Hk. 3 Newton

download Hk. 3 Newton

of 23

Transcript of Hk. 3 Newton

  • 8/6/2019 Hk. 3 Newton

    1/23

    Hukum II Newton

    y Monday Sep 8,2008 07:25 PM

    y By sany

    In Dinamika

    Pengantar

    Dalam Hukum I Newton, kita telah belajar bahwa jika tidak ada gaya total yang bekerja pada

    sebuah benda, maka benda tersebut akan tetap diam, atau jika benda tersebut sedang bergerak

    maka benda tersebut tetap bergerak dengan laju tetap pada lintasan lurus. Apa yang terjadi jikagaya total tidak sama dengan nol ? Sebelum menjawab pertanyaan tersebut, apakah anda sudahmemahami pengertian gaya total ?Jika belum, silahkan pahami penjelasan gurumuda berikut ini.

    Selamat belajar Hukum II Newton, semoga sukses sampai di tempat tujuan semoga Hukum

    Newton semakin dekat di hati anda

    Pengertian Gaya Total

    Seperti apakah gaya total itu ?Misalnya kita mendorong sekeping uang logam di atas meja;

    setelah bergerak, uang logam yang didorong tersebut berhenti. Ketika kita mendorong uanglogam tadi, kita memberikan gaya berupa dorongan sehingga uang logam begerak. Nah, selaingaya dorongan kita, pada logam tersebut bekerja juga gaya gesekan udara dan gaya gesekan

    antara permukaan bawah uang logam dan permukaan meja, yang arahnya berlawanan denganarah gaya dorongan kita. Apabila jumlah selisih antara kekuatan dorongan kita (Gaya dorong)

    dan gaya gesekan (baik gaya gesekan udara maupun gaya gesekan antara permukaan logam danmeja) adalah nol, maka uang logam berhenti bergerak/diam. Jika selisih antara gaya dorong yang

    kita berikan dengan gaya gesekan tidak nol, maka uang logam tersebut akan tetap bergerak.Selisih antara gaya dorong dan gaya gesekan tersebut dinamakan gaya total. Semoga ilustrasi

    sederhana ini bisa membantu anda memahami pengertian gaya total.

    Hukum II Newton

    Sekarang kita kembali ke pertanyaan awal pada bagian pengantar. Apa yang terjadi jika gaya

    total yang bekerja pada benda tidak sama dengan nol ? Newton mengatakan bahwa jika padasebuah benda diberikan gaya total atau dengan kata lain, terdapat gaya total yang bekerja pada

    sebuah benda, maka benda yang diam akan bergerak, demikian juga benda yang sedang bergerakbertambah kelajuannya. Apabila arah gaya total berlawanan dengan arah gerak benda, maka gaya

    tersebut akan mengurangi laju gerak benda. Apabila arah gaya total berbeda dengan arah gerak

  • 8/6/2019 Hk. 3 Newton

    2/23

    benda maka arah kecepatan benda tersebut berubah dan mungkin besarnya juga berubah. Karena perubahan kecepatan merupakan percepatan maka kita dapat menyimpulkan bahwa gaya total

    yang bekerja pada benda menyebabkan benda tersebut mengalami percepatan. Arah percepatantersebut sama dengan arah gaya total. Jika besar gaya total tetap atau tidak berubah, maka besar

    percepatan yang dialami benda juga tetap alias tidak berubah.

    Bagaimana hubungan antara Percepatan dan Gaya ?Pernahkah anda mendorong sesuatu

    ?mungkin motor yang mogok atau gerobak sampah jika belum pernah mendorong sesuatu

    seumur hidup anda, gurumuda menyarankan agar sebaiknya anda berlatih mendorong. Tapi

    jangan mendorong mobil orang lain yang sedang diparkir, apalagi mendorong teman anda hinggajatuh. Ok, kembali ke dorong

    Bayangkanlah anda mendorong sebuah gerobak sampah yang bau-nya menyengat.Usahakansampai gerobak tersebut bergerak. Nah, ketika gerobak bergerak, kita dapat mengatakan bahwa

    terdapat gaya total yang bekerja pada gerobak itu. Silahkan dorong gerobak sampah itu dengangaya tetap selama 30 detik. Ketika anda mendorong gerobak tersebut dengan gaya tetap selama

    30 menit, tampak bahwa gerobak yang tadinya diam, sekarang bergerak dengan laju tertentu,anggap saja 4 km/jam. Sekarang, doronglah gerobak tersebut dengan gaya dua kali lebih besar

    (gerobaknya didiamin dulu). Apa yang anda amati ?wah, gawat kalau belajar sambilngelamun Jika anda mendorong gerobak sampah dengan gaya dua kali lipat, maka gerobak

    tersebut bergerak dengan laju 4 km/jam dua kali lebih cepat dibandingkan sebelumnya.Percepatan gerak gerobak dua kali lebih besar. Apabila anda mendorong gerobak dengan gaya

    lima kali lebih besar, maka percepatan gerobak juga bertambah lima kali lipat. Demikianseterusnya.Kita bisa menyimpulkan bahwa percepatan berbanding lurus dengan gaya total yang

    bekerja pada benda.

    Seandainya percobaan mendorong gerobak sampah diulangi.Percobaan pertama, kitamenggunakan gerobak yang terbuat dari kayu, sedangkan percobaan kedua kita menggunakan

    gerobak yang terbuat dari besi dan lebih berat. Jika anda mendorong gerobak besi dengan gayadua kali lipat, apakah gerobak tersebut bergerak dengan laju 4 km/jam dua kali lebih cepat

    dibandingkan gerobak sebelumnya yang terbuat dari kayu ?

