Analisis Aliran Daya 1

download Analisis Aliran Daya 1

of 38

Transcript of Analisis Aliran Daya 1

  • 7/25/2019 Analisis Aliran Daya 1

    1/38

    ANALISIS ALIRAN DAYA

  • 7/25/2019 Analisis Aliran Daya 1

    2/38

    Introduction

    Perencanaan, desain dan operasi sistem tenagamemerlukan beberapa perhitungan untuk menganalisaperformansi kondisi tunak sistem tenaga pada berbagaikondisi operasi dan untuk menganalisa efek perubahankonfigurasi peralatan.

    Pertanyaan dasar pada studi aliran daya adalah:

    Diberikan konsumsi daya beban pada pada semua buspada suatu konfigurasi sistem tenaga yang telahdiketahui dan produksi daya peda setiap generator .

    Temukan aliran daya pada setiap saluran dan trafo pada

    jaringan serta magnitude dan susut phase teganganpada setiap bus.

    Analisa solusi permasalahan aliran daya pada berbagaikondisi membantu memastikan bahwa sistem tanagatelah didasain memenuhi kriteria performansi yangdiharapkan.

  • 7/25/2019 Analisis Aliran Daya 1

    3/38

    Manfaat studi aliran daya

    Dengan penggunaan studi aliran daya, kitadapat menentukan:

    Pembebanan komponen atau rangkaian

    Tegangan bus kondisi tunakAliran daya reaktif

    Seting tap trafo

    Rugi-rugi sistem

    Set poin regulator tegangan / exiter generator Unjuk kerja sistem pada kondisi darurat.

  • 7/25/2019 Analisis Aliran Daya 1

    4/38

    Load flow problem

    Perhitungan load flow menentukan kondisi sistem tenagapada daya beban dan distribusi pembangkitan yangdiberikan. Dalam kenyataannya aliran daya pada salurandan tegangan bus adalah berfluktuasi sacara konstanpada kisaran kecil akibat adanya perubahan beban. Nilai

    fluktuasi yang kecil ini diabaikan pada perhitungan efeksteady state pada sistem.

    Oleh karena distribusi beban bervariasi selama periodewaktu yang berbada. Maka diperlukan mendapatkansolusi load flow yang merepresentasikan kondisi sistemyang berbeda seperti pada beban puncak, beban rata-

    rata atau beban ringan.

  • 7/25/2019 Analisis Aliran Daya 1

    5/38

    Solusi pada kondisi pembebanan yang berbeda ini dapatdigunakan untuk menentukan:

    Mode operasi optimum untuk kondisi normal, misalmenentukan seting piranti kontrol tegangan yangtepat.

    Bagaimana sistem akan merespon kondisi tidaknormal misal ketika terjadi outage (pemadaman)pada saluran atau trafo.

    Dasar untuk menentukan kondisi kapan diperlukanpenambahan peralatan baru.

    Dasar untuk menentukan efektifitas alternatif-alternatifbaru

    Dasar untuk menentukan kebutuhan sistem di masayang akan datang.

  • 7/25/2019 Analisis Aliran Daya 1

    6/38

    System Representation (1)

    A simplified visual means of representing the complete

    system is essential to understanding the operation of the

    system under its various possible operating modes =>

    single-line diagram

    The single-line diagram consists of a drawing identifying

    buses and interconnecting lines. Loads, generators,

    transformers, reactors, capacitors, etc., are all shown in

    their respective places in the system

  • 7/25/2019 Analisis Aliran Daya 1

    7/38

    System Representation (2)

    System Data: Most load flow programs perform their

    calculations using a per unit representation of the

    system, while still some programs work with volts,

    amperes, and ohms.

    Bus Data: The data includes: bus number, bus name,

    bus type, load, shunt, per unit voltage and angle, and bus

    base kV. There three bus types, they are: Load bus (P-Q

    bus), Generator bus (P-V bus), and Swing bus (Slack

    bus)

  • 7/25/2019 Analisis Aliran Daya 1

    8/38

    System Representation (2)

    Generator Data:

    Real power output in MW.

    Maximum reactive power output in MVAR, that is the

    machine maximum reactive limit. Minimum reactive power output in MVAR, that is the

    machine minimum reactive limit.

    Scheduled voltage in per unit

    Generator in-service/out-of-service code, or

    generator operated continuously, operatedintermittently, or operated as spare.

