Age refinement of the Messinian salinity crisis onset in the Mediterranean

8
Age refinement of the Messinian salinity crisis onset in the Mediterranean Vinicio Manzi, 1,2 Rocco Gennari, 1,2 Frits Hilgen, 3 Wout Krijgsman, 4 Stefano Lugli, 5 Marco Roveri 1,2 and Francisco J. Sierro 6 1 Dipartimento di Fisica e Scienze della Terra, Universit a degli Studi di Parma, Parco Area delle Scienze, 157/A, 43100 Parma, Italy; 2 Alpine Laboratory of Paleomagnetism (ALP), Via Madonna dei Boschi 76, Peveragno 12016 (CN), Italy; 3 Department of Earth Sciences, Utrecht University, Budapestlaan 4 Utrecht, 3584 CD, The Netherlands; 4 Paleomagnetic Laboratory “Fort Hoofddijk”, Utrecht University, Utrecht, The Netherlands; 5 Dipartimento di Scienze della Terra, Universit a degli Studi di Modena e Reggio Emilia, Piazza S. Eufemia 19, 41100, Modena, Italy; 6 Department of Geology, University of Salamanca, 37008, Salamanca, Spain ABSTRACT We propose a revised age calibration of the Messinian salinity crisis onset in the Mediterranean at 5.971 Ma based on the recognition of an extra gypsum cycle in the transitional inter- val of the Perales section (Sorbas basin, Spain) and the revi- sion of the magnetostratigraphy of the Monticino section (Vena del Gesso basin, Italy). This age re-calibration allows to state more accurately that: (i) the interval encompassing the MSC-onset is continuous, thus ruling out any erosional feature or stratigraphic hiatus related to a major sea-level fall affect- ing the Mediterranean; (ii) the first gypsum was deposited during the summer insolation peak at 5.969 Ma associated with an eccentricity minimum and roughly coincident with glacial stage TG32; (iii) the MSC-onset was preconditioned by the tectonically-driven reduction of the hydrological exchanges with the Atlantic Ocean and finally triggered by glacial conditions in the northern hemisphere and by arid conditions in northern Africa. Terra Nova, 0, 1–8, 2013 Introduction The Messinian salinity crisis (MSC) onset has been dated at 5.96 0.02 Ma (Krijgsman et al., 1999a), based on the high-resolution cyclo- stratigraphic framework recon- structed for the pre-MSC Mediterranean successions, with sedi- mentary cycles controlled by astro- nomical forcing (Krijgsman et al., 1995, 2004; Hilgen and Krijgsman, 1999; Sierro et al., 2001). This strati- graphic framework could be only ten- tatively extended into the MSC interval due to the absence of clear biomagnetostratigraphic events (Krijgsman et al., 2001). Recently, detailed sedimentologic and strati- graphic studies on the Messinian evaporites as well as in continuous open-marine sections in the Atlantic margin of Morocco, led to the recon- struction of a robust high-resolution stratigraphic framework for the evap- orite-bearing successions (van der Laan et al., 2006; Hilgen et al., 2007; Manzi et al., 2009; Lugli et al., 2010). The recentmost MSC chronostrati- graphic framework (Fig. 1) is mainly based on a thorough revision of the “Lower Evaporites” (LE) and their time-equivalent deposits (CIESM Commission Internationale pour 5.971 3.2 3.1 3.2 1 1 2 MSC stages MSC stages MSC key-surfaces and associated deposits age [Ma] 5.60 5.55 5.42 5.33 local desiccation of salt basins (Sicily); resedimented evaporites, clastics and salt in deep basins; intra-Messinian unconformity, drawdown and subaerial erosion in marginal basins Upper Evaporites (selenite and laminar gypsum) (Sicily, Tuscany, Cyprus, Ionian Islands) Lower Evaporites (selenite in shallow basins, euxinic shales and dolostones in deep basins) upward increase of fluvial discharge associated with Lago Mare biofacies marginal basins deep basins PLIOCENE Lago Mare PLG PLG UG UG RLG RLG gypsum halite CdB3 CdB2 CdB1 top salt MSC-onset MES base of Pliocene p-ev2 base 5.530 5.508 5.481 5.459 5.416 5.436 5.343 5.5 ash layer Fig. 1 The CIESM - Commission Internationale pour l’Exploration Scientifique de la mer M editerran ee (2008) Messinian salinity crisis stratigraphic framework (modi- fied after; Roveri et al., 2008a,b; Manzi et al., 2011) showing the 5 key-surfaces used in the definition of the MSC stages. PLG, Primary Lower Gypsum; RLG, Resedimented Lower Gypsum; UG, Upper Gypsum; CdB1, CdB2, CdB3, Calcare di base types (Manzi et al., 2011); MSC-onset, onset of the Messinian salinity cri- sis; MES, Messinian erosional surface (Lofi et al., 2005); age of the base of Plio- cene after Van Couvering et al., 2000. Correspondence: Vinicio Manzi, Diparti- mento di Scienze della Terra, Universita’ degli Studi di Parma, Parco Area delle Scienze 157/A, Parma PR 43124, Italy. Tel.: 0521905354; e-mail: vinicio.man- [email protected] © 2013 Blackwell Publishing Ltd 1 doi: 10.1111/ter.12038

Transcript of Age refinement of the Messinian salinity crisis onset in the Mediterranean

Age refinement of the Messinian salinity crisis onset in theMediterranean

Vinicio Manzi,1,2 Rocco Gennari,1,2 Frits Hilgen,3 Wout Krijgsman,4 Stefano Lugli,5 Marco Roveri1,2

and Francisco J. Sierro61Dipartimento di Fisica e Scienze della Terra, Universit�a degli Studi di Parma, Parco Area delle Scienze, 157/A, 43100 Parma, Italy;2Alpine Laboratory of Paleomagnetism (ALP), Via Madonna dei Boschi 76, Peveragno 12016 (CN), Italy; 3Department of Earth

Sciences, Utrecht University, Budapestlaan 4 Utrecht, 3584 CD, The Netherlands; 4Paleomagnetic Laboratory “Fort Hoofddijk”, Utrecht

University, Utrecht, The Netherlands; 5Dipartimento di Scienze della Terra, Universit�a degli Studi di Modena e Reggio Emilia, Piazza S.

