Struktur Dan Fungsi Makromolekul Karbohidrat

40
Struktur dan Fungsi Makromolekul Karbohidrat, Protein, Lipid, dan Asam Nukleat di dalam Sel 1 Votes Struktur dan Fungsi Makromolekul Karbohidrat, Protein, Lipid, dan Asam Nukleat di dalam Sel Oleh : Zarmayana Nur Khairunni – Ilmu Keperawatan – 1306464732 – IBD B5 grup C Karbohidrat Karbohidrat merupakan jenis senyawa organik yang terdiri dari karbon, hidrogen, dan oksigen yang merupakan sumber makanan dan energi yang penting bagi manusia dan hewan. Karbohidrat dihasilkan oleh tumbuhan hijau pada proses fotosintesis. Berdasarkan reaksi hidrolisis dan ukuran molekulnya, karbohidrat dibedakan menjadi karbohidrat sederhana (monosakarida dan disakarida) dan karbohidrat kompleks (polisakarida). Karbohidrat Sederhana Karbohidrat sederhana sangat mudah dikenali melalui rumus empirisnya, karena perbandingan antara atom karbon, hidrogen, dan oksigennya yaitu 1:2:1, contohnya adalah C 3 H 6 O 3 (triosa) atau C 5 H 5 O 10 (pentosa). Selain itu, karbohidrat sederhana umumnya juga dapat diidentifikasi melalui tata namanya yang sesuai dengan jumlah atom karbon yang terdapat dalam molekul, contohnya adalah triosa yang memiliki 3 atom karbon, pentosa yang memilik 5 atom karbon, dan heksosa yang memilik 6 atom karbon. Berdasarkan jumlah

description

ase

Transcript of Struktur Dan Fungsi Makromolekul Karbohidrat

Struktur dan Fungsi Makromolekul Karbohidrat, Protein, Lipid, dan Asam Nukleat di dalam Sel      1 Votes

Struktur dan Fungsi Makromolekul Karbohidrat, Protein, Lipid, dan Asam Nukleat di dalam Sel

Oleh : Zarmayana Nur Khairunni – Ilmu Keperawatan – 1306464732 – IBD B5 grup C

KarbohidratKarbohidrat merupakan jenis senyawa organik yang terdiri dari karbon, hidrogen, dan oksigen yang merupakan sumber makanan dan energi yang penting bagi manusia dan hewan. Karbohidrat dihasilkan oleh tumbuhan hijau pada proses fotosintesis.

Berdasarkan reaksi hidrolisis dan ukuran molekulnya, karbohidrat dibedakan menjadi karbohidrat sederhana (monosakarida dan disakarida) dan karbohidrat kompleks (polisakarida).

Karbohidrat Sederhana

Karbohidrat sederhana sangat mudah dikenali melalui rumus empirisnya, karena perbandingan antara atom karbon, hidrogen, dan oksigennya yaitu 1:2:1, contohnya adalah C3H6O3 (triosa) atau C5H5O10(pentosa). Selain itu, karbohidrat sederhana umumnya juga dapat diidentifikasi melalui tata namanya yang sesuai dengan jumlah atom karbon yang terdapat dalam molekul, contohnya adalah triosa yang memiliki 3 atom karbon, pentosa yang memilik 5 atom karbon, dan heksosa yang memilik 6 atom karbon. Berdasarkan jumlah molekulnya, karbohidrat sederehana dibagi menjadi monosakarida dan polisakarida.

1. Monosakarida (Gula Sederhana)i.     Deskripsi Monosakarida

Monosakarida (gula sederhana) merupakan karbohidrat yang paling sederhana dan tidak dapat diurai atau dihidrolisis lagi menjadi karbohidrat yang lebih sederhana.

ii.     Struktur Monosakarida

Monosakarida dapat berupa aldosa atau ketosa. Semua monosakarida mempunyai atom C asimetris. Dalam hal ini, atom C asimetris terjadi jika atom karbon mengikat empat gugus yang berbeda. Pada dasarnya struktur monosakarida dapat digambarkan dengan menggunakan struktur yang dikemukakan oleh Emil Fischer yang dikenal sebagai konformasi Fischer dan struktur lingkaran yang dikemukakan oleh Tollens dan direalisasikan oleh Haworth yang dikenal sebagai struktur Haworth.