  • 7/25/2019 Analisis Aliran Daya 1

    9/38

    System Representation (3)

    Line Data: Resistance

    Reactance

    Charging susceptance (shunt capacitance)

    Line ratings

    Line in-service/out-of-service code

    Line-connected shunts

  • 7/25/2019 Analisis Aliran Daya 1

    10/38

    System Representation (4)

    Transformer Data:

    Impedansi trafo

    Tap setting in per unit

    Tap angle in degrees Maximum tap position

    Minimum tap position

    Scheduled voltage range with tap step size

  • 7/25/2019 Analisis Aliran Daya 1

    11/38

    Three Types of Power Flow Buses

    There are three main types of power flowbuses

    Load (PQ) at which P/Q are fixed;

    iteration solves for voltage magnitudeand angle.

    Slack at which the voltage magnitudeand angle are fixed; iteration solves for

    P/Q injections Generator (PV) at which P and |V| are

    fixed; iteration solves for voltage angleand Q injection

  • 7/25/2019 Analisis Aliran Daya 1

    12/38

    Load Flow Bus Specifications

    Bus Type P Q V Comments

    Load Usual Load Representation

    whenQ

    -

  • 7/25/2019 Analisis Aliran Daya 1

    13/38

    Power Flow Analysis

    When analyzing power systems we knowneither the complex bus voltages nor thecomplex current injections

    Rather, we know the complex power beingconsumed by the load, and the power beinginjected by the generators plus their voltagemagnitudes

    Therefore we can not directly use the Ybusequations, but rather must use the powerbalance equations

  • 7/25/2019 Analisis Aliran Daya 1

    14/38

    Power Balance Equations

    1

    bus

    1

    From KCL we know at each bus i in an n bus system

    the current injection, , must be equal to the current

    that flows into the network

    Since = we also know

    i

    n

    i Gi Di ik k

    n

    i Gi Di ik k k

    I

    I I I I

    I I I Y V

    I Y V

    *iThe network power injection is then S i iV I

  • 7/25/2019 Analisis Aliran Daya 1

    15/38

    Power Balance Equations, contd*

    * * *i

    1 1

    S

    This is an equation with complex numbers.

    Sometimes we would like an equivalent set of real

    power equations. These can be derived by defining

    n n

    i i i ik k i ik k k k

    ik ik ik

    i

    V I V Y V V Y V

    Y G jB

    V

    jRecall e cos sin

    iji i i

    ik i k

    V e V

    j

  • 7/25/2019 Analisis Aliran Daya 1

    16/38

    Real Power Balance Equations

    * *i

    1 1

    1

    i 1

    i1

    S ( )

    (cos sin )( )

    Resolving into the real and imaginary parts

    P ( cos sin )

    Q ( sin cos

    ikn n

    ji i i ik k i k ik ik

    k k

    n

    i k ik ik ik ik k

    n

    i k ik ik ik ik Gi Dik

    n

    i k ik ik ik ik

    P jQ V Y V V V e G jB

    V V j G jB

    V V G B P P

    V V G B

    )k Gi DiQ Q

  • 7/25/2019 Analisis Aliran Daya 1

    17/38

    Load Flow Solution Methods

    Problem simulations VYI

    *

    *

    i

    iii

    V

    jQPI

    VYV

    jQP

    *

  • 7/25/2019 Analisis Aliran Daya 1

    18/38

    Power Flow Requires Iterative Solution

    i

    bus

    *

    * * *i

    1 1

    In the power flow we assume we know S and the

    . We would like to solve for the V's. The problem

    is the below equation has no closed form solution:

    S

    Rath

    n n

    i i i ik k i ik k

    k k

    V I V Y V V Y V

    Y

    er, we must pursue an iterative approach.

  • 7/25/2019 Analisis Aliran Daya 1

    19/38

    Iterative Solution Algorithms

    The primary parameters are: Active power into the transmission network

    Reactive power into the transmission network

    Magnitude of bus voltage (voltage to ground)

    Angle of bus voltage referred to a common reference

  • 7/25/2019 Analisis Aliran Daya 1

    20/38

    Gauss Iteration

    There are a number of different iterative methods

    we can use. We'll consider two: Gauss and Newton.