Eufemia 19, 41100, Modena, Italy; 6Department of Geology, University of Salamanca, 37008, Salamanca, Spain

ABSTRACT

We propose a revised age calibration of the Messinian salinity

crisis onset in the Mediterranean at 5.971 Ma based on the

recognition of an extra gypsum cycle in the transitional inter-

val of the Perales section (Sorbas basin, Spain) and the revi-

sion of the magnetostratigraphy of the Monticino section

(Vena del Gesso basin, Italy). This age re-calibration allows to

state more accurately that: (i) the interval encompassing the

MSC-onset is continuous, thus ruling out any erosional feature

or stratigraphic hiatus related to a major sea-level fall affect-

ing the Mediterranean; (ii) the first gypsum was deposited

during the summer insolation peak at 5.969 Ma associated

with an eccentricity minimum and roughly coincident with

glacial stage TG32; (iii) the MSC-onset was preconditioned by

the tectonically-driven reduction of the hydrological

exchanges with the Atlantic Ocean and finally triggered by

glacial conditions in the northern hemisphere and by

arid conditions in northern Africa.

Terra Nova, 0, 1–8, 2013

Introduction

The Messinian salinity crisis (MSC)onset has been dated at 5.96 �0.02 Ma (Krijgsman et al., 1999a),based on the high-resolution cyclo-stratigraphic framework recon-structed for the pre-MSCMediterranean successions, with sedi-mentary cycles controlled by astro-nomical forcing (Krijgsman et al.,1995, 2004; Hilgen and Krijgsman,1999; Sierro et al., 2001). This strati-graphic framework could be only ten-tatively extended into the MSCinterval due to the absence of clearbiomagnetostratigraphic events(Krijgsman et al., 2001). Recently,detailed sedimentologic and strati-graphic studies on the Messinianevaporites as well as in continuousopen-marine sections in the Atlanticmargin of Morocco, led to the recon-struction of a robust high-resolutionstratigraphic framework for the evap-orite-bearing successions (van derLaan et al., 2006; Hilgen et al., 2007;Manzi et al., 2009; Lugli et al., 2010).

The recentmost MSC chronostrati-graphic framework (Fig. 1) is mainlybased on a thorough revision of the

“Lower Evaporites” (LE) and theirtime-equivalent deposits (CIESM –Commission Internationale pour

5.971

3.2

3.1

3.21

1

2

MSCstages

MSCstages

MSC key-surfacesand associated deposits

age[Ma]

5.60

5.55

5.42

5.33

local desiccation of salt basins (Sicily); resedimented evaporites, clastics and

salt in deep basins; intra-Messinian unconformity, drawdown and subaerial

erosion in marginal basins

Upper Evaporites (selenite and laminar gypsum) (Sicily, Tuscany, Cyprus,

Ionian Islands)

Lower Evaporites (selenite in shallow basins, euxinic shales and dolostones

in deep basins)

upward increase of fluvial discharge associated with Lago Mare biofacies

marginal basins

deepbasins

PLIOCENE

Lago

Mar

e

PLGPLG

UGUG

RLGRLGgypsum

halite

CdB3

CdB2CdB1

top salt

MSC-onset

MES

base of Pliocene

p-ev2 base

5.530

5.508

5.481

5.459

5.416

5.436

5.343

5.5 ash layer

Fig. 1 The CIESM - Commission Internationale pour l’Exploration Scientifique dela mer M�editerran�ee (2008) Messinian salinity crisis stratigraphic framework (modi-fied after; Roveri et al., 2008a,b; Manzi et al., 2011) showing the 5 key-surfacesused in the definition of the MSC stages. PLG, Primary Lower Gypsum; RLG,Resedimented Lower Gypsum; UG, Upper Gypsum; CdB1, CdB2, CdB3, Calcaredi base types (Manzi et al., 2011); MSC-onset, onset of the Messinian salinity cri-sis; MES, Messinian erosional surface (Lofi et al., 2005); age of the base of Plio-cene after Van Couvering et al., 2000.

Correspondence: Vinicio Manzi, Diparti-

mento di Scienze della Terra, Universita’

degli Studi di Parma, Parco Area delle

Scienze 157/A, Parma PR 43124, Italy.

Tel.: 0521905354; e-mail: vinicio.man-

[email protected]

© 2013 Blackwell Publishing Ltd 1

doi: 10.1111/ter.12038

BETICS

RIF

IBERIANPLATE

UA34A34

PLG2PLG2

PLG1PLG1

PRIMAPRIMARY LOWER GYPSUM LOWER GYPSUM(Yesares Formation)esares Formation)

PRE-EVAPORITICPRE-EVAPORITIC(Abad Formation)(Abad Formation)

UA33A33

UA33A33

UA34A34

UA32A32

UA32A32

UA31A31

UA31A31

UA30A30

UA30A30

UA29A29

UA28A28

MSC onsetMSC onset

S N

Perales section(Sierro et al., 2001)

Sorbas basin

UA34

Transitiontothe

Gypsum

LowerEvaporites

UA33

UA32

UA31

UA30

UA29

UA28

UA27

Fig. 2 Panoramic view of the MSC-onset in the Perales section (Sorbas basin, Betic Cordillera, Spain).

