Metode Biospesifik Penentuan Asam Pantotenat,Biotin, Folat, Vit B6 Dan B12

download Metode Biospesifik Penentuan Asam Pantotenat,Biotin, Folat, Vit B6 Dan B12

of 11

Transcript of Metode Biospesifik Penentuan Asam Pantotenat,Biotin, Folat, Vit B6 Dan B12

  • 8/11/2019 Metode Biospesifik Penentuan Asam Pantotenat,Biotin, Folat, Vit B6 Dan B12

    1/11

    Food Chemistry

    49 (1994) 191-201

    Analyt ical Method s Section

    i,

    A p p l i c a t i o n o f b i o s p e c i f i c m e t h o d s t o

    t h e d e t e r m i n a t i o n o f B - g r o u p v i t a m i n s

    in food a review

    P . M. F i n g l a s & M. R . A . Mo rg a n

    A FR C Insti tute of Foo d Research, Norwich Laboratory, N orwich Research Park, Colney,

    Norwich, Norfolk, UK, NR4 7UA

    (Received 20 Feb rua ry 1993; revised version received and accepted 14 April 1993)

    Biospecific methods using either antibodies or naturally occurring vitamin

    binding prote ins for the de terminat ion of pantothenic ac id , b iot in , fola te and

    vitamins B6 and BI2 in food are reviewed. Both types of assay are based on the

    96-well microtitration plate format, which offers the potential for high sample

    throughput. Another feature of these techniques is their flexibility to produce

    either highly specific assays (suitable fo r the analysis o f individual forms), or

    much broader specificity assays where the analysis of groups of vitamins is

    required. The availability of both polyclonal and monoclonal vitamin antisera is

    a lso out l ined. The ELISA format us ing ant ibodies has a grea ter potent ia l for

    the detec tion of specific vitamers whereas EP BAs are useful for assays of broa d

    specificity where the analysis of a g roup of vitamers is required, as in the case of

    fola te or b iot in .

    I N T R O D U C T I O N

    T h e r e i s a g r o w i n g n e e d f o r m o r e r a p i d a n d s p e c i f i c

    m e t h o d s f o r v i t a m i n a n a l y s i s , i n p a r t i c u l a r t o m e e t t h e

    d e m a n d s o f n u t r i t i o n a l l ab e l li n g o f f o o d s a n d o t h e r n u -

    t r i t i o n a l s t u d i e s . A s a n a l t e r n a t i v e t o t h e m o r e c o n v e n -

    t i o n a l m e t h o d s o f a n a l y s i s b i o s p e c i f i c p r o c e d u r e s u s i n g

    e i t h e r a n t i b o d i e s o r v i t a m i n b i n d i n g p r o t e i n s a r e w e l l -

    s u i t e d t o m e e t i n g t h e s e d e m a n d s .

    B i o s p e c i f i c m e t h o d s o f a n a l y s i s a r e u s e d t o d e s c r i b e

    t w o d i s t i n c t t y p e s o f p r o c e d u r e : f i r s t l y , t h o s e b a s e d o n

    t h e s p e c i f i c i n t e r a c t i o n o f a n a n t i b o d y w i t h i t s a n t i g e n ,

    f o r e x am p l e , t h e r a d i o i m m u n o a s s a y ( R I A ) o r t h e e n -

    z y m e - l i n k e d i m m u n o s o r b e n t a s s a y ( E L I S A ) ; s e c o n d l y ,

    t h o s e b a s ed o n t h e u s e o f n a t u r a l l y o c c u r r in g v i t a m i n

    b i n d i n g p r o t e i n s w i t h e i t h e r r a d i o l a b e l s ( a s i n t h e r a d i o -

    l a b e l l e d p r o t e i n b i n d i n g a s s a y , R P B A ) o r e n z y m e l a b e l s

    ( a s i n t h e e n z y m e p r o t e i n b i n d i n g a s s a y , E P B A ) . T h e

    R P B A i s a v a r i a n t o f t h e i s o t o p e - d i l u t i o n m e t h o d a n d

    i s o f t en re fe r red to a s a ' r ad ioa s s ay ' . T he re a re s eve ra l

    c o m m e r c i a l l y a v a i l a b l e ' r a d i o a s s a y ' k i t s f o r t h e d e t e r -

    m i n a t i o n o f v i t a m i n s i n b l o o d s a m p l e s , b u t t h e i r a p p li -

    c a t i o n t o f o o d a n a l y s i s is l im i t e d . E x a m p l e s o f b i o -

    s p ec i fi c m e t h o d s u s e d f o r t h e d e t e r m i n a t i o n o f v i t a m i n s

    a re g iven in T ab le 1 .

    A l t h o u g h R I A h a s b e e n u s e f u l t e c h n i q u e i n c l i n i c a l

    a n a l y s i s , i t h a s t h e m a j o r d i s a d v a n t a g e t h a t i t u s e s

    Food Chemistry 0308-8146/93/$06.00 1993 Elsevier Science

    Publishers Ltd, England. Printed in Great Britain

    191

    r a d i o a c t i v i t y , w h i c h p r e s e n t s p r o b l e m s a s s o c i a t e d w i t h

    i t s s a f e - h a n d l i n g a n d d i s p o s a l . T h i s m a k e s t h e u s e o f

    R I A i n r o u t i n e f o o d a n a l y s i s u n a t t r a c t i v e . I n a d d i t i o n ,

    s c i n t i l l a t i o n c o u n t i n g o f t h e r a d i o a c t i v i t y c a n b e s t o w

    a n d e x p e n s i ve .

    T h e E L I S A p e r f o r m e d i n t h e p l a s t i c w e l l s o f m i c r o -

    t i t r a t i o n p l a t e s h a s t h e a d v a n t a g e o f u ti l i si n g s ta b l e a n d

    n o n - r e a c t i v e r e a g e n t s w h i c h c a n b e s t o r e d f o r l o n g

    p e r i o d s . T h e s e a s s a y s c a n b e r e a d i l y a m e n a b l e t o

    a u t o m a t i o n b u t c a n a l s o b e c a r r i e d o u t w i t h i n e x p e n -

    s iv e e q u ip m e n t . T h i s t y p e o f i m m u n o a s s a y h a s b e e n

    w i d e l y e x p l o i t e d i n f o o d a n a l y s i s ( M o r g a n , 1 98 5) . T h e

    t y p e o f E L I S A s y s t e m c o m m o n l y u s e d f o r v i t a m i n s i s

    t h e i n d i r e c t t y p e , w h e r e v i t a m i n - p r o t e i n c o n j u g a t e

    ( k n o w n a s t h e h a p t e n ) i s i m m o b i l i s e d t o t h e w e l l

    s u r f a c e. T h e p r o t e i n u s e d i s d i f f e r e n t f r o m t h a t u s e d f o r

    t h e i m m u n o g e n . T h e f o r m a t f o r t h i s t y p e o f a s s a y is

    s hown in F ig . 1 .

    P r i m a r y a n t i - v i ta m i n a n t i b o d y a n d v i t a m i n a re a d d e d

    t o e a c h w e l l a n d t h e a n t i b o d y b e c o m e s d i s t r i b u t e d

    b e t w e e n i m m o b i l i s e d a n d f r e e v i t a m i n a c c o r d i n g t o

    h o w m u c h f r e e v i t a m i n i s p r e s e n t i n i t i a l l y . A f t e r p h a s e

    s e p a r a t i o n , a c h i e v e d b y w e l l e m p t y i n g a n d w a s h i n g ,

    b o u n d p r i m a r y a n t i b o d y i s d e t e c t e d b y t h e a d d i t i o n o f

    a s pec ie s - s pec i f i c , enzyme- labe l l ed s econd an t ibody .

