rotasi galaksi 2011

30
Kuliah Fisika Galaksi 5 Mei 2010

description

kuliah fisika galaksi tema rotasi galaksi

Transcript of rotasi galaksi 2011

  • Kuliah Fisika Galaksi

    5 Mei 2010

    *

  • Populasi Bintang di Galaksi Bima Sakti

    Schematic (edge-on) view of the major components Source: Roland Buser http://www.astro.unibas.ch/forschung/rb/structure.shtml) The disk and halo structure perpendicular to the Galactic plane near the solar neighborhood

    *

  • Gerak Bintang di Galaksi

    Bintang2 di Galaksi merupakan anggota dari komponen galaksi yang berbeda2, perbedaannya tidak hanya dlm distribusi ruang saja, tetapi juga kinematikanya.Gerak yang mendominasi bintang2 dan gas di piringan galaksi adalah rotasi terhadap pusat galaksi dg orbit berbentuk lingkaran.Bintang2 di piringan tebal (thick disk) berotasi lebih lambat daripada yang berada di piringan tipis (thin disk). Gerak acak (random motion) bintang tersebut lebih besar.Rotasi bintang2 di halo tidak seperti yang ada di piringan, gerak acak mereka lebih besar dan orbitnya berbentuk elips.

    *

  • Pertanyaan :

    Bagaimana kita tahu tentang gerak bintang di galaksi ?Bagaimana menentukan kecepatan rotasi di piringan ?Bagaimana kita dapat menentukan massa Galaksi ?

    *

  • Kerangka Acuan

    Untuk mempelajari dinamika galaksi, kerangka acuan dasar pada galaksi sangat diperlukan. Kecepatan bintang pada kerangka acuan ini sering diberikan dalam koordinat silinder (P,Q,Z) atau (VR, Vf, VZ)

    P : sepanjang arah radial pd bidang galaksi, positif ke arah luar (anti-center), l=180, b=0

    W: arah tangential pd bidang galaksi,positif ke arah rotasi galaksi, l=90, b=0

    Z: arah tegaklurus bidang galaksi, positif ke arah utara, b=90

    *

  • *

  • Local Standard of Rest (LSR)

    Kita definisikan sebuah kerangka acuan pd bidang galaksi yg bergerak dalam orbit lingkaran mengelilingi pusat galaksi sebagai standar diam lokal (LSR)LSR adalah kerangka acuan lokal yg terletak di daerah sekitar matahari yg bergerak dlm orbit lingkaranSebuah bintang yg bergerak dlm orbit lingkaran pd bidang galaksi akan tetap pada geraknya karena :Galaksi berbentuk simetri sumbu, F=F(R,Z)Simetri thd bidang galaksiDalam keadaan steady state

    *

  • Local Standard of Rest (LSR)

    Daerah sekitar matahari (Solar Neighborhood, SN) didefinisikan sebagai ruang bola yg berukuran kecil (thd galaksi) yg berpusat di matahari dan terdiri dari sample suatu tipe bintangDisk : SN adalah sebuah bola dg radius 50-100 pc (1% dari piringan galaksi)Halo : radius ~ 1 kpc (1% dari halo)Kecepatan matahari

    terhadap LSR

    (u,v,w) ~ (-10,5,7) km/s

    *

  • *

    31.pdf

    Wednesday Extragalactic astronomy tools

    Multi-wavelength astronomy Starcounts Extinction Globular Clusters

    Milky way components: Disk: exponential profile, thin/thick disk Stellar Halo, Pop I/II stars, Globular Clusters Age-Metallicity Relation ISM - HII (Hot Ionized), HI (atomic), H2 (molecular) Bulge Dark Matter Halo Satellite galaxies

    Kinematics of the Galaxy I - Rotation

    CurvesJL 1.3,1.6; Carroll & Ostlie pp 898-907, 915-933

    Today Disk, Halo Motions Galactic Coordinates Measuring Distance: parallax pulsating stars Rotation Curves Local Standard of Rest Rotation speed from halo star motions Tangent-Point Method and Rotation Curves Weighing in New results?