Autovia del Mediterraneo

LOS PERALESAlmeria

Murcia

ABADFORMATION

YESARESFORMATION

ABADFORMATION

YESARESFORMATION

YESARESFORMATION

ABC

C’

D

E

ABC

C’

D

E

(a) (b)

(c)

100 m100 m200 m

Autovia del Mediterraneo

LOS PERALESAlmeria

Murcia

200 m

ABADFORMATION

YESARESFORMATION

ABADFORMATION

37° 5' 56.53"N 2° 3' 14.36"O

PLG1

PLG2

UA34

ABCC’DE

UA30

UA31

UA32UA33

2 m sapropel shalecovered marl

Abad Formation

indurated layer limestone gypsum

Strong decrease of foraminifera(Sierro et al., 2001)

≈150 m ≈130 m ≈80 m ≈40 m≈100 m

gypsum dome

gypsum dome

Yesares Formation

bb

Fig. 3 Perales section (Sorbas basin, Betic Cordillera, Spain), reconstruction of the lateral facies changes in the interval encom-passing the Messinian salinity crisis onset. The lowermost gypsum bed shows rapid lateral transitions: from a 20 cm-thick lime-stone layer (section E) to small, isolated gypsum cauliflowers (section D) or domes (sections C and C0) and to a 1 m-thickgypsum bed separated from the overlying one by a few cm-thick shale interval (from section B to section A).

2 © 2013 Blackwell Publishing Ltd

Age refinement of the Messinian salinity crisis onset • V. Manzi et al. Terra Nova, Vol 0, No. 0, 1–8

.............................................................................................................................................................

l’Exploration Scientifique de la merM�editerran�ee, 2008; Roveri et al.,2008a; Manzi et al., 2009, 2011). Itenvisages a two-step/three stages pro-gression of the MSC, inspired andsubstantially modified after Clauzonet al. (1996). During stage 1, thickprimary shallow-water evaporites(Primary Lower Gypsum, PLG;Roveri et al., 2008a) accumulated insemi-enclosed marginal basins,whereas in the deep settings only eu-xinic shale and dolostone accumu-

lated (Manzi et al., 2007, 2011;DeLange and Krijgsman, 2010; DelaPierre et al., 2011). Since 5.60 Ma(stage 2) an acceleration of tectonicactivity, likely coupled with glacialconditions (TG12 and TG14), causedthe large-scale erosion of the PLGand their en-mass resedimentation inbasin lows to form the RLG unit(Resedimented Lower Gypsum;2008b) which also includes huge vol-umes of primary halite and recordsthe MSC acme.

During stage 3 the Mediterraneanwas characterized by a peculiar pal-aeoceanographic setting with adiluted superficial water-mass hostinghypohaline Paratethyan faunalassemblages; the local and periodicgypsum precipitation (“Upper Evap-orites”; UE) suggests the mainte-nance of marine connections, albeitreduced, with the global ocean (Man-zi et al., 2009).The 5.96 � 0.02 Ma age for the

MSC-onset is based on the lithologicaltransition from pre-evaporiticsapropel-marl-diatomite successionsto the base of the LE (Krijgsmanet al., 1999a, 2004; Sierro et al., 2001).This transition takes place at the samesedimentary cycle at the Molinos/Pe-rales (Spain), Falconara (Sicily) andMetochia (Greece) (Krijgsman et al.,1999a). However, detailed investiga-tions on the LE showed that thistransition is more complex than com-monly thought, and strongly differsbetween deep and marginal settings(Roveri et al., 2008a; Manzi et al.,2009, 2011). Molinos/Perales is theonly section clearly showing the PLGbase; the other two sections grade intoevaporitic carbonates/dolostones thatcannot be easily correlated to time-equivalent PLG gypsum beds.Monticino (Vena del Gesso basin,

Italy) is another well-studied MSCsection where a complete integrated-stratigraphic study of the transitioninterval to the PLG unit wasperformed (Marabini and Poluzzi,1977; Marabini and Vai, 1988;Krijgsman et al., 1999b).Following the recent revisitation of

the PLG evaporites (Lugli et al.,2008, 2010), we propose here a newstratigraphic calibration of the MSC-onset, improving the pioneering stud-ies of Sierro et al. (2001). Based onnew detailed observations of thetransition interval between the pre-evaporites and the PLG in thePerales and Monticino sections, wepresent a more precise calibration ofthe interval preceding the MSC tothe astronomical target curves that:(i) reduces stratigraphic and chrono-logic uncertainties in the position ofthe MSC-onset; (ii) helps understand-ing the global processes (climatictrend, glaciations, global sea-levelfluctuations) associated with thedeposition of the gypsum beds andtheir stacking pattern.

VI

PLG1

PLG2

VIV III II

dark laminated shale

marl/claypaleomagnetic sampleshear plane

limestone

massive selenite

banded selenitebranching selenite

giant selenite (crystals>0.3 m)

v v

FO G. multilobaFO A. delicatus(Roveri et al., 2006)

base Gilbert chron(Krijgsman et al., 1999)

base Gilbert chron(this work)

VI

V

IV

IIIII

I

30

50

70

90

110

130

28

26

24

22

20

18

16

14

12

10

8

6

4

2

0

30

28

26

24

23

25

27

29

FRO G. conomiozea group(Krijgsman et al., 1999)

Monticino section

PLG3

PLG2PLG1

PLG1

PLG4

PLG5

PLG6

PLG7

MES

MSC-onset

MSC-onset1 m

Krij

gsm

an e

t al.,

199

9th

is w

ork

82

80

83/84

1.3

2.3

3.24.2

5.26.37.38

6.415 Ma

7.251 Ma

mixedpolarity

C3r

C3A

n.1n

Fig. 4 The Monticino section (Vena del Gesso basin, Northern Apennines Italy).PLG1-PLG7, cycle of the Primary Lower Gypsum unit. I, II, III, IV, V, VI,limestone bed (Calcare di base sensu Vai, 1988).