    T h e s e a r e r e a d i l y a v a i la b l e c o m m e r c i a l l y , a c ti v e a g a i n s t

    d i f fe ren t s pec ie s and l abe l l ed wi th a va r i e ty o f enzymes .

    A f t e r a n a p p r o p r i a t e i n c u b a t i o n p e r i o d , e x c e s s u n -

    b o u n d m a t e r i a l i s r e m o v e d a n d s u b s t r a t e a d d e d . W e l l

    o p t i c a l d e n s it i e s ar e d e t e r m i n e d a f t e r a c e r t a i n t i m e a n d

  • 8/11/2019 Metode Biospesifik Penentuan Asam Pantotenat,Biotin, Folat, Vit B6 Dan B12

    2/11

    192

    P . M . F i n g l a s , M . R . A . M o r g a n

    T able 1 . Bios pec i f i c met hods o f v i t amin ana ly s i s in f ood and b io log ica l mat er ia l s

    Type Vitamin Reference

    Radioimm unoassay Pantothenic acid

    (RIA) Pteroylmonog lutamic acid

    P G A )

    2 5 - O H - D 3 ~

    Wyse et al. (1979)

    DaCosta & Rothenberg

    (1971); Hend el (1981)

    Incstar Ltd (Incstar Corporation,

    Sti llwater, M I 55080, USA)

    Enzym e-linked Pantothenic acid Mo rris et al . (1988)

    immu nosorbent assay Biotin Alcock

    (ELISA) Pyridoxamine (PAM ) Alcock et al . (1990)

    Folate Finglas, P. M. & Morgan, M. R. A.,

    unpublished

    Vitamin B~2

    5-methyl-THF

    Biotin

    25- & 24,25-OH-D 3

    1,25-(OH)2-D

    Radiolabelled protein

    binding assay (RPB A)

    Enzym e protein Vitamin B12

    binding assay (EPBA ) Biotin

    Fotates

    Lau et al . (1965)

    Gutcho & Mansbach (1977)

    Ho od (1975); Dakshinamurti &

    Allan (1979)

    Reinhardt & Ho rst (1988)

    Reinhardt

    et al .

    (1984)

    Alcock et al . (1992)

    Finglas et al. (1986)

    Finglas

    et al.

    (1888b)

    a Comm ercially available k it.

    u n k n o w n s a m p l e s q u a n t i f i e d b y r e f e r e n c e t o s t a n d a r d

    curves.

    T h e a n t i b o d y i s t h e m o s t i m p o r t a n t c o m p o n e n t o f

    a n y i m m u n o a s s a y s y s t e m ( s u c h a s R I A a n d E L I S A ) ,

    and ant ib ody speci f ic i ty i s usual ly depen dent o n the

    immunogen used . Vi t amins a lone a s sma l l molecu l e s

    ( low molecular weight ) a re not immunogenic , i .e . they do

    no t s t imula t e an t i body p roduc t ion i n an ima l s . In o rde r

    to ob t a in an t i bod i e s , t he v i t amin mus t f i r s t be coup led

    to a la rger , immunogenic carr ie r molecule , normal ly a

    p ro t e in . The w ay in which t he v i t amin-p ro t e in con juga t e

    E <

  • 8/11/2019 Metode Biospesifik Penentuan Asam Pantotenat,Biotin, Folat, Vit B6 Dan B12

    3/11

    Biospeci f ic methods fo r B -group vi tamins

    Ta ble 2 . Co m m erc ia l ly a v a i la ble v i ta m in a nt i sera

    193

    Antibody to Type Host animal Specificity

    D-Biotin Polyclonal, enzyme labelled Goat D-Biotin, avidin (?)

    (alkaline phosphatase, peroxidase)

    Vitamin BI2 Monoclonal (IgG1) Mouse

    Folic acid Monoclonal (IgG2b) Mouse

    Folic acid Polyclonal Sheep

    5-Methyl-THF Monoclonal (IgG2b) Mouse

    5-Methyl-THF Po ly cl on al Sheep

    5-Formyl-THF Po ly cl on al Sheep

    Vitamin B12 Polyclonal Sheep

    Free and protein bound biotin,

    adenosylcobalamin

    Free and protein bound PGA + 5-

    methyl-THF

    Free or protein bound PGA

    Free or protein bound 5-methyl-THF

    Free or protein bound 5-methyl-THF

    Free or protein bound 5-formyl-THF

    'Vitamin B12

    response in the animals. Amounts of conjugate injected

    can vary from as little as 100 /zg per animal to much

    larger amounts. After a booster injection, normally 4-6

    weeks after the primary injection, the animal is bled

    and the serum checked for the required antibody

    content, avidity and specificity. The animals can be

    further boosted and bled until the required antiserum

    is obtained. In the case of antibody production to

    pantothenic acid, five to six booster injections at

    6-weekly intervals were needed before a suitable

    antiserum was obtained (Morris et al. , 1988).

    The antibodies produced by the above procedures

    are polyclonal, i.e. the antiserum consists of a large

    number of different antibodies against the hapten,

    each with slightly different properties relative to it.

    O

    i n c u b a t i o n

    r e m o v i n g u n b o u nd

    f r a c t io n b y w a s h i n g

    a d d i t i o n o f

    s u b s t r a t e

    Fig. 2. EPBA format performed on a microtitration plate.

    P-E, enzyme-vitamin binding protein conjugate; O, free

    vitamin; O, immoblised vitamin; S, substrate; P, coloured

    end-product.

    Monoclonal antibodies have also been developed

    (Kohler & Milstein, 1975) which are produced

    in vitro

    from one cell line or clone and are therefore identical.

    The advantages of using monoclonal antibodies are

    that they are available in unlimited amounts and that

    the method of production can sometimes result in an

    antibody of improved characteristics.

    Most of the antibodies to vitamins are polyclonal,

    although there are commercially available monoclonal

    antibodies to specific vitamin forms (s ee below).

    Commercially available antisera (both polyclonal and

    monoclonal) to a range o f vitamin forms have also been

    developed primarily for clinical use (Table 2). Although

    antisera specificities have been given in most cases, their

    application in the ELISA format to the analysis of

    vitamins in food has not been examined fully.

    The use of naturally occurring vitamin binding

    proteins in place of the antibody can also result in

    suitable assays. These assays exhibit slightly different

    characteristics to the antibody based procedures. How-

    ever, most of the advantages of ELISA are applicable

    to PBA. Both assay systems are based on the 96-well

    microtitration plate format, which is extremely easy

    to use and ideal for the batchwise analysis of food

    (Finglas & Morgan 1988a).

    In the case of EPBA, the binding protein is labelled

    directly by chemically coupling to an enzyme such as

    horseradish peroxidase. The protein-enzyme replaces

    the antibody, and can be used either directly in the

    assay (after appropriate dilution), or after further

    purification. The format for the EPBA is similar to the

    ELISA but contains one incubation step less (Fig. 2).

    The development and application of biospecific

    methods has largely focused on the water-soluble, B-

    group vitamins, where existing methodology is in most

    need of improvement. For these vitamins a range of

    binding proteins are readily available and a number of

    RPBAs have been used for clinical work. The assays

    for the individual vitamins will be discussed in more

    detail as follows.

  • 8/11/2019 Metode Biospesifik Penentuan Asam Pantotenat,Biotin, Folat, Vit B6 Dan B12

    4/11

    194 P . M . F i n g l a s , M . R . A . M o r g a n

    APPLICATION OF BIOSPECIFIC METHODS

    P a n t o t h e n i c a c i d

    Pantothenic acid occurs in food in the free form and in

    larger amounts bound predominantly as coenzyme A

    and other protein derivatives (Fox, 1984). Much of the

    data on the pantothenate content of food has been

    obtained previously by microbiological assay using

    L a c t o b a c i l l u s p l a n t a r u m after a double enzyme extrac-

    tion procedure to release the bound vitamin forms.

