Modul kuliah mekflud 1

48
TEP201 Fluid Mechanics 1 MEKANIKA FLUIDA (TEP201) Dr. Ir. Erizal, MAgr. Dr. Ir. Nora Herdiana Panjaitan, DEA. Dr. Ir. Yuli Suharnoto Dr. Ir. Roh Santoso Departemen Teknik Pertanian Fakultas Teknolog Pertanian Institut Pertanian Bogor

description

modul untuk kuliah mekflud TEP IPB

Transcript of Modul kuliah mekflud 1

Page 1: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 1

MEKANIKA FLUIDA(TEP201)

• Dr. Ir. Erizal, MAgr.• Dr. Ir. Nora Herdiana Panjaitan, DEA.

• Dr. Ir. Yuli Suharnoto• Dr. Ir. Roh Santoso

Departemen Teknik PertanianFakultas Teknolog Pertanian

Institut Pertanian Bogor

Page 2: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 2

MEKANIKA FLUIDA

Mempelajari tentang fluida yang bergerak atau diam dan akibat yang ditimbulkan oleh fluida tersebut pada tempatnya.

Page 3: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 3

Tujuan Instruksional Umum

• Setelah menyelesaikan mata kuliah ini, mahasiswa diharapkan mampumenguraikan karakteristik fluida baikdalam keadaan diam maupun bergerakdalam kaitannya dengan kegiatanperencanaan, pengelolaan dan perancangan

Page 4: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 4

JADWAL KULIAH

No. Pokok Bahasan Pengajar 1 Pendahuluan Erizal

2-3 Fluida Statik Erizal 4-5 Konsep aliran fluida Yuli Suharnoto 6 Aliran fluida ideal Yuli Suharnoto 7 Aliran fluida kompresibel Nora Panjaitan

8-9 UTS 10-11 Aliran fluida nyata di dalam pipa Nora Panjaitan

12 Mesin-mesin fluida Roh Santoso 13 Teori lapisan batas Erizal

14-15 Aliran fluida pada saluran terbuka Roh Santoso 16 Analisis dimensi dan similitude Yuli Suharnoto

Selasa 07.00-08.40 / Rabu 15.00-16.40

Sebagian bahan kuliah dapat diambil di:http://web.ipb.ac.id/~erizal/mekflud/

Page 5: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 5

JADWAL PRAKTIKUM

No. Topik 1 Pendahuluan 2 Bilangan Reynold 3 Penentuan koefisien Orifice dan Venturi 4 Head loss karena gesekan 5 Head loss karena perubahan diameter pipa 6 Head loss karena belokan dan katup 7 Pengukuran debit aliran udara di pipa 8 Pengukuran debit aliran di saluran terbuka 9 Aliran kritis 10 Lompatan hidrolik 11 Ujian praktikum

Page 6: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 6

PRAKTIKUM

1. Mahasiswa harap hadir paling lambat 5 menit sebelum praktikum dimulai di Laboratorium Hidrolika dan Hidromekanika Departemen Teknik Pertanian (F-G204).

2. Praktikum dilaksanakan 4 kali dalam 1 minggu (Selasa, Rabu, Kamis, dan Jum’at).3. Pelaksanaan praktikum secara kelompok/grup yang terdiri atas 6-7 mahasiswa.4. Pertanyaan sebelum praktikum wajib dijawab dan diserahkan kepada dosen/asisten

dosen.5. Praktikum harus selalu dihadiri. Jika berhalangan harus mendapatkan surat izin dari

departemen.6. Setelah praktikum dilaksanakan, buatlah laporan sementara berisi data hasil

pengukuran yang dilengkapi dengan daftar anggota grup/kelompok.7. Laporan perseorangan dan ditulis dengan tangan pada kertas ukuran A4, kemudian

penyerahannya paling lambat sebelum praktikum dimulai pada minggu berikutnya.8. Laporan berisi :

• Pendahuluan yang berisi teori singkat dan tujuan praktikum• Bahan dan Metode• Hasil dan Pembahasan• Kesimpulan dan Saran• Daftar Pustaka

9. Segala bentuk pelanggaran dapat diberikan sanksi akademik berupa : skorsingpraktikum, tidak diperkenankan mengikuti ujian, dan lain sebagainya.