    Chung et al:http://www.astro.columbia.edu/~archung/research/CRdisk/crdisk.html

    Other Galaxies Motions

    Radial velocities can be measured with spectra

    Can get rotation curves, (radial) velocity dispersions

    http://www.astro.columbia.edu/~archung/research/CRdisk/crdisk.htmlhttp://www.astro.columbia.edu/~archung/research/CRdisk/crdisk.html

    Where are we and how fast

    are we moving? Within our own galaxy, more

    difficult! Even though we know were

    edge on, even local position and rotation speed are uncertain

    The Open University

    30 kpc

    6 kpc

    1

    50 kpc

    dark-matter haloand stellar halo

    bulge

    (a)

    (b)

    stellar disc

    bulge

    stellardisc

    locationof Sun

    locationof Sun

    1 kpc

    gaseousdisc

    dark-matter haloand stellar halo

    JL Fig 1.5

    Even now, numbers

    jumping around Recent (announced Tues at

    AAS meeting) found evidence of ~15% higher rotation rate than generally understood

    Using parallax of very bright microwave objects (masers)

    Rotation curves of other spirals

    Rotation curves of spiral galaxies quite generally have flat rotation curves

    Non-visible matter contributing to mass of galaxies, not to light

    Dark Matter

    Sofue et al (1997)http://www.ioa.s.u-tokyo.ac.jp/~sofue/rotation/fig1/all-new.gif

    http://www.ioa.s.u-tokyo.ac.jp/~sofue/rotation/fig1/all-new.gifhttp://www.ioa.s.u-tokyo.ac.jp/~sofue/rotation/fig1/all-new.gifhttp://www.ioa.s.u-tokyo.ac.jp/~sofue/rotation/fig1/all-new.gifhttp://www.ioa.s.u-tokyo.ac.jp/~sofue/rotation/fig1/all-new.gif

    M

    v

    r

    r

    vr

    8

    Circular velocity around

    a mass Assuming symmetry, constant

    circular orbit around a (spherical) mass distribution only depends on total mass enclosed:

    v2r(R) =GM(< R)

    r

    `Solid Body

    vr = const = vr/r r1

    Flat Rotation curve

    Keplerian

    vr r1/2

    r3/2

    Examples of

    differential rotation

    = constvr = r r

    Motion w/rt Galactic Centre

    Sgr A* shows very regular proper motion, even though surrounded by thousands of starsMotions entirely consistent with being due only to solar motion

    Reid & Brunthaler (2004)http://www.journals.uchicago.edu/doi/abs/10.1086/424960

    v! = (0.4 0.9)km s1

    http://www.journals.uchicago.edu/doi/abs/10.1086/424960http://www.journals.uchicago.edu/doi/abs/10.1086/424960

    Motion w/rt Galactic Centre

    But dont know distance from galactic centre; cant automatically turn this into a rotational velocity

    Reid & Brunthaler (2004)http://www.journals.uchicago.edu/doi/abs/10.1086/424960

    http://www.journals.uchicago.edu/doi/abs/10.1086/424960http://www.journals.uchicago.edu/doi/abs/10.1086/424960

    RA & Dec for Solar System

    ESO: http://www.eso.org/public/outreach/eduoff/vt-2004/Background/Infol2/EIS-D3.html

    http://www.eso.org/public/outreach/eduoff/vt-2004/Background/Infol2/EIS-D3.htmlhttp://www.eso.org/public/outreach/eduoff/vt-2004/Background/Infol2/EIS-D3.html

    Galactic Coordinates

    CO Fig 24.17

    Galactic Coordinates

    CO Fig 24.19

    VU

    Galactic Orbits

    Stars in disk typically have aligned circular orbits

    In halo, orbits fill halo

    PopI vs PopIIJoshua Barnes,

    http://www.ifa.hawaii.edu/~barnes/ast110_01/

    http://www.ifa.hawaii.edu/~barnes/ast110_01/tmwaog/orbits.gifhttp://www.ifa.hawaii.edu/~barnes/ast110_01/tmwaog/orbits.gif

    Parallax

    1 AUp

    D/tan(p) ~ D/p

    Definition: 1pc = (1 AU)/(1 (in radians))

    But measuring them is hard

    First parallax measurement: Bessel (1939)

    61 Cygni

    Measured parallax of 0.31360.015 (d = 3.04-3.35 pc)

    Current distance: 3.496 0.007 pc

    Hipparcos mission

    For stars larger than few parsec away, limits on seeing prevent good measurements

    118,000 stars with high-precision distances, proper motions

    Still limited by baseline - ~1 AU Hipparcos: 1989-1993

    http://www.rssd.esa.int/index.php?project=HIPPARCOS

    http://www.rssd.esa.int/index.php?project=HIPPARCOShttp://www.rssd.esa.int/index.php?project=HIPPARCOS

