Application of waste materials in hydraulic engineering

12
APPLICATION OF SOME WASTE MATERIALS IN HYDRAULIC ENGINEERING K.W. Pilarczyk, Rijkswaterstaat, Road and Hydraulic Engineering division, G.J. Laan, Rijkswaterstaat, Road and Hydraulic Engineering division, H. den Adel, Delft Geotechnics, P.O. Box 69, 2600 AB DELFT, P.O. Box 5044, 2600 GA DELFT, The Netherlands P.O. Box 5044, 2600 GA DELFT, The Netherlands The Netherlands 1 . INTRODUCTION Industrial waste products often form a great problem regarding their storage (dumping) and environmental consequences. In The Netherlands considerable experience has been gained with the application of industrial waste products as alternative materials in hydraulic engineering (i.e. bank and bottom protection, filter constructions, fiïï materiaï of cïosure structures). For the greater part the general applications have been carried out based on practica1 experience without scientific research into the structural and environmental implications. This kind of research has recently been started, mainly as a result of the growing awareness of environmental impacts of application of industrial waste products. The research is focussed not only on the commonly used waste materials, but 3lso aims at investigating the usefulness of other residual materials. Waste materials that we commonly used are minestone, aeveral kinds of slags and silex (a byproduct of the cement industry). A new development concerns the application of the so-called "Euroclay" in dike embankments. Euroclay is formed by consolidation under given conditions of the lightly polluted silt from the Rotterdam harbour area. The relevant engineering properties of the residual products have already been studied intensively. This has led to the drafting of requirements as to their use, and to the conception of contract specifications for quality zontrol. The ideal is to achieve a situation in which the materials will be suppl i ed under ce r t i f i cat e . A study of the environmental aspects involved ha3 onìy recently been taken in hand. A first result of this concerns the exclusion of lead slags as material in hydraulic engineering structures, This study should lead to special requirements with regard to the environment, and to systems for an adequate quality assurance. This paper will review the existing knowledge and experience on application of waste materials in hydraulic engineering in The Netherlands. Special attention will be paid to define the environmental requirements when using these materials. 2. DUTCH POLICY ON ALTERNATIVE MATERIALS The endeavour to increase the use of alternative materlals arises from two general public concerns (10): a. a safe storage and processing of the increasing amounts of waste materials (table 1): this is primarily the responsibility of the Minister of the Environment (waste materials policy). b. reducing stripping of surface minerals (table 2); this is primarily the responsibility of the Minister of Public Works.

Transcript of Application of waste materials in hydraulic engineering

APPLICATION OF SOME WASTE MATERIALS I N H Y D R A U L I C E N G I N E E R I N G

K.W. Pi l a r czyk , Rijkswaterstaat, Road and Hydraul ic Engineer ing d i v i s i o n ,

G.J. Laan, Rijkswaterstaat, Road and Hydraul ic Engineer ing d i v i s i o n ,

H. den Adel, Delft Geotechnics , P.O. Box 69 , 2600 AB DELFT,

P.O. Box 5044, 2600 GA DELFT, The Nether lands

P.O. Box 5044, 2600 GA DELFT, The Nether lands

The Nether lands

1 . INTRODUCTION I n d u s t r i a l waste products o f t e n form a great problem rega rd ing their

s t o r a g e (dumping) and environmental consequences. I n The Nether lands cons ide rab l e exper ience has been gained wi th the a p p l i c a t i o n o f i n d u s t r i a l waste products as a l t e r n a t i v e materials i n h y d r a u l i c eng inee r ing ( i . e . bank and bottom p r o t e c t i o n , f i l t e r c o n s t r u c t i o n s , f i ï ï materiaï o f c ï o s u r e s t r u c t u r e s ) . For t h e greater p a r t t h e gene ra l a p p l i c a t i o n s have been carried ou t based on practica1 exper ience wi thout s c i e n t i f i c research i n t o t h e s t r u c t u r a l and environmental imp l i ca t i ons . Th i s kind of research has r e c e n t l y been s tar ted, mainly as a r e s u l t of t he growing awareness o f environmental impacts o f a p p l i c a t i o n of i n d u s t r i a l waste products . The research is focussed no t on ly on t h e commonly used waste materials, bu t 3lso aims a t i n v e s t i g a t i n g t h e u s e f u l n e s s of o t h e r r e s i d u a l materials. Waste materials t h a t we commonly used are minestone, a e v e r a l k inds o f slags and s i l e x ( a byproduct of t h e cement i n d u s t r y ) . A new development concerns the a p p l i c a t i o n o f t h e so-called "Euroclay" i n d i k e embankments. Euroclay is formed by c o n s o l i d a t i o n under g iven c o n d i t i o n s o f the l i g h t l y p o l l u t e d s i l t from the Rotterdam harbour area. The r e l e v a n t eng inee r ing p r o p e r t i e s o f t h e r e s i d u a l p roduc t s have already been s t u d i e d i n t e n s i v e l y . Th i s has l e d t o t h e d r a f t i n g of requi rements as t o the i r use , and t o t h e concept ion of c o n t r a c t s p e c i f i c a t i o n s f o r q u a l i t y z o n t r o l . The ideal is t o ach i eve a s i t u a t i o n i n which t h e materials w i l l be suppl i ed under ce r t i f i cat e . A s tudy of t h e environmental aspects involved ha3 on ìy r e c e n t l y been taken i n hand. A first r e s u l t of t h i s concerns t h e exc lus ion of lead slags as material i n h y d r a u l i c eng inee r ing s t r u c t u r e s , This s tudy should lead t o special requi rements with regard t o the environment, and t o systems f o r an adequate q u a l i t y assurance . Th i s paper w i l l review the e x i s t i n g knowledge and exper ience on a p p l i c a t i o n o f waste materials i n h y d r a u l i c eng inee r ing i n The Nether lands. Special a t t e n t i o n w i l l be pa id t o d e f i n e t h e environmental requi rements when us ing these materials.