10.Pada akhir semester akan diadakan ujian praktikum oleh dosen.

Page 7: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 7

PENILAIAN & PUSTAKA• Praktikum : 30% • UTS : 30%• Ujian Akhir : 40%

Streeter, V.L. dan E.B. Wylie. 1999. Mekanika Fluida. PenerbitErlangga. Jakarta.Giles, Ranald, V. 1994. Fluid Mechanics and Hydraulics. Schaum’s Outline Series. McGraw Hill Book Co. New YorkHughes, W.F dan J.A. Brighton. 1967. Theory and Problem of Fluid Dynamic. Schaum’s Outline Series. McGraw Hill Book Co. New YorkVennard, J.K dan R.L. Street. 1976. Elementary Fluid Mechanics. John Wiley and Sons. New YorkErizal dan Panjaitan, N.H. 2007. Pedoman Praktikum Mekanika Fluida. IPB.

Page 8: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 8

Introduction to Fluid Mechanics*

CFD(Computational Fluid Dynamics)

EFD(Experimental Fluid Dynamics)

AFD(Analytical Fluid Dynamics)

2

01

Re i jD p u uDt

∇ • =

= −∇ + ∇ + ∇ •

UU U

Fred Stern, Tao Xing, Jun Shao, Surajeet Ghosh

*Revised version of 4/99 by Fred Stern and Eric Paterson

Page 9: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 9

Fluid Mechanics

• Fluids essential to life• Human body 95% water• Earth’s surface is 2/3 water• Atmosphere extends 17km above the earth’s surface

• History shaped by fluid mechanics• Geomorphology• Human migration and civilization• Modern scientific and mathematical theories and methods• Warfare

• Touches every part of our lives

Page 10: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 10

HistoryFaces of Fluid Mechanics

Archimedes(C. 287-212 BC)

Newton(1642-1727)

Leibniz(1646-1716)

Euler(1707-1783)

Navier(1785-1836)

Stokes(1819-1903)

Reynolds(1842-1912)

Prandtl(1875-1953)

Bernoulli(1667-1748)

Taylor(1886-1975)

Page 11: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 11

Significance

• Fluids omnipresent• Weather & climate• Vehicles: automobiles, trains, ships, and

planes, etc.• Environment• Physiology and medicine• Sports & recreation• Many other examples!

Page 12: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 12

Weather & Climate

Tornadoes

HurricanesGlobal Climate

Thunderstorm

Page 13: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 13

Vehicles

Aircraft

SubmarinesHigh-speed rail

Surface ships

Page 14: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 14

Environment

Air pollution River hydraulics

Page 15: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 15

Physiology and Medicine

Blood pump Ventricular assist device

Page 16: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 16

Sports & Recreation

Water sports

Auto racing

Offshore racingCycling

Surfing

Page 17: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 17

Fluids Engineering

• Engineers have different kinds of tools available for solving fluids engineering systems• Analytical Fluid Dynamics (AFD)• Experimental Fluid Dynamics (EFD)• Computational Fluid Dynamics (CFD)

• This class provides an introduction to all three tools: AFD through lecture and CFD and EFD through labs

Page 18: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 18

Analytical Fluid Dynamics

• The theory of mathematical physics problem formulation

• Control volume & differential analysis• Exact solutions only exist for simple

geometry and conditions• Approximate solutions for practical

applications• Linear• Empirical relations using EFD data

Page 19: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 19

Analytical Fluid Dynamics

• Lecture Part of Fluid Class• Definition and fluids properties• Fluid statics• Fluids in motion• Continuity, momentum, and energy principles• Dimensional analysis and similitude• Surface resistance• Flow in conduits • Drag and lift

Page 20: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 20

Analytical Fluid Dynamics

Schematic

• Example: laminar pipe flow

Exact solution :2 21( ) ( )( )4

pu r R rxμ∂= − −∂

Friction factor:88 64

Re2 2w

dudywf

V V

μτρ ρ

= = =

Assumptions: Fully developed, Low Approach: Simplify momentum equation, integrate, apply boundary conditions (no-slip wall) to determine integration constants and use energy equation to calculate head loss

xgyu

xu

xp

DtDu

+⎥⎦

⎤⎢⎣

⎡∂∂

+∂∂

+∂∂

−= 2

2

2

2

μ

Head loss:1 2

1 2 fp pz z hγ γ

+ = + +2

2

322f

L V LVh fD g D

μγ

= =

UD 2000Re ρ <μ

=

0 0 0

Page 21: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 21

Analytical Fluid Dynamics• Example: turbulent flow in smooth pipe( )