    Photometric Distances

    Once know stars distances in local neighborhood, know real luminosity (L) and absolute magnitude M

    From observed m, can get distance modulus and distance

    But extinction! m is less than it would be with just distance effect.

    d = (10pc)10(mM)/5

    But extinction can be characterized

    Depends on wavelength

    So by finding out how much the difference is in different wavelengths, can estimate the magnitude of effect

    So can still get a distance

    Alves, Lada & Lada (2001)

    Visible

    Near IR

    d = (10pc)10(mMA)/5

    But extinction can be characterized

    Sketch of how extinction behaves

    Less effective at low frequencies

    Some similarities to scattering of light in atmosphere

    (eg, why is sky blue?)http://www.jb.man.ac.uk/distance/life/sample/stars/index.html

    Jodrell Bank Observatory

    http://www.jb.man.ac.uk/distance/life/sample/stars/index.htmlhttp://www.jb.man.ac.uk/distance/life/sample/stars/index.html

    Spectroscopic Binaries

    R. Poggehttp://www-astronomy.mps.ohio-state.edu/~pogge/Ast162/Movies/specbin.html

    Like with planets; can get M sin(i), but dont know i

    (c) AESOhttp://esomac.as.utexas.edu:81/database/slides/TB/F00001.html

    http://www-astronomy.mps.ohio-state.edu/~pogge/Ast162/Movies/specbin.htmlhttp://www-astronomy.mps.ohio-state.edu/~pogge/Ast162/Movies/specbin.htmlhttp://www-astronomy.mps.ohio-state.edu/~pogge/Ast162/Movies/specbin.htmlhttp://www-astronomy.mps.ohio-state.edu/~pogge/Ast162/Movies/specbin.html

    Visual Eclipsing Spectroscopic Binaries Know everything,

    because i ~ 90 degrees

    Know total mass, mass ratio (why?)

    Can get separation

    If can see separation, know distance

    P 3 =42

    G(m1 + m2)a3

    D = a()1

    D

    a

    Pulsating Stars

    Photometric distance where the intrinsic luminosity is given to you indirectly

    Luminosity drives radial pulsations

    Galactic Dynamics

    CO Fig 24.19

    Starting point; average conditions in Suns neighborhood

    Sun might be drifting w/rt local motions

    Local Standard of Rest (LSR): perfectly circular, non-vertical orbit at Suns position.

    LSR

    Should be easy to find Suns motion w/rt LSR

    Average motions should be LSR (?)

    Just find Suns relative velocity to average motions in the neighborhood.

    Velocity w/rt neighborhood =

    LSRBut this doesnt work

    Average motions dont cancel out

    Stars passing through from inner orbits moving faster

    But then correlation between radial velocity and angular offset...

    CO Fig 24.30

    LSR still works for u (radial), w (vertical) velocities

    for v, must make correction

    Has to be statistical; dont know where star is in its ellipsoidal phase

    But whats C ? - can measure

    CO Fig 24.30

    < v >= C < u2 >"= 0

    Why ~?

    Stars born on nearly circular orbit

    Interactions with (stars, gas, spiral arms) `scatter slightly

    Kinetic energy tends to be roughly conserved

    Why ~?

    Off by a factor of 2, but right idea;More details in section on spiral arms

    KE =12M!

    (u2 + (v + vc)2 + w2

    )

    u2 + (v + vc)2 + w2 0(v + vc)2 2u2

    (v2c + 2vcv + v

    2) 2u2

    2vcv + v2 2u2

    v u2

    vc

    LSR

    Once this is done, can measure Suns velocity w/rt LSR

    (u,v,w) ~ (-10,5,7) km/s Moving inwards, upwards, and slightly faster

    in direction of rotation than LSR

    LSR Yes, but we still dont know the LSRs motion. Can infer orbital velocity

    from halo stars

    In LSR, huge distribution of old stars (Pop II) in velocity space around LSR

    Goes much larger to -ve velocities

    Centred around -220 km/s

    220 km/s must be local disk velocity

    Gives us a distance to the galactic centre!

    Standard values; 220 km/s, 8.5 kpc.

    Joshua Barnes,http://www.ifa.hawaii.edu/~barnes/ast110_01/

    CO, Fig 24.21

    http://www.ifa.hawaii.edu/~barnes/ast110_01/tmwaog/orbits.gifhttp://www.ifa.hawaii.edu/~barnes/ast110_01/tmwaog/orbits.gif

    Less Local Now have LSR down

    But want to understand the whole galaxy!