    The development and validation of a radioimmuno-

    assay for free pantothenic acid was first reported in the

    late 1970s (Wyse

    e t a L ,

    1979). This procedure was

    based on the competitive binding of an antibody

    specific for pantothenic acid between the unlabelled

    vitamin in the sample or standard and radiolabelled

    antigen. Although the assay was found to be specific

    and sensitive for pantothenate levels in food, and

    results correlated highly with results obtained by micro-

    biological assay (Walsh et a l . , 1980, 1981), the use of

    radiolabelled tracers is not always desirable in the food

    context.

    A direct, enzyme-linked immunosorbent assay

    (ELISA) for pantothenic acid has also been developed

    using specific antibodies active to the vitamin which

    have been covalently linked to alkaline phosphatase en-

    zyme (Smith et a l . , 1981). The immobilised phase o f the

    ELISA consisted of a human serum albumin-pan-

    tothenate conjugate passively adsorbed to the surface

    of polystyrene assay tubes. The binding of the enzyme-

    linked antibody to the pantothenate on the surface

    of the tubes depends on the amount of free vitamin

    present initially. The application of ELISA for the

    determination of pantothenic acid in foods was not

    reported.

    More recently, an indirect ELISA has been devel-

    oped, particularly directed to food analysis (Morris e t

    a l . , 1988). Pantothenic acid-bovine serum albumin

    (BSA) immunogen was synthesised by two different

    conjugation procedures utilising either ends of the vita-

    min molecule for conjugation in order to generate anti-

    sera of different characteristics. In the first of these, the

    primary alcohol was derivatised using bromoacetyl bro-

    mide to form the bromoacetyl vitamin derivative which

    was subsequently reacted with reduced and denatured

    protein (Fig. 3). Radiotracer studies using sodium

    [1-~4C]-pantothenic acid indicated a covalent attachment

    C H ? H 0

    ~ - ~ ~ H O - CH 2 - C - C -- C - N H - C H 2 - C H 2 - C / /

    \

    CH H OH (~

    Fig. 3. Coupling of pantothenic acid to protein to use as im-

    munogens for preparation of anti-pantothenic acid antisera:

    (1) bromoacetyl derivatisation and conjugation; (2) mixed an-

    hydride procedure. [From: Morris, H. C.

    et al.

    (1988). The

    development of an enzyme-linked immunosorbent assay

    (ELISA) for the analysis of pantothenic acid and analogues,

    Part I--Production of antibodies and establishment of

    ELISA systems.J. Micronutr. Anal. , 4, 33~t5.]

    T a b l e 3 . D i f f e r e n t E L I S A f o r m a t s f o r t h e d e t e r m i n a t i o n o f

    pa nto thenic a c id ( PA) a nd a na lo g ues

    Compound Antiserum Dilution Solid- Limit

    typea (v : v) ph as e detectionb

    (PA-KLH) (/zg per well)

    c o n e .

    (/xg ml l)

    Pantothenic BA 1 : 4 000 0.1 500

    acid

    Pantothenic MA 1 10 000 1-0 5 000

    acid

    Pantetheine MA 1 10 000 1.0 5

    Panthenol MA 1 : 10 000 1-0 50

    a BA, Bromoacetyl bromide antiserum; MA, mixed anhydride

    antiserum.

    b Calculated by subtracting three standard deviations from

    the mean zero value.

    of the vitamin to the protein and a hapten-protein

    ratio of 20 : l. The second immunogen was prepared by

    linking pantothenic acid to BSA via the carboxylic acid

    group by means of the mixed anhydride procedure

    (Erlanger et a l . , 1959). A hapten-protein ratio of 17:1

    was found by spectrometry for this conjugate. Two

    corresponding pantothenic acid-keyhole limpet haemo-

    cyanin conjugates were synthesised using the above

    coupling procedures and used to form the ELISA solid

    phases by passive adsorption to the wells of the mi-

    crotitration plates.

    Both immunogens generated antisera of differing

    qualities (Table 3). The bromoacetyl antiserum was

    extremely specific for pantothenic acid with low cross-

    reactivities for the compounds tested. It is well-known

    that antibodies exhibit the greatest specificity for

    portions of the hapten distal to the point of coupling

    to the protein carrier. This is clearly illustrated in the

    lack of antibody recognition for pantothenol and

    pantetheine when the primary alcohol group was used

    for conjugation, as the differences in structure occur at

    points furthest away. In contrast, the antibody raised

    by coupling at the other end of the molecule, i.e. via

    the carboxylic acid group, showed greater recognition

    for pantetheine and pantothenol compared with pan-

    tothenic acid. Both antisera fail to recognise co-enzyme

    A, presumably because this contains pantothenic acid

    derivatised at each end of the molecule.

    The characteristics of the two ELISA systems for the

    determination of pantothenic acid and analogues are

    given in Table 3. The bromoacetyl antiserum and

    ELISA system was chosen for the determination of the

    pantothenate content of a range of foods because of its

    greater specificity for the free vitamin, lower sensitivi-

    ties and backgrounds. The ELISA results were com-

    pared to those obtained by microbiological assay

    (Table 4). The foods chosen were representative of the

    major sources of pantothenic acid in the UK diet and

    offer a range of food matrices with different interfer-

    ences. The agreement between the two procedures was

    generally good, as was the agreement with the food

    table data. Earlier work also demonstrated that the

  • 8/11/2019 Metode Biospesifik Penentuan Asam Pantotenat,Biotin, Folat, Vit B6 Dan B12

    5/11

    Biospeci fi c me thods for B -group v i tamins 195

    Ta ble 4 . Resul t s fo r pa nto thenic a c id co ntent ( m g per 100 g ) in

    f o o d s

    Food ELISA Microbiological Food

    assay tablesa

    Milk (whole cow's) 0.36 0.28 0.35

    Potato (maincrop, raw) 0.23 0.23 0.30

    Bread (white) 0.23 0-23 0.30

    Eggs 1.74 1.46 1.80

    Liver (lamb's) 8-25 8-65 8.20

    Lettuce 0.18 0.07 0.20

    a McCance and Widdowson's

    The Composition of Foods,

    Paul

    and Southgate (1978).

    agreement between RIA and microbiological assay for

    pantothenic acid in a much larger number of foods was

    good (Walsh

    et al. ,

    1980, 1981).

    During the validation of the ELISA procedure, it

    was further demonstrated that there was no interfer-

    ence (or matrix effect) with the foods tested. The analy-

    sis of different volumes of sample extract gave the

    correct proportionate responses and the addition of

    standard amounts of the vitamin to extracts gave

    satisfactory recovery data.

    A comparison of the ELISA with both the micro-

    biological assay and RIA is given in Table 5. Assuming

    the sample extraction is common to each procedure,

    then the ELISA can be performed in a working day,

    whereas the microbiological assay takes 2-3 days. RIA

    requires a 7 h scintillation counting step which will in-

    crease if larger numbers of samples are analysed. RIA

    also uses more expensive reagents and chemicals but

    labour costs are comparable to ELISA. However, the

    major drawback of RIA is the use of radiochemicals

    which can be a serious limitation to its use in the food

    laboratory.

    B i o t i n

    Biotin is one of the lesser known and most stable of

    the B-group vitamins. Conventional determination of

    biotin in food and biological materials is usually by

    T a b l e 5 . C o m p a r i s o n o f E L I S A , m i c r o b i ol o g ic a l

    microbiological assay with

    L . p lan tarum.