1. Struktur Monosakarida menurut Konformasi Fitcher

Struktur-struktur monosakarida yang digambarkan pada gambar 1.1, dan 1.2 merupakan contoh-contoh konformasi Fitcher. Berdasarkan gambar  1.1, dapat terlihat bahwa glukosa dan galaktosa mempunyai rumus dan struktur molekul yang sama tetapi keduanya berbeda konfigurasi. Keduanya merupakan isomer optik. Keadaan ini disebabkan karena monosakarida mempunyai atom C asimetris.Struktur setiap monosakarida terdiri dari dua konfigurasi yaitu D dan L. Konfigurasi-konfigurasi tersebut didasarkan pada arah gugus OH pada atom C asimetris nomor terbesar. Berdasarkan konformasi Fitcher, jika gugus tersebut mengarah ke kanan, maka monosakarida ditandai dengan D, sedangkan jika gugus tersebut mengarah ke kiri, maka monosakarida ditadai dengan L seperti pada gambar 1.2.

1. Struktur Monosakarida menurut Struktur HaworthPada dasarnya, setiap konformasi Fitcher dapat diubah menjadi struktur Haworth, seperti gambar berikut ini.

 2. DisakaridaDeskripsi Disakarida

Disakarida terdiri dari dua buah monosakarida yang terikat melalui sintesis dehidrasi yang membentuk suatu rantai. Ketika disakarida terbentuk, maka air akan dihilangkan, sehingga proses pembentukannya disebut sintesis dehidrasi. Disakarida dapat dibelah menjadi dua buah monosakarida sederhana dengan menggunakan air kembali (hidrolisis). Contoh-contoh disakarida adalah sukrosa (glukosa + fruktosa), laktosa (glukosa + galaktosa), dan maltosa (glukosa + glukosa).

Struktur Disakarida

SukrosaSukrosa merupakan disakarida umum yang dihasilkan oleh beberapa tumbuhan, seperti tebu dan bit. Jika sukrosa dihidrolisis, maka akan dihasilkan glukosa dan fruktosa). Struktur sukrosa sebagai berikut.

 

Sukrosa tidak dapat mereduksi pereaksi Fehling, Benedict, dan Tollens. Hal ini karena gugus aldehid sukrosa terikat pada fruktosa. Selain itu, sukrosa juga tidak dapat difermentasi.

Laktosa dan MaltosaLaktosa merupakan jenis disakarida lainnya yang biasanya dikenal dengan gula susu. Hal ini karena laktosa diproduksi secara alamiah dalam susu. Jika laktosa dihidrolisis, maka akan dihasilkan glukosa dan galaktosa. Dalam hal ini, hidrolisis laktosa dapat

terjadi dengan bantuan enzim laktase. Laktosa tidak dapat difermentasi, tetapi dapat mereduksi pereaksi Fehling, Benedict dan Tollens. Struktur laktosa sebagai berikut.

Maltosa merupakan disakarida yang terdiri dari dua molekul glukosa. Oleh karena itu, jika laktosa dihidrolisis, maka akan dihasilkan dua buah molekul glukosa. Dalam hal ini, hidrolisis laktosa dapat terjadi dengan bantuan enzim maltase. Secara alamiah, maltosa tidak terdapat dalam keadaan bebas, tetapi dapat dibuat melalui hidrolisis zat pati (amilum) dengan bantuan enzim amilase. Maltosa dapat difermentasi membentuk etanol dan dapat mereduksi pereaksi Fehling, Benedict dan Tollens. Struktur maltosa sebagai berikut.

1. Karbohidrat KompleksKarbohidrat sederhana dapat dikombinasikan satu sama lain untuk membentuk karbohidrat kompleks. Saat dua karbohidrat sederhana saling terikat satu sama lain, maka terbentuk disakarida. Saat tiga karbohidrat sederhana saling terikat satu sama lain, maka terbentuk trisakarida. Pada umumnya, sebuah karbohidrat kompleks yang lebih besar dari disakarida dan trisakarida disebut polisakarida.

PolisakaridaDeskripsi Polisakarida

Polisakarida merupakan rantai yang panjang dari molekul-molekul gula yang terikat bersama-sama. Di antara polisakarida yang paling terkenal adalah selulosa. Selulosa membentuk dinding sel tumbuhan dan para ilmuwan memperkirakan bahwa lebih dari satu triliun ton selulosa disintesis tumbuhan setiap tahunnya. Selain selulosa, contoh polisakarida lainnya adalah amilum (zat pati).

Struktur Polisakarida

Gambar berikut ini menunjukkan struktur selulosa dan amilum.

 

  Selulosa merupakan polimer yang berantai panjang dan tidak bercabang. Suatu molekul tunggal selulosa merupakan polimer rantai lurus dari 1,4’-β-D-glukosa. Hidrolisis selulosa dalam HCl 4% dalam air menghasilkan D-glukosa.

