Engineering Mathematics -II

Post on 26-Jan-2023

2 views 0 download

Transcript of Engineering Mathematics -II

Engineering Mathematics -II

1

ENGINEERING MATHEMATICS -II

SUBJECT CODE: MA8251

(Regulation 2017) Common to all branches of B.E

UNIT โ€“ I

MATRICES

Engineering Mathematics -II

2

UNIT โ€“ I

MATRICES

1.1 INTRODUCTION

The definition of matrices and the basic operations related to them originated in a memoir of

Cayley in 1958.This grew out of a simple observation on bilinear transformation and theory of Algebraic

invariants .Subsequently a number of eminent mathematicians like Sylvester, Hamilton contributed to the

development of the theory. Heisenberg used matrices in quantum theory as early as1925 AD. The matrix

algebra is a kind of shorthand technique for translating complicated mathematical relationship in to compact

forms .It has high degree of applicability in most of the quantitative applied sciences and has become

indispensable tool. In Physical, Social and Biological Sciences, application of matrix algebra has become

highly wide โ€“spread. In this chapter we shall discuss and solve the Eigen value problem ๐ด๐‘‹ = X

Definition

An arrangement of mn elements in a rectangular form having an ordered set of m rows and n

columns is called an m ร— n matrix A

๐ด = [(

๐‘Ž11 ๐‘Ž12 ๐‘Ž13 โ‹ฏ ๐‘Ž1๐‘›

๐‘Ž21๐‘Ž22 ๐‘Ž23 โ‹ฑ ๐‘Ž2๐‘›

โ€ฆ โ‹ฏ โ€ฆ .

)]

In short A=[aij] ,i = 1,2,โ€ฆโ€ฆm

j = 1,2, โ€ฆโ€ฆn

Here each aij is called an element of the matrix in, i th row and j th column.

Special Types of Matrices

Let A be Square Matrix of order n,

1. A = AT,then it is called a symmetric matrix (๐‘–. ๐‘’) aij = aji for all i, j.

2. If the square matrix A = โˆ’AT, then it is called skew โ€“symmetric matrix

(๐‘–. ๐‘’) aij = โˆ’aji for all i, j.

3. An ๐‘š ร— 1 matrix is called a column matrix.

4. An 1 ร— ๐‘› matrix is called a row matrix.

5. In the square matrix A=(aij) the elements ๐‘Ž11, ๐‘Ž22, ๐‘Ž33, โ€ฆ , ๐‘Ž๐‘›๐‘› are called the diagonal elements of A and

the diagonal elements constitute the principal diagonal of the matrix A .

6. A square matrix is called a diagonal matrix if all the elements except the leading diagonal are zero (๐‘–. ๐‘’) In

a diagonal matrix aij = 0 if i โ‰  j.

7. A square matrix A=(aij) is called an upper triangular matrix if all the entries below the leading diagonal

are zero.

8. A square matrix A=(aij) is called an lower triangular matrix if all the entries above the leading diagonal

are zero.

Engineering Mathematics -II

3

9. A square matrix A is said to be singular if |A| = 0, otherwise it is a non โ€“singular matrix.

1.2 CHARACTERISTIC EQUATION

If A is any square matrix of order n, the matrix A โˆ’ ฮปI where I is the unit matrix and ฮป be scaler

of order n can be formed as

|A โˆ’ ฮปI| = |๐‘Ž11 โˆ’ ๐œ† ๐‘Ž12 โ‹ฏ ๐‘Ž1๐‘›

โ‹ฎ โ‹ฑ โ‹ฎ๐‘Ž๐‘›1 ๐‘Ž๐‘›2 โ‹ฏ ๐‘Ž๐‘›๐‘› โˆ’ ๐œ†

| = 0 is called the characteristic equation of A.

Working Rule for Characteristic Equation

Type I: For 2 ร— 2 matrix

If ๐ด = (๐‘Ž11 ๐‘Ž12

๐‘Ž21 ๐‘Ž22), then the characteristic equation of A is ๐œ†2 โˆ’ ๐‘ 1๐œ† + ๐‘ 2 = 0

Where ๐‘ 1 =Sum of the leading diagonal elements =๐‘Ž11 + ๐‘Ž22

๐‘ 2 = |๐ด| =Determinant of a matrix A.

Type II: For 3 ร— 3 matrix

If ๐ด = (

๐‘Ž11 ๐‘Ž12 ๐‘Ž13

๐‘Ž21 ๐‘Ž22 ๐‘Ž23

๐‘Ž31 ๐‘Ž32 ๐‘Ž33

), then the characteristic equation of A is ๐œ†3 โˆ’ ๐‘ 1๐œ†2 + ๐‘ 2 ๐œ† โˆ’ ๐‘ 3 = 0

Where ๐‘ 1 =Sum of the leading diagonal elements =๐‘Ž11 + ๐‘Ž22 + ๐‘Ž33

๐‘ 2 =Sum of minors of leading diagonal elements

= |๐‘Ž22 ๐‘Ž23

๐‘Ž32 ๐‘Ž33| + |

๐‘Ž11 ๐‘Ž13

๐‘Ž31 ๐‘Ž33| + |

๐‘Ž11 ๐‘Ž12

๐‘Ž21 ๐‘Ž22|

๐‘ 3 = |๐ด| = Determinant of a matrix A.