    First understand the larger neighborhood -- how does the SR vary with radius?

    Assume everything on circular orbits (on average)

    R0

    R

    v(R0) = 220 km/s

    l

    v(R) = ?

    D

    `Solid Body

    vr = const = vr/r r1

    Flat Rotation curve

    Keplerian

    vr r1/2

    r3/2

    = constvr = r r

    But for anyreasonablerotation curve,angularvelocity

    goes up as radius gets

    smaller

    CO Fig 24.23Vr, Vt as a function of l

    The different amplitudesand offsets here are going to

    tell us about our local rotation curve.

    Less Local

    R0

    R

    v(R0) = 220 km/s

    l

    v(R) = ?

    D

    vr = v(R) cos v(R0) sin lvt = v(R) sin v(R0) cos l

    Radial velocity difference is greatest for objects moving along line of sight -- youre catching it at the tangent point of their orbits.

    Objects Motion

    Suns Motion

    Tangent Point Method

    CO Fig 24.24

    But can only use local stars

    R0

    R

    v(R0) = 220 km/s

    l

    v(R) = ?

    D

    Measuring Rotation Curve

    of disk means looking in disk

    Extinction

    Can correct for it over short distances, but cant see anything beyond those

    But dust largely transparent to lines from atomic gas (eg, 21 cm)

    Tangent Point Method

    Careful measurements of molecular line emission in plane gives max velocity for each angle

    For each angle, know R;

    Know rotation curve! 12CO lines from molecular gas cloudsEnglmaier & Gerhard (1999) MNRAS 304:512

    sin l = R/R0

    Weighing our Galaxy

    From rotation curve at LSR, can find mass interior

    88 Billion Solar Masses

    Rotation Period ~230 Myr

    From largely-flat rotation curve can figure out density profile beyond LSR.

    vr(R) =

    GM(< R)

    r(220 km s1

    )2 = GM(< R)8.5 kpc

    M(< R) =8.5 kpc

    (220 km s1

    )2

    G= 8.8 1010M"

    Rotation curve outside of the Solar Circle

    Cant use tangent point method for larger R

    for

    Need to keep original form that involves D and use objects can measure D to directly

    vr = ( 0)R0 sin l

    0 > R > R0

    Harvard/CfA scientists examined masers (microwave lasers) which occur in star forming regions

    Bright (all radiation is in one line), not extinguished by dust

    Can get velocites; distances by parallax (but how?)

    New Results

    Monday

    More on Rotation curves: Accurately characterizing the rotation curve locally -- Oort

    Constants

    CO 909-914

  • Rotasi Galaksi

    Piringan galaksi tidak berotasi seperti benda tegarBintang yg lebih dekat ke pusat galaksi berotasi dg lebih cepatw(R) tidak konstanDikenal dg rotasi diferensialKecepatan rotasi :Exponential disk (full line)Spherical (dashed)Point mass (dotted)Untuk distribusi massa spherical

    *

  • Rotasi diferensial bintang di galaksi

    *

  • Kecepatan bintang relatif thd LSR

    *

  • Vektor kecepatan radial

    *

    Chart10102030405060708090100110120130140150160170180190200210220230240250260270280290300310320330340350360Bujur galaksi l [deg]Vr [km/s]efek rotasi diferensial thd kec. radial05.472322293210.28460175513.856406460615.756924048215.756924048213.856406460610.2846017555.47232229320-5.4723222932-10.284601755-13.8564064606-15.7569240482-15.7569240482-13.8564064606-10.284601755-5.4723222932-05.472322293210.28460175513.856406460615.756924048215.756924048213.856406460610.2846017555.47232229320-5.4723222932-10.284601755-13.8564064606-15.7569240482-15.7569240482-13.8564064606-10.284601755-5.4723222932-0Sheet100105.47232229322010.2846017553013.85640646064015.75692404825015.75692404826013.85640646067010.284601755805.4723222932900100-5.4723222932110-10.284601755120-13.8564064606130-15.7569240482140-15.7569240482150-13.8564064606160-10.284601755170-5.4723222932180-01905.472322293220010.28460175521013.856406460622015.756924048223015.756924048224013.856406460625010.2846017552605.47232229322700280-5.4723222932290-10.284601755300-13.8564064606310-15.7569240482320-15.7569240482330-13.8564064606340-10.284601755350-5.4723222932360-0Sheet10000000000000000000000000000000000000l [deg]Vr [km/s]efek rotasi diferensial thd kec. radial0000000000000000000000000000000000000Sheet2Sheet3
  • Vektor kecepatan tangential

