Buku Praktikum

97
LABORATORIUM SISTEM DISTRIBUSI TENAGA LISTRIK WORKBOOK PRAKTIKUM PROTEKSI SISTEM TENAGA LISTRIK PROTEKSI SISTEM TENAGA LISTRIK Email : [email protected] 5/26/2012 [email protected] 1

Transcript of Buku Praktikum

LABORATORIUM SISTEM DISTRIBUSI TENAGA LISTRIK

WORKBOOK

PRAKTIKUM PROTEKSI SISTEM TENAGA LISTRIK

PROTEKSI SISTEM TENAGA LISTRIK

Email : [email protected] 5/26/2012

[email protected] 1

PERCOBAAN RELE ARUS LEBIH ABB tipe IKC 194 Diskripsi : Modul ini berkaitan dengan materi praktikum pengujian

dan analisis rele arus lebih Karakteristik Inverse dan

Instantanous.

Tujuan : Mahasiswa mampu melakukan analisis, mempraktekan

pengujian dalam mensetting rele arus lebih dalam konteks

penanganan operasi dan pemeliharaan peralatan

proteksi.

Sasaran : Setelah mempelajari modul ini peserta didik diharapkan

mampu

Mendeskripsikan karakteristik Inverse dan Instantanuos

pada OCR.

Mengidentifikasi kode dan symbol yang digunakan pada

rele OCR.

Menganalisa setting rele proteksi arus lebih.Melakukan

pengujian dan melakukan setting OCR.

[email protected] 2

I. Dasar Teori

Karakteristik Umum

Relai arus lebih dengan karakteristik waktu kerja tertentu.

Relai arus lebih dengan karakteristik waktu kerja tertentu mempunyai waktu

tunda yang tidak tergantung oleh besarnya arus yang menggerakkan. Pola ini

menggabungkan peralatan start, peralatan waktu tunda, relai sinyal, dan relai

bantu. Pada gambar 1. merupakan diagram saluran runggal dari pola pengaman

arus lebih dengan karakteristik waktu kerja tertentu yang telah dikombinasi

dengan relai waktu tunda, relai sinya, dan relai bantu.

t

I

SETt

KARAKTERISTIK TUNDA WAKTU TERTENTU ( DEFINITE TIME )

SETI

[email protected] 3

t

I

MOMENTISET

SETt

KARAKTERISTIK INSTANT = MOMENT

[email protected] 4

Relai arus lebih dengan karakteristik waktu kerja terbalik.

Relai dengan karakteristik waktu kerja terbalik adalah jika jangka waktu relai mulai

kerja sampai selesainya kerja relai diperpanjang dengan nilai yang berbanding

terbalik dengan besarnya arus yang menggerakkan. Gambar 2 merupakan

gambar diagram saluran tunggal untuk relai pengaman arus lebih dengan

karakteristik waktu kerja terbalik. Fungsi dari peralatan starting ( relai arus lebih )

dan waktu tunda dapat digabung dalam satu unit relai. Salah satu keunggulan relai

jenis ini disamping pola pengamanannya sederhana, juga keuntungan mendekati

invers yang proporsional dari waktu pengoperasian pengaman terhadap besarnya

arus yang melewati relai.

t

I

SETt

KARAKTERISTIK TUNDA WAKTU INVERSE

SETI

[email protected] 5

t

I

KARAKTERISTIK KOMBINASI INSTANT DENGAN TUNDA WAKTU INVERSE

SETI

MOMENTISET

t

I

SETt

KARAKTERISTIK KOMBINASI INSTANT DENGAN TUNDA WAKTU TERTENTU

(DEFINITE TIME )

SETI MOMENTI

SET

[email protected] 6

PRINSIP SETTING OCR

Iset Tunda waktu * Is = k In In = Arus Nominal k = Faktor pabrik * Plug Setting

Waktu kerja * Definite ( Langsung atau dengan Tms ) * Inverse ( Td atau Tms dan Mps = I / Is)

Is instant ( moment )

* Is instant = k In atau

k Is

In = Arus Nominal

Is = Arus setting tunda waktu

k = Faktor pabrik

* Plug setting

Tms ( td )

x Is Mps = 4 x Is

t

tk

Td = Time dial setting

Tms = Time multiple seting

Mps = Multiple plug setting

…. X Is

[email protected] 7

KURVA / KARAKTERISTIK

@ STANDARD / NORMAL INVERSE ( SI )

tmsI

t1

14,0

02,0

@ VERY INVERSE ( VI )

tmsI

t1

5,13

@ EXTREMELY INVERSE ( EI )

tmsI

t1

80

2

@ LONG TIME INVERSE ( LTI )

tmsI

t1

120

[email protected] 8

R

T E

PMT

CT

P1

P2

S1

S2

OCR

OCR GFR

2 Buah OCR

1 Buah GFR

R

S

T

E

CT

P1

P2

S1

S2

OCR

OCR

GFR OCR

SAMBUNGAN ( WIRING ) OCR dan GFR

3 Buah OCR

1 Buah GFR

PMT

[email protected] 9

JENIS / ITEM PENGUJIN

• Arus pick up dan arus drop off , dan rasio arus pick up dengan arus drop off

• Karakteristik Arus – Waktu

• Karakteristik Instantaneous

Arus pick up [ arus awal / mula ] arus minimum yang menyebabkan relai bekerja

Arus drop off [reset/ kembali ]

Arus maksimum yang menyebabkan relai tidak bekerja.