© 2013 Blackwell Publishing Ltd 3

Terra Nova, Vol 0, No. 0, 1–8 V. Manzi et al. • Age refinement of the Messinian salinity crisis onset

............................................................................................................................................................

Perales section, Sorbas basin(Betic Cordillera, Spain)

The Perales section (Fig. 2), locatedin the central portion of the Sorbasbasin (SB), includes up to 55 litho-logical cycles in the Abad Forma-tion, recorded by the rhythmicdeposition of homogeneous marls,more indurated opal-rich carbonaticlayers, sapropels and diatomites,between the Tortonian-Messinianboundary (7.251 Ma; Hilgen et al.,2000) and the base of the YesaresFm corresponding with the MSC-onset (5.96 � 0.02; Krijgsman et al.,1999a). A high-resolution integrated

stratigraphic study resulted in therecognition of 18 planktonic forami-nifera bioevents, which were shownto be synchronous throughout theMediterranean by means of cyclo-stratigraphic bed-to-bed correlations(Sierro et al., 2001). Paleomagneticinvestigations revealed the presenceof three components of magneticremanence, a low-temperature(100–240 °C) normally directed com-ponent, an intermediate (240–420 °C)dual polarity component, and a high-temperature (>420 °C) normallydirected component. The intermedi-ate component was interpreted as theprimary component, although reli-

able directions were difficult toobtain because of partial overprintsprobably caused by delayed acquisi-tion. Polarities were generally morestraightforward and the N/R reversalboundary corresponding to the baseof the Gilbert Chron (C3r(y)) couldbe located between the homogeneousmarls of cycle UA31 and the sapro-pel of UA32, i.e. three precessionalcycles below the transitional intervalto the Yesares Fm (Krijgsman et al.,1999a; Sierro et al., 2001).In the badlands facing Los Perales,

an additional, highly discontinuousgypsum bed has been observedwithin the “transitional interval” atthe Abad-Yesares boundary (Sierroet al., 2001), below the lowermostcontinuous gypsum bed, usually con-sidered as the first PLG cycle(Fig. 2). This bed shows rapid lateralfacies and thickness transitions(Fig. 3) related to the distribution ofhyper-saturated and oxygenated con-ditions within the basin controllingwhere gypsum may form (DeLangeand Krijgsman, 2010; Lugli et al.,2010).Thus, in agreement with the strati-

graphic correlation proposed between“Los Molinos” and “Los Yesos” sec-tions (Roveri et al., 2009; Lugliet al., 2010), the stratigraphic frame-work of Sierro et al. (2001) can beimproved as follows: the “transi-tional to gypsum” interval containsthe “true” 1st PLG cycle whereas theformerly considered “first evaporiticlayer” actually corresponds to the2nd PLG cycle.

Monticino section, Vena del Gessobasin (Northern Apennines, Italy)

The Monticino section was first stud-ied by Marabini and Poluzzi (1977)who described the presence of up tosix carbonate beds, named “Calcaredi Base”, at the transition betweenthe pre-MSC euxinic shales and theselenite beds of the Gessoso-solfiferaFormation. The Monticino and theRio Albonello sections (Marabiniand Poluzzi, 1977) are actually theonly sections of the Vena del Gessobasin (VDGB) showing the strati-graphic interval encompassing theMSC-onset. Afterwards, the studiesmainly focused on the Messinian ver-tebrate assemblages recovered fromsedimentary fillings of some paleok-

LIM 1.2

N

up/W LIM 2.3

N

up/W

LIM 3.2

N

up/W LIM 4.2

N

up/W

LIM 5.2

N

up/W

LIM 6.3

N

up/W

LIM 7.3

Nup/W

dec = 348.4inc = 41.0int = 37mad = 4.8

dec = 18.0inc = 55.1int = 18mad = 6.2

dec = 210.4inc = –25.0int = 44mad = 7.1

dec = 174.4inc = –31.0int = 17mad = 14

REV

ERSE

DN

OR

MA

LM

IXED

80

80

80

80

80

80

80

150

150

150

150

150150

270

330

150

210

210

300

270

360

210-360

210-360

210-360

210-360

Fig. 5 Zijderveld diagrams of the samples used in this work for the refining of theposition of the base of the gilbert chron, see location of samples in fig. 4.

4 © 2013 Blackwell Publishing Ltd

Age refinement of the Messinian salinity crisis onset • V. Manzi et al. Terra Nova, Vol 0, No. 0, 1–8

.............................................................................................................................................................

arst cavities formed during the phaseof tectonic activity responsible forthe emersion of this area and the for-mation of the so called intra-Messini-an unconformity at the acme of theMSC (Vai, 1988). This importanterosional surface, separating MSCstage 1 and 2 and corresponding tothe Messinian erosional surface(MES, also equivalent to the Mar-ginal erosional surface of Lofi et al.,2011), is associated with an importantphase of erosion and dismantlementof the PLG in the VDGB and to itssubsequent resedimentation in theadjacent deeper basins (Roveri et al.,2001, 2003; Manzi et al., 2005).The Monticino section was also

studied for integrated stratigraphicpurposes (Krijgsman et al., 1999b;Roveri et al., 2006), although majortectonic complications (e.g. shear-planes) in the pre-evaporitic succes-sion hampered a detailed correlationto the astronomical target curve.Based on the analysis of 11 paleo-magnetic samples from the upper-

most pre-evaporitic succession (in the4 m below the base of the PLG unit;Fig. 4) Krijgsman et al. (1999b)placed the N/R base of the Gilbertchron between the 2nd and the 4thlimestone beds (Calcare di Base; Vai,1988).The natural remanent magnetiza-