0 5y+< <

1 lnu y Bκ

+ += + 520 10y+< <

*0

1U u rfu r

⎛ ⎞−= −⎜ ⎟

⎝ ⎠

510y + >

u y+ +=

( ) ( ) *0

*

1 lnu r r r u

Bu κ ν

−= +

Re 3000>

*y yu ν+ =*u u u+ =*

wu τ ρ=Three layer concept (using dimensional analysis)

1. Laminar sub-layer (viscous shear dominates)

2. Overlap layer (viscous and turbulent shear important)

3. Outer layer (turbulent shear dominates)

Assume log-law is valid across entire pipe:

Integration for average velocity and using EFD data to adjust constants:

( )1 21 2log Re .8ff

= −

( =0.41, B=5.5)

Page 22: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 22

Analytical Fluid Dynamics• Example: turbulent flow in rough pipe

( )u u y k+ +=

1 ln yukκ

+ = +

1 2log3.7k D

f= −( )1 ln 8.5 Reyu f

kκ+ = + ≠

Three regimes of flow depending on k+

1. K+<5, hydraulically smooth (no effect of roughness)2. 5 < K+< 70, transitional roughness (Re dependent)3. K+> 70, fully rough (independent Re)

Both laminar sublayer and overlap layerare affected by roughnessInner layer:

Outer layer: unaffected

Overlap layer:

Friction factor:

For 3, using EFD data to adjust constants:

constant

Page 23: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 23

Analytical Fluid Dynamics• Example: Moody diagram for turbulent pipe flow

1 1 22

1 2.512log3.7 Rek D

ff

⎡ ⎤= − +⎢ ⎥

⎣ ⎦

Composite Log-Law for smooth and rough pipes is given by the Moody diagram:

Page 24: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 24

Experimental Fluid Dynamics (EFD)

Definition:Use of experimental methodology and procedures for solving fluids engineering systems, including full and model scales, large and table top facilities, measurement systems (instrumentation, data acquisition and data reduction), uncertainty analysis, and dimensional analysis and similarity.

EFD philosophy:• Decisions on conducting experiments are governed by the ability of the

expected test outcome, to achieve the test objectives within allowable uncertainties.

• Integration of UA into all test phases should be a key part of entire experimental program • test design • determination of error sources • estimation of uncertainty • documentation of the results

Page 25: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 25

Purpose

• Science & Technology: understand and investigate a phenomenon/process, substantiate and validate a theory (hypothesis)

• Research & Development: document a process/system, provide benchmark data (standard procedures, validations), calibrate instruments, equipment, and facilities

• Industry: design optimization and analysis, provide data for direct use, product liability, and acceptance

• Teaching: instruction/demonstration

Page 26: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 26

Applications of EFD

Application in research & development

Tropic Wind Tunnel has the ability to create temperatures ranging from 0 to 165 degreesFahrenheit and simulate rain

Application in science & technology

Picture of Karman vortex shedding

Page 27: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 27

Applications of EFD (cont’d)

Example of industrial application

NASA's cryogenic wind tunnel simulates flight conditions for scale models--a critical tool indesigning airplanes.

