LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

94
LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020 (Biojetfuel Range Alkanes Production From Minyak Kemiri Sunan (Reutealiss trisperm Oil) Via Hydrodeoxygenation Reaction By Metal/Aluminosilicates From Local Source) Tim Peneliti : Prof. Didik Prasetyoko, M.Sc (Kimia/FSAD) Dr. Yuly Kusumawati, M.Si (Kimia/FSAD) DIREKTORAT RISET DAN PENGABDIAN KEPADA MASYARAKAT INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2020 Sesuai Surat Perjanjian Pelaksanaan Penelitian No: 836/PKS/ITS/2020

Transcript of LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

Page 1: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

i

LAPORAN AKHIR

PENELITIAN HI-IMPACT

DANA ITS 2020

(Biojetfuel Range Alkanes Production From Minyak Kemiri

Sunan (Reutealiss trisperm Oil) Via Hydrodeoxygenation Reaction

By Metal/Aluminosilicates From Local Source)

Tim Peneliti :

Prof. Didik Prasetyoko, M.Sc (Kimia/FSAD)

Dr. Yuly Kusumawati, M.Si (Kimia/FSAD)

DIREKTORAT RISET DAN PENGABDIAN KEPADA MASYARAKAT

INSTITUT TEKNOLOGI SEPULUH NOPEMBER

SURABAYA

2020

Sesuai Surat Perjanjian Pelaksanaan Penelitian No: 836/PKS/ITS/2020

Page 2: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

i

Daftar Isi

Daftar Isi ........................................................................................................................................................ i

Daftar Tabel .................................................................................................................................................. ii

Daftar Gambar ............................................................................................................................................. iii

Daftar Lampiran............................................................................................................................................ v

BAB I RINGKASAN ................................................................................................................................... 1

BAB II HASIL PENELITIAN ...................................................................................................................... 3

BAB III STATUS LUARAN ...................................................................................................................... 23

BAB IV PERAN MITRA (Untuk Penelitian Kerjasama Antar Perguruan Tinggi) ..................................... 24

BAB V KENDALA PELAKSANAAN PENELITIAN .............................................................................. 25

BAB VI RENCANA TAHAPAN SELANJUTNYA .................................................................................. 26

BAB VII DAFTAR PUSTAKA.................................................................................................................. 27

BAB VIII LAMPIRAN .............................................................................................................................. 29

LAMPIRAN 1 Tabel Daftar Luaran ........................................................................................................... 29

Page 3: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

ii

Daftar Tabel

Tabel 1 Jumlah situs asam Bronsted dan Lewis menggunakan adsorpsi piridin.............................16

Tabel 2 Pergeseran kimia dan rasio Si/Al dari 29Si NMR…………………….…………………..17

Page 4: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

iii

Daftar Gambar

Hal

Gambar 1. Spektra IR katalis aluminosilikat dari redmud (a) aluminosilikat H+-

Ni, (b) aluminosilikat H+, (c) aluminosilikat Na+Ni, (d) aluminosilikat

Na+

4

Gambar 2. Difraktogram katalis aluminosilikat dari redmud (a) aluminosilikat H+-

Ni, (b) aluminosilikat H+, (c) aluminosilikat Na+Ni, (d) aluminosilikat

Na+

5

Gambar 3. N2 adsorpsi-desorpsi katalis aluminosilikat redmud (a) dan distribusi

ukuran pori menggunakan metode DFT (b)

6

Gambar 4. Foto TEM katalis aluminosilikat redmud 6

Gambar 5. Komposisi Produk Biojetfuel Minyak Kemiri Sunan dengan Reaksi

Hidrodeoksigenasi menggunakan katalis Aluminosilikat redmud

7

Gambar 6. Distribusi Produk Biojetfuel Minyak Kemiri Sunan dengan Reaksi

Hidrodeoksigenasi menggunakan katalis Aluminosilikat redmud

Gambar 7. Spektra FTIR ZSM-5 3 jam, ZSM-5 6 jam, ZSM-5 9 jam

Gambar 8. Difraksi sinar X ZSM-5 3 jam, ZSM-5 6 jam, ZSM-5 9 jam

Gambar 9. Foto SEM katalis ZSM-5 3 jam (a), ZSM-5 6 jam (b) dan ZSM-5 9 jam

(c)

Gambar 10. Kurva TGA sampel ZSM-5 3jam (a), ZSM-5 6 jam (b) dan ZSM-5 9

jam (c)

Gambar 11. Distribusi komposisi biofuel hasil reaksi hirodeoksigenasi minyak

kemiri sunan dengan katalis ZSM-5

Gambar 12. Spektra FTIR (a) dan adsorpsi piridin (b) pada kaolin, Al-MCM-41,

ZSM-5 yang disintesis menggunakan TPAOH (T-ZSM-5) dan ZSM-5

yang disintesis menggunakan silikalit (S-ZSM-5)

Gambar 13. (a) sudut panjang dan (b) sudut pendek XRD dari kaolin, Al-MCM-41,

T-ZSM-5 dan S-ZSM-5

Gambar 14. Spektra dekonvolusi 29Si NMR dari S-ZSM-5 (a), T-ZSM-5 (b) dan

Al-MCM-41 (c)

Gambar 15. Distribusi rantai hidrokarbon pada reaksi deoksigenasi JCO

Gambar 16. Hasil konversi JCO (a) dan selektivitas hidrokarbon pada Al-MCM-41

dengan variasi waktu reaksi deoksigenasi. Komposisi hidrokarbon

dibagi menjadi dua fraksi yakni fraksi gasoline (C8-10) dan fraksi diesel

(C11-18)

7

9

10

11

12

13

16

17

18

20

21

Page 5: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

iv

Gambar 17. Spektra FTIR dari JCO dan produk cair (a) dan analisis produk gas

pada reaksi deoksigenasi JCO (b)

22

Page 6: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

v

Daftar Lampiran

Lampiran 1. Tabel Daftar Luaran ……………………………………………………………..25

Lampiran 2. Bukti Abstrak Submitted pada Seminar ICCME 2020 dan paper submitted ……27

Lampiran 3. Manuscript paper publikasi ……………………………………………………...28

Page 7: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

1

BAB I RINGKASAN

.

Penelitian yang dilakukan memiliki tujuan untuk menghasilkan produk senyawa alkana

dalam range bio jet-fuel dari bahan baku minyak nabati non-edible Kemiri Sunan (Reutealis

trisperm) menggunakan material katalis aluminosilikat dari sumber alam lokal dalam rangka

mendukung subtitusi bahan bakar yang berkelanjutan. Bio jet-fuel dari konversi minyak nabati

non-edible Reutealis trisperm atau Kemiri Sunan merupakan alternatif pengganti bahan bakar

fosil yang potensial untuk dikembangkan karena faktor kelimpahan yang tinggi dan tidak

menimbulkan persaingan dengan sektor pangan dan pertanian. Dengan meningkatnya

kebutuhan energi dalam bidang transportasi dari tahun ke tahun, mengakibatkan penelitian

tentang teknologi subtitusi bahan bakar maupun pengembangan material maju sebagai katalis

reaksi konversi minyak nabati menjadi bio jet-fuel menjadi perhatian banyak peneliti.

Peningkatan performa bahan bakar jenis biodiesel menjadi bio jet-fuel karena keunggulan sifat

fisik dan kimianya untuk aplikasi pada mesin kendaraan darat dan udara, melibatkan

penggunaan katalis yang spesifik dan selektif dalam reaksi konversi energi baru terbarukan.

Inovasi modifikasi katalis konversi untuk menghasilkan senyawa hidrokarbon alkana

dalam range bio jet-fuel sangat berperan untuk mencapai hasil akhir reaksi konversi katalitik

dengan tingkat selektifitas dan konversi yang tinggi. Dalam penelitian ini modifikasi

permukaan katalis aluminosilikat dilakukan dengan penambahan logam aktif nikel serta variasi

interaksi logam dan support dalam framework aluminosilikat. Material aluminosilikat dalam

penelitian ini disintesis dari sumber alam lokal seperti limbah bauksit (Red mud) dan kaolin

juga merupakan keterbaruan dalam penelitian produksi bio jet-fuel melalui reaksi

hidrodeoksigenasi. Selain itu pemanfaatan limbah bauksit juga menjadi salah satu solusi

permasalahan lingkungan yang dapat diintegrasikan dengan pengembangan material untuk

energi dan lingkungan.

Sintesis aluminosilikat dilakukan dengan metode hidrotermal dengan tahapan dua kali

kristalisasi (two steps crystallization) dengan logam aktif Ni sebagai katalis reaksi

hidrodeoksigenasi minyak Kemiri Sunan. Karakterisasi fisika dan kimia katalis dalam

penelitian ini dilakukan dalam rangka mengetahui efektivitas dan selektivitas katalis berbasis

sumber lokal pada produksi senyawa alkana dalam range bio jet-fuel. Karakterisasi material

yang dilakukan meliputi FTIR, XRD, TGA, SEM, TEM, N2 adsorpsi desorpsi dan FTIR piridin.

Uji katalitik reaksi hidrodeoksigenasi selanjutnya dilakukan dalam skala laboratorium

menggunakan feedstock minyak Kemiri Sunan dan asam oleat (model compound) dalam reaktor

Page 8: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

2

semi-batch dengan variasi parameter reaksi jenis katalis, suhu dan waktu reaksi untuk

mendapatkan data tentang konversi dan selectivitas produk senyawa alkana range bio jet-fuel.

Analisis produk hasil reaksi hidrodeoksigenasi dilakukan menggunakan GC-MS.

Luaran yang ditargetkan dalam penelitian ini yaitu artikel ilmiah yang dipublikasikan pada

jurnal internasional teindeks Scopus Q1. Luaran tambahan dalam penelitian ini adalah presentasi

pada seminar internasional. Status luaran wajib dalam penelitian ini adalah ter-submit dengan status

under review pada jurnal Microporous and Mesoporous Materials (Q1) dengan H Index Jurnal 151

Impact factor 4.551, citation score 7,7dan luaran tambahan yakni telah dilaksanakan seminar

internasional ICCME Universitas Diponegoro.

Page 9: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

3

Ringkasan penelitian berisi latar belakang penelitian,tujuan dan tahapan metode

penelitian, luaran yang ditargetkan, kata kunci

BAB II HASIL PENELITIAN

Hasil penelitian yang telah dilakukan meliputi sintesis katalis aluminosilikat berbasis

sumber lokal red mud/kaolin, karakterisasi katalis aluminosilikat, uji aktivitas katalis melalui reaksi

hidrodeoksigenasi minyak kemiri sunan dan asam oleat

1. Sintesis aluminosilikat dari Redmud

Sintesis aluminosilikat dengan sumber silika dan alumina dari Redmud pulau Bintan dilakukan dengan

metode hidrotermal melalui 2 tahap kristalisasi pada suhu 80 °C selama 24 jam dan 28 °C selama 4 jam serta

dan sumber silika kaolin Bangka Belitung yang dilakukan dengan metode hidrotermal melalui 2 tahap

kristalisasi pada suhu 80 °C selama 12 jam dan 150 °C selama 24 jam . Padatan aluminosilikat yang terbentuk

selanjutnya dicuci dengan aquades hingga pH netral. Katalis aluminosilikat selanjutnya dilakukan proses

kalsinasi untuk menghilangkan template CTABr yang berperan dalam proses pembentukan mesopori. Katalis

yang terbentuk selanjutnya dimodifikasi struktur permukaannya untuk mengetahui sisi aktif yang berperan

dalam reaksi hidrodeoksigenasi melalui beberapa cara yaitu impregnasi logam Ni menghasilkan katalis

aluminosilikat bentuk Na+-Ni, pertukaran kation Na+ pada aluminosilikat dengan H+ menghasilkan katalis

aluminosilikat H+, serta pertukaran kation dan impregnasi logam Ni menghasilkan katalis aluminosilikat H+-

Ni. Masing-masing katalis selanjutnya dikarakterisasi menggunakan FTIR, XRD, N2 adsorpsi-desorpsi,

TEM.

2. Karakterisasi Katalis

2.1 FTIR

Katalis aluminosilikat dikarakterisasi dengan FTIR untuk mengetahui gugus fungsional dari material

yang telah disintesis. Gambar 1 menunjukkan spektra FTIR dari katalis aluminosilikat awal dan yang telah

dimodifikasi struktur permukaannya. Seluruh katalis yang telah disintesis menunjukkan puncak serapan

karakteristik dari aluminosilikat, yaitu puncak serapan pada bilangan gelombang 3452, 3525, dan 3622

cm-1 yang merupakan puncak serapan khas dari vibrasi ulur –OH [1], sedangkan puncak serapan

pada bilangan gelombang 1629 cm-1 menandakan adanya vibrasi tekuk –OH. Puncak serapan khas

untuk vibrasi tekuk Si-O-Si, dan Si-O-Al terlihat pada daerah bilangan gelombang 1012, dan 1031

cm-1. Vibrasi ulur Si-O pada tetrahedral SiO4 menunjukkan puncak serapan pada bilangan

gelombang 746, 798, dan 914 cm-1 [2]. Puncak serapan pada bilangan gelombang 450 cm-1 yang

dihasilkan karena adanya vibrasi ikatan T-O-T (T adalah atom Al atau Si). Pada bilangan gelombang 550

cm-1 menunjukkan adanya vibrasi stretching asimetri dari D5R (double five-membered ring) yang merupakan

karakteristik dari struktur zeolite pentasil tipe MFI. Sedangkan pada bilangan gelombang 795 dan 1225 cm-

1 merupakan vibrasi streching eksternal simetri dan asimetri dari T-O-T.

Page 10: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

4

Gambar 1. Spektra IR katalis aluminosilikat dari redmud (a) aluminosilikat H+-Ni, (b) aluminosilikat H+,

(c) aluminosilikat Na+Ni, (d) aluminosilikat Na+

Karakterisasi FTIR pada ZSM-5 dari sumber mineral kaolin juga dilakukan untuk mengetahui

terbentuknya gugus fungsi ZSM-5.

2.2 XRD

Katalis aluminosilikat dikarakterisasi menggunakan XRD untuk mengetahui fasa yang terbentuk dari

material yang telah disintesis. Gambar 2 menunjukkan difraktogram dari katalis yang telah disintesis. Pola

difraktogram pada aluminasilika hasil sintesis (ASM) menunjukkan adanya hump (gundukan) pada

range 2θ = 15-30° tanpa adanya puncak. Menurut Xu dkk., (2011) adanya hump merupakan

karakteristik dari fasa amorf suatu padatan, sehingga dapat disimpulkan bahwa ASM hasil sintesis

memiliki fasa amorf [1]. .Hasil yang sama juga dilaporkan oleh Qoniah dkk dan Hartati, Prasetyoko,

dkk. [2,3]. Berdasarkan hasil tersebut, dapat disimpulkan bahwa ASM telah berhasil disintesis dari

red mud dan fasa yang dihasilkan adalah amorf.

a

b

c

d

Page 11: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

5

Gambar 2. Difraktogram katalis aluminosilikat dari redmud (a) aluminosilikat H+-Ni, (b) aluminosilikat H+,

(c) aluminosilikat Na+Ni, (d) aluminosilikat Na+

2.3 N2 adsorpsi-desorpsi

Karakterisasi menggunakan N2 adsorpsi-desorpsi dilakukan pada sampel katalis aluminosilikat dari

redmud awal. Karakterisasi ini bertujuan untuk mengetahui sifat textural dari material yang telah disintesis

seperti luas permukaan meso, mikro, ukuran pori dan volume pori. Gambar 3 menunjukkan grafik isoterm

dan distribusi ukuran pori katalis aluminosilikat. Pola isoterm ASM hasil sintesis menunjukkan pola

isoterm tipe IV dimana terjadi adsorpsi molekul nitrogen dalam jumlah rendah pada tekanan relatif

(P/P0) 0,0 sampai 0,3 yang ditandai dengan pola isoterm yang naik. Hal ini disebabkan pada tekanan

relatif 0,01 – 0,3 molekul nitrogen yang teradsorp memenuhi permukaan padatan sehingga

terbentuk lapisan tunggal atau monolayer. Pada tekanan relatif (P/P0) 0,4 – 0,9 mengindikasikan

terbentuknya multilayer dengan adanya penambahan volume molekul nitrogen yang teradsorpsi

(Chorkendorff dan Niemantsverdriet, 2017). Data distribusi ukuran pori dari sampel aluminosilikat

mesorpori dengan metode BJH (Barret, Joiner, Halenda). Berdasarkan gambar tersebut terlihat

bahwa distribusi pori sampel aluminosilikat memiliki ukuran pori pada radius sekitar 1,53 – 15,57

nm (diameter pori 3,1 – 31 nm) (Tabel 4.2) dengan luas permukaan total 404 m2/g.

a

b

c

d

Page 12: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

6

Gambar 3. N2 adsorpsi-desorpsi katalis aluminosilikat redmud (a) dan distribusi ukuran pori menggunakan

metode DFT (b)

Berdasarkan analisis N2 adsorpsi- desorpsi dapat dsimpulkan bahwa katalis aluminosilikat dari

sumber redmud memiliki karakteristik padatan mesopri interpartikel.

2.4 TEM

Karakterisasi TEM pada katalis aluminosilikat dilakukan untuk mengetahui sebaran pori meso dan

ukuran pori katalis. Gambar 4 menunjukkan hasil foto TEM katalis aluminosilikat dari redmud.

Berdasarkan gambar TEM terlihat bahwa pori dari ASM memiliki bentuk pori spherical dan tidak

teratur dengan ukuran pori ~1 nm. Hal ini dapat dilihat dari pembentukan sistem penghubung yang

terjadi secara acak. Hasil yang sama juga dilaporkan oleh Qoniah dkk., (2015) dimana dihasilkan

aluminosilikat dengan bentuk pori yang tidak teratur pada material aluminosilikat. Hasil analisa

TEM ini juga mengkonfirmasi adanya mesopori yang terbentuk pada interpartikel.