    *

    Chart10102030405060708090100110120130140150160170180190200210220230240250260270280290300310320330340350360Bujur galaksi l [deg]Vtan [km/s]efek rotasi diferensial thd kec. tangential76.03508193263.2567110899-1-6.2216291573-11.7783708427-17-21.2567110899-24.0350819326-25-24.0350819326-21.2567110899-17-11.7783708427-6.2216291573-13.25671108996.035081932676.03508193263.2567110899-1-6.2216291573-11.7783708427-17-21.2567110899-24.0350819326-25-24.0350819326-21.2567110899-17-11.7783708427-6.2216291573-13.25671108996.03508193267Sheet1007105.47232229326.03508193262010.2846017553.25671108993013.8564064606-14015.7569240482-6.22162915735015.7569240482-11.77837084276013.8564064606-177010.284601755-21.2567110899805.4723222932-24.0350819326900-25100-5.4723222932-24.0350819326110-10.284601755-21.2567110899120-13.8564064606-17130-15.7569240482-11.7783708427140-15.7569240482-6.2216291573150-13.8564064606-1160-10.2846017553.2567110899170-5.47232229326.0350819326180-071905.47232229326.035081932620010.2846017553.256711089921013.8564064606-122015.7569240482-6.221629157323015.7569240482-11.778370842724013.8564064606-1725010.284601755-21.25671108992605.4723222932-24.03508193262700-25280-5.4723222932-24.0350819326290-10.284601755-21.2567110899300-13.8564064606-17310-15.7569240482-11.7783708427320-15.7569240482-6.2216291573330-13.8564064606-1340-10.2846017553.2567110899350-5.47232229326.0350819326360-07Sheet10000000000000000000000000000000000000l [deg]Vr [km/s]efek rotasi diferensial thd kec. radial0000000000000000000000000000000000000Sheet20000000000000000000000000000000000000l [deg]Vtan [km/s]efek rotasi diferensial thd kec. tangential0000000000000000000000000000000000000Sheet3
  • GC

    Sun

    Star

    Ro

    R

    r

    *

  • *

  • *

  • Konstanta Oort

    Data kecepatan radial bintang-bintang kelas spektrum A

    untuk menghitung konstanta Oort A

    (setelah dikoreksi oleh jarak-rata-rata)

    *

  • Konstanta Oort

    Distribusi bintang cepheid dan

    data gerak dirinya, untuk

    Menghitung konstanta Oort A dan B

    Distribusi ruang

    Gerak diri

    *

  • Kecepatan rotasi di sekitar Matahari

    wo=Vc/Ro=A-B

    Rotasi diferensial di sekitar Matahari

    A+B=dVc/dR|Ro

    Solar Motion :

    dengan arah Apex :

    *

  • *

  • *

    49.pdf

    Wednesday Extragalactic astronomy tools

    Multi-wavelength astronomy Starcounts Extinction Globular Clusters

    Milky way components: Disk: exponential profile, thin/thick disk Stellar Halo, Pop I/II stars, Globular Clusters Age-Metallicity Relation ISM - HII (Hot Ionized), HI (atomic), H2 (molecular) Bulge Dark Matter Halo Satellite galaxies

    Kinematics of the Galaxy I - Rotation

    CurvesJL 1.3,1.6; Carroll & Ostlie pp 898-907, 915-933

    Today Disk, Halo Motions Galactic Coordinates Measuring Distance: parallax pulsating stars Rotation Curves Local Standard of Rest Rotation speed from halo star motions Tangent-Point Method and Rotation Curves Weighing in New results?