Example: 1.1 Find the characteristic equation of the matrix (๐Ÿ ๐Ÿ๐ŸŽ ๐Ÿ

)

Solution:

The characteristic equation is 2 โˆ’ s1+ s2 = 0

s1 = sum of the main diagonal element

= 1 + 2 = 3

s2 = |A| = |1 20 2

| = 2

Characteristic equation is 2 โˆ’ 3+ 2 = 0

Example: 1.2 Find the characteristic equation of the matrix (๐Ÿ โˆ’๐Ÿ

โˆ’๐Ÿ“ ๐Ÿ’)

Solution:

The characteristic equation is 2 โˆ’ s1 + s2 = 0

s1 = sum of the main diagonal element

= 1 + 4 = 5

s2 = |A| = |1 โˆ’2

โˆ’5 4| = 4 โˆ’ 10 = โˆ’6

Characteristic equation is 2 โˆ’ 5โˆ’ 6 = 0

Engineering Mathematics -II

4

Example: 1.3 Find the characteristic equation of the matrix (๐Ÿ ๐ŸŽ ๐Ÿ๐ŸŽ ๐Ÿ ๐ŸŽ๐Ÿ ๐ŸŽ ๐Ÿ

)

Solution:

The characteristic equation is 3 โˆ’ s1

2 + s2 โˆ’ s3 = 0

s1 = sum of the main diagonal element

= 2 + 2 + 2 = 6

s2 = sum of the minors of the main diagonalelement

= |2 00 2

| + |2 11 2

| + |2 00 2

| = 11

s3 = |A| = |2 0 10 2 01 0 2

| = 2(4 โˆ’ 0) โˆ’ 0 + 1(0 โˆ’ 2)

= 8 โˆ’ 2 = 6

Characteristic equation is 3 โˆ’ 62 + 11โˆ’ 6 = 0

Example: 1.4 Find the characteristic equation of the matrix (๐Ÿ ๐Ÿ ๐Ÿ๐Ÿ ๐Ÿ ๐Ÿ๐ŸŽ ๐ŸŽ ๐Ÿ

)

Solution:

The characteristic equation is 3 โˆ’ s1

2 + s2โˆ’ s3 = 0

s1 = sum of the main diagonal element

= 2 + 2 + 1 = 5

s2 = sum of the minors of the main diagonalelement

= |2 10 1

| + |2 10 1

| + |2 11 2

| = 7

s3 = |A| = |2 1 11 2 10 0 1

| = 2(2 โˆ’ 0) โˆ’ 1(1 โˆ’ 0) + 1(0 โˆ’ 0)

= 4 โˆ’ 1 = 3

Characteristic equation is 3 โˆ’ 52 + 7โˆ’ 3 = 0

Example: 1.5 Find the characteristic polynomial of the matrix (๐ŸŽ โˆ’๐Ÿ โˆ’๐Ÿ

โˆ’๐Ÿ ๐Ÿ ๐Ÿโˆ’๐Ÿ โˆ’๐Ÿ ๐Ÿ

)

Solution:

The characteristic polynomial is 3 โˆ’ s1

2 + s2 โˆ’ s3

s1 = sum of the main diagonal element

= 0 + 1 + 2 = 3

s2 = sum of the minors of the main diagonalelement

= |1 2

โˆ’1 2| + |

0 โˆ’2โˆ’1 2

| + |0 โˆ’2

โˆ’1 1| =0

Engineering Mathematics -II

5

s3 = |A| = |0 โˆ’2 โˆ’2

โˆ’1 1 2โˆ’1 โˆ’1 2

| = 0 + 2(โˆ’2 + 2) โˆ’ 2(1 + 1)

= โˆ’4

Characteristic polynomial is 3 โˆ’ 32 + 4

1.3 EIGEN VALUES AND EIGEN VECTORS

Definition

The values of ฮป obtained from the characteristic equation |A โˆ’ ฮปI| = 0 are called Eigenvalues of

โ€˜Aโ€™.[or Latent values of A or characteristic values of A]

Definition

Let A be square matrix of order 3 and ฮป be scaler. The column matrix ๐‘‹ = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) which satisfies

(A โˆ’ ฮปI)X = 0 is called Eigen vector or Latent vector or characteristic vector.

Linearly Dependent and Independent Eigenvectors

Let A be the matrix whose columns are Eigen vectors of A

* If |A| = 0 then the eigenvectors are linearly dependent.

* If |A| โ‰  0 then the eigenvectors are linearly independent.

Example: 1.6 Find the Eigen values for the matrix (๐Ÿ ๐Ÿ ๐Ÿ๐Ÿ ๐Ÿ‘ ