˆˆ H(U ร—U

): f (z, ฮถ) = a + an(ฮถ)zn + an+1(ฮถ)zn+1 + . . . , z โˆˆ U, ฮถ โˆˆ U

with ak(ฮถ) holomorphic functions in U, k โ‰ฅ n, a โˆˆ C, n โˆˆ N.

HฮถU(U) =

f โˆˆ Hฮถ [a, n] : f (ยท, ฮถ) univalent in U for all ฮถ โˆˆ U

Aฮถn =

f โˆˆ H(U ร—U

): f (z, ฮถ) = z + an+1(ฮถ)zn+1 + . . . , z โˆˆ U, ฮถ โˆˆ U

, with Aฮถ1 = Aฮถ

and ak(ฮถ) holomorphic functions in U, k โ‰ฅ n + 1, n โˆˆ N.

Sโˆ—ฮถ =

f โˆˆ Aฮถ : Re

z f โ€ฒz(z, ฮถ)

f (z, ฮถ)> 0, z โˆˆ U, ฮถ โˆˆ U

denotes the class of starlike functions in U ร—U.

Kฮถ =

f โˆˆ Aฮถ : Re

(z f โ€ฒโ€ฒz2(z, ฮถ)

f โ€ฒz(z, ฮถ)+ 1

)> 0, z โˆˆ U, ฮถ โˆˆ U

denotes the class of convex functions in U ร—U.For obtaining the original results of this paper, the following definitions and notations

introduced in [27] are necessary:

Definition 1 ([27]). Let h(z, ฮถ)and f (z, ฮถ) be analytic functions in Uร—U. The function f (z, ฮถ) issaid to be strongly subordinate to h(z, ฮถ), or h(z, ฮถ) is said to be strongly superordinate to f (z, ฮถ) ifthere exists a function w analytic in U with w(0) = 0, |w(z)| < 1 such that f (z, ฮถ) = h(w(z), ฮถ),for all ฮถ โˆˆ U, z โˆˆ U. In such a case, we write

f (z, ฮถ)

Axioms 2022, 11, x FOR PEER REVIEW 3 of 12

Definition 3. [27] Let ๐›บ be a set in โ„‚, ๐‘ž(โˆ™, ๐œ) โˆˆ ๐›บ , and ๐‘› a positive integer. The class of ad-missible functions ๐›ท ๐›บ , ๐‘ž(โˆ™, ๐œ) consists of those functions ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚ that satisfy the admissibility condition ๐œ‘(๐‘Ÿ, ๐‘ , ๐‘ก; ๐œ‰, ๐œ) โˆˆ ๐›บ (A)

whenever ๐‘Ÿ = ๐‘ž(๐‘ง, ๐œ), ๐‘  = ( , ) , ๐‘…๐‘’ + 1 โ‰ค ๐‘…๐‘’ '' ( , )' ( , ) + 1 , ๐‘ง โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. When ๐‘› = 1 we write ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) as ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) . In the special case when โ„Ž(โˆ™, ๐œ) is an analytic mapping of ๐‘ˆ ร— ๐‘ˆ onto ๐›บ โ‰  โ„‚ we denote the class ฮฆ โ„Ž(๐‘ˆ ร— ๐‘ˆ) , ๐‘ž(๐‘ง, ๐œ) by ฮฆ โ„Ž(๐‘ง, ๐œ) , ๐‘ž(๐‘ง, ๐œ) . If ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚, then the admissibility condition (A) reduces to ๐œ‘ ๐‘ž(๐‘ง, ๐œ), ๐‘ง๐‘ž (๐‘ง, ๐œ)๐‘š ; ๐œ‰, ๐œ โˆˆ ๐›บ , (Aโ€™)

where ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. Millerโ€”Mocanu lemma given in [18] was rewritten in [27] for functions ๐‘(๐‘ง, ๐œ) and ๐‘ž(๐‘ง, ๐œ) as follows:

Lemma 1. ([17],[27]) Let ๐‘(๐‘ง, ๐œ) โˆˆ ๐‘„(๐‘Ž) and let ๐‘ž(๐‘ง, ๐œ) = ๐‘Ž + ๐‘Ž (๐œ)๐‘ง + ๐‘Ž (๐œ)๐‘ง + โ‹ฏ with ๐‘Ž (๐œ) holomorphic functions in ๐‘ˆ, ๐‘˜ โ‰ฅ ๐‘›, ๐‘ž(๐‘ง, ๐œ) โ‰ข ๐‘Ž and ๐‘› โ‰ฅ 1. If ๐‘ž(๐‘ง, ๐œ) is not subor-dinate to ๐‘(๐‘ง, ๐œ), then there exist points ๐‘ง = ๐‘Ÿ ๐‘’ โˆˆ ๐‘ˆ and ๐œ‰ โˆˆ ๐œ•๐‘ˆ\๐ธ ๐‘(๐‘ง, ๐œ) and an ๐‘š โ‰ฅ๐‘› โ‰ฅ 1 for which ๐‘ž(๐‘ˆ ร— ๐‘ˆ ) โŠ‚ ๐‘(๐‘ˆ ร— ๐‘ˆ) and (๐‘–) ๐‘ž(๐‘ง , ๐œ) = ๐‘(๐œ‰ , ๐œ), (๐‘–๐‘–) ๐‘ง ๐‘ž (๐‘ง , ๐œ) = ๐‘š๐œ‰ ๐‘ (๐œ‰ , ๐œ) and (๐‘–๐‘–๐‘–) ๐‘…๐‘’ ๐‘ง ๐‘ž (๐‘ง , ๐œ)๐‘ž (๐‘ง , ๐œ) + 1 โ‰ฅ ๐‘š๐‘…๐‘’ ๐œ‰ ๐‘ (๐œ‰ , ๐œ)๐‘ (๐œ‰ , ๐œ) + 1 .

This lemma will be used in the next section for proving the theorems which contain the original results. Another helpful result which will be used is the next lemma proved in [28].

Lemma 2. [28] Let โ„Ž(๐‘ง, ๐œ) be convex in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ with โ„Ž(0, ๐œ) = ๐‘Ž, ๐›พ โ‰  0, ๐‘…๐‘’ ๐›พ > 0 and ๐‘ โˆˆ ๐ป ๐‘Ž, 1 โˆฉ ๐‘„. If ๐‘(๐‘ง, ๐œ) + ( , ) is univalent in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ, โ„Ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ) + ๐‘ง๐‘ (๐‘ง, ๐œ)๐›พ

and ๐‘ž(๐‘ง, ๐œ) = ๐›พ๐‘ง โ„Ž(๐‘ก, ๐œ)๐‘ก ๐‘‘๐‘ก, then ๐‘ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ), ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ. The function ๐‘ž is convex and is the best subordinant.

The connection between univalent function theory and hypergeometric functions was established in 1985 when de Branges used the generalized hypergeometric function for proving Bieberbachโ€™s conjecture [29]. Once hypergeometric functions were considered in studies regarding univalent functions, confluent hypergeometric function was used in many investigations. One of the first papers which investigated confluent hypergeometric function and gave conditions for its univalence was published in 1990 [30]. Ever since then, aspects of its univalence were further investigated [31,32], it was considered in con-nection with other important functions [33โ€“37] and it was used in the definition of new

h(z, ฮถ), z โˆˆ U, ฮถ โˆˆ U.

Remark 1 ([27]). (a) If f (z, ฮถ) is analytic in U ร— U and univalent in U for ฮถ โˆˆ U, thenDefinition 1 is equivalent to:

f (0, ฮถ) = h(0, ฮถ), for all ฮถ โˆˆ U and f(U ร—U

)โŠ‚ h

(U ร—U

).

(b) If f (z, ฮถ) = f (z), h(z, ฮถ) = h(z), then the strong superordination becomes the usual superordination.

Definition 2 ([27]). We denote by Qฮถ the set of functions q(ยท, ฮถ) that are analytic and injective, asfunction of z, on U\E(q(z, ฮถ)) where

E(q(z, ฮถ)) =

ฮพ โˆˆ โˆ‚U : lim

zโ†’ฮพq(z, ฮถ) = โˆž

and are such that qโ€ฒz(ฮพ, ฮถ) 6= 0 for ฮพ โˆˆ โˆ‚U\E(q(z, ฮถ)), ฮถ โˆˆ U.

Axioms 2022, 11, 209 3 of 13

The subclass of Qฮถ for which q(0, ฮถ) = a is denoted by Qฮถ(a).

Definition 3 ([27]). Let ฮฉฮถ be a set in C, q(ยท, ฮถ) โˆˆ ฮฉฮถ , and n a positive integer. The class ofadmissible functions ฮฆn

[ฮฉฮถ , q(ยท, ฮถ)

]consists of those functions ฯ• : C3 ร—U ร—U โ†’ C that satisfy

the admissibility conditionฯ•(r, s, t; ฮพ, ฮถ) โˆˆ ฮฉฮถ (A)

whenever r = q(z, ฮถ), s = zqโ€ฒz(z, ฮถ)m , Re

( ts + 1

)โ‰ค 1

m Re[

zqโ€ฒโ€ฒz2 (z,ฮถ)

qโ€ฒz(z,ฮถ) + 1]

, z โˆˆ U, ฮพ โˆˆ U\E(q(ยท, ฮถ))

and m โ‰ฅ n โ‰ฅ 1. When n = 1 we write ฮฆ1[ฮฉฮถ , q(ยท, ฮถ)

]as ฮฆ

[ฮฉฮถ , q(ยท, ฮถ)

].

In the special case when h(ยท, ฮถ) is an analytic mapping of U ร—U onto ฮฉฮถ 6= C we denote the classฮฆn[h(U ร—U

), q(z, ฮถ)

]by ฮฆn[h(z, ฮถ) , q(z, ฮถ)].

If ฯ• : C2 ร—U ร—U โ†’ C , then the admissibility condition (A) reduces to

ฯ•

(q(z, ฮถ),

zqโ€ฒz(z, ฮถ)

m; ฮพ, ฮถ

)โˆˆ ฮฉฮถ , (Aโ€™)

where z โˆˆ U, ฮถ โˆˆ U, ฮพ โˆˆ U\E(q(ยท, ฮถ)) and m โ‰ฅ n โ‰ฅ 1.

Millerโ€”Mocanu lemma given in [18] was rewritten in [27] for functions p(z, ฮถ) andq(z, ฮถ) as follows:

Lemma 1 ([17,27]). Let p(z, ฮถ) โˆˆ Q(a) and let q(z, ฮถ) = a + an(ฮถ)zn + an+1(ฮถ)zn+1 + . . . withak(ฮถ) holomorphic functions in U, k โ‰ฅ n, q(z, ฮถ) 6โ‰ก a and n โ‰ฅ 1. If q(z, ฮถ) is not subordinateto p(z, ฮถ), then there exist points z0 = r0eiฮธ0 โˆˆ U and ฮพ0 โˆˆ โˆ‚U\E(p(z, ฮถ)) and an m โ‰ฅ n โ‰ฅ 1for which q

(U ร—Ur0

)โŠ‚ p

(U ร—U

)and

(i) q(z0, ฮถ) = p(ฮพ0, ฮถ),(ii) z0qโ€ฒz(z0, ฮถ) = mฮพ0 pโ€ฒz(ฮพ0, ฮถ) and

(iii) Re(

z0qโ€ฒโ€ฒz2 (z0, ฮถ)

qโ€ฒz(z0, ฮถ)+ 1)โ‰ฅ mRe

(ฮพ0 pโ€ฒโ€ฒ

z2 (ฮพ0, ฮถ)

pโ€ฒz(ฮพ0, ฮถ)+ 1)

.

This lemma will be used in the next section for proving the theorems which containthe original results. Another helpful result which will be used is the next lemma provedin [28].

Lemma 2 ([28]). Let h(z, ฮถ) be convex in U for all ฮถ โˆˆ U with h(0, ฮถ) = a, ฮณ 6= 0, Re ฮณ > 0and p โˆˆ Hฮถ [a, 1] โˆฉQ. If p(z, ฮถ) +

zpโ€ฒz(z, ฮถ)ฮณ is univalent in U for all ฮถ โˆˆ U,

h(z, ฮถ)

Axioms 2022, 11, x FOR PEER REVIEW 3 of 12

Definition 3. [27] Let ๐›บ be a set in โ„‚, ๐‘ž(โˆ™, ๐œ) โˆˆ ๐›บ , and ๐‘› a positive integer. The class of ad-missible functions ๐›ท ๐›บ , ๐‘ž(โˆ™, ๐œ) consists of those functions ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚ that satisfy the admissibility condition ๐œ‘(๐‘Ÿ, ๐‘ , ๐‘ก; ๐œ‰, ๐œ) โˆˆ ๐›บ (A)

whenever ๐‘Ÿ = ๐‘ž(๐‘ง, ๐œ), ๐‘  = ( , ) , ๐‘…๐‘’ + 1 โ‰ค ๐‘…๐‘’ '' ( , )' ( , ) + 1 , ๐‘ง โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. When ๐‘› = 1 we write ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) as ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) . In the special case when โ„Ž(โˆ™, ๐œ) is an analytic mapping of ๐‘ˆ ร— ๐‘ˆ onto ๐›บ โ‰  โ„‚ we denote the class ฮฆ โ„Ž(๐‘ˆ ร— ๐‘ˆ) , ๐‘ž(๐‘ง, ๐œ) by ฮฆ โ„Ž(๐‘ง, ๐œ) , ๐‘ž(๐‘ง, ๐œ) . If ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚, then the admissibility condition (A) reduces to ๐œ‘ ๐‘ž(๐‘ง, ๐œ), ๐‘ง๐‘ž (๐‘ง, ๐œ)๐‘š ; ๐œ‰, ๐œ โˆˆ ๐›บ , (Aโ€™)

where ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. Millerโ€”Mocanu lemma given in [18] was rewritten in [27] for functions ๐‘(๐‘ง, ๐œ) and ๐‘ž(๐‘ง, ๐œ) as follows:

Lemma 1. ([17],[27]) Let ๐‘(๐‘ง, ๐œ) โˆˆ ๐‘„(๐‘Ž) and let ๐‘ž(๐‘ง, ๐œ) = ๐‘Ž + ๐‘Ž (๐œ)๐‘ง + ๐‘Ž (๐œ)๐‘ง + โ‹ฏ with ๐‘Ž (๐œ) holomorphic functions in ๐‘ˆ, ๐‘˜ โ‰ฅ ๐‘›, ๐‘ž(๐‘ง, ๐œ) โ‰ข ๐‘Ž and ๐‘› โ‰ฅ 1. If ๐‘ž(๐‘ง, ๐œ) is not subor-dinate to ๐‘(๐‘ง, ๐œ), then there exist points ๐‘ง = ๐‘Ÿ ๐‘’ โˆˆ ๐‘ˆ and ๐œ‰ โˆˆ ๐œ•๐‘ˆ\๐ธ ๐‘(๐‘ง, ๐œ) and an ๐‘š โ‰ฅ๐‘› โ‰ฅ 1 for which ๐‘ž(๐‘ˆ ร— ๐‘ˆ ) โŠ‚ ๐‘(๐‘ˆ ร— ๐‘ˆ) and (๐‘–) ๐‘ž(๐‘ง , ๐œ) = ๐‘(๐œ‰ , ๐œ), (๐‘–๐‘–) ๐‘ง ๐‘ž (๐‘ง , ๐œ) = ๐‘š๐œ‰ ๐‘ (๐œ‰ , ๐œ) and (๐‘–๐‘–๐‘–) ๐‘…๐‘’ ๐‘ง ๐‘ž (๐‘ง , ๐œ)๐‘ž (๐‘ง , ๐œ) + 1 โ‰ฅ ๐‘š๐‘…๐‘’ ๐œ‰ ๐‘ (๐œ‰ , ๐œ)๐‘ (๐œ‰ , ๐œ) + 1 .

This lemma will be used in the next section for proving the theorems which contain the original results. Another helpful result which will be used is the next lemma proved in [28].

Lemma 2. [28] Let โ„Ž(๐‘ง, ๐œ) be convex in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ with โ„Ž(0, ๐œ) = ๐‘Ž, ๐›พ โ‰  0, ๐‘…๐‘’ ๐›พ > 0 and ๐‘ โˆˆ ๐ป ๐‘Ž, 1 โˆฉ ๐‘„. If ๐‘(๐‘ง, ๐œ) + ( , ) is univalent in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ, โ„Ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ) + ๐‘ง๐‘ (๐‘ง, ๐œ)๐›พ

and ๐‘ž(๐‘ง, ๐œ) = ๐›พ๐‘ง โ„Ž(๐‘ก, ๐œ)๐‘ก ๐‘‘๐‘ก, then ๐‘ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ), ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ. The function ๐‘ž is convex and is the best subordinant.

The connection between univalent function theory and hypergeometric functions was established in 1985 when de Branges used the generalized hypergeometric function for proving Bieberbachโ€™s conjecture [29]. Once hypergeometric functions were considered in studies regarding univalent functions, confluent hypergeometric function was used in many investigations. One of the first papers which investigated confluent hypergeometric function and gave conditions for its univalence was published in 1990 [30]. Ever since then, aspects of its univalence were further investigated [31,32], it was considered in con-nection with other important functions [33โ€“37] and it was used in the definition of new

p(z, ฮถ) +zpโ€ฒz(z, ฮถ)

ฮณ

and

q(z, ฮถ) =ฮณ

zฮณ

zโˆซ0

h(t, ฮถ)tฮณโˆ’1dt,

then

q(z, ฮถ)

Axioms 2022, 11, x FOR PEER REVIEW 3 of 12

Definition 3. [27] Let ๐›บ be a set in โ„‚, ๐‘ž(โˆ™, ๐œ) โˆˆ ๐›บ , and ๐‘› a positive integer. The class of ad-missible functions ๐›ท ๐›บ , ๐‘ž(โˆ™, ๐œ) consists of those functions ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚ that satisfy the admissibility condition ๐œ‘(๐‘Ÿ, ๐‘ , ๐‘ก; ๐œ‰, ๐œ) โˆˆ ๐›บ (A)

whenever ๐‘Ÿ = ๐‘ž(๐‘ง, ๐œ), ๐‘  = ( , ) , ๐‘…๐‘’ + 1 โ‰ค ๐‘…๐‘’ '' ( , )' ( , ) + 1 , ๐‘ง โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. When ๐‘› = 1 we write ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) as ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) . In the special case when โ„Ž(โˆ™, ๐œ) is an analytic mapping of ๐‘ˆ ร— ๐‘ˆ onto ๐›บ โ‰  โ„‚ we denote the class ฮฆ โ„Ž(๐‘ˆ ร— ๐‘ˆ) , ๐‘ž(๐‘ง, ๐œ) by ฮฆ โ„Ž(๐‘ง, ๐œ) , ๐‘ž(๐‘ง, ๐œ) . If ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚, then the admissibility condition (A) reduces to ๐œ‘ ๐‘ž(๐‘ง, ๐œ), ๐‘ง๐‘ž (๐‘ง, ๐œ)๐‘š ; ๐œ‰, ๐œ โˆˆ ๐›บ , (Aโ€™)

where ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. Millerโ€”Mocanu lemma given in [18] was rewritten in [27] for functions ๐‘(๐‘ง, ๐œ) and ๐‘ž(๐‘ง, ๐œ) as follows:

Lemma 1. ([17],[27]) Let ๐‘(๐‘ง, ๐œ) โˆˆ ๐‘„(๐‘Ž) and let ๐‘ž(๐‘ง, ๐œ) = ๐‘Ž + ๐‘Ž (๐œ)๐‘ง + ๐‘Ž (๐œ)๐‘ง + โ‹ฏ with ๐‘Ž (๐œ) holomorphic functions in ๐‘ˆ, ๐‘˜ โ‰ฅ ๐‘›, ๐‘ž(๐‘ง, ๐œ) โ‰ข ๐‘Ž and ๐‘› โ‰ฅ 1. If ๐‘ž(๐‘ง, ๐œ) is not subor-dinate to ๐‘(๐‘ง, ๐œ), then there exist points ๐‘ง = ๐‘Ÿ ๐‘’ โˆˆ ๐‘ˆ and ๐œ‰ โˆˆ ๐œ•๐‘ˆ\๐ธ ๐‘(๐‘ง, ๐œ) and an ๐‘š โ‰ฅ๐‘› โ‰ฅ 1 for which ๐‘ž(๐‘ˆ ร— ๐‘ˆ ) โŠ‚ ๐‘(๐‘ˆ ร— ๐‘ˆ) and (๐‘–) ๐‘ž(๐‘ง , ๐œ) = ๐‘(๐œ‰ , ๐œ), (๐‘–๐‘–) ๐‘ง ๐‘ž (๐‘ง , ๐œ) = ๐‘š๐œ‰ ๐‘ (๐œ‰ , ๐œ) and (๐‘–๐‘–๐‘–) ๐‘…๐‘’ ๐‘ง ๐‘ž (๐‘ง , ๐œ)๐‘ž (๐‘ง , ๐œ) + 1 โ‰ฅ ๐‘š๐‘…๐‘’ ๐œ‰ ๐‘ (๐œ‰ , ๐œ)๐‘ (๐œ‰ , ๐œ) + 1 .

This lemma will be used in the next section for proving the theorems which contain the original results. Another helpful result which will be used is the next lemma proved in [28].

Lemma 2. [28] Let โ„Ž(๐‘ง, ๐œ) be convex in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ with โ„Ž(0, ๐œ) = ๐‘Ž, ๐›พ โ‰  0, ๐‘…๐‘’ ๐›พ > 0 and ๐‘ โˆˆ ๐ป ๐‘Ž, 1 โˆฉ ๐‘„. If ๐‘(๐‘ง, ๐œ) + ( , ) is univalent in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ, โ„Ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ) + ๐‘ง๐‘ (๐‘ง, ๐œ)๐›พ

and ๐‘ž(๐‘ง, ๐œ) = ๐›พ๐‘ง โ„Ž(๐‘ก, ๐œ)๐‘ก ๐‘‘๐‘ก, then ๐‘ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ), ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ. The function ๐‘ž is convex and is the best subordinant.