 

 Amilosa adalah polimer linier dari α-D-glukosa yang dihubungkan dengan ikatan 1,4-α. Dalam satu molekul amilosa terdapat 250 satuan glukosa atau lebih. Amilosa membentuk senyawa kompleks berwarna biru dengan iodium. Warna ini merupakan uji untuk mengidentifikasi adanya pati.

Molekul amilopektin lebih besar dari amilosa. Strukturnya bercabang. Rantai utama mengandung α-D-glukosa yang dihubungkan oleh ikatan 1,4′-α. Tiap molekul glukosa pada titik percabangan dihubungkan oleh ikatan 1,6′-α.

 Karbohidrat mempunyai beberapa fungsi penting, di antaranya sebagai berikut.

1. Sebagai komponen utama penyusun membran sel.2. Sebagai sumber energi utama. Pada beberapa organ tubuh seperti otak, lensa

mata, dan sel saraf, sumber energinya sangat bergantung kepada glukosa dan tidak dapat digantikan oleh sumber energi lainnya. Setiap 1 gram glukosa menghasilkan 4,1 kkal.

3. Berperan penting dalam metabolisme, menjaga keseimbangan asam dan basa, pembentuk struktur sel, jaringan, dan organ tubuh.

4. Membantu proses pencernaan makanan dalam saluran pencernaan, misalnya selulosa.

5. Membantu penyerapan kalsium, misalnya laktosa.6. Merupakan bahan pembentuk senyawa lain, misalnya protein dan lemak.7. Karbohidrat beratom C lima buah, yaitu ribosa merupakan komponen asam inti

yang amat penting dalam pewarisan sifat.8. Sumber energi dalam proses respirasi.

 

ProteinProtein adalah polimer yang tersusun dari monomer yang biasa disebut asam amino. Asam amino adalah rangka karbon pendek yang mengandung gugus amino fungsional (nitrogen dan hidrogen dua) yang melekat pada salah satu ujung kerangka dan gugus asam karboksilat di ujung lain. Protein tersusun atas unsur karbon (C), hidrogen (H), oksigen (O), nitrogen (N), dan terkadang mengandung zat belerang (S) dan fosfor (P). Protein merupakan komponen utama makhluk hidup dan berperan penting dalam aktivitas sel. Protein mengatur aktivitas metabolisme, mengkatalisis reaksi-reaksi biokimia, dan menjaga keutuhan strukur sel. Protein terdapat dalam semua jaringan hidup dan disebut sebagai pembangun kehidupan.

Secara kimia, protein merupakan molekul biologis yang besar. Protein tersusun atas asam amino yang terikat dalam rantai lurus yang disebut ikatan peptida yang membentuk suatu zat kompleks. Oleh karena itu, protein digolongkan ke dalam polimer yang monomer-monomenya adalah asam amino.

Asam AminoAsam amino merupakan kelompok senyawa karbon  yang terdiri dari karbon, hidrogen, oksigen, dan nitrogen. Akan tetapi, terdapat juga dua asam amino yang juga

mengandung belerang, yaitu sistein dan metionin. Sampai saat ini telah dikenal 20 jenis asam amino yang biasanya terdapat dalam protein. Semua asam amino sekurang-kurangnya sebuah gugus amino (NH2) dan gugus karboksil (—COOH). Masing-masing dari 20 asam amino mempunyai gugus R yang berbeda. Dalam hal ini, komposisi kimia dari gugus R yang khas menentukan sifat-sifat asam amino, seperti reaktivitas, muatan ion, dan hidropobisitas relatif (sifat ketidaksukaan terhadap air). 20 macam asam amino adalah sebagai berikut.

1. Struktur ProteinSetiap protein terdiri dari satu atau lebih rantai polipeptida. Akibatnya, terdapat empat struktur protein, yaitu sebagai berikut.

1. Struktur primer, yaitu struktur protein yang rantai polipeptidanya berbentuk linier.

2. Struktur sekunder, yaitu struktur protein yang rantai polipeptidanya mempunyai pola teratur, misalnya pola memilin (menggulung).

3. Struktur tersier, yaitu struktur protein yang rantai polipeptidanya bengkok atau bergulung (berpilin), sehingga membentuk struktur tidak dimensi bulat.

4. Struktur kuarterner, yaitu struktur protein yang berkaitan dengan kenyataan bahwa beberapa protein dapat terdiri lebih dari satu rantai polipeptida. Setiap rantai polipeptida dapat merupakan polipeptida yang sama atau berbeda.

Fungsi Protein

Protein mempunyai fungsi biologis tertentu, sehingga protein dapat diklasifikasikan sebagai berikut.