tion (NRM) of the Monticino sam-ples is composed of two differentcomponents: a low-temperature(100–240 °C) normal polarity com-ponent, interpreted as a subrecentviscous overprint, and a high temper-ature component of dual polarity,gradually removed up to 360 °C.Further heating created new mag-netic minerals and resulted in randomdirections. The high-temperaturecomponent was considered as the(near-) primary component ChRMcomponent (Krijgsman et al., 1999b).A detailed re-investigation of the

earlier palaeomagnetic analyses com-prising the transitional interval ofthe “Calcare di Base” unit showsthat cycles I and II are of normal

polarity and that cycles IV, V ofreversed polarity (Figs. 4 and 5).The intermediate interval betweencycles II and IV (see samples LIM3.2. 4.2 and 5.2 in Fig. 5) can bestbe qualified of “mixed polarity”,probably related to a significantoverlap of a reversed and normalcomponent. Krijgsman et al. (1999b)placed the N/R base of the Gilbertchron between the 2nd and the 4th

limestone beds (Calcare di Base;Vai, 1988), based on the assumptionthat the mixed polarity was theresult of a secondary normal over-print in combination with a primaryreversed signal. In the mixed polar-ity interval, the high-temperaturecomponent is, however, not clearlyresolved. Similarly to what havebeen observed in many other polar-ity transitions, mixed polarities canalso result from delayed acquisitionprocesses resetting part of the paleo-magnetic signal (Vasiliev et al.,2008). In that case, the reversedcomponent is of later origin, and themixed polarity interval contributesto the normal chron C3An.1n. Thebase of the PLG in the VDGB isthen also located roughly three pre-cessional cycles above the base ofthe Gilbert Chron.

Discussion

The recognition of an additionalPLG cycle in the SB together withthe re-interpretation of the paleo-magnetic data of the Monticino sec-tion indicates that the onset of theMSC is located three precessionalcycles above the base of the GilbertChron in both western (SE Spain)and central (N Italy) Mediterranean(Fig. 6).Lugli et al. (2010) reconstructed a

robust stratigraphic framework ofthe PLG unit, allowing bed-by-bedcorrelation of each gypsum-shalecycle. The proposed tuning with theastronomical curves highlights astrong climatic control at the preces-sional and eccentricity scale in thefacies distribution, bed thickness andstacking pattern.Accordingly, the Perales andMonti-

cino sections can be precisely corre-lated and constrained into this cyclos-tratigraphic framework (Fig. 7).According to earlier integrated

stratigraphic studies of the pre-MSC

2

34

3

2

1

5

6

2

1 1

2

3

1

6.003

6.024

6.042

6.062

6.079

6.099

5.974

5.9625.969

5.991

6.013

6.033

6.052

6.069

6.089

5.939

5.918

5.897

5.876

5.951

5.929

5.910

5.887

5.867

5.9

6.0

6.1

UA30UA29

UA28

UA27UA26UA25

UA31

UA32

UA336.035

UA34

UA24UA23

–0,040 0,000 0,040 eccentricity

440 480 520 Summer65N - La2004

5.983

5 m

2nd influx N.acostaensis sxStrong decrease foraminifers

Krijgsman et al., 1999This work

TW

TW

K99S01

K99

S01

Sierro et al., 2001

Base of Gilbert Chron

sapropel

indurated layerhomogeneous marl

porites reefdiatomites

marlsandstone

conglomerate

massive selenitegiant selenite (crystals>0.3 m)limestone

bioturbation

LOS YESOS PERALES MONTICINO

MSC onset(5.971 Ma)

gypsum midpoint

sapropel midpoint

C3r

C3A

n.1n

Fig. 6 Calibration of the Messinian salinity crisis onset and stratigraphic correla-tion between the two k-sections Perales and Monticino

© 2013 Blackwell Publishing Ltd 5

Terra Nova, Vol 0, No. 0, 1–8 V. Manzi et al. • Age refinement of the Messinian salinity crisis onset

............................................................................................................................................................

unit, the base of the Gilbert chronfalls in the upper part of cycle UA31of the Perales section and is unambig-uously correlated to the astronomicalcurves (Krijgsman et al., 1999a,b,2004; Sierro et al., 2001). The base ofthe 1st PLG cycle, being located threeprecessional cycles higher, at the topof cycle UA34 (Fig. 6). Using themost recent astronomical solution(Laskar et al., 2004) an age of5.969 Ma and 5.974 Ma can beassigned respectively to the midpointof the 1st PLG cycle and to the mid-point of the underlying dark organic-rich shale interval. The beginning ofthe MSC in the Mediterranean thushas an age of 5.971 Ma.

Our new calibration leads to inter-esting speculations about the climateevents accompanying the MSC-onsetbased on the comparison with thesedimentary record from the Atlanticside. The Ain El Beida section (AEB;Krijgsman et al., 2004) provides acontinuous deep marine record ofthe 6.5–5.5 Ma interval that has beenstudied in detail following an inte-grated stratigraphy approach (bio-stratigraphy, magnetostratigraphy,stable isotope) and astronomicallytuned.The calibration of the PLG cycles

to the AEB d18O curve (Van derLaan et al., 2005) and to the globalsea level record (Miller et al., 2011)