    Biotin can

    exist in eight different stereoisomers but only one

    contains vitamin activity, D-biotin. The stereoisomer,

    L-biotin, is biologically inactive. The organism L.

    p lantarum

    exhibits a growth response to both biotin

    D-sulphoxide (100 ) and O,L-oxybiotin (50 ), in

    addition to that for o-biotin (Bonjour, 1991).

    Biotin occurs in food both as the free vitamin and in

    bound forms where it can be attached to a simple

    amino acid, for example, as in biocytin, or more

    complex proteins and peptides. The free vitamin is

    present in high levels in foods of plant origin. The

    complete liberation of the bound vitamin requires acid

    hydrolysis at elevated temperatures (Bonjour, 1991).

    In addition to the microbiological assay, isotope

    dilution assays based on the competition between radio-

    labelled and unlabelled vitamin for the binding sites on

    avidin, a naturally occurring biotin binding protein,

    have been developed. Radiotracers reported include

    [~4]C-biotin (Hood, 1979), [3H]-biotin (Dakshinamurti

    & Allan, 1979) and [125I]-biotin (Livaniou

    et al. ,

    1987)

    derivatives. These assays are sensitive, analysing 1-

    10 ng biotin, but the application of these techniques

    for the determination of biotin in food is limited and

    not conclusive. Although RIA results were reported to

    agree reasonably well with the microbiological assay

    for the biotin content in animal feed samples, RIA

    values were 20-50 higher than the microbiological

    assay in the case of wheat samples (Hood, 1975).

    An ELISA and an EPBA assay have also been devel-

    oped for the analysis of biotin in food. The EPBA

    utilises the high affinity of the ureido group of the

    molecule by avidin. An antibody has been produced for

    biotin using a biotin-BSA conjugate synthesised

    through the carboxylic acid group of the side chain

    (Alcock & Morgan, M.R.A. , 1988, pers. comm.) The

    ant ibody is extremely specific for D-biotin, and shows

    no cross-reactivity with dethiobiotin.

    The two assays produce slightly different calibration

    curves for biotin reflecting the differences in the affinity

    of the vitamin for binding protein on one hand, and

    the antibody on the other. The curves are shown in

    a ssa y ( MA) a nd RIA fo r pa nto thenic a c id

    Method detail ELISA Microbiological assay RIA

    Equipment Microtitration plate Autoclave, spectrometer, incubator Scintillationounter

    washer and reader, incubator

    Reagents Antisera (primary and Organism, cultures, Antisera, radiolabelled

    secondary), coated p l at es mic roi noc ulu mroth, media pantothenic

    Assay preparation 2 7 3

    (h)

    Assay length (h) 4 24~36 7

    End-method of Ab sor ban cet 450 nm Turbi dity /absor bancet Scintillation

    determination 620 nm counting

    Sample throughput 125 sps per week 40 sps per week

    Cost Fairly low once primary Reagent costs low but

    antiserum is available labour high

    100 sps per week

    Reagents/equipment

    high, labour low

  • 8/11/2019 Metode Biospesifik Penentuan Asam Pantotenat,Biotin, Folat, Vit B6 Dan B12

    6/11

  • 8/11/2019 Metode Biospesifik Penentuan Asam Pantotenat,Biotin, Folat, Vit B6 Dan B12

    7/11

    Bios pe c i fi c m e thods fo r B-g r oup v i tam ins 197

    T a b l e 6 . C r u s s - r e a c t i o n a o f v a r i o u s fo r m s o f v it a m i n B 6 f o r

    d i f fe r e n t a n t i s e r a p r e p a r a t i o n s

    Antiserum PM PL PL PMP PLP 4-PA

    type

    1 1 0 0 < 0 . 1 < 0 - 0 1 0 . 8 < 0 . 0 1

  • 8/11/2019 Metode Biospesifik Penentuan Asam Pantotenat,Biotin, Folat, Vit B6 Dan B12

    8/11

    198 P . M . F i n g l a s , M . R . A . M o r g a n

    c o u p l i n g c y a n o c o b a l a m i n t o K L H u s i n g t h e b r o m o -

    a c e t y l b r o m i d e p r o c e d u r e ( W y s e

    et a l . ,

    1979), i.e. via

    the p r imary a l coho l g roup . Th i s was i n con t ra s t t o

    p rev ious r epor t s whe re con juga t e s we re syn thes i sed

    us ing t he ca rboxy lamide g roups on t he co r r i n r i ng

    (Olesen

    et a l . ,

    1971 ; Van de W e i l

    et a l . ,

    1974) . Improved

    assay sens i t i v i t i e s we re found us ing t he b romoace ty l

    c o n j u g a t e c o m p a r e d w i t h t h e e a r l i e r w o r k w h i c h

    a l l owed the use o f t he enzyme l abe ll ed R-pro t e in a t

    much h ighe r d i l u t i ons . The coa t ed mic ro t i t r a t i on p l a t e s

    and enzyme l abe l l ed R-pro t e in so lu t i ons we re found t o

    be s t ab l e fo r seve ra l months wi thou t apprec i ab l e l oss

    of ac t ivi ty .

    The l im i t o f de t ec t i on o f t h i s a ssay i s 9 pg pe r we l l

    and t he re i s a l ow l eve l o f non-spec i f ic back grou nd

    b i n d i n g . T h e P B A w a s u s e d t o d e t e r m i n e t h e a m o u n t

    o f a d d e d c y a n o c o b a l a m i n i n b r e a k f a s t c e re a ls . G o o d

    a g r e e m e n t w a s f o u n d b e t w e e n t h e a n a l y s e d a m o u n t

    de t e rmined by EPBA and t he t heore t i c a l l eve l . Ex t rac t s

    o f non- fo r t i f i ed sample s w e re t e s t ed fo r i n t e r fe rence i n

    t h e a s s a y a n d g a v e s u p e r i m p o s a b l e c u r v e s c o m p a r e d

    wi th s t anda rd so lu t i ons . I t was a l so obse rved t ha t

    shor t e r i ncuba t i on t imes o f abou t 1 h a t 37C gave

    s imi l a r r e su l t s t o t hose ob t a ined a t 4C wi th an

    ove rn igh t i ncuba t i on .

    I t w a s c o n c l u d e d t h a t t h e E P B A f o r c y a n o c o b a l a m i n

    ana lys i s i n fo r t i f i ed foods had a number o f advan t ages

    ove r bo th t he mic rob io log i ca l a ssay and RIA. I t was

    eas i e r t o pe r fo rm , had po t en t i a l fo r improved rep ro -

    duc ib i l i t y and much- reduced a ssay t imes compared

    wi th mic rob io log i ca l p rocedure s . Al though the l im i t o f

    de t ec t i on fo r EPBA i s su f f i c i en t fo r use wi th fo r t i f i ed

    foods , i n o rde r t o measure na tu ra l l eve l s i n foods ,

    fu r the r improvement s i n a ssay sens i t i v i t y us ing a l t e rna -

    t i ve end-po in t de t ec t i on sys t ems and ex t rac t i on / c l ean-

    u p p r o c e d u r e s m a y b e r e q u i re d .

    F o l a t e

    The fo l a t e s rep re sen t an impo r t an t g roup o f t he B-

    group v i t amins . A l a rge numbe r o f fo l a t e v i tamers a re

    know n, d i ff e r ing i n t he ex t en t o f the r educ t i on o f t he

    p t e roy l g roup , t he p re sence o f subs t i t uen t s and t he

    num ber o f g lu t amyl r e s idues . In o rde r t o measure t he

    po lyg lu t ama te fo rms p re sen t i n b io log i ca l ma te r i a l s ,

    p re l im ina ry enzyma t i c decon juga t i on i s r equ i red .