2. DUTCH POLICY ON ALTERNATIVE MATERIALS The endeavour t o i n c r e a s e t h e use o f a l t e r n a t i v e materlals arises from

two g e n e r a l p u b l i c concerns (10) : a. a safe s t o r a g e and p roces s ing of the i n c r e a s i n g amounts of waste

materials ( t ab le 1 ) : t h i s is p r i m a r i l y the r e s p o n s i b i l i t y o f t h e Min i s t e r o f t h e Environment (waste materials p o l i c y ) .

b. reduc ing s t r i p p i n g of s u r f a c e mine ra l s ( table 2 ) ; t h i s is p r i m a r i l y the r e s p o n s i b i l i t y of the Min i s t e r of P u b l i c Works.

waste materials

- b u i l d i n g and

- d r e d g i n g s l u d g e - c o a l f l y- a s h - c o a l e i n d e r s - i n c i n e r a t i o n f l y- a s h - i n c i n e r a t ion s lags - s t ee l s l a g s - phosphor s lags - phosphor ic ac id

d e m o l i t i o n wastes

gypsum

amounts i n 1 0 t o n / y e a r

6 48 (18 d r y )

0.6 0.1 0.07 0.65 0.3 0.6

2.0

m i n e r a l s

- g r a v e l - sand f o r

indus t r i a l purposes

- sand f o r embankment f i ï l i n g - c l a y

- marl

amounts i n î û 6 t o n / y e a r

15

19

33 3 t o 4 2

T a b l e 1 : P roduc t ion of waste materials i n t h e Ne ther lands

Tab le 2: P r o d u c t i o n of s u r f a c e m i n e r a l s i n the N e t h e r l a n d s

S t o r a g e and p r o c e s s i n g of waste materials, and s t r i p p i n g o f s u r f a c e m i n e r a l s cause env i ronmenta l and p l a n o l o g i c a l problems, which can be d imin i shed by r e- u s e of waste materials. Such re- use may also i n f l u e n c e , both p o s i t i v e l y and n e g a t i v e l y , f a c t o r s as e n e r g y consumption, employment, l a b o u r c o n d i t i o n s , and commercial i n t e r e s t s ( i n v e s t m e n t i n i n n o v a t i v e developments) . A basic g u i d e l i n e of a p o l i c y aimed a t s t i m u l a t i n g the u s e of a l t e r n a t i v e materials i n works directed by Rijkswaterstaat, s h o u l d be t h a t when d e c i d i n g whether o r n o t t o use such materials, n o t o n l y p r o j e c t - c o s t s , b u t als0 t h e above-mentioned p u b l i c i n t e r e s t s be t a k e n i n t 0 account . Higher p r o j e c t c o s t s might t h e n i n some i n s t a n c e s be acceptable. Based on t h e fo re- going , Rijkswaterstaat ( R W S ) involvement wi th a l t e r n a t p v e materials has f i v e approaches : a. b. C.

d.

e.

t h e p r o d u c t i o n o f waste materials from construction/maintenance works t h e p o s s i b i l i t y t o use a l t e r n a t i v e materials i n works directed by RWS t h e r e s p o n s i b i l i t y RWS ha3 for the q u a l i t y of s u r f a c e waters; both s t o r a g e and re- use of waste materials may damage t h e q u a l i t y o f s u r f a c e waters t h e part RWS can p l a y towards i n n o v a t i o n ; i n her p o l i c y f o r awarding research and c o n s t r u c t i o n contracts, RWS can c o n t r o l and direct t e c h n o l o g i c a l renewal . For t h i s t o work we11 i t is n e c e s s a r y t h a t t h e needs of both RWS and t h e i n d u s t r y are c l e a r l y f o r m u l a t e d a t a n e a r l y s t a g e so tha t bo th p a r t i e s - c a n a d j u s t themse lves on time; i n close c o n n e c t i o n w i t h b, c and d , the ( c o - ) r e s p o n s i b i l i t y fo r s t i m u l a t i n g , i n close c o o p e r a t i o n wi th i n d u s t r y , research i n s t i t u t e s , e tc . , t h e c o m p i l a t i o n o f g e n e r a l q u a l i t y r e q u i r e m e n t s , s t a n d a r d s and r e g u l a t ions .

From t h e fo re- going it may be concluded t h a t , based on these f i v e approaches, t h e Dutch s t r a t e g y is aimed a t d e f i n i n g what Rijkswaterstaat can do w i t h i n i ts own s e r v i c e s t o i n c r e a s e t h e use o f a l t e r n a t i v e materials. Recommendations t o other p u b l i c a u t h o r i t i e s and i n d u s t r y etc. t o promote t h e use of a l t e r n a t i v e materials are g i v e n , when such i 3 desirable, under t h e ( p r i m a r y ) r e s p o n s i b i l i t y o f t h e M i n i s t e r of T r a n s p o r t and P u b l i c Works, i n n a t i o n a l p o l i c y s t a t e m e n t s r e g a r d i n g borrow p i t s .

.. . .- ". . ... . - . . - .. - .

The r e a l i s a t i o n o f the po l i cy mentioned above is the main task o f t h e Road and Hydraul ic Engineer ing Div i s ion o f Rijkswaterstaat. Many de ta i l ed s t u d i e s on t h e t e c h n o l o g i c a l , environmental and p r a c t i c a 1 a p p l i c a t i o n have been undertaken i n the pas t 15 yea r s . Most s t u d i e s were on the use of concre te- and masonry r u b b l e i n road c o n s t r u c t i o n s and water works, and as aggregate i n conc re t e ; t h e use o f minestone, s t ee l s l a g s and phosphor s l a g s i n t h e same areas; the use o f f l y- ash and c i n d e r s , t h e use of conso l ida t ed dredging s ludge ("Euroc layvt ) , r e c y c l i n g of a s p h a l t , t h e use o f i n c i n e r a t i o n s lags and the p o s s i b i l i t y o f re-use of gypsum waste ( e s p e c i a l l y phosphoric acid gypsum). Recent ly a n a t i o n a l p r o j e c t on a p p l i c a t i o n o f a l t e r n a t i v e materials has been s ta r ted a t the Dutch Cent re f o r C i v i l Engineer ing , Research, Codes and S p e c i f i c a t i o n s ( C . U . R . ) i n coopera t ion w i t h Rijkswaterstaat, research i n s t i t u t e s and i n d u s t r i a l o rgan iza t ions . The aim of t h i s p r o j e c t is t o formula te g e n e r a l l y v a l i d s p e c i f i c a t i o n s ( i nc lud ing environmental a s p e c t s ) f o r v a r i o u s c i v i l eng inee r ing a p p l i c a t i o n s .

3. TECHNOLOGICAL ASPECTS AND DESIGN REQUIREMENTS 3.1 . Genera1

I n d u s t r i a l waste materials have a long r e c o r d of a p p l i c a t i o n i n Dutch h y d r a u l i c eng inee r ing cons t ruc t ion . Practica1 exper ience w i th the p r o p e r t i e s o f these products and t h e i r compe t i t i ve price compared t o n a t u r a l materials s t i m u l a t e d these a p p l i c a t i o n s . Much used materials were g ranu la r materials such as minestone, s l a g s from metal product ion and phosphor product ion. I n r e c e n t years, the environmental aspects of these a p p l i c a t i o n s have been s t u d i e d . Also, t h e eng inee r ing p r o p e r t i e s o f these materials is r e c e i v i n g i n c r e a s i n g a t t e n t i o n , and their a p p l i c a b i l i t y is being increased by op t imiz ing these p r o p e r t i e s and improving the q u a l i t y c o n t r o l .