is shown in Fig. 7. The MonteTondo section, located in the nearbyof Monticino, is the reference sectionfor the PLG (Lugli et al., 2010). Itshows that the PLG cycles 3-4-5,characterized by the maximum thick-ness in all the Mediterranean (Lugliet al., 2010), are related to: i) a phaseof strong climate variability relatedto a maximum of eccentricity andassociated greater amplitude of bor-eal summer insolation, and ii) aphase of global sea level high-standrelated to long-term obliquity cycles.Starting at around 5.870 Ma (PLGcycle 6) the onset of a cooling phaseand global sea level fall could beresponsible for the progressive reduc-tion of the gypsum bed thickness andthe development of the branchingselenite facies, whose presence sug-gests shallower water depth in theevaporitic basins (Lugli et al., 2010).Thus, the thickness of the PLGcycles during a phase of reduced tec-tonic activity could have been modu-lated by global sea level variations.It is worth noting that the first

gypsum was deposited at times of: (i)an eccentricity minimum roughlycoincident with glacial stage TG32(Van der Laan et al., 2005); (ii) astrong peak in the Ti/Al ratio incycle AEB25 (van der Laan et al.,2012).This suggests that the MSC-onset

occurred during a time interval char-acterized by glacial conditions in thenorthern hemisphere and by arid cli-mate in the gateway area (NorthwestAfrica) in agreement with the pollenrecord of southern Mediterranean(Fauquette et al., 2006). These eventssuperimposed to the longer-termtectonic restriction of the gatewaystarted since the Tortonian, werelikely responsible for triggering evap-orative conditions in the marginalbasins of the Mediterranean Sea.Our results indicate that: (i) the

interval encompassing MSC-onset isdevoid of erosional features or strati-graphic hiatus related to major sea-level drop in the Mediterranean; (ii)in agreement to the evaporite faciesand stacking pattern (Lugli et al.,2010), the Yesares Formation of Sor-bas was deposited during the firststage of the MSC. This allow to ruleout previous hypothesis (Ridinget al., 1999; Braga et al., 2006)claiming that the Yesares Fm. was

Monte Tondo

3

3

1313

1414

1515

1616

44

6

6

8

8

7

7

9

9

11

11

12

12

10

10

5

5

2

2

1

1

v v v v v

v v v v v

Eccentricity(Laskar et al., 2004)

0.040 0.000 –0.040

440 480 520

Insolation summer 65N(Laskar et al., 2004)

20 m

ETP(Laskar et al., 2004)

0 2 4

5800

5700

5900

6000

WAR

MING

CO

OL

ING

RISEFALL

0.41.2

global sea level (m)(Miller et al., 2001)

+ 50– 30 0

22° 23° obliquity

(Laskar, 2004)

24°

TG34

TG32

TG30

TG28

TG26

TG24

TG22

TG20

TG18

TG16

*

5.974

5.9695.971

δ18O (‰) Ain el Beida (van der Laan et al., 2005)

20 30 m0 10

Bed thickness(Lugli et al., 2010)

MSC onset(5.971 Ma)

massivebanded

branching

PLG gypsum selenite facies(Lugli et al., 2010)

Fig. 7 Tuning of the Primary Lower Gypsum unit. According to the sedimentologicand sequence stratigraphic interpretation suggested for the Primary Lower Gypsumdeposits (Roveri et al., 2008b; Lugli et al., 2010) the boundary between the bandedselenite and the branching selenite facies represents the aridity peak within eachsingle gypsum beds. Thus, it has been correlated with insolation minima.

6 © 2013 Blackwell Publishing Ltd

Age refinement of the Messinian salinity crisis onset • V. Manzi et al. Terra Nova, Vol 0, No. 0, 1–8

.............................................................................................................................................................

deposited after the complete desicca-tion of the Mediterranean and thedevelopment of a major unconfor-mity in the marginal basins.

Conclusions

A detailed sedimentological, strati-graphic and paleomagnetic revision oftwo key-sections, Perales (Sorbasbasin) and Monticino (Vena delGesso basin), recording the transitiontoward evaporative conditions inmarginal shallow-water settingsresults in a refined age calibration ofthe MSC-onset in the Mediterraneanat around 5.971 Ma and the removalof uncertainties that prevented a moreaccurate positioning of the MSC-onset in marginal and deep basins.This age refinement also suggests

that the MSC-onset was precondi-tioned by the tectonically-drivenreduction of the hydrologicalexchanges with the Atlantic oceanand was finally triggered by glacialconditions in the northern hemisphereand by arid conditions in northernAfrica. In this oceanographic settingthe deposition of gypsum beds inmarginal basins was controlled by sealevel and insolation oscillationsmodulated by eccentricity.

Acknowledgments

This study received financial support bythe Italian Minister of University andResearch (MIUR) PRIN 2008 researchproject ‘‘High-resolution stratigraphy,palaeoceanography and palaeoclimatologyof the Mediterranean area during theMessinian salinity crisis,’’ coordinated byM. Roveri. Journal Editor Max Coleman,J.P Suc and an anonymous reviewer aregreatly acknowledged for their helpfulrevisions, which greatly improved thismanuscript. G.B. Vai and S. Marabini aregreatly acknowledged for their helpfulsupport for the Monticino section.

References

Braga, J.C., Martin, J.M., Riding, R.,Aguirre, J., S�anchez-Almazo, I.M. andDinar�es-Turell, J., 2006. Testing modelsfor the Messinian salinity crisis: TheMessinian record in Almer�ıa, SE Spain.Sed. Geol., 188–189, 131–154.

CIESM - Commission Internationalepour l’Exploration Scientifique de lamer M�editerran�ee, 2008, The MessinianSalinity Crisis from Mega-deposits to

Microbiology – A Consensus Report(Ed. F. Briand), CIESM WorkshopMonographs, 33, 168.

Clauzon, G., Suc, J.P., Gautier, F.,Berger, A. and Loutre, M.F., 1996.Alternate interpretation of theMessinian salinity crisis: Controversyresolved? Geology, 24, 363–366.

