Penginderaan jauh

download Penginderaan jauh

of 28

Transcript of Penginderaan jauh

Penginderaan jauh (atau disingkat inderaja) adalah pengukuran atau akuisisi data dari sebuah objek atau fenomena oleh sebuah alat yang tidak secara fisik melakukan kontak dengan objek tersebut atau pengukuran atau akuisisi data dari sebuah objek atau fenomena oleh sebuah alat dari jarak jauh, (misalnya dari pesawat, pesawat luar angkasa, satelit, kapal atau alat lain. Contoh dari penginderaan jauh antara lain satelit pengamatan bumi, satelit cuaca, memonitor janin dengan ultrasonik dan wahana luar angkasa yang memantau planet dari orbit. Inderaja berasal dari bahasa Inggris remote sensing, bahasa Perancis tldtection, bahasa Jerman fernerkundung, bahasa Portugis sensoriamento remota, bahasa Spanyol percepcion remote dan bahasa Rusia distangtionaya. Di masa modern, istilah penginderaan jauh mengacu kepada teknik yang melibatkan instrumen di pesawat atau pesawat luar angkasa dan dibedakan dengan penginderaan lainnya seperti penginderaan medis atau fotogrametri. Walaupun semua hal yang berhubungan dengan astronomi sebenarnya adalah penerapan dari penginderaan jauh (faktanya merupakan penginderaan jauh yang intensif), istilah "penginderaan jauh" umumnya lebih kepada yang berhubungan dengan teresterial dan pengamatan cuaca. Penginderaan Jauh Menurut Para Ahli

Menurut Lillesand dan Kiefer (1979)

Penginderaan Jauh adalah ilmu dan seni untuk memperoleh informasi tentang obyek, daerah, atau gejala dengan jalan menganalisis data yang diperoleh dengan menggunakan alat tanpa kontak langsung terhadap obyek, daerah, atau gejala yang dikaji.

Menurut Colwell (1984)

Penginderaaan Jauh yaitu suatu pengukuran atau perolehan data pada objek di permukaan bumi dari satelit atau instrumen lain di atas atau jauh dari objek yang diindera.

Menurut Curran (1985)

Penginderaan Jauh yaitu penggunaan sensor radiasi elektromagnetik untuk merekam gambar lingkungan bumi yang dapat diinterpretasikan sehingga menghasilkan informasi yang berguna.

Menurut American Society of Photogrammetry (1983)

Penginderaan jauh merupakan pengukuran atau perolehan informasi dari beberapa sifat objek atau fenomena, dengan menggunakan alat perekam yang secara fisik tidak terjadi kontak langsung dengan objek atau fenomena yang dikaji.

Menurut Avery (1985) jauh merupakan upaya untuk memperoleh, menunjukkan

Penginderaan

(mengidentifikasi) dan menganalisis objek dengan sensor pada posisi pengamatan daerah kajian.

Menurut Lindgren (1985)

Penginderaan jauh yaitu berbagai teknik yang dikembangkan untuk perolehan dan analisis informasi tentang bumi. [sunting] Komponen-Komponen Penginderaan Jauh

Komponen Penginderaan Jauh [sunting] Sumber Tenaga Sumber tenaga dalam proses inderaja terdiri atas :

Sistem pasif adalah sistem yang menggunakan sinar matahari

Sistem aktif adalah sistem yang menggunakan tenaga buatan seperti gelombang mikro

Jumlah tenaga yang diterima oleh obyek di setiap tempat berbeda-beda, hal ini dipengaruhi oleh beberapa faktor, antara lain : 1. Waktu penyinaran Jumlah energi yang diterima oleh objek pada saat matahari tegak lurus (siang hari) lebih besar daripada saat posisi miring (sore hari). Makin banyak energi yang diterima objek, makin cerah warna obyek tersebut. 1. Bentuk permukaan bumi Permukaan bumi yang bertopografi halus dan memiliki warna cerah pada permukaannya lebih banyak memantulkan sinar matahari dibandingkan permukaan yang bertopografi kasar dan berwarna gelap. Sehingga daerah bertopografi halus dan cerah terlihat lebih terang dan jelas. 1. Keadaan cuaca Kondisi cuaca pada saat pemotretan mempengaruhi kemampuan sumber tenaga dalam memancarkan dan memantulkan. Misalnya kondisi udara yang berkabut menyebabkan hasil inderaja menjadi tidak begitu jelas atau bahkan tidak terlihat.