1. Komponen utama penyusun membran sel, seperti protein integral, protein perifer, dan glikoprotein.

2. Sebagai sumber energi, setiap gramnya akan menghasilkan 4,1 kkal.3. Bahan dalam sintesis substansi penting seperti hormon, enzim, zat antibodi, dan

organel sel lainnya. Enzim, yaitu protein yang mengkatalisis reaksi-reaksi kimia dan biokimia di

dalam atau di luar sel-sel hidup. Contoh enzim antara lain adalah tripsin.

Hormon, adalah protein yang dihasilkan oleh kelenjar endoktrin tubuh atau sel-sel tertentu lainnya. Hormon berfungsi untuk mengatur dan merangsang beberapa proses dalam makhluk hidup, misalnya metabolisme. Contoh hormon protein antara lain adalah insulin, lipoprotein, dan prolaktin.

Imunoglobulin (zat anti bodi), yaitu protein pelindung yang berperan penting dalam respon kekebalan makhluk hidup untuk menetralisasi zat-zat asing yang menyebabkan infeksi. Contohnya adalah interferon, dan trombin.

Mengatur dan melaksanakan metabolisme tubuh, seperti enzim, protein yang mengaktifkan dan berpartisipasi pada reaksi kimia kehidupan

Sebagai senyawa buffer, yakni berperan menjaga stabilitas pH cairan tubuh dan sebagai zat larut dalam cairan tubuh, protein membantu dalam pemeliharaan tekanan osmotik di dalam sekat-sekat rongga tubuh.

Protein transpor, yaitu protein yang berfungsi untuk memindahkan atau menyimpan beberapa senyawa kimia dan ion. Contohnya adalah hemoglobin untuk mengangkut oksigen dan protein integral yang membawa zat-zat yang dibutuhkan sel.

Protein motor, yaitu protein yang berfungsi untuk mengubah energi kimia menjadi energi mekanik. Contohnya adalah aktin dan miosin.

Protein struktur, yaitu protein yang berfungsi untuk perbaikan, pertumbuhan, dan pemeliharaan struktur sel, jaringan, atau komponen-komponen biologis lainnya. Contohnya adalah kolagen, elastin, dan keratin.

Protein reseptor, yaitu protein yang berfungsi untuk mendeteksi sinyal (rangsangan) dan menerjemahkan sinyal tersebut menjadi sinyal jenis lain. Contohnya adalah rhodopsin.

Protein penunjuk, yaitu protein yang berfungsi untuk memberikan sinyal atau mengkomunikasikan rangsangan dalam proses translasi. Contohnya adalah GTP (guanosinin trifosfat)

Protein penyimpan, yaitu protein yang mengandung energi, yang dapat dilepaskan dalam proses-proses metabolisme pada makhluk hidup. Contohnya adalah albumin.

1. Asam NukleatAsam nukleat merupakan polimer senyawa organik yang menyimpan dan mengirimkan informasi genetik di dalam sel. Ada dua jenis asam nukleat: asam deoksiribonukleat (DNA) dan asam ribonukleat (RNA). DNA berfungsi sebagai materi genetik, sedangkan RNA memainkan peran penting dalam menggunakan informasi genetik untuk memproduksi protein. Semua asam nukleat dibentuk dari monomer-monomer yang dikenal sebagai nukleotida. Nukleotida juga menyediakan sumber energi langsung untuk reaksi yang terjadi dalam sel. Setiap nukleotida terdiri dari tiga bagian: (1) sebuah molekul pentosa, yang bisa menjadi ribosa atau deoksiribosa, (2) sebuah grup fosfat, dan (3) sebuah basa nitrogen. Basa nitrogen yang dimiliki ialah satu dari 5 jenisnya. Dua diantaranya lebih besar dari yang lain, molekul cincin ganda Adenin dan Guanin, basa yang terkecil adalah basa cincin tunggal Timin, Sitosin, dan Urasil..

Nukleotida (monomer), terikat dalam rantai yang panjang (polimer), sehingga gula dan gugus fosfat secara terurut membentu rangkaian “tulang belakang” dan basa nitrogen sebagai penyanggah sisinya. DNA memiliki gula deoksiribosa dan basa A, T, G dan C, sedangkan RNA memiliki gula Ribosa dan basa A, U, G, dan C.

 LipidLipid merupakan zat lemak yang berperan dalam berbagai sel hidup. Seperti halnya karbohidrat, lipid tersusun atas unsur karbon (CH), hidrogen (H), dan oksigen (O), serta kadang kala ditambah fosfor (P) serta nitrogen (N). Beberapa di antaranya disimpan sebagai sumber energi sekunder dan sebagian lain bertindak sebagai komponen penting dari membran sel. Lipid terdapat pada tumbuhan, hewan, manusia, dan mikroorganisme. Lipid terasa licin, tidak larut dalam air, tetapi dapat larut dalam alkohol, eter, dan pelarut-pelarut organik lainnya. Lipid terdiri dari beberapa jenis, yang terpenting adalah lemak, fosfolipid, dan steroid.