The connection between univalent function theory and hypergeometric functions was established in 1985 when de Branges used the generalized hypergeometric function for proving Bieberbachโ€™s conjecture [29]. Once hypergeometric functions were considered in studies regarding univalent functions, confluent hypergeometric function was used in many investigations. One of the first papers which investigated confluent hypergeometric function and gave conditions for its univalence was published in 1990 [30]. Ever since then, aspects of its univalence were further investigated [31,32], it was considered in con-nection with other important functions [33โ€“37] and it was used in the definition of new

p(z, ฮถ), z โˆˆ U, ฮถ โˆˆ U.

The function q is convex and is the best subordinant.

The connection between univalent function theory and hypergeometric functions wasestablished in 1985 when de Branges used the generalized hypergeometric function forproving Bieberbachโ€™s conjecture [29]. Once hypergeometric functions were consideredin studies regarding univalent functions, confluent hypergeometric function was used inmany investigations. One of the first papers which investigated confluent hypergeometric

Axioms 2022, 11, 209 4 of 13

function and gave conditions for its univalence was published in 1990 [30]. Ever sincethen, aspects of its univalence were further investigated [31,32], it was considered inconnection with other important functions [33โ€“37] and it was used in the definition ofnew operators [38]. This prolific function is used in the present paper for obtaining resultsrelated to another topic, strong differential superordinations. The function is consideredas follows:

Definition 4 ([30]). Let a and c be complex numbers with c 6= 0,โˆ’1,โˆ’2, . . . and consider

ฯ†(a, c; z) = 1 +acยท z1!

+a(a + 1)c(c + 1)

ยท z2

2!+ . . . , z โˆˆ U (1)

This function is called confluent (Kummer) hypergeometric function, is analytic in C, and satisfiesKummerโ€™s differential equation:

zยทwโ€ฒโ€ฒ(z) + [cโˆ’ z]ยทwโ€ฒ(z)โˆ’ aยทw(z) = 0.

If we let

(d)k =ฮ“(d + k)

ฮ“(d)= d(d + 1)(d + 2) . . . (d + kโˆ’ 1) and (d)0 = 1,

then (1) can be written in the form

ฯ†(a, c; z) =โˆž

โˆ‘k=0

(a)k(c)kยท z

k

k!=

ฮ“(c)ฮ“(a)

ยทโˆž

โˆ‘k=0

ฮ“(a + k)ฮ“(c + k)

ยท zk

k!(2)

In the study conducted for obtaining the original results presented in the next sectionof this paper, the operators introduced in [38] are adapted to the subclasses of H

(U ร—U

)defined in [27] as follows:

Definition 5 ([38]). Let ฯ†(a, c; z) be given by (1) and let ฮณ > 0. The integral operatorB : Hฮถ [1, 1]โ†’ Hฮถ [1, 1],

B[ฯ†(a(ฮถ), c(ฮถ); z, ฮถ)] = B(a(ฮถ), c(ฮถ); z, ฮถ) =ฮณ

zฮณ

zโˆซ0

ฯ†(a(ฮถ), c(ฮถ); t, ฮถ)tฮณโˆ’1dt (3)

z โˆˆ U, ฮถ โˆˆ U, is called Kummerโ€“Bernardi integral operator.For ฮณ = 1 the integral operator L : Hฮถ [1, 1]โ†’ Hฮถ [1, 1] is defined as

L[ฯ†(a(ฮถ), c(ฮถ); z, ฮถ)] = L(a(ฮถ), c(ฮถ); z, ฮถ) =1z

zโˆซ0

ฯ†(a(ฮถ), c(ฮถ); t, ฮถ)dt, (4)

z โˆˆ U, ฮถ โˆˆ U , which is called Kummerโ€“Libera integral operator.

The form of the confluent hypergeometric function adapted to the new classes de-pending on the extra parameter ฮถ needed in the studies related to strong differentialsuperordination theory is given in the next section. Strong differential superordinations areproved in the theorems for which the operators given by (3) and (4) and their derivativeswith respect to z are the best subordinants considering ฮณ in relation (3) both a real number,ฮณ > 0, and a complex number with Re ฮณ > 0. Examples are constructed as proof of theapplicability of the new results.

Axioms 2022, 11, 209 5 of 13

2. Main Results

Considering confluent hypergeometric function defined by (1) or (2), if coefficients aand c complex numbers are replaced by holomorphic functions a(ฮถ), c(ฮถ) depending onthe parameter ฮถ โˆˆ U, the function changes its form into the following:

ฯ†(a(ฮถ), c(ฮถ); z, ฮถ) = 1 +a(ฮถ)c(ฮถ)ยท z1!

+a(ฮถ)[a(ฮถ) + 1]c(ฮถ)[c(ฮถ) + 1]

ยท z2

2!+ . . . , z โˆˆ U, (5)

where (ฮถ) 6= 0, c(ฮถ) 6= 0,โˆ’1,โˆ’2, . . ..In [32], Corollary 4 the convexity in the unit disc of the function ฯ†(a, c; z) given by (1)

was proved. This property extends to the new form of the function (a(ฮถ), c(ฮถ); z, ฮถ), as seenin (5).

The first original theorem presented in this paper uses the convexity of the functionฯ†(a(ฮถ), c(ฮถ); z, ฮถ) and the methods related to strong differential superordination theoryin order to find necessary conditions for Kummerโ€“Bernardi integral operator presentedin Definition 5 to be the best subordinant of a certain strong differential superordinationinvolving confluent hypergeometric function ฯ†(a(ฮถ), c(ฮถ); z, ฮถ).

Theorem 1. Consider the confluent hypergeometric function ฯ†(a(ฮถ), c(ฮถ); z, ฮถ) defined by (5) andKummerโ€“Bernardi integral operator B(a(ฮถ), c(ฮถ); z, ฮถ) given by (3). Let ฯ• : C2 ร—U ร—U โ†’ C bean admissible function with the properties seen in Definition 3. Suppose that ฯ†(a(ฮถ), c(ฮถ); z, ฮถ) is aunivalent solution of the equation

ฯ†(a(ฮถ), c(ฮถ); z, ฮถ) = ฯ•(

B(a(ฮถ), c(ฮถ); z, ฮถ), zยทBโ€ฒz(a(ฮถ), c(ฮถ); z, ฮถ); z, ฮถ). (6)

If ฯ• โˆˆ ฮฆn[h(U ร—U

), q(z, ฮถ)

], p(z, ฮถ) โˆˆ Qฮถ(1) and ฯ•(p(z, ฮถ), zยทpโ€ฒz(z, ฮถ); z, ฮถ) are univalent in

U for all ฮถ โˆˆ U, then strong superordination

ฯ†(a(ฮถ), c(ฮถ); z, ฮถ)

Axioms 2022, 11, x FOR PEER REVIEW 3 of 12

Definition 3. [27] Let ๐›บ be a set in โ„‚, ๐‘ž(โˆ™, ๐œ) โˆˆ ๐›บ , and ๐‘› a positive integer. The class of ad-missible functions ๐›ท ๐›บ , ๐‘ž(โˆ™, ๐œ) consists of those functions ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚ that satisfy the admissibility condition ๐œ‘(๐‘Ÿ, ๐‘ , ๐‘ก; ๐œ‰, ๐œ) โˆˆ ๐›บ (A)

whenever ๐‘Ÿ = ๐‘ž(๐‘ง, ๐œ), ๐‘  = ( , ) , ๐‘…๐‘’ + 1 โ‰ค ๐‘…๐‘’ '' ( , )' ( , ) + 1 , ๐‘ง โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. When ๐‘› = 1 we write ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) as ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) . In the special case when โ„Ž(โˆ™, ๐œ) is an analytic mapping of ๐‘ˆ ร— ๐‘ˆ onto ๐›บ โ‰  โ„‚ we denote the class ฮฆ โ„Ž(๐‘ˆ ร— ๐‘ˆ) , ๐‘ž(๐‘ง, ๐œ) by ฮฆ โ„Ž(๐‘ง, ๐œ) , ๐‘ž(๐‘ง, ๐œ) . If ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚, then the admissibility condition (A) reduces to ๐œ‘ ๐‘ž(๐‘ง, ๐œ), ๐‘ง๐‘ž (๐‘ง, ๐œ)๐‘š ; ๐œ‰, ๐œ โˆˆ ๐›บ , (Aโ€™)

where ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. Millerโ€”Mocanu lemma given in [18] was rewritten in [27] for functions ๐‘(๐‘ง, ๐œ) and ๐‘ž(๐‘ง, ๐œ) as follows:

Lemma 1. ([17],[27]) Let ๐‘(๐‘ง, ๐œ) โˆˆ ๐‘„(๐‘Ž) and let ๐‘ž(๐‘ง, ๐œ) = ๐‘Ž + ๐‘Ž (๐œ)๐‘ง + ๐‘Ž (๐œ)๐‘ง + โ‹ฏ with ๐‘Ž (๐œ) holomorphic functions in ๐‘ˆ, ๐‘˜ โ‰ฅ ๐‘›, ๐‘ž(๐‘ง, ๐œ) โ‰ข ๐‘Ž and ๐‘› โ‰ฅ 1. If ๐‘ž(๐‘ง, ๐œ) is not subor-dinate to ๐‘(๐‘ง, ๐œ), then there exist points ๐‘ง = ๐‘Ÿ ๐‘’ โˆˆ ๐‘ˆ and ๐œ‰ โˆˆ ๐œ•๐‘ˆ\๐ธ ๐‘(๐‘ง, ๐œ) and an ๐‘š โ‰ฅ๐‘› โ‰ฅ 1 for which ๐‘ž(๐‘ˆ ร— ๐‘ˆ ) โŠ‚ ๐‘(๐‘ˆ ร— ๐‘ˆ) and (๐‘–) ๐‘ž(๐‘ง , ๐œ) = ๐‘(๐œ‰ , ๐œ), (๐‘–๐‘–) ๐‘ง ๐‘ž (๐‘ง , ๐œ) = ๐‘š๐œ‰ ๐‘ (๐œ‰ , ๐œ) and (๐‘–๐‘–๐‘–) ๐‘…๐‘’ ๐‘ง ๐‘ž (๐‘ง , ๐œ)๐‘ž (๐‘ง , ๐œ) + 1 โ‰ฅ ๐‘š๐‘…๐‘’ ๐œ‰ ๐‘ (๐œ‰ , ๐œ)๐‘ (๐œ‰ , ๐œ) + 1 .

This lemma will be used in the next section for proving the theorems which contain the original results. Another helpful result which will be used is the next lemma proved in [28].

Lemma 2. [28] Let โ„Ž(๐‘ง, ๐œ) be convex in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ with โ„Ž(0, ๐œ) = ๐‘Ž, ๐›พ โ‰  0, ๐‘…๐‘’ ๐›พ > 0 and ๐‘ โˆˆ ๐ป ๐‘Ž, 1 โˆฉ ๐‘„. If ๐‘(๐‘ง, ๐œ) + ( , ) is univalent in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ, โ„Ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ) + ๐‘ง๐‘ (๐‘ง, ๐œ)๐›พ

and ๐‘ž(๐‘ง, ๐œ) = ๐›พ๐‘ง โ„Ž(๐‘ก, ๐œ)๐‘ก ๐‘‘๐‘ก, then ๐‘ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ), ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ. The function ๐‘ž is convex and is the best subordinant.

The connection between univalent function theory and hypergeometric functions was established in 1985 when de Branges used the generalized hypergeometric function for proving Bieberbachโ€™s conjecture [29]. Once hypergeometric functions were considered in studies regarding univalent functions, confluent hypergeometric function was used in many investigations. One of the first papers which investigated confluent hypergeometric function and gave conditions for its univalence was published in 1990 [30]. Ever since then, aspects of its univalence were further investigated [31,32], it was considered in con-nection with other important functions [33โ€“37] and it was used in the definition of new

ฯ•(

p(z, ฮถ), zยทpโ€ฒz(z, ฮถ); z, ฮถ)

(7)

implies

B(a(ฮถ), c(ฮถ); z, ฮถ)

Axioms 2022, 11, x FOR PEER REVIEW 3 of 12

Definition 3. [27] Let ๐›บ be a set in โ„‚, ๐‘ž(โˆ™, ๐œ) โˆˆ ๐›บ , and ๐‘› a positive integer. The class of ad-missible functions ๐›ท ๐›บ , ๐‘ž(โˆ™, ๐œ) consists of those functions ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚ that satisfy the admissibility condition ๐œ‘(๐‘Ÿ, ๐‘ , ๐‘ก; ๐œ‰, ๐œ) โˆˆ ๐›บ (A)

whenever ๐‘Ÿ = ๐‘ž(๐‘ง, ๐œ), ๐‘  = ( , ) , ๐‘…๐‘’ + 1 โ‰ค ๐‘…๐‘’ '' ( , )' ( , ) + 1 , ๐‘ง โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. When ๐‘› = 1 we write ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) as ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) . In the special case when โ„Ž(โˆ™, ๐œ) is an analytic mapping of ๐‘ˆ ร— ๐‘ˆ onto ๐›บ โ‰  โ„‚ we denote the class ฮฆ โ„Ž(๐‘ˆ ร— ๐‘ˆ) , ๐‘ž(๐‘ง, ๐œ) by ฮฆ โ„Ž(๐‘ง, ๐œ) , ๐‘ž(๐‘ง, ๐œ) . If ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚, then the admissibility condition (A) reduces to ๐œ‘ ๐‘ž(๐‘ง, ๐œ), ๐‘ง๐‘ž (๐‘ง, ๐œ)๐‘š ; ๐œ‰, ๐œ โˆˆ ๐›บ , (Aโ€™)

where ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. Millerโ€”Mocanu lemma given in [18] was rewritten in [27] for functions ๐‘(๐‘ง, ๐œ) and ๐‘ž(๐‘ง, ๐œ) as follows:

Lemma 1. ([17],[27]) Let ๐‘(๐‘ง, ๐œ) โˆˆ ๐‘„(๐‘Ž) and let ๐‘ž(๐‘ง, ๐œ) = ๐‘Ž + ๐‘Ž (๐œ)๐‘ง + ๐‘Ž (๐œ)๐‘ง + โ‹ฏ with ๐‘Ž (๐œ) holomorphic functions in ๐‘ˆ, ๐‘˜ โ‰ฅ ๐‘›, ๐‘ž(๐‘ง, ๐œ) โ‰ข ๐‘Ž and ๐‘› โ‰ฅ 1. If ๐‘ž(๐‘ง, ๐œ) is not subor-dinate to ๐‘(๐‘ง, ๐œ), then there exist points ๐‘ง = ๐‘Ÿ ๐‘’ โˆˆ ๐‘ˆ and ๐œ‰ โˆˆ ๐œ•๐‘ˆ\๐ธ ๐‘(๐‘ง, ๐œ) and an ๐‘š โ‰ฅ๐‘› โ‰ฅ 1 for which ๐‘ž(๐‘ˆ ร— ๐‘ˆ ) โŠ‚ ๐‘(๐‘ˆ ร— ๐‘ˆ) and (๐‘–) ๐‘ž(๐‘ง , ๐œ) = ๐‘(๐œ‰ , ๐œ), (๐‘–๐‘–) ๐‘ง ๐‘ž (๐‘ง , ๐œ) = ๐‘š๐œ‰ ๐‘ (๐œ‰ , ๐œ) and (๐‘–๐‘–๐‘–) ๐‘…๐‘’ ๐‘ง ๐‘ž (๐‘ง , ๐œ)๐‘ž (๐‘ง , ๐œ) + 1 โ‰ฅ ๐‘š๐‘…๐‘’ ๐œ‰ ๐‘ (๐œ‰ , ๐œ)๐‘ (๐œ‰ , ๐œ) + 1 .

This lemma will be used in the next section for proving the theorems which contain the original results. Another helpful result which will be used is the next lemma proved in [28].

Lemma 2. [28] Let โ„Ž(๐‘ง, ๐œ) be convex in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ with โ„Ž(0, ๐œ) = ๐‘Ž, ๐›พ โ‰  0, ๐‘…๐‘’ ๐›พ > 0 and ๐‘ โˆˆ ๐ป ๐‘Ž, 1 โˆฉ ๐‘„. If ๐‘(๐‘ง, ๐œ) + ( , ) is univalent in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ, โ„Ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ) + ๐‘ง๐‘ (๐‘ง, ๐œ)๐›พ

and ๐‘ž(๐‘ง, ๐œ) = ๐›พ๐‘ง โ„Ž(๐‘ก, ๐œ)๐‘ก ๐‘‘๐‘ก, then ๐‘ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ), ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ. The function ๐‘ž is convex and is the best subordinant.

The connection between univalent function theory and hypergeometric functions was established in 1985 when de Branges used the generalized hypergeometric function for proving Bieberbachโ€™s conjecture [29]. Once hypergeometric functions were considered in studies regarding univalent functions, confluent hypergeometric function was used in many investigations. One of the first papers which investigated confluent hypergeometric function and gave conditions for its univalence was published in 1990 [30]. Ever since then, aspects of its univalence were further investigated [31,32], it was considered in con-nection with other important functions [33โ€“37] and it was used in the definition of new

p(z, ฮถ), z โˆˆ U, ฮถ โˆˆ U.

The function q(z, ฮถ) = B(a(ฮถ), c(ฮถ); z, ฮถ) is the best subordinant.

Proof. Using relation (3) we obtain

zฮณยทB(a(ฮถ), c(ฮถ); z, ฮถ) = ฮณ

zโˆซ0

ฯ†(a(ฮถ), c(ฮถ); t, ฮถ)tฮณโˆ’1dt. (8)

Differentiating (8) with respect to z, following a simple calculation, the next equationis obtained:

B(a(ฮถ), c(ฮถ); z, ฮถ) +1ฮณ

zยทBโ€ฒz(a(ฮถ), c(ฮถ); z, ฮถ); z, ฮถ) = ฯ†(a(ฮถ), c(ฮถ); z, ฮถ). (9)

Using relation (9), strong superordination (7) becomes:

B(a(ฮถ), c(ฮถ); z, ฮถ) +1ฮณ

zยทBโ€ฒz(a(ฮถ), c(ฮถ); z, ฮถ); z, ฮถ)

Axioms 2022, 11, x FOR PEER REVIEW 3 of 12

Definition 3. [27] Let ๐›บ be a set in โ„‚, ๐‘ž(โˆ™, ๐œ) โˆˆ ๐›บ , and ๐‘› a positive integer. The class of ad-missible functions ๐›ท ๐›บ , ๐‘ž(โˆ™, ๐œ) consists of those functions ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚ that satisfy the admissibility condition ๐œ‘(๐‘Ÿ, ๐‘ , ๐‘ก; ๐œ‰, ๐œ) โˆˆ ๐›บ (A)

whenever ๐‘Ÿ = ๐‘ž(๐‘ง, ๐œ), ๐‘  = ( , ) , ๐‘…๐‘’ + 1 โ‰ค ๐‘…๐‘’ '' ( , )' ( , ) + 1 , ๐‘ง โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. When ๐‘› = 1 we write ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) as ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) . In the special case when โ„Ž(โˆ™, ๐œ) is an analytic mapping of ๐‘ˆ ร— ๐‘ˆ onto ๐›บ โ‰  โ„‚ we denote the class ฮฆ โ„Ž(๐‘ˆ ร— ๐‘ˆ) , ๐‘ž(๐‘ง, ๐œ) by ฮฆ โ„Ž(๐‘ง, ๐œ) , ๐‘ž(๐‘ง, ๐œ) . If ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚, then the admissibility condition (A) reduces to ๐œ‘ ๐‘ž(๐‘ง, ๐œ), ๐‘ง๐‘ž (๐‘ง, ๐œ)๐‘š ; ๐œ‰, ๐œ โˆˆ ๐›บ , (Aโ€™)

where ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. Millerโ€”Mocanu lemma given in [18] was rewritten in [27] for functions ๐‘(๐‘ง, ๐œ) and ๐‘ž(๐‘ง, ๐œ) as follows:

Lemma 1. ([17],[27]) Let ๐‘(๐‘ง, ๐œ) โˆˆ ๐‘„(๐‘Ž) and let ๐‘ž(๐‘ง, ๐œ) = ๐‘Ž + ๐‘Ž (๐œ)๐‘ง + ๐‘Ž (๐œ)๐‘ง + โ‹ฏ with ๐‘Ž (๐œ) holomorphic functions in ๐‘ˆ, ๐‘˜ โ‰ฅ ๐‘›, ๐‘ž(๐‘ง, ๐œ) โ‰ข ๐‘Ž and ๐‘› โ‰ฅ 1. If ๐‘ž(๐‘ง, ๐œ) is not subor-dinate to ๐‘(๐‘ง, ๐œ), then there exist points ๐‘ง = ๐‘Ÿ ๐‘’ โˆˆ ๐‘ˆ and ๐œ‰ โˆˆ ๐œ•๐‘ˆ\๐ธ ๐‘(๐‘ง, ๐œ) and an ๐‘š โ‰ฅ๐‘› โ‰ฅ 1 for which ๐‘ž(๐‘ˆ ร— ๐‘ˆ ) โŠ‚ ๐‘(๐‘ˆ ร— ๐‘ˆ) and (๐‘–) ๐‘ž(๐‘ง , ๐œ) = ๐‘(๐œ‰ , ๐œ), (๐‘–๐‘–) ๐‘ง ๐‘ž (๐‘ง , ๐œ) = ๐‘š๐œ‰ ๐‘ (๐œ‰ , ๐œ) and (๐‘–๐‘–๐‘–) ๐‘…๐‘’ ๐‘ง ๐‘ž (๐‘ง , ๐œ)๐‘ž (๐‘ง , ๐œ) + 1 โ‰ฅ ๐‘š๐‘…๐‘’ ๐œ‰ ๐‘ (๐œ‰ , ๐œ)๐‘ (๐œ‰ , ๐œ) + 1 .

This lemma will be used in the next section for proving the theorems which contain the original results. Another helpful result which will be used is the next lemma proved in [28].

Lemma 2. [28] Let โ„Ž(๐‘ง, ๐œ) be convex in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ with โ„Ž(0, ๐œ) = ๐‘Ž, ๐›พ โ‰  0, ๐‘…๐‘’ ๐›พ > 0 and ๐‘ โˆˆ ๐ป ๐‘Ž, 1 โˆฉ ๐‘„. If ๐‘(๐‘ง, ๐œ) + ( , ) is univalent in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ, โ„Ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ) + ๐‘ง๐‘ (๐‘ง, ๐œ)๐›พ

and ๐‘ž(๐‘ง, ๐œ) = ๐›พ๐‘ง โ„Ž(๐‘ก, ๐œ)๐‘ก ๐‘‘๐‘ก, then ๐‘ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ), ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ. The function ๐‘ž is convex and is the best subordinant.