The experience- based i n t r o d u c t i o n of i n d u s t r i a l waste materials i n h y d r a u l i c eng inee r ing c o n s t r u c t i o n has t h u s g iven way t o concen t r a t ed research i n t 0 new a p p l i c a t i o n s . The inc reased awareness o f t h e need t o re- l o c a t e waste m a t e r i a l a i n a f'ashion n o t harmful t o t he environment, and the i i m i t e d a v a i l a b i l i t y o f n a t u r a l materials has s t i m u l a t e d t h i s research. The research is directed both a t o b t a i n i n g s u i t a b l e eng inee r ing p r o p e r t i e s and a t s o l v i n g the problems associated wi th t h e l each fng of harmful matter from e.g. phosphoric acid gypsum, f l y- ash , i n c i n e r a t i o n s l a g s and contaminated dredged material. Immobil izat ion o f harmful elements i n the waste material, and c r e a t i o n of u s e f u l eng inee r ing e lements may be ach ieved by baking, b ind ing by cement and i s o l a t i o n o f t h e wastes.

Th i s c o n t r i b u t i o n is l i m i t e d t o i n d u s t r i a l waste products , w i th which much exper ience has been acqu i r ed i n Dutch h y d r a u l i c engineer ing .

3.2. A l t e r n a t i v e materials i n d u s t r i a l waste materials re-used i n h y d r a u l i c eng inee r ing c o n s t r u c t i o n

are: minestone, v a r i o u s s l a g s such as LD-slags, phosphor s lags , copper slags and s i l icomanganese slags, si lex, VIuroclay" and demol i t ion rubb le . Minestone was genera ted i n l a r g e q u a n t i t i e s by t h e coal i n d u s t r y i n the Dutch province o f Limburg. After t h i s i n d u s t r y came t o an end, many o f the minestone dumps have been used Por l a n d f i l l i n g and rec lamat ion o f o l d g r a v e l , sand and c l a y borrow p i t s i n Limburg. Minestone used by the h y d r a u l i c c o n s t r u c t i o n i n d u s t r y , about 0.5 m i l l i o n ton8 annua l ly , has been imported e x c l u s i v e l y from the Ruhr area i n West Germany and the Zolder area i n Belgium, t h e t r a n s p o r t costs being r e l a t i v e l y low i n these cases.

P a r t of t h e s lags are produced i n t h e Nether lands. "Hoogovens IJmuiden B.V.?', gene ra t e s about 300,000 t o n s o f LD slags annua l ly ( L D is the a b b r e v i a t i o n o f t h e Linz-Donawitz s t ee l product ion p r o c e s s ) . However, most LD-slags used i n hyd rau l i c c o n s t r u c t i o n , about 0.2 m i l l i o n t o n s , are imported from Belgium and t h e Ruhr area. 0.5 m i l l i o n t o n s of phosphor s lags are genera ted annua l ly i n t h e product ion of phosphor by Hoechst near Flushings. Approximately hal f of t h i s is used i n h y d r a u l i c c o n s t r u c t i o n . Copper slags and s i l icomanganese slags are imported from West Germany and Belgium r e s p e c t i v e l y , i n amounts o f about 35,000 t o n s each. Apar t from the LD process f o r s teel product ion , o t h e r p roces se s used i n t h e Nether lands gene ra t e smal1 amounts o f s lags which are a l s o used i n h y d r a u l i c c o n s t r u c t i o n . In the p a s t a l i t t l e more than 1 m i l l i o n t o n s o f lead s lags have been used i n c o n s t r u c t i o n works. Due t o the unacceptab le l each ing of e s p e c i a l l y lead, bu t also copper and z i n c , these slags are n o t used any longer . S i l e x is a waste material which r e s u l t s from qua r ry ing marl f o r the product ion of cement. Marl is q u a r r i e d i n Belgium and t h e sou th of Limburg, i n annual amounts o f approximately 0.3 and 0.2 m i l l i o n ton3 respectively. "Euroclayff is produced from silt dredged i n t h e Rotterdam harbours . Its a p p l i c a t i o n has been rather l i m i t e d up t o now. Dredging t o main ta in t h e d e p t h o f access waterways and harbours produces some 25 m i l l i o n m 3 s ludge . O f t h i s , 1 4 m i l l i o n m 3 is on ly l i g h t l y p o l l u t e d , and through dewater ing and c o n s o l i d a t i o n can be rendered u s e f u l as c l a y f o r d i k e c o n s t r u c t i o n . Demolit ion r u b b l e has long been used i n h y d r a u l i c engineer ing . Due t o changed c o n s t r u c t i o n methods and t h e development of methods t o upgrade r u b b l e t o make it s u i t a b l e f o r road c o n s t r u c t i o n , use of r u b b l e i n h y d r a u l i c c o n s t r u c t i o n is now i n s i g n i f i c a n t .

3.3. Engineer ing p r o p e r t i e s The eng inee r ing p r o p e r t i e s of t hose i n d u s t r i a l waste materials used t o

date i n hyd rau l i ca1 c o n s t r u c t i o n are o f t e n n o t i n f e r i o r and sometimes even s u p e r i o r t o t h o s e o f t r a d i t i o n a l materials. Th i s is e s p e c i a l l y t r u e of the good f r i c t i o n a l p r o p e r t i e s of slags due t o the i r roughness and a n g u l a r i t y . A number o f s lags possess a h igh d e n s i t y making them very s u i t a b l e t o resist waterf low and wave a c t i o n . Some o f t h e less f avourab le p r o p e r t i e s are the weatherabil i ty and low c rush ing s t r e n g t h of some waste materials (8) . Minestone has a D,, ( a measure f o r t h e theoretica1 s i e v e r e t a i n i n g 50 5 of t h e material) up t o about 65 mm. Its d e n s i t y v a r i e s between 2.4 and 2.6 t / m 3 . Minestone is rather s e n s i t i v e t o c rush ing and weather ing. Under water and i n deep f i l ls it remains i n t a c t . A s long as i t is n o t remoulded, even s t r o n g l y weathered minestone r e t a i n s a pe rmeab i l i t y which is a t least e q u a l t o t h a t of s l i g h t l y s i l t y sand. S lag pieces are g e n e r a l l y rough, angu la r and more o r less cube-shaped. Gradings up t o D,, v a lues o f about 100 mm are feasible. The d e n s i t y of LD slags is between 3.1 and 3.4 t / m ' . The basic s t r e n g t h is high. However, i n d i v i d u a l pieces of s l a g s may c rush rather e a s i l y due t o t h e presence o f c leavage p l anes , l a y e r i n g and i n t e r n a l stresses. A smal1 p ropor t i on of t he slag pieces is u n s t a b l e due t o so -ca l l ed lime p i t t i n g , c o n c e n t r a t i o n s o f pure calcium. The i r o n p re sen t i n s l a g s can aho r t en the s e r v i c e l i f e of polypropene fabr ic , which is used i n h y d r a u l i c eng inee r ing as a f i l t e r fabric beneath a layer o f s t o n e s .