[sunting] Atmosfer Lapisan udara yang terdiri atas berbagai jenis gas, seperti O2, CO2, nitrogen, hidrogen dan helium. Molekul-molekul gas yang terdapat di dalam atmosfer tersebut dapat menyerap, memantulkan dan melewatkan radiasi elektromagnetik. Di dalam inderaja terdapat istilah Jendela Atmosfer, yaitu bagian spektrum elektromagnetik yang dapat mencapai bumi. Keadaan di atmosfer dapat menjadi penghalang pancaran sumber tenaga yang mencapai ke permukaan bumi. Kondisi cuaca yang berawan menyebabkan sumber tenaga tidak dapat mencapai permukaan bumi.

Interaksi antara tenaga elektromagnetik dan atmosfer [sunting] Interaksi antara tenaga dan objek Interaksi antara tenaga dan obyek dapat dilihat dari rona yang dihasilkan oleh foto udara. Tiap-tiap obyek memiliki karakterisitik yang berbeda dalam memantulkan atau memancarkan tenaga ke sensor.

Objek yang mempunyai daya pantul tinggi akan terilhat cerah pada citra, sedangkan obyek yang daya pantulnya rendah akan terlihat gelap pada citra. Contoh: Permukaan puncak gunung yang tertutup oleh salju mempunyai daya pantul tinggi yang terlihat lebih cerah, daripada permukaan puncak gunung yang tertutup oleh lahar dingin.

[sunting] Sensor dan Wahana

Sensor

Merupakan alat pemantau yang dipasang pada wahana, baik pesawat maupun satelit. Sensor dapat dibedakan menjadi dua : 1. Sensor fotografik, merekam obyek melalui proses kimiawi. Sensor ini menghasilkan foto. Sensor yang dipasang pada pesawat menghasilkan citra

foto (foto udara), sensor yang dipasang pada satelit menghasilkan citra satelit (foto satelit) 2. Sensor elektronik, bekerja secara elektrik dalam bentuk sinyal. Sinyal elektrik ini direkam dalam pada pita magnetik yang kemudian dapat diproses menjadi data visual atau data digital dengan menggunakan komputer. Kemudian lebih dikenal dengan sebutan citra.

Wahana

Adalah kendaraan/media yang digunakan untuk membawa sensor guna mendapatkan inderaja. Berdasarkan ketinggian persedaran dan tempat

pemantauannya di angkasa, wahana dapat dibedakan menjadi tiga kelompok: 1. Pesawat terbang rendah sampai menengah yang ketinggian peredarannya antara 1.000 9.000 meter di atas permukaan bumi 2. Pesawat terbang tinggi, yaitu pesawat yang ketinggian peredarannya lebih dari 18.000 meter di atas permukaan bumi 3. Satelit, wahana yang peredarannya antara 400 km 900 km diluar atmosfer bumi. [sunting] Perolehan Data Data yang diperoleh dari inderaja ada 2 jenis :

Data manual, didapatkan melalui kegiatan interpretasi citra. Guna melakukan interpretasi citra secara manual diperlukan alat bantu bernama stereoskop. Stereoskop dapat digunakan untuk melihat objek dalam bentuk tiga dimensi.

Data numerik (digital), diperoleh melalui penggunaan software khusus penginderaan jauh yang diterapkan pada komputer.