    At p re sen t t he mos t wide ly used and accep t ed p ro -

    cedure fo r fo l a t e s i s t he mic rob io log i ca l a ssay us ing L .

    r h a m n o s u s

    ( A T C C 7 4 6 9 ) a n d

    E n t e r o c o c c u s h i r a e

    (A TC C 8043), whe re a r e sponse o f t he o rgan i sm to t he

    mix tu re o f fo l a t e s p re sen t i n t he sample i s measured .

    E v e n w i t h t h e i n t r o d u c t i o n o f s e m i - a u t o m a t e d m i c ro -

    b io log i ca l p rocedure s i nc lud ing t he mic ro t i t r a t i on p l a t e

    f o r m a t ( N e w m a n & T s a i, 1 9 8 6 ; H o r n e & P a t te r s on ,

    1988) , t h i s approach i s bo th t ime -consuming and

    demanding i n execu t ion . In add i t i on , t he r e sponse o f

    the o rgan i sm to t he d i f f e ren t fo l a t e fo rms i s no t a lways

    identical .

    H P L C p r o c e d u r e s u s i n g b o t h U V a n d f l u o r o m e t r i c

    de t ec t i on fo r t he ana lys i s o f food fo l a t e s have been

    wide ly r epor t ed i n r ecen t yea r s . Al though adequa t e

    re so lu t i on fo r s t anda rd mix tu re s can be ob t a ined , t he

    low fo l a t e l eve l s found i n mos t foods can l e ad t o

    prob l ems in t he de t ec t i on and quan t i f i c a t i on o f t he

    v i t amers us ing t h i s t e chn ique . Th i s ha s been demon-

    s t r a t ed i n a r e cen t EC in t e r l abora to ry compara t i ve

    s tudy fo r t he de t e rmina t i on o f fo l a t e i n Brusse l s

    sp rou t s (F ing l a s et a l . , 1993). A g r oup o f expe r i enced

    v i t amin l abora to r i e s t ook pa r t u s ing mic rob io log i ca l ,

    H PL C and b iospec i f i c p rocedure s . Al tho ugh the ag ree -

    m e n t b e t w e e n t h e m i c r o b i o l o g i c a l m e t h o d s w a s q u i t e

    e n c o u r a g i n g w i t h a b e t w e e n - l a b o r a t o r y C V o f a b o u t

    2 0 % , t h e r e w a s p o o r a g r e e m e n t b e t w e e n t h e H P L C

    procedure s , pa r t i cu l a r l y i n t he t ypes o f fo l a t e v i t amers

    measured (Tab l e 8 ) .

    Seve ra l r epor t s i n t he l i t e ra tu re can be found o f t he

    ana lys i s o f fo l a te s i n food us ing RIA , an d t he i r com-

    pa r i son t o t he mic rob io log i ca l a ssay (Graham et a l . ,

    1980 ; Re ingo ld

    et a l . ,

    1980 ; Kle in & Ku o , 1981) . I t

    wou ld appea r t ha t t he r e su l t s ob t a ined be tween t he

    RIA and mic rob io log i ca l p rocedure s a re f r equen t ly

    con t rad i c to ry .

    A nu mb er o f f a c to r s a re know n to a f fec t t he fo l a te -

    bindin g aff ini ty of the prote in used, e .g . tempe ra ture ,

    i ncuba t i on t ime and pa r t i cu l a r l y pH. In add i t i on , t he

    ca l i b ran t used i n t he a ssay mus t be s t ab l e and have an

    aff ini ty for the binding prote in tha t i s the same as the

    fo l a t e fo rm found in t he sample s . Al though PGA i s

    more s t ab l e t han 5 -me thy l -THF, i t shou ld no t be used

    as t he a ssay ca l i b ran t i n a ssays run a t pH 7-5 , because

    of it s g rea t e r a f f in i ty fo r t he F BP c om pared t o t ha t o f

    5 -me thy l -THF a t t h i s pH (Givas & Gutcho , 1975) .

    How eve r , a t t he h ighe r pH of 9 .3 , PG A i s p re fe r red be -

    cause o f it s g rea t e r s t ab i l it y and equ iva l en t b ind ing

    c o m p a r e d w i t h 5 - m e t h y l - T H F . A l t h o u g h t h e u s e o f

    comm erc i a l RI A k i t s fo r the ana lys i s o f b lood l eve ls o f

    5 -m e thy l -T HF can be j us ti f i ed wi th ca re fu l s t anda rd i sa -

    t i on o f t he p rocedure s , t he ap p l i ca t i on o f the se a ssays

    to food sys t ems i s l im i t ed and no t conc lus ive (Gregory ,

    1985).

    I n o n e o f t h e f e w r e p o r t s o f a n t i b o d y p r o d u c t i o n t o

    f o la t e c o m p o u n d s , b o t h P G A - B S A a n d p - a m i no -

    benzo i cg lu t amic ac id+BSA were used a s immunogens

    in r abb i t s (R icke r & Sto l l a r, 1967 ) . The an t i se rum

    obta ined f rom the fo rmer , i . e . whe re t he con juga t i on

    was t h rough the g lu tamic ac id end o f t he molecu l e

    (F ig . 6 ) , exh ib i t ed c ross - reac t i v i t i e s no t on ly t o PGA

    (100%) bu t a l so t o two non- fo l a t e ana logues (p t e ro i c

    ac id, 71% and 6 -aminop te r in , 24%). By con t ra s t , whe re

    con juga t i on was t h rough the p t e r i d ine r i ng , a s i n t he

    second con juga t e , even b roade r spec i f i c i t y an t i se rum

    w a s p r o d u c e d .

    As an a l t e rna t i ve , an EPBA assay was deve loped fo r

    fola te ut i l i s ing an enzyme label led fola te binding

    pro t e in f rom cow' s m i lk (F ing l a s et a l . , 1988b). The

    b ind ing p ro t e in i s commerc i a l l y ava i l ab l e . S t anda rd

    c u r v e s f o r P G A , 5 - f o r m y l - T H F a n d 5 - m e t h y l - T H F

    u s i n g P G A - K L H c o a t e d p l a t e s a t a c o n c e n t r a t i o n o f

    1 /xg ml ~ and an enz ym e-F BP d i l u t ion o f 1 :100 (v /v )

    a re shown in F ig . 7a . Al l t h ree cu rves exh ib i t good

  • 8/11/2019 Metode Biospesifik Penentuan Asam Pantotenat,Biotin, Folat, Vit B6 Dan B12

    9/11

    B i o s p e c i f ic m e t h o d s f o r B - g r o u p v i t a m i n s 199

    Ta ble 8 . Fo la te l ev e l s ( / ~g per 100 g ) in Brusse l s spro uts by

    different procedures*

    Meth o d b

    Deco n ju g ase en zy m e Mean fo l a te

    co n t en t

    (numb er o f labs)

    Microbio log ical Hu m an p lasma 824 (6)

    assay Chicken p lasma 984 (6)

    EP BA Hu m an p l asm a 7 39 (3)

    Chicke n plasm a 1 320 (2)

    RP BA Hu m an p l asm a 2 0 9 3 (2)

    Chicke n plasm a 1 290 (2)

    HP LC ( to tal ) Hum an p lasma 762 (1)

    Chicke n plasm a 729 (1)

    F ro m F in g las et al. (1993).

    b

    EPBA: en zym e labelled protein binding assay. RPBA :

    rad io label led pro tein b ind ing assay (commercial ly avai lab le

    'radioassay' kits.