The connection between univalent function theory and hypergeometric functions was established in 1985 when de Branges used the generalized hypergeometric function for proving Bieberbachโ€™s conjecture [29]. Once hypergeometric functions were considered in studies regarding univalent functions, confluent hypergeometric function was used in many investigations. One of the first papers which investigated confluent hypergeometric function and gave conditions for its univalence was published in 1990 [30]. Ever since then, aspects of its univalence were further investigated [31,32], it was considered in con-nection with other important functions [33โ€“37] and it was used in the definition of new

ฯ•(

p(z, ฮถ), zยทpโ€ฒz(z, ฮถ); z, ฮถ). (10)

Let ฯ• : C2 ร—U ร—U โ†’ C be an admissible function, ฯ•(r, s; z, ฮถ) โˆˆ ฮฆn[h(Uร—U

), q(z, ฮถ)

],

defined by:

ฯ•(r, s; z, ฮถ) = r +1ฮณ

s, r, s โˆˆ C, ฮณ > 0. (11)

Taking r = B(a(ฮถ), c(ฮถ); z, ฮถ), s = zยทBโ€ฒz(a(ฮถ), c(ฮถ); z, ฮถ); z, ฮถ) relation (11) becomes:

Axioms 2022, 11, 209 6 of 13

ฯ•(B(a(ฮถ), c(ฮถ); z, ฮถ), zยทBโ€ฒz(a(ฮถ), c(ฮถ); z, ฮถ); z, ฮถ) )= B(a(ฮถ), c(ฮถ); z, ฮถ) + 1

ฮณ zยทBโ€ฒz(a(ฮถ), c(ฮถ); z, ฮถ); z, ฮถ). (12)

Using relation (12) in (10) we get:

ฯ•(

B(a(ฮถ), c(ฮถ); z, ฮถ), zยทBโ€ฒz(a(ฮถ), c(ฮถ); z, ฮถ); z, ฮถ)

Axioms 2022, 11, x FOR PEER REVIEW 3 of 12

Definition 3. [27] Let ๐›บ be a set in โ„‚, ๐‘ž(โˆ™, ๐œ) โˆˆ ๐›บ , and ๐‘› a positive integer. The class of ad-missible functions ๐›ท ๐›บ , ๐‘ž(โˆ™, ๐œ) consists of those functions ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚ that satisfy the admissibility condition ๐œ‘(๐‘Ÿ, ๐‘ , ๐‘ก; ๐œ‰, ๐œ) โˆˆ ๐›บ (A)

whenever ๐‘Ÿ = ๐‘ž(๐‘ง, ๐œ), ๐‘  = ( , ) , ๐‘…๐‘’ + 1 โ‰ค ๐‘…๐‘’ '' ( , )' ( , ) + 1 , ๐‘ง โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. When ๐‘› = 1 we write ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) as ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) . In the special case when โ„Ž(โˆ™, ๐œ) is an analytic mapping of ๐‘ˆ ร— ๐‘ˆ onto ๐›บ โ‰  โ„‚ we denote the class ฮฆ โ„Ž(๐‘ˆ ร— ๐‘ˆ) , ๐‘ž(๐‘ง, ๐œ) by ฮฆ โ„Ž(๐‘ง, ๐œ) , ๐‘ž(๐‘ง, ๐œ) . If ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚, then the admissibility condition (A) reduces to ๐œ‘ ๐‘ž(๐‘ง, ๐œ), ๐‘ง๐‘ž (๐‘ง, ๐œ)๐‘š ; ๐œ‰, ๐œ โˆˆ ๐›บ , (Aโ€™)

where ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. Millerโ€”Mocanu lemma given in [18] was rewritten in [27] for functions ๐‘(๐‘ง, ๐œ) and ๐‘ž(๐‘ง, ๐œ) as follows:

Lemma 1. ([17],[27]) Let ๐‘(๐‘ง, ๐œ) โˆˆ ๐‘„(๐‘Ž) and let ๐‘ž(๐‘ง, ๐œ) = ๐‘Ž + ๐‘Ž (๐œ)๐‘ง + ๐‘Ž (๐œ)๐‘ง + โ‹ฏ with ๐‘Ž (๐œ) holomorphic functions in ๐‘ˆ, ๐‘˜ โ‰ฅ ๐‘›, ๐‘ž(๐‘ง, ๐œ) โ‰ข ๐‘Ž and ๐‘› โ‰ฅ 1. If ๐‘ž(๐‘ง, ๐œ) is not subor-dinate to ๐‘(๐‘ง, ๐œ), then there exist points ๐‘ง = ๐‘Ÿ ๐‘’ โˆˆ ๐‘ˆ and ๐œ‰ โˆˆ ๐œ•๐‘ˆ\๐ธ ๐‘(๐‘ง, ๐œ) and an ๐‘š โ‰ฅ๐‘› โ‰ฅ 1 for which ๐‘ž(๐‘ˆ ร— ๐‘ˆ ) โŠ‚ ๐‘(๐‘ˆ ร— ๐‘ˆ) and (๐‘–) ๐‘ž(๐‘ง , ๐œ) = ๐‘(๐œ‰ , ๐œ), (๐‘–๐‘–) ๐‘ง ๐‘ž (๐‘ง , ๐œ) = ๐‘š๐œ‰ ๐‘ (๐œ‰ , ๐œ) and (๐‘–๐‘–๐‘–) ๐‘…๐‘’ ๐‘ง ๐‘ž (๐‘ง , ๐œ)๐‘ž (๐‘ง , ๐œ) + 1 โ‰ฅ ๐‘š๐‘…๐‘’ ๐œ‰ ๐‘ (๐œ‰ , ๐œ)๐‘ (๐œ‰ , ๐œ) + 1 .

This lemma will be used in the next section for proving the theorems which contain the original results. Another helpful result which will be used is the next lemma proved in [28].

Lemma 2. [28] Let โ„Ž(๐‘ง, ๐œ) be convex in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ with โ„Ž(0, ๐œ) = ๐‘Ž, ๐›พ โ‰  0, ๐‘…๐‘’ ๐›พ > 0 and ๐‘ โˆˆ ๐ป ๐‘Ž, 1 โˆฉ ๐‘„. If ๐‘(๐‘ง, ๐œ) + ( , ) is univalent in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ, โ„Ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ) + ๐‘ง๐‘ (๐‘ง, ๐œ)๐›พ

and ๐‘ž(๐‘ง, ๐œ) = ๐›พ๐‘ง โ„Ž(๐‘ก, ๐œ)๐‘ก ๐‘‘๐‘ก, then ๐‘ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ), ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ. The function ๐‘ž is convex and is the best subordinant.

The connection between univalent function theory and hypergeometric functions was established in 1985 when de Branges used the generalized hypergeometric function for proving Bieberbachโ€™s conjecture [29]. Once hypergeometric functions were considered in studies regarding univalent functions, confluent hypergeometric function was used in many investigations. One of the first papers which investigated confluent hypergeometric function and gave conditions for its univalence was published in 1990 [30]. Ever since then, aspects of its univalence were further investigated [31,32], it was considered in con-nection with other important functions [33โ€“37] and it was used in the definition of new

ฯ•(

p(z, ฮถ), zยทpโ€ฒz(z, ฮถ); z, ฮถ).

Using Definition 1 and Remark 1, a), considering strong differential subordination (7)we get:

ฯ†(a(ฮถ), c(ฮถ); 0, ฮถ) = ฯ•(p(0, ฮถ), 0; 0, ฮถ)

andฯ†(U ร—U

)โŠ‚ ฯ•

(U ร—U

). (13)

Interpreting relation (13) we conclude that

ฯ•(

p(ฮพ, ฮถ), ฮพยทpโ€ฒz(ฮพ, ฮถ); ฮพ, ฮถ)

/โˆˆ ฯ†(U ร—U

), ฮพ โˆˆ โˆ‚U, ฮถ โˆˆ U. (14)

For ฮพ = ฮพ0 โˆˆ โˆ‚U, relation (14) becomes:

ฯ•(

p(ฮพ0, ฮถ), ฮพ0ยทpโ€ฒz(ฮพ0, ฮถ); ฮพ0, ฮถ)

/โˆˆ ฯ†(U ร—U

), ฮถ โˆˆ U. (15)

Using relation (6) we get:

ฯ•(

B(a(ฮถ), c(ฮถ); z, ฮถ), zยทBโ€ฒz(a(ฮถ), c(ฮถ); z, ฮถ); z, ฮถ)โˆˆ ฯ†

(U ร—U

), z โˆˆ U, ฮถ โˆˆ U. (16)

For z = z0 โˆˆ U, (16) is written as:

ฯ•(

B(a(ฮถ), c(ฮถ); z0, ฮถ), z0ยทBโ€ฒz(a(ฮถ), c(ฮถ); z0, ฮถ); z0, ฮถ)โˆˆ ฯ†

(U ร—U

), z0 โˆˆ U, ฮถ โˆˆ U. (17)

In order to finalize the proof, Lemma 1 and admissibility condition (Aโ€ฒ) will be applied.Suppose that q(z, ฮถ) = B(a(ฮถ), c(ฮถ); z, ฮถ) is not subordinate to p(z, ฮถ) for z โˆˆ U, ฮถ โˆˆ U.

Then, using Lemma 1, we know that there are points z0 = r0eiฮธ0 โˆˆ U and ฮพ0 โˆˆ โˆ‚U\E(p(z, ฮถ))and an m โ‰ฅ n โ‰ฅ 1such that

(z0, ฮถ) = B(a(ฮถ), c(ฮถ); z0, ฮถ) = p(ฮพ0, ฮถ) and

z0ยทqโ€ฒz(z0, ฮถ) = z0ยทBโ€ฒz(a(ฮถ), c(ฮถ); z0, ฮถ) = mฮพ0 pโ€ฒz(ฮพ0, ฮถ).

Using those conditions with r = q(z0, ฮถ) and s = z0ยทqโ€ฒz(z0,ฮถ)m for ฮพ = ฮพ0 in Definition 3

and taking into consideration the admissibility condition (Aโ€ฒ), we obtain:

ฯ•(p(ฮพ0, ฮถ), ฮพ0pโ€ฒz(ฮพ0, ฮถ); ฮพ0, ฮถ) = ฯ•(

B(a(ฮถ), c(ฮถ); z0, ฮถ), z0ยทBโ€ฒz(a(ฮถ),c(ฮถ);z0,ฮถ)m ; z0, ฮถ

)โˆˆ ฯ†

(U ร—U

).

Using m = 1 in the previous relation, we get

ฯ•(p(ฮพ0, ฮถ), ฮพ0 pโ€ฒz(ฮพ0, ฮถ); ฮพ0, ฮถ) = ฯ•(B(a(ฮถ), c(ฮถ); z0, ฮถ), z0ยทBโ€ฒz(a(ฮถ), c(ฮถ); z0, ฮถ); z0, ฮถ)โˆˆ ฯ†

(U ร—U

)and using (17) we write

ฯ•(

p(ฮพ0, ฮถ), ฮพ0pโ€ฒz(ฮพ0, ฮถ); ฮพ0, ฮถ)โˆˆ ฯ†

(U ร—U

), z โˆˆ U, ฮถ โˆˆ U,

which contradicts the result obtained in relation (15). Hence, the assumption made is falseand we must have:

B(a(ฮถ), c(ฮถ); z, ฮถ)

Axioms 2022, 11, x FOR PEER REVIEW 3 of 12

Definition 3. [27] Let ๐›บ be a set in โ„‚, ๐‘ž(โˆ™, ๐œ) โˆˆ ๐›บ , and ๐‘› a positive integer. The class of ad-missible functions ๐›ท ๐›บ , ๐‘ž(โˆ™, ๐œ) consists of those functions ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚ that satisfy the admissibility condition ๐œ‘(๐‘Ÿ, ๐‘ , ๐‘ก; ๐œ‰, ๐œ) โˆˆ ๐›บ (A)

whenever ๐‘Ÿ = ๐‘ž(๐‘ง, ๐œ), ๐‘  = ( , ) , ๐‘…๐‘’ + 1 โ‰ค ๐‘…๐‘’ '' ( , )' ( , ) + 1 , ๐‘ง โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. When ๐‘› = 1 we write ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) as ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) . In the special case when โ„Ž(โˆ™, ๐œ) is an analytic mapping of ๐‘ˆ ร— ๐‘ˆ onto ๐›บ โ‰  โ„‚ we denote the class ฮฆ โ„Ž(๐‘ˆ ร— ๐‘ˆ) , ๐‘ž(๐‘ง, ๐œ) by ฮฆ โ„Ž(๐‘ง, ๐œ) , ๐‘ž(๐‘ง, ๐œ) . If ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚, then the admissibility condition (A) reduces to ๐œ‘ ๐‘ž(๐‘ง, ๐œ), ๐‘ง๐‘ž (๐‘ง, ๐œ)๐‘š ; ๐œ‰, ๐œ โˆˆ ๐›บ , (Aโ€™)

where ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. Millerโ€”Mocanu lemma given in [18] was rewritten in [27] for functions ๐‘(๐‘ง, ๐œ) and ๐‘ž(๐‘ง, ๐œ) as follows:

Lemma 1. ([17],[27]) Let ๐‘(๐‘ง, ๐œ) โˆˆ ๐‘„(๐‘Ž) and let ๐‘ž(๐‘ง, ๐œ) = ๐‘Ž + ๐‘Ž (๐œ)๐‘ง + ๐‘Ž (๐œ)๐‘ง + โ‹ฏ with ๐‘Ž (๐œ) holomorphic functions in ๐‘ˆ, ๐‘˜ โ‰ฅ ๐‘›, ๐‘ž(๐‘ง, ๐œ) โ‰ข ๐‘Ž and ๐‘› โ‰ฅ 1. If ๐‘ž(๐‘ง, ๐œ) is not subor-dinate to ๐‘(๐‘ง, ๐œ), then there exist points ๐‘ง = ๐‘Ÿ ๐‘’ โˆˆ ๐‘ˆ and ๐œ‰ โˆˆ ๐œ•๐‘ˆ\๐ธ ๐‘(๐‘ง, ๐œ) and an ๐‘š โ‰ฅ๐‘› โ‰ฅ 1 for which ๐‘ž(๐‘ˆ ร— ๐‘ˆ ) โŠ‚ ๐‘(๐‘ˆ ร— ๐‘ˆ) and (๐‘–) ๐‘ž(๐‘ง , ๐œ) = ๐‘(๐œ‰ , ๐œ), (๐‘–๐‘–) ๐‘ง ๐‘ž (๐‘ง , ๐œ) = ๐‘š๐œ‰ ๐‘ (๐œ‰ , ๐œ) and (๐‘–๐‘–๐‘–) ๐‘…๐‘’ ๐‘ง ๐‘ž (๐‘ง , ๐œ)๐‘ž (๐‘ง , ๐œ) + 1 โ‰ฅ ๐‘š๐‘…๐‘’ ๐œ‰ ๐‘ (๐œ‰ , ๐œ)๐‘ (๐œ‰ , ๐œ) + 1 .

This lemma will be used in the next section for proving the theorems which contain the original results. Another helpful result which will be used is the next lemma proved in [28].

Lemma 2. [28] Let โ„Ž(๐‘ง, ๐œ) be convex in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ with โ„Ž(0, ๐œ) = ๐‘Ž, ๐›พ โ‰  0, ๐‘…๐‘’ ๐›พ > 0 and ๐‘ โˆˆ ๐ป ๐‘Ž, 1 โˆฉ ๐‘„. If ๐‘(๐‘ง, ๐œ) + ( , ) is univalent in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ, โ„Ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ) + ๐‘ง๐‘ (๐‘ง, ๐œ)๐›พ

and ๐‘ž(๐‘ง, ๐œ) = ๐›พ๐‘ง โ„Ž(๐‘ก, ๐œ)๐‘ก ๐‘‘๐‘ก, then ๐‘ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ), ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ. The function ๐‘ž is convex and is the best subordinant.

The connection between univalent function theory and hypergeometric functions was established in 1985 when de Branges used the generalized hypergeometric function for proving Bieberbachโ€™s conjecture [29]. Once hypergeometric functions were considered in studies regarding univalent functions, confluent hypergeometric function was used in many investigations. One of the first papers which investigated confluent hypergeometric function and gave conditions for its univalence was published in 1990 [30]. Ever since then, aspects of its univalence were further investigated [31,32], it was considered in con-nection with other important functions [33โ€“37] and it was used in the definition of new

p(z, ฮถ) for z โˆˆ U, ฮถ โˆˆ U.

Axioms 2022, 11, 209 7 of 13

Since q(z, ฮถ) = B(a(ฮถ), c(ฮถ); z, ฮถ) satisfies the differential Equation (6), we concludethat q(z, ฮถ) = B(a(ฮถ), c(ฮถ); z, ฮถ) is the best subordinant.

Remark 2. For ฮณ = 1, instead of Kummerโ€“Bernardi integral operator, Kummerโ€“Libera integraloperator defined in (4) is used in Theorem 1 and the following corollary can be written:

Corollary 1. Consider the confluent hypergeometric function ฯ†(a(ฮถ), c(ฮถ); z, ฮถ) defined by (5) andKummerโ€“Libera integral operator L(a(ฮถ), c(ฮถ); z, ฮถ) given by (4). Let ฯ• : C2 ร—U ร—U โ†’ C bean admissible function with the properties seen in Definition 3. Suppose that ฯ†(a(ฮถ), c(ฮถ); z, ฮถ) is aunivalent solution of the equation

ฯ†(a(ฮถ), c(ฮถ); z, ฮถ) = ฯ•(

L(a(ฮถ), c(ฮถ); z, ฮถ), zยทLโ€ฒz(a(ฮถ), c(ฮถ); z, ฮถ); z, ฮถ).

If ฯ• โˆˆ ฮฆn[h(U ร—U

), q(z, ฮถ)

], p(z, ฮถ) โˆˆ Qฮถ(1) and ฯ•(p(z, ฮถ), zยทpโ€ฒz(z, ฮถ); z, ฮถ) are univalent in

U for allฮถ โˆˆ U, then strong superordination

ฯ†(a(ฮถ), c(ฮถ); z, ฮถ)

Axioms 2022, 11, x FOR PEER REVIEW 3 of 12

Definition 3. [27] Let ๐›บ be a set in โ„‚, ๐‘ž(โˆ™, ๐œ) โˆˆ ๐›บ , and ๐‘› a positive integer. The class of ad-missible functions ๐›ท ๐›บ , ๐‘ž(โˆ™, ๐œ) consists of those functions ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚ that satisfy the admissibility condition ๐œ‘(๐‘Ÿ, ๐‘ , ๐‘ก; ๐œ‰, ๐œ) โˆˆ ๐›บ (A)

whenever ๐‘Ÿ = ๐‘ž(๐‘ง, ๐œ), ๐‘  = ( , ) , ๐‘…๐‘’ + 1 โ‰ค ๐‘…๐‘’ '' ( , )' ( , ) + 1 , ๐‘ง โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. When ๐‘› = 1 we write ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) as ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) . In the special case when โ„Ž(โˆ™, ๐œ) is an analytic mapping of ๐‘ˆ ร— ๐‘ˆ onto ๐›บ โ‰  โ„‚ we denote the class ฮฆ โ„Ž(๐‘ˆ ร— ๐‘ˆ) , ๐‘ž(๐‘ง, ๐œ) by ฮฆ โ„Ž(๐‘ง, ๐œ) , ๐‘ž(๐‘ง, ๐œ) . If ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚, then the admissibility condition (A) reduces to ๐œ‘ ๐‘ž(๐‘ง, ๐œ), ๐‘ง๐‘ž (๐‘ง, ๐œ)๐‘š ; ๐œ‰, ๐œ โˆˆ ๐›บ , (Aโ€™)

where ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. Millerโ€”Mocanu lemma given in [18] was rewritten in [27] for functions ๐‘(๐‘ง, ๐œ) and ๐‘ž(๐‘ง, ๐œ) as follows:

Lemma 1. ([17],[27]) Let ๐‘(๐‘ง, ๐œ) โˆˆ ๐‘„(๐‘Ž) and let ๐‘ž(๐‘ง, ๐œ) = ๐‘Ž + ๐‘Ž (๐œ)๐‘ง + ๐‘Ž (๐œ)๐‘ง + โ‹ฏ with ๐‘Ž (๐œ) holomorphic functions in ๐‘ˆ, ๐‘˜ โ‰ฅ ๐‘›, ๐‘ž(๐‘ง, ๐œ) โ‰ข ๐‘Ž and ๐‘› โ‰ฅ 1. If ๐‘ž(๐‘ง, ๐œ) is not subor-dinate to ๐‘(๐‘ง, ๐œ), then there exist points ๐‘ง = ๐‘Ÿ ๐‘’ โˆˆ ๐‘ˆ and ๐œ‰ โˆˆ ๐œ•๐‘ˆ\๐ธ ๐‘(๐‘ง, ๐œ) and an ๐‘š โ‰ฅ๐‘› โ‰ฅ 1 for which ๐‘ž(๐‘ˆ ร— ๐‘ˆ ) โŠ‚ ๐‘(๐‘ˆ ร— ๐‘ˆ) and (๐‘–) ๐‘ž(๐‘ง , ๐œ) = ๐‘(๐œ‰ , ๐œ), (๐‘–๐‘–) ๐‘ง ๐‘ž (๐‘ง , ๐œ) = ๐‘š๐œ‰ ๐‘ (๐œ‰ , ๐œ) and (๐‘–๐‘–๐‘–) ๐‘…๐‘’ ๐‘ง ๐‘ž (๐‘ง , ๐œ)๐‘ž (๐‘ง , ๐œ) + 1 โ‰ฅ ๐‘š๐‘…๐‘’ ๐œ‰ ๐‘ (๐œ‰ , ๐œ)๐‘ (๐œ‰ , ๐œ) + 1 .

This lemma will be used in the next section for proving the theorems which contain the original results. Another helpful result which will be used is the next lemma proved in [28].