Copper s lags have a d e n s i t y o f 3.9 t / m 3 . I t may be s l i g h t l y u n s t a b l e when t h e minera l k i r s c h s t e i n i t e is p r e s e n t , which swells i n water and t h u s may r e s u l t i n d e s i n t e g r a t i o n . S i l e x , d e n s i t y 2.6 t / m 3 , is a s t r o n g material, Gradings having a D, , v a lue of s l i g h t l y more t h a n 100 mm can be ob t a ined . Contamination by weak and weatherable l imes tone can s t r o n g l y reduce i ts u s e f u l n e s s , vlEuroclayll is equa l i n q u a l i t y t o the t r a d i t i o n a l l y a p p l i e d r i v e r clays and marine clays. A proper product ion p roces s i n t h e so -ca l l ed I lc lay factory ' l is important however. A good q u a l i t y c o n t r o l both of the mechanical- p h y s i c a l p r o p e r t i e s and o f those p r o p e r t i e s important from an environmental viewpoint is neces sa ry t o s t i m u l a t e its use and t o remove u n j u s t i f i e d p re jud i ce . The r e a l i s a t i o n o f a good q u a l i t y c o n t r o l is p r e s e n t l y underway. This is expected t o r e s u l t i n the inc reased a p p l i c a t i o n o f ITEuroclayvT and o t h e r subs t ances i n d ike- s t rengthening p r o j e c t s , f o r which i n t h e coming years annua l ly a few m i l l i o n m 3 is needed. I n g e n e r a l , a good q u a l i t y c o n t r o l can cons ide rab ly i n c r e a s e t h e use o f materials produced from i n d u s t r i a l wastes. I t can e s p e c i a l l y e f f e c t i v e l y counter p r e j u d i c e which ha3 a r i s e n from a j u s t i f i e d a n x i e t y r e g a r d i n g environmental effects o f re- use o f such materials.

3.4 . Environmental a s p e c t s The environmental a s p e c t s o f t he use o f i n d u s t r i a l waste products i n

h y d r a u l i c c o n s t r u c t i o n depend n o t o n l y on the i r chemical composi t ion, but e s p e c i a l l y on their l each ing behaviour . The Researchgroup Development S tandard Leaching Tests I n c i n e r a t i o n Residue (SOSW) has developed tes ts t o s tudy t h i s behaviour . These tests concern, amongst o t h e r s , t h e de t e rmina t ion of t h e con ten t of anorganic micro contaminants , the de t e rmina t ion o f t h e maximum l e a c h a b i l i t y , shaking tes ts and s t a t i c tests. These tests a l l ow t o compare t h e l e a c h a b i l i t y o f d i f f e r e n t materials. To decide on the s u i t a b i l i t y o f a given material f o r use i n h y d r a u l i c c o n s t r u c t i o n , supplementary data are o f t e n r e q u i r e d , which fac i l i t a te the V r a n s l a t ion1' of l a b o r a t o r y r e s u l t s t o i n- s i t u c i rcumstances . The d i f f i c u l t i e s associated wi th apply ing l a b o r a t o r y r e s u l t s t o i n - s i t u c i rcumstances have t o date prevented t h e development of unequivocal s t a n d a r d s fo r j udg ing t h e r e s u l t s of l a b o r a t o r y tests. Models are neces sa ry f o r t h i s , bu t these must s t i l l be developed. These models must c o r r e c t l y account f o r t h e governing parameters such as t h e p a r t i c l e s i z e , the v e l o c i t y o f waterf low p a s t the p a r t i c l e s , t h e t o t a l mass o f t h e material i n r e l a t i o n t o the q u a n t i t y of the s u r f a c e water wi th which it is i n c o n t a c t , e tc . As such unequivocal s t a n d a r d s f o r the i n t e r p r e t a t i o n of l a b o r a t o r y tes ts are s t i l l l a c k i n g , some s u b j e c t i v e n e s s is unavoidable . I n t h e fo l lowing t h e environmental a s p e c t s o f a number of materials w i l l be t reated (51, (61 , (7 ) . Lead slags have been used i n l a r g e q u a n t i t i e s i n h y d r a u l i c c o n s t r u c t i o n i n t h e p a s t , Th i s has now been p r o h i b i t e d due t o an unacceptab ly h igh l e v e l of emission of heavy metals. Regarding p o l l u t i o n and the l e a c h a b i l i t y o f minestone, d i s t i n c t i o n must be made between r e c e n t l y produced minestone and minestone from dumpheaps, as t h e l a t t e r p o s s i b l y con ta in chemical r e f u s e . Moreover, i t is u n l i k e l y tha t PCB'S which are used i n h y d r a u l i c f l u i d s , w i l l appear i n r e c e n t l y produced minestone a s use o f o i l s con ta in ing PCBIS is p r o h i b i t e d s i n c e January lst , 1986. Minestone from dumpheaps y i e l d s on the average twice as much s u l p h a t e on l each ing as r e c e n t l y produced minestone. Su lpha t e con ten t v a r i e s s t r o n g l y ; i n dumpheaps the average is approximately 2000 mg/kg dry matter.