Rasio arus pick up dengan drop off

I

t

I pick up

I reset

I beban

t gangguan

%100

P

D

DI

IK

[email protected] 10

II. Prosedur Percobaan

3

Menguji Karakteristik

rele terhadap fungsi

arus beban dengan

setting I = 2

setting I 0,4 A (Waktu tunda),

K = 10

tms = 0,1

2

Menguji

Karakteristik

Prestting

rasio

1

Menguji system

sinyal out put

rele; start, delay,

instantanous

4

Menguji Karakteristik rele

terhadap fungsi arus

beban dengan setting I = 0,4 A (Waktu tunda),

skala pengali waktu (tms)

bervariasi = 0,1; 0,5, 1 (

k=10, 50, 100)

5

Menguji Karakteristik

Instantanous rele terhadap

fungsi arus beban dengan

setting I = 2 ;

setting I = 4

skala pengali waktu (tms)

bervariasi = 0,1; 0,5, 1 ( k=10,

50, 100)

[email protected] 11

III. Data dan Pengamatan.

Tabel Pengamatan 1.

No. Out Put Relay Keterangan/ Indikator/ Fungsi

1 NO Ready indicator

2 NC Ready indicator

3 NO Start

4 NC Start

5 NO (I & I )

6 NO (I & I )

Tabel Pengamatan 2 : Presetting Rasio

Setiing

Arus Uji

Iuji / Iset

Ioperasi

Ipelepasan

Presetting

Rasio

A( Ampere) A( Ampere) A( Ampere)

I = 2 Iset = 0,4A

I = 0 K = 10

0,4 1

0,6 1,5

0,8 2

1 2,5

1,2 3

1,6 3,5

2,0 4.0

2,4 4,5

.

CAT : PERHATIKAN RANGE ARUS TERTINGGI KOMPONEN DAN ALAT UKUR YANG

DIGUNAKAN

[email protected] 12

Tabel Pengamatan 3 : Karakteristik Waktu Pemutusan = F(Arus Beban)

Seting

Arus Uji

Iuji

Iset

T (Waktu Pemutusan) ( DETIK )

A

(Ampere)

K = 10

TMS = 0,1

K = 50

TMS = 0,5

K = 100

TMS = 0,5

Perhi-

tungan

Pengu-

kuran

Perhi-

tungan

Pengu-

kuran

Perhi-

tungan

Pengu-

kuran

(Det.) (Det.) (Det.) (Det.) (Det.) (Det.)

I = 2

I = 0

0,4 1

0,6 1,5

0,8 2

1 2,5

1,2 3

1,6 3,5

2,0 4.0

2,4 4,5

Tabel Pengamatan 3b : Karakteristik Waktu Pemutusan = F(Arus Beban)

Seting

Arus Uji

Iuji

Iset

T (Waktu Pemutusan)

( DETIK )

A

(Ampere)

K = 10

TMS = 0,1

K = 50

TMS = 0,5

K = 100

TMS = 0,5

Perhi-

tungan

Pengu-

kuran

Perhi-

tungan

Pengu-

kuran

Perhi-

tungan

Pengu-

kuran

(Det.) (Det.) (Det.) (Det.) (Det.) (Det.)

I = 3

I = 0

0,6 1

0,9 1,5

1,2 2

1,5 2,5

1,8 3

2,1 3,5

2,4 4

2,7 4,5

3,0 5

[email protected] 13

Tabel Pengamatan 4 : Karakteristik Instantanous

Seting

Arus Uji

T (Waktu Pemutusan)

( DETIK )

A

(Ampere)

K = 10

TMS = 0,1

K = 100

TMS = 0,5

Perhitungan Pengukuran Perhitungan Pengukuran Indikator Yang

Bekerja

(Det.) (Det.) (Det.) (Det.) I

I

I = 2

I = 2

0,4

0,6

0,8

1

1,2

1,6

2,0

2,4

I = 3

I = 2

0,4

0,6

0,8

1

1,2

1,6

2,0

2,4

I = 2

I = 3

0,4

0,6

0,8

1

1,2

1,6

2,0

2,4

[email protected] 14

Analisa/Pengamatan

1. Hasil pengamatan table 1

a. Output Relay Ready menunjukan indikasi ……………………………………………

……………………………………………………………………………………………….

b. Output Relay Start menunjukan indikasi ………………………………………………

……………………………………………………………………………………………….

c. Output Relay I & I menunjukan indikasi …………………………………………

……………………………………………………………………………………………….

2. Hasil pengamatan table 2

Presseting Rasio relay (Rasio arus pick up dengan drop off) = …………………………………………

2. Buat grafik dari Tabel 3 Waktu operasi relay = f ( I uji / I set )

( Buat dalam satu grafik untuk K atau TMS bervariasi)

K = 10 TMS = 0,1

K = 50 TMS = 0,5

K = 100 TMS = 1

3. Buat grafik dari Tabel 3b Waktu operasi relay = f ( I uji / I set )

( Buat dalam satu grafik untuk K atau TMS bervariasi)

K = 10 TMS = 0,1

K = 50 TMS = 0,5

K = 100 TMS = 1

4. Lakukan analisis Grafik 1 dan 2

Bagaimana karakteristik pemutusan rele terhadap arus beban ?

Bagaimana fungsi pengali waktu terhadap proses pemutusan rele?

Apa perbedaan grafik 1 dan 2.

5. Lakukan analisis terhadap Tabel 4

Bagaimana kerja instantaneous terhadap TMS?

Apakah korelasi seting dengan waktu trip delay dan instantaneous?