    Tot al fo late includ ing 5-me thyl -THF , 5-form yl-TH F and

    T H F f or m s .

    l i m i ts o f d e t e c t i o n o f 6 , 34 a n d 3 6 ~ g p e r w e l l, r e s p e c -

    t iv e ly . T h e r e l a ti v e r e s p on s e s o f 5 - f o r m y l - T H F a n d 5 -

    m e t h y l - T H F a r e a p p r o x i m a t e ly t h e s a m e a n d t h e re f o r e

    e i t h e r f o r m c o u l d b e u s e d a s t h e c a l i b r a n t i n t h e a s s a y

    f o r f o o d w o r k . A l t h o u g h P G A d o e s n o t o c c u r n a t u -

    r a l l y i n f o o d s , i t i s u s e d f o r e n r i c h m e n t p u r p o s e s , s o i n

    t h a t c a s e P G A s h o u l d b e u s e d a s t h e c a l i b r a n t . O t h e r

    f o l a te f o r m s , w i t h t h e p o s s i b le e x c e p t i o n o f T H F , a r e

    t h o u g h t t o b e u n s t a b l e d u r i n g e x t r a c t i o n . B y c h a n g i n g

    t h e pl a te c o a ti n g c on j u g a te f r o m P G A - K L H t o 5-

    f o r m y l - T H F t h e r es p o n se o f t he P G A f o la t e f o rm c a n

    b e m o d i f i e d a n d b e c o m e s c l o s er t o t h e r e s p o n s e o f t h e

    o t h e r t w o f o l a t e f o r m s t e s t e d ( F i g . 7 b ) .

    T h e E P B A w a s u s e d f o r t he d e t e r m i n a t i o n o f f o l a te

    i n a r a n g e o f r a w a n d c o o k e d v e g e t a b l e s ( F i n g l a s et a l . ,

    1 9 8 8 b ) . S a m p l e s w e r e a l s o a n a l y s e d b y m i c r o b i o l o g i c a l

    a s s a y a n d t h e r e s u l t s f r o m t h e t w o a s s a y s c o m p a r e d .

    G o o d a g r e e m e n t w a s o b t a i n e d b e t w e e n t h e m e t h o d s

    w i t h a l i n e a r r e l a t i o n s h i p o v e r t h e r a n g e 0 4 0 0 /~ g p e r

    1 0 0 g f o u n d . T h e E P B A c o u l d b e c a r r i e d o u t i n o n e

    w o r k i n g d a y c o m p a r e d t o 2 - 3 d a y s f o r t h e m i c r o b i o -

    lo g i ca l a s say .

    R e s u l t s f r o m t h e r e c e n t i n t e r l a b o r a t o r y c o m p a r i s o n

    o f f o l a t e m e t h o d s ( F i n g l a s

    et a l . ,

    1 9 9 3 ) a r e g iv en i n

    T a b l e 8 . T h e E P B A s u s e d w e r e e s s e n t i a l l y b a s e d o n t h e

    s a m e f o r m a t a s d e s c r i b e d a b o v e b u t t h e r e s u l ts b e t w e e n

    l a b o r a t o r i e s v a r i e d f r o m 3 7 8 t o 1 0 5 1 /~ g p e r 1 00 g

    ( n = 3 ) f o r h u m a n p l a s m a e n z y m e a n d f r o m 9 0 3 t o

    1 6 0 1 p~g p er 1 0 0 g (n = 2 ) fo r ch i ck e n p a n cr eas d ec o n -

    j u g a s e e n z y m e . T h e H P L C p r o c e d u r e s i n d i c a t e d t h e

    m a j o r f o l a t e f o r m s p r e s e n t i n B r u s s e l s s p o u t s w e r e 5 -

    m e t h y l - T H F ( 5 0% ) , T H F ( 30 % ) a n d 5 - f o r m y l - T H F

    ( 20 % ). T w o o f th e l a b o r a t o r i e s u s e d 5 - m e t h y l - T H F a s

    t h e c a l i b r a n t , w h e r e a s t h e t h i r d u s e d P G A .

    T h e s t u d y c o n c l u d e d t h a t t h e m a i n l i m i t a t i o n o f

    b o t h t h e E P B A a n d R I A i s t h e r e s p o ns e o f t h e in d i-

    ~ a )

    HN N N

    2 ' ~ y ~ ~ 0 COOH

    I | ~ H I I J H

    N N S ~C . N = ~ . . ~ C--N --C --C 2--C 2--C O

    OH

    b )

    c ) d )

    O

    O

    e ) f )

    Fig. 6. Fola te vitamins and structura lly related com pound s: (a) folic or pteroy lglutam ic acid; (b) 5,6,7,8-tetrahydrofolic acid

    (R = H) , 5 -formyl tet rahydrofo l ic acid (R - - CHO), 5 -methyl tet rahydrofo l ic acid (R - - CH3); (c) p tero ic acid ; (d ) p ter ine (R ' - - H) ,

    pterin-6-c arbox ylic acid (R' = COO H); (e) p-am inobe nzoic acid (PAB A) and (f) N-(p-aminobenzoyl)-L-glutamic acid (PABG A).

    [From: Finglas, P. M. et aL (1988) . The developm ent and cha racter i sat ion o f a p ro tein-b id ing assay for the determinat ion of

    fo late-- po ten t ial use in food analysis . J . Micronutrient Analysis, 4, 295308.]

  • 8/11/2019 Metode Biospesifik Penentuan Asam Pantotenat,Biotin, Folat, Vit B6 Dan B12

    10/11

    100

    0

    0

    J

    i

    1 0 p g 1 0 0 p g l n g 1 0 n g 1 0 0 n g

    100

    50

    E

    E

    Folate vitamin/well

    Fig. 7a. EPBA standard curves for var ious fo lates using

    P G A -K LH p l a tes co a t ed a t 1 /zg m l l an d F BP -en z y m e

    c o n ju g a te a t l : 1 0 0 ( v : v ) . l , P G A ; Q , 5 - C H O T H F ; A ,

    5-CH3THF. Marker bars ind icate _+l SD. [From: as for

    Fig. 6.]

    50

    0

    0

    ~ i :

    1 0 p g 1 0 0 p g l n g 1 0 n g 1 0 0 n g

    2 0 0 P . M . F i n g l a s , M . R . A . M o r g a n

    Folate vitamin/well

    Fig.

    7b. EPBA curves for var ious fo lates using 5-formyl-

    tet rahydrofo l ic ac id-K LH plates coated at l0 /zg ml 1. I ,

    P GA ; O, 5 -CH OTH F ; A , 5 -CH3 TH F . Mark er b a rs i n d ica t e

    _+ 1 SD. [From: as for Fig. 6.]

    v i d u a l f o la t e f o r m s t o t h e F B P u s e d. C a r e f u l c o n t r o l o f

    t h e p H o f t h e a s s a y b u f f er u s e d a n d c h o i c e o f th e a s s a y

    c a l i b r a n t i s n e e d e d , i f t h e s e a s s a y s a r e t o b e a p p l i e d t o

    t h e m e a s u r e m e n t o f f o o d f o la t e s.

    T h e E P B A a s s a y f o r f o l a te o f f er s t h e p o t e n t i a l

    f o r b r o a d s p e c i fi c i ty a n d s u f fi c ie n t s e n s it i v it y f o r t h e

    m e a s u r e m e n t o f f o o d f ol a te s . F u r t h e r w o r k , h o w e v e r ,

    i s n e e d e d t o s t a n d a r d i s e t h e m e t h o d o l o g y , p a r t i c u l a r l y

    i n t h e c h o i c e o f c a l i b r a n t a n d a s s a y c o n d i t i o n s , b e f o r e

    r e s ul ts c a n b e c o n f i d e n t l y c o m p a r e d w i t h o t h e r p r o -

    c e d u r e s s u c h a s t h e m i c r o b i o l o g i c a l a s s a y .