Notwithstanding the above-mentioned d i f f e r e n c e s between r e c e n t l y produced minestone and minestone from dumpheaps, some r e s t r i c t i o n s i n t h e use of t h e former w i l 1 sometimes be necessary . Leachable PAK con ten t i n minestone averages 0.7 mg/kg d r y matter. Also minestone may c o n t a i n leachable a r s e n i c and s t ron t ium. Heavy metals pose no problems i n minestone. App l i ca t i on o f minestone i n s t a g n a n t f r e s h water may r e s u l t i n exceedance of t h e TMP basic q u a l i t y norm f o r s u l p h a t e , and p l ans Por any such a p p l i c a t i o n must be c a r e f u l l y reviewed. I n less s e n s i t i v e waters ( s a l t water o r running water) emiss ion of s u l p h a t e from minestone poses no threat t o water q u a l i t y . The fore- going a l s o a p p l i e s , though less so , t o t h e o t h e r parameters . If PCB'S rnight occur however, use o f such minestone is n o t advised . LD s lags and s i l icomanganese s lags c o n t a i n small amounts o f heavy metals such a s z i n c , copper , chrome and lead. Emission of these metals i n sa l t and fresh water is q u i t e i n s i f n i f i c a n t . On t h e grounds o f l e ach ing tests which y i e l d e d t h i s r e s u l t , and on environmental grounds, no r e s t r i c t i o n s are imposed on t h e use o f these s l a g s i n h y d r a u l i c c o n s t r u c t i o n as y e t , The on ly p o s s i b l e effect phosphor slags could have on t h e environment is through t h e emission of f l u o r i d e . These have a h igh i n i t i a 1 l e v e l of emission and t h u s use of fresh phosphor s l a g s i n a lmos t s t a g n a n t water and i n water catchment areas is u s u a l l y i nadv i sab l e . Th i s a p p l i e s p a r t i c u l a r l y f o r large q u a n t i t i e s of phosphor s l a g s i n s t a g n a n t and r e l a t i v e l y small waters. Copper s l a g s from two l o c a t i o n s have been tested f o r composition and l each ing p r o p e r t i e s . One of these conta ined o n l y small amounts of heavy metals and y e t was found t o leach rather e a s i l y , y i e l d i n g copper , lead and z inc . The o t h e r sample, from t h e Ruhr area had a h igh copper con ten t and y e t i ts leachabi l i ty was no t worse t han t h a t o f LD slags. Fu r the r research is neces sa ry t o confirm whether coppe r s l ags from t h e Ruhr are as acceptable as LD slags. S i l e x c o n s i s t s o f f l i n t s t o n e , p i t g r a v e l and l imestone. There are no environmental r e s t r i c t i o n s a g a i n s t its use i n h y d r a u l i c eng inee r ing , fTEuroclayfv is weak ly contaminated by a range o f m a t e r i a l a which might endanger t h e environment. Fu r the r research must be performed i n t o the environmental e f fec ts o f fTEuroclaytv i n d i k e s . For the time be ing its use is permitted by the a u t h o r i t i e s , as long as i t is covered by a t o p l a y e r of uncontaminated clay.

4 . APPLICATIONS 4 .1 . General a p p l i c a t i o n s

The use of a l t e r n a t i v e materials such as minestone, s l a g s , s i l e x etc. i n Dutch c i v i l eng inee r ing is very common and goes back f o r q u i t e some time. I n t h e scope o f r e c o n s t r u c t i o n work which fol lowed t h e f l ood disaster of 1953, c i v i l e n g i n e e r s began t o r e ly more h e a v i l y on these materials as a c o n s t r u c t i o n material, an the i r use i n h y d r a u l i c eng inee r ing has inc reased e v e r s i n c e . The main r ea sons f o r t h e growing p re fe rence f o r a l t e r n a t i v e materials i n t h e Nether lands are: a. sho r t age o f n a t u r a 1 rocky materials; b , greater r e s i s t a n c e t o c u r r e n t and wave attack as compared t o sand and

roughly equa l t o g r a v e l and l i g h t s o r t i n g s of r o c k f i l l ; c. a v a i l a b i l i t y i n r e l a t i v e l y l a r g e q u a n t i t i e s ; d. r e l a t i v e l y low cost; e. growing problem o f s t o r a g e of these materials.

Dutch

A l t e r n a t i v e materials are used i n h y d r a u l i c eng inee r ing i n s e v e r a l ways (see Fig. 1 ) . They are o f t e n used as re ta in ing- bunds of sand-closure dams (and subsequent ly as part of a p r o t e c t i v e dam s l o p e c o n s t r u c t i o n ) because t h e slopes of these materials both below and above water l e v e l can be b u i l t rnuch steeper than sand s l o p e s , t h u s reduc ing sand l o s s e s du r ing c l o s u r e . Another a p p l i c a t i o n has been a3 c o r e materials i n c l o s u r e dams, breakwaters and g r o i n s . Because o f their scour r e s i s t a n c e a l t e r n a t i v e materials are a l s o used f o r bottom p r o t e c t i o n and f i l l i n g scour h o l e s underneath s t r u c t u r e s and a l o n g r i v e r banks. After f i l l i n g up t h e h o l e s these materials, i f neces sa ry , can be covered by s tone- mat t r e s se s , blockmats o r o t h e r p r o t e c t i v e systems. These a l t e r n a t i v e materials have been app l i ed on a l a r g e scale i n t h e Nether lands as a foundat ion l a y e r f o r roads and under SlOpe p r o t e c t i o n ( d i k e s and r i v e r b a n k s ) , i n t h i s l a t t e r case very o f t e n s u c c e s s f u l l y r e p l a c i n g the expensive and d i f f i c u l t t o rea l i se ( e s p e c i a l l y under water) t r a d i t i o n a l g r anu la r f i l t e r s . Due t o t h i s wide a p p l i c a b i l i t y of a l t e r n a t i v e materials there has been an i n c r e a s i n g need i n r e c e n t y e a r s f o r r e l i ab le informat ion on t h e s t a b i l i t y c r i t e r ia o f these materials exposed t o wave and c u r r e n t a c t i o n . S t r u c t u r a l de s ign places demands on t h e mechanica1 s t a b i l i t y of waste materials. Also, s p e c i f i c demands can be formulated w i th r e s p e c t t o t h e purpose of t h e s t r u c t u r e ; e.g. t h e p r o t e c t i o n o f t h e under lay ing soil a g a i n s t e r o s i o n leads t o requi rements on the character is t ic diameter and d e n s i t y of the material. Other requi rements concern the i n t r i n s i c p r o p e r t i e s o f t h e material, e.g. pe rmeab i l i t y and i n t e r n a l f r i c t i o n . These specif ic demands o r i g i n a t e d by the type and load o f t h e s t r u c t u r e must be compared w i th the p r o p e r t i e s o f the a v a i l a b l e material. I n case of disagreement there are two a l t e r n a t i v e s : a. mod i f i ca t i on o f a given material or s e l e c t i o n o f ano the r waste material; b. mod i f i ca t i on of des ign by u s ing s t a n d a r d , though u s u a l l y more c o s t l y

materials.