Dela Pierre, F., Bernardi, E., Cavagna,S., Clari, P., Gennari, R., Irace, A.,Lozar, F., Lugli, S., Manzi, V.,Natalicchio, M., Roveri, M. andViolanti, D., 2011. The record of theMessinian salinity crisis in the TertiaryPiedmont Basin (NW Italy): The Albasection revisited. Palaeogeogr.Palaeoclimatol. Palaeoecol., 310,238–255.

DeLange, G.J. and Krijgsman, W., 2010.Messinian salinity crisis: a novelunifying shallow gypsum/deep dolomiteformation mechanism. Mar. Geol., 275,273–277.

Fauquette, S., Suc, J.-P., Bertini, A.,Popescu, S.-M., Warny, S., BachiriTaoufiq, N., Perez Villa, M., Chikhi,H., Subally, D., Feddi, N., Clauzon, G.and Ferrier, J., 2006. How much didclimate force the Messinian salinitycrisis? Quantified climatic conditionsfrom pollen records in theMediterranean region. Palaeogeogr.Palaeoclimatol. Palaeoecol., 238,281–301.

Hilgen, F.J. and Krijgsman, W., 1999.Cyclostratigraphy and astrochronologyof the Tripoli diatomite formation (pre-evaporite Messinian, Sicily, Italy).Terra Nova, 11, 16–22.

Hilgen, F.J., Bissoli, L., Iaccarino, S.,Krijgsman, W., Meijer, R., Negri, A.and Villa, G., 2000. Integratedstratigraphy and astrochronology of theMessinian GSSP at Oued Akrech(Atlantic Morocco). Earth Planet. Sci.Lett., 182, 237–251.

Hilgen, F.J., Kuiper, K., Krijgsman, W.,Snel, E. and van der Laan, E., 2007.Astronomical tuning as the basis forhigh resolution chronostratigraphy:The intricate history of theMessinian salinity crisis. Stratigraphy,4, 231–238.

Krijgsman, W., Hilgen, F.J., Langereis,C.G., Santarelli, A. and Zachariasse,W.J., 1995. Late Miocenemagnetostratigraphy, biostratigraphyand cyclostratigraphy in theMediterranean. Earth Planet. Sci. Lett.,136, 475–494.

Krijgsman, W., Hilgen, F.J., Raffi, I.,Sierro, F.J. and Wilson, D.S., 1999a.Chronology, causes and progression ofthe Messinian salinity crisis. Nature,400, 652–655.

Krijgsman, W., Hilgen, F.J., Marabini, S.and Vai, G.B., 1999b. Newpaleomagnetic and cyclostratigraphic

age constraints on the Messinian of theNorthern Apennines (Vena del GessoBasin, Italy). Mem. Soc. Geol. It., 54,25–33.

Krijgsman, W., Fortuin, A.R., Hilgen,F.J. and Sierro, F.J., 2001.Astrochronology for the MessinianSorbas basin (SE Spain) and orbital(precessional) forcing for evaporitecyclicity. Sed. Geol., 140, 43–60.

Krijgsman, W., Gaboardi, S., Hilgen,F.J., Iaccarino, S., de Kaenel, E. andvan der Laan, E., 2004. Revisedastrochronology for the Ain el Beidasection (Atlantic Morocco): no glacio-eustatic control for the onset of theMessinian Salinity Crisis. Stratigraphy,1, 87–101.

van der Laan, E., Snel, E., de Kaenel, E.,Hilgen, F.J. and Krijgsman, W., 2006.No major deglaciation across theMiocene-Pliocene boundary: Integratedstratigraphy and astronomical tuning ofthe Loulja sections (Bou Regreg area,NW Morocco). Paleoceanography, 21,PA3011.

van der Laan, E., Hilgen, F.J., Lourens,L.J., de Kaenel, E., Gaboardi, S. andIaccarino, S., 2012. Astronomicalforcing of Northwest African climateand glacial history during the lateMessinian (6.5-5.5 Ma). Palaeogeogr.Palaeoclimatol. Palaeoecol., 313–314,107–126.

Laskar, J., Robutel, P., Joutel, F.,Gastineau, M., Correia, A.C.M. andLevrard, B., 2004. A long-termnumerical solution for the insolationquantities of the Earth. Astron.Astrophys., 428, 261–285.

Lofi, J., Gorini, C., Berne, S., Clauzon,G., Dos Reis, A.T., Ryan, W.B.F. andSteckler, M.S., 2005. Erosionalprocesses and paleo-environmentalchanges in the western gulf of Lions(SW France) during the MessinianSalinity Crisis. Mar. Geol., 217, 1–30.

Lofi, J., D�everch�ere, J., Gaullier, V.,Gillet, H., Gorini, C., Guennoc, P.,Loncke, L., Maillard, A., Sage, F. andThinon, I., (eds). Atlas of the“Messinian Salinity Crisis” seismicmarkers in the Mediterranean andBlack seas. 2011 CCGM/M�emoires dela SGF, n.s., t. 179, 72 p. – 1 CD

Lugli, S., Manzi, V. and Roveri, M.,2008. New facies interpretation of theMessinian evaporites in theMediterranean. In: The MessinianSalinity Crisis from Mega-deposits toMicrobiology – A Consensus Report(Ed. F. Briand). CIESM WorkshopMonographs, 33, 73–82.

Lugli, S., Manzi, V., Roveri, M. andSchreiber, B.C., 2010. The PrimaryLower Gypsum in the Mediterranean: anew facies interpretation for the firststage of the Messinian salinity crisis.

© 2013 Blackwell Publishing Ltd 7

Terra Nova, Vol 0, No. 0, 1–8 V. Manzi et al. • Age refinement of the Messinian salinity crisis onset

............................................................................................................................................................

Palaeogeogr. Palaeoclimatol.Palaeoecol., 297, 83–99.