[sunting] Pengguna Data Pengguna data merupakan komponen akhir yang penting dalam sistem inderaja, yaitu orang atau lembaga yang memanfaatkan hasil inderaja. Jika tidak ada pengguna, maka data inderaja tidak ada manfaatnya. Salah satu lembaga yang menggunakan data inderaja misalnya adalah:

Bidang militer Bidang kependudukan Bidang pemetaan Bidang meteorologi dan klimatologi

[sunting] Teknik pengumpulan data Data dapat dikumpulkan dengan berbagai macam peralatan tergantung kepada objek atau fenomena yang sedang diamati. Umumnya teknik-teknik penginderaan

jauh memanfaatkan radiasi elektromagnetik yang dipancarkan atau dipantulkan oleh objek yang diamati dalam frekuensi tertentu seperti inframerah, cahaya tampak, gelombang mikro, dsb. Hal ini memungkinkan karena faktanya objek yang diamati (tumbuhan, rumah, permukaan air, udara dll) memancarkan atau memantulkan radiasi dalam panjang gelombang dan intensitas yang berbeda-beda. Metode penginderaan jauh lainnya antara lain yaitu melalui gelombang suara, gravitasi atau medan magnet. [sunting] Keunggulan, Keterbatasan dan Kelemahan Penginderaan Jauh [sunting] Keunggulan Inderaja Menurut Sutanto (1994:18-23), penggunaan penginderaan jauh baik diukur dari jumlah bidang penggunaannya maupun dari frekuensi penggunaannya pada tiap bidang mengalami pengingkatan dengan pesat. Hal ini disebabkan oleh beberapa faktor antara lain :

Citra menggambarkan obyek, daerah, dan gejala di permukaan bumi dengan; wujud dan letak obyek yang mirip ujud dan letak di permukaan bumi, relatif lengkap, meliputi daerah yang luas, serta bersifat permanen.

Dari jenis citra tertentu dapat ditimbulkan gambaran tiga dimensional apabila pengamatannya dilakukan dengan alat yang disebut stereoskop.

Karaktersitik obyek yang tidak tampak dapat diwujudkan dalam bentukcitra sehingga dimungkinkan pengenalan obyeknya.

Citra dapat dibuat secara cepat meskipun untuk daerah yang sulit dijelajahi secara terestrial.

Merupakan satu-satunya cara untuk pemetaan daerah bencana. Citra sering dibuat dengan periode ulang yang pendek.

[sunting] Keterbatasan Inderaja Berupa ketersediaan citra SLAR yang belum sebanyak ketersediaan citra lainnya. Dari citra yang ada juga belum banyak diketahui serta dimanfaatkan (Lillesand dan Kiefer, 1979). Di samping itu jugaharganya yang relative mahal dari pengadaan citra lainnya (Curran, 1985). [sunting] Kelemahan Inderaja Walaupun mempunyai banyak kelebihan, penginderaan jauh juga memiliki kelemahan antara lain sebagai berikut

Orang yang menggunakan harus memiliki keahlian khusus; Peralatan yang digunakan mahal; Sulit untuk memperoleh citra foto ataupun citra nonfoto.

[sunting] Manfaat Penginderaan Jauh

[sunting] Bidang Kelautan (Seasat, MOS)

Pengamatan sifat fisis air laut. Pengamatan pasang surut air laut dan gelombang laut. Pemetaan perubahan pantai, abrasi, sedimentasi, dan lain-lain.

[sunting] Bidang hidrologi (Landsat, SPOT)

Pemanfaatan daerah aliran sungai (DAS) dan konservasi sungai. Pemetaan sungai dan studi sedimentasi sungai. Pemanfaatan luas daerah dan intensitas banjir.

[sunting] Bidang geologi

Menentukan struktur geologi dan macamnya. Pemantauan daerah bencana (gempa, kebakaran) dan pemantauan debu vulkanik.