Gambar 4. Foto TEM katalis aluminosilikat redmud

Page 13: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

7

3 Uji Aktivitas Katalitik Aluminosilikat dengan Minyak Kemiri Sunan

Uji aktivitas katalitik katalis aluminosilikat dilakukan pada reaksi hidrodeoksigenasi minyak kemiri

sunan dengan kondisi reaksi 3% katalis, temperatur reaksi 300 oC, waktu reaksi 1 jam, dan aliran gas

hydrogen 50 dan 100 mL/menit sebagai studi pendahuluan. Hasil analisis biojetfuel dari reaksi

hidrodeoksigenasi minyak kemiri sunan dengan instrument GC-MS menunjukkan hasil komposisi produk

biojetfuel meliputi, aromatic, siklik, oksigenate dan hidrokarbon.

Gambar 5. Komposisi Produk Biojetfuel Minyak Kemiri Sunan dengan Reaksi Hidrodeoksigenasi

menggunakan katalis Aluminosilikat redmud

Gambar 6. Distribusi Produk Biojetfuel Minyak Kemiri Sunan dengan Reaksi Hidrodeoksigenasi

menggunakan katalis Aluminosilikat redmud

Berdasarkan hasil analisis terhadap aktivitas katalitik katalis aluminosilikat dari sumber alam,

menunjukkan bahwa hasil produk biojetfuel yang dihasilkan didominasi oleh senyawa aromatic yang sesuai

dengan karakter jet fuel yang ditetapkan oleh IATA dan standar jet A. Komposisi senyawa aromatic telah

memenuhi range standar senyawa aromatic untuk jetfuel. Oleh karena itu penelitian ini memiliki potensi

untuk pengembangan biojetfuel dari minyak kemiri sunan menggunakan katalis aluminosilikat berbasis

sumber alam lokal.

Page 14: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

8

4 Sintesis ZSM-5 dari sumber kaolin

Untuk mengetahui pengaruh sumber mineral pada produksi biojetfuel, sintesis aluminosilikat dalam

bentuk ZSM-5 dari kaolin juga dilakukan dengan metode hidrotermal dengan melakukan variasi waktu

hidrotermal tahap pertama dan juga variasi template. Variasi waktu hidrotermal yang dilakukan pada

penelitian ini adalah 3 jam, 6 jam dan 9 jam. Variasi template seperti silicalite dan TPAOH dilakukan untuk

mengetahui pada terbentuknya struktur mesopori pada material aluminosilikat.

Variasi terhadap waktu hidrotermal tahap pertama dilakukan untuk mengetahui karakteristik ZSM-

5 yang dihasilkan berdasarkan pengaruh transformasi material sumber silica alumina yang digunakan.

Metode sintesis aluminosilikat dari kaolin menggunakan precursor ludox dan pengarah struktur CTABr.

Pada penelitian ini sintesis ZSM-5 mesopori dilakukan pada pH basa karena pada pH tersebut di

dalam larutan akan terjadi polimerisasi ion-ion pembentuk zeolit. Pada pH > 6 terbentuk anion

Al(OH)4- atau AlO2

- yang merupakan anion pembentuk zeolit yang berasal dari sumber alumina.

Namun apabila larutan dalam keadaan asam yaitu pada pH 1 sampai 4 bentuk aluminium yang

dominan adalah [Al(H2O)6]3+. Keberadaan kation [Al(H2O)6]

3+tersebut akan menghambat

pembentukan kerangka aluminosilikat dari zeolit. Kerangka zeolit juga dipengaruhi oleh

keberadaan anion dari silikat. Pada pH > 12, akan terbentuk ion Si(OH)4-, yang merupakan ion

utama dalam proses pembentukan kerangka zeolite. Ludox (silika kolid) ditambahkan sebagai

sumber silika tambahan. Hal itu dikarenakan sumber silika yang dibutuhkan belum mencukupi

untuk terbentuknya ZSM-5. Aquades ditambahkan kembali ke dalam campuran tersebut sambil

diaduk selama 8 jam pada suhu kamar agar distribusi partikel merata. Aquades memiliki peranan

penting sebagai pelarut, mengubah sifat fisik dan kimia reaktan dan produk, serta mempercepat

reaksi.

Setelah di aduk selama 8 jam kemudian campuran di aging pada 70°C selama 6 jam. Aging

merupakan suatu proses yang mengacu antara pembentukan gel aluminosilikat dan tahap

kristalisasi. Aging memiliki efek penting pada pembentukan gel yang mempengaruhi nukleasi dan

kinetika pertumbuhan kristal zeolite. Proses aging berfungsi untuk meningkatkan nukleasi,

mengurangi waktu induksi dan kristalisasi. Selain itu, aging juga berperan dalam penataan ulang

ikatan dan struktur kimia dari fasa padat dan cair.

Tahap selanjutnya adalah proses kristalisasi pertama dengan metode hidrotermal pada 80°C

selama 3, 6, dan 9 jam. Proses tersebut terjadi secara kontinyu diawali dengan reaksi kondensasi

dan diikuti oleh polimerisasi larutan jenuh membentuk ikatan Si-O-Al. Selama proses hidrotermal

terjadi pembentukan jaringan ikatan Si-O-Al dan menghasilkan klaster (prekursor ZSM-5) yang

berukuran nano (nanokristal). Nanoklaster ini kemudian akan mengalami penataan menjadi

Page 15: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

9

aggregat yang lebih besar melalui pemanasan. Setelah melalui proses hidrotermal maka proses

kristalisasi pertama dihentikan agar pertumbuhan kristal tidak terus berlangsung yang dapat

menyebabkan terbentuknya partikel ZSM-5 yang lebih besar. Penggabungan partikel-partikel

tersebut akan semakin sulit untuk pembentukan mesostruktur dengan adanya penambahan surfaktan

CTABr, sehingga pada proses kristalisasi tahap pertama sangat berpengaruh terhadap pembentukan

pori yang berukuran meso pada tahap selanjutnya. Dengan mevariasi waktu hidrotermal tahap

pertama diharapkan dapat menghasilkan strukturmeso yang lebih banyak.

Penambahan surfaktan CTABr selanjutnya dilakukan dengan rasio mol Si/CTABr =3,85.

Setelah penambahan CTABr campuran dipanaskan pada suhu 150°C selama 24 jam untuk

kristalisasi tahap kedua. Surfaktan CTABr berfungsi sebagai pengarah struktur mesopori. Proses

kristalisasi kedua merupakan tahap kristalisasi pembentukan pori berukuran meso dimana terjadi

interaksi antara surfaktan dengan nanopartikel aluminosilikat. Setelah proses kristalisasi tahap

kedua selesai, padatan yang terbentuk dicuci dengan aquades dengan cara disaring sampai hasil

filtratnya mempunyai pH netral. Selanjutnya, padatan tersebut dipanaskan pada suhu 60ºC selama

24 jam untuk menghilangkan air. Penghilangan air pada suhu rendah dilakukan agar air keluar

secara perlahan sehingga tidak merusak kerangka Si-O-Al yang sangat rapuh. Padatan yang

terbentuk kemudian dikalsinasi pada suhu 550 ºC selama 1 jam dengan kenaikan suhu 2ºC/menit

menggunakan aliran gas nitrogen agar dekomposisi templat berlangsung perlahan sehingga tidak

merusak struktur kerangka dan memperkuat pembentukan ikatan aluminosilikat (Si-O-Al) yang

rapuh. Selanjutnya dikalsinasi pada suhu 550 °C selama 1 jam dengan aliran N2 dan 6 jam pada

udara bebas untuk menghilangkan templat organik (karbon) dan menguatkan jaringan Si-O-Al.

5 Karakterisasi material ZSM-5 dengan variasi waktu

5.1 FTIR

Material ZSM-5 hasil sintesis dengan variasi waktu hidrotermal pertama 3, 6 dam 9 jam dilakukan

karakterisasi FTIR untuk mengetahui gugus fungsi ZSM-5. Hasil karakterisasi FTIR ZSM-5 disajikan pada

Gambar 7. Berdasarkan spectra FTIR ZSM-5 pada gambar 7 diketahui bahwa pada semua variasi waktu

hidrotermal pertama 3, 6 dan 9 jam telah terbentuk gugus fungsi khas ZSM-5. Seluruh katalis yang telah

disintesis menunjukkan puncak serapan karakteristik dari aluminosilikat, yaitu puncak serapan pada

bilangan gelombang sekitar 3400-3500 cm-1 yang merupakan puncak serapan khas dari vibrasi ulur

–OH [1], sedangkan puncak serapan pada bilangan gelombang 1629 cm-1 menandakan adanya

vibrasi tekuk –OH. Puncak serapan khas untuk vibrasi tekuk Si-O-Si, dan Si-O-Al terlihat pada

daerah bilangan gelombang 1012, dan 1031 cm-1. Vibrasi ulur Si-O pada tetrahedral SiO4

menunjukkan puncak serapan pada bilangan gelombang 746, 798, dan 914 cm-1 [4]. Puncak serapan

pada bilangan gelombang 450 cm-1 yang dihasilkan karena adanya vibrasi ikatan T-O-T (T adalah atom Al

Page 16: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

10

atau Si). Pada bilangan gelombang 550 cm-1 menunjukkan adanya vibrasi stretching asimetri dari D5R

(double five-membered ring) yang merupakan karakteristik dari struktur zeolite pentasil tipe MFI.

Sedangkan pada bilangan gelombang 795 dan 1225 cm-1 merupakan vibrasi streching eksternal simetri dan

asimetri dari T-O-T.

Secara umum semua ZSM-5 dengan variasi waktu hidrotermal 3, 6, 9 jam terdapat puncak serapan

pada 910 cm-1 yang menunjukkan adanya serapan pengarah struktur yaitu CTABr yang memungkinkan

terbentiknya struktur meso pada ZSM-5.

Gambar 7 Spektra FTIR ZSm-5 3 jam, ZSM-5 6 jam, ZSM-5 9 jam

5.2 XRD

Pola difraksi sinar-X ZSM-5 dari kaolin dengan variasi waktu hidrotermal 3,6 dan 9 jam

ditunjukkan pada Gambar 8 . Hasil karakterisasi XRD dari sampel ZSM-5 3, 6, dan 9 jam

menunjukkan puncak- puncak karakteristik dari kaolin pada 2θ disekitar 12°, 20°-25° dan 35°-40°

telah hilang yang menunjukkan bahwa telah terbentuk ZSM-5. Puncak-puncak karakteristik dari

kaolin muncul pada 2θ di sekitar 12° yang merupakan fase kaolinit, puncak di sekitar 20° yang

merupakan fase musqovit, puncak tinggi di sekitar 25° yang merupakan fase kaolinit serta puncak

di sekitar 35°- 40° merupakan fase musqovit dan kaolinit. Puncak karakteristik dari kaolin tidak

terdapat pada semua ZSM-5 3 jam, ZSM-5 6 jam dan ZSM-5 9 jam. Hal ini mengindikasikan bahwa

Page 17: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

11

kaolin telah bereaksi dan mengalami transformasi menjadi ZSM-5. Puncak karakteristik difraksi

dari semua sampel pada 2θ sekitar 7,89°; 8,8°; 23,04°; 23,87° dan 24,32° merupakan karakteristik

ZSM-5 dengan struktur MFI [5].

Berdasarkan gambar difraksi sinar X pada gambar 8, terlihat bahwa pada sampel ZSM-5 3 jam

terdapat gundukan (hump) puncak pada 2θ sekitar 23°. Hal ini menunjukkan bahwa pada ZSM-5

dengan variasi waktu hidrotermal pertama 3 jam memiliki fasa amorf. Pada sampel ZSM-5 6 jam

dan 9 jam fasa yang terbentuk lebih kristalin dan tidak terdapat hump pada 2θ 23°. Semakin lama

waktu hidrotermal pertama, maka kristalinitas ZSM-5 semakin tinggi. Puncak pada 2θ 20-23° yang

lebih tinggi intensitasnya dibandingkan dengan puncak pada 2θ 7-9° pada semua variasi waktu

hidrotermal pertama pada katalis ZSM-5 mengkonfirmasi adanya kemungkinan simetri ortorombik

pada ZSM-5 [6].

Gambar 8. Difraksi sinar X ZSM-5 3 jam, ZSM-5 6 jam, ZSM-5 9 jam

5.3 Karakterisasi SEM-EDX ZSM-5

Katalis ZSM-5 dari sumber kaolin juga dikarakterisasi dengan SEM-EDX untuk mengetahui

morfologi dan bentuk partikel dari ZSM-5 hasil sintesis. Hasil SEM-EDX sampel ZSM-5 ditunjukkan pada

Gambar 9. Berdasarkan gambar 9 dapat diketahui pada semua sampel ZSM-53 jam, ZSM-5 6 jam dan ZSM-

5 9 jam memiliki distribusi partikel yang cukup merata dan tidak tampak agregat partikel. Perbedaan

Page 18: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

12

kristalinitas dari sampel ZSM-5 pada variasi waktu hidrotermal pertama 3 jam, 6 jam dan 9 jam tidak terlihat

secara signifikan. Pada sampel ZSM-5 3 jam terlihat distribusi partikel yang lebih merata dibandingkan

dengan sampel ZSM-5 6 jam dan ZSM-5 9 jam. Hal ini menunjukkan bahwa semakin pendek waktu

hidrotermal pertama akan semakin menghasilkan struktur mesopori yang seragam. Selain itu lebih sedikitnya

pembentukan agregat pada sampel ZSM-5 3 jam dibandingkan dengan sampel ZSM-5 6 jam dan 9 jam juga

memungkinkan semakin terbentuknya pori intrapartikelyang lebih banyak dengan waktu hidrotermal yang

lebih pendek. Hal ini sejalan dengan hasil penelitian Chen, et al., (2017) yang menunjukkan bahwa semakin

lama waktu hidrotermal maka akan semakin meningkatkan agregasi partikel [7]

Gambar 9. Foto SEM katalis ZSM-5 3 jam (a), ZSM-5 6 jam (b) dan ZSM-5 9 jam (c)

a b

c

Page 19: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

13

Gambar 10. Kurva TGA sampel ZSM-5 3jam (a), ZSM-5 6 jam (b) dan ZSM-5 9 jam (c)

Page 20: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

14

5.4 TGA

Analisis terhadap penghilangan berat katalis ZSM-5 dilakukan dengan metode analisis TGA-DTA..

Karakterisasi TGA-DTA juga bertujuan untuk mengetahui jumlah TPAOH yang masuk atau terinkoporasi

ke dalam ZSM-5 [8]. Hasil karakterisasi TGA-DTA disajikan pada Gambar 10. Berdasarkan hasil analisis

TGA-DTA sampel ZSM-5 seperti ditunjukkan pada gambar 10, terlihat bahwa ketiga sampel ZSM-5 hasil

sintesis dengan variasi waktu hidrotermal 3 jam, 6 jam dan 9 jam memiliki tiga tahap penurunan berat yaitu

pada suhu antara 30-110 oC, 110-350 oC dan 350-550 oC. Penurunan berat pada range suhu 30-110

merupakan penghilangan air yang teradsorb secara fisik pada permukaan ZSM-5. Penurunan berat kedua

pada suhu sekitar 110-350 oC menunjukkan penghilangan template organik dan kristal air. Penghilangan

template organic pada penurunan berat keduaini berasal dari ion TPA+ yang terikat dalam struktur defek Si-

O [9]. Penurunan berat ketiga pada suhu 350-550 oC merupakan indikasi penghilangan template organic

kation TPA+ di dalam channel/jaringan ZSM-5.

Dari data TGA pada gambar 10, diketahui bahwa ZSM-5 3 jam mengalami penurunan persen berat

sebesar 15% pada suhu sekitar 150 oC, sedangkan ZSM-5 6 jam mengalami penurunan persen berat sebesar

10% dan ZSM-5 9 jam mengalami penurunan persen berat sebesar 12%. Hal ini menunjukkan bahwa ZSM-

5 3 jam mengandung lebih banyak TPAOH dalam struktur ZSM-5 yang menandakan kemungkinan

membentuk struktur mesopori yang lebih besar dibandingkan ZSM-5 6 jam dan ZSM-5 9 jam.

6. Uji Aktivitas Katalitik ZSM-5 dengan Minyak Kemiri Sunan

Uji aktivitas katalitik katalis ZSM-5 variasi waktu hidrotermal 3 jam dan 6 jam dilakukan pada reaksi

hidrodeoksigenasi minyak kemiri sunan dengan kondisi reaksi 3% katalis, temperatur reaksi 350 oC, waktu

reaksi 1 jam,dan aliran gas hydrogen 100 mL/menit sebagai studi pendahuluan. Hasil analisis biojetfuel

menggunakan instrument GC-MS dari reaksi hidrodeoksigenasi minyak kemiri sunan dengan katalis ZSM-

5 menunjukkan hasil komposisi produk biojetfuel meliputi, aromatic, cyclic, oksigenate dan hidrokarbon.

Data persen komposisi sampel katalis ZSM-5 3 jam dan 6 jam disajikan pada gambar 11.