    Tentu saja tidak karena percepatan juga bergantung pada massa benda. Anda dapatmembuktikannya sendiri dengan melakukan percobaan di atas. Jika anda mendorong gerobak

    sampah yang terbuat dari sampah dengan gaya yang sama ketika anda mendorong gerobak yangterbuat dari kayu, makaakan terlihat bahwa percepatan gerobak besi lebih kecil. Apabila gayatotal yang bekerja pada benda tersebut sama, maka makin besar massa benda, makin kecil

    percepatannya, sebaliknya makin kecil massa benda makin besar percepatannya.

    Hubungan ini dikemas oleh eyang Newton dalam Hukum-nya yang laris manis di sekolah, yakni

    Hukum II Newton tentang Gerak :

    Jika suatu gaya total bekerja pada benda, maka benda akan mengalami percepatan, di mana

    arah percepatan sama dengan arah gaya total yang bekerja padanya. Vektor gaya total samadengan massa benda dikalikan dengan percepatan benda.

  • 8/6/2019 Hk. 3 Newton

    3/23

    Hukum II Newton

    y Monday Sep 8,2008 07:25 PM

    y By sany In Dinamika

    Pengantar

    Dalam Hukum I Newton, kita telah belajar bahwa jika tidak ada gaya total yang bekerja pada

    sebuah benda, maka benda tersebut akan tetap diam, atau jika benda tersebut sedang bergerakmaka benda tersebut tetap bergerak dengan laju tetap pada lintasan lurus. Apa yang terjadi jika

    gaya total tidak sama dengan nol ? Sebelum menjawab pertanyaan tersebut, apakah anda sudah

    memahami pengertian gaya total ?Jika belum, silahkan pahami penjelasan gurumuda berikut ini.

    Selamat belajar Hukum II Newton, semoga sukses sampai di tempat tujuan semoga Hukum

    Newton semakin dekat di hati anda

    Pengertian Gaya Total

    Seperti apakah gaya total itu ?Misalnya kita mendorong sekeping uang logam di atas meja;setelah bergerak, uang logam yang didorong tersebut berhenti. Ketika kita mendorong uang

    logam tadi, kita memberikan gaya berupa dorongan sehingga uang logam begerak. Nah, selain

    gaya dorongan kita, pada logam tersebut bekerja juga gaya gesekan udara dan gaya gesekanantara permukaan bawah uang logam dan permukaan meja, yang arahnya berlawanan denganarah gaya dorongan kita. Apabila jumlah selisih antara kekuatan dorongan kita (Gaya dorong)

    dan gaya gesekan (baik gaya gesekan udara maupun gaya gesekan antara permukaan logam danmeja) adalah nol, maka uang logam berhenti bergerak/diam. Jika selisih antara gaya dorong yang

    kita berikan dengan gaya gesekan tidak nol, maka uang logam tersebut akan tetap bergerak.Selisih antara gaya dorong dan gaya gesekan tersebut dinamakan gaya total. Semoga ilustrasi

    sederhana ini bisa membantu anda memahami pengertian gaya total.

  • 8/6/2019 Hk. 3 Newton

    4/23

    Hukum II Newton

    Sekarang kita kembali ke pertanyaan awal pada bagian pengantar. Apa yang terjadi jika gayatotal yang bekerja pada benda tidak sama dengan nol ? Newton mengatakan bahwa jika pada

    sebuah benda diberikan gaya total atau dengan kata lain, terdapat gaya total yang bekerja pada

    sebuah benda, maka benda yang diam akan bergerak, demikian juga benda yang sedang bergerakbertambah kelajuannya. Apabila arah gaya total berlawanan dengan arah gerak benda, maka gayatersebut akan mengurangi laju gerak benda. Apabila arah gaya total berbeda dengan arah gerak

    benda maka arah kecepatan benda tersebut berubah dan mungkin besarnya juga berubah. Karena perubahan kecepatan merupakan percepatan maka kita dapat menyimpulkan bahwa gaya total

    yang bekerja pada benda menyebabkan benda tersebut mengalami percepatan. Arah percepatantersebut sama dengan arah gaya total. Jika besar gaya total tetap atau tidak berubah, maka besar

    percepatan yang dialami benda juga tetap alias tidak berubah.

    Bagaimana hubungan antara Percepatan dan Gaya ?Pernahkah anda mendorong sesuatu

    ?mungkin motor yang mogok atau gerobak sampah jika belum pernah mendorong sesuatu

    seumur hidup anda, gurumuda menyarankan agar sebaiknya anda berlatih mendorong. Tapijangan mendorong mobil orang lain yang sedang diparkir, apalagi mendorong teman anda hingga

    jatuh. Ok, kembali ke dorong

    Bayangkanlah anda mendorong sebuah gerobak sampah yang bau-nya menyengat.Usahakansampai gerobak tersebut bergerak. Nah, ketika gerobak bergerak, kita dapat mengatakan bahwa

    terdapat gaya total yang bekerja pada gerobak itu. Silahkan dorong gerobak sampah itu dengangaya tetap selama 30 detik. Ketika anda mendorong gerobak tersebut dengan gaya tetap selama

    30 menit, tampak bahwa gerobak yang tadinya diam, sekarang bergerak dengan laju tertentu,anggap saja 4 km/jam. Sekarang, doronglah gerobak tersebut dengan gaya dua kali lebih besar

    (gerobaknya didiamin dulu). Apa yang anda amati ?wah, gawat kalau belajar sambilngelamun Jika anda mendorong gerobak sampah dengan gaya dua kali lipat, maka gerobak

    tersebut bergerak dengan laju 4 km/jam dua kali lebih cepat dibandingkan sebelumnya.Percepatan gerak gerobak dua kali lebih besar. Apabila anda mendorong gerobak dengan gaya

    lima kali lebih besar, maka percepatan gerobak juga bertambah lima kali lipat. Demikianseterusnya.Kita bisa menyimpulkan bahwa percepatan berbanding lurus dengan gaya total yang

    bekerja pada benda.