Pemantauan distribusi sumber daya alam. Pemantauan pencemaran laut dan lapisan minyak di laut. Pemanfaatan di bidang pertahanan dan militer. Pemantauan permukaan, di samping pemotretan dengan pesawat terbang dan aplikasisistem informasi geografi (SIG).

[sunting] Bidang meteorologi dan klimatologi

Membantu analisis cuaca dengan menentukan daerah tekanan rendah dan daerah bertekanan tinggi, daerah hujan, dan badai siklon.

Mengetahui sistem atau pola angin permukaan. Permodelan meteorologi dan data klimatologi. Untuk pengamatan iklim suatu daerah melalui pengamatan tingkat kewarnaan dan kandungan air di udara.

[sunting] Bidang oseanografi

Pengamatan sifat fisis air seperti suhu, warna, kadar garam dan arus laut. Pengamatan pasang srut dengan gelombang laut (tinggi, frekuensi, arah). Mencari distribusi suhu permukaan. Studi perubahan pasir pantai akibat erosi dan sedimentasi

Sistem Informasi Geografis (bahasa Inggris: Geographic Information System disingkat GIS) adalah sistem informasi khusus yang mengelola data yang memiliki informasi spasial (bereferensi keruangan). Atau dalam arti yang lebih sempit, adalah sistem komputer yang memiliki kemampuan untuk membangun, menyimpan, mengelola dan menampilkan informasi berefrensi geografis, misalnya data yang diidentifikasi menurut lokasinya, dalam sebuah database. Para praktisi

juga memasukkan orang yang membangun dan mengoperasikannya dan data sebagai bagian dari sistem ini. Teknologi Sistem Informasi Geografis dapat digunakan untuk investigasi ilmiah, pengelolaan sumber daya, perencanaan pembangunan, kartografi dan perencanaan rute. Misalnya, SIG bisa membantu perencana untuk secara cepat menghitung waktu tanggap darurat saat terjadi bencana alam, atau SIG dapat digunaan untuk mencari lahan basah (wetlands) yang membutuhkan perlindungan dari polusi. Pengertian menurut para ahli

Menurut Aronaff (1989)

SIG adalah sistem informasi yang didasarkan pada kerja komputer yang memasukkan, mengelola, memanipulasi dan menganalisa data serta memberi uraian.

Menurut Burrough (1986)

SIG merupakan alat yang bermanfaat untuk pengumpulan, penimbunan, pengambilan kembali data yang diinginkan dan penayangan data keruangan yang berasal dari kenyataan dunia.

Menurut Kang-Tsung Chang (2002)

SIG sebagai a computer system for capturing, storing, querying, analyzing, and displaying geographic data.

Menurut Murai (1999)

SIG sebagai sistem informasi yang digunakan untuk memasukkan, menyimpan, memanggil kembali, mengolah, menganalisis dan menghasilkan data bereferensi geografis atau data geospatial, untuk mendukung pengambilan keputusan dalam perencanaan dan pengelolaan penggunaan lahan, sumber daya alam, lingkungan, transportasi, fasilitas kota, dan pelayanan umum lainnya.

Menurut Marble et al (1983)

SIG merupakan sistem penanganan data keruangan.

Menurut Bernhardsen (2002)

SIG sebagai sistem komputer yang digunakan untuk memanipulasi data geografi. Sistem ini diimplementasikan dengan perangkat keras dan perangkat lunak komputer yang berfungsi untuk akusisi dan verifikasi data, kompilasi data, penyimpanan data, perubahan dan pembaharuan data, manajemen dan pertukaran data, manipulasi data, pemanggilan dan presentasi data serta analisa data

Menurut Gistut (1994)

SIG adalah sistem yang dapat mendukung pengambilan keputusan spasial dan mampu mengintegrasikan deskripsi-deskripsi lokasi dengan karakteristik-

karakteristik fenomena yang ditemukan di lokasi tersebut. SIG yang lengkap mencakup metodologi dan teknologi yang diperlukan, yaitu data spasial perangkat keras, perangkat lunak dan struktur organisasi

Menurut Berry (1988)

SIG merupakan sistem informasi, referensi internal, serta otomatisasi data keruangan.