[email protected] 15

WA

KT

U P

EM

UT

US

AN

100 90 80 70 60

50

40

30

20

10 9 6 4 2

1

0,05

0,04

0,02

0,01 I uji / I set

1 1.5 2 2.5 3 3.5 4 4.5 5

Grafik 1: Karakteristik Pemutusan

[email protected] 16

WA

KT

U P

EM

UT

US

AN

100

90 80 70 60

50

40

30

20

10 9 8 7 6

5

4

3

2

1 I uji / I set

1 1.5 2 2.5 3 3.5 4 4.5 5

Grafik 2 : Karakteristik Pemutusan

[email protected] 17

IV. Soal dan Pertanyaan

1. Apa yang dimaksud dengan

arus pick up?

arus drop off?

Rasio arus pick up dengan drop off?

2. Apa pengertian waktu start, dan waktu operasi?

3. Gambarkan kurva inverse dengan Iset = 0,5 Amp, dengan TMS=0,5,

dan arus pengujian 1,5 A, 2A, dan 2,5 Amp.

WA

KT

U P

EM

UT

US

AN

100 90 80 70 60

50

40

30

20

10 9 8 7 6

5

4

3

2

1 I uji / I set

1 1.5 2 2.5 3 3.5 4 4.5 5

[email protected] 18

PERCOBAAN RELE ARUS LEBIH DAN GANGGUAN TANAH MCGG52

Diskripsi : Modul ini berkaitan dengan materi praktikum pengujian

dan analisis rele arus lebih pada berbagai Karakteristik

Inverse , definite dan Instantanous.

Tujuan : Mahasiswa mampu melakukan analisis, mempraktekan

pengujian dalam mensetting rele arus lebih dalam konteks

penanganan operasi dan pemeliharaan peralatan proteksi.

Sasaran : Setelah mempelajari modul ini peserta didik diharapkan

mampu

Mendeskripsikan Beragam karakteristik Inverse dan

Instantanuos pada OCR.

Menganalisa setting rele proteksi arus lebih.Melakukan

pengujian dan melakukan setting OCR.

[email protected] 20

I. Dasar Teori

Konstruksi

Konstruksi Relai OCR MCGG52

Keterangan :

1. Identifikasi Relai 11. Setting TMS

2. Tombol Reset 12. Setting Instantaneous

3. Kurva Karateristik 13. Kontak Input 1

4. Nilai Kurva Karakteristik 14. Kontak Input 2

5. Phasa 15. Kontak Input 3

6. Led Instantaneous 16. Suplay 110v DC

7. Led Time Delayed 17. Kontak gangguan phasa time delayed

8. Led I pick Up 18. Kontak gangguan phasa instantaneous

9. Setting Arus Relai 19. Kontak ganguan phasa-tanah time delayed

10. Kurva Karakteristik 20. Kontak ganguan phasa-tanah instantaneous

[email protected] 21

Wiring Relai OCR MCGG 52

PMT

R

E

T

OCR

OCR

GFR

P1

P2

CT

S1

S2

2 buah OCR

1 buah GFR

Wiring Relai OCR/GFR tipe 52 Pada Jaringan Tenaga Listrik

[email protected] 23

Metode Setting OCR MCGG 52

Setting Arus Waktu Tunda

Keterangan : = Nilai setting pada relai

I = Besar setting arus relai hasil perhitungan

In = Arus nominal relai pada nameplate ( In = 5Amp )

Tujuh switch biru paling atas digunakan untuk mengatur setting sensitivitas arus yang

dibutuhkan. Setiap switch dapat diposisikan ke kiri atau kanan, tingkat pengaturan

dapat ditunjukkan secara horizontal sama seperti switch, ke kiri atau kanan dari

switch.

Pemilihan Kurva Karakteristik

Tiga switch hitam diposisikan pada kelompok atas yaitu digunakan untuk memilih

kurva waktu yang diperlukan dari empat pilihan kurva waktu inverse dan tiga kurva

waktu definite. Persamaan kurva karakteristik tercantum di bawah ini. Saklar

kedelapan kombinasi pengaturan relay ke dalam mode “trip test”.

[email protected] 24

Dimana I adalah rasio yang diterapkan saat ini untuk pengaturan arus Is.

Setting TMS

x t =

Swith setting TMS berupa enam switch biru diposisikan di bagian bawah

kelompok switch bagian atas. Waktu yang diberikan oleh masing-masing operasi

karakteristik time delay harus dikalikan dengan waktu pengali untuk memberikan

operasi yang aktual. Pengaturan ini diperoleh dengan menambahkan nilai-nilai yang

ditunjukkan dari pengaturan switch itu sendiri dan ditandai oleh x t = Σ.

Setting Arus Instantaneous

Iinst = x Is

Keterangan :

= Nilai setting pada relai

Iinst = Besar setting arus Instantaneous hasil perhitungan

Is = Besar setting arus Time Delay hasil perhitungan

Kelompok yang terpisah lebih rendah dari enam switch biru digunakan untuk memilih

yang pengaturan arus instantaneous antara 1xIs dan 31xIs. Pengaturan yang dipilih

diperoleh dengan menambahkan nilai-nilai yang ditunjukkan oleh pengaturan switch

tersebut. Nilai ini dikalikan dengan pengaturan arus time delay untuk memberikan

hasil pengoperasian arus instantaneous.

[email protected] 25

Jika elemen instantaneous tidak diperlukan, maka semua switch harus diset ke kiri (

penunjukan nol ), atau saklar bawah harus diset ke kanan ( penunjukan tak hingga).