Manzi, V., Lugli, S., Ricci Lucchi, F. andRoveri, M., 2005. Deep-water clasticevaporites deposition in the MessinianAdriatic foredeep (northern Apennines,Italy): did the Mediterranean ever dryout? Sedimentology, 52, 875–902.

Manzi, V., Roveri, M., Gennari, R.,Bertini, A., Biffi, U., Giunta, S.,Iaccarino, S.M., Lanci, L., Lugli, S.,Negri, A., Riva, A., Rossi, M.E. andTaviani, M., 2007. The deep-watercounterpart of the Messinian LowerEvaporites in the Apennine foredeep:The Fanantello section (NorthernApennines, Italy). Palaeogeogr.Palaeoclimatol. Palaeoecol., 251,470–499.

Manzi, V., Lugli, S., Roveri, M. andSchreiber, B.C., 2009. A new faciesmodel for the Upper Gypsum of Sicily(Italy): chronological andpalaeoenvironmental constraints for theMessinian salinity crisis in theMediterranean. Sedimentology, 56–7,1937–1960.

Manzi, V., Lugli, S., Roveri, M.,Schreiber, B.C. and Gennari, R., 2011.The Messinian “Calcare di Base”(Sicily, Italy) revisited. Geol. Soc. Am.Bull., 123, 347–370.

Marabini, S. and Poluzzi, A., 1977. LeCrisia (Bryozoa, cyclostomata) delMessiniano inferiore della RomagnaOccidentale. Giorn. Geol., 42–1,165–180.

Marabini, S. and Vai, G.B.,1988. Geologyof the Monticino Quarry, Brisighella,Italy. In: Stratigraphic Implications ofits Late Messinian Fauna (C. De Giuliand G.B. Vai, eds), pp. 39–52. Fossilvertebrates in the Lamone valley,Romagna Apennines. Field tripguidebook.

Miller, K.G., Mountain, G.S., Wright,J.D. and Browning, J.V., 2011. A 180-million-year record of sea level and icevolume variations from continentalmargin and deep-sea isotopic records.Oceanography, 24, 40–53.

Riding, R., Braga, J.C. and Mart�ın, J.M.,1999. Late Miocene Mediterraneandesiccation: topography andsignificance of the ‘Salinity Crisis’erosion surface on-land in southeastSpain. Sed. Geol., 123, 1–7.

Roveri, M., Bassetti, M.A. and RicciLucchi, F., 2001. The MediterraneanMessinian salinity crisis: an Apennineforedeep perspective. Sed. Geol., 140,201–214.

Roveri, M., Manzi, V., Ricci Lucchi, F.and Rogledi, S., 2003. Sedimentary andtectonic evolution of the Vena delGesso basin (Northern Apennines,Italy): Implications for the onset of theMessinian salinity crisis. Geol. Soc. Am.Bull., 115, 387–405.

Roveri, M., Lugli, S., Manzi, V.,Gennari, R., Iaccarino, S.M., Grossi,F. and Taviani, M., 2006. The recordof Messinian events in the NorthernApennines foredeep basins. RCMNSIC PARMA 2006”The Messiniansalinity crisis revisited II” PRE-CONGRESS FIELD-TRIP. ACTANATURALIA De “L’AteneoParmense”, 42-3, 47–123.

Roveri, M., Lugli, S., Manzi, V. andSchreiber, B.C., 2008a. The MessinianSicilian stratigraphy revisited: toward anew scenario for the Messinian salinitycrisis. Terra Nova, 20, 483–488.

Roveri, M., Lugli, S., Manzi, V. andSchreiber, B.C., 2008b. The Messiniansalinity crisis: a sequence-stratigraphicapproach. In: A. Amorosi, B.U. Haq,L. Sabato (eds), Advances in Application

of Sequence Stratigraphy in Italy: GeoActaSpec. Publ. 1, 117–138

Roveri, M., Gennari, R., Lugli, S. andManzi, V., 2009. The TerminalCarbonate Complex: the record of sea-level changes during the Messiniansalinity crisis. GeoActa, 8, 63–77.

Sierro, F.J., Hilgen, F.J., Krijgsman, W.and Flores, J.A., 2001. The Abadcomposite (SE Spain): a Messinianreference section for the Mediterraneanand the APTS. Palaeogeogr.Palaeoclimatol. Palaeoecol., 168,141–169.

Vai, G.B., 1988, A field trip guide to theRomagna Apennine geology - TheLamone valley. In: Proceedings of theInternational Workshop on ContinentalFaunas of the Miocene/PlioceneBoundary. (C. De Giuli and G.B. Vai,eds), pp. 7–37. Societ�a PaleontologicaItaliana, Modena, Italy.

Van Couvering, J.A., Castradori, D.,Cita, M.B., Hilgen, F.J. and Rio, D.,2000. The base of the Zanclean Stageand of the Pliocene Series. Episodes,23–3, 179–187.

Van der Laan, E., Gaboardi, S., Hilgen,F.J. and Lourens, L.J., 2005. Regionalclimate and glacial control on high-resolution oxygen isotope records fromAin el Beida (latest Miocene, northwestMorocco): A cyclostratigraphic analysisin the depth and time domain.Palaeoceanography, 20, 2–22.

Vasiliev, I., Franke, C., Meeldijk, J.D.,Dekkers, M.J., Langereis, C.G. andKrijgsman, W., 2008. Putative greigitemagnetofossils from the Pliocene epoch.Nat. Geosci., 1, 782–786.

Received 23 July 2012; revised version

accepted 19 February 2013

8 © 2013 Blackwell Publishing Ltd

Age refinement of the Messinian salinity crisis onset • V. Manzi et al. Terra Nova, Vol 0, No. 0, 1–8

.............................................................................................................................................................