Menurut Calkin dan Tomlison (1984)

SIG merupakan sistem komputerisasi data yang penting.

Menurut Linden, (1987)

SIG adalah sistem untuk pengelolaan, penyimpanan, pemrosesan (manipulasi), analisis dan penayangan data secara spasial terkait dengan muka bumi.

Menurut Alter

SIG adalah sistem informasi yang mendukung pengorganisasian data, sehingga dapat diakses dengan menunjuk daerah pada sebuah peta.

Menurut Prahasta

SIG merupakan sejenis software yang dapat digunakan untuk pemasukan, penyimpanan, manipulasi, menampilkan, dan keluaran informasi geografis berikut atribut-atributnya.

Menurut Petrus Paryono

SIG adalah sistem berbasis komputer yang digunakan untuk menyimpan, manipulasi dan menganalisis informasi geografi. Dari definisi-definisi di atas dapat disimpulkan bahwa SIG merupakan pengelolaan data geografis yang didasarkan pada kerja komputer (mesin). [sunting] Sejarah pengembangan 35000 tahun yang lalu, di dinding gua Lascaux, Perancis, para pemburu CroMagnon menggambar hewan mangsa mereka, dan juga garis yang dipercaya sebagai rute migrasi hewan-hewan tersebut. Catatan awal ini sejalan dengan dua elemen struktur pada sistem informasi gegrafis modern sekarang ini, arsip grafis yang terhubung ke database atribut.

Pada tahun 1700-an teknik survey modern untuk pemetaan topografis diterapkan, termasuk juga versi awal pemetaan tematis, misalnya untuk keilmuan atau data sensus. Awal abad ke-20 memperlihatkan pengembangan "litografi foto" dimana peta dipisahkan menjadi beberapa lapisan (layer). Perkembangan perangkat keras komputer yang dipacu oleh penelitian senjata nuklir membawa aplikasi pemetaan menjadi multifungsi pada awal tahun 1960-an. Tahun 1967 merupakan awal pengembangan SIG yang bisa diterapkan di Ottawa, Ontario oleh Departemen Energi, Pertambangan dan Sumber Daya. Dikembangkan oleh Roger Tomlinson, yang kemudian disebut CGIS (Canadian GIS - SIG Kanada), digunakan untuk menyimpan, menganalisis dan mengolah data yang dikumpulkan untuk Inventarisasi Tanah Kanada (CLI - Canadian land Inventory) sebuah inisiatif untuk mengetahui kemampuan lahan di wilayah pedesaan Kanada dengan memetakaan berbagai informasi pada tanah, pertanian, pariwisata, alam bebas, unggas dan penggunaan tanah pada skala 1:250000. Faktor pemeringkatan klasifikasi juga diterapkan untuk keperluan analisis.

GIS dengan gvSIG. CGIS merupakan sistem pertama di dunia dan hasil dari perbaikan aplikasi pemetaan yang memiliki kemampuan timpang susun (overlay), penghitungan, pendijitalan/pemindaian (digitizing/scanning), mendukung sistem koordinat

national yang membentang di atas benua Amerika , memasukkan garis sebagai arc yang memiliki topologi dan menyimpan atribut dan informasi lokasional pada berkas terpisah. Pengembangya, seorang geografer bernama Roger Tomlinson kemudian disebut "Bapak SIG". CGIS bertahan sampai tahun 1970-an dan memakan waktu lama untuk penyempurnaan setelah pengembangan awal, dan tidak bisa bersaing denga aplikasi pemetaan komersil yang dikeluarkan beberapa vendor seperti Intergraph. Perkembangan perangkat keras mikro komputer memacu vendor lain seperti ESRI, CARIS, MapInfo dan berhasil membuat banyak fitur SIG, menggabung pendekatan generasi pertama pada pemisahan informasi spasial dan atributnya,