Lemma 2. [28] Let โ„Ž(๐‘ง, ๐œ) be convex in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ with โ„Ž(0, ๐œ) = ๐‘Ž, ๐›พ โ‰  0, ๐‘…๐‘’ ๐›พ > 0 and ๐‘ โˆˆ ๐ป ๐‘Ž, 1 โˆฉ ๐‘„. If ๐‘(๐‘ง, ๐œ) + ( , ) is univalent in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ, โ„Ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ) + ๐‘ง๐‘ (๐‘ง, ๐œ)๐›พ

and ๐‘ž(๐‘ง, ๐œ) = ๐›พ๐‘ง โ„Ž(๐‘ก, ๐œ)๐‘ก ๐‘‘๐‘ก, then ๐‘ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ), ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ. The function ๐‘ž is convex and is the best subordinant.

The connection between univalent function theory and hypergeometric functions was established in 1985 when de Branges used the generalized hypergeometric function for proving Bieberbachโ€™s conjecture [29]. Once hypergeometric functions were considered in studies regarding univalent functions, confluent hypergeometric function was used in many investigations. One of the first papers which investigated confluent hypergeometric function and gave conditions for its univalence was published in 1990 [30]. Ever since then, aspects of its univalence were further investigated [31,32], it was considered in con-nection with other important functions [33โ€“37] and it was used in the definition of new

ฯ•(

p(z, ฮถ), zยทpโ€ฒz(z, ฮถ); z, ฮถ)

implies

L(a(ฮถ), c(ฮถ); z, ฮถ)

Axioms 2022, 11, x FOR PEER REVIEW 3 of 12

Definition 3. [27] Let ๐›บ be a set in โ„‚, ๐‘ž(โˆ™, ๐œ) โˆˆ ๐›บ , and ๐‘› a positive integer. The class of ad-missible functions ๐›ท ๐›บ , ๐‘ž(โˆ™, ๐œ) consists of those functions ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚ that satisfy the admissibility condition ๐œ‘(๐‘Ÿ, ๐‘ , ๐‘ก; ๐œ‰, ๐œ) โˆˆ ๐›บ (A)

whenever ๐‘Ÿ = ๐‘ž(๐‘ง, ๐œ), ๐‘  = ( , ) , ๐‘…๐‘’ + 1 โ‰ค ๐‘…๐‘’ '' ( , )' ( , ) + 1 , ๐‘ง โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. When ๐‘› = 1 we write ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) as ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) . In the special case when โ„Ž(โˆ™, ๐œ) is an analytic mapping of ๐‘ˆ ร— ๐‘ˆ onto ๐›บ โ‰  โ„‚ we denote the class ฮฆ โ„Ž(๐‘ˆ ร— ๐‘ˆ) , ๐‘ž(๐‘ง, ๐œ) by ฮฆ โ„Ž(๐‘ง, ๐œ) , ๐‘ž(๐‘ง, ๐œ) . If ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚, then the admissibility condition (A) reduces to ๐œ‘ ๐‘ž(๐‘ง, ๐œ), ๐‘ง๐‘ž (๐‘ง, ๐œ)๐‘š ; ๐œ‰, ๐œ โˆˆ ๐›บ , (Aโ€™)

where ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. Millerโ€”Mocanu lemma given in [18] was rewritten in [27] for functions ๐‘(๐‘ง, ๐œ) and ๐‘ž(๐‘ง, ๐œ) as follows:

Lemma 1. ([17],[27]) Let ๐‘(๐‘ง, ๐œ) โˆˆ ๐‘„(๐‘Ž) and let ๐‘ž(๐‘ง, ๐œ) = ๐‘Ž + ๐‘Ž (๐œ)๐‘ง + ๐‘Ž (๐œ)๐‘ง + โ‹ฏ with ๐‘Ž (๐œ) holomorphic functions in ๐‘ˆ, ๐‘˜ โ‰ฅ ๐‘›, ๐‘ž(๐‘ง, ๐œ) โ‰ข ๐‘Ž and ๐‘› โ‰ฅ 1. If ๐‘ž(๐‘ง, ๐œ) is not subor-dinate to ๐‘(๐‘ง, ๐œ), then there exist points ๐‘ง = ๐‘Ÿ ๐‘’ โˆˆ ๐‘ˆ and ๐œ‰ โˆˆ ๐œ•๐‘ˆ\๐ธ ๐‘(๐‘ง, ๐œ) and an ๐‘š โ‰ฅ๐‘› โ‰ฅ 1 for which ๐‘ž(๐‘ˆ ร— ๐‘ˆ ) โŠ‚ ๐‘(๐‘ˆ ร— ๐‘ˆ) and (๐‘–) ๐‘ž(๐‘ง , ๐œ) = ๐‘(๐œ‰ , ๐œ), (๐‘–๐‘–) ๐‘ง ๐‘ž (๐‘ง , ๐œ) = ๐‘š๐œ‰ ๐‘ (๐œ‰ , ๐œ) and (๐‘–๐‘–๐‘–) ๐‘…๐‘’ ๐‘ง ๐‘ž (๐‘ง , ๐œ)๐‘ž (๐‘ง , ๐œ) + 1 โ‰ฅ ๐‘š๐‘…๐‘’ ๐œ‰ ๐‘ (๐œ‰ , ๐œ)๐‘ (๐œ‰ , ๐œ) + 1 .

This lemma will be used in the next section for proving the theorems which contain the original results. Another helpful result which will be used is the next lemma proved in [28].

Lemma 2. [28] Let โ„Ž(๐‘ง, ๐œ) be convex in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ with โ„Ž(0, ๐œ) = ๐‘Ž, ๐›พ โ‰  0, ๐‘…๐‘’ ๐›พ > 0 and ๐‘ โˆˆ ๐ป ๐‘Ž, 1 โˆฉ ๐‘„. If ๐‘(๐‘ง, ๐œ) + ( , ) is univalent in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ, โ„Ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ) + ๐‘ง๐‘ (๐‘ง, ๐œ)๐›พ

and ๐‘ž(๐‘ง, ๐œ) = ๐›พ๐‘ง โ„Ž(๐‘ก, ๐œ)๐‘ก ๐‘‘๐‘ก, then ๐‘ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ), ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ. The function ๐‘ž is convex and is the best subordinant.

The connection between univalent function theory and hypergeometric functions was established in 1985 when de Branges used the generalized hypergeometric function for proving Bieberbachโ€™s conjecture [29]. Once hypergeometric functions were considered in studies regarding univalent functions, confluent hypergeometric function was used in many investigations. One of the first papers which investigated confluent hypergeometric function and gave conditions for its univalence was published in 1990 [30]. Ever since then, aspects of its univalence were further investigated [31,32], it was considered in con-nection with other important functions [33โ€“37] and it was used in the definition of new

p(z, ฮถ), z โˆˆ U, ฮถ โˆˆ U.

The function q(z, ฮถ) = L(a(ฮถ), c(ฮถ); z, ฮถ) is the best subordinant.

Theorem 2. Let q(z, ฮถ) be a convex function in the unit disc for all ฮถ โˆˆ U, consider the confluenthypergeometric function ฯ†(a(ฮถ), c(ฮถ); z, ฮถ) defined by (5) and Kummerโ€“Bernardi integral operatorB(a(ฮถ), c(ฮถ); z, ฮถ) given by (3). Let ฯ• : C2 ร—U ร—U โ†’ C be an admissible function with theproperties seen in Definition 3 and define the analytic function

h(z, ฮถ) =

(1 +

1ฮณ

)q(z, ฮถ) +

1ฮณ

zยทqโ€ฒz(z, ฮถ), z โˆˆ U, ฮถ โˆˆ U.

If ฯ†โ€ฒz(a(ฮถ), c(ฮถ); z, ฮถ) and Bโ€ฒz(a(ฮถ), c(ฮถ); z, ฮถ) โˆˆ Hฮถ [1, 1]โˆฉQฮถ(1) are univalent functions in U forall ฮถ โˆˆ U, then strong differential superordination

h(z, ฮถ)

Axioms 2022, 11, x FOR PEER REVIEW 3 of 12

Definition 3. [27] Let ๐›บ be a set in โ„‚, ๐‘ž(โˆ™, ๐œ) โˆˆ ๐›บ , and ๐‘› a positive integer. The class of ad-missible functions ๐›ท ๐›บ , ๐‘ž(โˆ™, ๐œ) consists of those functions ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚ that satisfy the admissibility condition ๐œ‘(๐‘Ÿ, ๐‘ , ๐‘ก; ๐œ‰, ๐œ) โˆˆ ๐›บ (A)

whenever ๐‘Ÿ = ๐‘ž(๐‘ง, ๐œ), ๐‘  = ( , ) , ๐‘…๐‘’ + 1 โ‰ค ๐‘…๐‘’ '' ( , )' ( , ) + 1 , ๐‘ง โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. When ๐‘› = 1 we write ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) as ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) . In the special case when โ„Ž(โˆ™, ๐œ) is an analytic mapping of ๐‘ˆ ร— ๐‘ˆ onto ๐›บ โ‰  โ„‚ we denote the class ฮฆ โ„Ž(๐‘ˆ ร— ๐‘ˆ) , ๐‘ž(๐‘ง, ๐œ) by ฮฆ โ„Ž(๐‘ง, ๐œ) , ๐‘ž(๐‘ง, ๐œ) . If ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚, then the admissibility condition (A) reduces to ๐œ‘ ๐‘ž(๐‘ง, ๐œ), ๐‘ง๐‘ž (๐‘ง, ๐œ)๐‘š ; ๐œ‰, ๐œ โˆˆ ๐›บ , (Aโ€™)

where ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. Millerโ€”Mocanu lemma given in [18] was rewritten in [27] for functions ๐‘(๐‘ง, ๐œ) and ๐‘ž(๐‘ง, ๐œ) as follows:

Lemma 1. ([17],[27]) Let ๐‘(๐‘ง, ๐œ) โˆˆ ๐‘„(๐‘Ž) and let ๐‘ž(๐‘ง, ๐œ) = ๐‘Ž + ๐‘Ž (๐œ)๐‘ง + ๐‘Ž (๐œ)๐‘ง + โ‹ฏ with ๐‘Ž (๐œ) holomorphic functions in ๐‘ˆ, ๐‘˜ โ‰ฅ ๐‘›, ๐‘ž(๐‘ง, ๐œ) โ‰ข ๐‘Ž and ๐‘› โ‰ฅ 1. If ๐‘ž(๐‘ง, ๐œ) is not subor-dinate to ๐‘(๐‘ง, ๐œ), then there exist points ๐‘ง = ๐‘Ÿ ๐‘’ โˆˆ ๐‘ˆ and ๐œ‰ โˆˆ ๐œ•๐‘ˆ\๐ธ ๐‘(๐‘ง, ๐œ) and an ๐‘š โ‰ฅ๐‘› โ‰ฅ 1 for which ๐‘ž(๐‘ˆ ร— ๐‘ˆ ) โŠ‚ ๐‘(๐‘ˆ ร— ๐‘ˆ) and (๐‘–) ๐‘ž(๐‘ง , ๐œ) = ๐‘(๐œ‰ , ๐œ), (๐‘–๐‘–) ๐‘ง ๐‘ž (๐‘ง , ๐œ) = ๐‘š๐œ‰ ๐‘ (๐œ‰ , ๐œ) and (๐‘–๐‘–๐‘–) ๐‘…๐‘’ ๐‘ง ๐‘ž (๐‘ง , ๐œ)๐‘ž (๐‘ง , ๐œ) + 1 โ‰ฅ ๐‘š๐‘…๐‘’ ๐œ‰ ๐‘ (๐œ‰ , ๐œ)๐‘ (๐œ‰ , ๐œ) + 1 .

This lemma will be used in the next section for proving the theorems which contain the original results. Another helpful result which will be used is the next lemma proved in [28].

Lemma 2. [28] Let โ„Ž(๐‘ง, ๐œ) be convex in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ with โ„Ž(0, ๐œ) = ๐‘Ž, ๐›พ โ‰  0, ๐‘…๐‘’ ๐›พ > 0 and ๐‘ โˆˆ ๐ป ๐‘Ž, 1 โˆฉ ๐‘„. If ๐‘(๐‘ง, ๐œ) + ( , ) is univalent in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ, โ„Ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ) + ๐‘ง๐‘ (๐‘ง, ๐œ)๐›พ

and ๐‘ž(๐‘ง, ๐œ) = ๐›พ๐‘ง โ„Ž(๐‘ก, ๐œ)๐‘ก ๐‘‘๐‘ก, then ๐‘ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ), ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ. The function ๐‘ž is convex and is the best subordinant.

The connection between univalent function theory and hypergeometric functions was established in 1985 when de Branges used the generalized hypergeometric function for proving Bieberbachโ€™s conjecture [29]. Once hypergeometric functions were considered in studies regarding univalent functions, confluent hypergeometric function was used in many investigations. One of the first papers which investigated confluent hypergeometric function and gave conditions for its univalence was published in 1990 [30]. Ever since then, aspects of its univalence were further investigated [31,32], it was considered in con-nection with other important functions [33โ€“37] and it was used in the definition of new

ฯ†โ€ฒz(a(ฮถ), c(ฮถ); z, ฮถ) (18)

implies

q(z, ฮถ)

Axioms 2022, 11, x FOR PEER REVIEW 3 of 12

Definition 3. [27] Let ๐›บ be a set in โ„‚, ๐‘ž(โˆ™, ๐œ) โˆˆ ๐›บ , and ๐‘› a positive integer. The class of ad-missible functions ๐›ท ๐›บ , ๐‘ž(โˆ™, ๐œ) consists of those functions ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚ that satisfy the admissibility condition ๐œ‘(๐‘Ÿ, ๐‘ , ๐‘ก; ๐œ‰, ๐œ) โˆˆ ๐›บ (A)

whenever ๐‘Ÿ = ๐‘ž(๐‘ง, ๐œ), ๐‘  = ( , ) , ๐‘…๐‘’ + 1 โ‰ค ๐‘…๐‘’ '' ( , )' ( , ) + 1 , ๐‘ง โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. When ๐‘› = 1 we write ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) as ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) . In the special case when โ„Ž(โˆ™, ๐œ) is an analytic mapping of ๐‘ˆ ร— ๐‘ˆ onto ๐›บ โ‰  โ„‚ we denote the class ฮฆ โ„Ž(๐‘ˆ ร— ๐‘ˆ) , ๐‘ž(๐‘ง, ๐œ) by ฮฆ โ„Ž(๐‘ง, ๐œ) , ๐‘ž(๐‘ง, ๐œ) . If ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚, then the admissibility condition (A) reduces to ๐œ‘ ๐‘ž(๐‘ง, ๐œ), ๐‘ง๐‘ž (๐‘ง, ๐œ)๐‘š ; ๐œ‰, ๐œ โˆˆ ๐›บ , (Aโ€™)

where ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. Millerโ€”Mocanu lemma given in [18] was rewritten in [27] for functions ๐‘(๐‘ง, ๐œ) and ๐‘ž(๐‘ง, ๐œ) as follows:

Lemma 1. ([17],[27]) Let ๐‘(๐‘ง, ๐œ) โˆˆ ๐‘„(๐‘Ž) and let ๐‘ž(๐‘ง, ๐œ) = ๐‘Ž + ๐‘Ž (๐œ)๐‘ง + ๐‘Ž (๐œ)๐‘ง + โ‹ฏ with ๐‘Ž (๐œ) holomorphic functions in ๐‘ˆ, ๐‘˜ โ‰ฅ ๐‘›, ๐‘ž(๐‘ง, ๐œ) โ‰ข ๐‘Ž and ๐‘› โ‰ฅ 1. If ๐‘ž(๐‘ง, ๐œ) is not subor-dinate to ๐‘(๐‘ง, ๐œ), then there exist points ๐‘ง = ๐‘Ÿ ๐‘’ โˆˆ ๐‘ˆ and ๐œ‰ โˆˆ ๐œ•๐‘ˆ\๐ธ ๐‘(๐‘ง, ๐œ) and an ๐‘š โ‰ฅ๐‘› โ‰ฅ 1 for which ๐‘ž(๐‘ˆ ร— ๐‘ˆ ) โŠ‚ ๐‘(๐‘ˆ ร— ๐‘ˆ) and (๐‘–) ๐‘ž(๐‘ง , ๐œ) = ๐‘(๐œ‰ , ๐œ), (๐‘–๐‘–) ๐‘ง ๐‘ž (๐‘ง , ๐œ) = ๐‘š๐œ‰ ๐‘ (๐œ‰ , ๐œ) and (๐‘–๐‘–๐‘–) ๐‘…๐‘’ ๐‘ง ๐‘ž (๐‘ง , ๐œ)๐‘ž (๐‘ง , ๐œ) + 1 โ‰ฅ ๐‘š๐‘…๐‘’ ๐œ‰ ๐‘ (๐œ‰ , ๐œ)๐‘ (๐œ‰ , ๐œ) + 1 .

This lemma will be used in the next section for proving the theorems which contain the original results. Another helpful result which will be used is the next lemma proved in [28].

Lemma 2. [28] Let โ„Ž(๐‘ง, ๐œ) be convex in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ with โ„Ž(0, ๐œ) = ๐‘Ž, ๐›พ โ‰  0, ๐‘…๐‘’ ๐›พ > 0 and ๐‘ โˆˆ ๐ป ๐‘Ž, 1 โˆฉ ๐‘„. If ๐‘(๐‘ง, ๐œ) + ( , ) is univalent in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ, โ„Ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ) + ๐‘ง๐‘ (๐‘ง, ๐œ)๐›พ

and ๐‘ž(๐‘ง, ๐œ) = ๐›พ๐‘ง โ„Ž(๐‘ก, ๐œ)๐‘ก ๐‘‘๐‘ก, then ๐‘ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ), ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ. The function ๐‘ž is convex and is the best subordinant.

The connection between univalent function theory and hypergeometric functions was established in 1985 when de Branges used the generalized hypergeometric function for proving Bieberbachโ€™s conjecture [29]. Once hypergeometric functions were considered in studies regarding univalent functions, confluent hypergeometric function was used in many investigations. One of the first papers which investigated confluent hypergeometric function and gave conditions for its univalence was published in 1990 [30]. Ever since then, aspects of its univalence were further investigated [31,32], it was considered in con-nection with other important functions [33โ€“37] and it was used in the definition of new

Bโ€ฒz(a(ฮถ), c(ฮถ); z, ฮถ), z โˆˆ U, ฮถ โˆˆ U.

Proof. Using relation (9) from the proof of Theorem 1 and differentiating it with respect toz, we obtain:

ฯ†โ€ฒz(a(ฮถ), c(ฮถ); z, ฮถ) =

(1 +

1ฮณ

)Bโ€ฒz(a(ฮถ), c(ฮถ); z, ฮถ) +

1ฮณ

zยทBโ€ฒโ€ฒz2(a(ฮถ), c(ฮถ); z, ฮถ), z โˆˆ U, ฮถ โˆˆ U. (19)

Using (19), strong differential superordination (18) becomes:

h(z, ฮถ)

Axioms 2022, 11, x FOR PEER REVIEW 3 of 12

Definition 3. [27] Let ๐›บ be a set in โ„‚, ๐‘ž(โˆ™, ๐œ) โˆˆ ๐›บ , and ๐‘› a positive integer. The class of ad-missible functions ๐›ท ๐›บ , ๐‘ž(โˆ™, ๐œ) consists of those functions ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚ that satisfy the admissibility condition ๐œ‘(๐‘Ÿ, ๐‘ , ๐‘ก; ๐œ‰, ๐œ) โˆˆ ๐›บ (A)

whenever ๐‘Ÿ = ๐‘ž(๐‘ง, ๐œ), ๐‘  = ( , ) , ๐‘…๐‘’ + 1 โ‰ค ๐‘…๐‘’ '' ( , )' ( , ) + 1 , ๐‘ง โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. When ๐‘› = 1 we write ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) as ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) . In the special case when โ„Ž(โˆ™, ๐œ) is an analytic mapping of ๐‘ˆ ร— ๐‘ˆ onto ๐›บ โ‰  โ„‚ we denote the class ฮฆ โ„Ž(๐‘ˆ ร— ๐‘ˆ) , ๐‘ž(๐‘ง, ๐œ) by ฮฆ โ„Ž(๐‘ง, ๐œ) , ๐‘ž(๐‘ง, ๐œ) . If ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚, then the admissibility condition (A) reduces to ๐œ‘ ๐‘ž(๐‘ง, ๐œ), ๐‘ง๐‘ž (๐‘ง, ๐œ)๐‘š ; ๐œ‰, ๐œ โˆˆ ๐›บ , (Aโ€™)

where ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. Millerโ€”Mocanu lemma given in [18] was rewritten in [27] for functions ๐‘(๐‘ง, ๐œ) and ๐‘ž(๐‘ง, ๐œ) as follows:

Lemma 1. ([17],[27]) Let ๐‘(๐‘ง, ๐œ) โˆˆ ๐‘„(๐‘Ž) and let ๐‘ž(๐‘ง, ๐œ) = ๐‘Ž + ๐‘Ž (๐œ)๐‘ง + ๐‘Ž (๐œ)๐‘ง + โ‹ฏ with ๐‘Ž (๐œ) holomorphic functions in ๐‘ˆ, ๐‘˜ โ‰ฅ ๐‘›, ๐‘ž(๐‘ง, ๐œ) โ‰ข ๐‘Ž and ๐‘› โ‰ฅ 1. If ๐‘ž(๐‘ง, ๐œ) is not subor-dinate to ๐‘(๐‘ง, ๐œ), then there exist points ๐‘ง = ๐‘Ÿ ๐‘’ โˆˆ ๐‘ˆ and ๐œ‰ โˆˆ ๐œ•๐‘ˆ\๐ธ ๐‘(๐‘ง, ๐œ) and an ๐‘š โ‰ฅ๐‘› โ‰ฅ 1 for which ๐‘ž(๐‘ˆ ร— ๐‘ˆ ) โŠ‚ ๐‘(๐‘ˆ ร— ๐‘ˆ) and (๐‘–) ๐‘ž(๐‘ง , ๐œ) = ๐‘(๐œ‰ , ๐œ), (๐‘–๐‘–) ๐‘ง ๐‘ž (๐‘ง , ๐œ) = ๐‘š๐œ‰ ๐‘ (๐œ‰ , ๐œ) and (๐‘–๐‘–๐‘–) ๐‘…๐‘’ ๐‘ง ๐‘ž (๐‘ง , ๐œ)๐‘ž (๐‘ง , ๐œ) + 1 โ‰ฅ ๐‘š๐‘…๐‘’ ๐œ‰ ๐‘ (๐œ‰ , ๐œ)๐‘ (๐œ‰ , ๐œ) + 1 .