Gambar 11. Distribusi komposisi biofuel hasil reaksi hirodeoksigenasi minyak kemiri sunan dengan

katalis ZSM-5

7. Karakterisasi Aluminosilikat dengan variasi template

7.1 FTIR

Page 21: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

15

Spektroskopi inframerah digunakan untuk menentukan gugus fungsional yang terdapat pada

sampel yang telah disintesis. Kaolin sebagai sumber silika dan alumina menunjukkan adanya

serapan pada bilangan gelombang 538 cm-1 yang merupakan vibrasi karakteristik dari ikatan Al-O

pada Al[O(OH)]6, serapan pada 789 and 914 cm-1 menunjukkan adanya vibrasi dari ikatan (Al-O)-

H pada Al[O(OH)]6. Vibrasi ikatan Si-O dari from SiO4 terdapat pada bilangan gelombang 430,

470, 752, 795, 1032 and 1114 cm-1. Spektra FTIR dari semua sampel menunjukkan serapan

karakteristik yang sama dengan ZSM-5 pada bilangan gelombang 450,550, 795, 1100 and 1225 cm-

1. Pita serapan pada bilangan gelombang 450 cm-1 dihasilkan dari vibrasi tekuk T-O-T (T adalah

atom Al atau Si); 550 cm-1 merupakan vibrasi stretching asimetris dari cincin D5R yang merupakan

karakteristik struktur zeolit tipe-pentasil MFI; 795 dan 1225 cm-1 masing-masing berkontribusi

terhadap peregangan simetris eksternal dan stretching asimetris; dan pita pada 1100 cm -1 berasal

dari vibrasi stretching asimetris internal T-O-T (antara tetrahedral TO4) [9,10]. Spektra IR pada

Gambar 1 menunjukkan bahwa pita serapan Al-MCM-41 pada 550 cm-1 memiliki intensitas

terendah. Menurut Chen et al., pita serapan pada 550 cm-1 merupakan pita serapan karakteristik dari

cincin D5R ZSM-5 [11]. Somani et al., melaporkan bahwa peningkatan intensitas pita serapan 550

cm-1 menunjukkan peningkatan konsentrasi fase MFI dan kristalinitas [12]. Hasil ini sesuai dengan

hasil XRD seperti yang ditunjukkan pada Gambar 13.

Spektrum inframerah piridin yang diadsorpsi semua sampel aluminosilikat ditunjukkan pada

Gambar 12 dan jumlah situs asam dirangkum dalam Tabel 1. Adsorpsi piridin dalam temperatur

berbeda dilakukan untuk menentukan kekuatan asam dan jumlah keasaman dalam sampel padatan.

Pita absorpsi pada bilangan gelombang sekitar 1450 dan 1540 cm-1 berkontribusi terhadap

keberadaan nitrogen piridin yang terikat secara koordinatif dengan situs asam Lewis dan diserap

secara kimia pada situs asam Brønsted pada permukaan katalis [13]. Sementara itu, penyerapan

puncak sekitar 1488 cm-1 berhubungan dengan piridin teradsorpsi pada situs asam Lewis dan

Brønsted [2]. Seperti yang ditampilkan pada Gambar 1 dan Tabel 1, sampel T-ZSM-5 memiliki

jumlah situs asam Brønsted terbesar yang akan meningkatkan rasio Brønsted/Lewis (B / L),

kemudian diikuti oleh S-ZSM-5 dan Al-MCM-41. Seperti yang dilaporkan dalam penelitian

sebelumnya oleh Zhang et al (2017) peningkatan konsentrasi ion TPA + akan secara signifikan

meningkatkan situs asam Brønsted [14]. Hasil ini menunjukkan bahwa template TPAOH yang

digunakan dalam sintesis akan mempengaruhi pembentukan situs asam karena terbentuknya

extraframework tetrahedral alumina.

Page 22: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

16

Tabel 1. Jumlah situs asam Bronsted dan Lewis menggunakan adsorpsi piridin

Sampel

Jumlah situs asam

(mmol/g) B/L L/B

Brønsted Lewis B+L

S-ZSM-5 (150 0C) 0.072 0.158 0.230 0.455 2.194

S-ZSM-5 (300 0C) 0.038 0.089 0.127 0.426 2.342

T-ZSM-5 (150 0C) 0.108 0.284 0.392 0.380 2.629

T-ZSM-5 (300 0C) 0.073 0.198 0.271 0.369 2.712

Al-MCM-41 (150

0C) 0.054

0.296 0.350 0.182 5.481

Al-MCM-41 (300

0C) 0.014

0.234 0.248 0.059 16.710

Gambar 12. Spektra FTIR (a) dan adsorpsi piridin (b) pada kaolin, Al-MCM-41, ZSM-5 yang

disintesis menggunakan TPAOH (T-ZSM-5) dan ZSM-5 yang disintesis menggunakan silikalit (S-

ZSM-5).

b. XRD

Pola difraktogram ditampilkan pada Gambar 13 digunakan untuk mengidentifikasi fasa dari semua

sampel yang telah disintesis. Pola difraktogram dari kaolin menunjukkan adanya fasa kaolinit

Page 23: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

17

dengan munculnya puncak pada 2θ = 12.3, 19.7, 20.3, 24.8, 26.6, 34.9, 36.1, 37.5, 38.2, 39 dan

45.2°. Hasil ini sesuai dengan hasil penelitian sebelumnya yang dilaporkan oleh Hartanto et al.,

(2016) [9]. Fasa amorf dari aluminosilikat seperti MCM-41 diperoleh pada sampel Al-MCM-41.

Puncak melebar pada 2θ = 15-30° mengindikasikan terbentuknya struktur amorf silika seperti

MCM-41 seperti yang telah dilaporkan oleh Tran et al., (2016) [15]. Pola XRD sudut pendek

menunjukkan adanya tiga puncak difraksi yang merupakan difraksi bidang (100), (110) and (200)

yang menunjukkan terbentuknya struktur heksagonal yang teratur dari aluminosilikat [16,17].

Sedangkan pada sampel S-ZSM-5 dan T-ZSM-5 terdapat puncak karakteristik dari ZSM-5 pada 2θ

= 7.8, 8.7, 23, 23.8 dan 24° dengan intensitas yang tinggi. Pada sampel S-ZSM-5 hanya memiliki

satu puncak dengan intensitas yang rendah bidang difraksi (100) yang menunjukkan jumlah pori

teratur yang lebih sedikit (Li et al., 2013). Hasil ini menunjukkan bahwa adanya template organik

seperti TPAOH dan silicate seed-1 akan mempengaruhi terbentuknya struktur ZSM-5.

Gambar 13. (a) sudut panjang dan (b) sudut pendek XRD dari kaolin, Al-MCM-41, T-ZSM-5 dan

S-ZSM-5.

c. 29Si-NMR

Analisis dari 29Si MAS NMR memberikan informasi mengenai interaksi atom silika pada

framework aluminosilikat. 29Si MAS NMR dari S-ZSM-5 menunjukkan adanya 3 puncak

dekonvolusi pada pergeseran kimia -86, -97 dan -110 ppm (Gambar 14). Sinyal yang muncul pada

-110 dan -97 ppm merupakan sinyal Q4 dari ikatan Si(SiO)4 [18] dan situs Si(OSi)3OAl [19,20].

Pada T-ZSM-5, terjadi pergeseran puncak menjadi -111 dan -101 ppm yang diasumsikan dari

kristalinitasnya yang tinggi dibandingkan dengan S-ZSM-5 [21]. S-ZSM-5 menunjukkan adanya

Page 24: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

18

puncak resonansi yang lemah pada -86 ppm yang merupakan sinyal Q3 situs Si(OSi)3OH dari fase

amorf ZSM-5. Sinyal 29Si MAS NMR dari Al-MCM-41 muncul pada pergeseran kimia -83 dan -

89 yang merupakan situs Q3 dari Si(OSi)3(OH) dan Q4 Si(OSi)3Al. Adanya resonansi Q3

menunjukkan adanya transformasi parsial dari Si(SiO)3Al menjadi Si(SiO)3(OH). Al-MCM-41

menunjukkan puncak resonansi broad akibat adanya overlapping dari puncak ganda pada

pergeseran kimia -97 dan -108 ppm yang merupakan situs Q4 unit Si(SiO)4. Komposisi elemen dari

Si dan Al ditentukan menggunakan data dekonvolusi dari 29Si MAS NMR yang ditampilkan pada

Tabel 2. Rasio Si/Al dari katalis ZSM-5 dan Al-MCM-41 berada pada range 22-26.

Gambar 14. Spektra dekonvolusi 29Si NMR dari S-ZSM-5 (a), T-ZSM-5 (b) dan Al-MCM-41 (c)

Tabel 2. Pergeseran kimia dan rasio Si/Al dari 29Si NMR

Samples

Pergeseran kimia (ppm) dan luas puncak dekonvolusi (%)

Si/Al Q4 (4Si, 0Al) Q4 (4Si, 0Al) Q4 (3Si, 1Al) Q3 (3Si, 1OH)

S-ZSM-5 -110 (84.87)

- -97 (13.09) -86 (2.04) 26.44

- 24.46

Page 25: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

19

T-ZSM-5 -111 (83.65) - -101 (16.35)

Al-MCM-

41 -108 (42.86) -97 (28.95) -89 (14.92) -83 (13.27) 22.61

2. Reaksi deoksigenasi Jatropha Curcas Oil (JCO) menggunakan katalis aluminosilikat

Reaksi deoksigenasi dari JCO dilakukan pada temperatur 350 ℃ selama 1 jam menggunakan

atmosfir nitrogen. Hasil reaksi deoksigenasi JCO pada katalis S-ZSM-5, T-ZSM-5 dan Al-MCM-

41 ditampilkan pada Tabel 3. Al-MCM-41 memberikan konversi yang paling tinggi yakni 20,04%

dibandingkan katalis T-ZSM-5 dan S-ZSM-5 sebesar 9,97% dan 6,73%. Produk cair yang diperoleh

selanjutnya dianalisis menggunakan GC-MS. Reaksi deoksigenasi menggunakan katalis S-ZSM-5

menghasilkan produk dominan oksigenat sebesar 48,16% dan hidrokarbon sebesar 45,94%.

Senyawa oksigenat meliputi asam karboksilat, aldehid dan eter. Sedangkan diperoleh sikloalkana

sebesar 3.25%. Selektivitas hidrokarbon semakin meningkat menjadi 65,78% ketika menggunakan

katalis T-ZSM-5 dan menurunkan komposisi oksigenat menjadi 26,37%. Al-MCM-41 memberikan

selektivitas yang tinggi pada terbentuknya komponen hidrokarbon yakni 83,68% dan oksigenat

4,77%. Peningkatan mesoporositas pada ZSM-5 ketika menggunakan silikalit sebagai template

akan menurunkan aktivitas katalitik reaksi deoksigenasi dan hanya diperoleh nilai konversi yang

rendah. S-ZSM-5 memiliki konsentrasi asam yang rendah jika dibandingkan dengan T-ZSM-5 dan

Al-MCM-41. Hal ini mengindikasikan bahwa reaksi deoksigenasi merupakan reaksi katalisis asam

sehingga peningkatan situs asam akan meningkatkan konversi minyak menjadi hidrokarbon.

Table 3. Konversi dan selektivitas produk pada reaksi deoksigenasi JCO

Catalysts Xoils, %

Selektivitas

Hidrokarbon, %

Selektivitas

Sikloalkana, % Oksigenat, %

S-ZSM-5 6.73 45.94 3.25 48.19

T-ZSM-5 9.97 65.78 6.35 26.37

Al-MCM-41 20.04 83.68 11.52 4.77

Page 26: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

20

Gambar 15. Distribusi rantai hidrokarbon pada reaksi deoksigenasi JCO

Analisis komposisi JCO menunjukkan adanya 70% asam lemak tidak jenuh yang tersusun atas

campuran asam oleat (C18:1) dan asam linoleat (C18:2), 20% asam lemak jenuh palmitat (C16:0)

[22]. Selanjutnya, analisis mengenai hidrokarbon yang dihasilkan dari reaksi deoksigenasi JCO

ditampilkan pada Gambar 15. Al-MCM-41 menunjukkan selektivitas yang tinggi pada n-C15+n-

C17. Reaksi deoksigenasi JCO akan menghasilkan rantai hidrokarbon paraffin dengan jumlah atom

karbon adalah n-1 dimana n adalah jumlah rantai karbon dari asam lemak JCO. Terbentuknya fraksi

hidrokarbon (C8-14) diperoleh saat menggunakan katalis S-ZSM-5 dan T-ZSM-5 yang akan

menurunkan selektivitas pada terbentuknya fraksi diesel hidrokarbon (n-C15+n-C17). Rantai

hidrokarbon pendek dihasilkan dari reaksi hydrocracking rantai asam lemak JCO.

Selanjutnya, reaksi deoksigenasi JCO dilakukan pada temperatur 350 ℃ dengan variasi waktu 1-4

jam pada katalis Al-MCM-41. Konversi JCO menjadi produk cair semakin meningkat dari 20%

menjadi 45% pada waktu reaksi selama 4 jam (Gambar 16). Komposisi hidrokarbon dibagi menjadi

dua yakni range diesel (C11-18) dan range gasoline (C8-10). Selektivitas hidrokarbon n-C11-18

mencapai 90% pada reaksi deoksigenasi JCO.

Page 27: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

21

Gambar 16. Hasil konversi JCO (a) dan selektivitas hidrokarbon pada Al-MCM-41 dengan variasi

waktu reaksi deoksigenasi. Komposisi hidrokarbon dibagi menjadi dua fraksi yakni fraksi gasoline

(C8-10) dan fraksi diesel (C11-18)

JCO dan produk cair selanjutnya dikarakterisasi menggunakan FTIR untuk mengetahui

tahap/mekanisme terjadinya reaksi deoksigenasi (Gambar 17a). Spektra FTIR JCO menunjukkan

adanya vibrasi –CH stretching dari rantai alifatik pada 2925 cm-1, vibrasi stretching ester –C=O

pada 1735 cm-1, vibrasi stretching C-O-C pada 1161 cm-1, vibrasi bending –CH alkane dan =CH

alkena pada 1453 dan 717 cm-1. Pita serapan absorpsi pada ester –C=O dan karbonil C-O-C

merupakan karakteristik dari spesi oksigenat trigliserida yang dapat digunakan untuk mengetahui

mekanisme reaksi deoksigenasi [23]. Terjadi pergeseran serapan vibrasi stretching –C=O dari

produk cair dari 1735 cm-1 (grup ester) menjadi 1700 cm-1 (grup asam karboksilat) setelah 1 jam

reaksi. Hal ini mengindikasikan terjadinya disosiasi ikatan ester untuk membentuk senyawa

intermediate asam lemak [24]. Analisa menggunakan FTIR juga mendukung terjadinya eliminasi

ikatan C-O-C pada gugus karbonil JCO yang dibuktikan dengan hilangnya serapan pada 1161 cm-

1[25]. Hasil analisis FTIR ini menunjukkan bahwa pada tahap awal terjadi transformasi trigliserida

menjadi asam lemak yang terjadi pada katalis asam. Seiring dengan bertambahnya waktu reaksi

menjadi 4 jam, terjadi pengurangan intensitas serapan pada –C=O yang menunjukkan terjadinya

eliminasi fragmen karboksilat dari asam lemak. Produk gas yang dihasilkan selama reaksi

deoksigenasi JCO selanjutnya dikarakterisasi menggunakan GC-TCD untuk mengetahui jenis gas

yang terlibat dalam reaksi. Hasil analisa gas ditampilkan pada Gambar 17b. Pada 1 jam reaksi

dihasilkan gas CO2 yang menunjukkan terjadinya reaksi dekarboksilasi. Penambahan waktu reaksi

akan menurunkan jumlah CO2 yang dihasilkan dan meningkatkan jumlah gas CO. Hal ini

mengindikasikan bahwa reaksi dekarbonilasi mendominasi reaksi dan dihasilkan hidrokarbon

dengan rantai ikatan tidak jenuh.

Page 28: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

22

Gambar 17. Spektra FTIR dari JCO dan produk cair (a) dan analisis produk gas pada reaksi

deoksigenasi JCO (b)

Page 29: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

23

BAB III STATUS LUARAN

Status luaran yang ditargetkan pada penelitian ini yaitu luaran wajib pada jurnal ilmiah internasional

masih dalam tahap under review pada jurnal Microporous and Mesoporous Materials (Q1). Luaran tambahan

yaitu seminar internasional telah dilaksanakan pada 6-7Oktober 2020 pada forum ICCME 2020 (The 4th

International Chemical Conference on Material and Engineering) yang diselenggarakan oleh Universitas

Diponegoro.

Page 30: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

24

BAB IV PERAN MITRA (UntukPenelitian Kerjasama Antar Perguruan Tinggi)

Penelitian ini tidak memiliki mitra.

Page 31: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

25

BAB V KENDALA PELAKSANAAN PENELITIAN

Kendala yang dihadapi selama pelaksanaan penelitian adalah adanya pandemi Covid-19 di Indonesia

yang menyebabkan kegiatan penelitian di laboratorium sedikit terhambat dan terkendala layanan analisis

instrument untuk karakterisasi material dan uji aktivitas katalitik yang belum beroperasi maksimal sehingga

data eksperimen belum mencapai target. Hambatan lainnya yaitu keterbatasan alat yang digunakan untuk

reaksi hidrodeoksigenasi yang membuthkan waktu lama untuk membuat reaktor. Lamanya waktu yang

diperlukan untuk analisa material, hal ini dikarenakan terbatasnya jumlah instrument analisis material di

Indonesia untuk karakterisasi seperti N2 adsorpsi desorpsi dan TEM, banyaknya antrian menyebabkan waktu

yang diperlukan untuk analisis menjadi lama. Karakterisasi material menggunakn N2 adsorpsi dilakukan di

UII dan ITS diperlukan waktu 1-2 bulan. Karakterisasi material menggunakan TEM di Indonesia hanya bisa

dilakukan di ITB, waktu tunggu hingga mendapat jadwal karakterisasi antara 2 minggu – 1 bulan. Penelitian

tentang produksi biojetfuel dari minyak kemiri sunan ini termasuk topik penelitian baru di dalam Grup Riset

Material dan Energi, sehingga diperlukan setting alat dan pemahaman mengenai desain dan rangkaian

reaktor. Banyak kendala yang dialami dalam tahapan ini, diantaranya kesulitan dalam menyusun rangkaian

alat hingga kendala kebocoran gas.Kesulitan lain yang dihadapi adalah dalam penulisan paper publikasi,

dikarenakan kurangnya media yang dapat memfasilitasi dalam penulisan artikel ilmiah yang baik.