    Chung et al:http://www.astro.columbia.edu/~archung/research/CRdisk/crdisk.html

    Other Galaxies Motions

    Radial velocities can be measured with spectra

    Can get rotation curves, (radial) velocity dispersions

    http://www.astro.columbia.edu/~archung/research/CRdisk/crdisk.htmlhttp://www.astro.columbia.edu/~archung/research/CRdisk/crdisk.html

    Where are we and how fast

    are we moving? Within our own galaxy, more

    difficult! Even though we know were

    edge on, even local position and rotation speed are uncertain

    The Open University

    30 kpc

    6 kpc

    1

    50 kpc

    dark-matter haloand stellar halo

    bulge

    (a)

    (b)

    stellar disc

    bulge

    stellardisc

    locationof Sun

    locationof Sun

    1 kpc

    gaseousdisc

    dark-matter haloand stellar halo

    JL Fig 1.5

    Even now, numbers

    jumping around Recent (announced Tues at

    AAS meeting) found evidence of ~15% higher rotation rate than generally understood

    Using parallax of very bright microwave objects (masers)

    Rotation curves of other spirals

    Rotation curves of spiral galaxies quite generally have flat rotation curves

    Non-visible matter contributing to mass of galaxies, not to light

    Dark Matter

    Sofue et al (1997)http://www.ioa.s.u-tokyo.ac.jp/~sofue/rotation/fig1/all-new.gif

    http://www.ioa.s.u-tokyo.ac.jp/~sofue/rotation/fig1/all-new.gifhttp://www.ioa.s.u-tokyo.ac.jp/~sofue/rotation/fig1/all-new.gifhttp://www.ioa.s.u-tokyo.ac.jp/~sofue/rotation/fig1/all-new.gifhttp://www.ioa.s.u-tokyo.ac.jp/~sofue/rotation/fig1/all-new.gif

    M

    v

    r

    r

    vr

    8

    Circular velocity around

    a mass Assuming symmetry, constant

    circular orbit around a (spherical) mass distribution only depends on total mass enclosed:

    v2r(R) =GM(< R)

    r

    `Solid Body

    vr = const = vr/r r1

    Flat Rotation curve

    Keplerian

    vr r1/2

    r3/2

    Examples of

    differential rotation

    = constvr = r r

    Motion w/rt Galactic Centre

    Sgr A* shows very regular proper motion, even though surrounded by thousands of starsMotions entirely consistent with being due only to solar motion

    Reid & Brunthaler (2004)http://www.journals.uchicago.edu/doi/abs/10.1086/424960

    v! = (0.4 0.9)km s1

    http://www.journals.uchicago.edu/doi/abs/10.1086/424960http://www.journals.uchicago.edu/doi/abs/10.1086/424960

    Motion w/rt Galactic Centre

    But dont know distance from galactic centre; cant automatically turn this into a rotational velocity

    Reid & Brunthaler (2004)http://www.journals.uchicago.edu/doi/abs/10.1086/424960

    http://www.journals.uchicago.edu/doi/abs/10.1086/424960http://www.journals.uchicago.edu/doi/abs/10.1086/424960

    RA & Dec for Solar System

    ESO: http://www.eso.org/public/outreach/eduoff/vt-2004/Background/Infol2/EIS-D3.html

    http://www.eso.org/public/outreach/eduoff/vt-2004/Background/Infol2/EIS-D3.htmlhttp://www.eso.org/public/outreach/eduoff/vt-2004/Background/Infol2/EIS-D3.html

    Galactic Coordinates

    CO Fig 24.17

    Galactic Coordinates

    CO Fig 24.19

    VU

    Galactic Orbits

    Stars in disk typically have aligned circular orbits

    In halo, orbits fill halo

    PopI vs PopIIJoshua Barnes,

    http://www.ifa.hawaii.edu/~barnes/ast110_01/

    http://www.ifa.hawaii.edu/~barnes/ast110_01/tmwaog/orbits.gifhttp://www.ifa.hawaii.edu/~barnes/ast110_01/tmwaog/orbits.gif

    Parallax

    1 AUp

    D/tan(p) ~ D/p

    Definition: 1pc = (1 AU)/(1 (in radians))

    But measuring them is hard

    First parallax measurement: Bessel (1939)

    61 Cygni

    Measured parallax of 0.31360.015 (d = 3.04-3.35 pc)

    Current distance: 3.496 0.007 pc

    Hipparcos mission

    For stars larger than few parsec away, limits on seeing prevent good measurements

    118,000 stars with high-precision distances, proper motions

    Still limited by baseline - ~1 AU Hipparcos: 1989-1993

    http://www.rssd.esa.int/index.php?project=HIPPARCOS

    http://www.rssd.esa.int/index.php?project=HIPPARCOShttp://www.rssd.esa.int/index.php?project=HIPPARCOS

    Photometric Distances

    Once know stars distances in local neighborhood, know real luminosity (L) and absolute magnitude M