Lemak

Lemak sangatlah penting, molekul organik kompleks yang digunakan sebagi suber energi, hingga hal lain. Pembangun lemak adalah sintesis dehidrasi antara molekul

gliserol dan asam lemak. Gliserol adalah rangkakarbon yang memiliki tiga gugus alkohol. Rumus empirisnya adalah C3H4(OH)3. Asam lemak  merupakan rantai karbon yang panjang  yang memiliki gugus karboksil. Jika terdapat rantai karbon yang memiliki banyak ikatan hidrogen, maka disebut asam lemak jenuh. Sedangkan, disebut tidak jenuh jika atom-atom karbonnya memiliki ikatan rangkap lebih dari satu.

Secara kimia, lemak identik dengan minyak hewani dan minyak nabati yang terutama terdiri dari gliserida. Lemak merupakan ester yang terbentuk melalui reaksi tiga molekul asam lemak dan sebuah molekul gliserol. Lemak bersifat tidak mudah menguap, tidak larut dalam air, terasa berminyak atau licin ketika disentuh, dan berbentuk padat pada suhu kamar.

Beberapa jenis lemak ditunjukkan dengan gambar berikut.

Lebih dari 90 persen lemak diperoleh dari sekitar 20 jenis tumbuhan dan hewan. Lemak berfungsi sebagai cadangan makanan atau sumber energi di dalam tubuh.

Steroid

Steroid merupakan senyawa turunan lipid yang tidak terhidrolisis. Steroid berfungsi sebagai hormon, seperti hormon seks, hormon adrenal kortikal, asam empedu, sterol, dan agen anabolisme. Contoh-contoh steroid antara lain adalah kolesterol, esterogen, dan testosteron.

Fosfolipid

Fosfolipid merupakan lipid yang berjumlah banyak (sebagai lesitin atau fosfatidietanolamin) yang di dalamnya asam fosfat serta asam lemak diesterifikasi menjadi gliserol dan terdapat dalam semua sel hidup serta dalam plasma membran. Fosfolipid merupakan jenis lemak majemuk. Struktur fosfolipid antara lain adalah sebagai berikut.

Beberapa fungsi fosfolipid antara lain adalah: lesitin membawa lemak dalam aliran darah dari satu jaringan ke jaringan lainya; fosfatidiletanolamin berperan dalam proses pembekuan darah; dan fosfolipid merupakan komponen utama dinding sel.

Daftar Pustaka

Anonim. 2009. Polisakarida.http://kimia.upi.edu/utama/bahanajar/kuliah_web/2009/0606811/polisakarida.html (7 September 2013)Brady, James E. 2002. Kimia Universitas dan Struktur. Tanggerang: Binarupa Aksara.

Campbell. 2006. Macromolekules, Chapter 5.http://teacher.cgs.k12.va.us/bwebster/Biology/Chapter%20PowerPoints/5%20Macromolecules.pdf (7 September 2013)Enger, Eldon D. 2003. Concept in Biology. New York: Mc Graw Hill

Nuraeni Endah. 2012. Struktur Protein.http://kimia.upi.edu/staf/nurul/web2012/1105684/struktur_protein.html (7 September 2013)

Prawirohartono, Slamet dan Sri Hidayati. 2007. Sains Biologi untuk Kelas XI. Jakarta: Bumi Aksara

Sunardi dan Irawan. 2011. Kimia Bilingual untuk SMA/MA Kelas XII. Bandung: Yrama Widya.

About these ads

"KARBOHIDRAT"

KIMIA ORGANIK I

"KARBOHIDRAT"

Karbohidrat ('hidrat dari karbon', hidrat arang) atau sakarida (dari bahasa Yunani σάκχαρον, sákcharon, berarti "gula") adalah segolongan besar senyawa organik yang paling melimpah di bumi.Karbohidrat memiliki berbagai fungsi dalam tubuh makhluk hidup, terutama sebagai bahan bakar(misalnya glukosa), cadangan makanan (misalnya pati pada tumbuhan dan glikogen pada hewan), dan materi pembangun (misalnya selulosa pada tumbuhan, kitin pada hewan dan jamur).Pada proses fotosintesis, tetumbuhan hijau mengubah karbon dioksida menjadi karbohidrat.