Page 32: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

26

BAB VI RENCANA TAHAPAN SELANJUTNYA

Rencana tahapan penelitian selanjutnya adalah melanjutkan sintesis katalis dari sumber kaolin serta

uji aktivitas katalitik menggunakan minyak kemiri sunan dengan variasi parameter kondisi reaksi yang

berbeda. Selain itu juga akan dilakukan penyempurnaan penyusunan draf artikel imiah untuk publikasi pada

jurnal internasional.

Page 33: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

27

BAB VII DAFTAR PUSTAKA

[1] L. Xu, Z. Liu, Z. Li, J. Liu, Y. Ma, J. Guan, Q. Kan, Non-crystalline mesoporous

aluminosilicates catalysts: Synthesis, characterization and catalytic applications, J. Non.

Cryst. Solids. 357 (2011) 1335–1341. https://doi.org/10.1016/j.jnoncrysol.2010.12.028.

[2] I. Qoniah, D. Prasetyoko, H. Bahruji, S. Triwahyono, A.A. Jalil, Suprapto, Hartati, T.E.

Purbaningtias, Direct synthesis of mesoporous aluminosilicates from Indonesian kaolin clay

without calcination, Appl. Clay Sci. 118 (2015) 290–294.

https://doi.org/10.1016/j.clay.2015.10.007.

[3] dan S.T. Hartati, Didik Prasetyoko, Mardi Santoso, Hasliza Bahruji, Highly Active

Aluminosilicates with a Hierarchical Porous Structure for Acetalization of 3,4-

Dimethoxybenzaldehyde, J. Teknol. (Science Eng. (2014) 25–30.

[4] B. Liu, W., Yang, J., dan Xiao, Application of Bayer Red Mud for Iron Recovery and

Building Material Production from Alumosilicate Residues, J. Hazard. Mater. 161 (2009)

474–478.

[5] G.U. R. Sabarish, Synthesis, characterization and catalytic activity of hierarchical ZSM-5

templated by carboxymethyl cellulose, Powder Technol. 320 (2017) 412–419.

[6] R.S. Rohayati, Y.K. Krisnandi, Synthesis of ZSM-5 zeolite using Bayat natural zeolite as

silica and alumina source, AIP Conf. Proc. 1862 (2017) 1–5.

[7] H. Chen, Y. Wang, C. Sun, X. Wang, C. Wang, Synthesis of hierarchical ZSM-5 zeolites

with CTAB-containing seed silicalite-1 and its catalytic performance in methanol to

propylene, Catal. Commun. 112 (2018) 10–14.

https://doi.org/10.1016/j.catcom.2018.04.017.

[8] S.M. and K.S. Hamidzadeh M, Modified seeding method to produce hierarchical

nanocrystalline ZSM-5 zeolite, Mater. Today Commun. 25 (2020) 101308.

[9] D. Hartanto, O. Saputro, W.P. Utomo, A. Rosyidah, D. Sugiarso, T. Ersam, H. Nur, D.

Prasetyoko, Synthesis of ZSM-5 Directly from Kaolin without Organic Template: Part-1:

Effect of Crystallization Time, Asian J. Chem. 27 (2016) 4120–4124.

https://doi.org/10.1200/JCO.2012.47.7141.

[10] Y. Yue, Y. Kang, Y. Bai, L. Gu, H. Liu, J. Bao, T. Wang, P. Yuan, H. Zhu, Z. Bai, X. Bao,

Seed-assisted, template-free synthesis of ZSM-5 zeolite from natural aluminosilicate

minerals, Appl. Clay Sci. 158 (2018) 177–185. https://doi.org/10.1016/j.clay.2018.03.025.

[11] H. Chen, H. Yang, Y. Xi, Highly ordered and hexagonal mesoporous silica materials with

large specific surface from natural rectorite mineral, Microporous Mesoporous Mater. 279

(2019) 53–60. https://doi.org/10.1016/j.micromeso.2018.12.014.

[12] O.G. Somani, A.L. Choudhari, B.S. Rao, S.P. Mirajkar, Enhancement of crystallization rate

by microwave radiation: Synthesis of ZSM-5, Mater. Chem. Phys. 82 (2003) 538–545.

https://doi.org/10.1016/S0254-0584(03)00224-4.

[13] H. Li, Y. Wang, F. Meng, H. Chen, C. Sun, S. Wang, Direct synthesis of high-silica nano

ZSM-5 aggregates with controllable mesoporosity and enhanced catalytic properties, RSC

Adv. 6 (2016) 99129–99138. https://doi.org/10.1039/c6ra21080e.

[14] C. Zhang, H. Chen, X. Zhang, Q. Wang, TPABr-grafted MWCNT as bifunctional template

to synthesize hierarchical ZSM-5 zeolite, Mater. Lett. 197 (2017) 111–114.

https://doi.org/10.1016/j.matlet.2017.03.085.

[15] N.T.T. Tran, Y. Uemura, S. Chowdhury, A. Ramli, Vapor-phase hydrodeoxygenation of

guaiacol on Al-MCM-41 supported Ni and Co catalysts, Appl. Catal. A Gen. 512 (2016) 93–

100. https://doi.org/10.1016/j.apcata.2015.12.021.

[16] F.C.M. Silva, M.S. Lima, C.O.C. Neto, J.L.S. Sá, L.D. Souza, Catalytic deoxygenation of

C18 fatty acids over HAlMCM-41 molecular sieve, Biomass Convers. Biorefinery. 8 (2018)

159–167. https://doi.org/10.1007/s13399-017-0263-9.

Page 34: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

28

[17] D. Li, H. Min, X. Jiang, X. Ran, L. Zou, J. Fan, One-pot synthesis of Aluminum-containing

ordered mesoporous silica MCM-41 using coal fly ash for phosphate adsorption, J. Colloid

Interface Sci. 404 (2013) 42–48. https://doi.org/10.1016/j.jcis.2013.04.018.

[18] T.C. Hoff, D.W. Gardner, R. Thilakaratne, J. Proano-Aviles, R.C. Brown, J.P. Tessonnier,

Elucidating the effect of desilication on aluminum-rich ZSM-5 zeolite and its consequences

on biomass catalytic fast pyrolysis, Appl. Catal. A Gen. 529 (2017) 68–78.

https://doi.org/10.1016/j.apcata.2016.10.009.

[19] E.C. Santos, L.S. Costa, E.S. Oliveira, R.A. Bessa, A.D.L. Freitas, C.P. Oliveira, R.F.

Nascimento, A.R. Loiola, Al-MCM-41 synthesized from kaolin via hydrothermal route:

Structural characterization and use as an efficient adsorbent of methylene blue, J. Braz.

Chem. Soc. 29 (2018) 2378–2386. https://doi.org/10.21577/0103-5053.20180115.

[20] A. V. Vutolkina, A.P. Glotov, A. V. Zanina, D.F. Makhmutov, A.L. Maximov, S. V.

Egazar’yants, E.A. Karakhanov, Mesoporous Al-HMS and Al-MCM-41 supported Ni-Mo

sulfide catalysts for HYD and HDS via in situ hydrogen generation through a WGSR, Catal.

Today. 329 (2019) 156–166. https://doi.org/10.1016/j.cattod.2018.11.030.

[21] S. Mintova, V. Valtchev, T. Onfroy, C. Marichal, H. Knözinger, T. Bein, Variation of the

Si/Al ratio in nanosized zeolite Beta crystals, Microporous Mesoporous Mater. 90 (2006)

237–245. https://doi.org/10.1016/j.micromeso.2005.11.026.

[22] N. Asikin-Mijan, H. V Lee, G. Abdulkareem-alsultan, A. Afandi, Production of green diesel

via cleaner catalytic deoxygenation of Jatropha curcas oil, J. Clean. Prod. 167 (2017) 1048–

1059. https://doi.org/10.1016/j.jclepro.2016.10.023.

[23] M. Safa Gamal, N. Asikin-Mijan, M. Arumugam, U. Rashid, Y.H. Taufiq-Yap, Solvent-free

catalytic deoxygenation of palm fatty acid distillate over cobalt and manganese supported on

activated carbon originating from waste coconut shell, J. Anal. Appl. Pyrolysis. 144 (2019).

https://doi.org/10.1016/j.jaap.2019.104690.

[24] M.A. Kamboh, A.S. Chang, W.A. Wan Ibrahim, M.M. Sanagi, S.A. Mahesar, Sirajuddin,

S.T. Hussain Sherazi, A green method for the quantitative assessment of neutral oil in palm

fatty acid distillates by single bounce attenuated total reflectance Fourier-transform infrared

spectroscopy, RSC Adv. 5 (2015) 50591–50596. https://doi.org/10.1039/c5ra06987d.

[25] N. Aliana-Nasharuddin, N. Asikin-Mijan, G. Abdulkareem-Alsultan, M.I. Saiman, F.A.

Alharthi, A.A. Alghamdi, Y.H. Taufiq-Yap, Production of green diesel from catalytic

deoxygenation of chicken fat oil over a series binary metal oxide-supported MWCNTs, RSC

Adv. 10 (2019) 626–642. https://doi.org/10.1039/c9ra08409f.

Page 35: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

29

BAB VIII LAMPIRAN

LAMPIRAN 1. Tabel Daftar Luaran

Program :

Nama Ketua Tim : Prof. Dr. Didik Prasetyoko, M.Sc

Judul : Biojetfuel Range Alkanes Production From Minyak Kemiri

Sunan (Reutealiss trisperm Oil) Via Hydrodeoxygenation

Reaction By Metal/Aluminosilicates From Local Source

1.Artikel Jurnal

No Judul Artikel Nama Jurnal Status Kemajuan*)

1. The effect of structure directing

agents on micro/mesopore

structures of aluminosilicates from

Indonesian kaolin as deoxygenation

catalysts

Microporous and

Mesoporous Materials

(Q1, IF: 4.551)

Under review

*) Status kemajuan: Persiapan, submitted, under review, accepted, published

2. Artikel Konferensi

No Judul Artikel Nama Konferensi (Nama

Penyelenggara, Tempat,

Tanggal)

Status Kemajuan*)

1 Biojetfuel Production From

Reutealis Trisperm Oil Over

Indonesian Red Mud Based

Catalyst

ICCME 2020, Undip

Semarang, 6-7 Oktober

2020

Terdaftar

*) Status kemajuan: Persiapan, submitted, under review, accepted, presented

3. Paten

No Judul Usulan Paten Status Kemajuan

*) Status kemajuan: Persiapan, submitted, under review

4. Buku

No Judul Buku (Rencana) Penerbit Status Kemajuan*)

*) Status kemajuan: Persiapan, under review, published

5. Hasil Lain

Page 36: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

30

No Nama Output Detail Output Status Kemajuan*)

*) Status kemajuan: cantumkan status kemajuan sesuai kondisi saat ini

6. Disertasi/Tesis/Tugas Akhir/PKM yang dihasilkan

No Nama Mahasiswa NRP Judul Status*)

*) Status kemajuan: cantumkan lulus dan tahun kelulusan atau in progress

Page 37: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

31

Lampiran 2. Bukti Abstrak Submitted pada Seminar ICCME 2020 dan paper submitted

Mmllml

Biojetfuel Production From Reutealis Trisperm Oil Over Indonesian Red Mud Based

Catalyst

D. Prasetyoko a*, D.K.Maharani a, Y. Kusumawati a

a Department of Chemistry, Faculty of Science and Analytical Data, Sepuluh Nopember Institute of

Technology , Surabaya, East Java, 59323, Indonesia. (Email:[email protected];

[email protected]; [email protected]; [email protected]

*Corresponding author

D.Prasetyoko, Department of Chemistry, Faculty of Science and Analytical Data, Sepuluh Nopember

Institute of Technology, Surabaya, East Java, 59323, Indonesia. (Email: [email protected])

Abstract

Redmud is one of caustic waste generated from by product of alumina by production. Composition

of redmud are Fe2O3, SiO2, Al2O3, TiO2 and other minor components [1-3]. Indonesian redmud

has been studied for hydrodeoxygenation reaction (HDO) of Reutalis trisperm oil which is non-

edible feedstock as potential catalyst for bio jet-fuel production. Aluminosilicates were synthesized

from Indonesian redmud has mesoporous structure with uniform particle size as confirmed by

TEM image and nitrogen adsorption isotherm data. Catalytic study of aluminosilicates mesopore

on HDO of Reutealis trisperm oil resulted in jetfuel range liquid product consist of hydrocarbon,

aromatic, cyclic and oxygenates component. Change in HDO liquid product composition were

confirmed on different structure of aluminosilicates mesopore form. At H+ form of aluminosilicates

mesopore catalyst, oxygenates product yield were 54.1% indicating slight decreased compared

to that 66.1% Na form. Ni loading on aluminosilicates mesopore of H+ form increase the aromatic

product into 31.8% and also reduce oxygenates content. This result was in accordance with

previouse study that state increasing Ni loading on redmud catalyst produced higher hydrocarbon

component in HDO of Pinyon janiper oil. Aromatic content in biojetfuel produced from this

research was fulfill the standart of JetA (ASTM) and JetA (IATA) which mean it has a possibility

for jet fuel commercial uses.

Keywords: biojetfuel; hydrodeoxygenation; redmud; aluminosilicates mesopore; Reutealis

trisperm oil

ICCME 2020 Abstract Template

Page 38: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

32

Page 39: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

33

Lampiran 3. Bukti paper tersubmit pada jurnal internasional

Page 40: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

Microporous and Mesoporous Materials

The effect of structure directing agents on micro/mesopore structures ofaluminosilicates from Indonesian kaolin as deoxygenation catalysts

--Manuscript Draft--

Manuscript Number:

Article Type: Full length article

Keywords: Kaolin; hierarchical ZSM-5; Al-MCM-41, structure directing agents; bio-oildeoxygenation

Corresponding Author: Didik PrasetyokoInstitut Teknologi Sepuluh NopemberSurabaya, INDONESIA

First Author: Reva E Nugraha

Order of Authors: Reva E Nugraha

Didik Prasetyoko

Nurul Asikin-Mijan

Hasliza Bahruji

Suprapto Suprapto

Yun Hin Taufiq-Yap

Aishah Abdul Jalil

Abstract: Indonesian kaolin was successfully transformed into aluminosilicates (ALS) via twosteps hydrothermal method using different structure directing agents (SDA). Thecomparison of structure, porosity and catalytic activity of ALS produced using silicaliteseed and tetrapropyl ammonium hydroxide (TPAOH) as SDA were determined ascatalyst for deoxygenation of bio-oil. Cetyltrimethyl ammonium bromide (CTAB) wasadded during the second hydrothermal method to induce mesopores. Silicaliteproduced ZSM-5 with hierarchical structures, TPAOH obtained mainly microporesmeanwhile in the absence of SDA formed mesoporous Al-MCM-41. ZSM-5 frameworkwas rapidly formed when using TPAOH compared to silicalite, which has prevented theformation of mesostructure in the second crystallization processes. The variation ofsurface area, porosity and surface acidities of ALS affected the catalytic activity fordeoxygenation of bio-oil to hydrocarbon. The selectivity towards long-chain (C 11 -C18 ) hydrocarbon were significantly improved when increasing the mesoporosity ofALS.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Page 41: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

1

The effect of structure directing agents on micro/mesopore structures 1

of aluminosilicates from Indonesian kaolin as deoxygenation catalysts 2

3

Reva Edra Nugraha1, Didik Prasetyoko1,*, Nurul Asikin-Mijan2, Hasliza Bahruji3, 4

Suprapto Suprapto1, Yun Hin Taufiq-Yap4,5, Aishah Abdul Jalil6,7 5

6

1Department of Chemistry, Faculty of Sciences, Institut Teknologi Sepuluh Nopember, 7

Keputih Sukolilo, Surabaya 60111, Indonesia 8

2Department of Chemical Sciences, Faculty of Science and Technology, Universiti 9

Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia 10

3Centre of Advanced Material and Energy Sciences, Universiti Brunei Darussalam, 11

Jalan Tungku Link, BE 1410, Brunei 12

4Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, UPM 13

Serdang, Selangor, Malaysia 14

5Chancellery Office, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah 15

6Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, 16

Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Johor, Malaysia 17

7Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 18

81310, Skudai, Johor Bahru, Johor, Malaysia 19

20

*Corresponding author: [email protected]; [email protected] 21

Telp. +62-31-5943353; fax: +62-31-5928314 22

23

Manuscript Click here to access/download;Manuscript;Manuscript MicmatReva.docx

Click here to view linked References

Page 42: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

2

Abstract 24

Indonesian kaolin was successfully transformed into aluminosilicates (ALS) via two 25

steps hydrothermal method using different structure directing agents (SDA). The 26

comparison of structure, porosity and catalytic activity of ALS produced using silicalite 27

and tetrapropyl ammonium hydroxide (TPAOH) as SDA were determined as catalyst 28

for deoxygenation of bio-oil. Cetyltrimethyl ammonium bromide (CTAB) was added 29

during the second hydrothermal method to induce mesopores. Silicalite produced ZSM-30

5 with hierarchical structures, TPAOH obtained mainly micropores meanwhile in the 31

absence of SDA formed mesoporous Al-MCM-41. ZSM-5 framework was rapidly 32

formed when using TPAOH compared to silicalite, which has prevented the formation 33

of mesostructure in the second crystallization processes. The variation of surface area, 34

porosity and surface acidities of ALS affected the catalytic activity for deoxygenation of 35

bio-oil to hydrocarbon. The selectivity towards long-chain (C11-C18) hydrocarbon were 36

significantly improved when increasing the mesoporosity of ALS. 37

38

Keyword: Kaolin; hierarchical ZSM-5; Al-MCM-41, structure directing agents; bio-oil 39

deoxygenation 40

41

1. Introduction 42

Development of renewable energy is recognised as route to fulfil the increasing energy 43

demand and to tackle the environmental issue associated with the fossil fuel 44

consumption. Integrated catalytic conversion of biomass as carbon feedstock to fuel has 45

received tremendous attention since the development of the first generation biodiesel in 46