    With the Gauss method we need to rewrite our

    equation in an implicit form: x = h(x)

    To iterate we fir (0)

    ( +1) ( )

    st make an initial guess of x, x ,

    and then iteratively solve x ( ) until we

    find a "fixed point", x, such that x (x).

    v vh x

    h

  • 7/25/2019 Analisis Aliran Daya 1

    21/38

    Gauss Iteration Example

    ( 1) ( )

    (0)

    ( ) ( )

    Example: Solve - 1 0

    1

    Let k = 0 and arbitrarily guess x 1 and solve

    0 1 5 2.61185

    1 2 6 2.616122 2.41421 7 2.61744

    3 2.55538 8 2.61785

    4 2.59805 9 2.61798

    v v

    v v

    x x

    x x

    k x k x

  • 7/25/2019 Analisis Aliran Daya 1

    22/38

    Stopping Criteria

    ( ) ( ) ( 1) ( )

    A key problem to address is when to stop the

    iteration. With the Guass iteration we stop when

    with

    If x is a scalar this is clear, but if x is a vector we

    need to generalize t

    v v v vx x x x

    ( )

    2i

    2 1

    he absolute value by using a norm

    Two common norms are the Euclidean & infinity

    max x

    v

    j

    n

    i ii

    x

    x

    x x

  • 7/25/2019 Analisis Aliran Daya 1

    23/38

    Gauss Power Flow

    *

    * * *i

    1 1

    * * * *

    1 1

    *

    *1 1,

    *

    *

    1,

    We first need to put the equation in the correct form

    S

    S

    S

    S1

    i i

    i

    i

    n n

    i i i ik k i ik k

    k k

    n n

    i i i ik k ik k

    k k

    n ni

    ik k ii i ik k

    k k k i

    ni

    i ik k

    ii k k i

    V I V Y V V Y V

    V I V Y V V Y V

    Y V Y V Y V V

    V Y VY V

  • 7/25/2019 Analisis Aliran Daya 1

    24/38

    Gauss Two Bus Power Flow Example

    A 100 MW, 50 Mvar load is connected to agenerator through a line with z = 0.02 + j0.06p.u. and line charging of 5 Mvar on each end (100MVA base). Also, there is a 25 Mvar capacitor atbus 2. If the generator voltage is 1.0 p.u., what

    is V2?

    SLoad = 1.0 + j0.5 p.u.

  • 7/25/2019 Analisis Aliran Daya 1

    25/38

    Gauss Two Bus Example, contd

    2

    2 bus

    bus

    22

    The unknown is the complex load voltage, V .

    To determine V we need to know the .

    1 5 150.02 0.06

    5 14.95 5 15Hence

    5 15 5 14.70(Note - 15 0.05 0.25)

    jj

    j j

    j jB j j j

    Y

    Y

  • 7/25/2019 Analisis Aliran Daya 1

    26/38

    Gauss Two Bus Example, contd

    *2

    2 *22 1,2

    2 *2

    (0)2

    ( ) ( )

    2 2

    1 S

    1 -1 0.5( 5 15)(1.0 0)5 14.70

    Guess 1.0 0 (this is known as a flat start)

    0 1.000 0.000 3 0.9622 0.0556

    1 0.9671 0.0568 4 0.9622 0.0556

    2 0

    n

    ik kk k i

    v v

    V Y VY V

    jV jj V

    V

    v V v V

    j j

    j j

    .9624 0.0553j

  • 7/25/2019 Analisis Aliran Daya 1

    27/38

    Gauss Two Bus Example, contd

    2

    * *1 1 11 1 12 2

    1

    0.9622 0.0556 0.9638 3.3

    Once the voltages are known all other values can

    be determined, such as the generator powers and the

    line flows

    S ( ) 1.023 0.239

    In actual units P 102.3 MW

    V j

    V Y V Y V j

    1

    22

    , Q 23.9 Mvar

    The capacitor is supplying V 25 23.2 Mvar

  • 7/25/2019 Analisis Aliran Daya 1

    28/38

    Slack Bus

    In previous example we specified S2 and V1and then solved for S1 and V2.

    We can not arbitrarily specify S at all buses

    because total generation must equal totalload + total losses

    We also need an angle reference bus.

    To solve these problems we define one bus

    as the "slack" bus. This bus has a fixedvoltage magnitude and angle, and a

    varying real/reactive power injection.

  • 7/25/2019 Analisis Aliran Daya 1

    29/38

    Gauss with Many Bus Systems

    *

    ( )( 1)( )*

    1,

    ( ) ( ) ( )1 2

    ( 1)

    With multiple bus systems we could calculate

    new V ' as follows:

    S1

    ( , ,..., )

    But after we've determined we have a better

    estimate of

    i

    i

    n

    vv ii ik kv

    ii k k i

    v v v

    i n

    v

    i

    s

    V Y VY V

    h V V V

    V

    its voltage , so it makes sense to use this

    new value. This approach is known as the

    Gauss-Seidel iteration.