Application in teaching

Fluid dynamics laboratory

Page 28: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 28

Full and model scale

• Scales: model, and full-scale

• Selection of the model scale: governed by dimensional analysis and similarity

Page 29: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 29

Measurement systems• Instrumentation

• Load cell to measure forces and moments• Pressure transducers• Pitot tubes• Hotwire anemometry• PIV, LDV

• Data acquisition• Serial port devices• Desktop PC’s• Plug-in data acquisition boards• DA software - Labview

• Data analysis and data reduction• Data reduction equations• Fast Fourier Transform

Page 30: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 30

Instrumentation

Load cell

Pitot tube

Hotwire 3D - PIV

Page 31: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 31

Data acquisition system

Hardware

Software - Labview

Page 32: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 32

Data reduction methods

f = F( , , z , Q =� � )a

a

wg D�

8LQ

Q = F( z )�

w

DM

SM

2

2

5

= F(T )�

( )

w

= F(T )a

zSM

i

- zSM

j

w

a

Example of data reduction equations

Fast Fourier Transform

FFT: Converts a function from amplitude as function of time to amplitude as function of frequency

Example of FFT application

Aim: To analyze the natural unsteadiness of the separated flow, around a surface piercing

strut, using FFT.f [Hz]

A(f)

0 1 2 3 4 5 6 70

0.05

0.1

0.15

Typical amplitude spectraof the wave elevations

Free-surface wave elevation contours

Page 33: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 33

Uncertainty analysis

r = r (X , X ,......, X ) 1 2 J

1 2 J

MEASUREMENTOF INDIVIDUALVARIABLES

INDIVIDUALMEASUREMENTSYSTEMS

ELEMENTALERROR SOURCES

DATA REDUCTIONEQUATION

EXPERIMENTALRESULT

XB , P

1

1 1

XB , P

2

2 2

XB , P

J

J J

rB , P

r r

Rigorous methodology for uncertainty assessment using statistical and engineering concepts

Page 34: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 34

Dimensional analysis• Definition : Dimensional analysis is a process of formulating fluid mechanics problems in

in terms of non-dimensional variables and parameters.• Why is it used :

• Reduction in variables ( If F(A1, A2, … , An) = 0, then f(Π1, Π2, … Πr < n) = 0, where, F = functional form, Ai = dimensional variables, Πj = non-dimensionalparameters, m = number of important dimensions, n = number of dimensional variables, r= n – m ). Thereby the number of experiments required to determine f vs. F is reduced.

• Helps in understanding physics• Useful in data analysis and modeling• Enables scaling of different physical dimensions and fluid properties

Example

Vortex shedding behind cylinder

Drag = f(V, L, r, m, c, t, e, T, etc.)

From dimensional analysis,

Examples of dimensionless quantities : Reynolds number, FroudeNumber, Strouhal number, Euler number, etc.

Page 35: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 35

Similarity and model testing• Definition : Flow conditions for a model test are completely similar if all relevant dimensionless parameters have the same corresponding values for model and prototype.

• Πi model = Πi prototype i = 1• Enables extrapolation from model to full scale• However, complete similarity usually not possible. Therefore, often it is necessary to

use Re, or Fr, or Ma scaling, i.e., select most important Π and accommodate othersas best possible.

• Types of similarity: • Geometric Similarity : all body dimensions in all three coordinates have the same

linear-scale ratios.• Kinematic Similarity : homologous (same relative position) particles lie at homologous

points at homologous times.• Dynamic Similarity : in addition to the requirements for kinematic similarity the model

and prototype forces must be in a constant ratio.

Page 36: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 36

EFD process• “EFD process” is the steps to set up an experiment and

take data

1. Setup facility

2. Install model

3. Setup equipment

4. Setup Data Acquisition using LabView

5. Perform calibrations

6. Data Analysis and Data Reduction

7. Uncertainty Analysis

8. Comparison with CFD results

9. Documentation and Reporting

Page 37: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 37

EFD – “hands on” experience

Lab1: Measurement of kinematic viscosity of a fluid Lab2: Measurement of

flow rate, friction factor andvelocity profiles in smooth andrough pipes.

Lab3: Measurement of surface pressure distribution and lift coefficient for an airfoil

Page 38: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 38

Computational Fluid Dynamics• CFD is use of computational methods for

solving fluid engineering systems, including modeling (mathematical & Physics) and numerical methods (solvers, finite differences, and grid generations, etc.).

• Rapid growth in CFD technology since advent of computer

ENIAC 1, 1946 IBM WorkStation

Page 39: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 39

Purpose• The objective of CFD is to model the continuous fluids

with Partial Differential Equations (PDEs) and discretize PDEs into an algebra problem, solve it, validate it and achieve simulation based designinstead of “build & test”

• Simulation of physical fluid phenomena that are difficult to be measured by experiments: scale simulations (full-scale ships, airplanes), hazards (explosions,radiations,pollution), physics (weather prediction, planetary boundary layer, stellar evolution).