Page 43: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

3

2008 [1]. Biodiesel is consisted of fatty acid methyl ester (FAME) produced from 47

transesterification reaction of oil from plant or animal [2]. However, FAME consisted 48

of high oxygen content that contributed to the low heat value of biodiesel (HV) [3–7]. 49

Biodiesel also exhibited poor oxidation and cold-flow properties that affected the 50

performance in the conventional engine [8,9]. Green diesel with petrodiesel-like 51

structures with C12-22 of hydrocarbons composition exhibits enhanced properties than 52

biodiesel [1]. Green diesel was produced from deoxygenation reaction via elimination 53

of carboxyl group in fatty acid. The reaction occurred under H2-free atmosphere and 54

produced hydrocarbon with one atom carbon shorter than the corresponded fatty acid 55

(C(n-1)) [10,11]. Jathropa curcas oil (JCO) as non-edible oil can be cultivated on 56

marginal land with low rainfall areas, and showed high durability to withstand pest and 57

drought [12]. JCO is consisted of saturated and unsaturated long chain fatty acids that 58

was ideal for deoxygenation to green diesel [13,14]. Deoxygenation reaction were often 59

performed in the presence of organic solvent like decalin, dodecane, hexane and 60

methanol [13,15–19]. Solvent free deoxygenation reaction reduced the cost of product 61

purification and waste disposal. Activated carbon [4,20], multi-walled carbon nanotube 62

(MWCNT) [10,16,21], mesoporous SiO2 [22,23], mesoporous TiO2 [24,25], ZrO2 [26], 63

CaO [3,27], Al2O3 [15], Al-MCM-41 [5,11,28], SBA-15 [1,29], ZIF-67 [30] and 64

zeolites [2,31–35] have been investigated as catalysts for deoxygenation reaction. 65

However porous aluminosilicates catalysts such as zeolite and mesoporous 66

alumina/silica were the ideal candidates due to the synergistic effects between porosity 67

and acidity [35–38]. Microporous zeolite as catalysts for deoxygenation reaction 68

suffered from steric hindrance and diffusion limitation that reduced the accessibility of 69

large molecules reactant towards the acid sites [39]. Hierarchical ZSM-5 zeolite 70

Page 44: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

4

exhibited two levels of porosity i.e. micropore and mesopore that enhanced the 71

diffusion and reduced the mass transfer limitation of products and reactants. 72

Conventional method for the synthesis of hierarchical zeolite employed the desilication 73

or the dealumination of the microporous zeolite, that often contributed to the destruction 74

of zeolite framework and altered the acidity of the zeolite [40–43]. Two-step 75

crystallization method with the presence of mesopore template provided efficient route 76

for the formation of hierarchical zeolite. Utilization of naturally occurring mineral as 77

silica and alumina sources such fly ash, rice husk and clay reduced the carbon footprint 78

of catalyst production [44,45]. Clay minerals like montmorilonite [46], palygorskite 79

[47], bentonite [48], perlite [49], illite [50] and halloysite [51] required pretreatment 80

meanwhile kaolin can be directly used for synthesis aluminosilicate materials [52–54]. 81

Kaolin is a sedimentary rock consisted of primarily a hydrated aluminosilicate kaolinite, 82

Al4(OH)8(Si4O10) with high Si/Al ratios and has been explored as starting material for 83

zeolite synthesis [55]. 84

Catalyst design holds the key for efficient deoxygenation of oil into green diesel. 85

Deoxygenation reaction required the catalysts to selectively produced hydrocarbon 86

olefin through the removal of carbonyl group in fatty acid, while simultaneously 87

inhibited the secondary cracking reaction. Catalytic cracking reaction produced short-88

chain hydrocarbon that compromised the selectivity towards large hydrocarbons. This 89

research aimed to investigate the activity of hierarchical aluminosilicate synthesized 90

using Indonesian kaolin toward deoxygenation of JCO to hydrocarbon with green diesel 91

composition (C11-C18). Al-MCM-41 is a mesoporous aluminosilicate consisted of one-92

dimensional cylindrical mesopores, synthesized using CTABr as mesopore template. 93

The effect of large mesopore and unidirectional channel of Al-MCM-41 was compared 94

Page 45: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

5

with microporous ZSM-5 and hierarchical ZSM-5. ZSM-5 consists of zigzag pore 95

channel with narrow intersection was synthesized using TPAOH as template. 96

Hierarchical ZSM-5 with enhanced mesoporosity was synthesized using silicate as 97

structure directing agent in order to increase the pore diameter that ideally will enhance 98

the diffusion of reactants and products. The competition between deoxygenation and 99

secondary hydrocracking reactions were correlated with the aluminosilicate framework 100

structure, the mesoporosity and the acidity of the catalysts. 101

2. Experimental 102

2.1 Materials 103

Kaolin Al4(OH)8(Si4O10) was obtained from Bangka Belitung consisted of 57% 104

SiO2 and 22% Al2O3 [56]. Jatropha curcas oil (JCO) was purchased from Bionas Sdn 105

Bhd, Malaysia. NaOH (assay 99%) was obtained from Merck, Germany. LUDOX® 106

HS-40 colloidal silica (30% silica in water) and TPAOH (40%) were purchased from 107

Sigma Aldrich, Germany. CTABr (C19H42BrN, assay 99%) was purchased from 108

Applichem. All materials used in this work were analytical grade. Silicalite was 109

synthesized in the laboratory prior to the ZSM-5 synthesis. 110

2.2 Synthesis of hierarchical aluminosilicate 111

Hierarchical ZSM-5 was synthesized following the modified method [57,58] at 112

molar composition of 10Na2O:100SiO2: 2Al2O3:1800H2O. CTABr was added at 113

SiO2/CTABr ratio of 3.85 in order to form mesopore structure. NaOH was dissolved in 114

demineralized water and stirred for 30 min. Kaolin as alumina and silica sources was 115

added gradually into NaOH with continuous stir. Ludox was added slowly into the 116

mixture to form gel under vigorous stirring. Demineralized water was added into the 117

mixture and stirred for another 8 h. The gel was left to age for 6 h at 70 ℃ followed by 118

Page 46: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

6

the addition of silicalite at 1% w/w to the solution and stirred for another 30 min. The 119

first hydrothermal process was carried out at 80 ℃ for 12 h and then the autoclave was 120

cooled down under water to stop the crystallization process. CTABr 121

(SiO2/CTABr=3.85) was added slowly to the synthesis mixture and stirred for 1 h. 122

Hydrothermal process was continued at 150 ℃ for 24 h. The resulting solid was washed 123

thoroughly with distilled water until the pH reached 7 and then dried in air oven at 60 ℃ 124

for 24 h. The dried solid was then calcined at 550 ℃ under N2 flow (flow rate of 2 125

℃/min) for 1 h followed by air flow for 6 h. The catalyst obtained denoted as S-ZSM-5. 126

Similar procedure was repeated however silicalite was replaced with TPAOH and the 127

product was denoted as T-ZSM-5. The third sample was synthesized without the 128

addition of both TPAOH and silicalite seed, however following the similar method and 129

denoted as Al-MCM-41. 130

2.3 Catalyst characterization 131

The phase transformation of kaolin to aluminosilicate structure was analysed by 132

wide angle X-Ray Diffraction (XRD) characterization using PHILIPS-binary XPert 133

with MPD diffractometer with Cu Kα radiation operated at 30 mA and 40 kV. Low 134

angle X-Ray Diffraction (XRD) was carried out using Bruker type D2 Phaser using 135

KFL Cu 2K radiation at 10 mA and 30 kV. Fourier Transform Infra-Red (FTIR) (ranges 136

400 – 1400 cm-1) measurement was recorded using FTIR Shimadzu Instrument 137

Spectrum One 8400S. The specific surface area of each catalyst was determined by N2 138

Adsorption Desorption by Quantachrome Touchwin v1.11 instrument at 363 K using 139

Brunauer–Emmet–Teller (BET) method. The pore size distributions further determined 140

by DFT method using Quantachrome ASiQwin instrument. The Brønsted and Lewis 141

acidity were measured by pyridine adsorption using FTIR spectrometer. Approximately, 142

Page 47: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

7

14 mg of catalyst was pressed to form pellet and placed in the homemade glass 143

transmmission cell and calcined at 400 °C for 4 h under N2 flow. The cooled to ambient 144

temperature prior to contact with ca. 2 mbar of pyridine. Physically adsorbed pyridine 145

was removed by degassing at 150 ℃ for 3 h. The low resolution and high resolution 146

transmission electron microscope (TEM) images of all catalysts were recorded using 147

Hitachi HT-7700 TEM and Hitachi HR-9500 TEM. The acceleration voltage of 100 kV 148

and 300 kV were applied at HT-7700 TEM and Hitachi HR-9500 TEM respectively. 149

The catalyst further analyzed using 29Si MAS NMR coupled with Varian Unity INOVA 150

400 MHz spectrometer, at pulse length of 3.0 µs, recycle delay of 12 s and spinning rate 151

of 9 kHz. The Si/Al framework ratio were quantified from the integrated areas of the 152

deconvoluted peak by using Eq. 1 153

154

The carbonaceous coke formation on spent catalysts were determined using 155

thermogravimetric analysis (TGA) by Linseis STA PT-1000. The analysis was carried 156

out under air atmosphere from room temperature up to 900 ℃ with heating rate 10 157

℃/min. The functional group and physical changes on spent catalyst also further 158

observed by FTIR and low angle XRD analysis. The analysis was conducted within IR 159

range of 500-4000 cm-1 and the resolution was 4 cm-1. Low angle-XRD was carried out 160

using Bruker type D2 Phaser using KFL Cu 2K radiation at 10 mA and 30 kV. 161

2.4 Catalytic deoxygenation of JCO 162

Deoxygenation reaction of JCO was performed in 100 mL three-necked flask 163

connected with distillation step-up equipped with stirred heating mantle. 3% wt/wt of 164

catalyst was added into 10 g JCO and purged with N2 gas prior to the reaction to provide 165

Eq. 1

Page 48: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

8

inert environment during the reaction. Subsequently, the mixture was stirred and heated 166

to 350 ℃ and the reaction was maintained for 1 h under constant flow of N2 at flow rate 167

of 20 cc/min. Liquid product was collected in a cold vessel at 18 oC to facilitate the 168

condensation. The deoxygenated liquid product was further analysed using GC-FID, 169

GC-MS and FTIR spectroscopy. The gaseous products were collected by gas sampling 170

bag and analysed using offline GD-TCD (Shimadzu GC-8 A) with molecular sieve 171

packed column. 172

2.5 Deoxygenated liquid product and gas analysis 173

Liquid product obtained from deoxygenation reaction was analysed using gas 174

chromatography equipped with FID detector (Shimadzu GC-14B) and capillary column 175

HP-5MS (length: 30 m × inner diameter: 0.32 mm × film thickness: 0.25 µm). 176

Hydrocarbons were identified using alkane and alkene standard (C8-C20) obtained from 177

Sigma Aldrich, and 1-bromohexane was used as internal standard for the quantitative 178

analysis. 1 µL of liquid sample was injected into GC column with N2 as carrier gas. The 179

initial temperature was set for 40 ℃ and held for 6 min, then increase to 270 ℃ at 180

heating rate of 7 ℃. The liquid product distribution was qualitatively identified using 181

gas chromatography-mass spectroscopy (HP 6890 GC) with capillary column HP-5MS 182

(length: 30 m × inner diameter: 0.25 mm × film thickness: 0.25 µm). The hydrocarbon 183

yield (X) was calculated by GC-FID using Eq. 2. 184

(Eq. 2) 185

where, no = peak area of alkanes, ni= peak area of alkenes, nz= peak area of the total 186

products. The selectivity of the hydrocarbon products was determined by Eq. 3. 187

(Eq.3) 188

Page 49: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

9

where, ci= peak area of desired hydrocarbon, nz= peak area of total hydrocarbon. 189

The functional group of deoxygenated liquid products were identified using FTIR 190

spectrometer (Perkin Elmer (PC) Spectrum 100). The spectra were recorded within IR 191

range of 500-4000 cm-1 and the resolution was 4 cm-1. 192

3. Results and Discussion 193

3.1 Characterization of catalysts 194

XRD analysis 195

XRD analysis in Fig 1a-b showed the low and wide angles diffraction pattern of 196

the catalysts. Kaolin showed the presence of kaolinite phase with high intensity peaks 197

appeared at 2θ = 12.4°, 23.7°, 24.9° and 38.4° (JCPDS No. 14-0164) (Fig. 1a). 198

Significant changes on the diffraction pattern were observed following hydrothermal 199

synthesis, with both S-ZSM-5 and T-ZSM-5 showed the diffraction peaks corresponded 200

to the ZSM-5 at 2θ = 7.8°, 8.7°, 23.0°, 23.8° and 24.0° (JCPDS No. 44-0003). For Al-201

MCM-41, a broad diffraction peak appeared at 2θ = 15-30° corresponded to the 202

amorphous phase of Al-MCM-41 [59]. The low angle XRD analysis (Fig. 1b) of Al-203

MCM-41 showed three diffraction peaks within 2θ = 2-6° corresponded to the (100), 204

(110) and (200) diffraction planes. The peaks confirmed the formation of highly ordered 205

hexagonal mesostructures of Al-MCM-41 [11,60]. S-ZSM-5 synthesized using silicalite 206

as structure directing agent showed a weak diffraction peak at 2θ=2.1o that 207

corresponded to the (100) diffraction plane. The presence of this peak implied the 208

formation of a lower ordered mesostructure within the ZSM-5 framework [60]. When 209

T-ZSM-5 was synthesized using TPAOH, the peaks associated with the ordered 210

mesostructure were negligible. In general, the mesoporosity of ZSM-5 was enhanced 211

when silicalite was used as seeding template during the two-steps crystallization of 212

Page 50: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

10

kaolin. The mesoporosity of aluminosilicate was further enhanced when the synthesis 213

was carried out in the absence MFI as structure directing agent, however the framework 214

structure was transformed into Al-MCM-41. 215

Fig. 1a-b 216

FTIR analysis 217

FTIR analysis of kaolin showed the absorption bands at 538 cm-1, 789 cm-1 and 218

914 cm-1 that were corresponded to the vibrations of Al-O and (Al-O)-H bonds in 219

Al[O(OH)]6 (Fig. 2a). Kaolin also showed absorption bands at 430, 470, 752, 795, 1032 220

and 1114 cm-1, which were assigned to the Si-O bonds from SiO4. The absence of 221

absorption band associated with kaolin on S-ZSM-5, T-ZSM-5 and Al-MCM-41 222

indicated the phase transformation of kaolinite to silica-based materials framework. All 223

the catalysts derived from kaolin showed the characteristics absorption of zeolite 224

framework at 450 cm-1 due to the vibration of T-O-T (T is Al or Si atom). The catalysts 225

also showed the adsorption bands at 795 and 1225 cm-1 assigned to the internal and the 226

external asymmetric stretching, respectively; and the band at 1100 cm-1 ascribed to 227

internal asymmetric stretching mode of T-O-T (between TO4 tetrahedral) [61]. S-ZSM-228

5 and T-ZSM-5 catalysts showed the formation of 550 cm-1 band which was the 229

characteristic of MFI structure [62]. Meanwhile the absence of 550 cm-1 band on Al-230

MCM-41 further confirmed the formation of Al-MCM-41 framework [63]. The 231

vibrational peak appeared at 960 cm-1 from Al-MCM-41 corresponded to Si-O 232

stretching vibration of Si-O-H group [64]. 233

Fig. 2a-b 234

Page 51: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

11

Surface acidity of the catalysts were analyzed using FTIR spectroscopy while 235

employing pyridine as probe molecule (Fig 2b). Pyridine was adsorbed onto the 236

catalysts at room temperature and subsequently evacuated at 150 ℃ and 300 ℃ in order 237

to provide information on the acidity strength and the number of Brønsted (B) and 238

Lewis (L) sites. The absorption band appeared at 1450 cm-1 was corresponded to the 239

Brønsted acidity, meanwhile the band at 1540 cm-1 was assigned to the Lewis acidity 240

[65]. The adsorption band observed at 1488 cm−1 was originated from adsorbed pyridine 241

on both types of acidity [52]. Table 1 summarized the calculated acidity of 242

aluminosilicate catalysts. Al-MCM-41 showed the highest number of Lewis acid at 243

0.296 mmol/g followed by T-ZSM-5 at 0.284 mmol/g and S-ZSM-5 at 0.158 mmol/g. 244

The number of Lewis and Brønsted acid sites were reduced following evacuation at 300 245

℃, which implied the presence of both weak and medium strength acidity on the 246

catalysts. T-ZSM-5 showed a higher Brønsted sites at 0.108 mmol/g followed by S-247

ZSM-5 at 0.072 mmol/g and Al-MCM-41 at 0.054 mmol/g. ZSM-5 produced from 248

TPAOH and silicalite seed showed a different concentration of acid sites despite similar 249

initial Si/Al ratios. The results implied the influence of organic template TPAOH for the 250

formation of surface acidity in ZSM-5. TPA+ was reported to facilitate the formation of 251

zeolite-like aluminium sites via the arrangement of tiny aluminosilicate clusters with 252

tetrahedrally coordinated aluminium, which in return significantly enhanced the acidity 253

of ZSM-5 [66,67]. 254

Table 1 255

N2 adsorption-desorption analysis 256

Page 52: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

12

The textural properties of the catalysts were analyzed using nitrogen adsorption-257

desorption method (Fig. 3a and Table 2). N2 adsorption analysis also provided 258

evidences on the presence of both microporous and mesoporous characteristics of 259

hierarchical zeolite. All the catalysts exhibited different type of isotherms. However, at 260

low relative pressure (P/P0<0.1), all the catalysts showed significant increase of N2 261

adsorption that was due to the presence of micropores. Similar trend was also observed 262

at high relative pressure (0.9<P/P0<1), due to the multilayer adsorption and capillary 263

condensation of N2. For Al-MCM-41, a sharp increase of N2 uptake at P/P0= 0.3-0.4 264

was observed as the typical characteristic of Al-MCM-41 mesoporosity. Al-MCM-41 265

also exhibited the largest surface area of 739 m2/g with the total pore volume of 0.85 266

cc/g. Al-MCM-41 also showed narrow distribution of mesopores with a very intense N2 267

adsorption volume centered at 3.8 nm due to the formation of intra-particle mesopores 268