    C O N C L U S I O N S

    B i o s p e c i f ic m e t h o d s o f a n a l y s i s o f f e r t h e a n a l y s t c o n -

    s i d e r a b l e p o t e n t i a l t o f u l f il t h e i n c r e a s i n g n e e d f o r

    m o r e r a p i d , s e n s i t iv e a n d s p e c if i c v i t a m i n a s s a y s . T h e

    t e c h n i q u e s d o n o t r e q u i r e h i g h l y s k i l l e d o p e r a t o r s

    o r s o p h i s t i c a t e d d e t e c t i o n s y s t e m s a n d c a n b e e a s i l y

    a u t o m a t e d .

    E P B A s a r e u s e f u l f o r a s s a y s o f b r o a d s p e c i fi c i ty

    w h e r e t h e a n a l y s i s o f a g r o u p o f v i t a m e r s i s r e q u i r e d ,

    a s i n t h e c a s e o f f o l a t e o r b i o t i n . T h u s , t h e r e s u l t s

    o b t a i n e d w i t h t h e s e a s sa y s m a y b e e x p e c t e d t o c o r r e l a t e

    b e t t e r w i t h t h e r e s u l t s o f m i c r o b i o l o g i c a l p r o c e d u r e s .

    H o w e v e r , t h e E L I S A f o r m a t u s i n g a n t i b o d i e s h a s t h e

    g r e a t e r p o t e n t i a l f o r t h e d e t e c t i o n o f s p e c if i c v i t a m i n

    f o r m s , w h i c h c a n b e u s e f u l f o r n u t r i t i o n a l s t u d i e s

    i n c l u d i n g t h e a s s e s s m e n t o f v i ta m i n b i o a v a i l a b i l i t y in

    f o o d a n d t h e m e a s u r e m e n t o f v it a m i n s t a tu s . T h e

    s p e c i fi c i ty o f a n t i b o d i e s m e a n s t h a t t h e y c o u l d b e u s e d

    i n c o n j u n c t i o n w i t h c h r o m a t o g r a p h i c p r o c e d u r e s t o

    a s s i st i n t h e i d e n t i f i c a t i o n / q u a n t i f i c a t i o n o f i n d i v i d u a l

    v i t a m e r s b e c a u s e n o r m a l d e t e c t i o n s y s t e m s a r e i n a d e -

    q u a t e . I n a d d i t i o n , b y t h e c a r e f u l s e l e c t i on o f i m m u -

    n o g e n c o n j u g a t e s , o r b y m i x i n g t w o o r m o r e d i f f e r e n t

    a n t i s e r a t o g e t h e r , a n t i b o d i e s c o u l d b e u s e d t o d e t e c t

    s e l ec t e d c o m b i n a t i o n s o f v i t a m e r s .

    R E F E R E N C E S

    Alcock, S. A., Finglas, P. M. & Morgan, M. R. A. (1990).

    An enzyme-l inked immunosorbent assay for pyr idoxamine

    and i t s compar ison wi th al ternate analy t ical p rocedures .

    Food and Ag ricultural Immu nology, 2, 197-204.

    Alcock, S. A., Finglas, P. M. & Morgan, M. R. A. (1992).

    Produc t ion and pur i f ication of an R-pro tein enzym e conju-

    gate for use in a micro t i t rat ion p late pro tein-b ind ing assay

    for vitamin B12 in fortified food. Food Chemistry, 45,

    199-203.

    Anderson , B. B. , Newmark , P . A. , Rawl ins , M. & Green , R.

    (1974) . P lasma b ind ing of v i tamin B6 compounds.

    Nature,

    2 5 0 ,

    502.

    Bon jour, J. P. (1991). Biotin. In: Handbook of Vitamins, 2nd

    edn, ed . L. J . Machl in . Marcel Dekker , New York , pp .

    393-427.

    Butler, V. P. & C he n, J. P. (1967). Digoxin-specific antibod-

    ies.

    Proc. Nat l Acad. Sci . USA,

    57, 71-8.

    Chin , H . B. (198 5) . Vi tamin B I2 . In :

    Methods of Vi tamin

    Assay, 4th edn, ed. J. Augustin, B. P. Klein, D. A. Becker

    & P. B. Venugopal. Wiley-Interscience, New York, pp.

    497-514.

    Cordo ba, F . , Gon zalez, C. & Rivera, P . (1966) . Ant ibodies

    against pyr idoxal -5-phosphate and pyr idoxamine-5-phos-

    phate.

    Biochim. Biophys. Acta,

    127, 151-8.

    DaC osta, M. & R othenberg , S . P . (1971) . Iden t i ficat ion of

    an immunoreact ive fo late in serum ext racts by rad io-

    immunoassay . Br. J. Hematol., 21, 121-30.

    Dakshinamurti , K. & Allan, L. (1979). Isotope dilution assay

    for biotin: use of [3H]-biotin. In: Methods in Enzymology,

    Vol . 62D, ed . D. McCormick & L. Wright . Academic

    Press , New York , pp . 284-7 .

    England ,

    J. M. & Linnel l , J . C. (1980).

    Lancet

    ,

    1072-4.

    E rlanger , B. F . , Borek, O. F., Beiser, S. M. & L iebermann , S .

    J . (1959) . Preparat ion and character i sat ion of conjugates of

    bovine serum albumin wi th progesterone, deoxycor t ico-

    s terone and esterone.

    J. Biol . Chem.,

    234, 1090-4.

  • 8/11/2019 Metode Biospesifik Penentuan Asam Pantotenat,Biotin, Folat, Vit B6 Dan B12

    11/11

    B i o s p e c i fi c m e t h o d s f o r B - g r o u p v i t am i n s 201

    Farquharson, J. & Adams, J. F. (1976). The forms of vitamin

    B-12 in foods. Br. J . Nutr. , 36, 127-36.

    Finglas, P. M., Faulks, R. M. & Morgan, M. R. A. (1986).

    The analysis of biotin in liver using a protein-binding

    assay. J. Micronutr. AnaL, 2, 247-57.

    Finglas, P. M. & Morgan, M. R. A. (1988a). The determina-

    tion o f vitamins in food by biospecific analysis. Internat.

    Industrial Biotechnology, 8(3), 9-12.

    Finglas, P. M., Faulks, R. M. & Morgan, M. R. A. (1988b).

    The development and characterisation of a protein-binding

    assay for the determination of folate--potential use in food

    analysis. J.

    Micronutr. AnaL,

    4, 295-308.

    Finglas, P. M., Kwiatkowska, C. A., Faulks, R. M. &

    Morgan, M. R. A. (1988c). Comparison of a non-isotopic,

    microtitrat ion plate folate-binding protein assay and a

    microbiological method for the determination of folate in

    raw and cooked vegetables. J.

    Micronutr. AnaL,

    4, 309-22.

    Finglas, P. M., Faure, U. & Southgate, D. A. T. (1993). First

    BCR-intercomparison on the determination of folates in

    food. Food C hemistry , 46 , 199-213.

    Fox, H. M. (1984). Pantothenic acid. In: H a n d b o o k o f

    Vitamins--Nutritional, Biochemical and Clinical Aspects,

    ed. L. J. Machlin. Marcel Dekker, New York, pp. 437-57.

    Givas, J. K. & Gutcho, S. (1975). pH dependence of the

    binding of folates to milk binder in radioassay of folates.

    Clin. Chem., 21,427-8.

    Goodfriend, T. L., Levine, L. & Fasman, G. D. (1964). Anti-

    bodies to bradykinin and angiotensin: a use of carbo-

    dimides in immunology.