    Seandainya percobaan mendorong gerobak sampah diulangi.Percobaan pertama, kitamenggunakan gerobak yang terbuat dari kayu, sedangkan percobaan kedua kita menggunakangerobak yang terbuat dari besi dan lebih berat. Jika anda mendorong gerobak besi dengan gaya

    dua kali lipat, apakah gerobak tersebut bergerak dengan laju 4 km/jam dua kali lebih cepatdibandingkan gerobak sebelumnya yang terbuat dari kayu ?

    Tentu saja tidak karena percepatan juga bergantung pada massa benda. Anda dapat

    membuktikannya sendiri dengan melakukan percobaan di atas. Jika anda mendorong gerobaksampah yang terbuat dari sampah dengan gaya yang sama ketika anda mendorong gerobak yang

    terbuat dari kayu, makaakan terlihat bahwa percepatan gerobak besi lebih kecil. Apabila gaya

  • 8/6/2019 Hk. 3 Newton

    5/23

    total yang bekerja pada benda tersebut sama, maka makin besar massa benda, makin kecilpercepatannya, sebaliknya makin kecil massa benda makin besar percepatannya.

    Hubungan ini dikemas oleh eyang Newton dalam Hukum-nya yang laris manis di sekolah, yakni

    Hukum II Newton tentang Gerak :

    Jika suatu gaya total bekerja pada benda, maka benda akan mengalami percepatan, di manaarah percepatan sama dengan arah gaya total yang bekerja padanya. Vektor gaya total sama

    dengan massa benda dikalikan dengan percepatan benda.

    m adalah massa benda dan a adalah (vektor) percepatannya. Jika persamaan di atas ditulis dalambentuka = F/m, tampak bahwa percepatan sebuah benda berbanding lurus dengan resultan gaya

    yang bekerja padanya dan arahnya sejajar dengan gaya tersebut. Tampak juga bahwa percepatanberbanding terbalik dengan massa benda.

    Jadi apabila tidak ada gaya total alias resultan gaya yang bekerja pada benda maka benda akandiam apabila benda tersebut sedang diam; atau benda tersebut bergerak dengan kecepatan tetap,

    jika benda sedang bergerak. Ini merupakan bunyi Hukum I Newton.

    Setiap gaya F merupakan vektor yang memiliki besar dan arah. Persamaan hukum II Newton diatas dapat ditulis dalam bentuk komponen pada koordinat xyz alias koordinat tiga dimensi,

    antara lain :

    Satuan massa adalah kilogram, satuan percepatan adalah kilogram meter per sekon kuadrat (kg

    m/s2). Satuan Gaya dalam Sistem Internasional adalah kg m/s2. Nama lain satuan ini adalahNewton; diberikan untuk menghargai jasa eyang Isaac Newton. Satuan-satuan tersebut merupaka

    satuan Sistem Internasional (SI). Dengan kata lain, satu Newton adalah gaya total yangdiperlukan untuk memberikan percepatan sebesar 1 m/s

    2kepada massa 1 kg. Hal ini berarti 1

    Newton = 1 kg m/s2.

    Dalam satuan CGS (centimeter, gram, sekon), satuan massa adalah gram (g), gaya adalah dyne.Satu dyne didefinisikan sebagai gaya total yang diperlukan untuk memberi percepatan sebesar 1

    cm/s2

    untuk benda bermassa 1 gram. Jadi 1 dyne = 1 gr cm/s2.

  • 8/6/2019 Hk. 3 Newton

    6/23

    Kedua jenis satuan yang kita bahas di atas adalah satuan Sistem Internasional (SI). Untuk satuanSistem Inggris (British Sistem), satuan gaya adalah pound (lb). 1 lb = 4,45 N. Satuan massa =

    slug. Dengan demikian, 1 pound didefinisikan sebagai gaya total yang diperlukan untuk memberipercepatan sebesar 1 ft/s2 kepada benda bermassa 1slug.

    Dalam perhitungan, sebaiknya anda menggunakan satuan MKS (meter, kilogram, sekon) SI.Jadijika diketahui satuan dalam CGS atau sistem British, terlebih dahulu anda konversi.

    Contoh soal 1 :

    Berapakah gaya total yang dibutuhkan untuk memberi percepatan sebesar 10 m/s2

    kepada mobil

    yang bermassa 2000 kg ?

    HUBUNGAN ANTARA GAYA DAN GLBB

    Kita telah belajar mengenai Gerak Lurus Berubah Beraturan (GLBB) pada pembahasan

    mengenai Kinematika. Nah, pada pembahasan mengenai kinematika, kita mengabaikan gaya.Sekarang kita analisis Gerak Lurus Berubah Beraturan dan mengaitkannya dengan Gaya sebagaipenyebab gerakan benda dan juga sebagai penghambat gerakan benda (gaya gesek).

    Terdapat tiga persamaan pada GLBB, yakni :

    Ketiga persamaan tersebut mempunyai komponen percepatan alias a.

    Dengan demikian, gaya totalalias resultan gaya dihubungkan dengan GLBB oleh percepatan.

    Pernahkah anda menendang batu ?belum pernahkah dirimu menendang dirinya ? Pernakah anda

    menendang atau memukul alias meninju sesuatu ?jika pernah, apa yang anda rasakan ? sakit bisakah

    dirimu menjelaskan mengapa tangan atau kaki terasa sakit ? Apabila anda tidak bisa menjelaskannya,pelajarilah Hukum III Newton dengan penuh semangat

    Ketika kita mendorong dindng tembok sebuah bangunan maka kita akan merasakan sebuah gaya yang

    mendorong kita dalam arah yang berlawanan dengan arah dorongan kita terhadap tembok itu. seperti

    pada gambar 3a dibawah :

  • 8/6/2019 Hk. 3 Newton

    7/23

    Semakin kuat kita mendorong tembok semakin kuat pula tembok itu melawan dorongan kta. Hal ini

    menunjukkan bahwa gaya selalu berpasangan dimana keduanya sama besar, tetapi arahnya

    berlawanan, dan bekerja pada dua buah benda berbeda ini disebut sebagai pasangan reaksi-aksi.

    Newton menyatakan pasangan aksi-reaksi ini dalam hukum 3 Newton yang berbunyi :

    " Jika bemnda pertama melakukan gaya pada benda ke dua, maka benda kedua akan melakukan gaya

    yang sama besar pada benda pertama, tetapi arahnya berlawanan dengan arah gaya yang diberikan

    benda pertama".

    Secara matematis, huklum 3 Newton dinyatakan sebagai berikut:

    F(aksi) = -F (reaksi)

    syarat-syarat gaya aksi reaksi yaitu:

    1. Arahnya berlawanan.

    2. Besarnya sama (karena sistem diam).

    3. Bekerja pada benda yang berbeda.

    (FAB pada tembok dan FBA)

    Aplikasi hukum 3 Newton dalam kehidupan sehari-hari:

    1. Pada saat berjalan telapak kaki mendorong lantai kebelakang sebagai aksi dan lantai mendorong

    telapak kaki kedepan sebagai reaksi. Seperti pada gambar 1a dibawah :

    2. Pada saat berenang, kaki dan tangan mendorong air kebelakang sebagai aksi dan air mendorong kaki

    dan tangan kedepan sebagai reaksi. seperti pada gambar 1b dibawah :

    3. Pada pelari,telapak kaki pelari mendorong papan start kebelakang (aksi). sebaga reaksi, papan start

    mendorong kaki pelari kedepan, sehingga pelari bergerak kedepan. seperti gambar 1c dibawah :

  • 8/6/2019 Hk. 3 Newton

    8/23

    Sir Isaac Newton first presented his threelaws of motion in the "Principia Mathematica PhilosophiaeNaturalis" in 1686. His third law states that for every action (force) in nature there is an equal andopposite reaction. In other words, if object A exerts a force on object B, then object B also exerts an equaland opposite force on object A. Notice that the forces are exerted on different objects.

    For aircraft, the principal of action and reaction is very important. It helps to explain the generation ofliftfrom an airfoil. In this problem, the air is deflected downward by the action of the airfoil, and in reactionthe wing is pushed upward. Similarly, for aspinning ball, the air is deflected to one side, and the ballreacts by moving in the opposite direction. Ajet engine also produces thrust through action and reaction.The engine produces hot exhaust gases which flow out the back of the engine. In reaction, a thrustingforce is produced in the opposite direction

  • 8/6/2019 Hk. 3 Newton

    9/23

  • 8/6/2019 Hk. 3 Newton

    10/23

    Michael Fowler, Physics Dept., U.Va.

    We are now ready to move on to Newtons Laws of Motion, which for the first time presented a

    completely coherent analysis of motion, making clear that the motion in the heavens could be

    understood in the same terms as motion of ordinary objects here on earth.

    Acceleration Again

    The crucial Second Law, as we shall see below, links the acceleration of a body with the force

    acting on the body. To understand what it says, it is necessary to be completely clear what is

    meant by acceleration, so let us briefly review.

  • 8/6/2019 Hk. 3 Newton

    11/23

    Speedis just how fast somethings moving, so is fully specified by a positive number andsuitable units, such as 55 mph or 10 meters per second.

    Velocity, on the other hand, means to a scientist more than speed---it also includes a specification

    of the direction of the motion, so 55 mph to the northwestis a velocity. Usually wind velocities

    are given in a weather forecast, since the direction of the wind affects future temperature changesin a direct way. The standard way of representing a velocity in physics is with an arrow pointingin the appropriate direction, its length representing the speed in suitable units. These arrows are

    called vectors.

    (WARNING: Notice, though, that for a moving object such as a projectile, both its position at agiven time (compared with where it started) andits velocity at that time can be represented by

    vectors, so you must be clear what your arrow represents!)

    Acceleration: as we have stated, acceleration is defined as rate of change of velocity.

    It is notdefined as rate of change of speed. A body can have nonzero acceleration while movingat constant speed!

    An Accelerating Body that isnt Changing Speed

    Consider Newtons cannon on an imaginary high mountain above the atmosphere, that shoots aball so fast it circles the earth at a steadyspeed. Of course, its velocity is changing constantly,

    because velocity includes direction.

    Let us look at how its velocity changes over a period of one second. (Actually, in the diagrambelow we exaggerate how far it would move in one second, the distance would in fact be one-

    five thousandth of the distance around the circle, impossible to draw.)

    The velocity vectors (length v) for a ball moving at steady speed in a circle are shown one

    second apart. To find the accelerationthe difference between these two vectorswe must

    put their tails together and draw a new vector (the red dotted one) from the head of the first to

    the head of the second. This new vector (length a) is the difference: what must be added to the

    first to give the second.

    The change in velocity in one second is the (average) acceleration in that second.

    A

    B

    C

    v

  • 8/6/2019 Hk. 3 Newton

    12/23

    v

    a

    Here we show the cannonball (greatly exaggerated in size!) at two points in its orbit, and the

    velocity vectors at those points. On the right, we show the two velocity vectors again, but we puttheir ends together so that we can see the difference between them, which is the small dashed

    vector.

    In other words, the small dashed vector is the velocity that has to be added to the first velocity to

    get the second velocity: it is the change in velocity on going around that bit of the orbit.

    Now, if we think of the two points in the orbit as corresponding to positions of the cannonballone second apart, the small dashed vector will represent the change in velocity in one second,

    and that isby definitionthe acceleration. The acceleration is the rate of change of velocity,and that is how much the velocity changes in one second (for motions that change reasonably

  • 8/6/2019 Hk. 3 Newton

    13/23

    smoothly over the one-second period, which is certainly the case here. To find the rate of changeof velocity of a flys wing at some instant, we obviously would have to measure its velocity

    change over some shorter interval, maybe a thousandth of a second).

    So we see that, with our definition of acceleration as the rate of change of velocity, which is a

    vector, a body moving at a steady speed around a circle is accelerating towards the center all thetime, although it never gets any closer to it. If this thought makes you uncomfortable, it isbecause you are still thinking that acceleration must mean a change of speed, and just changing

    direction doesnt count.

    Finding the Acceleration in Circular Motion

    It is possible to find an explicit expression for the magnitude of the acceleration towards thecenter (sometimes called the centripetalacceleration) for a body moving on a circular path at

    speed v. Look again at the diagram above showing two values of the velocity of the cannonballone second apart. As is explained above, the magnitude a of the acceleration is the length of the

    small dashed vector on the right, where the other two sides of this long narrow triangle havelengths equal to the speed v of the cannonball. Well call this the vav triangle, because those

    are the lengths of its sides. What about the angle between the two long sides? That is just theangle the velocity vector turns through in one second as the cannonball moves around its orbit.

    Now look over at the circle diagram on the left showing the cannonballs path. Label thecannonballs position at the beginning of the secondA, and at the end of the secondB, so the

    lengthAB is how far the cannonball travels in one second, that is, v. (Its true that the part of thepathAB is slightly curved, but we can safely ignore that very tiny effect.) Call the center of the

    circle C. Draw the triangleACB. (The reader should sketch the figure and actually draw thesetriangles!) The two long sidesACandBChave lengths equal to the radius of the circular orbit.

    We could call this long thin triangle an rvr triangle, since those are the lengths of its sides.

    The important point to realize now is that the vav triangle and the rvr triangle aresimilar,because since the velocity vector is always perpendicular to the radius line from the center of the

    circle to the point where the cannonball is in orbit, the angle the velocity vector rotates by in onesecond is the same as the angle the radius line turns through in one second. Therefore, the two

    triangles are similar, and their corresponding sides are in the same ratios, that is, a/v = v/r. Itfollows immediately that the magnitude of the acceleration a for an object moving at steady

    speed v in a circle of radius r is v2/r directed towards the center of the circle.

    This result is true for all circular motions, even those where the moving body goes round a largepart of the circle in one second. To establish it in a case like that, recall that the acceleration is

    the rate of change of velocity, and we would have to pick a smaller time interval than onesecond, so that the body didnt move far around the circle in the time chosen. If, for example,

    we looked at two velocity vectors one-hundredth of a second apart, and they were pretty close,then the acceleration would be given by the difference vector between them multiplied by one-

    hundred, since acceleration is defined as what the velocity change in one second would be if itcontinued to change at that rate. (In the circular motion situation, the acceleration is of course

    changing all the time. To see why it is sometimes necessary to pick small time intervals,consider what would happen if the body goes around the circle completely in one second. Then,

  • 8/6/2019 Hk. 3 Newton

    14/23

    if you pick two times one second apart, you would conclude the velocity isnt changing at all, sothere is no acceleration.)

    An Accelerating Body that isnt Moving

    Weve stated before that a ball thrown vertically upwards has constant downwardacceleration of10 meters per second in each second, even when its at the very top and isnt moving at all. The

    key point here is that acceleration is rate of change of velocity. You cant tell what the rate ofchange of something is unless you know its value at more than one time. For example, speed on

    a straight road is rate of change of distance from some given point. You cant get a speedingticket just for being at a particular point at a certain timethe cop has to prove that a short time

    later you were at a point well removed from the first point, say, three meters away after one-tenthof a second. That would establish that your speed was thirty meters per second, which is illegal

    in a 55 m.p.h. zone. In just the same way that speed is rate of change of position, acceleration israte of change of velocity. Thus to find acceleration, you need to know velocity at two different

    times. The ball thrown vertically upwards does have zero velocity at the top of its path, but that

    is only at asingle instantof time. One second later it is dropping at ten meters per second. Onemillionth of a second after it reached the top, it is falling at one hundred-thousandth of a meterper second. Both of these facts correspond to a downward acceleration, or rate of change of

    velocity, of 10 meters per second in each second. It would only have zero acceleration if itstayed at rest at the top for some finite period of time, so that you could say that its velocity

    remained the samezerofor, say, a thousandth of a second, and during that period the rate ofchange of velocity, the acceleration, would then of course be zero. Part of the problem is that the

    speed is very small near the top, and also that our eyes tend to lock on to a moving object to seeit better, so there is the illusion that it comes to rest and stays there, even if not for long.

    Galileos Analysis of Motion: Two Kinds

    Galileos analysis of projectile motion was based on two concepts:

    1. Naturally accelerated motion, describing the verticalcomponent of motion, in which the

    body picks up speed at a uniform rate.

    2. Natural horizontal motion, which is motion at asteady speed in a straight line, and happens

    to a ball rolling across a smooth table, for example, when frictional forces from surface or air canbe ignored.

    Newton Puts Them Together

    Newtons major breakthrough was to show that these two different kinds of motion can be

    thought of as different aspects of the same thing. He did this by introducing the idea of motion

    being affected by aforce, then expressing this idea in a quantitative way. Galileo, of course, hadbeen well aware that motion is affected by external forces. Indeed, his definition of natural

    horizontal motion explicitly states that it applies to the situation where such forces can beneglected. He knew that friction would ultimately slow the ball down, andvery importanta

    force pushing it from behind would cause it to accelerate. What he didnt say, though, and

  • 8/6/2019 Hk. 3 Newton

    15/23

    Newton did, was that just as a force would cause acceleration in horizontal motion, the naturalacceleration actually observed in vertical motion mustbe the result of a vertical force on the

    body, without which the natural vertical motion would also be at a constant speed, just likenatural horizontal motion. This vertical force is of course just the force of gravity.

    Force is the Key

    Therefore the point Newton is making is that the essential difference between Galileos natural

    steady speed horizontal motion and the natural accelerated vertical motion is that vertically, there

    is always the force of gravity acting, and without thatfor example far into spacethe naturalmotion (that is, with no forces acting) in any direction would be at a steady speed in a straight

    line.

    (Actually, it took Newton some time to clarify the concept of force, which had previously been

    unclear. This is discussed at length inNever at Rest, by Richard Westfall, and I havesummarized some of the points here.)

    Newtons First Law: no Force, no Change in Motion

    To put it in his own words (although actually he wrote it in Latin, this is from an 1803

    translation):

    Law 1

    Every body perseveres in its state of rest, or of uniform motion in a right line, unless it iscompelled to change that state by forces impressed thereon.

    He immediately adds, tying this in precisely with Galileos work:

    Projectiles persevere in their motions, so far as they are not retarded by the resistance of the air,or impelled downwards by the force of gravity.

    Notice that here persevere in their motions must mean insteady speed straight line motions,

    because he is adding the gravitational acceleration on to this.

    This is sometimes called The Law ofInertia: in the absence of an external force, a body inmotion will continue to move at constant speed and direction, that is, at constant velocity.

    So any acceleration, or change in speed (or direction of motion), of a body signals that it is beingacted on by some force.

  • 8/6/2019 Hk. 3 Newton

    16/23

    Newtons Second Law: Acceleration of a Body is Proportional to Force

    Newtons next assertion, based on much experiment and observation, is that,for a given body,

    the acceleration produced is proportional to the strength of the external force, so doubling theexternal force will cause the body to pick up speed twice as fast.

    Law 2

    The alteration of motion is ever proportional to the motive force impressed; and is made in the

    direction of the right line in which that force is impressed.

    What About Same Force, Different Bodies?

    Another rather obvious point he doesnt bother to make is that for a givenforce, such as, for

    example, the hardest you can push, applied to two different objects, say a wooden ball and a lead

    ball of the same size, with the lead ball weighing seven times as much as the wooden ball, then

    the lead ball will only pick up speed at one-seventh the rate the wooden one will.

    Falling Bodies One More Time:What is Mass?

    Now let us consider the significance of this law for falling bodies. Neglecting air resistance,

    bodies of all masses accelerate downwards at the same rate. This was Galileos discovery.

    Let us put this well established fact together with Newtons Second Law: the acceleration isproportionalto the external force, but inversely proportionalto the mass of the body the force

    acts on.

    Consider two falling bodies, one having twice the mass of the other. Since their acceleration isthe same, the body having twice the mass must be experiencing a gravitational force which is

    twice as strong. Of course, we are well aware of this, all its saying is that two bricks weightwice as much as one brick. Any weight measuring device, such as a bathroom scales, is justmeasuring the force of gravity. However, this proportionality of mass and weight is not a

    completely trivial point. Masses can be measured against each otherwithout using gravity at all,for example far into space, by comparing their relative accelerations when subject to a standard

    force, a push. If one object accelerates at half the rate of another when subject to our standardpush, we conclude it has twice the mass. Thinking of the mass in this way as a measure of

    resistance to having velocity changed by an outside force, Newton called it inertia. (Note thatthis is a bit different from everyday speech, where we think of inertia as being displayed by

    something that stays at rest. For Newton, steady motion in a straight line is the same as being atrest. That seems perhaps counterintuitive, but thats because in ordinary life, steady motion in a

    straight line usually causes some frictional or resistive forces to come into play).

  • 8/6/2019 Hk. 3 Newton

    17/23

    Mass andWeight

    To return to the concept of mass, it is really just a measure of the amount of stuff. For a uniform

    material, such as water, or a uniform solid, the mass is the volume multiplied by the densitythedensity being defined as the mass of a unit of volume, so water, for example, has a density of one

    gram per cubic centimeter, or sixty-two pounds per cubic foot.

    Hence, from Galileos discovery of the uniform acceleration of all falling bodies, we concludethat the weightof a body, which is the gravitational attraction it feels towards the earth, is

    directly proportional to its mass, the amount of stuff its made of.

    The Unit ofForce

    All the statements above about force, mass and acceleration are statements aboutproportionality. We have said that for a body being accelerated by a force acting on it the

    acceleration is proportional to the (total) external force acting on the body, and, for a given force,

    inversely proportional to the mass of the body.

    If we denote the force, mass and acceleration byF, m and a respectively (bearing in mind that

    reallyFand a are vectors pointing in the same direction) we could write this:

    F is proportional to ma

    To make any progress in applying Newtons Laws in a real situation, we need to choose some

    unit for measuring forces. We have already chosen units for mass (the kilogram) andacceleration (meters per second per second). The most natural way to define our unit of force is:

    Theunit of force is that force which causes a unit mass (one kilogram) to accelerate with unitacceleration (one meter per second per second).

    This unit of force is named, appropriately, the newton.

    If we now agree to measure forces in newtons, the statement of proportionality above can be

    written as a simple equation:

    F=ma

    which is the usual statement of Newtons Second Law.

    If a mass is now observed to accelerate, it is a trivial matter to find the total force acting on it.The force will be in the direction of the acceleration, and its magnitude will be the product of the

    mass and acceleration, measured in newtons. For example, a 3 kilogram falling body,accelerating downwards at 10 meters per second per second, is being acted on by a force ma

    equal to 30 newtons, which is, of course, its weight.

  • 8/6/2019 Hk. 3 Newton

    18/23

    Newtons Third Law: Action and Reaction

    Having established that a forcethe action of another bodywas necessary to cause a body to

    change its state of motion, Newton made one further crucial observation: such forces alwaysarise as a mutual interaction of two bodies, and the other body also feels the force, but in the

    opposite direction.

    Law 3

    To every action there is always opposed an equal and opposite reaction: or the mutual actionsof two bodies upon each other are always equal, and directed to contrary parts.

    Newton goes on:

    Whatever draws or presses another is as much drawn or pressed by that other. If you press astone with your finger, the finger is also pressed by the stone. If a horse draws a stone tied to a

    rope, the horse (if I may so say) will be equally drawn back towards the stone: for the distendedrope, by the same endeavour to relax or unbend itself, will draw the horse as much towards the

    stone, as it does the stone towards the horse, and will obstruct the progress of the one as muchas it advances that of the other. If a body impinge upon another, and by its force change the

    motion of the other, that body also (because of the equality of the mutual pressure) will undergoan equal change, in its own motion, towards the contrary part. The changes made by these

    actions are equal, not in the velocities but in the motions of bodies; that is to say, if the bodiesare not hindered by any other impediments. For, because the motions are equally changed, the

    changes of the velocities made towards contrary parts are reciprocally proportional to thebodies. This law takes place also in attractions.

    All this maybe sounds kind of obvious. Anyone whos had a dog on a leash, especially a bigdog, is well aware that tension in a rope pulls both ways. If you push against a wall, the wall is

    pushing you back. If thats difficult to visualize, imagine what would happen if the wallsuddenly evaporated. Newtons insight here, his realization that every acting force has a reacting

    force, and that acceleration of a body only occurs when an externalforce acts on it, was one ofthe big forward steps in our understanding of how the Universe works.

    Newtons Second Law in Everyday Life

    The Second Law states that if a body is accelerating, there must be an external force acting on it.

    Its not always obvious what this external force is even in the most trivial everyday occurrences.

    Suppose youre standing still, then begin to walk. What was the external force that caused youto accelerate? Think about that for a while. Heres a clue: its very hard to start walking if youre

    wearing smooth-bottomed shoes and standing on smooth ice. You tend to skid around in thesame place. If you understand that, you also know what external force operates when a car

    accelerates.

    The reason the external force causing the acceleration may not be immediately evident is that it

    may not be whats doing the work. Consider the following scenario: you are standing on level

  • 8/6/2019 Hk. 3 Newton

    19/23

    ground, on rollerskates, facing a wall with your palms pressed against it. You push against thewall, and roll away backwards. You accelerated. Clearly, you did the work that caused the

    acceleration. But from Newtons second law, your acceleration was, in fact, caused by thereactive external force of the wall pushing your hands, and hence the rest of you. That is to say,

    the force causing the acceleration may not be generated directly by whator whois doing the

    work!In this example, its generated indirectly, as a reaction force to that of the hands pushingon the wall. But if the wall were on wheels, and it accelerated away when you pushed (having

    taken off your roller skates) the force causing the acceleration of the wall wouldbe generated

    directly by the agent doing the work, you.

    Now imagine two people on roller skates, standing close facing each other, palms raised andpushing the other person away. According to Newtons discussion above following his Third

    Law, the two bodies involved will undergo equal changes of motion, but to contrary parts, that is,in opposite directions. That sounds reasonable. They obviously both move off backwards.

    Notice, however, that Newton makes a special point of the fact that these equal (but opposite)motions do not imply equal (but opposite) velocitiesthis becomes obvious when you

    imagine the experiment with a 100 pound person and a 200 pound person. Newton tells us thatin that situation the heavier person will roll backwards at half the speednotice he says the

    velocities are reciprocally proportional to the bodies.

    Roller skates actually provide a pretty good example of the necessity of generating an externalforce if you want to accelerate. If you keep the skates pointing strictly forwards, and only the

    wheels are in contact with the ground, its difficult to get going. The way you start is to turn theskates some, so that there is some sideways push on the wheels. Since the wheels cant turn

    sideways, you are thus able to push against the ground, and therefore it is pushing youyouvemanaged to generate the necessary external force to accelerate you. Note that if the wheels were

    to be replaced by ball bearings somehow, you wouldnt get anywhere, unless you provided someother way for the ground to push you, such as a ski pole, or maybe twisting your foot so that

    some fixed part of the skate contacted the ground.

    Gravity

    We have now reached the last sentence in Newtons discussion of his Third Law: This law also

    takes place in attractions. This of course is central to Newtons (and our) view of the

    Universe. If the Earth is attracting the Moon gravitationally with a certain force holding it in itsorbit, then the Moon is attracting the Earth with an equal force. So why isnt the Earth going

    around the Moon? The answer is that the masses are so different. The Earths mass is more thanone hundred times that of the Moon. Consequently, the Earths acceleration, falling towards

    the Moon, is very small. What actually happens is that they both circle around a balance pointbetween them, which in fact lies within the Earth. This motion of the Earth is easily detectable

    with instruments, but tiny compared with the daily rotation. Of course, it also follows from theabove considerations that since the Earth is attracting you downwards with a force equal to your

    weight, you are attracting the Earth upwardstowards youwith a force of exactly the samestrength.

  • 8/6/2019 Hk. 3 Newton

    20/23

    The Law ofGravity

    Let us now put together what we know about the gravitational force:

    1. The gravitational force on a body (its weight, at the Earths surface) is proportional to its

    mass.

    2. If a bodyA attracts a bodyB with a gravitational force of a given strength, thenB attractsAwith a force of equal strength in the opposite direction.

    3. The gravitational attraction between two bodies decreases with distance, being proportional tothe inverse square of the distance between them. That is, if the distance is doubled, the

    gravitational attraction falls to a quarter of what it was.

    One interesting point herethink about how the earth is gravitationally attracting you. Actually,all the different parts of the earth are attracting you! Mount Everest is pulling you one way, the

    Antarctic ice mass a different way, and the earths core is pulling you downwards. Newtonmanaged to prove, after thinking about it for years, that if the earth is a sphere (which is a very

    good approximation) then all these different attractions add up to what you would feel ifalltheearths mass were concentrated in one point at the center. So, when were talking about the

    gravitational attraction between you and the earth, and we talk about the distance of separation,we mean the distance between you and the centerof the earth, which is just less than four

    thousand miles (6300 kilometers).

    Lets denote the gravitational attractive force between two bodiesA andB (as mentioned in item

    2 above) byF. The forces on the two bodies are really equal and opposite vectors, each pointingto the other body, so our letterFmeans the length of these vectors, the strength of the force of

    attraction.

    Now, item 1 tells us that the gravitational attraction between the earth and a mass m isproportional to m. This is an immediate consequence of the experimental fact that falling bodies

    accelerate at the same rate, usually written g(approximately 10 meters per second per second),and the definition of force from Newtons Second Law above. Thus we have

    F is proportional to mass m

    for the earths gravitational attraction on a body (often written weight W= mg), and Newtongeneralized this finding to assert that this proportionality to mass would be true forany

    gravitational attraction on the body.

    From the symmetry of the force (item 2 above) and the proportionality to the mass (item 1), itfollows that the gravitational force between two bodies must be proportional to both masses. So,

    if we double both masses, say, the gravitational attraction between them increases by a factor offour. We see that if the force is proportional to both masses, lets call them Mand m, it is

    actually proportional to theproductMm of the masses. From item 3 above, the force is also

  • 8/6/2019 Hk. 3 Newton

    21/23

    proportional to 1/r2, where ris the distance between the bodies, so for the gravitational attractive

    force between two bodies

    F is proportional to Mm/r2

    This must mean that by measuring the gravitational force on something, we should be able tofigure out the mass of the Earth! But theres a catchall we know is that the force is

    proportionalto the Earths mass. From that we could find, for instance, the ratio of the mass ofthe Earth to the mass of Jupiter, by comparing how fast the Moon is falling around the Earth to

    how fast Jupiters moons are falling around Jupiter. For that matter, we could find the ratio ofthe Earths mass to the Suns mass by seeing how fast the planets swing around the Sun. Still,

    knowing all these ratios doesnt tell us the Earths mass in tons. It does tell us that if we find thatout, we can then find the masses of the other planets, at least those that have moons, and the

    mass of the Sun.

    Weighing the Earth

    So how do we measure the mass of the Earth? The only way is to compare the Earths

    gravitational attraction with that of something we already know the mass of. We dont know themasses of any of the heavenly bodies. What this really means is that we have to take a known

    mass, such as a lead ball, and measure how strongly it attracts a smaller lead ball, say, andcompare that force with the earths attraction for the smaller lead ball. This is very difficult to

    accomplish because the forces are so small, but it was done successfully in 1798, just over acentury after Newtons work, by Cavendish.

    In other words, Cavendish took two lead weights Mand m, a few kilograms each, and actuallydetected the tiny gravitational attraction between them (of order of magnitude millionths of a

    newton)! This was a sufficiently tough experiment that even now, two hundred years later, itsnot easy to give a lecture demonstration of the effect.

    Making this measurement amounts to finding the constant of proportionality in the statement

    aboutFabove, so that we can sharpen it up from a statement about proportionality to an actualuseable equation,

    F= GMm/r2

    where the constant G is what Cavendish measured, and found to be 6.67 x 10-11

    in theappropriate units, where the masses are in kilograms, the distance in meters and the force in

    newtons. (Notice here that we cant get rid of the constant of proportionality G, as we did in theequationF= ma, Newtons Second Law, above. We succeeded there by defining the unit of

    force appropriately. In the present case, we have already defined our units of mass, distance andforce, so we have no further room to maneuver.)

    From Newtons theory ofuniversalgravitational attraction, thesame constant G determines the

    gravitational attraction between any two masses in the universe. This means we can now findthe mass of theearth. We just consider a one kilogram mass at the earths surface. We know it

  • 8/6/2019 Hk. 3 Newton

    22/23

    feels a force of approximately 10 newtons, and is a distance of about 6300 km, or 6,300,000meters, from the center of the earth. So we know every term in the above equation exceptthe

    mass of the earth, and therefore can find it. This is left as an exercise.

  • 8/6/2019 Hk. 3 Newton

    23/23