    From observed m, can get distance modulus and distance

    But extinction! m is less than it would be with just distance effect.

    d = (10pc)10(mM)/5

    But extinction can be characterized

    Depends on wavelength

    So by finding out how much the difference is in different wavelengths, can estimate the magnitude of effect

    So can still get a distance

    Alves, Lada & Lada (2001)

    Visible

    Near IR

    d = (10pc)10(mMA)/5

    But extinction can be characterized

    Sketch of how extinction behaves

    Less effective at low frequencies

    Some similarities to scattering of light in atmosphere

    (eg, why is sky blue?)http://www.jb.man.ac.uk/distance/life/sample/stars/index.html

    Jodrell Bank Observatory

    http://www.jb.man.ac.uk/distance/life/sample/stars/index.htmlhttp://www.jb.man.ac.uk/distance/life/sample/stars/index.html

    Spectroscopic Binaries

    R. Poggehttp://www-astronomy.mps.ohio-state.edu/~pogge/Ast162/Movies/specbin.html

    Like with planets; can get M sin(i), but dont know i

    (c) AESOhttp://esomac.as.utexas.edu:81/database/slides/TB/F00001.html

    http://www-astronomy.mps.ohio-state.edu/~pogge/Ast162/Movies/specbin.htmlhttp://www-astronomy.mps.ohio-state.edu/~pogge/Ast162/Movies/specbin.htmlhttp://www-astronomy.mps.ohio-state.edu/~pogge/Ast162/Movies/specbin.htmlhttp://www-astronomy.mps.ohio-state.edu/~pogge/Ast162/Movies/specbin.html

    Visual Eclipsing Spectroscopic Binaries Know everything,

    because i ~ 90 degrees

    Know total mass, mass ratio (why?)

    Can get separation

    If can see separation, know distance

    P 3 =42

    G(m1 + m2)a3

    D = a()1

    D

    a

    Pulsating Stars

    Photometric distance where the intrinsic luminosity is given to you indirectly

    Luminosity drives radial pulsations

    Galactic Dynamics

    CO Fig 24.19

    Starting point; average conditions in Suns neighborhood

    Sun might be drifting w/rt local motions

    Local Standard of Rest (LSR): perfectly circular, non-vertical orbit at Suns position.

    LSR

    Should be easy to find Suns motion w/rt LSR

    Average motions should be LSR (?)

    Just find Suns relative velocity to average motions in the neighborhood.

    Velocity w/rt neighborhood =

    LSRBut this doesnt work

    Average motions dont cancel out

    Stars passing through from inner orbits moving faster

    But then correlation between radial velocity and angular offset...

    CO Fig 24.30

    LSR still works for u (radial), w (vertical) velocities

    for v, must make correction

    Has to be statistical; dont know where star is in its ellipsoidal phase

    But whats C ? - can measure

    CO Fig 24.30

    < v >= C < u2 >"= 0

    Why ~?

    Stars born on nearly circular orbit

    Interactions with (stars, gas, spiral arms) `scatter slightly

    Kinetic energy tends to be roughly conserved

    Why ~?

    Off by a factor of 2, but right idea;More details in section on spiral arms

    KE =12M!

    (u2 + (v + vc)2 + w2

    )

    u2 + (v + vc)2 + w2 0(v + vc)2 2u2

    (v2c + 2vcv + v

    2) 2u2

    2vcv + v2 2u2

    v u2

    vc

    LSR

    Once this is done, can measure Suns velocity w/rt LSR

    (u,v,w) ~ (-10,5,7) km/s Moving inwards, upwards, and slightly faster

    in direction of rotation than LSR

    LSR Yes, but we still dont know the LSRs motion. Can infer orbital velocity

    from halo stars

    In LSR, huge distribution of old stars (Pop II) in velocity space around LSR

    Goes much larger to -ve velocities

    Centred around -220 km/s

    220 km/s must be local disk velocity

    Gives us a distance to the galactic centre!

    Standard values; 220 km/s, 8.5 kpc.

    Joshua Barnes,http://www.ifa.hawaii.edu/~barnes/ast110_01/

    CO, Fig 24.21

    http://www.ifa.hawaii.edu/~barnes/ast110_01/tmwaog/orbits.gifhttp://www.ifa.hawaii.edu/~barnes/ast110_01/tmwaog/orbits.gif

    Less Local Now have LSR down

    But want to understand the whole galaxy!