I n cons ide r ing the use o f these materials one i n e v i t a b l y comes up a g a i n s t t h e problems o f the expected f l o u ( c u r r e n t ) and wave c o n d i t i o n s and of the s u i t a b i l i t y of t h e v a r i o u s materials under those cond i t i ons . I n o r d e r t o s o l v e these problems v a r i o u s l a b o r a t o r y and i n s i t u (p ro to type ) tests have been carried o u t i n r e c e n t years . Some o f the r e s u l t s of t h i s research w i l 1 be d i s cus sed below. The h y d r a u l i c r e s i s t a n c e o f l o o s e materials can be related t o t h e magnitude o f t h e c r i t i c a l shea r ing stress ( T ~ ~ ) which the c u r r e n t ( c r i t i c a l v e l o c i t y u ) e x e r t s on the bottom. cr

The r e s u l t s o f t h e tes ts i n d i c a t e that minestone has similar va lues o f T as g r a v e l . However, minestone has a l i m i t e d mean s i z e ( i . e . D,, = 0.065 $7 and tha t means, t h a t t h e a p p l i c a t i o n is l imi ted t o i n f r equen t v e l o c i t i e s up t o 2 m / s b u t u s u a l l y n o t more than 1.5 m/s, and waves u s u a l l y n o t h ighe r t h a n 0.5 m. Contrary t o minestone, s l a g s have r e l a t i v e l y h i g h e r h y d r a u l i c s t a b i l i t y t h a n g r a v e l o r even crushed s tone . This is due t o two f a c t o r s : a h ighe r d e n s i t y (depends on type o f s l a g s ) and a h ighe r i n t e r n a l f r i c t i o n - f a c t o r ( i r r e g u l a r angu la r g r a i n s ) . The i n f l u e n c e of d e n s i t y is a l r e a d y t aken i n t o account i n clCr

I n genera1 T (slags) = 1.55 T~~ ( g r a v e l ) o r ucr (s lags) = 1.25 ucr cr ( g r a v e l ) .

and can be c a l c u l a t e d d i r e c t l y .

GRANULAR FILTERS

F o r e s h o r e p r o t e c t i o n

3 0 0 - C l o s u r e d a m

B o n k p r o t e

D i k e p r o t e c t i o n .

F i g . 1 Examples of a p p l i c a t i o n of a l t e r n a t i v e ma te r i a l s i n h y d r a u l i c e n g i n e e r i n g .

FILTER RULES

A GEOTEXTILES THIN TYPES

WOVEN NON- W OVEN

MULTILAYER TYPES FILTER- ANO THICKNESS FUNCTION

COMPOSED FILTERS A - GRANULAR LAYER

FUNCTION GEOTEXTILE

THICKNESS-OAMPING-

FILTER FUNCTION

F i g . 2 F i l t e r s .

1.0

O8

P - :a6 P b 2 0 4

t! C

‘O 1 C a W O

.-

L

- 1 - u, E c u -

0.1 10 50 100

Dtflt.i obos.

F i g . 3 C r i t i c a l g r a d i e n t i n f i l t e r layers.

- - _ _ Minestonc

F i g . 4 C r i t i c a l s o i l g r a d i n g r a n g e s f o r i n t e r n a l s t a b i l i t y .

The l a b o r a t o r y tes ts have been confirmed by i n - s i t u measurements. A s an i n d i c a t i o n , phosphor-slags and LD(s tee1) -s lags w i th D S 0 = 0.07 m have been s u c c e s s f u l l y a p p l i e d i n the Nether lands f o r v e l o c i t i e s up t o 2.5-3 m/s and in f r equen t wave a t tack up t o 1 . 0 m wave-height (some p r o f i l e deformation was al lowed) . The r e s i s t a n c e t o c u r r e n t of a heavy c l ay v a r i e s from 1 t o 1 .5 m/s depending on compaction. However, c l ay covered by a grass-rnat can resist v e l o c i t i e s up t o 3 m/s. The r e c e n t r e s u l t s on the r e s i s t a n c e o f c l a y and grass-mats under c u r r e n t and wave a t tack are summarized i n ( 9 ) . More detai led informat ion on the s u b j e c t s d i s cus sed above can be found i n ( 2 ) and ( 3 ) , and i n v a r i o u s i n t e r n a l r e p o r t s of Rijkswaterstaat.

4.2. A l t e r n a t i v e materials i n f i l t e r p r a c t i c e 4 .2 .1 . What is a f i l t e r ? Granular f i l t e r s are the most common element i n

t h e des ign of h y d r a u l i c s t r u c t u r e s . However, t h e y are u s u a l l y expensive and d i f f i c u l t t o p l ace ( p a r t i c u l a r l y under water) w i th in t h e requirement limits. An a l t e r n a t i v e s o l u t i o n c o n s i s t s of a combination o f a g e o t e x t i l e (which p rov ides the f i l t e r f u n c t i o n ) and a l a y e r of a c e r t a i n t h i c k n e s s of graded s t o n e , which a t t e n u a t e s the i n t e r n a l h y d r a u l i c l oads , see f i g u r e 2. A cheaper but e q u a l l y good s o l u t i o n is t o place a t h i c k layer of broadly graded waste products such as minestone, s lags, s i l e x , e tc . For large h y d r a u l i c l oads , t h i c k n e s s e s i n the o r d e r of 0.5 m are r e q u i r e d , p rope r ly compacted and composed accord ing t o i n t e r n a l s t a b i l i t y c r i t e r i a ( 4 ) . An e x t e n s i v e review o f t h i s s u b j e c t can be found i n ( 1 ) and ( 4 ) . I n t h e des ign o f f i l t e r s , s e v e r a l f a c t o r s are involved. Apart from t h e macroscopic s t a b i l i t y (does the material remain i n p l a c e even under extreme flow c o n d i t i o n s ? ) a l s o the microscopic s t a b i l i t y (does the material i t se l f no t change?) must be ensured. Both problems are ana lysed by p a r t s . F i l t e r - t h e o r y provides a method t o ana lyse macroscopic s t a b i l i t y .