Contoh setting OCR MCGG 52 :

Arus nominal pada nameplate : In = 0.5

Iset = 1.2A

Kurva karakteristik = Standard Inverse

TMS = 0.5 x

Setting arus instantaneous = 12A

[email protected] 26

Rangkaian Pengujian

110V

DC

SUPPLY DC

110 V

_

+

MODUL PRAKTIKUM

RELE MCGG 52

SUMBER VARIABEL DC

SETTING 110V DC

A V00 :00

CURRENT

INJECT

RELE

OUTPUT

CURRENT INJECTOR

POWER

TIMER

SWITCH

A

PROSEDUR PERCOBAAN

1) On-kan power supply DC dan setel sampai sebesar 110 V untuk mengaktifkan

rele MCGG 52.

2) Hubungkan power supply DC ke terminal masukan sumber DC pada modul

praktikum rele.

3) Tekan tombol reset pada rele MCGG 52, jika semua lampu indikator kerja rele

menyala maka rele dalam kondisi ON dan siap untuk diuji.

4) Rangkai sesuai dengan gambar rangkaian uji dengan menggunakan current

injector 1 phasa.

5) Lakukan setting pengujian karakteristik dengan nilai Is time delayed

OCR/GFR sebesar 1 A. Rumus Iset adalah = ∑ x In.

Maka nilai set ∑ = Iset / In

∑ = 1 / 5 = 0,2

[email protected] 27

Setting ∑ Is OCR (phasa R dan T)

Set kurva sesuai uji karakteristik yang dibutuhkan, sebagai contoh pada posisi

kurva Standard Inverse. Untuk memilih kurva yang diinginkan dilakukan dengan

cara mengeset dial option yang berbentuk kode biner yang keterangannya dapat

dilihat pada tabel.

Tabel .1 Setting kurva karakteristik

SI VI EI LTI D2 D4 D8

0 1 0 1 0 1 0

0 0 1 1 0 0 1

0 0 0 0 1 1 1

Gambar 3 Setting kurva Standard Inverse dengan tunda waktu

6) Dikarenakan keterbatasan komponen pencatat waktu pada perangkat current

injector untuk mencatat waktu pemutusan rele yang sangat cepat maka untuk

1

0 1

1

1

0

0

0

1

1 0

0

TRIP TEST : CURVA SI :

0.1

0.1

0.2

0.4

0.4

0.4

0.8

0.05

0

0

0

0

0

0

[email protected] 28

alternatif, set TMS pada rele diperbesar hingga 0,6 sehingga waktu pemutusan

rele masih dapat diamati

Setting TMS

7) dan Iset instant dibuat 0, sehingga nilai ∑ = 0.

Setting kurva I set Instant/Moment

8) Berikan simulasi arus gangguan dan ukur secara bertahap dengan cara

memutar tuas ulir pada bagian atas current injector sesuai nilai arus gangguan

pada tabel hasil uji.

Lakukan langkah diatas untuk masing - masing setting karakteristik kurva waktu

tunda rele inverse, diantaranya :

Standard Normal Inverse

Very Inverse

Extremely Inverse

Long Time Inverse

2

4

1

8

16

0

0

0

0

0

0

0,025 0,05 0,05 0,1 0,2 0,2 0,4

0 0

0 0 0

[email protected] 29

9) Susun hasil uji diatas pada tabel data hasil uji.

10) Lalu lakukan perhitungan waktu kerja dengan rumus macam - macam

karakteristik Relay Inverse yaitu :

Standard Normal Inverse

Very Inverse

Extremely Inverse

Long Time Inverse

11) Catat hasil perhitungan dan susun pada tabel hasil perhitungan untuk

dibandingkan nilainya. Lalu buat kurva perbandingan hasil uji dan hitung.

tmsI

t1

14,0

02,0

tmsI

t1

5,13

tmsI

t1

80

2

tmsI

t1

120

[email protected] 30

DATA DAN PENGAMATAN

Iuji

Iuji

Iset

T (Waktu Pemutusan ( detik) )

SI VI EI LTI

hitung ukur hitung ukur hitung ukur hitung ukur

0,25

Amp

1,5 10.3 16.2 38.4 144

2 6 8.1 16 72

3 3.8 4.05 6 36

4 2.9 2.7 3.2 24

5 2.6 2 2 18

6 2.3 1.6 1.4 14.4

7 2.1 1.3 1 12

8 2 1.2 0.8 10.3

9 1.9 1 0.6 9

10 1.8 0.9 0.5 8

[email protected] 31

Pengamatan

1. Buat grafik Waktu operasi relay = f ( I uji / I set ) dalam satu grafik karakteristik

SI, VI, EI, LTI.

WA

KT

U P

EM

UT

US

AN

100

90

80

70

60

50

40

30

20

10

9

6

4

2

1

0,05

0,04

0,02

0,01 I uji / I set

1 2 3 4 5 6 7 8 9

Grafik Karakteristik Pemutusan

[email protected] 32

SIMULASI PROTEKSI PENYULANG

Diskripsi : Modul ini berkaitan dengan materi praktikum pengujian

dan analisis koordinasi proteksi pada penyulang.

Tujuan : Mahasiswa mampu melakukan analisis, mempraktekan

pengujian dalam mensetting rele arus lebih dalam konteks

penanganan operasi dan pemeliharaan peralatan proteksi

penyulang .

Sasaran : Setelah mempelajari modul ini peserta didik diharapkan

mampu

1. Dapat merangkai simulasi gangguan yang mungkin

terjadi pada jaringan distribusi tenaga listrik.

2. Dapat merangkai rangkaian simulasi kerja relai MCGG

52 pada jaringan distribusi tenaga listrik.

3. Mengetahui cara untuk menentukan setting relai.

4. Menganalisa kerja relai pada simulasi kerja saat terjadi

gangguan pada jaringan distribusi tenaga listrik.

[email protected] 33

I. Dasar Teori

Setting Relai Arus Lebih

Hal-hal yang harus diperhatikan dalam menentukan setting relai arus lebih adalah

sebagai berikut :

1. Arus kerja minimum relai harus lebih besar dari arus beban maksimum dan lebih

kecil dari arus gangguan hubung singkat terkecil, yaitu arus gangguan hubung

singkat dua fasa di ujung seksi.

2. Penentuan setting dari seksi yang paling ujung dan secara bertahap dilakukan untuk

seksi-seksi berikutnya kearah sumber. Untuk menentukan setting waktu relai perlu

diketahui beda waktu koordinasi minimum yang di perbolehkan sesuai dengan

spesifikasi relai dan pemutus daya yang dipakai.

3. Pada saat melakukan setting waktu relai inverse, lakukanlah pada saat arus

gangguan maksimum karena untuk arus yang lebih kecil waktu kerja relai akan

lebih besar.

Setting Arus Untuk Waktu Tunda ( I>)

(1) Iset = D

S

k

k x In

(2) Iset = 0,8 x I2HS

Iset diambil dari nilai terkecil diantara persamaan (2.7) dan (2.8)

Sk = 1,1 1,2 In = Arus beban nominal

Dk > 80 %

Setting Arus Untuk Instantaneous ( I>>)

Di sisi down stream (hilir) maka :

(1) minmin312 HSSETHS

III

(2) abelkemampuankSET

II2

Iset diambil dari nilai terkecil diantara persamaan (2.9) dan (2.10)

Di sisi Up stream (hulu) maka :

SetInstI = 1,2 x amdidownstreI

HSmax

3

[email protected] 34

Setting TMS

14,0

)1)((02,0

set

fault

I

It

Tms

II. RANGKAIAN PERCOBAAN

MCGG 52

Simulator CB -CT

+ -

110 DC

R S T

CB 2 CB 4 CB 6 CB 8r1 r2

r3 r4

r5 r6

L R R R

CB-B

N

[email protected] 35

CB3

CB5

CB4

CB6

N

CB7 CB8r1 r2

r3 r4

r5 r6

c1 c2

c3 c4

c5 c6

Gardu

Distribusi TR

NPE

20 0 100

CB1

380

420400

360340220

127

CB 2

z1 z2

z3 z4

z5 z6

R S T

220

L

Gard

u D

istr

ibusi T

M

KONTAKTOR

220 Vac

Gambar : Rangkaian Uji Hubung Singkat 3 Phasa

CB3

CB5

CB4

CB6

N

CB7 CB8r1 r2

r3 r4

r5 r6

c1 c2

c3 c4

c5 c6

Gardu

Distribusi TR

NPE

20 0 100

CB1

380

420400

360340220

127

CB 2

z1 z2

z3 z4

z5 z6

R S T

220

L

Gard

u D

istr

ibusi T

M

KONTAKTOR

220 Vac

Gambar : Rangkaian Uji Hubung Singkat 2 Phasa

[email protected] 36

CB3

CB5

CB4

CB6

N

CB7 CB8r1 r2

r3 r4

r5 r6

c1 c2

c3 c4

c5 c6

Gardu

Distribusi TR

NPE

20 0 100

CB1

380

420400

360340220

127

CB 2

z1 z2

z3 z4

z5 z6

R S T

220

L

Gard

u D

istr

ibusi T

M

KONTAKTOR

220 Vac

Gambar : Rangkaian Uji Hubung Singkat 1 Phasa ke Tanah

CB 3 CB 4

N

CB 7 CB 8r1 r2

r3 r4

r5 r6

c1 c 2

c3 c 4

c 5 c 6

Gardu Distribusi

TR

N

`

CB1

380

420

400

360

340

220

127

CB 2

z1 z2

z3 z4

z5 z6

R S T

220

Gard

u D

istr

ibusi T

M

PHASA

KONTAKTOR

220 Vac

MCGG 52

Simulator CB -CT

+ -

110 DC

CB-B

Gambar : Rangkaian Uji Simulasi Kerja Relai MCGG 52 di Jaringan Distribusi

[email protected] 37

III. PROSEDUR PERCOBAAN

1. On-kan power supply DC.

2. Set power supply DC pada nilai 110 Vdc.

3. Hubungkan power supply DC ke terminal masukan sumber DC pada OCR

MCGG 52.

4. Tekan tombol reset pada rele MCGG 52, jika semua lampu indikator kerja

relai menyala maka relai dalam kondisi ON dan siap untuk diuji.

5. Matikan kembali sumber DC.

6. Lakukan pengukuran arus nominal pada penyulang kemudian catat

besarannya.

7. Lakukan pengujian hubung singkat pada modul praktikum Simulasi Distribusi

Tenaga Listrik (3 phasa, 2 phasa, 1 phasa ke tanah) sesuai dengan gambar

rangkaian ujinya.

8. Ukur dan catat besar arus gangguan hubung singkatnya pada sisi beban.

9. Setelah didapat data hubung singkat, matikan power supply AC ke modul

praktikum simulasi distribusi.

Seting OCR MCGG 52

Setting Arus Relai Invers

(1) Iset = D

S

k

k x In

(2) Iset = 0,8 x I2HS

Setting Relai Instantaneous

(1) minmin312 HSSETHS

III

(2) abelkemampuankSET

II2

[email protected] 38

ETAP 5.0ETAP 5.0

Copyright 2004 Operation Technology, Inc.