dengan pendekatan generasi kedua pada organisasi data atribut menjadi struktur database. Perkembangan industri pada tahun 1980-an dan 1990-an memacu lagi pertumbuhan SIG pada workstation UNIX dan komputer pribadi. Pada akhir abad ke-20, pertumbuhan yang cepat di berbagai sistem dikonsolidasikan dan distandarisasikan menjadi platform lebih sedikit, dan para pengguna mulai mengekspor menampilkan data SIG lewat internet, yang membutuhkan standar pada format data dan transfer. Indonesia sudah mengadopsi sistem ini sejak Pelita ke-2 ketika LIPI mengundang UNESCO dalam menyusun "Kebijakan dan Program Pembangunan Lima Tahun Tahap Kedua (1974-1979)" dalam pembangunan ilmu pengetahuan, teknologi dan riset. Jenjang pendidikan SMU/senior high school melalui kurikulum pendidikan geografi SIG dan penginderaan jauh telah diperkenalkan sejak dini. Universitas di Indonesia yang membuka program Diploma SIG ini adalah D3 Penginderaan Jauh dan Sistem Informasi Geografi, Fakultas Geografi, Universitas Gadjah Mada, tahun 1999. Sedangkan jenjang S1 dan S2 telah ada sejak 1991 dalam Jurusan Kartografi dan Penginderaan Jauh, Fakultas Geografi, Universitas Gadjah Mada. Penekanan pengajaran pada analisis spasial sebagai ciri geografi. Lulusannya tidak sekedar mengoperasikan software namun mampu menganalisis dan menjawab

persoalan keruangan. Sejauh ini SIG sudah dikembangkan hampir di semua universitas di Indonesia melalui laboratorium-laboratorium, kelompok

studi/diskusi maupun mata pelajaran. [sunting] Komponen Sistem Informasi Geografis Komponen-komponen pendukung SIG terdiri dari lima komponen yang bekerja secara terintegrasi yaitu perangkat keras (hardware), perangkat lunak (software), data, manusia, dan metode yang dapat diuraikan sebagai berikut: [sunting] Perangkat Keras (hardware) Perangkat keras SIG adalah perangkat-perangkat fisik yang merupakan bagian dari sistem komputer yang mendukung analisis goegrafi dan pemetaan. Perangkat keras SIG mempunyai kemampuan untuk menyajikan citra dengan resolusi dan kecepatan yang tinggi serta mendukung operasioperasi basis data dengan volume data yang besar secara cepat. Perangkat keras SIG terdiri dari beberapa bagian untuk menginput data, mengolah data, dan mencetak hasil proses. Berikut ini pembagian berdasarkan proses :

Input data: mouse, digitizer, scanner Olah data: harddisk, processor, RAM, VGA Card Output data: plotter, printer, screening.

[sunting] Perangkat Lunak (software) Perangkat lunak digunakan untuk melakukan proses menyimpan, menganalisa, memvisualkan data-data baik data spasial maupun non-spasial. Perangkat lunak yang harus terdapat dalam komponen software SIG adalah:

Alat untuk memasukkan dan memanipulasi data SIG Data Base Management System (DBMS) Alat untuk menganalisa data-data Alat untuk menampilkan data dan hasil analisa

[sunting] Data Pada prinsipnya terdapat dua jenis data untuk mendukung SIG yaitu : Data Spasial

Data Spasial

Data spasial adalah gambaran nyata suatu wilayah yang terdapat di permukaan bumi. Umumnya direpresentasikan berupa grafik, peta, gambar dengan format digital dan disimpan dalam bentuk koordinat x,y (vektor) atau dalam bentuk image (raster) yang memiliki nilai tertentu.