Page 40: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 40

Modeling• Mathematical physics problem formulation of fluid

engineering system• Governing equations: Navier-Stokes equations (momentum),

continuity equation, pressure Poisson equation, energy equation, ideal gas law, combustions (chemical reaction equation), multi-phase flows(e.g. Rayleigh equation), and turbulent models (RANS, LES, DES).

• Coordinates: Cartesian, cylindrical and spherical coordinates result in different form of governing equations

• Initial conditions(initial guess of the solution) and Boundary Conditions (no-slip wall, free-surface, zero-gradient, symmetry, velocity/pressure inlet/outlet)

• Flow conditions: Geometry approximation, domain, Reynolds Number, and Mach Number, etc.

Page 41: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 41

Modeling (examples)Free surface animation for ship in regular waves

Developing flame surface (Bell et al., 2001)

Evolution of a 2D mixing layer laden with particles of StokesNumber 0.3 with respect to the vortex time scale (C.Narayanan)

Page 42: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 42

Modeling (examples, cont’d)

3D vortex shedding behind a circular cylinder (Re=100,DNS,J.Dijkstra)

DES,Re=105, vorticitymagnitude of turbulent flow around NACA12 with angle of attack 60.

LES of a turbulent jet. Back wall shows a slice of the dissipation rate and the bottom wall shows a carpet plot of the mixture fraction in a slice through the jet centerline, Re=21,000 (D. Glaze).

Page 43: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 43

Numerical methods

• Finite difference methods: using numerical scheme to approximate the exact derivatives in the PDEs

• Grid generation: conformal mapping, algebraic methods and differential equation methods

• Solvers: direct methods (Cramer’s rule, Gauss elimination, LU decomposition) and iterative methods (Jacobi, Gauss-Seidel, SOR)

Slice of 3D mesh of a fighter aircraft

o x

y

i i+1i-1

j+1j

j-1

imax

jmax xΔ

yΔ2

1 12 2

2i i iP P PPx x

+ −− +∂=

∂ Δ2

1 12 2

2j j jP P PPy y

+ −− +∂=

∂ Δ

Page 44: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 44

CFD process• “CFD process” is the steps to set up a problem and

run the code1. Geometry: Create the geometry you want2. Physics: fluid properties, viscous modeling and

boundary conditions3. Mesh: coarse, medium and fine meshes4. Solve: different solvers and numerical

methods5. Report: time history of convergence of

variables6. Post-Processing: visualizations (contours,

vectors), validation and verification

Page 45: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 45

Commercial software• CFD software

1. FLUENT: http://www.fluent.com2. CFDRC: http://www.cfdrc.com3. STAR-CD:http://www.cd-adapco.com4. CFX/AEA: http://www.software.aeat.com/cfx

• Grid Generation software1. Gridgen: http://www.pointwise.com2. GridPro: http://www.gridpro.com

• Visualization software1. Tecplot: http://www.amtec.com2. Fieldview: http://www.ilight.com

Page 46: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 46

“Hands-on” experience using FlowLab 1.1 (pipe template)

Page 47: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 47

“Hands-on” experience using FlowLab 1.1 (airfoil template)

Page 48: Modul kuliah mekflud 1

TEP201 Fluid Mechanics 48

57:020 Fluid Mechanics• Lectures cover basic concepts in fluid statics, kinematics,

and dynamics, control-volume, and differential-equation analysis methods. Homework assignments, tests, and complementary EFD/CFD labs

• EFD/CFD lab materials

Pre CFD lab2CFD lab2

Pre CFD lab1CFD lab1

NoneLab report instructionsCFDLecture

Pre EFD lab3EFD 3

Benchmark DataInstructions_UA

Pre EFD Lab2 EFD 2

Lab2_UAInstructions_UA

Pre EFD Lab1EFD 1

Lab 1_UAInstructions_UA

EFD UA ReportLab Report instructions

EFD Lecture

Lab 3: AirfoilLab 2: Pipe Flow

Lab 1: Viscosity

Other DocsLecture