Protective DeviceCoordination

[email protected] 39

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 2

Agenda• OC Protective Device Coordination

– Concepts & Applications

• STAR 5.0.0 Overview– Features & Capabilities

• STAR Example 1

– Advance Topics• STAR Example 2

– PD Sequence of Operation– Device Libraries– ETAP ARTTS

[email protected] 40

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 3

Definition

• Overcurrent Coordination– A systematic study of current responsive

devices in an electrical power system.

[email protected] 41

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 4

Objective

• To determine the ratings and settings offuses, breakers, relay, etc.

• To isolate the fault or overloads.

[email protected] 42

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 5

Criteria

• Economics

• Available Measures of Fault

• Operating Practices

• Previous Experience

[email protected] 43

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 6

Design

• Open only PD upstream of the fault oroverload

• Provide satisfactory protection for overloads

• Interrupt SC as rapidly (instantaneously) aspossible

• Comply with all applicable standards andcodes

• Plot the Time Current Characteristics ofdifferent PDs

[email protected] 44

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 7

Analysis

When:

• New electrical systems

• Plant electrical system expansion/retrofits

• Coordination failure in an existing plant

[email protected] 45

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 8

Protection vs. Coordination

• Coordination is not an exact science

• Compromise between protection andcoordination– Reliability

– Speed

– Performance

– Economics

– Simplicity

[email protected] 46

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 9

Protection

• Prevent injury to personnel

• Minimize damage to components

– Quickly isolate the affected portion of the system

– Minimize the magnitude of available short-circuit

[email protected] 47

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 10

Spectrum Of Currents

• Load Current– Up to 100% of full-load

– 115-125% (mild overload)

• Overcurrent– Abnormal loading condition (Locked-Rotor)

• Fault Current– Fault condition

– Ten times the full-load current and higher

[email protected] 48

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 11

Coordination

• Limit the extent and duration of serviceinterruption

• Selective fault isolation

• Provide alternate circuits

[email protected] 49

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 12

Coordination

t

I

C B A

C

D

D B

A

[email protected] 50

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 13

Equipment

• Motor

• Transformer

• Generator

• Cable

• Busway

[email protected] 51

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 14

Capability / Damage Curves

t

I

I22t

Gen

I2t

MotorXfmr

I2t

Cable

I2t

[email protected] 52

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 15

Transformer CategoryANSI/IEEE C-57.109

Minimumnameplate (kVA)Category Single-phase Three-phase

I 5-500 15-500II 501-1667 501-5000III 1668-10,000 5001-30,000IV above 1000 above 30,000

[email protected] 53

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 16

Infrequent Fault Incidence Zones for Category II & III Transformers

* Should be selected by reference to the frequent-fault-incidence protection curve or fortransformers serving industrial, commercial and institutional power systems with secondary-sideconductors enclosed in conduit, bus duct, etc., the feeder protective device may be selected byreference to the infrequent-fault-incidence protection curve.

Source: IEEE C57

Source

Transformer primary-side protective device(fuses, relayed circuit breakers, etc.) may beselected by reference to the infrequent-fault-incidence protection curve

Category II or III Transformer

Fault will be cleared by transformerprimary-side protective device

Optional main secondary –side protective device.May be selected by reference to the infrequent-fault-incidence protection curve

Feeder protective device

Fault will be cleared by transformer primary-sideprotective device or by optional main secondary-side protection device

Fault will be cleared byfeeder protective device

Infrequent-FaultIncidence Zone*

Feeders

Frequent-FaultIncidence Zone*

[email protected] 54

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 17

Transformer

t(sec)

I (pu)

Thermal200

2.5

I2t = 1250

2

25Isc

Mechanical

K=(1/Z)2t

(D-D LL) 0.87

(D-R LG) 0.58

Frequent Fault

Infrequent Fault

Inrush

FLA

[email protected] 55

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 18

[email protected] 56

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 19

Transformer Protection

MAXIMUM RATING OR SETTING FOR OVERCURRENT DEVICEPRIMARY SECONDARY

Over 600 Volts Over 600 Volts 600 Volts or Below

TransformerRated

Impedance

CircuitBreakerSetting

FuseRating

CircuitBreakerSetting

FuseRating

Circuit BreakerSetting or Fuse

Rating

Not more than6%

600 % 300 % 300 % 250% 125%(250% supervised)

More than 6%and not more

than 10%

400 % 300 % 250% 225% 125%(250% supervised)

Table 450-3(a) source: NEC

[email protected] 57

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 20

Protective Devices• Fuse

• Relay (50/51 P, N, G, SG, 51V, 67, 46, 79, 21, …)

• Thermal Magnetic

• Low Voltage Solid State Trip

• Electro-Mechanical

• MCP

• Overload Heater

[email protected] 58

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 21

Fuse

• Non Adjustable Device

• Continuous and Interrupting Rating

• Voltage Levels

• Characteristic Curves

– Min. Melting

– Total Clearing

• Application

[email protected] 59

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 22

Minimum MeltingTime Curve

Total ClearingTime Curve

[email protected] 60

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 23

Current Limiting Fuse(CLF)• Limits the peak current of short-circuit

• Reduces magnetic stresses (mechanicaldamage)

• Reduces thermal energy

[email protected] 61

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 25

Symmetrical RMS Amperes

Pea

k Le

t-Thr

ough

Am

pere

s

100 A

60 A

15% PF (X/R = 6.6)

12,500

5,200

230,000

300 A

100,000

Let-Through Chart

[email protected] 63

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 26

Fuse

Generally:

• CLF is a better short-circuit protection

• Non-CLF (expulsion fuse) is a betterOverload protection

[email protected] 64

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 27

Selectivity Criteria

Typically:

• Non-CLF: 140% of full load

• CLF: 150% of full load

[email protected] 65

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 28

Molder Case CB

• Thermal-Magnetic

• Magnetic Only

• Integrally Fused

• Current Limiting

• High InterruptingCapacity

Types

• Frame Size

• Trip Rating

• Interrupting Capability

• Voltage

[email protected] 66

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 29

Thermal Minimum

Thermal Maximum

Magnetic(instantaneous)

[email protected] 67

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 30

LVPCB

• Voltage and Frequency Ratings

• Continuous Current / Frame Size

– Override (12 times cont. current)

• Interrupting Rating

• Short-Time Rating (30 cycle)

• Fairly Simple to Coordinate

[email protected] 68

480 kV

CB 2

CB 1

CB 2CB 1

IT

ST PU

ST Band

LT PU

LT Band

If =30 kA

[email protected] 69

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 32

Motor Protection

• Motor Starting Curve

• Thermal Protection

• Locked Rotor Protection

• Fault Protection

[email protected] 70

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 33

Motor Overload Protection(NEC Art 430-32)

• Thermal O/L (Device 49)

• Motors with SF not less than 1.15– 125% of FLA

• Motors with temp. rise not over 40– 125% of FLA

• All other motors– 115% of FLA

[email protected] 71

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 34

Locked Rotor Protection

• Thermal Locked Rotor (Device 51)

• Starting Time (TS < TLR)

• LRA– LRA sym

– LRA asym (1.5-1.6 x LRA sym) + 10% margin

[email protected] 72

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 35

Fault Protection(NEC Art 430-52)

• Non-Time Delay Fuses– 300% of FLA

• Dual Element (Time-Delay Fuses)– 175% of FLA

• Instantaneous Trip Breaker– 800% of FLA*

• Inverse Time Breakers– 250% of FLA

*MCPs can be set higher

[email protected] 73

200 HP

MCPO/L

Starting Curve

I2T(49)

MCP (50)

(51)ts

tLR

LRAs LRAasym

[email protected] 74

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 37

Overcurrent Relay

• Time-Delay (51 – I>)

• Short-Time Instantaneous ( I>>)

• Instantaneous (50 – I>>>)

• Electromagnetic (induction Disc)

• Solid State (Multi Function / Multi Level)

• Application

[email protected] 75

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 39

Time-Overcurrent Unit

• Ampere Tap Calculation– Ampere Pickup (P.U.) = CT Ratio x A.T. Setting

– Relay Current (IR) = Actual Line Current (IL) / CTRatio

– Multiples of A.T. = IR/A.T. Setting

= IL/(CT Ratio x A.T. Setting)IL

IR

CT

51

[email protected] 77

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 40

Instantaneous Unit

• Instantaneous Calculation– Ampere Pickup (P.U.) = CT Ratio x IT Setting

– Relay Current (IR) = Actual Line Current (IL) / CTRatio

– Multiples of IT = IR/IT Setting

= IL/(CT Ratio x IT Setting)IL

IR

CT

50

[email protected] 78

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 41

Relay Coordination• Time margins should be maintained between T/C

curves• Adjustment should be made for CB opening time• Shorter time intervals may be used for solid state

relays• Upstream relay should have the same inverse T/C

characteristic as the downstream relay (CO-8 toCO-8) or be less inverse (CO-8 upstream to CO-6downstream)

• Extremely inverse relays coordinates very well withCLFs

[email protected] 79

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 42

Fixed Points

• Motor starting curves

• Transformer damage curves &inrush points

• Cable damage curves

• SC maximum fault points

• Cable ampacities

Points or curves which do not changeregardless of protective device settings:

[email protected] 80

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 43

Situation

Calculate Relay Setting (Tap, Inst. Tap & Time Dial)For This System

4.16 kV

DS 5 MVA

Cable

1-3/C 500 kcmilCU - EPR

CB

Isc = 30,000 A

6 %

50/51 Relay: IFC 53CT 800:5

[email protected] 81

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 44

Solution

AInrsuh 328,869412I =×=

A338.4800

5II LR =×=

Transformer: AkV

kVAL 694

16.43000,5I =×

=

IL

CTRIR

Set Relay:

A551.52800

5328,8)50(

1)38.1(6/4.3380.6

4.5338.4%125

=>=×=

==

=×=

AInst

TDATAP

A

[email protected] 82

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 45

Question

What is ANSI Shift Curve?

[email protected] 83

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 46

Answer

• For delta-delta connected transformers, withline-to-line faults on the secondary side, thecurve must be reduced to 87% (shift to theleft by a factor of 0.87)

• For delta-wye connection, with single line-to-ground faults on the secondary side, thecurve values must be reduced to 58% (shiftto the left by a factor of 0.58)

[email protected] 84

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 47

Question

What is meant by Frequent andInfrequent for transformers?

[email protected] 85

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 48

AnswerInfrequent Fault Incidence Zones for Category II & III Transformers

Source

Transformer primary-side protective device(fuses, relayed circuit breakers, etc.) May beselected by reference to the infrequent-fault-incidence protection curve

Category II or III Transformer

Fault will be cleared by transformerprimary-side protective device

Optional main secondary –side protective device.May be selected by reference to the infrequent-fault-incidence protection curve

Feeder protective device

Fault will be cleared by transformer primary-sideprotective device or by optional main secondary-side protection device

Fault will be cleared byfeeder protective device

Infrequent-FaultIncidence Zone*

Feeders

Frequent-FaultIncidence Zone*

[email protected] 86

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 49

Question

What T/C Coordination interval should bemaintained between relays?