This lemma will be used in the next section for proving the theorems which contain the original results. Another helpful result which will be used is the next lemma proved in [28].

Lemma 2. [28] Let โ„Ž(๐‘ง, ๐œ) be convex in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ with โ„Ž(0, ๐œ) = ๐‘Ž, ๐›พ โ‰  0, ๐‘…๐‘’ ๐›พ > 0 and ๐‘ โˆˆ ๐ป ๐‘Ž, 1 โˆฉ ๐‘„. If ๐‘(๐‘ง, ๐œ) + ( , ) is univalent in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ, โ„Ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ) + ๐‘ง๐‘ (๐‘ง, ๐œ)๐›พ

and ๐‘ž(๐‘ง, ๐œ) = ๐›พ๐‘ง โ„Ž(๐‘ก, ๐œ)๐‘ก ๐‘‘๐‘ก, then ๐‘ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ), ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ. The function ๐‘ž is convex and is the best subordinant.

The connection between univalent function theory and hypergeometric functions was established in 1985 when de Branges used the generalized hypergeometric function for proving Bieberbachโ€™s conjecture [29]. Once hypergeometric functions were considered in studies regarding univalent functions, confluent hypergeometric function was used in many investigations. One of the first papers which investigated confluent hypergeometric function and gave conditions for its univalence was published in 1990 [30]. Ever since then, aspects of its univalence were further investigated [31,32], it was considered in con-nection with other important functions [33โ€“37] and it was used in the definition of new

(1 +

1ฮณ

)Bโ€ฒz(a(ฮถ), c(ฮถ); z, ฮถ) +

1ฮณ

zยทBโ€ฒโ€ฒz2(a(ฮถ), c(ฮถ); z, ฮถ). (20)

For the proof of this theorem to be complete, Lemma 1 and the admissibility condition(Aโ€ฒ) will be applied.

In order to do that, we define the admissible function ฯ• : C2 ร—U ร—U โ†’ C ,ฯ•(r, s; z, ฮถ) โˆˆ ฮฆn

[h(U ร—U

), q(z, ฮถ)

], given by:

ฯ•(r, s; z, ฮถ) =

(1 +

1ฮณ

)r +

1ฮณ

s, r, s โˆˆ C, ฮณ > 0. (21)

Axioms 2022, 11, 209 8 of 13

Taking r = Bโ€ฒz(a(ฮถ), c(ฮถ); z, ฮถ), s = zยทBโ€ฒโ€ฒz2(a(ฮถ), c(ฮถ); z, ฮถ) relation (21) becomes:

ฯ•(

Bโ€ฒz(a(ฮถ), c(ฮถ); z, ฮถ), zยทBโ€ฒโ€ฒz2(a(ฮถ), c(ฮถ); z, ฮถ); z, ฮถ)

=(

1 + 1ฮณ

)Bโ€ฒz(a(ฮถ), c(ฮถ); z, ฮถ) + 1

ฮณ zยทBโ€ฒโ€ฒz2(a(ฮถ), c(ฮถ); z, ฮถ); z, ฮถ).(22)

Using relation (22) in (20) we get:

h(z, ฮถ)

Axioms 2022, 11, x FOR PEER REVIEW 3 of 12

Definition 3. [27] Let ๐›บ be a set in โ„‚, ๐‘ž(โˆ™, ๐œ) โˆˆ ๐›บ , and ๐‘› a positive integer. The class of ad-missible functions ๐›ท ๐›บ , ๐‘ž(โˆ™, ๐œ) consists of those functions ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚ that satisfy the admissibility condition ๐œ‘(๐‘Ÿ, ๐‘ , ๐‘ก; ๐œ‰, ๐œ) โˆˆ ๐›บ (A)

whenever ๐‘Ÿ = ๐‘ž(๐‘ง, ๐œ), ๐‘  = ( , ) , ๐‘…๐‘’ + 1 โ‰ค ๐‘…๐‘’ '' ( , )' ( , ) + 1 , ๐‘ง โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. When ๐‘› = 1 we write ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) as ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) . In the special case when โ„Ž(โˆ™, ๐œ) is an analytic mapping of ๐‘ˆ ร— ๐‘ˆ onto ๐›บ โ‰  โ„‚ we denote the class ฮฆ โ„Ž(๐‘ˆ ร— ๐‘ˆ) , ๐‘ž(๐‘ง, ๐œ) by ฮฆ โ„Ž(๐‘ง, ๐œ) , ๐‘ž(๐‘ง, ๐œ) . If ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚, then the admissibility condition (A) reduces to ๐œ‘ ๐‘ž(๐‘ง, ๐œ), ๐‘ง๐‘ž (๐‘ง, ๐œ)๐‘š ; ๐œ‰, ๐œ โˆˆ ๐›บ , (Aโ€™)

where ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. Millerโ€”Mocanu lemma given in [18] was rewritten in [27] for functions ๐‘(๐‘ง, ๐œ) and ๐‘ž(๐‘ง, ๐œ) as follows:

Lemma 1. ([17],[27]) Let ๐‘(๐‘ง, ๐œ) โˆˆ ๐‘„(๐‘Ž) and let ๐‘ž(๐‘ง, ๐œ) = ๐‘Ž + ๐‘Ž (๐œ)๐‘ง + ๐‘Ž (๐œ)๐‘ง + โ‹ฏ with ๐‘Ž (๐œ) holomorphic functions in ๐‘ˆ, ๐‘˜ โ‰ฅ ๐‘›, ๐‘ž(๐‘ง, ๐œ) โ‰ข ๐‘Ž and ๐‘› โ‰ฅ 1. If ๐‘ž(๐‘ง, ๐œ) is not subor-dinate to ๐‘(๐‘ง, ๐œ), then there exist points ๐‘ง = ๐‘Ÿ ๐‘’ โˆˆ ๐‘ˆ and ๐œ‰ โˆˆ ๐œ•๐‘ˆ\๐ธ ๐‘(๐‘ง, ๐œ) and an ๐‘š โ‰ฅ๐‘› โ‰ฅ 1 for which ๐‘ž(๐‘ˆ ร— ๐‘ˆ ) โŠ‚ ๐‘(๐‘ˆ ร— ๐‘ˆ) and (๐‘–) ๐‘ž(๐‘ง , ๐œ) = ๐‘(๐œ‰ , ๐œ), (๐‘–๐‘–) ๐‘ง ๐‘ž (๐‘ง , ๐œ) = ๐‘š๐œ‰ ๐‘ (๐œ‰ , ๐œ) and (๐‘–๐‘–๐‘–) ๐‘…๐‘’ ๐‘ง ๐‘ž (๐‘ง , ๐œ)๐‘ž (๐‘ง , ๐œ) + 1 โ‰ฅ ๐‘š๐‘…๐‘’ ๐œ‰ ๐‘ (๐œ‰ , ๐œ)๐‘ (๐œ‰ , ๐œ) + 1 .

This lemma will be used in the next section for proving the theorems which contain the original results. Another helpful result which will be used is the next lemma proved in [28].

Lemma 2. [28] Let โ„Ž(๐‘ง, ๐œ) be convex in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ with โ„Ž(0, ๐œ) = ๐‘Ž, ๐›พ โ‰  0, ๐‘…๐‘’ ๐›พ > 0 and ๐‘ โˆˆ ๐ป ๐‘Ž, 1 โˆฉ ๐‘„. If ๐‘(๐‘ง, ๐œ) + ( , ) is univalent in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ, โ„Ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ) + ๐‘ง๐‘ (๐‘ง, ๐œ)๐›พ

and ๐‘ž(๐‘ง, ๐œ) = ๐›พ๐‘ง โ„Ž(๐‘ก, ๐œ)๐‘ก ๐‘‘๐‘ก, then ๐‘ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ), ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ. The function ๐‘ž is convex and is the best subordinant.

The connection between univalent function theory and hypergeometric functions was established in 1985 when de Branges used the generalized hypergeometric function for proving Bieberbachโ€™s conjecture [29]. Once hypergeometric functions were considered in studies regarding univalent functions, confluent hypergeometric function was used in many investigations. One of the first papers which investigated confluent hypergeometric function and gave conditions for its univalence was published in 1990 [30]. Ever since then, aspects of its univalence were further investigated [31,32], it was considered in con-nection with other important functions [33โ€“37] and it was used in the definition of new

ฯ•(

Bโ€ฒz(a(ฮถ), c(ฮถ); z, ฮถ), zยทBโ€ฒโ€ฒz2(a(ฮถ), c(ฮถ); z, ฮถ); z, ฮถ)

.

Using Definition 1 and Remark 1, a) for this strong differential superordination, we get:

h(0, ฮถ) = ฯ•(

Bโ€ฒz(a(ฮถ), c(ฮถ); 0, ฮถ), 0; 0, ฮถ)

andh(U ร—U

)โŠ‚ ฯ•

(U ร—U

). (23)

Interpreting relation (23) we conclude that

ฯ•(

Bโ€ฒz(a(ฮถ), c(ฮถ); ฮพ, ฮถ), ฮพยทBโ€ฒโ€ฒz2(a(ฮถ), c(ฮถ); ฮพ, ฮถ); ฮพ, ฮถ)

/โˆˆ h(U ร—U

), ฮพ โˆˆ โˆ‚U, ฮถ โˆˆ U. (24)

For ฮพ = ฮพ0 โˆˆ โˆ‚U, relation (24) becomes:

ฯ•(

Bโ€ฒz(a(ฮถ), c(ฮถ); ฮพ0, ฮถ), ฮพ0ยทBโ€ฒโ€ฒz2(a(ฮถ), c(ฮถ); ฮพ0, ฮถ); ฮพ0, ฮถ)

/โˆˆ h(U ร—U

), ฮถ โˆˆ U. (25)

Suppose that q(z, ฮถ) is not subordinate to Bโ€ฒz(a(ฮถ), c(ฮถ); z, ฮถ) for z โˆˆ U, ฮถ โˆˆ U. Then, usingLemma 1, we know that there are points z0 = r0eiฮธ0 โˆˆ U and ฮพ0 โˆˆ โˆ‚U\E(Bโ€ฒz(a(ฮถ), c(ฮถ); z, ฮถ))and an m โ‰ฅ n โ‰ฅ 1 such that

q(z0, ฮถ) = Bโ€ฒz(a(ฮถ), c(ฮถ); z0, ฮถ) = p(ฮพ0, ฮถ) and

z0qโ€ฒz(z0, ฮถ) = mฮพ0Bโ€ฒโ€ฒz2(a(ฮถ), c(ฮถ); z0, ฮถ) = mฮพ0 pโ€ฒz(ฮพ0, ฮถ).

Using those conditions with r = Bโ€ฒz(a(ฮถ), c(ฮถ); z0, ฮถ) and s = ฮพ0Bโ€ฒโ€ฒz2(a(ฮถ), c(ฮถ); z0, ฮถ)for ฮพ = ฮพ0 in Definition 3 and taking into consideration the admissibility condition (Aโ€ฒ),we obtain:

ฯ•(q(z0, ฮถ), z0qโ€ฒz(z0, ฮถ); z0, ฮถ) = ฯ•

(Bโ€ฒz(a(ฮถ), c(ฮถ); z0, ฮถ),

ฮพ0Bโ€ฒโ€ฒz2 (a(ฮถ),c(ฮถ);ฮพ0,ฮถ)

m ; z0, ฮถ

)โˆˆ h(U ร—U

).

Using m = 1 in the previous relation, we get

ฯ•(

Bโ€ฒz(a(ฮถ), c(ฮถ); z0, ฮถ), ฮพ0Bโ€ฒโ€ฒz2(a(ฮถ), c(ฮถ); z0, ฮถ); z0, ฮถ)โˆˆ h(U ร—U

), ฮถ โˆˆ U,

which contradicts the result obtained in relation (25). Hence, the assumption made is falseand we must have:

q(z, ฮถ)

Axioms 2022, 11, x FOR PEER REVIEW 3 of 12

Definition 3. [27] Let ๐›บ be a set in โ„‚, ๐‘ž(โˆ™, ๐œ) โˆˆ ๐›บ , and ๐‘› a positive integer. The class of ad-missible functions ๐›ท ๐›บ , ๐‘ž(โˆ™, ๐œ) consists of those functions ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚ that satisfy the admissibility condition ๐œ‘(๐‘Ÿ, ๐‘ , ๐‘ก; ๐œ‰, ๐œ) โˆˆ ๐›บ (A)

whenever ๐‘Ÿ = ๐‘ž(๐‘ง, ๐œ), ๐‘  = ( , ) , ๐‘…๐‘’ + 1 โ‰ค ๐‘…๐‘’ '' ( , )' ( , ) + 1 , ๐‘ง โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. When ๐‘› = 1 we write ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) as ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) . In the special case when โ„Ž(โˆ™, ๐œ) is an analytic mapping of ๐‘ˆ ร— ๐‘ˆ onto ๐›บ โ‰  โ„‚ we denote the class ฮฆ โ„Ž(๐‘ˆ ร— ๐‘ˆ) , ๐‘ž(๐‘ง, ๐œ) by ฮฆ โ„Ž(๐‘ง, ๐œ) , ๐‘ž(๐‘ง, ๐œ) . If ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚, then the admissibility condition (A) reduces to ๐œ‘ ๐‘ž(๐‘ง, ๐œ), ๐‘ง๐‘ž (๐‘ง, ๐œ)๐‘š ; ๐œ‰, ๐œ โˆˆ ๐›บ , (Aโ€™)

where ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. Millerโ€”Mocanu lemma given in [18] was rewritten in [27] for functions ๐‘(๐‘ง, ๐œ) and ๐‘ž(๐‘ง, ๐œ) as follows:

Lemma 1. ([17],[27]) Let ๐‘(๐‘ง, ๐œ) โˆˆ ๐‘„(๐‘Ž) and let ๐‘ž(๐‘ง, ๐œ) = ๐‘Ž + ๐‘Ž (๐œ)๐‘ง + ๐‘Ž (๐œ)๐‘ง + โ‹ฏ with ๐‘Ž (๐œ) holomorphic functions in ๐‘ˆ, ๐‘˜ โ‰ฅ ๐‘›, ๐‘ž(๐‘ง, ๐œ) โ‰ข ๐‘Ž and ๐‘› โ‰ฅ 1. If ๐‘ž(๐‘ง, ๐œ) is not subor-dinate to ๐‘(๐‘ง, ๐œ), then there exist points ๐‘ง = ๐‘Ÿ ๐‘’ โˆˆ ๐‘ˆ and ๐œ‰ โˆˆ ๐œ•๐‘ˆ\๐ธ ๐‘(๐‘ง, ๐œ) and an ๐‘š โ‰ฅ๐‘› โ‰ฅ 1 for which ๐‘ž(๐‘ˆ ร— ๐‘ˆ ) โŠ‚ ๐‘(๐‘ˆ ร— ๐‘ˆ) and (๐‘–) ๐‘ž(๐‘ง , ๐œ) = ๐‘(๐œ‰ , ๐œ), (๐‘–๐‘–) ๐‘ง ๐‘ž (๐‘ง , ๐œ) = ๐‘š๐œ‰ ๐‘ (๐œ‰ , ๐œ) and (๐‘–๐‘–๐‘–) ๐‘…๐‘’ ๐‘ง ๐‘ž (๐‘ง , ๐œ)๐‘ž (๐‘ง , ๐œ) + 1 โ‰ฅ ๐‘š๐‘…๐‘’ ๐œ‰ ๐‘ (๐œ‰ , ๐œ)๐‘ (๐œ‰ , ๐œ) + 1 .

This lemma will be used in the next section for proving the theorems which contain the original results. Another helpful result which will be used is the next lemma proved in [28].

Lemma 2. [28] Let โ„Ž(๐‘ง, ๐œ) be convex in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ with โ„Ž(0, ๐œ) = ๐‘Ž, ๐›พ โ‰  0, ๐‘…๐‘’ ๐›พ > 0 and ๐‘ โˆˆ ๐ป ๐‘Ž, 1 โˆฉ ๐‘„. If ๐‘(๐‘ง, ๐œ) + ( , ) is univalent in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ, โ„Ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ) + ๐‘ง๐‘ (๐‘ง, ๐œ)๐›พ

and ๐‘ž(๐‘ง, ๐œ) = ๐›พ๐‘ง โ„Ž(๐‘ก, ๐œ)๐‘ก ๐‘‘๐‘ก, then ๐‘ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ), ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ. The function ๐‘ž is convex and is the best subordinant.

The connection between univalent function theory and hypergeometric functions was established in 1985 when de Branges used the generalized hypergeometric function for proving Bieberbachโ€™s conjecture [29]. Once hypergeometric functions were considered in studies regarding univalent functions, confluent hypergeometric function was used in many investigations. One of the first papers which investigated confluent hypergeometric function and gave conditions for its univalence was published in 1990 [30]. Ever since then, aspects of its univalence were further investigated [31,32], it was considered in con-nection with other important functions [33โ€“37] and it was used in the definition of new

Bโ€ฒz(a(ฮถ), c(ฮถ); z, ฮถ) for z โˆˆ U, ฮถ โˆˆ U.

Remark 3. For ฮณ = 1, instead of Kummerโ€“Bernardi integral operator, Kummerโ€“Libera integraloperator defined in (4) is used in Theorem 2 and the following corollary can be written:

Corollary 2. Let q(z, ฮถ) be a convex function in the unit disc for all ฮถ โˆˆ U, consider the confluenthypergeometric function ฯ†(a(ฮถ), c(ฮถ); z, ฮถ) defined by (5) and Kummerโ€“Libera integral operator

Axioms 2022, 11, 209 9 of 13

L(a(ฮถ), c(ฮถ); z, ฮถ) given by (4). Let ฯ• : C2 ร—U ร—U โ†’ C be an admissible function with theproperties seen in Definition 3 and define the analytic function:

h(z, ฮถ) =

(1 +

1ฮณ

)q(z, ฮถ) +

1ฮณ

zยทqโ€ฒz(z, ฮถ), z โˆˆ U, ฮถ โˆˆ U.

If ฯ†โ€ฒz(a(ฮถ), c(ฮถ); z, ฮถ) and Lโ€ฒz(a(ฮถ), c(ฮถ); z, ฮถ) โˆˆ Hฮถ [1, 1]โˆฉQฮถ(1) are univalent functions in U forall ฮถ โˆˆ U, then strong differential superordination

h(z, ฮถ)

Axioms 2022, 11, x FOR PEER REVIEW 3 of 12

Definition 3. [27] Let ๐›บ be a set in โ„‚, ๐‘ž(โˆ™, ๐œ) โˆˆ ๐›บ , and ๐‘› a positive integer. The class of ad-missible functions ๐›ท ๐›บ , ๐‘ž(โˆ™, ๐œ) consists of those functions ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚ that satisfy the admissibility condition ๐œ‘(๐‘Ÿ, ๐‘ , ๐‘ก; ๐œ‰, ๐œ) โˆˆ ๐›บ (A)

whenever ๐‘Ÿ = ๐‘ž(๐‘ง, ๐œ), ๐‘  = ( , ) , ๐‘…๐‘’ + 1 โ‰ค ๐‘…๐‘’ '' ( , )' ( , ) + 1 , ๐‘ง โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. When ๐‘› = 1 we write ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) as ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) . In the special case when โ„Ž(โˆ™, ๐œ) is an analytic mapping of ๐‘ˆ ร— ๐‘ˆ onto ๐›บ โ‰  โ„‚ we denote the class ฮฆ โ„Ž(๐‘ˆ ร— ๐‘ˆ) , ๐‘ž(๐‘ง, ๐œ) by ฮฆ โ„Ž(๐‘ง, ๐œ) , ๐‘ž(๐‘ง, ๐œ) . If ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚, then the admissibility condition (A) reduces to ๐œ‘ ๐‘ž(๐‘ง, ๐œ), ๐‘ง๐‘ž (๐‘ง, ๐œ)๐‘š ; ๐œ‰, ๐œ โˆˆ ๐›บ , (Aโ€™)

where ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. Millerโ€”Mocanu lemma given in [18] was rewritten in [27] for functions ๐‘(๐‘ง, ๐œ) and ๐‘ž(๐‘ง, ๐œ) as follows:

Lemma 1. ([17],[27]) Let ๐‘(๐‘ง, ๐œ) โˆˆ ๐‘„(๐‘Ž) and let ๐‘ž(๐‘ง, ๐œ) = ๐‘Ž + ๐‘Ž (๐œ)๐‘ง + ๐‘Ž (๐œ)๐‘ง + โ‹ฏ with ๐‘Ž (๐œ) holomorphic functions in ๐‘ˆ, ๐‘˜ โ‰ฅ ๐‘›, ๐‘ž(๐‘ง, ๐œ) โ‰ข ๐‘Ž and ๐‘› โ‰ฅ 1. If ๐‘ž(๐‘ง, ๐œ) is not subor-dinate to ๐‘(๐‘ง, ๐œ), then there exist points ๐‘ง = ๐‘Ÿ ๐‘’ โˆˆ ๐‘ˆ and ๐œ‰ โˆˆ ๐œ•๐‘ˆ\๐ธ ๐‘(๐‘ง, ๐œ) and an ๐‘š โ‰ฅ๐‘› โ‰ฅ 1 for which ๐‘ž(๐‘ˆ ร— ๐‘ˆ ) โŠ‚ ๐‘(๐‘ˆ ร— ๐‘ˆ) and (๐‘–) ๐‘ž(๐‘ง , ๐œ) = ๐‘(๐œ‰ , ๐œ), (๐‘–๐‘–) ๐‘ง ๐‘ž (๐‘ง , ๐œ) = ๐‘š๐œ‰ ๐‘ (๐œ‰ , ๐œ) and (๐‘–๐‘–๐‘–) ๐‘…๐‘’ ๐‘ง ๐‘ž (๐‘ง , ๐œ)๐‘ž (๐‘ง , ๐œ) + 1 โ‰ฅ ๐‘š๐‘…๐‘’ ๐œ‰ ๐‘ (๐œ‰ , ๐œ)๐‘ (๐œ‰ , ๐œ) + 1 .