Data Non Spasial (Atribut)

Data non spasial adalah data berbentuk tabel dimana tabel tersebut berisi informasi- informasi yang dimiliki oleh obyek dalam data spasial. Data tersebut berbentuk data tabular yang saling terintegrasi dengan data spasial yang ada. [sunting] Manusia Manusia merupakan inti elemen dari SIG karena manusia adalah perencana dan pengguna dari SIG. Pengguna SIG mempunyai tingkatan seperti pada sistem informasi lainnya, dari tingkat spesialis teknis yang mendesain dan mengelola sistem sampai pada pengguna yang menggunakan SIG untuk membantu pekerjaannya sehari-hari. [sunting] Metode Metode yang digunakan dalam SIG akan berbeda untuk setiap permasalahan. SIG yang baik tergantung pada aspek desain dan aspek realnya. [sunting] Ruang Lingkup Sistem Informasi Geografis (SIG) Pada dasarnya pada SIG terdapat enam proses yaitu:

Input Data

Proses input data digunakan untuk menginputkan data spasial dan data non-spasial. Data spasial biasanya berupa peta analog. Untuk SIG harus menggunakan peta

digital sehingga peta analog tersebut harus dikonversi ke dalam bentuk peta digital dengan menggunakan alat digitizer. Selain proses digitasi dapat juga dilakukan proses overlay dengan melakukan proses scanning pada peta analog.

Manipulasi Data

Tipe data yang diperlukan oleh suatu bagian SIG mungkin perlu dimanipulasi agar sesuai dengan sistem yang dipergunakan. Oleh karena itu SIG mampu melakukan fungsi edit baik untuk data spasial maupun non-spasial.

Manajemen Data

Setelah data spasial dimasukkan maka proses selanjutnya adalah pengolahan data non-spasial. Pengolaha data non-spasial meliputi penggunaan DBMS untuk menyimpan data yang memiliki ukuran besar.

Query dan Analisis

Query adalah proses analisis yang dilakukan secara tabular. Secara fundamental SIG dapat melakukan dua jenis analisis, yaitu: o

Analisis Proximity

Analisis Proximity merupakan analisis geografi yang berbasis pada jarak antar layer. SIG menggunakan proses buffering (membangun lapisan pendukung di sekitar layer dalam jarak tertentu) untuk menentukan dekatnya hubungan antar sifat bagian yang ada. o

Analisis Overlay

Overlay merupakan proses penyatuan data dari lapisan layer yang berbeda. Secara sederhana overlay disebut sebagai operasi visual yang membutuhkan lebih dari satu layer untuk digabungkan secara fisik.

Visualisasi

Untuk beberapa tipe operasi geografis, hasil akhir terbaik diwujudkan dalam peta atau grafik. Peta sangatlah efektif untuk menyimpan dan memberikan informasi geografis. [sunting] Manfaat SIG di berbagai bidang [sunting] Manajemen tata guna lahan Pemanfaatan dan penggunaan lahan merupakan bagian kajian geografi yang perlu dilakukan dengan penuh pertimbangan dari berbagai segi. Tujuannya adalah untuk

menentukan zonifikasi lahan yang sesuai dengan karakteristik lahan yang ada. Misalnya, wilayah pemanfaatan lahan di kota biasanya dibagi menjadi daerah pemukiman, industri, perdagangan, perkantoran, fasilitas umum,dan jalur hijau. SIG dapat membantu pembuatan perencanaan masing-masing wilayah tersebut dan hasilnya dapat digunakan sebagai acuan untuk pembangunanutilitas-utilitas yang diperlukan. Lokasi dari utilitas-utilitas yang akan dibangun di daerah perkotaan (urban) perlu dipertimbangkan agar efektif dan tidak melanggar kriteria-kriteria tertentuyang bisa menyebabkan ketidakselarasan. Contohnya, pembangunan tempat sampah. Kriteria-kriteria yang bisa dijadikan parameter antara lain: di luar area pemukiman, berada dalam radius 10 meter dari genangan air, berjarak 5 meter dari jalan raya, dan sebagainya. Dengan kemampuan SIG yang bisa memetakan apa yang ada di luar dan di dalam suatu area, kriteria-kriteriaini nanti digabungkan sehingga memunculkan irisan daerah yang tidak sesuai, agak sesuai, dan sangat sesuai dengan seluruh kriteria. Di daerah pedesaan (rural) manajemen tata guna lahan lebih banyak mengarah ke sektor pertanian. Dengan terpetakannya curah hujan, iklim, kondisitanah, ketinggian, dan keadaan alam, akan membantu penentuan lokasi tanaman, pupuk yang dipakai, dan bagaimana proses pengolahan lahannya. Pembangunan saluran irigasi agar dapat merata dan minimal biayanya dapat dibantu dengan peta sawah ladang, peta pemukiman penduduk, ketinggian masing-masing tempat dan peta kondisi tanah. Penentuan lokasi gudang dan