Secara biokimia, karbohidrat adalah polihidroksil-aldehida atau polihidroksil-keton, atau senyawa yang menghasilkan senyawa-senyawa ini bila dihidrolisis. Karbohidrat mengandung gugus fungsi karbonil (sebagai aldehida atau keton) dan banyak gugus hidroksil. Pada awalnya, istilah karbohidrat digunakan untuk golongan senyawa yang mempunyai rumus (CH2O)n, yaitu senyawa-senyawa yang n atom karbonnya tampak terhidrasi oleh n molekul air. Namun demikian, terdapat pula karbohidrat yang tidak memiliki rumus demikian dan ada pula yang mengandungnitrogen, fosforus, atau sulfur.

Bentuk molekul karbohidrat paling sederhana terdiri dari satu molekul gula sederhana yang disebut monosakarida, misalnya glukosa, galaktosa, dan fruktosa. Banyak karbohidrat merupakan polimer yang tersusun dari molekul gula yang terangkai menjadi rantai yang panjang serta dapat pula bercabang-cabang, disebut polisakarida, misalnya pati, kitin, dan selulosa. Selain monosakarida dan polisakarida, terdapat pula disakarida (rangkaian dua monosakarida) dan oligosakarida (rangkaian beberapa monosakarida). 

Karbohidrat adalah kelompok besar senyawa yang umumnya disebut gula, pati, dan selulosa (yang semuanya adalah gula atau polimer gula). Umumnya gula merupakan sumber penyimpanan energi. Dengan memecah gula turun menjadi karbon dioksida dan air, organisme hidup dapat melepaskan energi yang terkunci di dalamnya digunakan untuk kebutuhan energi.

Satu diantara tiga makanan pokok kita adalah karbohidrat. Karbohidrat dihasilkan oleh tumbuhan berklorofil dengan bantuan sinar matahari. Manusia dan hewan memperoleh karbohidrat dari bagian-bagian tertentu tumbuhan. Kita memperoleh karbohidrat dari nasi, roti, tapioka, dan sebagainya.

A. SUSUNAN KARBOHIDRAT

Karbohidrat terdiri dari karbon, hydrogen dan oksigen. Contihnya adalah glukosa (C6H12O6), Sukrosa (C12H22O11) dan selulosa (C6H10O5). Sebagaimana tampak dalam tiga contoh tersebut, karbohidrat mempunyai rumus umum Cn(H2O)m . rumus molekul glukosa misalnya, dapat dinyatakan sebagai C6 (H2O)6 Oleh Karena komposisi demikian, kelompok senyawa ini pernah di sangka sebagai hidrat karbon sehingga diberi nama karbohidrat. Akan tetapi, sejak tahun 1880-an disadari bahwa senyawa tersebut bukanlah hidrat dari karbon. Nama lain dari karbohidrat adalah sakarida. Kata sakarida berasal dari Arab “sakkar” yang artinya manis.

Karbohidrat yang dibangun oleh polihdroksi dan gugus aldehid disebut dengan aldosa, sedangkan yang disusun oleh polihidroksi dan gugus keton dikenal dengan ketosa.

Molekul karbohidrat yang paling sederhana adalah polihidroksi aldehida dan polihidroksi keton yang empunyai tiga hingga enam atom karbon. Atom C memiliki kerangka tetrahedral yang membentuk sudut 105,9oC menyebabkan molekul karbohidrat cukup sulit berbentuk rantai lurus. Berdasarkan kerangka tetrahedral inilah, molekul polihidroksi ini lebih stabil dalam struktur siklik perhatikan Bagan

Bagan Rantai lurus dan bentuk siklik dari karbohidrat

Karbohidrat sederhana dibangun oleh 5 (lima) atom C disebut dengan pentosa. Sedangkan yang dibangun oleh 6 (enam) atom C dikenal dengan heksosa.

Selain dibentuk oleh sejumlah atom C yang mengandung gugus polihidroksi, strukturnya karbohidrat semakin kompleks dengan adanya atom karbon asimetri, yaitu atom karbon yang mengikat empat atom atau molekul yang berbeda pada struktur tetrahedralnya. Kehadiran C asimetri menyebabkan molekul karbohidrat bersifat optik aktif, yaitu mampu memutar bidang cahaya terpolarisasi. Pada karbohidrat juga dijumpai keisomeran optik, molekul-molekul yang komposisinya identik tetapi berbeda orientasinya dalam ruang dan keaktifan optiknya.

Karbohidrat yang paling sederhana ditemukan di alam mengandung tiga atom C disebut triosa. Jika dengan gugus aldehida dinamakan aldotriosa (HOCH2-CHOH-CHO) dan dan dengan gugus keton disebut dengan ketotriosa (HOCH2-CO-CH2OH).