  • 7/25/2019 Analisis Aliran Daya 1

    30/38

    Gauss-Seidel Iteration

    ( 1) ( ) ( ) ( )2 12 2 3

    ( 1) ( 1) ( ) ( )2 13 2 3

    ( 1) ( 1) ( 1) ( ) ( )2 14 2 3 4

    ( 1) ( 1) ( 1)( 1) ( )

    2 1 2 3 4

    Immediately use the new voltage estimates:

    ( , , , , )

    ( , , , , )

    ( , , , , )

    ( , , , ,

    v v v vn

    v v v vn

    v v v v vn

    v v vv v

    n n

    V h V V V V

    V h V V V V

    V h V V V V V

    V h V V V V V

    )

    The Gauss-Seidel works better than the Gauss, and

    is actually easier to implement. It is used instead

    of Gauss.

  • 7/25/2019 Analisis Aliran Daya 1

    31/38

    Two Bus PV Example

    Bus 1

    (slack bus)

    Bus 2V1 = 1.0 V2 = 1.05

    P2 = 0 MW

    z = 0.02 + j 0.06

    Consider the same two bus system from the previous

    example, except the load is replaced by a generator

  • 7/25/2019 Analisis Aliran Daya 1

    32/38

    Two Bus PV Example, cont'd

    *2

    2 21 1*22 2

    * *2 21 1 2 22 2 2

    2

    ( ) ( 1) ( 1)2 2 2

    1

    Im[ ]

    Guess V 1.05 0

    0 0 0.457 1.045 0.83 1.050 0.83

    1 0 0.535 1.049 0.93 1.050 0.93

    2 0 0.545 1.050 0.96 1.050 0.96

    v v v

    SV Y V

    Y V

    Q Y V V Y V V

    v S V V

    j

    j

    j

  • 7/25/2019 Analisis Aliran Daya 1

    33/38

    Generator Reactive Power Limits

    The reactive power output of generatorsvaries to maintain the terminal voltage; on areal generator this is done by the exciter

    To maintain higher voltages requires morereactive power

    Generators have reactive power limits, whichare dependent upon the generator's MW

    output These limits must be considered during the

    power flow solution.

  • 7/25/2019 Analisis Aliran Daya 1

    34/38

    Generator Reactive Limits, cont'd

    During power flow once a solution isobtained check to make generator reactivepower output is within its limits

    If the reactive power is outside of thelimits, fix Q at the max or min value, andresolve treating the generator as a PQ bus

    this is know as "type-switching"

    also need to check if a PQ generator canagain regulate

    Rule of thumb: to raise system voltage weneed to supply more vars

  • 7/25/2019 Analisis Aliran Daya 1

    35/38

    Accelerated G-S Convergence

    ( 1) ( )

    ( 1) ( ) ( ) ( )

    (

    Previously in the Gauss-Seidel method we were

    calculating each value x as

    ( )

    To accelerate convergence we can rewrite this as

    ( )

    Now introduce acceleration parameter

    v v

    v v v v

    v

    x h x

    x x h x x

    x

    1) ( ) ( ) ( )( ( ) )

    With = 1 this is identical to standard gauss-seidel.

    Larger values of may result in faster convergence.

    v v vx h x x

  • 7/25/2019 Analisis Aliran Daya 1

    36/38

    Accelerated Convergence, contd

    ( 1) ( ) ( ) ( )

    Consider the previous example: - 1 0

    (1 )

    Comparison of results with different values of

    1 1.2 1.5 2

    0 1 1 1 1

    1 2 2.20 2.5 3

    2 2.4142 2.5399 2.6217 2.464

    3 2.5554 2.6045 2.6179 2.675

    4 2.59

    v v v v

    x x

    x x x x

    k

    81 2.6157 2.6180 2.596

    5 2.6118 2.6176 2.6180 2.626

  • 7/25/2019 Analisis Aliran Daya 1

    37/38

    Gauss-Seidel Advantages

    Each iteration is relatively fast(computational order is proportionalto number of branches + number ofbuses in the system

    Relatively easy to program

  • 7/25/2019 Analisis Aliran Daya 1

    38/38

    Gauss-Seidel Disadvantages

    Tends to converge relatively slowly,although this can be improved withacceleration

    Has tendency to miss solutions,particularly on large systems

    Tends to diverge on cases with negativebranch reactances (common with

    compensated lines)

    Need to program using complexnumbers