pemasaran hasil pertanian dapat terbantu dengan memanfaatkan peta produksi pangan, penyebarankonsumen, dan peta jaringan transportasi. Selain untuk manajemen pemanfaatan lahan, SIG juga dapat membantu dalam hal penataan ruang. Tujuannya adalah agar penentuan pola pemanfaatan ruang disesuaikan dengan kondisi fisik dan sosial yang ada, sehingga lebih efektif dan efisien. Misalnya penataan ruang perkotaan, pedesaan, permukiman,kawasan industri, dan lainnya. [sunting] Inventarisasi sumber daya alam Secara sederhana manfaat SIG dalam data kekayaan sumber daya alamialah sebagai berikut:

Untuk mengetahui persebaran berbagai sumber daya alam, misalnya minyak bumi, batubara, emas, besi dan barang tambang lainnya.

Untuk mengetahui persebaran kawasan lahan, misalnya:

1. Kawasan lahan potensial dan lahan kritis; 2. Kawasan hutan yang masih baik dan hutan rusak; 3. Kawasan lahan pertanian dan perkebunan; 4. Pemanfaatan perubahan penggunaan lahan; 5. Rehabilitasi dan konservasi lahan.

[sunting] Untuk pengawasan daerah bencana alam Kemampuan SIG untuk pengawasan daerah bencana alam, misalnya:

Memantau luas wilayah bencana alam; Pencegahan terjadinya bencana alam pada masa datang; Menyusun rencana-rencana pembangunan kembali daerah bencana; Penentuan tingkat bahaya erosi; Prediksi ketinggian banjir; Prediksi tingkat kekeringan.

[sunting] Bagi perencanaan Wilayah dan Kota

Untuk bidang sumber daya, seperti kesesuaian lahan pemukiman, pertanian, perkebunan, tata guna lahan, pertambangan dan energi, analisis daerah rawan bencana.

Untuk bidang perencanaan ruang, seperti perencanaan tata ruang wilayah, perencanaan kawasan industri, pasar, kawasan permukiman, penataan sistem dan status pertahanan.

Untuk bidang manajemen atau sarana-prasarana suatu wilayah, seperti manajemen sistem informasi jaringan air bersih, perencanaan dan perluasan jaringan listrik.

Untuk bidang pariwisata, seperti inventarisasi pariwisata dan analisis potensi pariwisata suatu daerah.

Untuk bidang transportasi, seperti inventarisasi jaringan transportasi publik, kesesuaian rute alternatif, perencanaan perluasan sistem jaringan jalan, analisis kawasan rawan kemacetan dan kecelakaaan.

Untuk bidang sosial dan budaya, seperti untuk mengetahui luas dan persebaran penduduk suatu wilayah, mengetahui luas dan persebaran lahan pertanian serta kemungkinan pola drainasenya, pendataan dan

pengembangan pusat-pusat pertumbuhan dan pembangunan pada suatu kawasan, pendataan dan pengembangan pemukiman penduduk, kawasan industri, sekolah, rumah sakit, sarana hiburan dan perkantoran.