B. KLASIFIKASI KARBOHIDRAT

Karbohidrat biasanya digolongkan menjadi monosakarida, disakarida dan polisakarida. Penggolongan ini didasarkan pada reaksi hidrolisisnya. Monosakarida adalah karbohidrat paling sederhana, tidak dapat dihidrolisis menjadi karbohidrat lebih sederhana; disakarida dapat dihidrolisis menjadi dua monosakarida; sedangkan polisakarida dapat dihidrolisi menjadi banyak molekul monosakarida.

1. Monosakarida

Satuan karbohidrat yang paling sederhana dengan rumus CnH2nOn dimana n = 3 – 8 .Monosakarida sering disebut gula sederhana (simple sugars) adalah karbohidrat yang tidak dapat dihidrolisis menjadi bentuk yang lebih sederhana lagi. Molekulnya hanya terdiri atas beberapa atom karbon saja. Monosakarida dapat dikelompokkan berdasarkan kandungan atom karbonnya, yaitu triosa, tetrosa, pentosa, dan heksosa atau heptosa.

C3H6O3 : triosaC4H8O4 : tetrosaC5H10O4 : pentoseC6H12O4 : heksosa

Monosakarida atau gula sederhana hanya terdiri atas satu unit polihidroksialdehida atau keton atau hanya terdiri atas satu molekul sakarida. Kerangka monosakarida adalah rantai karbon berikatan tunggal yang tidak bercabang. Satu diantara atom karbon berikatan ganda terhadap suatu atom oksigen membentuk gugus karbonil, masing-masing atom karbon lainnya berikatan dengan gugus hidroksil. Jika gugus karbonil berada pada ujung rantai karbon, monosakarida tersebut adalah suatu aldosa, dan jika gugus karbonil berada pada posisi lain, monosakarida tersebut adalah suatu ketosa. Berbagai jenis monosakarida aldosa dan ketosa.

· Macam-macam monosakarida

a. Aldosa: monosakarida yang mengandung gugus aldehid.Contoh: Gliseraldehid

b. Ketosa: monosakarida yang mengandung gugus keton.Contoh: Dihidroksiaseton

Contoh beberapa monosakarida :

1. Glukosa

Glukosa merupakan suatu aldoheksosa, disebut juga dekstrosa karena memutar bidang polarisasi ke kanan. Glukosa merupakan komponen utama gula darah, menyusun 0,065- 0,11% darah kita.

Glukosa dapat terbentuk dari hidrolisis pati, glikogen, dan maltosa. Glukosa sangat penting bagi kita karena sel tubuh kita menggunakannya langsung untuk menghasilkan energi. Glukosa dapat dioksidasi oleh zat pengoksidasi lembut seperti pereaksi Tollens sehingga sering disebut sebagai gula pereduksi.

D-glukosa

β-D-glukosa

α-D-glukosa

2. Galaktosa

Galaktosa merupakan suatu aldoheksosa. Monosakarida ini jarang terdapat bebas di alam. Umumnya berikatan dengan glukosa dalam bentuk laktosa, yaitu gula yang terdapat dalam susu. Galaktosa mempunyai rasa kurang manis jika dibandingkan dengan glukosa dan kurang larut dalam air. Seperti halnya glukosa, galaktosa juga merupakan gula pereduksi.

D-galaktosa

α-D-galaktosa

β-D-galaktosa

3. Fruktosa

Fruktosa adalah suatu heksulosa, disebut juga levulosa karena memutar bidang polarisasi ke kiri. Merupakan satu-satunya heksulosa yang terdapat di alam. Fruktosa merupakan gula termanis, terdapat dalam madu dan buah-buahan bersama glukosa.Fruktosa dapat terbentuk dari hidrolisis suatu disakarida yang disebut sukrosa. Sama seperti glukosa, fruktosa adalah suatu gula pereduksi.

(a)

(b)

Struktur fruktosa: (a) struktur terbuka (b) struktur siklis

2. Disakarida

Disakarida adalah karbohidrat yang terdiri dari 2 satuan monosakarida. Dua monosakarida dihubungkan dengan ikatan glikosidik antara C-anomerik dari satu unit monosakarida dengan gugus –OH dari unit monosakarida yang lainnya. Beberapa disakarida yang sering dijumpai: Maltosa, Laktosa, Sukrosa

Jenis disakarida:

1. Maltosa

Maltosa adalah suatu disakarida dan merupakan hasil dari hidrolisis parsial tepung (amilum). Maltosa tersusun dari molekul α-D-glukosa dan β-D-glukosa.

