Deret Taylor

Click here to load reader

download Deret Taylor

of 19

  • date post

    01-Oct-2015
  • Category

    Documents

  • view

    82
  • download

    10

Embed Size (px)

description

matematika

Transcript of Deret Taylor

  • Deret Taylor dan Analisis GalatAhmad Ashril Rizal

  • Metode-metode numerik yang diturunkan didasarkan pada penghampiran fungsi ke dalam bentuk polinomFungsi yang bentuknya kompleks menjadi lebih sederhana bila dihampiri dengan polinom, karena polinom merupakan bentuk fungsi yang paling mudah dipahami kelakuannyaKalau perhitungan dengan fungsi yang sesungguhnya menghasilkan solusi sejati, maka perhitungan dengan fungsi hampiran menghasilkan solusi hampiranPada pertemuan lalu sudah dikatakan bahwa solusi numerik merupakan pendekatan (hampiran) terhadap solusi sejati, sehingga terdapat galat sebesar selisih antara solusi sejati dengan solusi hampiranGalat pada solusi numerik harus dihubungkan dengan seberapa teliti polinom menghampiri fungsi sebenarnya. Kakas yang digunakan untuk membuat polinom hampiran adalah deret Taylor.

  • INGAT!!!!! Hasil penyelesaian numerik merupakan nilai perkiraan atau pendekatan dari penyelesaian analitis atau eksakMETODE NUMERIKDalam proses perhitungannya (algoritma)dilakukan dengan iterasi dalam jumlah yang sangat banyak dan berulang-ulang

    Click to edit the outline text formatSecond Outline LevelThird Outline LevelFourth Outline LevelFifth Outline LevelSixth Outline LevelSeventh Outline LevelEighth Outline LevelNinth Outline LevelClick to edit Master text stylesSecond levelThird levelFourth levelFifth level

    DERET TAYLORDefinisi :Andaikan f dan semua turunannya, f,f,f, menerus di dalam selang [a,b]. Misalkan : xo[a,b], maka nilai-nilai x di sekitar xo dan x[a,b], f(x) dapat diperluas (diekspansi) ke dalam deret Taylor :

  • DERET TAYLOR(Persamaan Deret Taylor)Deret Taylor merupakan dasar untuk menyelesaikan masalah dalam metode numerik,terutama penyelesaian persamaan diferensial.Bentuk umum deret Taylor:

    Jika suatu fungsi f(x) diketahui di titik xi dan semua turunan f terhadap x diketahui pada titik tersebut, maka dengan deret Taylor dapat dinyatakan nilai f pada titik xi+1 yang terletak pada jarak x dari titik xi .f(xi ) : fungsi di titik xi f(xi+1 ): fungsi di titik xi+1f, f,..., f n: turunan pertama, kedua, ...., ke n dari fungsix : jarak antara xi dan xi+1Rn : kesalahan pemotongan! : operator faktorial

  • Dalam praktek sulit memperhitungkan semua suku pada deret Taylor tersebut dan biasanya hanya diperhitungkan beberapa suku pertama saja.Memperhitungkan satu suku pertama (order nol)Artinya nilai f pada titik xi+1 sama dengan nilai pada xi . Perkiraan tersebut benar jika fungsi yang diperkirakan konstan. Jika fungsi tidak konstan, maka harus diperhitungkan suku-suku berikutnya dari deret Taylor.

    Memperhitungkan dua suku pertama (order satu)

    Memperhitungkan tiga suku pertama (order dua)

    Perkiraan order nolPerkiraan order satuPerkiraan order duaDERET TAYLOR (Persamaan Deret Taylor)

  • ContohDiketahui suatu fungsi f(x) = -2x3 + 12x2 20x + 8,5. Dengan menggunakan deret Taylor order nol, satu, dua dan tiga, perkirakan fungsi tersebut pada titik x = 0,5 berdasar nilai fungsi pada titik x0 = 0.Solusi:Memperhitungkan satu suku pertama (order nol)DERET TAYLOR(Persamaan Deret Taylor)Memperhitungkan dua suku pertama (order satu)

  • KESALAHAN (ERROR)Penyelesaian secara numeris memberikan nilai perkiraan yang mendekati nilai eksak (yang benar), artinya dalam penyelesaian numeris terdapat kesalahan terhadap nilai eksak.Terdapat tiga macam kesalahan:Kesalahan bawaan: merupakan kesalahan dari nilai data. Misal kekeliruan dalam menyalin data, salah membaca skala atau kesalahan karena kurangnya pengertian mengenai hukum-hukum fisik dari data yang diukur.

    Kesalahan pembulatan: terjadi karena tidak diperhitungkannya beberapa angka terakhir dari suatu bilangan, artinya nilai perkiraan digunakan untuk menggantikan bilangan eksak.contoh, nilai:8632574dapat dibulatkan menjadi 86330003,1415926 dapat dibulatkan menjadi 3,14

  • GALAT PEMBULATANPerhitungan dgn metode numerik hampir selalu menggunakan bilangan riil. Masalah timbul bila komputasi numerik dikerjakan dengan komputer karena semua bilangan riil tdk dapat disajikan secara tepat di dlm komputer. Keterbatas an komputer dlm menyajikan bilangan riil menghasilkan galat yg disebut galat pembulatan.