[50] (Fig. 3b). T-ZSM-5 synthesized using TPAOH exhibited type I isotherm 269

corresponded to the microporous zeolite. The pore size was also measured at ~ 4.5-6.0 270

nm, however the mesopores were originated from inter-particles interaction. S-ZSM-5 271

produced using silicalite showed the combination of type I and type IV isotherms 272

suggesting the formation of hierarchical structures of ZSM-5. The presence of intra-273

particle mesopores in S-ZSM-5 was confirmed by the increased of N2 adsorption at 274

P/P0= 0.3-0.4. However, the N2 volume was significantly lower than Al-MCM-41. The 275

surface area of T-ZSM-5 was determined at 220 m2/g with the total pore volume was 276

measured at 0.37 cc/g. When ZSM-5 was synthesized using silicalite as a seed, the 277

surface area of S-ZSM-5 was significantly enhanced to 439 m2/g and the total pore 278

volume increased to 0.52 cc/g. 279

Fig. 3a-b 280

Page 53: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

13

Table 2 281

Morphology analysis using SEM and TEM 282

SEM analysis provided information on the morphology of the catalysts 283

synthesized using different types of structure directing agent. S-ZSM-5 (Fig 4a) showed 284

the formation of agglomerated particles that were dominated by the prismatic structures 285

with the particle size of 0.86-1.09 µm. Meanwhile, T-ZSM-5 catalyst (Fig. 4b) showed 286

the formation of cubic-shaped structure with the particle size of 0.90-1.04 µm. The 287

synthesis of porous Al-MCM-41 in the absence of structure directing agent showed the 288

formation of non-uniform crystallite structures with the average particle size of 0.50-289

1.05 µm (Fig. 4c). 290

Fig. 4a-c 291

HR-TEM analysis of S-ZSM-5 (Fig 5a) revealed the formation of hexagonal 292

crystallite structures with corrugated surfaces in agreement with the SEM analysis. The 293

presence of well-ordered parallel mesopores channel was observed with the pore 294

diameters were estimated at 3.32 nm (Fig 5b). TEM analysis of T-ZSM-5 showed the 295

formation of cubical crystalline structure with the size was determined at ~ 400 nm (Fig 296

5c). The presence of mesoporous channel in T-ZSM-5 was less evident in comparison 297

to the S-ZSM-5, which confirmed the results from N2 adsorption-desorption and low 298

angle XRD (Fig. 5d). TEM analysis of Al-MCM-41 exhibited the formation of intra-299

particulate one dimensional mesopores with the average pore size of 3.49 nm (Fig 5e-f). 300

The formation of parallel mesopore channel was more pronounced in Al-MCM-41 that 301

indicated the highly-ordered mesopore channel was developed during the synthesis 302

Page 54: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

14

without the use of MFI structure directing agent. The presence of CTABr as mesopore 303

template controlled the growth of parallel mesopores in Al-MCM-41. 304

Fig. 5a-f 305

29Si MAS NMR analysis 306

29Si MAS NMR analysis provided information of the silica environment in 307

aluminosilicate at molecular level. 29Si MAS NMR spectra of S-ZSM-5 showed three 308

deconvoluted peaks centered at -86, -97 and -110 ppm (Fig 6a). The signal appeared at -309

110 and -97 ppm were corresponded to the Q4 linkage of Si(SiO)4 [68] and Si(OSi)3OAl 310

sites, respectively [69,70]. In T-ZSM-5, these peaks were slightly shifted to -111 and -311

101 ppm presumably due to the high crystallinity of T-ZSM-5 compared to S-ZSM-5 312

[71]. S-ZSM-5 showed the presence of weak resonance peak at -86 ppm, which was 313

corresponded to the Q3 Si(OSi)3(OH) sites from the amorphous phase of ZSM-5. The 314

29Si MAS NMR signal for Al-MCM-41 appeared at chemical shift of -83 and -89 ppm 315

which were assigned to Q3 Si(OSi)3(OH) and Q4 Si(OSi)3OAl sites, respectively. The 316

presence of Q3 resonances implied the partial transformation of Si(SiO)3OAl to 317

Si(SiO)3(OH). Al-MCM-41 also showed a broad resonance peak due to the overlapping 318

of multiple peaks at chemical shift of -97 and -108 ppm corresponded to the silicon sites 319

Q4 Si(OSi)4 unit. The elemental composition of Si and Al determined from 29Si MAS 320

NMR deconvoluted data (Table 3) showed the Si/Al ratios of the catalysts were 321

determined at ~22 – 26. 322

Fig. 6a-c 323

Table 3 324

3.2 Catalytic deoxygenation of JCO 325

Page 55: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

15

Deoxygenation of JCO was carried out at 350 ℃ for 1 h under N2 flow using S-ZSM-326

5, T-ZSM-5 and Al-MCM-41 (Table 4). Al-MCM-41 showed high oil conversion at 327

20.04%, which was significantly higher than T-ZSM-5 at 9.97% and S-ZSM-5 at 328

6.73%. Analysis of the liquid products from S-ZSM-5 revealed the selectivity of 329

hydrocarbon at 45.94% and oxygenates compound at 48.16%. Oxygenates were 330

consisted of carboxylic acid, aldehyde and ether compounds. Cycloalkane was also 331

observed at 3.25% selectivity. The selectivity of hydrocarbon was increased to 65.78% 332

when using T-ZSM-5 with significant reduction of oxygenates compound to 26.37%. 333

When Al-MCM-41 was used as catalyst, hydrocarbons was produced at 83.68% of 334

selectivity, and the formation oxygenates was significantly reduced to 4.77%. It is 335

interesting to note that increasing the mesoporosity of ZSM-5 when using silicalite as 336

template was detrimental towards deoxygenation reaction evident by the low conversion 337

of oil at 6.73%. S-ZSM-5 also exhibited low concentration of acidity in comparison to 338

T-ZSM-5 and Al-MCM-41. The results suggested that the deoxygenation of JCO is an 339

acid catalyzed reaction and therefore the number of acid sites significantly enhanced the 340

conversion of oil to hydrocarbon. 341

Table 4. 342

Analysis of JCO composition showed the presence of 70% of unsaturated fatty acid 343

which was consisted of a mixture of oleic acid (C18:1) and linoleic acid (C18:2); with 344

another 20% was saturated fatty palmitic acid (C16:0) [10]. Therefore, detail analysis 345

of the hydrocarbon resulted from the reaction provided insight into the pathway of 346

deoxygenation reaction. Fig 7 showed the distribution of hydrocarbon based on the 347

number of carbon chain, in which Al-MCM-41 showed high selectivity towards n-348

C15+n-C17 hydrocarbons. Deoxygenation produced oxygen-free hydrocarbons with one 349

Page 56: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

16

atom carbon shorter than the parent fatty acid. The formation of n-C15+n-C17 350

hydrocarbons indicated that the JCO oil underwent deoxygenation reaction when using 351

Al-MCM-41. The formation of light hydrocarbons fraction (C8-C14) were observed on 352

S-ZSM-5 and T-ZSM-5 catalysts that reduced the selectivity of deCOx products (n-353

C15+n-C17 hydrocarbons). Light hydrocarbon was produced presumably due to the 354

secondary hydrocracking reaction of the resulting hydrocarbons or the fatty acids in 355

JCO. 356

Fig. 7 357

3.2 Effect of reaction time on deoxygenation of JCO over Al-MCM-41 358

The effect of reaction time on the conversion and the selectivity of hydrocarbon 359

was investigated using Al-MCM-41 catalysts. The conversion was increased from 20% 360

to 45% in 4h (Fig 8a). The composition of hydrocarbon was further divided into n-C11-361

18 which was within the diesel hydrocarbon range, and n-C8-10 for gasoline range (Fig. 362

8b). n-C11-18 hydrocarbon n was dominated the product throughout the reaction at ~ 363

90% of selectivity. The appearance of n-C8-10 fraction was corresponded to the 364

competing hydrocracking reaction of JCO or the resulted hydrocarbon with acid sites on 365

the catalysts [72]. 366

Fig. 8a-b 367

JCO and liquid product from deoxygenated reaction were further characterised 368

using FTIR analysis in order to provide insight into the mechanistic steps of the reaction 369

(Fig. 9a). The FTIR spectra of JCO showed the presence of –CH stretching of the 370

aliphatic chain absorption band at 2925 cm-1, the –C=O stretching of ester at 1735 cm-1, 371

the C-O-C stretching at 1161 cm-1, the –CH alkane and the =CH alkene bending 372

Page 57: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

17

vibrations at 1453 and 717 cm-1 respectively. The absorption band of –C=O (ester) and 373

C-O-C (carbonyl) stretching were the characteristics of oxygenates species in 374

triglycerides that were used to evaluate the progress of deoxygenation reaction [20]. The 375

stretching vibration of –C=O in liquid product was slightly shifted from 1735 cm-1 376

(ester group) to 1700 cm-1 (carboxylic acid group) after 1h of reaction, indicated the 377

dissociation of ester bond to form intermediates fatty acid [73]. The observation was 378

also supported by the elimination of C-O-C band of the carbonyl group in JCO evident 379

by the disappearance of the absorption band at 1161 cm-1 [74]. FTIR analysis indicated 380

that the first step of reaction involved the transformation of triglycerides to fatty acids 381

that occurred on acid catalysts. As the reaction time increased to 4 h, the reduction of–382

C=O peak intensity was observed which confirmed the elimination of carboxylate 383

fragments of the free fatty acids. It is also interesting to see that the C-O adsorption 384

band was disappeared within the first 1h of the reaction, meanwhile the C=O band only 385

showed significant reduction after 4h of reaction. Considering the deoxygenation 386

involved removal of OCO group, we believe the differences of the intensity of the C-O 387

and C=O absorption bands provided crucial information on the mechanism of the 388

reaction that will be discussed in section 3.5. 389

Fig. 9a-b 390

3.4 Reusability and stability Al-MCM-41 catalyst 391

The stability Al-MCM-41 were evaluated based on the reusability of the catalyst 392

and the formation of coke deposits. The catalyst was filtered of 2h of reaction and 393

reactivated by washing with hexane until the filtration become colourless. The 394

reactivated catalyst was subsequently used under similar reaction condition for five 395

times. Fig. 10 showed the conversion and the selectivity hydrocarbon that indicated the 396

Page 58: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

18

Al-MCM-41 catalyst was active up to five reaction cycles with consistent hydrocarbon 397

selectivity ~91%. However, hydrocarbon selectivity reduced after 5th cycle at 80%, and 398

therefore the catalyst was further characterized using TGA and XRD analysis to provide 399

information on the cause of deactivation (Fig. 11a-c). TGA-DTG-DSC analysis 400

showed the presence of 28% of coke on the catalysts that may have blocked the active 401

sites of the reaction [75]. TGA-DTG-DSC analysis also indicated the decomposition of 402

carbon to CO2 at 300-500 ℃ in which suggested the coke was consisted of a mixture of 403

soft and hard carbon. Coke can be classified into soft/thermal coke deposit which 404

decomposed at temperature below 400 ℃, and hard/catalytic coke that decomposed at 405

temperature above 400 ℃ [14,76,77]. XRD analysis of the used catalysts showed the 406

hexagonal porous characteristic peak at 2θ= 2.3o (100) was slightly reduced (Fig. 11c) 407

that suggested the coke deposited within the hexagonal pores array of Al-MCM-41 408

framework and reduced the diffusion of molecules reactant [78]. 409

Fig. 10 410

Fig. 11a-c 411

3.5 Discussion 412

Selective deoxygenation of JCO under inert condition eliminated the carboxylate 413

fragments of fatty acid via decarboxylation and/or decarbonylation pathways. JCO was 414

consisted of 20 % of free fatty acid and 70% of triglycerides. In the presence of acid 415

catalysts, triglycerides was hydrolysed to form palmitic acid, oleic acid, stearic acid and 416

linoleic acid (C16 and C18 fatty acids) [14]. The resulting fatty acids were further 417

deoxygenated to form n-C15 and n-C17 hydrocarbons. The presence of strong acid sites 418

was important due to the deoxygenation reaction was carried out at high temperatures 419

~350 oC. Pyridine adsorption analysis showed that Al-MCM-41 has high number of 420

Page 59: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

19

Lewis acid sites in comparison to the ZSM-5. S-ZSM-5 showed approximately 43% 421

reduction of Lewis acidity at temperature above 300 oC meanwhile Al-MCM-41 only 422

showed 20 % reduction of Lewis acidity. Although the mesoporosity of S-ZSM-5 was 423

significantly improved when using silicate as template, the deficiency of high strength 424

Lewis acid sites significantly reduced the conversion of oil into hydrocarbons. 425

Analysis of the hydrocarbons composition from Al-MCM-41 and ZSM-5 426

indicated that the deoxygenation reaction of JCO was in competition with 427

hydrocracking reaction. Deoxygenation eliminated carbonyl group in the fatty acid in 428

order to form hydrocarbon with one atom carbon shorter than the parent structures (C15 429

and C17 hydrocarbons). Both deoxygenation and hydrocracking reactions required an 430

acid catalyst to dissociate the C-C bond for high conversion of oil to hydrocarbon. 431

Cracking reaction of hydrocarbon generally required a strong acid catalyst with high 432

concentration of Brønsted acidity [31,79], meanwhile deoxygenation occurred 433

predominantly on Lewis acidity [72]. The ratio between Lewis to Brønsted acidity 434

indicated that Al-MCM-41 have a high number of Lewis acidity than the S-ZSM-5 and 435

T-ZSM-5. However, the porosity of catalysts also affected the conversion towards 436

deoxygenation reaction. High selectivity towards short-chain hydrocarbons fraction (C8-437

10) were observed when using S-ZSM-5 and T-ZSM-5. The result indicated the reaction 438

underwent secondary cracking pathway on S-ZSM-5 and T-ZSM-5. Catalytic cracking 439

into short-chain hydrocarbon can occur on the fatty acids, or the resulting hydrocarbons 440

from deoxygenation reaction, which consequently reduced the selectivity of 441

hydrocarbon within the green diesel composition (C11-18). The confined spaces of the 442

zigzag pore structure and the narrow channel intersection of ZSM-5 restricted the 443

diffusion of molecular substrate, hence prolonged the interaction between acid sites and 444

Page 60: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

20

hydrocarbon for secondary cracking reaction. Al-MCM-41 catalyzed deoxygenation 445

reaction of JCO to favor high production of nC15+17 hydrocarbon and simultaneously 446

suppressed the formation of light chained hydrocarbon from secondary hydrocracking 447

reaction. Efficient diffusion of hydrocarbons prevented further cracking reaction to light 448

chained hydrocarbon. The narrow diameter of ZSM-5 pores that was generally consisted 449

of a zigzag and a straight channel connected via a narrow intersection restricted the 450

diffusion of fatty acids into the pores and therefore it can be suggested that catalytic 451

cracking reaction may utilized acid sites on the surface of the catalyst. 452

Fig. 12 illustrated the proposed mechanism of deoxygenation reaction of JCO 453

over Al-MCM-41 catalyst. Deoxygenation of JCO occurred via decarboxylation of fatty 454

acid evident by the production of CO2 gas. Analysis of the gas product from 455

deoxygenation of JCO using GC-TCD (Fig 9b) indicated the domination of CO2 with 456

100% selectivity within 1h of reaction. Increasing the reaction time significantly 457

reduced the selectivity of CO2 but enhanced the formation of CO suggested that fatty 458

acids underwent decarbonylation reaction to release CO. Traces amount of CH4 was also 459

observed presumably due to the methanation reaction between CO and CO2 gas under 460

the presence of H2. Since the reaction was carried out in the absence of H2, there is a 461

possibility that H2 was produced from the catalytic cracking reaction. 462

Fig. 12 463

4. Conclusions 464

Kaolin was transformed into highly selective hierarchical aluminosilicate catalysts for 465

deoxygenation of Jatropha Curcas oil into green diesel. Aluminosilicates in the form of 466

mesoporous Al-MCM-41, hierarchical ZSM-5 and microporous ZSM-5 were produced 467

Page 61: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

21

when different structure directing agent were employed during the two steps 468

hydrothermal synthesis. High conversion and selectivity towards deoxygenation 469

reaction was observed on Al-MCM-41 meanwhile ZSM-5 showed the competition 470

between deoxygenation and catalytic hydrocracking reaction. Lewis acidity was 471

responsible for high conversion of JCO. Highly ordered mesoporous Al-MCM-41 with 472

one-dimensional hexagonal pore arrays facilitated the diffusion of deoxygenated 473

products that prevented the secondary cracking reaction, consequently enhanced the n-474

C15+n-C17 hydrocarbon yield. Al-MCM-41 also displayed high stability and reusability 475

up to five cycles with consistent hydrocarbon selectivity. 476

477

Acknowledgement 478

The authors would like to acknowledge the Ministry of Research, Technology and 479