This lemma will be used in the next section for proving the theorems which contain the original results. Another helpful result which will be used is the next lemma proved in [28].

Lemma 2. [28] Let โ„Ž(๐‘ง, ๐œ) be convex in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ with โ„Ž(0, ๐œ) = ๐‘Ž, ๐›พ โ‰  0, ๐‘…๐‘’ ๐›พ > 0 and ๐‘ โˆˆ ๐ป ๐‘Ž, 1 โˆฉ ๐‘„. If ๐‘(๐‘ง, ๐œ) + ( , ) is univalent in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ, โ„Ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ) + ๐‘ง๐‘ (๐‘ง, ๐œ)๐›พ

and ๐‘ž(๐‘ง, ๐œ) = ๐›พ๐‘ง โ„Ž(๐‘ก, ๐œ)๐‘ก ๐‘‘๐‘ก, then ๐‘ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ), ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ. The function ๐‘ž is convex and is the best subordinant.

The connection between univalent function theory and hypergeometric functions was established in 1985 when de Branges used the generalized hypergeometric function for proving Bieberbachโ€™s conjecture [29]. Once hypergeometric functions were considered in studies regarding univalent functions, confluent hypergeometric function was used in many investigations. One of the first papers which investigated confluent hypergeometric function and gave conditions for its univalence was published in 1990 [30]. Ever since then, aspects of its univalence were further investigated [31,32], it was considered in con-nection with other important functions [33โ€“37] and it was used in the definition of new

ฯ†โ€ฒz(a(ฮถ), c(ฮถ); z, ฮถ)

implies

q(z, ฮถ)

Axioms 2022, 11, x FOR PEER REVIEW 3 of 12

Definition 3. [27] Let ๐›บ be a set in โ„‚, ๐‘ž(โˆ™, ๐œ) โˆˆ ๐›บ , and ๐‘› a positive integer. The class of ad-missible functions ๐›ท ๐›บ , ๐‘ž(โˆ™, ๐œ) consists of those functions ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚ that satisfy the admissibility condition ๐œ‘(๐‘Ÿ, ๐‘ , ๐‘ก; ๐œ‰, ๐œ) โˆˆ ๐›บ (A)

whenever ๐‘Ÿ = ๐‘ž(๐‘ง, ๐œ), ๐‘  = ( , ) , ๐‘…๐‘’ + 1 โ‰ค ๐‘…๐‘’ '' ( , )' ( , ) + 1 , ๐‘ง โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. When ๐‘› = 1 we write ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) as ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) . In the special case when โ„Ž(โˆ™, ๐œ) is an analytic mapping of ๐‘ˆ ร— ๐‘ˆ onto ๐›บ โ‰  โ„‚ we denote the class ฮฆ โ„Ž(๐‘ˆ ร— ๐‘ˆ) , ๐‘ž(๐‘ง, ๐œ) by ฮฆ โ„Ž(๐‘ง, ๐œ) , ๐‘ž(๐‘ง, ๐œ) . If ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚, then the admissibility condition (A) reduces to ๐œ‘ ๐‘ž(๐‘ง, ๐œ), ๐‘ง๐‘ž (๐‘ง, ๐œ)๐‘š ; ๐œ‰, ๐œ โˆˆ ๐›บ , (Aโ€™)

where ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. Millerโ€”Mocanu lemma given in [18] was rewritten in [27] for functions ๐‘(๐‘ง, ๐œ) and ๐‘ž(๐‘ง, ๐œ) as follows:

Lemma 1. ([17],[27]) Let ๐‘(๐‘ง, ๐œ) โˆˆ ๐‘„(๐‘Ž) and let ๐‘ž(๐‘ง, ๐œ) = ๐‘Ž + ๐‘Ž (๐œ)๐‘ง + ๐‘Ž (๐œ)๐‘ง + โ‹ฏ with ๐‘Ž (๐œ) holomorphic functions in ๐‘ˆ, ๐‘˜ โ‰ฅ ๐‘›, ๐‘ž(๐‘ง, ๐œ) โ‰ข ๐‘Ž and ๐‘› โ‰ฅ 1. If ๐‘ž(๐‘ง, ๐œ) is not subor-dinate to ๐‘(๐‘ง, ๐œ), then there exist points ๐‘ง = ๐‘Ÿ ๐‘’ โˆˆ ๐‘ˆ and ๐œ‰ โˆˆ ๐œ•๐‘ˆ\๐ธ ๐‘(๐‘ง, ๐œ) and an ๐‘š โ‰ฅ๐‘› โ‰ฅ 1 for which ๐‘ž(๐‘ˆ ร— ๐‘ˆ ) โŠ‚ ๐‘(๐‘ˆ ร— ๐‘ˆ) and (๐‘–) ๐‘ž(๐‘ง , ๐œ) = ๐‘(๐œ‰ , ๐œ), (๐‘–๐‘–) ๐‘ง ๐‘ž (๐‘ง , ๐œ) = ๐‘š๐œ‰ ๐‘ (๐œ‰ , ๐œ) and (๐‘–๐‘–๐‘–) ๐‘…๐‘’ ๐‘ง ๐‘ž (๐‘ง , ๐œ)๐‘ž (๐‘ง , ๐œ) + 1 โ‰ฅ ๐‘š๐‘…๐‘’ ๐œ‰ ๐‘ (๐œ‰ , ๐œ)๐‘ (๐œ‰ , ๐œ) + 1 .

This lemma will be used in the next section for proving the theorems which contain the original results. Another helpful result which will be used is the next lemma proved in [28].

Lemma 2. [28] Let โ„Ž(๐‘ง, ๐œ) be convex in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ with โ„Ž(0, ๐œ) = ๐‘Ž, ๐›พ โ‰  0, ๐‘…๐‘’ ๐›พ > 0 and ๐‘ โˆˆ ๐ป ๐‘Ž, 1 โˆฉ ๐‘„. If ๐‘(๐‘ง, ๐œ) + ( , ) is univalent in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ, โ„Ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ) + ๐‘ง๐‘ (๐‘ง, ๐œ)๐›พ

and ๐‘ž(๐‘ง, ๐œ) = ๐›พ๐‘ง โ„Ž(๐‘ก, ๐œ)๐‘ก ๐‘‘๐‘ก, then ๐‘ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ), ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ. The function ๐‘ž is convex and is the best subordinant.

The connection between univalent function theory and hypergeometric functions was established in 1985 when de Branges used the generalized hypergeometric function for proving Bieberbachโ€™s conjecture [29]. Once hypergeometric functions were considered in studies regarding univalent functions, confluent hypergeometric function was used in many investigations. One of the first papers which investigated confluent hypergeometric function and gave conditions for its univalence was published in 1990 [30]. Ever since then, aspects of its univalence were further investigated [31,32], it was considered in con-nection with other important functions [33โ€“37] and it was used in the definition of new

Lโ€ฒz(a(ฮถ), c(ฮถ); z, ฮถ), z โˆˆ U, ฮถ โˆˆ U.

In Theorems 1 and 2, parameter ฮณ is a real number, ฮณ > 0. In the next theorem,a necessary and sufficient condition is determined such that Kummerโ€“Bernardi integraloperator is the best subordinant for a certain strong differential superordination consideringฮณ a complex number with Re ฮณ > 0.

Theorem 3. Let h(z, ฮถ) with h(0, ฮถ) = a be a convex function in the unit disc for all ฮถ โˆˆ U andlet ฮณ be a complex number with Re ฮณ > 0. Consider the confluent hypergeometric functionฯ†(a(ฮถ), c(ฮถ); z, ฮถ) defined by (5) and Kummerโ€“Bernardi integral operator B(a(ฮถ), c(ฮถ); z, ฮถ) givenby (3). Let p(z, ฮถ) โˆˆ Hฮถ [a, 1] โˆฉQฮถ(a).

If p(z, ฮถ) +zยทpโ€ฒz(z,ฮถ)

ฮณ is univalent in U for all ฮถ โˆˆ U and the following strong differential superordi-nation is satisfied

B(a(ฮถ), c(ฮถ); z, ฮถ) +zยทBโ€ฒz(a(ฮถ), c(ฮถ); z, ฮถ)

ฮณ

Axioms 2022, 11, x FOR PEER REVIEW 3 of 12

Definition 3. [27] Let ๐›บ be a set in โ„‚, ๐‘ž(โˆ™, ๐œ) โˆˆ ๐›บ , and ๐‘› a positive integer. The class of ad-missible functions ๐›ท ๐›บ , ๐‘ž(โˆ™, ๐œ) consists of those functions ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚ that satisfy the admissibility condition ๐œ‘(๐‘Ÿ, ๐‘ , ๐‘ก; ๐œ‰, ๐œ) โˆˆ ๐›บ (A)

whenever ๐‘Ÿ = ๐‘ž(๐‘ง, ๐œ), ๐‘  = ( , ) , ๐‘…๐‘’ + 1 โ‰ค ๐‘…๐‘’ '' ( , )' ( , ) + 1 , ๐‘ง โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. When ๐‘› = 1 we write ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) as ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) . In the special case when โ„Ž(โˆ™, ๐œ) is an analytic mapping of ๐‘ˆ ร— ๐‘ˆ onto ๐›บ โ‰  โ„‚ we denote the class ฮฆ โ„Ž(๐‘ˆ ร— ๐‘ˆ) , ๐‘ž(๐‘ง, ๐œ) by ฮฆ โ„Ž(๐‘ง, ๐œ) , ๐‘ž(๐‘ง, ๐œ) . If ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚, then the admissibility condition (A) reduces to ๐œ‘ ๐‘ž(๐‘ง, ๐œ), ๐‘ง๐‘ž (๐‘ง, ๐œ)๐‘š ; ๐œ‰, ๐œ โˆˆ ๐›บ , (Aโ€™)

where ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. Millerโ€”Mocanu lemma given in [18] was rewritten in [27] for functions ๐‘(๐‘ง, ๐œ) and ๐‘ž(๐‘ง, ๐œ) as follows:

Lemma 1. ([17],[27]) Let ๐‘(๐‘ง, ๐œ) โˆˆ ๐‘„(๐‘Ž) and let ๐‘ž(๐‘ง, ๐œ) = ๐‘Ž + ๐‘Ž (๐œ)๐‘ง + ๐‘Ž (๐œ)๐‘ง + โ‹ฏ with ๐‘Ž (๐œ) holomorphic functions in ๐‘ˆ, ๐‘˜ โ‰ฅ ๐‘›, ๐‘ž(๐‘ง, ๐œ) โ‰ข ๐‘Ž and ๐‘› โ‰ฅ 1. If ๐‘ž(๐‘ง, ๐œ) is not subor-dinate to ๐‘(๐‘ง, ๐œ), then there exist points ๐‘ง = ๐‘Ÿ ๐‘’ โˆˆ ๐‘ˆ and ๐œ‰ โˆˆ ๐œ•๐‘ˆ\๐ธ ๐‘(๐‘ง, ๐œ) and an ๐‘š โ‰ฅ๐‘› โ‰ฅ 1 for which ๐‘ž(๐‘ˆ ร— ๐‘ˆ ) โŠ‚ ๐‘(๐‘ˆ ร— ๐‘ˆ) and (๐‘–) ๐‘ž(๐‘ง , ๐œ) = ๐‘(๐œ‰ , ๐œ), (๐‘–๐‘–) ๐‘ง ๐‘ž (๐‘ง , ๐œ) = ๐‘š๐œ‰ ๐‘ (๐œ‰ , ๐œ) and (๐‘–๐‘–๐‘–) ๐‘…๐‘’ ๐‘ง ๐‘ž (๐‘ง , ๐œ)๐‘ž (๐‘ง , ๐œ) + 1 โ‰ฅ ๐‘š๐‘…๐‘’ ๐œ‰ ๐‘ (๐œ‰ , ๐œ)๐‘ (๐œ‰ , ๐œ) + 1 .

This lemma will be used in the next section for proving the theorems which contain the original results. Another helpful result which will be used is the next lemma proved in [28].

Lemma 2. [28] Let โ„Ž(๐‘ง, ๐œ) be convex in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ with โ„Ž(0, ๐œ) = ๐‘Ž, ๐›พ โ‰  0, ๐‘…๐‘’ ๐›พ > 0 and ๐‘ โˆˆ ๐ป ๐‘Ž, 1 โˆฉ ๐‘„. If ๐‘(๐‘ง, ๐œ) + ( , ) is univalent in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ, โ„Ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ) + ๐‘ง๐‘ (๐‘ง, ๐œ)๐›พ

and ๐‘ž(๐‘ง, ๐œ) = ๐›พ๐‘ง โ„Ž(๐‘ก, ๐œ)๐‘ก ๐‘‘๐‘ก, then ๐‘ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ), ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ. The function ๐‘ž is convex and is the best subordinant.

The connection between univalent function theory and hypergeometric functions was established in 1985 when de Branges used the generalized hypergeometric function for proving Bieberbachโ€™s conjecture [29]. Once hypergeometric functions were considered in studies regarding univalent functions, confluent hypergeometric function was used in many investigations. One of the first papers which investigated confluent hypergeometric function and gave conditions for its univalence was published in 1990 [30]. Ever since then, aspects of its univalence were further investigated [31,32], it was considered in con-nection with other important functions [33โ€“37] and it was used in the definition of new

p(z, ฮถ) +zยทpโ€ฒz(z, ฮถ)

ฮณ, (26)

then

q(z, ฮถ) = B(a(ฮถ), c(ฮถ); z, ฮถ)

Axioms 2022, 11, x FOR PEER REVIEW 3 of 12

Definition 3. [27] Let ๐›บ be a set in โ„‚, ๐‘ž(โˆ™, ๐œ) โˆˆ ๐›บ , and ๐‘› a positive integer. The class of ad-missible functions ๐›ท ๐›บ , ๐‘ž(โˆ™, ๐œ) consists of those functions ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚ that satisfy the admissibility condition ๐œ‘(๐‘Ÿ, ๐‘ , ๐‘ก; ๐œ‰, ๐œ) โˆˆ ๐›บ (A)

whenever ๐‘Ÿ = ๐‘ž(๐‘ง, ๐œ), ๐‘  = ( , ) , ๐‘…๐‘’ + 1 โ‰ค ๐‘…๐‘’ '' ( , )' ( , ) + 1 , ๐‘ง โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. When ๐‘› = 1 we write ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) as ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) . In the special case when โ„Ž(โˆ™, ๐œ) is an analytic mapping of ๐‘ˆ ร— ๐‘ˆ onto ๐›บ โ‰  โ„‚ we denote the class ฮฆ โ„Ž(๐‘ˆ ร— ๐‘ˆ) , ๐‘ž(๐‘ง, ๐œ) by ฮฆ โ„Ž(๐‘ง, ๐œ) , ๐‘ž(๐‘ง, ๐œ) . If ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚, then the admissibility condition (A) reduces to ๐œ‘ ๐‘ž(๐‘ง, ๐œ), ๐‘ง๐‘ž (๐‘ง, ๐œ)๐‘š ; ๐œ‰, ๐œ โˆˆ ๐›บ , (Aโ€™)

where ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. Millerโ€”Mocanu lemma given in [18] was rewritten in [27] for functions ๐‘(๐‘ง, ๐œ) and ๐‘ž(๐‘ง, ๐œ) as follows:

Lemma 1. ([17],[27]) Let ๐‘(๐‘ง, ๐œ) โˆˆ ๐‘„(๐‘Ž) and let ๐‘ž(๐‘ง, ๐œ) = ๐‘Ž + ๐‘Ž (๐œ)๐‘ง + ๐‘Ž (๐œ)๐‘ง + โ‹ฏ with ๐‘Ž (๐œ) holomorphic functions in ๐‘ˆ, ๐‘˜ โ‰ฅ ๐‘›, ๐‘ž(๐‘ง, ๐œ) โ‰ข ๐‘Ž and ๐‘› โ‰ฅ 1. If ๐‘ž(๐‘ง, ๐œ) is not subor-dinate to ๐‘(๐‘ง, ๐œ), then there exist points ๐‘ง = ๐‘Ÿ ๐‘’ โˆˆ ๐‘ˆ and ๐œ‰ โˆˆ ๐œ•๐‘ˆ\๐ธ ๐‘(๐‘ง, ๐œ) and an ๐‘š โ‰ฅ๐‘› โ‰ฅ 1 for which ๐‘ž(๐‘ˆ ร— ๐‘ˆ ) โŠ‚ ๐‘(๐‘ˆ ร— ๐‘ˆ) and (๐‘–) ๐‘ž(๐‘ง , ๐œ) = ๐‘(๐œ‰ , ๐œ), (๐‘–๐‘–) ๐‘ง ๐‘ž (๐‘ง , ๐œ) = ๐‘š๐œ‰ ๐‘ (๐œ‰ , ๐œ) and (๐‘–๐‘–๐‘–) ๐‘…๐‘’ ๐‘ง ๐‘ž (๐‘ง , ๐œ)๐‘ž (๐‘ง , ๐œ) + 1 โ‰ฅ ๐‘š๐‘…๐‘’ ๐œ‰ ๐‘ (๐œ‰ , ๐œ)๐‘ (๐œ‰ , ๐œ) + 1 .

This lemma will be used in the next section for proving the theorems which contain the original results. Another helpful result which will be used is the next lemma proved in [28].

Lemma 2. [28] Let โ„Ž(๐‘ง, ๐œ) be convex in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ with โ„Ž(0, ๐œ) = ๐‘Ž, ๐›พ โ‰  0, ๐‘…๐‘’ ๐›พ > 0 and ๐‘ โˆˆ ๐ป ๐‘Ž, 1 โˆฉ ๐‘„. If ๐‘(๐‘ง, ๐œ) + ( , ) is univalent in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ, โ„Ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ) + ๐‘ง๐‘ (๐‘ง, ๐œ)๐›พ

and ๐‘ž(๐‘ง, ๐œ) = ๐›พ๐‘ง โ„Ž(๐‘ก, ๐œ)๐‘ก ๐‘‘๐‘ก, then ๐‘ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ), ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ. The function ๐‘ž is convex and is the best subordinant.

The connection between univalent function theory and hypergeometric functions was established in 1985 when de Branges used the generalized hypergeometric function for proving Bieberbachโ€™s conjecture [29]. Once hypergeometric functions were considered in studies regarding univalent functions, confluent hypergeometric function was used in many investigations. One of the first papers which investigated confluent hypergeometric function and gave conditions for its univalence was published in 1990 [30]. Ever since then, aspects of its univalence were further investigated [31,32], it was considered in con-nection with other important functions [33โ€“37] and it was used in the definition of new

p(z, ฮถ), z โˆˆ U, ฮถ โˆˆ U.

Function q(z, ฮถ) = B(a(ฮถ), c(ฮถ); z, ฮถ) is convex and is the best subordinant.

Proof. Lemma 2 will be used for the proof of this theorem. Using the definition of Kummerโ€“Bernardi operator given by (3) and differentiating this relation with respect to z, we obtain:

ฮณยทzฮณโˆ’1ยทB(a(ฮถ), c(ฮถ); z, ฮถ) + zฮณยทBโ€ฒz(a(ฮถ), c(ฮถ); z, ฮถ) = ฮณยทh(z, ฮถ)ยทzฮณโˆ’1, z โˆˆ U, ฮถ โˆˆ U.

After a simple calculation, we get:

B(a(ฮถ), c(ฮถ); z, ฮถ) +zยทBโ€ฒz(a(ฮถ), c(ฮถ); z, ฮถ)

ฮณ= h(z, ฮถ), z โˆˆ U, ฮถ โˆˆ U. (27)

Using (27), the strong differential subordination (26) becomes

h(z, ฮถ)

Axioms 2022, 11, x FOR PEER REVIEW 3 of 12

Definition 3. [27] Let ๐›บ be a set in โ„‚, ๐‘ž(โˆ™, ๐œ) โˆˆ ๐›บ , and ๐‘› a positive integer. The class of ad-missible functions ๐›ท ๐›บ , ๐‘ž(โˆ™, ๐œ) consists of those functions ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚ that satisfy the admissibility condition ๐œ‘(๐‘Ÿ, ๐‘ , ๐‘ก; ๐œ‰, ๐œ) โˆˆ ๐›บ (A)

whenever ๐‘Ÿ = ๐‘ž(๐‘ง, ๐œ), ๐‘  = ( , ) , ๐‘…๐‘’ + 1 โ‰ค ๐‘…๐‘’ '' ( , )' ( , ) + 1 , ๐‘ง โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. When ๐‘› = 1 we write ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) as ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) . In the special case when โ„Ž(โˆ™, ๐œ) is an analytic mapping of ๐‘ˆ ร— ๐‘ˆ onto ๐›บ โ‰  โ„‚ we denote the class ฮฆ โ„Ž(๐‘ˆ ร— ๐‘ˆ) , ๐‘ž(๐‘ง, ๐œ) by ฮฆ โ„Ž(๐‘ง, ๐œ) , ๐‘ž(๐‘ง, ๐œ) . If ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚, then the admissibility condition (A) reduces to ๐œ‘ ๐‘ž(๐‘ง, ๐œ), ๐‘ง๐‘ž (๐‘ง, ๐œ)๐‘š ; ๐œ‰, ๐œ โˆˆ ๐›บ , (Aโ€™)

where ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. Millerโ€”Mocanu lemma given in [18] was rewritten in [27] for functions ๐‘(๐‘ง, ๐œ) and ๐‘ž(๐‘ง, ๐œ) as follows:

Lemma 1. ([17],[27]) Let ๐‘(๐‘ง, ๐œ) โˆˆ ๐‘„(๐‘Ž) and let ๐‘ž(๐‘ง, ๐œ) = ๐‘Ž + ๐‘Ž (๐œ)๐‘ง + ๐‘Ž (๐œ)๐‘ง + โ‹ฏ with ๐‘Ž (๐œ) holomorphic functions in ๐‘ˆ, ๐‘˜ โ‰ฅ ๐‘›, ๐‘ž(๐‘ง, ๐œ) โ‰ข ๐‘Ž and ๐‘› โ‰ฅ 1. If ๐‘ž(๐‘ง, ๐œ) is not subor-dinate to ๐‘(๐‘ง, ๐œ), then there exist points ๐‘ง = ๐‘Ÿ ๐‘’ โˆˆ ๐‘ˆ and ๐œ‰ โˆˆ ๐œ•๐‘ˆ\๐ธ ๐‘(๐‘ง, ๐œ) and an ๐‘š โ‰ฅ๐‘› โ‰ฅ 1 for which ๐‘ž(๐‘ˆ ร— ๐‘ˆ ) โŠ‚ ๐‘(๐‘ˆ ร— ๐‘ˆ) and (๐‘–) ๐‘ž(๐‘ง , ๐œ) = ๐‘(๐œ‰ , ๐œ), (๐‘–๐‘–) ๐‘ง ๐‘ž (๐‘ง , ๐œ) = ๐‘š๐œ‰ ๐‘ (๐œ‰ , ๐œ) and (๐‘–๐‘–๐‘–) ๐‘…๐‘’ ๐‘ง ๐‘ž (๐‘ง , ๐œ)๐‘ž (๐‘ง , ๐œ) + 1 โ‰ฅ ๐‘š๐‘…๐‘’ ๐œ‰ ๐‘ (๐œ‰ , ๐œ)๐‘ (๐œ‰ , ๐œ) + 1 .