4.2.2. F i l t e r- t h e o r y . A h y d r a u l i c f i l t e r is composed of one o r more l a y e r s o f d i f f e r e n t p a r t i c l e s i z e s . The l a y e r o f f i n e s t material (base) u s u a l l y has t o be p ro t ec t ed a g a i n s t e ros ion . The f i l t e r provides t h i s p r o t e c t i o n . There are two methods, based on d i f f e r e n t p r i n c i p l e s : Geometric: By a s u i t a b l e choice of t h e character is t ic diameter of t h e f i l termaterial , displacement o f t h e f i n e material is prevented. The f i l t e r ac ts as a s i e v e which r e t a i n s the base material, bu t l e t s t h e water pass. This process is governed by t h e r e l a t i v e par t ic le s i z e s i n t h e coa r se layer and the base material. Such f i l t e r s are u s u a l l y stable. H y d r a u l i c : By an adequate choice o f t h e p a r t i c l e s i z e o f the f i l t e r material, t h e water v e l o c i t y between t h e p a r t i c l e s is r egu la t ed . The water e x e r t s a d rag fo rce on the base p a r t i c l e s . Loss of base material is prevented by keeping t h e d rag fo rce below a c r i t i ca l va lue . The f i n e r t h e f i l t e r is, the lower the water v e l o c i t y and t h e d rag fo rce w i l 1 be. The obvious choice o f very f i n e f i l t e r material however, r e s u l t s i n e r o s i o n o f t h e filtermaterial i t se l f . The choice o f f i l t e r t ype depends on the magnitude o f h y d r a u l i c l oad ing , which is o f t e n expressed i n a g r a d i e n t (103s of p r e s s u r e ove r a c e r t a i n d i s t a n c e ) . The c a p a c i t y of a f i l t e r is expressed by i ts c r i t i c a l g r a d i e n t , which is t h e l a r g e s t g r a d i e n t i n t h e f i l t e r a t which base material is no t t r a n s p o r t e d . Large h y d r a u l i c l oads o f t e n r e q u i r e geome t r i ca l l y s table f i l te rs , bu t f o r smaller loads , h y d r a u l i c f i l t e r s are more economical. Cri ter ia have been developed t o s i m p l i f y the des ign of g r anu la r f i l t e rs .

These relate p a r t i c l e s i z e and h y d r a u l i c load t o t h e c r i t i c a l g r a d i e n t . The e a r l i e s t geometr ic f i l t e r c r i t e r i a date from 1922. S ince t hen , o t h e r c r i t e r i a have c o n s t a n t l y been devised f o r a whole range o f s p e c i a l cases. I n t h e e a r l y 1970's a n overview was publ i shed of e x i s t i n g f i l t e r c r i t e r i a and their v a l i d i t y . I n many c r i t e r i a , t h e i n f l u e n c e o f c e r t a i n material parameters is n o t accounted f o r . T h i s and o t h e r overviews of c r i t e r i a may be used t o develop a des ign method ( 4 ) . Much pract ica1 research on f i l t e r p roces se s has been done i n the Nether lands f o r t h e s torm surge barrier i n the E a s t e r n Scheldt . The r e s u l t s of t h i s research have been publ i shed i n condensed form ( 5 ) . Figure 3 i l l u s t r a t e s t he dependence of t h e c r i t i c a l g r a d i e n t on t h e r a t i o o f t h e c h a r a c t e r i s t i c diameters of f i l t e r and base material. I t may be seen that t h e c r i t i c a l g r a d i e n t is markedly smaller i n t h e l a te ra l d i r e c t i o n than i n the perpendicu la r d i r e c t i o n .

4.2.3. I n t e r n a l s t a b i l i t y . Another compl ica t ion arises i n well-graded f i l t e r s wi th a wide range o f par t ic le s izes . This is the case wi th many waste materials such as minestone and v a r i o u s slags. The f i l t e r then cannot r e t a i n i ts own f i n e s when s u b j e c t e d t o h y d r a u l i c load ing . Such a f i l t e r is termed Y n t e r n a l l y uns t ab l e ' . S p e c i a l c r i t e r i a have been developed t o p red ic t i n t e r n a l i n s t a b i l i t y , see f i g u r e 4. Genera l ly speaking , materials w i th a l a r g e p ropor t i on of f i n e s are p o t e n t i a l l y u n s t a b l e i n t e r n a l l y . Unsorted minestone i n p a r t i c u l a r is prone t o large p ropor t i ons of f i n e s , and should then n o t be used. However, r e j e c t i o n o f minestone i n the p a s t probably was no t necessary i n a l 1 cases on h y d r a u l i c grounds. Fu r the r research i n t 0 the h y d r a u l i c c o n d i t i o n s caus ing i n t e r n a l i n s t a b i l i t y may i n c r e a s e t h e a p p l i c a b i l i t y o f waste materials. For t h i s i t is necessary t o c l o s e l y c o n t r o l the product ion p roces s which y i e l d s t h e waste materials.

4.2.4, Material s t a b i l i t y . The expe r i ence acqu i r ed wi th minestone and s t e e l s l a g s i n road c o n s t r u c t i o n and the i r a v a i l a b i l i t y have l e d t o t he i r use i n h y d r a u l i c eng inee r ing as well. Their use i 3 n o t wi thout danger , however. To ensu re t h e long term s a f e t y o f t h e s t r u c t u r e , t h e material must n o t weather or waste. This is p a r t i c u l a r l y impor tan t f o r waste materials such as slags, minestone and s i l e x . These are u s u a l l y s o f t e r t han e.g. g r ave l . Minestone f o r i n s t a n c e is a kind of c l a y s t o n e and slakes when s u b j e c t e d t o a l t e r n a t e c y c l e s o f we t t i ng and dry ing . Should t h i s occur i n a f i l t e r , the material would e v e n t u a l l y become f i n e r , the grad ing would broaden and t h e i n t e r n a l macroscopic s t a b i l i t y w i th r e s p e c t t o the o t h e r layers would be l o s t . Thus material i n s t a b i l i t y would t r i g g e r , through i n t e r n a l i n s t a b i l i t y , a macroscopic i n s t a b i l i t y . S i l e x , a waste product from marl mining, can also e x h i b i t such behaviour. Caution is a l s o neces sa ry wi th s l a g s . It is neces sa ry t o know from which process t h e y o r i g i n a t e d and how t h e y were cooled. Phosphor s l a g s e.g. can be ex t remely b r i t t l e when cooled t o o qu i ck ly , t h u s c rush ing e a s i l y d w i n g t r a n s p o r t and p l ac ing , I n the presence of water (abundant ly p r e s e n t i n h y d r a u l i c s t r u c t u r e s ) s tee l s l a g s may induce cementat ion ( h y d r a u l i c i t y ) . The f i n e s f r a c t i o n , u s i n g water as c a t a l y s t , cements t h e l a r g e r p a r t i c l e s . While t h u s prevent ing washing o f the f i n e s , t h e pe rmeab i l i t y s t r o n g l y decreases and t h e f i l t e r no longer f u n c t i o n s proper ly .