Higher Educaction of Republic Indonesia under PMDSU scholarship with contract 480

number 1290/PKS/ITS/2020 and local ITS grant no. 836/PKS/ITS/2020 for funding the 481

research. 482

References 483

[1] M.F. Kamaruzaman, Y.H. Taufiq-Yap, D. Derawi, Green diesel production from 484

palm fatty acid distillate over SBA-15-supported nickel, cobalt, and nickel/cobalt 485

catalysts, Biomass and Bioenergy. 134 (2020) 105476. 486

https://doi.org/10.1016/j.biombioe.2020.105476. 487

[2] M. Choo, L.E. Oi, T.C. Ling, E. Ng, Y. Lin, G. Centi, J.C. Juan, Deoxygenation 488

of Triolein to Green Diesel in the H2-free condition: Effect of Transition Metal 489

Oxide Supported on Zeolite Y, J. Anal. Appl. Pyrolysis. (2020) 104797. 490

Page 62: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

22

https://doi.org/10.1016/j.jaap.2020.104797. 491

[3] N. Asikin-Mijan, H. V. Lee, J.C. Juan, A.R. Noorsaadah, G. Abdulkareem-492

Alsultan, M. Arumugam, Y.H. Taufiq-Yap, Waste clamshell-derived CaO 493

supported Co and W catalysts for renewable fuels production via cracking-494

deoxygenation of triolein, J. Anal. Appl. Pyrolysis. 120 (2016) 110–120. 495

https://doi.org/10.1016/j.jaap.2016.04.015. 496

[4] G.A. Alsultan, N. Asikin-Mijan, H. V. Lee, A.S. Albazzaz, Y.H. Taufiq-Yap, 497

Deoxygenation of waste cooking to renewable diesel over walnut shell-derived 498

nanorode activated carbon supported CaO-La2O3 catalyst, Energy Convers. 499

Manag. 151 (2017) 311–323. https://doi.org/10.1016/j.enconman.2017.09.001. 500

[5] C. Hu, X. Du, D. Li, H. Xin, W. Zhou, R. Yang, K. Zhou, The Conversion of 501

Jatropha Oil into Jet Fuel on NiMo/Al-MCM-41 Catalyst: Intrinsic Synergic 502

Effects between Ni and Mo, Energy Technol. 7 (2019). 503

https://doi.org/10.1002/ente.201800809. 504

[6] B.P. Pattanaik, R.D. Misra, Effect of reaction pathway and operating parameters 505

on the deoxygenation of vegetable oils to produce diesel range hydrocarbon 506

fuels: A review, Renew. Sustain. Energy Rev. 73 (2017) 545–557. 507

https://doi.org/10.1016/j.rser.2017.01.018. 508

[7] R.W. Gosselink, S.A.W. Hollak, S.W. Chang, J. Van Haveren, K.P. De Jong, 509

J.H. Bitter, D.S. Van Es, Reaction pathways for the deoxygenation of vegetable 510

oils and related model compounds, ChemSusChem. 6 (2013) 1576–1594. 511

https://doi.org/10.1002/cssc.201300370. 512

[8] I.M. Monirul, H.H. Masjuki, M.A. Kalam, N.W.M. Zulkifli, H.K. Rashedul, 513

Page 63: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

23

M.M. Rashed, H.K. Imdadul, M.H. Mosarof, A comprehensive review on 514

biodiesel cold flow properties and oxidation stability along with their 515

improvement processes, RSC Adv. 5 (2015) 86631–86655. 516

https://doi.org/10.1039/c5ra09555g. 517

[9] K.A. Sorate, P. V. Bhale, Biodiesel properties and automotive system 518

compatibility issues, Renew. Sustain. Energy Rev. 41 (2015) 777–798. 519

https://doi.org/10.1016/j.rser.2014.08.079. 520

[10] N. Asikin-Mijan, H. V Lee, G. Abdulkareem-alsultan, A. Afandi, Production of 521

green diesel via cleaner catalytic deoxygenation of Jatropha curcas oil, J. Clean. 522

Prod. 167 (2017) 1048–1059. https://doi.org/10.1016/j.jclepro.2016.10.023. 523

[11] F.C.M. Silva, M.S. Lima, C.O.C. Neto, J.L.S. Sá, L.D. Souza, Catalytic 524

deoxygenation of C18 fatty acids over HAlMCM-41 molecular sieve, Biomass 525

Convers. Biorefinery. 8 (2018) 159–167. https://doi.org/10.1007/s13399-017-526

0263-9. 527

[12] M. Romero, A. Pizzi, G. Toscano, A.A. Casazza, G. Busca, B. Bosio, E. Arato, 528

Preliminary experimental study on biofuel production by deoxygenation of 529

Jatropha oil, Fuel Process. Technol. 137 (2015) 31–37. 530

https://doi.org/10.1016/j.fuproc.2015.04.002. 531

[13] A. Ramesh, P. Tamizhdurai, P. Santhana Krishnan, V. Kumar Ponnusamy, S. 532

Sakthinathan, K. Shanthi, Catalytic transformation of non-edible oils to biofuels 533

through hydrodeoxygenation using Mo-Ni/mesoporous alumina-silica catalysts, 534

Fuel. 262 (2020) 116494. https://doi.org/10.1016/j.fuel.2019.116494. 535

[14] N. Asikin-Mijan, J.M. Ooi, G. AbdulKareem-Alsultan, H. V. Lee, M.S. Mastuli, 536

Page 64: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

24

N. Mansir, F.A. Alharthi, A.A. Alghamdi, Y.H. Taufiq-Yap, Free-H2 537

deoxygenation of Jatropha curcas oil into cleaner diesel-grade biofuel over 538

coconut residue-derived activated carbon catalyst, J. Clean. Prod. 249 (2020). 539

https://doi.org/10.1016/j.jclepro.2019.119381. 540

[15] R. Loe, E. Santillan-Jimenez, T. Morgan, L. Sewell, Y. Ji, S. Jones, M.A. Isaacs, 541

A.F. Lee, M. Crocker, Effect of Cu and Sn promotion on the catalytic 542

deoxygenation of model and algal lipids to fuel-like hydrocarbons over supported 543

Ni catalysts, Appl. Catal. B Environ. 191 (2016) 147–156. 544

https://doi.org/10.1016/j.apcatb.2016.03.025. 545

[16] E. Santillan-Jimenez, T. Morgan, J. Lacny, S. Mohapatra, M. Crocker, Catalytic 546

deoxygenation of triglycerides and fatty acids to hydrocarbons over carbon-547

supported nickel, Fuel. 103 (2013) 1010–1017. 548

https://doi.org/10.1016/j.fuel.2012.08.035. 549

[17] T. Danuthai, T. Sooknoi, S. Jongpatiwut, T. Rirksomboon, S. Osuwan, D.E. 550

Resasco, General Effect of extra-framework cesium on the deoxygenation of 551

methylester over CsNaX zeolites, "Applied Catal. A, Gen. 409–410 (2011) 74–552

81. https://doi.org/10.1016/j.apcata.2011.09.029. 553

[18] M. Jin, M. Choi, Hydrothermal deoxygenation of triglycerides over carbon-554

supported bimetallic PtRe catalysts without an external hydrogen source, Mol. 555

Catal. 474 (2019) 110419. https://doi.org/10.1016/j.mcat.2019.110419. 556

[19] J.M. Crawford, C.S. Smoljan, J. Lucero, M.A. Carreon, Deoxygenation of stearic 557

acid over cobalt-based nax zeolite catalysts, Catalysts. 9 (2019). 558

https://doi.org/10.3390/catal9010042. 559

Page 65: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

25

[20] M. Safa Gamal, N. Asikin-Mijan, M. Arumugam, U. Rashid, Y.H. Taufiq-Yap, 560

Solvent-free catalytic deoxygenation of palm fatty acid distillate over cobalt and 561

manganese supported on activated carbon originating from waste coconut shell, 562

J. Anal. Appl. Pyrolysis. 144 (2019). https://doi.org/10.1016/j.jaap.2019.104690. 563

[21] S. Popov, S. Kumar, Rapid hydrothermal deoxygenation of oleic acid over 564

activated carbon in a continuous flow process, Energy and Fuels. 29 (2015) 565

3377–3384. https://doi.org/10.1021/acs.energyfuels.5b00308. 566

[22] V.O.O. Gonçalves, P.M. de Souza, V.T. da Silva, F.B. Noronha, F. Richard, 567

Kinetics of the hydrodeoxygenation of cresol isomers over Ni2P/SiO2: Proposals 568

of nature of deoxygenation active sites based on an experimental study, Appl. 569

Catal. B Environ. 205 (2017) 357–367. 570

https://doi.org/10.1016/j.apcatb.2016.12.051. 571

[23] Y. Zheng, N. Zhao, J. Chen, Enhanced direct deoxygenation of anisole to 572

benzene on SiO2-supported Ni-Ga alloy and intermetallic compound, Appl. 573

Catal. B Environ. 250 (2019) 280–291. 574

https://doi.org/10.1016/j.apcatb.2019.02.073. 575

[24] L.E. Oi, M.Y. Choo, H.V. Lee, Y.H. Taufiq-Yap, C.K. Cheng, J.C. Juan, 576

Catalytic deoxygenation of triolein to green fuel over mesoporous TiO2 aided by 577

in situ hydrogen production, Int. J. Hydrogen Energy. (2019). 578

https://doi.org/10.1016/j.ijhydene.2019.07.172. 579

[25] T. Hengsawad, T. Jindarat, D.E. Resasco, S. Jongpatiwut, Synergistic effect of 580

oxygen vacancies and highly dispersed Pd nanoparticles over Pd-loaded TiO2 581

prepared by a single-step sol–gel process for deoxygenation of triglycerides, 582

Page 66: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

26

Appl. Catal. A Gen. 566 (2018) 74–86. 583

https://doi.org/10.1016/j.apcata.2018.08.007. 584

[26] C. Miao, O. Marin-Flores, S.D. Davidson, T. Li, T. Dong, D. Gao, Y. Wang, M. 585

Garcia-Pérez, S. Chen, Hydrothermal catalytic deoxygenation of palmitic acid 586

over nickel catalyst, Fuel. 166 (2016) 302–308. 587

https://doi.org/10.1016/j.fuel.2015.10.120. 588

[27] N. Asikin-Mijan, H. V. Lee, J.C. Juan, A.R. Noorsaadah, Y.H. Taufiq-Yap, 589

Catalytic deoxygenation of triglycerides to green diesel over modified CaO-based 590

catalysts, RSC Adv. 7 (2017) 46445–46460. https://doi.org/10.1039/c7ra08061a. 591

[28] S. Zhao, Z. Zhang, K. Zhu, J. Chen, Hydroconversion of methyl laurate on 592

bifunctional Ni 2 P/AlMCM-41 catalyst prepared via in situ phosphorization 593

using triphenylphosphine, Appl. Surf. Sci. 404 (2017) 388–397. 594

https://doi.org/10.1016/j.apsusc.2017.02.016. 595

[29] K.B. Baharudin, Y.H. Taufiq-Yap, J. Hunns, M. Isaacs, K. Wilson, D. Derawi, 596

Mesoporous NiO/Al-SBA-15 catalysts for solvent-free deoxygenation of palm 597

fatty acid distillate, Microporous Mesoporous Mater. 276 (2019) 13–22. 598

https://doi.org/10.1016/j.micromeso.2018.09.014. 599

[30] L. Yang, M.A. Carreon, Deoxygenation of Palmitic and Lauric Acids over 600

Pt/ZIF-67 Membrane/Zeolite 5A Bead Catalysts, ACS Appl. Mater. Interfaces. 9 601

(2017) 31993–32000. https://doi.org/10.1021/acsami.7b11638. 602

[31] A. Veses, B. Puertolas, J.M. Lopez, M.S. Callen, B. Solsona, T. García, 603

Promoting Deoxygenation of Bio-Oil by Metal-Loaded Hierarchical ZSM ‑ 5 604

Zeolites, ACS Sustain. Chem. Eng. 4 (2016) 1653–1660. 605

Page 67: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

27

https://doi.org/10.1021/acssuschemeng.5b01606. 606

[32] T. Du, H. Qu, Q. Liu, Q. Zhong, W. Ma, Synthesis, activity and hydrophobicity 607

of Fe-ZSM-5 at silicalite-1 for NH3-SCR, Chem. Eng. J. 262 (2015) 1199–1207. 608

https://doi.org/10.1016/j.cej.2014.09.119. 609

[33] J. Zhang, B. Fidalgo, A. Kolios, D. Shen, S. Gu, Mechanism of deoxygenation in 610

anisole decomposition over single-metal loaded HZSM-5: Experimental study, 611

Chem. Eng. J. 336 (2018) 211–222. https://doi.org/10.1016/j.cej.2017.11.128. 612

[34] F.P. Sousa, L.N. Silva, D.B. de Rezende, L.C.A. de Oliveira, V.M.D. Pasa, 613

Simultaneous deoxygenation, cracking and isomerization of palm kernel oil and 614

palm olein over beta zeolite to produce biogasoline, green diesel and biojet-fuel, 615

Fuel. 223 (2018) 149–156. https://doi.org/10.1016/j.fuel.2018.03.020. 616

[35] J.M. Gómez, E. Díez, A. Rodríguez, M. Calvo, Synthesis of mesoporous X 617

zeolite using an anionic surfactant as templating agent for thermo-catalytic 618

deoxygenation, Microporous Mesoporous Mater. 270 (2018) 220–226. 619

https://doi.org/10.1016/j.micromeso.2018.05.029. 620

[36] S. Karnjanakom, T. Suriya-umporn, A. Bayu, S. Kongparakul, C. Samart, C. 621

Fushimi, A. Abudula, G. Guan, High selectivity and stability of Mg-doped Al-622

MCM-41 for in-situ catalytic upgrading fast pyrolysis bio-oil, Energy Convers. 623

Manag. 142 (2017) 272–285. https://doi.org/10.1016/j.enconman.2017.03.049. 624

[37] S. Xing, P. Lv, C. Zhao, M. Li, L. Yang, Z. Wang, Y. Chen, S. Liu, Solvent-free 625

catalytic deoxygenation of oleic acid via nano-Ni/HZSM-5: Effect of reaction 626

medium and coke characterization, Fuel Process. Technol. 179 (2018) 324–333. 627

https://doi.org/10.1016/j.fuproc.2018.07.024. 628

Page 68: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

28

[38] S. Zulkepli, J.C. Juan, H.V. Lee, N.S.A. Rahman, P.L. Show, E.P. Ng, Modified 629

mesoporous HMS supported Ni for deoxygenation of triolein into hydrocarbon-630

biofuel production, Energy Convers. Manag. 165 (2018) 495–508. 631

https://doi.org/10.1016/j.enconman.2018.03.087. 632

[39] Hartati, W. Trisunaryanti, R.R. Mukti, I.A. Kartika, P.B. Dea Firda, S.D. 633

Sumbogo, D. Prasetyoko, H. Bahruji, Highly selective hierarchical ZSM-5 from 634

kaolin for catalytic cracking of Calophyllum inophyllum oil to biofuel, J. Energy 635

Inst. (2020). https://doi.org/10.1016/j.joei.2020.06.006. 636

[40] Y. Jun, S. Lee, K. Lee, M. Choi, Effects of secondary mesoporosity and zeolite 637

crystallinity on catalyst deactivation of ZSM-5 in propanal conversion, 638

Microporous Mesoporous Mater. 245 (2017) 16–23. 639

https://doi.org/10.1016/j.micromeso.2017.02.071. 640

[41] A. Shahid, S. Lopez-Orozco, V.R. Marthala, M. Hartmann, W. Schwieger, Direct 641

oxidation of benzene to phenol over hierarchical ZSM-5 zeolites prepared by 642

sequential post synthesis modification, Microporous Mesoporous Mater. 237 643

(2017) 151–159. https://doi.org/10.1016/j.micromeso.2016.09.012. 644

[42] L. Xing, Z. Wei, Z. Wen, X. Zhu, Catalytic study for methanol aromatization 645

over hierarchical ZSM-5 zeolite synthesized by kaolin, Pet. Sci. Technol. 35 646

(2017) 2235–2240. https://doi.org/10.1080/10916466.2017.1381712. 647

[43] R. Feng, X. Yan, X. Hu, Y. Wang, Z. Li, K. Hou, J. Lin, Hierarchical ZSM-5 648

zeolite designed by combining desilication and dealumination with related study 649

of n-heptane cracking performance, J. Porous Mater. 25 (2018) 1743–1756. 650

https://doi.org/10.1007/s10934-018-0587-2. 651

Page 69: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

29

[44] A. Bazargan, M. Bazargan, G. McKay, Optimization of rice husk pretreatment 652

for energy production, Renew. Energy. 77 (2015) 512–520. 653

https://doi.org/10.1016/j.renene.2014.11.072. 654

[45] L. Yang, X. Qian, P. Yuan, H. Bai, T. Miki, F. Men, H. Li, T. Nagasaka, Green 655

synthesis of zeolite 4A using fly ash fused with synergism of NaOH and 656

Na2CO3, J. Clean. Prod. 212 (2019) 250–260. 657

https://doi.org/10.1016/j.jclepro.2018.11.259. 658

[46] B. Jiang, B. Dou, K. Wang, Y. Song, H. Chen, C. Zhang, Y. Xu, M. Li, 659

Hydrogen production from chemical looping steam reforming of glycerol by Ni 660

based Al-MCM-41 oxygen carriers in a fixed-bed reactor, Fuel. 183 (2016) 170–661

176. https://doi.org/10.1016/j.fuel.2016.06.061. 662

[47] L. Fu, C. Huo, X. He, H. Yang, Au encapsulated into Al-MCM-41 mesoporous 663

material: In situ synthesis and electronic structure, RSC Adv. 5 (2015) 20414–664

20423. https://doi.org/10.1039/c5ra01701g. 665

[48] X.N. Pham, B.M. Nguyen, H.T. Thi, H. Van Doan, Synthesis of Ag-AgBr/Al-666

MCM-41 nanocomposite and its application in photocatalytic oxidative 667

desulfurization of dibenzothiophene, Adv. Powder Technol. 29 (2018) 1827–668

1837. https://doi.org/10.1016/j.apt.2018.04.019. 669

[49] H. Chen, S. Fu, L. Fu, H. Yang, D. Chen, Simple synthesis and characterization 670

of hexagonal and ordered al–mcm–41 from natural perlite, Minerals. 9 (2019) 1–671