This lemma will be used in the next section for proving the theorems which contain the original results. Another helpful result which will be used is the next lemma proved in [28].

Lemma 2. [28] Let โ„Ž(๐‘ง, ๐œ) be convex in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ with โ„Ž(0, ๐œ) = ๐‘Ž, ๐›พ โ‰  0, ๐‘…๐‘’ ๐›พ > 0 and ๐‘ โˆˆ ๐ป ๐‘Ž, 1 โˆฉ ๐‘„. If ๐‘(๐‘ง, ๐œ) + ( , ) is univalent in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ, โ„Ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ) + ๐‘ง๐‘ (๐‘ง, ๐œ)๐›พ

and ๐‘ž(๐‘ง, ๐œ) = ๐›พ๐‘ง โ„Ž(๐‘ก, ๐œ)๐‘ก ๐‘‘๐‘ก, then ๐‘ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ), ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ. The function ๐‘ž is convex and is the best subordinant.

The connection between univalent function theory and hypergeometric functions was established in 1985 when de Branges used the generalized hypergeometric function for proving Bieberbachโ€™s conjecture [29]. Once hypergeometric functions were considered in studies regarding univalent functions, confluent hypergeometric function was used in many investigations. One of the first papers which investigated confluent hypergeometric function and gave conditions for its univalence was published in 1990 [30]. Ever since then, aspects of its univalence were further investigated [31,32], it was considered in con-nection with other important functions [33โ€“37] and it was used in the definition of new

p(z, ฮถ) +zยทpโ€ฒz(z, ฮถ)

ฮณ, z โˆˆ U, ฮถ โˆˆ U.

Since h(z, ฮถ) is a convex function and p(z, ฮถ) +zยทpโ€ฒz(z,ฮถ)

ฮณ is univalent in U for allฮถ โˆˆ U, by applying Lemma 2 we obtain:

q(z, ฮถ) = B(a(ฮถ), c(ฮถ); z, ฮถ)

Axioms 2022, 11, x FOR PEER REVIEW 3 of 12

Definition 3. [27] Let ๐›บ be a set in โ„‚, ๐‘ž(โˆ™, ๐œ) โˆˆ ๐›บ , and ๐‘› a positive integer. The class of ad-missible functions ๐›ท ๐›บ , ๐‘ž(โˆ™, ๐œ) consists of those functions ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚ that satisfy the admissibility condition ๐œ‘(๐‘Ÿ, ๐‘ , ๐‘ก; ๐œ‰, ๐œ) โˆˆ ๐›บ (A)

whenever ๐‘Ÿ = ๐‘ž(๐‘ง, ๐œ), ๐‘  = ( , ) , ๐‘…๐‘’ + 1 โ‰ค ๐‘…๐‘’ '' ( , )' ( , ) + 1 , ๐‘ง โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. When ๐‘› = 1 we write ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) as ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) . In the special case when โ„Ž(โˆ™, ๐œ) is an analytic mapping of ๐‘ˆ ร— ๐‘ˆ onto ๐›บ โ‰  โ„‚ we denote the class ฮฆ โ„Ž(๐‘ˆ ร— ๐‘ˆ) , ๐‘ž(๐‘ง, ๐œ) by ฮฆ โ„Ž(๐‘ง, ๐œ) , ๐‘ž(๐‘ง, ๐œ) . If ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚, then the admissibility condition (A) reduces to ๐œ‘ ๐‘ž(๐‘ง, ๐œ), ๐‘ง๐‘ž (๐‘ง, ๐œ)๐‘š ; ๐œ‰, ๐œ โˆˆ ๐›บ , (Aโ€™)

where ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. Millerโ€”Mocanu lemma given in [18] was rewritten in [27] for functions ๐‘(๐‘ง, ๐œ) and ๐‘ž(๐‘ง, ๐œ) as follows:

Lemma 1. ([17],[27]) Let ๐‘(๐‘ง, ๐œ) โˆˆ ๐‘„(๐‘Ž) and let ๐‘ž(๐‘ง, ๐œ) = ๐‘Ž + ๐‘Ž (๐œ)๐‘ง + ๐‘Ž (๐œ)๐‘ง + โ‹ฏ with ๐‘Ž (๐œ) holomorphic functions in ๐‘ˆ, ๐‘˜ โ‰ฅ ๐‘›, ๐‘ž(๐‘ง, ๐œ) โ‰ข ๐‘Ž and ๐‘› โ‰ฅ 1. If ๐‘ž(๐‘ง, ๐œ) is not subor-dinate to ๐‘(๐‘ง, ๐œ), then there exist points ๐‘ง = ๐‘Ÿ ๐‘’ โˆˆ ๐‘ˆ and ๐œ‰ โˆˆ ๐œ•๐‘ˆ\๐ธ ๐‘(๐‘ง, ๐œ) and an ๐‘š โ‰ฅ๐‘› โ‰ฅ 1 for which ๐‘ž(๐‘ˆ ร— ๐‘ˆ ) โŠ‚ ๐‘(๐‘ˆ ร— ๐‘ˆ) and (๐‘–) ๐‘ž(๐‘ง , ๐œ) = ๐‘(๐œ‰ , ๐œ), (๐‘–๐‘–) ๐‘ง ๐‘ž (๐‘ง , ๐œ) = ๐‘š๐œ‰ ๐‘ (๐œ‰ , ๐œ) and (๐‘–๐‘–๐‘–) ๐‘…๐‘’ ๐‘ง ๐‘ž (๐‘ง , ๐œ)๐‘ž (๐‘ง , ๐œ) + 1 โ‰ฅ ๐‘š๐‘…๐‘’ ๐œ‰ ๐‘ (๐œ‰ , ๐œ)๐‘ (๐œ‰ , ๐œ) + 1 .

This lemma will be used in the next section for proving the theorems which contain the original results. Another helpful result which will be used is the next lemma proved in [28].

Lemma 2. [28] Let โ„Ž(๐‘ง, ๐œ) be convex in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ with โ„Ž(0, ๐œ) = ๐‘Ž, ๐›พ โ‰  0, ๐‘…๐‘’ ๐›พ > 0 and ๐‘ โˆˆ ๐ป ๐‘Ž, 1 โˆฉ ๐‘„. If ๐‘(๐‘ง, ๐œ) + ( , ) is univalent in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ, โ„Ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ) + ๐‘ง๐‘ (๐‘ง, ๐œ)๐›พ

and ๐‘ž(๐‘ง, ๐œ) = ๐›พ๐‘ง โ„Ž(๐‘ก, ๐œ)๐‘ก ๐‘‘๐‘ก, then ๐‘ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ), ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ. The function ๐‘ž is convex and is the best subordinant.

The connection between univalent function theory and hypergeometric functions was established in 1985 when de Branges used the generalized hypergeometric function for proving Bieberbachโ€™s conjecture [29]. Once hypergeometric functions were considered in studies regarding univalent functions, confluent hypergeometric function was used in many investigations. One of the first papers which investigated confluent hypergeometric function and gave conditions for its univalence was published in 1990 [30]. Ever since then, aspects of its univalence were further investigated [31,32], it was considered in con-nection with other important functions [33โ€“37] and it was used in the definition of new

p(z, ฮถ), z โˆˆ U, ฮถ โˆˆ U.

Since function q(z, ฮถ) = B(a(ฮถ), c(ฮถ); z, ฮถ) satisfies Equation (27) and is analytic in Ufor all ฮถ โˆˆ U, we conclude that q(z, ฮถ) = B(a(ฮถ), c(ฮถ); z, ฮถ) is the best subordinant.

Example 1. Let a = โˆ’1, c = i2ฮถ , i

2ฮถ 6= 0,โˆ’1,โˆ’2, . . . , ฮถ 6= 0, ฮณ โˆˆ C, Re ฮณ > 0. We evaluate:

Axioms 2022, 11, 209 10 of 13

ฯ†

(โˆ’1,

i2ฮถ

; z, ฮถ

)= 1 +

โˆ’1i

2ฮถ

ยท z1!

= 1โˆ’ 2ฮถยทzi

= 1 + 2iฮถz.

Further, we use this expression to obtain Kummerโ€“Bernardi integral operatorโ€™s expression:

B(

ฯ†(โˆ’1, i

2ฮถ ; z, ฮถ))

= ฮณzฮณ

zโˆซ0

ฯ†(โˆ’1, i

2ฮถ ; t, ฮถ)

tฮณโˆ’1dt = ฮณzฮณ

zโˆซ0(1 + 2iฮถt)tฮณโˆ’1dt

= ฮณzฮณ

(zฮณ

ฮณ + 2iฮถ zฮณ+1

ฮณ+1

)= 1 + 2iฮถ ฮณ

ฮณ+1 ยทz.

Functions p(z, ฮถ) = 1 + zฮถ and p(z, ฮถ) +zยทpโ€ฒz(z,ฮถ)

ฮณ = 1 + z(

ฮถ + ฮถฮณ

)are univalent in U for

all ฮถ โˆˆ U.Using Theorem 3, we get:If the following strong differential superordination is satisfied

1 + 2iฮถฮณ

ฮณ + 1ยทz + 2iฮถยทz

ฮณ + 1

Axioms 2022, 11, x FOR PEER REVIEW 3 of 12

Definition 3. [27] Let ๐›บ be a set in โ„‚, ๐‘ž(โˆ™, ๐œ) โˆˆ ๐›บ , and ๐‘› a positive integer. The class of ad-missible functions ๐›ท ๐›บ , ๐‘ž(โˆ™, ๐œ) consists of those functions ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚ that satisfy the admissibility condition ๐œ‘(๐‘Ÿ, ๐‘ , ๐‘ก; ๐œ‰, ๐œ) โˆˆ ๐›บ (A)

whenever ๐‘Ÿ = ๐‘ž(๐‘ง, ๐œ), ๐‘  = ( , ) , ๐‘…๐‘’ + 1 โ‰ค ๐‘…๐‘’ '' ( , )' ( , ) + 1 , ๐‘ง โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. When ๐‘› = 1 we write ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) as ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) . In the special case when โ„Ž(โˆ™, ๐œ) is an analytic mapping of ๐‘ˆ ร— ๐‘ˆ onto ๐›บ โ‰  โ„‚ we denote the class ฮฆ โ„Ž(๐‘ˆ ร— ๐‘ˆ) , ๐‘ž(๐‘ง, ๐œ) by ฮฆ โ„Ž(๐‘ง, ๐œ) , ๐‘ž(๐‘ง, ๐œ) . If ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚, then the admissibility condition (A) reduces to ๐œ‘ ๐‘ž(๐‘ง, ๐œ), ๐‘ง๐‘ž (๐‘ง, ๐œ)๐‘š ; ๐œ‰, ๐œ โˆˆ ๐›บ , (Aโ€™)

where ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. Millerโ€”Mocanu lemma given in [18] was rewritten in [27] for functions ๐‘(๐‘ง, ๐œ) and ๐‘ž(๐‘ง, ๐œ) as follows:

Lemma 1. ([17],[27]) Let ๐‘(๐‘ง, ๐œ) โˆˆ ๐‘„(๐‘Ž) and let ๐‘ž(๐‘ง, ๐œ) = ๐‘Ž + ๐‘Ž (๐œ)๐‘ง + ๐‘Ž (๐œ)๐‘ง + โ‹ฏ with ๐‘Ž (๐œ) holomorphic functions in ๐‘ˆ, ๐‘˜ โ‰ฅ ๐‘›, ๐‘ž(๐‘ง, ๐œ) โ‰ข ๐‘Ž and ๐‘› โ‰ฅ 1. If ๐‘ž(๐‘ง, ๐œ) is not subor-dinate to ๐‘(๐‘ง, ๐œ), then there exist points ๐‘ง = ๐‘Ÿ ๐‘’ โˆˆ ๐‘ˆ and ๐œ‰ โˆˆ ๐œ•๐‘ˆ\๐ธ ๐‘(๐‘ง, ๐œ) and an ๐‘š โ‰ฅ๐‘› โ‰ฅ 1 for which ๐‘ž(๐‘ˆ ร— ๐‘ˆ ) โŠ‚ ๐‘(๐‘ˆ ร— ๐‘ˆ) and (๐‘–) ๐‘ž(๐‘ง , ๐œ) = ๐‘(๐œ‰ , ๐œ), (๐‘–๐‘–) ๐‘ง ๐‘ž (๐‘ง , ๐œ) = ๐‘š๐œ‰ ๐‘ (๐œ‰ , ๐œ) and (๐‘–๐‘–๐‘–) ๐‘…๐‘’ ๐‘ง ๐‘ž (๐‘ง , ๐œ)๐‘ž (๐‘ง , ๐œ) + 1 โ‰ฅ ๐‘š๐‘…๐‘’ ๐œ‰ ๐‘ (๐œ‰ , ๐œ)๐‘ (๐œ‰ , ๐œ) + 1 .

This lemma will be used in the next section for proving the theorems which contain the original results. Another helpful result which will be used is the next lemma proved in [28].

Lemma 2. [28] Let โ„Ž(๐‘ง, ๐œ) be convex in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ with โ„Ž(0, ๐œ) = ๐‘Ž, ๐›พ โ‰  0, ๐‘…๐‘’ ๐›พ > 0 and ๐‘ โˆˆ ๐ป ๐‘Ž, 1 โˆฉ ๐‘„. If ๐‘(๐‘ง, ๐œ) + ( , ) is univalent in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ, โ„Ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ) + ๐‘ง๐‘ (๐‘ง, ๐œ)๐›พ

and ๐‘ž(๐‘ง, ๐œ) = ๐›พ๐‘ง โ„Ž(๐‘ก, ๐œ)๐‘ก ๐‘‘๐‘ก, then ๐‘ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ), ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ. The function ๐‘ž is convex and is the best subordinant.

The connection between univalent function theory and hypergeometric functions was established in 1985 when de Branges used the generalized hypergeometric function for proving Bieberbachโ€™s conjecture [29]. Once hypergeometric functions were considered in studies regarding univalent functions, confluent hypergeometric function was used in many investigations. One of the first papers which investigated confluent hypergeometric function and gave conditions for its univalence was published in 1990 [30]. Ever since then, aspects of its univalence were further investigated [31,32], it was considered in con-nection with other important functions [33โ€“37] and it was used in the definition of new

1 + z(

ฮถ +ฮถ

ฮณ

),

then

1 + 2iฮถฮณ

ฮณ + 1ยทz

Axioms 2022, 11, x FOR PEER REVIEW 3 of 12

Definition 3. [27] Let ๐›บ be a set in โ„‚, ๐‘ž(โˆ™, ๐œ) โˆˆ ๐›บ , and ๐‘› a positive integer. The class of ad-missible functions ๐›ท ๐›บ , ๐‘ž(โˆ™, ๐œ) consists of those functions ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚ that satisfy the admissibility condition ๐œ‘(๐‘Ÿ, ๐‘ , ๐‘ก; ๐œ‰, ๐œ) โˆˆ ๐›บ (A)

whenever ๐‘Ÿ = ๐‘ž(๐‘ง, ๐œ), ๐‘  = ( , ) , ๐‘…๐‘’ + 1 โ‰ค ๐‘…๐‘’ '' ( , )' ( , ) + 1 , ๐‘ง โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. When ๐‘› = 1 we write ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) as ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) . In the special case when โ„Ž(โˆ™, ๐œ) is an analytic mapping of ๐‘ˆ ร— ๐‘ˆ onto ๐›บ โ‰  โ„‚ we denote the class ฮฆ โ„Ž(๐‘ˆ ร— ๐‘ˆ) , ๐‘ž(๐‘ง, ๐œ) by ฮฆ โ„Ž(๐‘ง, ๐œ) , ๐‘ž(๐‘ง, ๐œ) . If ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚, then the admissibility condition (A) reduces to ๐œ‘ ๐‘ž(๐‘ง, ๐œ), ๐‘ง๐‘ž (๐‘ง, ๐œ)๐‘š ; ๐œ‰, ๐œ โˆˆ ๐›บ , (Aโ€™)

where ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. Millerโ€”Mocanu lemma given in [18] was rewritten in [27] for functions ๐‘(๐‘ง, ๐œ) and ๐‘ž(๐‘ง, ๐œ) as follows:

Lemma 1. ([17],[27]) Let ๐‘(๐‘ง, ๐œ) โˆˆ ๐‘„(๐‘Ž) and let ๐‘ž(๐‘ง, ๐œ) = ๐‘Ž + ๐‘Ž (๐œ)๐‘ง + ๐‘Ž (๐œ)๐‘ง + โ‹ฏ with ๐‘Ž (๐œ) holomorphic functions in ๐‘ˆ, ๐‘˜ โ‰ฅ ๐‘›, ๐‘ž(๐‘ง, ๐œ) โ‰ข ๐‘Ž and ๐‘› โ‰ฅ 1. If ๐‘ž(๐‘ง, ๐œ) is not subor-dinate to ๐‘(๐‘ง, ๐œ), then there exist points ๐‘ง = ๐‘Ÿ ๐‘’ โˆˆ ๐‘ˆ and ๐œ‰ โˆˆ ๐œ•๐‘ˆ\๐ธ ๐‘(๐‘ง, ๐œ) and an ๐‘š โ‰ฅ๐‘› โ‰ฅ 1 for which ๐‘ž(๐‘ˆ ร— ๐‘ˆ ) โŠ‚ ๐‘(๐‘ˆ ร— ๐‘ˆ) and (๐‘–) ๐‘ž(๐‘ง , ๐œ) = ๐‘(๐œ‰ , ๐œ), (๐‘–๐‘–) ๐‘ง ๐‘ž (๐‘ง , ๐œ) = ๐‘š๐œ‰ ๐‘ (๐œ‰ , ๐œ) and (๐‘–๐‘–๐‘–) ๐‘…๐‘’ ๐‘ง ๐‘ž (๐‘ง , ๐œ)๐‘ž (๐‘ง , ๐œ) + 1 โ‰ฅ ๐‘š๐‘…๐‘’ ๐œ‰ ๐‘ (๐œ‰ , ๐œ)๐‘ (๐œ‰ , ๐œ) + 1 .

This lemma will be used in the next section for proving the theorems which contain the original results. Another helpful result which will be used is the next lemma proved in [28].

Lemma 2. [28] Let โ„Ž(๐‘ง, ๐œ) be convex in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ with โ„Ž(0, ๐œ) = ๐‘Ž, ๐›พ โ‰  0, ๐‘…๐‘’ ๐›พ > 0 and ๐‘ โˆˆ ๐ป ๐‘Ž, 1 โˆฉ ๐‘„. If ๐‘(๐‘ง, ๐œ) + ( , ) is univalent in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ, โ„Ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ) + ๐‘ง๐‘ (๐‘ง, ๐œ)๐›พ

and ๐‘ž(๐‘ง, ๐œ) = ๐›พ๐‘ง โ„Ž(๐‘ก, ๐œ)๐‘ก ๐‘‘๐‘ก, then ๐‘ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ), ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ. The function ๐‘ž is convex and is the best subordinant.

The connection between univalent function theory and hypergeometric functions was established in 1985 when de Branges used the generalized hypergeometric function for proving Bieberbachโ€™s conjecture [29]. Once hypergeometric functions were considered in studies regarding univalent functions, confluent hypergeometric function was used in many investigations. One of the first papers which investigated confluent hypergeometric function and gave conditions for its univalence was published in 1990 [30]. Ever since then, aspects of its univalence were further investigated [31,32], it was considered in con-nection with other important functions [33โ€“37] and it was used in the definition of new

1 + zฮถ, z โˆˆ U, ฮถ โˆˆ U.

Function q(z, ฮถ) = 1 + 2iฮถ ฮณฮณ+1 ยทz is convex and is the best subordinant.

Example 2. Let a = โˆ’1, c = i2ฮถ , i

2ฮถ 6= 0,โˆ’1,โˆ’2, . . . , ฮถ 6= 0, ฮณ = 1 + i โˆˆ C, Re ฮณ = 1 > 0.We evaluate:

ฯ†

(โˆ’1,

i2ฮถ

; z, ฮถ

)= 1 +

โˆ’1i

2ฮถ

ยท z1!

= 1โˆ’ 2ฮถยทzi

= 1 + 2iฮถz.

Further, we use this expression to obtain Kummerโ€“Bernardi integral operatorโ€™s expression:

B(

ฯ†(โˆ’1, i

2ฮถ ; z, ฮถ))

= ฮณzฮณ

zโˆซ0

ฯ†(โˆ’1, i

2ฮถ ; t, ฮถ)

tฮณโˆ’1dt = 1+iz1+i

zโˆซ0(1 + 2iฮถt)tฮณโˆ’1dt

= 1+iz1+i

(z1+i

1+i + 2iฮถ z1+i+1

1+i+1

)= 1 + 2iฮถ z(i+1)

i+2 = 1 + 25 (โˆ’1 + 3i)zฮถ.