[email protected] 87

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 50

Answer

At

I

B

CB Opening Time

+

Induction Disc Overtravel (0.1 sec)

+

Safety margin (0.2 sec w/o Inst. & 0.1 sec w/ Inst.)

[email protected] 88

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 51

Question

What is Class 10 and Class 20Thermal OLR curves?

[email protected] 89

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 52

Answer

• Class 10 for fast trip, 10 seconds or less

• Class 20 for, 20 seconds or less

• There is also a Class 30 for long trip time

[email protected] 90

Copyright 2004 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination Slide 53

Answer

[email protected] 91

Viewing a TCC in Star This tutorial provides a brief overview of the basic operation of the Star Protective Device Coordination module. It will cover how to create a new Star View and how to add a new device to an existing Star View. You will need to contact OTI with your Return Key Code so that you can activate this module. Creating a New Star View Start ETAP Demo and select the option “New Project” for this tutorial. Click the Edit button on the Mode toolbar.

Click the Overcurrent Relay button from Edit toolbar and drop it into the OLV1 presentation.

Double-click the Overcurrent Relay

element to open the Relay editor.

Go to the OCR page and then click the Library button. This will display the Library Quick pick - Relay dialog box. Select manufacturer GE Multilin and model 735/737 and click OK. GE Multilin 735/737 relay data is populated in the OCR page.

Set the relay as shown in the figure; ensure that ‘Link TOC + IOC for this level is checked for OC1. To learn more about relay settings, refer to the Relay section in Instrumentation Elements chapter of the User Guide or click the Help button.

[email protected] 92

Click the Input page. Enter primary and secondary ratings for Phase CT (800:5) and Ground CT (50:5) as shown below. CT ratios can be entered directly in the Relay Editor where no CT is connected to the relay. You will need to drop a CT into the one-line-diagram under Edit Mode and connect the Relay to the CT before running calculations but viewing a TCC curve does not require the presence of a CT.

From the Mode toolbar, click the Star – Protective Device Coordination button to switch to the

Star mode.

To generate the Star View, select the relay, and then click the Create Star View button from the right-hand side Star Mode toolbar.

This opens a new Star TCC View with the selected Relay1 curve. Star Views for other protective devices can be generated in a similar manner. Keep Star1 open for the next section of the tutorial. Right click on the label tag associated with the curve and check the Settings options. This will show more infromation related to the relay settings in the label tag.

[email protected] 93

Adding a Device Curve to a Star View

Switch to Edit mode and then drop a fuse into the one-line-diagram view OLV1.

Double-click the fuse symbol to open the

Fuse editor. Go to the Rating page and click the Library button to display the Library Quick Pick – Fuse dialog box. Select manufacturer S&C, and model SMU-20, at 27 Max. kV, with standard speed and size 13E.

[email protected] 94

Switch to Star Mode using the Mode toolbar. Select Fuse1 and click on

Append to Star view button to open the Star View Selection editor. Select Star1to append Fuse1 to Star1 view and click OK.

Star1 view opens with the Fuse1

curve added. Element or group of elements on the one-line-diagram can be appended to one or more Star views in a similar manner.

☺Helpful Tips… A faster method to add a new device to a star view is to select the device on the one-line-diagram, hold the Shift key down, and drag it to the active Star View. The color of each TCC curve can be assigned by pressing the Plot Options button on the right hand toolbar.

[email protected] 95

www.etap.com 1 of 2 www.eltechs.com.ph

ETAP TECHNICAL INFORMATION POINTERS

ELTECHS E&C CORPORATION

ETAP TIP – No. 013 Display the Curve of a Phase Overcurrent Device in a Ground Time-Current Curve (TCC) Plot Applicable ETAP Versions: 6.0.0 (For lower versions, some of the descriptions and procedures below may differ in some ways) Sometimes it is desirable to show the phase overcurrent (OC) element of a certain protective device in a Ground TCC plot to ensure that coordination is met against the ground OC element of another device. For example, in a Delta-Wye solidly secondary grounded transformer, the ground relay at the secondary side must be coordinated with a phase relay at the primary side since the primary side phase OC element sees a fraction of the ground fault current at the secondary side. The plot shown in Fig. 1 is a Ground TCC plot. The ground OC curve of OCR3 and OCR4 relays are shown. Doing the following steps will show the phase OC curve of the OCR3:

1. Click the “Plot Option” icon on the “Star View TCC” toolbar or right-click anywhere inside TCC plot area and select the “Plot Option..” in the pop-up menu. See Fig. 1

2. On the “Plot Option” dialog window, do the following steps (see Fig. 2):

a. Click “Devices” tab.

b. Double-click “OCR3” node in the tree

c. Click “Phase” node

d. Click “Preferences” tab

e. Check “Ground Mode”

f. Click “OK”

3. See Fig. 3, the OCR3 phase overcurrent element is displayed.

3.b

Fig. 1

1 1

Ground Mode

[email protected] 96

www.etap.com 2 of 2 www.eltechs.com.ph

ETAP TECHNICAL INFORMATION POINTERS

ELTECHS E&C CORPORATION

a

Fig. 3

e

b

c

f

Fig. 2

d

Note: The suffix appended to the ID of a multi-function relay indicates the type of the element that is shown on the TCC. For example “OCR4-N”, the “N” indicates that the curve is the “Neutral” element of OCR4 relay.

[email protected] 97