11. https://doi.org/10.3390/min9050264. 672

[50] S. Chen, D. Guan, Y. Zhang, Z. Wang, N. Jiang, Composition and kinetic study 673

on template- and solvent-free synthesis of ZSM-5 using leached illite clay, 674

Page 70: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

30

Microporous Mesoporous Mater. 285 (2019) 170–177. 675

https://doi.org/10.1016/j.micromeso.2019.05.009. 676

[51] Y. Xie, A. Tang, H. Yang, Synthesis of nanoporous materials Al-MCM-41 from 677

natural halloysite, Nano. 10 (2015) 1–6. 678

https://doi.org/10.1142/S1793292015500058. 679

[52] I. Qoniah, D. Prasetyoko, H. Bahruji, S. Triwahyono, A.A. Jalil, Suprapto, 680

Hartati, T.E. Purbaningtias, Direct synthesis of mesoporous aluminosilicates 681

from Indonesian kaolin clay without calcination, Appl. Clay Sci. 118 (2015) 682

290–294. https://doi.org/10.1016/j.clay.2015.10.007. 683

[53] V.N. Iftitahiyah, D. Prasetyoko, H. Nur, H. Bahruji, Hartati, Synthesis and 684

characterization of zeolite NaX from Bangka Belitung Kaolin as alternative 685

precursor, Malaysian J. Fundam. Appl. Sci. 14 (2018) 414–418. 686

[54] D. Hartanto, R. Kurniawati, A.B. Pambudi, W.P. Utomo, W. Loon, H. Nur, One-687

pot non-template synthesis of hierarchical ZSM-5 from kaolin source, Solid State 688

Sci. 87 (2019) 150–154. https://doi.org/10.1016/j.solidstatesciences.2018.11.015. 689

[55] D. Veselý, A. Kalendova, P. Kalenda, A study of diatomite and calcined kaoline 690

properties in anticorrosion protective coatings, Prog. Org. Coatings. 68 (2010) 691

173–179. https://doi.org/10.1016/j.porgcoat.2010.02.007. 692

[56] T. Wahyuni, D. Prasetyoko, S. Suprapto, I. Qoniah, H. Bahruji, A. Dawam, S. 693

Triwahyono, A.A. Jalil, Direct synthesis of sodalite from Indonesian kaolin for 694

adsorption of Pb2+ solution, kinetics, and isotherm approach, Bull. Chem. React. 695

Eng. Catal. 14 (2019) 502–512. https://doi.org/10.9767/bcrec.14.3.2939.502-512. 696

Page 71: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

31

[57] G.A. Eimer, I. Díaz, E. Sastre, S.G. Casuscelli, M.E. Crivello, E.R. Herrero, J. 697

Perez-Pariente, Mesoporous titanosilicates synthesized from TS-1 precursors 698

with enhanced catalytic activity in the α-pinene selective oxidation, Appl. Catal. 699

A Gen. 343 (2008) 77–86. https://doi.org/10.1016/j.apcata.2008.03.028. 700

[58] A. Hamid, D. Prasetyoko, S. Suprapto, Colloidal Silica With Two-Step 701

Crystallization, Proceeding Int. Conf. Res. Implement. Educ. Math. Sci. (2015) 702

17–19. 703

[59] N.T.T. Tran, Y. Uemura, S. Chowdhury, A. Ramli, Vapor-phase 704

hydrodeoxygenation of guaiacol on Al-MCM-41 supported Ni and Co catalysts, 705

Appl. Catal. A Gen. 512 (2016) 93–100. 706

https://doi.org/10.1016/j.apcata.2015.12.021. 707

[60] D. Li, H. Min, X. Jiang, X. Ran, L. Zou, J. Fan, One-pot synthesis of Aluminum-708

containing ordered mesoporous silica MCM-41 using coal fly ash for phosphate 709

adsorption, J. Colloid Interface Sci. 404 (2013) 42–48. 710

https://doi.org/10.1016/j.jcis.2013.04.018. 711

[61] Y. Yue, Y. Kang, Y. Bai, L. Gu, H. Liu, J. Bao, T. Wang, P. Yuan, H. Zhu, Z. 712

Bai, X. Bao, Seed-assisted, template-free synthesis of ZSM-5 zeolite from natural 713

aluminosilicate minerals, Appl. Clay Sci. 158 (2018) 177–185. 714

https://doi.org/10.1016/j.clay.2018.03.025. 715

[62] O.G. Somani, A.L. Choudhari, B.S. Rao, S.P. Mirajkar, Enhancement of 716

crystallization rate by microwave radiation: Synthesis of ZSM-5, Mater. Chem. 717

Phys. 82 (2003) 538–545. https://doi.org/10.1016/S0254-0584(03)00224-4. 718

[63] E.G. Vaschetto, G.A. Pecchi, S.G. Casuscelli, G.A. Eimer, Nature of the active 719

Page 72: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

32

sites in Al-MCM-41 nano-structured catalysts for the selective rearrangement of 720

cyclohexanone oxime toward ε-caprolactam, Microporous Mesoporous Mater. 721

200 (2014) 110–116. https://doi.org/10.1016/j.micromeso.2014.08.030. 722

[64] E.G. Vaschetto, G.A. Monti, E.R. Herrero, S.G. Casuscelli, G.A. Eimer, 723

Influence of the synthesis conditions on the physicochemical properties and 724

acidity of Al-MCM-41 as catalysts for the cyclohexanone oxime rearrangement, 725

Appl. Catal. A Gen. 453 (2013) 391–402. 726

https://doi.org/10.1016/j.apcata.2012.12.016. 727

[65] H. Li, Y. Wang, F. Meng, H. Chen, C. Sun, S. Wang, Direct synthesis of high-728

silica nano ZSM-5 aggregates with controllable mesoporosity and enhanced 729

catalytic properties, RSC Adv. 6 (2016) 99129–99138. 730

https://doi.org/10.1039/c6ra21080e. 731

[66] X. Gu, T. Jiang, H. Tao, S. Zhou, X. Liu, J. Ren, Y. Wang, G. Lu, W. Schmidt, 732

Hydrothermally highly stable acidic mesoporous aluminosilicate spheres with 733

radial channels, J. Mater. Chem. 21 (2011) 880–886. 734

https://doi.org/10.1039/c0jm01973a. 735

[67] C. Zhang, H. Chen, X. Zhang, Q. Wang, TPABr-grafted MWCNT as bifunctional 736

template to synthesize hierarchical ZSM-5 zeolite, Mater. Lett. 197 (2017) 111–737

114. https://doi.org/10.1016/j.matlet.2017.03.085. 738

[68] T.C. Hoff, D.W. Gardner, R. Thilakaratne, J. Proano-Aviles, R.C. Brown, J.P. 739

Tessonnier, Elucidating the effect of desilication on aluminum-rich ZSM-5 740

zeolite and its consequences on biomass catalytic fast pyrolysis, Appl. Catal. A 741

Gen. 529 (2017) 68–78. https://doi.org/10.1016/j.apcata.2016.10.009. 742

Page 73: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

33

[69] E.C. Santos, L.S. Costa, E.S. Oliveira, R.A. Bessa, A.D.L. Freitas, C.P. Oliveira, 743

R.F. Nascimento, A.R. Loiola, Al-MCM-41 synthesized from kaolin via 744

hydrothermal route: Structural characterization and use as an efficient adsorbent 745

of methylene blue, J. Braz. Chem. Soc. 29 (2018) 2378–2386. 746

https://doi.org/10.21577/0103-5053.20180115. 747

[70] A. V. Vutolkina, A.P. Glotov, A. V. Zanina, D.F. Makhmutov, A.L. Maximov, S. 748

V. Egazar’yants, E.A. Karakhanov, Mesoporous Al-HMS and Al-MCM-41 749

supported Ni-Mo sulfide catalysts for HYD and HDS via in situ hydrogen 750

generation through a WGSR, Catal. Today. 329 (2019) 156–166. 751

https://doi.org/10.1016/j.cattod.2018.11.030. 752

[71] S. Mintova, V. Valtchev, T. Onfroy, C. Marichal, H. Knözinger, T. Bein, 753

Variation of the Si/Al ratio in nanosized zeolite Beta crystals, Microporous 754

Mesoporous Mater. 90 (2006) 237–245. 755

https://doi.org/10.1016/j.micromeso.2005.11.026. 756

[72] H. Wang, H. Lin, Y. Zheng, S. Ng, H. Brown, Y. Xia, Kaolin-based catalyst as a 757

triglyceride FCC upgrading catalyst with high deoxygenation, mild cracking, and 758

low dehydrogenation performances, Catal. Today. 319 (2019) 164–171. 759

https://doi.org/10.1016/j.cattod.2018.04.055. 760

[73] M.A. Kamboh, A.S. Chang, W.A. Wan Ibrahim, M.M. Sanagi, S.A. Mahesar, 761

Sirajuddin, S.T. Hussain Sherazi, A green method for the quantitative assessment 762

of neutral oil in palm fatty acid distillates by single bounce attenuated total 763

reflectance Fourier-transform infrared spectroscopy, RSC Adv. 5 (2015) 50591–764

50596. https://doi.org/10.1039/c5ra06987d. 765

Page 74: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

34

[74] N. Aliana-Nasharuddin, N. Asikin-Mijan, G. Abdulkareem-Alsultan, M.I. 766

Saiman, F.A. Alharthi, A.A. Alghamdi, Y.H. Taufiq-Yap, Production of green 767

diesel from catalytic deoxygenation of chicken fat oil over a series binary metal 768

oxide-supported MWCNTs, RSC Adv. 10 (2019) 626–642. 769

https://doi.org/10.1039/c9ra08409f. 770

[75] M.S. Zanuttini, M.A. Peralta, C.A. Querini, Deoxygenation of m-Cresol: 771

Deactivation and Regeneration of Pt/γ-Al2O3 Catalysts, Ind. Eng. Chem. Res. 54 772

(2015) 4929–4939. https://doi.org/10.1021/acs.iecr.5b00305. 773

[76] P. Reangchim, T. Saelee, V. Itthibenchapong, A. Junkaew, N. Chanlek, A. Eiad-774

Ua, N. Kungwan, K. Faungnawakij, Role of Sn promoter in Ni/Al2O3 catalyst 775

for the deoxygenation of stearic acid and coke formation: Experimental and 776

theoretical studies, Catal. Sci. Technol. 9 (2019) 3361–3372. 777

https://doi.org/10.1039/c9cy00268e. 778

[77] A. Eschenbacher, F. Goodarzi, A. Saraeian, S. Kegnæs, B.H. Shanks, A.D. 779

Jensen, Performance of mesoporous HZSM-5 and Silicalite-1 coated mesoporous 780

HZSM-5 catalysts for deoxygenation of straw fast pyrolysis vapors, J. Anal. 781

Appl. Pyrolysis. 145 (2020) 104712. https://doi.org/10.1016/j.jaap.2019.104712. 782

[78] X.Y. Ooi, L.E. Oi, M.Y. Choo, H.C. Ong, H.V. Lee, P.L. Show, Y.C. Lin, J.C. 783

Juan, Efficient deoxygenation of triglycerides to hydrocarbon-biofuel over 784

mesoporous Al2O3-TiO2 catalyst, Fuel Process. Technol. 194 (2019) 106120. 785

https://doi.org/10.1016/j.fuproc.2019.106120. 786

[79] D. Kubic, I. Kubic, Utilization of Triglycerides and Related Feedstocks for 787

Production of Clean Hydrocarbon Fuels and Petrochemicals : A Review, Waste 788

Page 75: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

35

and Biomass Valorization. 1 (2010) 293–308. https://doi.org/10.1007/s12649-789

010-9032-8. 790

791

792

793

Table Captions 794

Table 1. Number of Brønsted and Lewis acid sites of the catalysts from pyridine 795

adsorption 796

Table 2. Physicochemical properties of all samples 797

Table 3. Chemical shifts and Si/Al ratio from 29Si NMR 798

Table 4. Conversion and selectivity of liquid products from catalytic deoxygenation of 799

JCO 800

801

Page 76: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

36

Table 1. 802

Sample

Number of acid site (mmol/g)

B/L L/B

Brønsted Lewis B+L

S-ZSM-5 (150 0C) 0.072 0.158 0.230 0.455 2.194

S-ZSM-5 (300 0C) 0.038 0.089 0.127 0.426 2.342

T-ZSM-5 (150 0C) 0.108 0.284 0.392 0.380 2.629

T-ZSM-5 (300 0C) 0.073 0.198 0.271 0.369 2.712

Al-MCM-41 (150 0C) 0.054 0.296 0.350 0.182 5.481

Al-MCM-41 (300 0C) 0.014 0.234 0.248 0.059 16.710

803

804

Page 77: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

37

Table 2. 805

No Template

SBET

(m2/g)a

Surface

area

(m2/g)

Pore volume (cc/g) Dmeso

(nm) d

Product

e

Smeso Smicc Vmeso

b Vmicc Vtotal

1

Silicalite+

CTABr

439 149 289 0.38 0.14 0.52

3.6;

5.6

ZSM-5

2

TPAOH

+CTABr

220 118 102 0.34 0.03 0.37 5.1 ZSM-5

3 CTABr 739 260 478 0.56 0.29 0.85 3.8

Al-

MCM-

41

a SBET (Total surface area) by BET method. 806

b Vmeso by DFT method 807

c Smicro and Vmicro (micropore volume) by t-plot method 808

d Dmeso by DFT method 809

e Product by XRD technique 810

811

Page 78: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

38

Table 3. 812

Samples

Chemical shift (ppm) and area (%) deconvoluted peak

Si/Al

Q4 (4Si,

0Al)

Q4 (4Si,

0Al)

Q4 (3Si,

1Al) Q3 (3Si, 1OH)

S-ZSM-5 -110 (84.87)

- -97 (13.09) -86 (2.04) 26.44

T-ZSM-5

-111 (83.65)

-

-101 (16.35) - 24.46

Al-

MCM-41 -108 (42.86) -97 (28.95) -89 (14.92) -83 (13.27) 22.61

813

814

Page 79: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

39

Table 4. 815

Catalysts Xoils, %

Selectivity

Hydrocarbon, %

Selectivity

Cycloalkane,

%

Oxygenates

compound, %

S-ZSM-5 6.73 45.94 3.25 48.19

T-ZSM-5 9.97 65.78 6.35 26.37

Al-MCM-

41

20.04 83.68 11.52 4.77

816

817

Page 80: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

40

Figure Captions 818

Fig. 1. (a) Wide angle and (b) low angle XRD analysis of kaolin, Al-MCM-41, ZSM-5 819

synthesized using TPAOH (T-ZSM-5) and hierarchical ZSM-5 synthesized 820

using silicate (S-ZSM-5). 821

Fig. 2. FTIR framework (a) and pyridine adsorption (b) spectra of kaolin, Al-MCM-41, 822

ZSM-5 synthesized using TPAOH (T-ZSM-5) and hierarchical ZSM-5 823

synthesized using silicate (S-ZSM-5). 824

Fig. 3. N2 adsorption-desorption isotherm (a) and pore size distribution by DFT method 825

of Al-MCM-41, ZSM-5 synthesized using TPAOH (T-ZSM-5) and hierarchical 826

ZSM-5 synthesized using silicate (S-ZSM-5) (b)\ 827

Fig. 4. SEM images of the S-ZSM-5 (a), T-ZSM-5 (b) and Al-MCM-41 (c) 828

Fig. 5. TEM images of the S-ZSM-5 (a,b), T-ZSM-5 (c,d) and Al-MCM-41 (e,f) 829

Fig. 6. 29Si NMR deconvoluted spectra of S-ZSM-5 (a), T-ZSM-5 (b) and Al-MCM-41 830

(c) 831

Fig. 7. Hydrocarbon distribution from catalytic deoxygenation reaction of JCO on Al-832

MCM-41, ZSM-5 synthesized using TPAOH (T-ZSM-5) and hierarchical ZSM-5 833

synthesized using silicate (S-ZSM-5). 834

Fig. 8. Conversion of JCO (a) and Selectivity of hydrocarbon on Al-MCM-41 catalyst 835

as a function of time (b). Hydrocarbon composition was divided into gasoline fractions 836

(C8-10) and diesel fraction (C11-18) 837

Fig. 9. FTIR spectra of JCO and liquid deoxygenated products over 4h of reaction (a) 838

and gas products analyzed from JCO reaction (b) 839

Page 81: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

41

Fig. 10. Reusability investigation of JCO deoxygenation reaction over Al-MCM-41 840

using 3 wt.% catalyst loading at 350 ℃ within 2 h under inert atmosphere. (a) 841

Conversion of JCO, and (b) selectivity of hydrocarbon from liquid product 842

Fig. 11. TG-DTG-DSC profile of fresh (a) and spent catalyst (b) and low angle XRD 843

pattern of fresh and spent catalyst (c) 844

Fig. 12. Reaction pathway of JCO deoxygenation 845

846

Page 82: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

42

847

Fig. 1. 848

849

Page 83: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

43

850

Fig 2. 851

852

Page 84: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

44

853

Fig. 3. 854

Page 85: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

45

855

Fig 4. 856

Page 86: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

46

857

858

Fig 5. 859

Page 87: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

47

860

Fig. 6. 861

Page 88: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

48

862

Fig. 7. 863

864

Page 89: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

49

865

Fig. 8. 866

867

Page 90: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

50

868

Fig. 9. 869

870

Page 91: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

51

871

Fig. 10. 872

873

Page 92: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

52

874

Fig. 11. 875

876

Page 93: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

53

877

Fig. 12. 878

Page 94: LAPORAN AKHIR PENELITIAN HI-IMPACT DANA ITS 2020

Declaration of interests

☒ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

☐The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Declaration of Interest Statement