Struktur maltosa

Dari struktur maltosa, terlihat bahwa gugus -O- sebagai penghubung antarunit yaitu menghubungkan C 1 dari α-D-glukosa dengan C 4 dari β-D-glukosa. Konfigurasi ikatan glikosida pada maltosa selalu α karena maltosa terhidrolisis oleh α-glukosidase. Satu molekul maltosa terhidrolisis menjadi dua molekul glukosa.

2.SukrosaSukrosa terdapat dalam gula tebu dan gula bit. Dalam kehidupan sehari-hari sukrosa dikenal dengan gula pasir. Sukrosa tersusun oleh molekul glukosa dan fruktosa yang dihubungkan oleh ikatan 1,2 – .α

Struktur Sukrosa

Sukrosa terhidrolisis oleh enzim invertase menghasilkan α-D-glukosa dan β-D-fruktosa. Campuran gula ini disebut gula inversi, lebih manis daripada sukrosa.

Jika kita perhatikan strukturnya, karbon anomerik (karbon karbonil dalam monosakarida) dari glukosa maupun fruktosa di dalam air tidak digunakan untuk berikatan sehingga keduanya tidak memiliki gugus hemiasetal.

Akibatnya, sukrosa dalam air tidak berada dalam kesetimbangan dengan bentuk aldehid atau keton sehingga sukrosa tidak dapat dioksidasi. Sukrosa bukan merupakan gula pereduksi.

3.LaktosaLaktosa adalah komponen utama yang terdapat pada air susu ibu dan susu sapi. Laktosa tersusun dari molekul β-D-galaktosa dan α-D-glukosa yang dihubungkan oleh ikatan 1,4'-β.

Struktur laktosa

Hidrolisis dari laktosa dengan bantuan enzim galaktase yang dihasilkan dari pencernaan, akan memberikan jumlah ekivalen yang sama dari α-D-glukosa dan β-D-galaktosa. Apabila enzim ini kurang atau terganggu, bayi tidak dapat mencernakan susu. Keadaan ini dikenal dengan penyakit galaktosemia yang biasa menyerang bayi.

3. Polisakarida

Polisakarida atau glikan tersusun atas unit-unit gula yang panjang. Polisakarida dapat dibagi menjadi dua kelas utama yaitu homopolisakarida dan heteropolisakarida. Homopolisakarida yang mengalami hidrolisis hanya menghasilkan satu jenis monosakarida, sedangkan heteropolisakarida bila mengalami hidrolisis sempurna menghasilkan lebih dari satu jenis monosakarida. Rumus umum polisakarida yaitu C6(H10O5)n.

Jenis polisakarida adalah:

a. Selulosa

Selulosa (C6H10O5)n adalah polimer berantai panjang polisakarida karbohidrat, dari beta-glukosa. Selulosa merupakan komponen struktural utama dari tumbuhan dan tidak dapat

dicerna oleh manusia.

Struktur selulosa

b. Glikogen

Glikogen adalah salah satu jenis polisakarida simpanan dalam tubuh hewan. Pada manusia dan vertebrata lain, glikogen disimpan terutama dalam sel hati dan otot. Glikogen terdiri atas subunit glukosa dengan ikatan rantai lurus (α1→4) dan ikatan rantai percabangan (α1→6). Glikogen memiliki struktur mirip amilopektin (salah satu jenis pati) tetapi dengan lebih banyak percabangan, yaitu setiap 8-12 residu.

c. Pati atau amilum

Pati atau amilum adalah karbohidrat kompleks yang tidak larut dalam air, berwujud bubuk putih, tawar dan tidak berbau. Pati merupakan bahan utama yang dihasilkan oleh tumbuhan untuk menyimpan kelebihan glukosa (sebagai produk fotosintesis) dalam jangka panjang. Hewan dan manusia juga menjadikan pati sebagai sumber energi yang penting. Pati tersusun dari dua macam karbohidrat, amilosa dan amilopektin.

Struktur amilosa

Struktur amilopektin

PERMASALAHAN YANG MUNCUL

Pada klasifikasi karbohidrat, karbohidrat dibedakan berdasarkan reaksi hidrolisisnya yaitu monosakarida yang tidak dapat dihidrolisis, disakarida dapat di hidrolisis menjadi 2, sedangkan polisakarida dapat dihidrolisis menjadi banyak. Pertanyaanya mengapa terjadi demikian? mengapa monosakarida tidak mampu dihidrolisis menjadi karbohidrat yang lebih sederhana ? Dan berikan contoh masing klasifikasi yaitu contoh monosakarida, contoh disakarida dan contoh polisakarida dalam kehidupan sehari-hari?