Functions p(z, ฮถ) = 1 + zฮถ and p(z, ฮถ) +zยทpโ€ฒz(z,ฮถ)

1+i = 1 + 32 zฮถ(3โˆ’ i) are univalent in U for all

ฮถ โˆˆ U.Using Theorem 3, we get:If 1 + 3

2 zฮถ(3โˆ’ i) is univalent in U for all ฮถ โˆˆ U and the following strong differential superordina-tion is satisfied

1 + 2iฮถt

Axioms 2022, 11, x FOR PEER REVIEW 3 of 12

Definition 3. [27] Let ๐›บ be a set in โ„‚, ๐‘ž(โˆ™, ๐œ) โˆˆ ๐›บ , and ๐‘› a positive integer. The class of ad-missible functions ๐›ท ๐›บ , ๐‘ž(โˆ™, ๐œ) consists of those functions ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚ that satisfy the admissibility condition ๐œ‘(๐‘Ÿ, ๐‘ , ๐‘ก; ๐œ‰, ๐œ) โˆˆ ๐›บ (A)

whenever ๐‘Ÿ = ๐‘ž(๐‘ง, ๐œ), ๐‘  = ( , ) , ๐‘…๐‘’ + 1 โ‰ค ๐‘…๐‘’ '' ( , )' ( , ) + 1 , ๐‘ง โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. When ๐‘› = 1 we write ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) as ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) . In the special case when โ„Ž(โˆ™, ๐œ) is an analytic mapping of ๐‘ˆ ร— ๐‘ˆ onto ๐›บ โ‰  โ„‚ we denote the class ฮฆ โ„Ž(๐‘ˆ ร— ๐‘ˆ) , ๐‘ž(๐‘ง, ๐œ) by ฮฆ โ„Ž(๐‘ง, ๐œ) , ๐‘ž(๐‘ง, ๐œ) . If ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚, then the admissibility condition (A) reduces to ๐œ‘ ๐‘ž(๐‘ง, ๐œ), ๐‘ง๐‘ž (๐‘ง, ๐œ)๐‘š ; ๐œ‰, ๐œ โˆˆ ๐›บ , (Aโ€™)

where ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. Millerโ€”Mocanu lemma given in [18] was rewritten in [27] for functions ๐‘(๐‘ง, ๐œ) and ๐‘ž(๐‘ง, ๐œ) as follows:

Lemma 1. ([17],[27]) Let ๐‘(๐‘ง, ๐œ) โˆˆ ๐‘„(๐‘Ž) and let ๐‘ž(๐‘ง, ๐œ) = ๐‘Ž + ๐‘Ž (๐œ)๐‘ง + ๐‘Ž (๐œ)๐‘ง + โ‹ฏ with ๐‘Ž (๐œ) holomorphic functions in ๐‘ˆ, ๐‘˜ โ‰ฅ ๐‘›, ๐‘ž(๐‘ง, ๐œ) โ‰ข ๐‘Ž and ๐‘› โ‰ฅ 1. If ๐‘ž(๐‘ง, ๐œ) is not subor-dinate to ๐‘(๐‘ง, ๐œ), then there exist points ๐‘ง = ๐‘Ÿ ๐‘’ โˆˆ ๐‘ˆ and ๐œ‰ โˆˆ ๐œ•๐‘ˆ\๐ธ ๐‘(๐‘ง, ๐œ) and an ๐‘š โ‰ฅ๐‘› โ‰ฅ 1 for which ๐‘ž(๐‘ˆ ร— ๐‘ˆ ) โŠ‚ ๐‘(๐‘ˆ ร— ๐‘ˆ) and (๐‘–) ๐‘ž(๐‘ง , ๐œ) = ๐‘(๐œ‰ , ๐œ), (๐‘–๐‘–) ๐‘ง ๐‘ž (๐‘ง , ๐œ) = ๐‘š๐œ‰ ๐‘ (๐œ‰ , ๐œ) and (๐‘–๐‘–๐‘–) ๐‘…๐‘’ ๐‘ง ๐‘ž (๐‘ง , ๐œ)๐‘ž (๐‘ง , ๐œ) + 1 โ‰ฅ ๐‘š๐‘…๐‘’ ๐œ‰ ๐‘ (๐œ‰ , ๐œ)๐‘ (๐œ‰ , ๐œ) + 1 .

This lemma will be used in the next section for proving the theorems which contain the original results. Another helpful result which will be used is the next lemma proved in [28].

Lemma 2. [28] Let โ„Ž(๐‘ง, ๐œ) be convex in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ with โ„Ž(0, ๐œ) = ๐‘Ž, ๐›พ โ‰  0, ๐‘…๐‘’ ๐›พ > 0 and ๐‘ โˆˆ ๐ป ๐‘Ž, 1 โˆฉ ๐‘„. If ๐‘(๐‘ง, ๐œ) + ( , ) is univalent in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ, โ„Ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ) + ๐‘ง๐‘ (๐‘ง, ๐œ)๐›พ

and ๐‘ž(๐‘ง, ๐œ) = ๐›พ๐‘ง โ„Ž(๐‘ก, ๐œ)๐‘ก ๐‘‘๐‘ก, then ๐‘ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ), ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ. The function ๐‘ž is convex and is the best subordinant.

The connection between univalent function theory and hypergeometric functions was established in 1985 when de Branges used the generalized hypergeometric function for proving Bieberbachโ€™s conjecture [29]. Once hypergeometric functions were considered in studies regarding univalent functions, confluent hypergeometric function was used in many investigations. One of the first papers which investigated confluent hypergeometric function and gave conditions for its univalence was published in 1990 [30]. Ever since then, aspects of its univalence were further investigated [31,32], it was considered in con-nection with other important functions [33โ€“37] and it was used in the definition of new

1 +32

zฮถ(3โˆ’ i),

then

1 +25(โˆ’1 + 3i)zฮถ

Axioms 2022, 11, x FOR PEER REVIEW 3 of 12

Definition 3. [27] Let ๐›บ be a set in โ„‚, ๐‘ž(โˆ™, ๐œ) โˆˆ ๐›บ , and ๐‘› a positive integer. The class of ad-missible functions ๐›ท ๐›บ , ๐‘ž(โˆ™, ๐œ) consists of those functions ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚ that satisfy the admissibility condition ๐œ‘(๐‘Ÿ, ๐‘ , ๐‘ก; ๐œ‰, ๐œ) โˆˆ ๐›บ (A)

whenever ๐‘Ÿ = ๐‘ž(๐‘ง, ๐œ), ๐‘  = ( , ) , ๐‘…๐‘’ + 1 โ‰ค ๐‘…๐‘’ '' ( , )' ( , ) + 1 , ๐‘ง โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. When ๐‘› = 1 we write ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) as ฮฆ ๐›บ , ๐‘ž(โˆ™, ๐œ) . In the special case when โ„Ž(โˆ™, ๐œ) is an analytic mapping of ๐‘ˆ ร— ๐‘ˆ onto ๐›บ โ‰  โ„‚ we denote the class ฮฆ โ„Ž(๐‘ˆ ร— ๐‘ˆ) , ๐‘ž(๐‘ง, ๐œ) by ฮฆ โ„Ž(๐‘ง, ๐œ) , ๐‘ž(๐‘ง, ๐œ) . If ๐œ‘: โ„‚ ร— ๐‘ˆ ร— ๐‘ˆ โ†’ โ„‚, then the admissibility condition (A) reduces to ๐œ‘ ๐‘ž(๐‘ง, ๐œ), ๐‘ง๐‘ž (๐‘ง, ๐œ)๐‘š ; ๐œ‰, ๐œ โˆˆ ๐›บ , (Aโ€™)

where ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ, ๐œ‰ โˆˆ ๐‘ˆ\๐ธ ๐‘ž(โˆ™, ๐œ) and ๐‘š โ‰ฅ ๐‘› โ‰ฅ 1. Millerโ€”Mocanu lemma given in [18] was rewritten in [27] for functions ๐‘(๐‘ง, ๐œ) and ๐‘ž(๐‘ง, ๐œ) as follows:

Lemma 1. ([17],[27]) Let ๐‘(๐‘ง, ๐œ) โˆˆ ๐‘„(๐‘Ž) and let ๐‘ž(๐‘ง, ๐œ) = ๐‘Ž + ๐‘Ž (๐œ)๐‘ง + ๐‘Ž (๐œ)๐‘ง + โ‹ฏ with ๐‘Ž (๐œ) holomorphic functions in ๐‘ˆ, ๐‘˜ โ‰ฅ ๐‘›, ๐‘ž(๐‘ง, ๐œ) โ‰ข ๐‘Ž and ๐‘› โ‰ฅ 1. If ๐‘ž(๐‘ง, ๐œ) is not subor-dinate to ๐‘(๐‘ง, ๐œ), then there exist points ๐‘ง = ๐‘Ÿ ๐‘’ โˆˆ ๐‘ˆ and ๐œ‰ โˆˆ ๐œ•๐‘ˆ\๐ธ ๐‘(๐‘ง, ๐œ) and an ๐‘š โ‰ฅ๐‘› โ‰ฅ 1 for which ๐‘ž(๐‘ˆ ร— ๐‘ˆ ) โŠ‚ ๐‘(๐‘ˆ ร— ๐‘ˆ) and (๐‘–) ๐‘ž(๐‘ง , ๐œ) = ๐‘(๐œ‰ , ๐œ), (๐‘–๐‘–) ๐‘ง ๐‘ž (๐‘ง , ๐œ) = ๐‘š๐œ‰ ๐‘ (๐œ‰ , ๐œ) and (๐‘–๐‘–๐‘–) ๐‘…๐‘’ ๐‘ง ๐‘ž (๐‘ง , ๐œ)๐‘ž (๐‘ง , ๐œ) + 1 โ‰ฅ ๐‘š๐‘…๐‘’ ๐œ‰ ๐‘ (๐œ‰ , ๐œ)๐‘ (๐œ‰ , ๐œ) + 1 .

This lemma will be used in the next section for proving the theorems which contain the original results. Another helpful result which will be used is the next lemma proved in [28].

Lemma 2. [28] Let โ„Ž(๐‘ง, ๐œ) be convex in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ with โ„Ž(0, ๐œ) = ๐‘Ž, ๐›พ โ‰  0, ๐‘…๐‘’ ๐›พ > 0 and ๐‘ โˆˆ ๐ป ๐‘Ž, 1 โˆฉ ๐‘„. If ๐‘(๐‘ง, ๐œ) + ( , ) is univalent in ๐‘ˆ for all ๐œ โˆˆ ๐‘ˆ, โ„Ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ) + ๐‘ง๐‘ (๐‘ง, ๐œ)๐›พ

and ๐‘ž(๐‘ง, ๐œ) = ๐›พ๐‘ง โ„Ž(๐‘ก, ๐œ)๐‘ก ๐‘‘๐‘ก, then ๐‘ž(๐‘ง, ๐œ) โชป ๐‘(๐‘ง, ๐œ), ๐‘ง โˆˆ ๐‘ˆ, ๐œ โˆˆ ๐‘ˆ. The function ๐‘ž is convex and is the best subordinant.

The connection between univalent function theory and hypergeometric functions was established in 1985 when de Branges used the generalized hypergeometric function for proving Bieberbachโ€™s conjecture [29]. Once hypergeometric functions were considered in studies regarding univalent functions, confluent hypergeometric function was used in many investigations. One of the first papers which investigated confluent hypergeometric function and gave conditions for its univalence was published in 1990 [30]. Ever since then, aspects of its univalence were further investigated [31,32], it was considered in con-nection with other important functions [33โ€“37] and it was used in the definition of new

1 + zฮถ, z โˆˆ U, ฮถ โˆˆ U.

Function q(z, ฮถ) = 1 + 25 (โˆ’1 + 3i)zฮถ is convex and is the best subordinant.

3. Discussion

The study presented in this paper is inspired by the nice results published whichinvolve confluent hypergeometric function and certain operators defined by using thisinteresting function. For this research, the environment of the theory of strong differential

Axioms 2022, 11, 209 11 of 13

superordination is considered. Confluent hypergeometric function and Kummerโ€“Bernardiand Kummerโ€“Libera operators defined in [38] are used in order to obtain certain strongdifferential superordinations. Their best subordinants are given in the three theoremsproved in the main results part. Theorems 1 and 2 use the convexity of confluent hy-pergeometric function ฯ†(a(ฮถ), c(ฮถ); z, ฮถ) given in (5) where it is adapted to certain classesof analytic functions specific for the theory of strong differential superordination. Themethods related to strong differential superordination theory are applied in order to findnecessary conditions for Kummerโ€“Bernardi integral operator presented in Definition 5,relation (3), to be the best subordinant of a certain strong differential superordinationinvolving confluent hypergeometric function ฯ†(a(ฮถ), c(ฮถ); z, ฮถ). As corollary, the similarresult is given for Kummerโ€“Libera operator. For those two theorems, the parameter ฮณ isa real number, ฮณ > 0. In Theorem 3, ฮณ โˆˆ C, with Re ฮณ > 0 is considered and a necessaryand sufficient condition is determined such that Kummerโ€“Bernardi integral operator to bethe best subordinant for a certain strong differential superordination. Two examples areconstructed for the case when ฮณ โˆˆ C, with Re ฮณ > 0.

4. Conclusions

In this paper, new strong differential superordinations are investigated using a specialform of confluent hypergeometric function given in (5) and two operators previouslyintroduced in [38]. In the three theorems proved as a result of the study, the two operatorscalled Kummerโ€“Bernardi and Kummerโ€“Libera integral operators are the best subordinantsof the strong differential superordinations.

The novelty of the study resides in the forms of the confluent hypergeometric functionand of the two operators considered by adaptation to the new classes depending on theextra parameter ฮถ introduced in the theory of strong differential subordination in [27].

As future studies, the dual notion of strong differential subordination can be con-sidered for investigations concerning confluent hypergeometric function and the twooperators used in the present study. Sandwich-type results could be obtained as seen inrecent papers [13,39,40].

New subclasses of univalent functions could be introduced in the context of strongdifferential subordination and superordination theories using the operators presented inthis paper as seen in [41].

It might also be interesting to consider other hypergeometric functions and operatorsdefined with them following the ideas presented in this paper.

Author Contributions: Conceptualization, G.I.O. and G.O.; methodology, G.I.O., G.O. and A.M.R.;software, G.I.O.; validation, G.I.O., G.O. and A.M.R.; formal analysis, G.I.O. and G.O.; investigation,G.I.O., G.O. and A.M.R.; resources, G.I.O. and G.O.; data curation, G.I.O. and G.O.; writingโ€”originaldraft preparation, G.O.; writingโ€”review and editing, G.I.O. and A.M.R.; visualization, G.I.O. andA.M.R.; supervision, G.O.; project administration, G.I.O.; funding acquisition, G.I.O. and A.M.R. Allauthors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References1. Antonino, J.A.; Romaguera, S. Strong differential subordination to Briot-Bouquet differential equations. J. Differ. Equ. 1994, 114,

101โ€“105. [CrossRef]2. Miller, S.S.; Mocanu, P.T. Second order-differential inequalities in the complex plane. J. Math. Anal. Appl. 1978, 65, 298โ€“305.

[CrossRef]3. Miller, S.S.; Mocanu, P.T. Differential subordinations and univalent functions. Mich. Math. J. 1981, 28, 157โ€“171. [CrossRef]4. Miller, S.S.; Mocanu, P.T. Differential Subordinations. In Theory and Applications; Marcel Dekker, Inc.: New York, NY, USA; Basel,

Switzerland, 2000.5. Oros, G.I.; Oros, G. Strong differential subordination. Turk. J. Math. 2009, 33, 249โ€“257.

Axioms 2022, 11, 209 12 of 13

6. Cho, N.E.; Kwon, O.S.; Srivastava, H.M. Strong differential subordination and superordination for multivalently meromorphicfunctions involving the Liuโ€“Srivastava operator. Integral Transform. Spec. Funct. 2010, 21, 589โ€“601. [CrossRef]

7. Abubaker, A.A.; Darus, M. First order linear differential subordinations for a generalized operator. Acta Univ. Apulensis, Math.Inform. 2011, 25, 133โ€“144.

8. Alb Lupas, A. On special strong differential subordinations using multiplier transformation. Appl. Math. Lett. 2012, 25, 624โ€“630.[CrossRef]

9. Alb Lupas, A.; Oros, G.I.; Oros, G. A note on special strong differential subordinations using multiplier transformation. J. Comput.Anal. Appl. 2012, 14, 261โ€“265.

10. Cho, N.E. Strong differential subordination properties for analytic functions involving the Komatu integral operator. Bound. ValueProbl. 2013, 44. [CrossRef]

11. Alb Lupas, A. A note on strong differential subordinations using Sฤƒlฤƒgean operator and Ruscheweyh derivative. J. Comput. Anal.Appl. 2014, 9, 144โ€“152.

12. Andrei, L.; Choban, M. Some strong differential subordinations using a differential operator. Carpathian J. Math. 2015, 31, 143โ€“156.[CrossRef]

13. Alb Lupas, A. Applications of a Multiplier Transformation and Ruscheweyh Derivative for Obtaining New Strong DifferentialSubordinations. Symmetry 2021, 13, 1312. [CrossRef]

14. Arjomandinia, P.; Aghalary, R. Strong subordination and superordination with sandwich-type theorems using integral operators.Stud. Univ. Babes-Bolyai Math. 2021, 66, 667โ€“675. [CrossRef]

15. Frassu, S.; Viglialoro, G. Boundedness in a chemotaxis system with consumed chemoattractant and produced chemorepellent.Nonlinear Anal. 2021, 213, Art. 112505. [CrossRef]

16. Li, T.; Viglialoro, G. Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime. Differ.Integral Equ. 2021, 34, 315โ€“336.

17. Oros, G.I. Strong differential superordination. Acta Univ. Apulensis 2009, 19, 101โ€“106.18. Miller, S.S.; Mocanu, P.T. Subordinations of differential superordinations. Complex Var. 2003, 48, 815โ€“826.19. Oros, G.I. First order strong differential superordination. Gen. Math. 2007, 15, 77โ€“87.20. Aghalary, R.; Arjomandinia, P.; Ebadian, A. Application of strong differential superordination to a general equation. Rocky Mt. J.

Math. 2017, 47, 383โ€“390. [CrossRef]21. Alb Lupas, A. A note on strong differential superordinations using a generalized Sฤƒlฤƒgean operator and Ruscheweyh operator.

Stud. Univ. Babes, -Bolyai Math. 2012, 57, 153โ€“165.22. Oshah, A.; Darus, M. Strong differential subordination and superordination of new generalized derivative operator. Korean J.

Math. 2015, 23, 503โ€“519. [CrossRef]23. Wanas, A.K.; Alb Lupas, A. On a new strong differential subordinations and superordinations of analytic functions involving the

generalized operator. Int. J. Pure Appl. Math. 2017, 11, 571โ€“579.24. Srivastava, H.M.; Wanas, A.K. Strong Differential Sandwich Results of ฮป-Pseudo-Starlike Functions with Respect to Symmetrical

Points. Math. Morav. 2019, 23, 45โ€“58. [CrossRef]25. Wanas, A.K.; Majeed, A.H. New strong differential subordination and superordination of meromorphic multivalent quasi-convex

functions. Kragujev. J. Math. 2020, 44, 27โ€“39. [CrossRef]26. Alb Lupas, A.; Oros, G.I. Strong Differential Superordination Results Involving Extended Sฤƒlฤƒgean and Ruscheweyh Operators.

Mathematics 2021, 9, 2487. [CrossRef]27. Oros, G.I. On a new strong differential subordination. Acta Univ. Apulensis 2012, 32, 243โ€“250.28. Oros, G.; S, endrut, iu, R.; Oros, G.I. First-order strong differential superordinations. Math. Rep. 2013, 15, 115โ€“124.29. Branges, L. A proof of the Bieberbach conjecture. Acta Math. 1985, 154, 137โ€“152. [CrossRef]30. Miller, S.S.; Mocanu, P.T. Univalence of Gaussian and Confluent Hypergeometric Functions. Proc. Am. Math. Soc. 1990, 110,

333โ€“342. [CrossRef]31. Kanas, S.; Stankiewicz, J. Univalence of confluent hypergeometric function. Ann. Univ. Mariae Curie-Sklodowska 1998, 1, 51โ€“56.32. Oros, G.I. New Conditions for Univalence of Confluent Hypergeometric Function. Symmetry 2021, 13, 82. [CrossRef]33. Ghanim, F.; Al-Shaqsi, K.; Darus, M.; Al-Janaby, H.F. Subordination Properties of Meromorphic Kummer Function Correlated

with Hurwitzโ€“Lerch Zeta-Function. Mathematics 2021, 9, 192. [CrossRef]34. Al-Janaby, H.F.; Ghanim, F. A subclass of Noor-type harmonic p-valent functions based on hypergeometric functions. Kragujev. J.

Math. 2021, 45, 499โ€“519. [CrossRef]35. Ghanim, F.; Al-Janaby, H.F.; Bazighifan, O. Some New Extensions on Fractional Differential and Integral Properties for Mittag-

Leffler Confluent Hypergeometric Function. Fractal Fract. 2021, 5, 143. [CrossRef]36. Ghanim, F.; Al-Janaby, H.F. An Analytical Study on Mittag-Leffler-Confluent Hypergeometric Functions with Fractional Integral

Operator. Math. Methods Appl. Sci. 2021, 44, 3605โ€“3614. [CrossRef]37. Ghanim, F.; Bendak, S.; Al Hawarneh, A. Certain implementations in fractional calculus operators involving Mittag-Leffler-

confluent hypergeometric functions. Proc. R. Soc. A 2022, 478, 20210839. [CrossRef]38. Oros, G.I. Study on new integral operators defined using confluent hypergeometric function. Adv. Differ. Equ. 2021, 2021, 342.

[CrossRef]

Axioms 2022, 11, 209 13 of 13

39. Suresh, T.K.; Reddy, D.M.; Reddy, E.K. Strong differential subordination and superordination of analytic functions in connectionwith a linear operator. Malaya J. Mat. 2019, S, 263โ€“270. [CrossRef]

40. Wanas, A.K.; Al-Ziadi, N.A.J. Strong Differential Sandwich Results for Bazilevic-Sakaguchi Type Functions Associated withAdmissible Functions. Earthline J. Math. Sci. 2022, 8, 205โ€“226. [CrossRef]

41. Wanas, A.K. Two New Classes of Analytic Functions Defined by Strong Differential Subordinations and Superordinations. Gen.Math. 2019, 27, 3โ€“11. [CrossRef]