    First understand the larger neighborhood -- how does the SR vary with radius?

    Assume everything on circular orbits (on average)

    R0

    R

    v(R0) = 220 km/s

    l

    v(R) = ?

    D

    `Solid Body

    vr = const = vr/r r1

    Flat Rotation curve

    Keplerian

    vr r1/2

    r3/2

    = constvr = r r

    But for anyreasonablerotation curve,angularvelocity

    goes up as radius gets

    smaller

    CO Fig 24.23Vr, Vt as a function of l

    The different amplitudesand offsets here are going to

    tell us about our local rotation curve.

    Less Local

    R0

    R

    v(R0) = 220 km/s

    l

    v(R) = ?

    D

    vr = v(R) cos v(R0) sin lvt = v(R) sin v(R0) cos l

    Radial velocity difference is greatest for objects moving along line of sight -- youre catching it at the tangent point of their orbits.

    Objects Motion

    Suns Motion

    Tangent Point Method

    CO Fig 24.24

    But can only use local stars

    R0

    R

    v(R0) = 220 km/s

    l

    v(R) = ?

    D

    Measuring Rotation Curve

    of disk means looking in disk

    Extinction

    Can correct for it over short distances, but cant see anything beyond those

    But dust largely transparent to lines from atomic gas (eg, 21 cm)

    Tangent Point Method

    Careful measurements of molecular line emission in plane gives max velocity for each angle

    For each angle, know R;

    Know rotation curve! 12CO lines from molecular gas cloudsEnglmaier & Gerhard (1999) MNRAS 304:512

    sin l = R/R0

    Weighing our Galaxy

    From rotation curve at LSR, can find mass interior

    88 Billion Solar Masses

    Rotation Period ~230 Myr

    From largely-flat rotation curve can figure out density profile beyond LSR.

    vr(R) =

    GM(< R)

    r(220 km s1

    )2 = GM(< R)8.5 kpc

    M(< R) =8.5 kpc

    (220 km s1

    )2

    G= 8.8 1010M"

    Rotation curve outside of the Solar Circle

    Cant use tangent point method for larger R

    for

    Need to keep original form that involves D and use objects can measure D to directly

    vr = ( 0)R0 sin l

    0 > R > R0

    Harvard/CfA scientists examined masers (microwave lasers) which occur in star forming regions

    Bright (all radiation is in one line), not extinguished by dust

    Can get velocites; distances by parallax (but how?)

    New Results

    Monday

    More on Rotation curves: Accurately characterizing the rotation curve locally -- Oort

    Constants

    CO 909-914

  • CO

    HI

    *

  • To map out vr throughout Galaxy, divide the Galaxy into quadrants based on value of galactic longitude.

    Quad I (ll>90) - all los pass through orbits outside of the Suns. No maximum vr but increases with d.

    Quad III (270>l>180) - similar to Quad II but opposite signs.

    Quad IV (l>270) - similar to Quad I except reverse signs.

    *

  • *

  • Orbital Radius

    *

  • Vc2 = Vc,b2 + Vc,d2 + Vc,g2 + Vc,h2

    *

  • *

  • Bagaimana menghitung massa Galaksi ?

    Dari kurva rotasi kita dapat menghitung massa Galaksi MGal= 8,8 x 1010 MOPeriode rotasi = 230 x 106 tahun

    *

    R

    )

    R

    (

    GM

    V

    c

    =

    2

    o

    90

    =

    l

    o

    0

    =

    l

    o

    90

    =

    l

    efek rotasi diferensial thd kec. radial

    090180270360

    Bujur galaksi l [deg]

    Vr [km/s]

    efek rotasi diferensial thd kec.

    tangential

    090180270360

    Bujur galaksi l [deg]

    Vtan [km/s]

    l

    cos

    R

    r

    cos

    R

    l

    sin

    R

    sin

    R

    l

    cos

    V

    cos

    V

    V

    l

    sin

    V

    sin

    V

    V

    t

    r

    0

    0

    0

    0

    =

    +

    a

    =

    a

    -

    a

    =

    -

    a

    =

    (

    )

    (

    )

    r

    l

    cos

    R

    V

    l

    sin

    R

    V

    t

    r

    w

    -

    w

    -

    w

    =

    w

    -

    w

    =

    0

    0

    0

    0

    l

    a

    =

    R

    V

    w

    R

    V

    w

    =