    Science,

    144, 13~A 6.

    Graham, D. C., Roe, D. A. & Ostotag, S. G. (1980). Radio-

    metric determination and chick bioassay of folacin in forti-

    fied and unfortified frozen foods. J. Food ScL , 45, 47.

    Gregory, J. (1982). Relative activity of the non-phosphory-

    lated B-6 vitamers for Saccharomyces uvarum and

    Kloechera brevis in vitamin B-6 microbiological assay. J.

    Nutr . , 112, 1642.

    Gregory, J. F. (1985). Folacin. Chromatographic and radio-

    metric assays. In: Methods o f V i tamin Assay, 4th edn, ed. J.

    Augustin, B. P. Klein, D. A. Becker & P. B. Venugopal.

    Wiley-Interscience, New York, p. 485.

    Gutcho, S. & Mansbach, L. (1977). Simultaneous radioassay

    of serum vitamin B12 and folic acid. Clin. Chem., 23, 1609.

    Hendel, J. (1981). Radioimmunoassay for pteroylmonoglu-

    tamic acid.

    Clin. Chem.,

    27, 701.

    Hood, R. L. (1975). A radiochemical assay for biotin in bio-

    logical materials. J. Sci. Food Agric. , 26, 1847-52.

    Hood, R. L. (1979). Isotope dilution assay for biotin: use of

    [14C]-biotin. In: M eth o d s in E n zym o lo g y , Vol. 62D, ed. D.

    McCormick & L. Wright. Academic Press, New York, pp.

    279-83.

    Horne, D. W. & Patterson, D. (1988). Lactobacillus casei

    assay of folic acid derivatives in 96-well microtitre plates.

    Clin. Chem., 34, 2357-9.

    Klein, B. P. & Kuo, C. H. (1981). Comparison of microbio-

    logical and radiometric assays for determining total folacin

    in spinach.

    J. Food Sci. ,

    6, 552.

    Kohler, G. & Milstein, C. (1975). Continuous cultures of

    fixed cel ls producing antibodies of predefined specificity.

    N a tu re L o n d o n ) ,

    256, 495-7.

    Lau, K.-S., Gottlieb, C., Wasserman, L. R. & Herbert, V.

    (1965). Measurement of serum vitamin B12 level usingradio-

    isotopic dilution and coated charcoal.

    Blood,

    26, 202-14.

    Livaniou, E., Evangelatos, G. P. & Ithakissios, D. S. (1987).

    Biotin radioligand assay with an J25I-labelled biotin deriva-

    tive, avidin and avidin double antibody reagents. Clin.

    Chem., 33, 1983-88.

    Marcus, M., Prabhudesai, M. & Wassef, S. (1980). Stability

    of vitamin B12 in the presence of ascorbic acid in food and

    serum: restoration by cyanide of apparent loss.

    Am. J . Clin .

    Nu tr . , 33, 137.

    Mock, D. M. & Dubois, D. B. (1986).

    Anal, Biochem.,

    153,

    272-8.

    Morgan, M. R. A. (1985). New techniques in food analysis--

    immunoassays and their application to small molecules. J.

    Assoc. Public Analysts, 23, 59-63.

    Morris, H. C., Finglas, P. M., Faulks, R. M. & Morgan, M.

    R. A. (1988). The development of an enzyme-linked im-

    munosorbent assay (ELISA) for the analysis of pantothenic

    acid and analogues. Part I- -Produ ction of antibodies and

    establishment of ELISA systems. J. Micronutr. AnaL, 4,

    33-45.

    Newman, E. M. & Tsai, J. F. (1986). Microbiological analysis

    of 5-formyltetrahydrofolic acid and other folates using an

    automatic 96-well plate reader.

    Anal B iochem. ,

    154,

    509-15.

    Newmark, H. L., Scheiner, J., Marcus, M. & Prabhudesai,

    M. (1976). Stability of vitamin B12 in the presence of

    ascorbic acid. Am. J . C l in . Nu tr . , 29, 645-51.

    Olesen, H., Hippe, E. & Hater, E. (1971). Nature of vitamin

    B12 binding. I Covalent coupling of hydroxocobalamin to

    soluble and insoluble carriers. Biochim. Biophys. Acta, 243,

    66-74.

    Polansky, M. M., Reynolds, R. D. & Vanderslice, J. T.

    (1985). Vitamin B6. In: Methods o f V i tamin Assay, 4th edn,

    ed. J. Augustin, B. P. Klein, D. A. Becker & P. B. Venu-

    gopal. Wiley-Interscience, New York, pp. 417-43.

    Reingold, R. N., Picciano, M. F. & Perkins. G. (1980).

    Identification of folate forms in selected infant foods. Fed.

    Proc., 39, 656-9.

    Reinhardt, T. A. & Horst, R. L. (1988). Simplified assays for

    the determination of 25-OH-D, 24,25-(OH)2-D and 1,25-

    (OH)2-D. In: Vitamin D. Molecular, Cellular and Clinical

    Endocrinology,

    ed. A. Norman. Walter de Gruyter, Berlin,

    pp. 720q5.

    Reinhardt, T. A., Horst, R. L., Orf, J. W. & Hollis, B. W.

    (1984). A microassay for 1,25-dihydroxy vitamin D not

    requiring high performance liquid chromatography: appli-

    cation to clinical studies. J.

    Clin . Endocrino l . Metab . ,

    58,

    91-8.

    Richardson, P. J., Favell, D. J., Gridley, G. C. & Jones, G.

    H. (1978). Application o f a commercial radioassay test kit

    to the determination of vitamin B12 in food. Analyst , 103,

    865-8.

    Ricker, R. & Stollar, B. D. (1967). Antibodies reactive with

    specific folic acid determinants.

    Biochemistry,

    6, 2001-5.

    Shaw, W. H. C. Bissell, C. J. (1960). The determination o f

    vitamin B12. A critical review. Analyst , gs, 389--409.

    Smith, A. H., Wyse, B. W. & Hansen, R.._q. (1981). The

    development of an ELISA for pantothenat .. Abstract No.

    3886, Fed. Proc. , 40, 915.

    Tsalta, C. D. & Meyerhoff, M. E. (1987). Homogeneous

    enzyme-linked assay for vitamin B12. Anal Chem. , 59,

    837-41.

    Van de Weil, D. F. M., Goedemans, W. T. & Woldring, M.

    G. (1974). Production and purification of antibody against

    protein-vitamin B12 conjugates for radioimmunoassay

    purposes. Clin . Chem. Acta , 56, 143-9.

    Viceps-Madore, D. J. Cidlowski, J. A., Kittler, J. M. &

    Thanassi, J. W. (1983). Preparation, characterisation and

    use of monoclonal antibodies to vitamin B6. J. Bio l .

    Chem., 258, 2689-96.

    Voigt, M. N. & Eitenmiller, R. R. (1960). Comparative

    review of the thiochrome, microbial and p rotozoan analysis

    of B-vitamins. J. Food Protection, 41,730-8.

    Walsh, J. H., Wyse, B. W. & Hansen, R. G. (1980). A com-

    parison of microbiological and radioimmunoassay methods

    for the determination of pantothenic acid in foods. J. Food

    Biochem., 3, 175-82.

    Walsh, J. H., Wyse, B. W. & Hansen, R. G. (1981). Pan-

    tothenic acid content of 75 processed and cooked foods. J.

    Am. Dietet. Assoc. , 78, 140-3.

    Wyse, B. W., Wittwer, C. & Hansen, R. G. (1979). Radio-

    immunoassay for pantothenic acid in blood and other

    tissues.

    Clin. Chem.,

    25, 108-1 i.