  • Contoh :1/6 = 0,16666666, kalau 6 digit komputer hanya menuliskan 0,166667.Galat pembulatannya = 1/6 0,166667 = -0,00000033.Kebanyakan komputer digital mempunyai dua cara penyajian bilangan riil, yaitu :(a). Bilangan titik tetap (fixed point) Contoh : 62.358; 0,013; 1.000

  • (b). Bilangan titik kambang (floating point) Contoh : 0,6238 x 103 atau 0,6238E+03 0,1714 x 10-13 atau 0,1714E-13Digit-digit berarti di dalam format bilangan titik kambang disebut juga Angka Bena (significant figure).

  • ANGKA BENAAdalah angka bermakna, angka penting atau angka yg dapat digunakan dgn pasti.Contoh :43.123 memiliki 5 angka bena (4,3,1,2,3) 0,1764 memiliki 4 angka bena (1,7,6,4) 0,0000012 memiliki 2 angka bena (1,2) 278.300 memiliki 6 angka bena (2,7,8,3,0,0) 0,0090 memiliki 2 angka bena (9,0)

    Click to edit the outline text formatSecond Outline LevelThird Outline LevelFourth Outline LevelFifth Outline LevelSixth Outline LevelSeventh Outline LevelEighth Outline LevelNinth Outline LevelClick to edit Master text stylesSecond levelThird levelFourth levelFifth level

    GALAT TOTALGalat akhir atau galat total pada solusi numerik merupakan jumlah galat pemotongan dan galat pembulatan.Contoh :Galat pemotonganGalat pembulatan

  • KESALAHAN (ERROR)Kesalahan pemotongan: terjadi karena tidak dilakukan hitungan sesuai dengan prosedur matematik yang benar. Sebagai contoh suatu proses tak berhingga diganti dengan proses berhingga.Contoh fungsi dalam matematika yang dapat direpresentasikan dalam bentuk deret tak terhingga yaitu:

    Nilai eksak dari diperoleh apabila semua suku dari deret tersebut diperhitungkan. Namun dalam prakteknya,sulit untuk menghitung semua suku sampai tak terhingga. Apabila hanya diperhitungkan beberapa suku pertama saja, maka hasilnya tidak sama dengan nilai eksak. Kesalahan karena hanya memperhitungkan beberapa suku pertama disebut dengan kesalahan pemotongan.

    Click to edit the outline text formatSecond Outline LevelThird Outline LevelFourth Outline LevelFifth Outline LevelSixth Outline LevelSeventh Outline LevelEighth Outline LevelNinth Outline LevelClick to edit Master text stylesSecond levelThird levelFourth levelFifth levelClick to edit the outline text formatSecond Outline LevelThird Outline LevelFourth Outline LevelFifth Outline LevelSixth Outline LevelSeventh Outline LevelEighth Outline LevelNinth Outline LevelClick to edit Master text stylesSecond levelThird levelFourth levelFifth level

    Maka :

    Galat pemotongan :Nilai hampiranGalat pemotongan

  • KESALAHAN ABSOLUT DAN RELATIFHubungan antara nilai eksak, nilai perkiraan dan kesalahan dapat dirumuskan sebagai berikut:

    p = p* + Eedengan:p : nilai eksakp* : nilai perkiraanEe : kesalahan terhadap nilai eksak

    Sehingga dapat dicari besarnya kesalahan adalah sebagai perbedaan antara nilai eksak dan nilai perkiraan, yaitu:Kesalahan AbsolutPada kesalahan absolut,tidak menunjukkan besarnya tingkat kesalahan

  • KESALAHAN ABSOLUT DAN RELATIFKesalahan relatif: besarnya tingkat kesalahan ditentukan dengan cara membandingkan kesalahan yang terjadi dengan nilai eksak.Kesalahan Relatif terhadap nilai eksakKesalahan relatif sering diberikan dalam bentuk persen.

  • KESALAHAN ABSOLUT DAN RELATIFDalam metode numerik, besarnya kesalahan dinyatakan berdasarkan nilai perkiraan terbaik dari nilai eksak,sehingga kesalahan mempunyai bentuk sebagai berikut:dengan:Ea : kesalahan terhadap nilai perkiraan terbaikp* : nilai perkiraan terbaikIndeks a menunjukkan bahwa kesalahan dibandingkan terhadap nilai perkiraan (approximate value).

  • KESALAHAN ABSOLUT DAN RELATIFDalam metode numerik, sering dilakukan pendekatan secara iteraktif, dimana pada pendekatan tersebut perkiraan sekarang dibuat berdasarkan perkiraan sebelumnya.Dalam hal ini, kesalahan adalah perbedaan antara perkiraan sebelumnya dan perkiraan sekarang.dengan: : nilai perkiraan pada iterasi ke n : nilai perkiraan pada iterasi ke n + 1

    ********************