4.2.5. Conclusion. Waste m a t e r i a l a may c e r t a i n l y be u s e f u l i n h y d r a u l i c eng inee r ing c o n s t r u c t i o n , i f on ly t h e i r s p e c i f i c weaknesses are recognized and e f f e c t i v e l y deal t wi th , Some a d d i t i o n a l research is needed t o f i l l i n gaps i n e x i s t i n g knowledge. Rijkswaterstaat p l ans t o i n s t i g a t e t h i s research i n coopera t ion with producers of waste materials, I n f i l t e r des ign , o t h e r t h a n the c r i t e r i a Por t r a d i t i o n a l s table materials must be adopted. N e w r e g u l a t i o n s must t h e r e f o r e be developed. It is expected t h a t ,

given s u f f i c i e n t funding, mater ia l- dependent c r i t e r i a can be developed wi th in a few years, so t h a t a p p l i c a t i o n s of waste materials i n h y d r a u l i c eng inee r ing can be extended f u r t h e r .

4.3. Q u a l i t y c o n t r o l Q u a l i t y c o n t r o l o f materials used i n h y d r a u l i c c o n s t r u c t i o n was g e n e r a l l y

speaking poor ly developed up t o t h e r e c e n t p a s t . The r e c e n t c o n s t r u c t i o n of a number of large h y d r a u l i c s t r u c t u r e s has changed t h i s s i t u a t i o n . Most waste products i n use i n h y d r a u l i c c o n s t r u c t i o n are now covered by c o n t r a c t requi rements r ega rd ing mechanical-physical p r o p e r t i e s and t h e s u p e r v i s i o n of these (21, ( 8 ) . With waste products one wishes t o c o n t r o l no t on ly t h e mechanical- physical p r o p e r t i e s , but a l s o t hose which might a f f ec t t h e environment. This is however hampered by the ea r l i e r mentioned lack o f unequivocal s t a n d a r d s fo r i n t e r p r e t i n g t h e r e s u l t s of l e a c h i n g tests. P re sen t research is p a r t i c u l a r l y aimed a t developing such s t anda rds . I t is expected t h i s w i l l soon r e s u l t i n requirement s t a n d a r d s and d e s c r i p t i o n s of methods of t e s t f o r use i n c o n t r a c t s . The ideal is t o ach ieve q u a l i t y c o n t r o l through t h e d e l i v e r y of materials under cer t i f ica te . I n such a s i t u a t i o n the producer p r i m a r i l y performs the q u a l i t y c o n t r o l . I t is expected such d e l i v e r y under ce r t i f i ca te w i l l g rea t ly i n c r e a s e the e x t e n t of q u a l i t y c o n t r o l o f a l t e r n a t i v e materials i n t h e Nether lands.

5. CONCLUSIONS Dutch exper ience shows, and t h i s is suppor ted by r e s u l t s of r e c e n t

s t u d i e s , t h a t many a l t e r n a t i v e (waste) materials are appl icable i n most c i rcumstances of the h y d r a u l i c eng inee r ing works. Because of t he environmental consequences lead slags should be excluded from t h e common a p p l i c a t i o n s e s p e c i a l l y i n t h e cases o f direct c o n t a c t w i th fresh water. I n g e n e r a l , a p p l i c a t i o n o f lead Slag3 should always be suppor ted by de t a i l ed environmental s t u d i e s . Because of a d d i t i o n a l p r o p e r t i e s some types o f waste materials produce specif ic d i f f i c u l t i e s , which cannot be judged i n their f u l l e x t e n t y e t ( i . e . d i s i n t e g r a t i o n of minestone a t water-air i n t e r f a c e o r conglomerat ion of s lags) . Add i t i ona l research ha3 t o be carried ou t t o q u a n t i f y these d i f f i c u l t i e s , t o determine t h e des ign c r i t e r i a f o r d i f f e r e n t a p p l i c a t i o n s and t o s p e c i f y the q u a l i t y c o n t r o l i n o r d e r t o make t h e waste materials move g e n e r a l l y a p p l i c a b l e i n c i v i l eng inee r ing . The research on these aspects is s t i l l going on i n t h e Nether lands. The f i n a l r e s u l t s , i nc lud ing those waste products no t y e t researched ( i .e . f l y - ash and phosphoric acid gypsum) can be expec ted w i t h i n a few years.

REFERENCES

1 .

2 .

3.

4.

5.

6.

7.

8.

9.

10.

Graauw, A. d e , Meulen, T. van der, Does-de Bye M. van der: Design c r i t e r ia f o r g r anu la r f i l t e r s . Delft Hydraul ics p u b l i c a t i o n 287, January 1983 . Laan, G . J . , Westen, J . M . van, B a t t e r i n k , L . : Minestone i n H y d r a u l i c Engineer ing Appl ica t ion , D e t e r i o r a t i o n and Q u a l i t y Cont ro l . Symposium on t h e Reclamation, Treatment and U t i l i s a t i o n o f Coal Mining Wastes, Durham, England, September 1984. Guide t o Concrete Dyke Revetments (1984) . Centre f o r C i v i l Engineer ing Research, Codes and S p e c i f i c a t i o n s ( C U R ) and Technica1 Advisory Committee on Waterdefences, October 1984, The Nether l ands . Adel, H. den: Waste products as f i l t e r material. Delft Geotechnics r e p o r t no. C0-272550/27, September 1985 ( i n Dutch) TAW I n f r a Consul t B.V. : Composition and l e a c h a b i l i t y o f minestone. January 1986 ( i n Dutch). Luin, A.B. van, Gaastra, D.J.: The l e a c h a b i l i t y of metals and s u l p h a t e from basalt and s l a g s . D B W / R I Z A - n o t e no. 86.01 5, Apr i l 1986 ( i n Dutch) . S l o o t H.A. van der, : Environmental eng inee r ing research of phosphor slags. ECN, September 1986 ( i n Dutch). Laan, G . J . , : Q u a l i t y and q u a l i t y c o n t r o l of slags i n h y d r a u l i c engineer ing . Rijkswaterstaat DWW, September 1986 ( i n Dutch). P i l a r c z y k , K.W.: Dutch Guide l ines on D i k e P r o t e c t i o n , 2nd I n t e r n . Conf. on Coas t a l and Po r t Engineer ing i n Developing Coun t r i e s , B e i j i n g , China, 1987. Rijkswaterstaat: P o s s i b i l i t i e s of a p p l i c a t i o n o f a l t e r n a t i v e materials. Rijkswaterstaat-serie, Report no. 4 4 , 1984 ( i n Dutch).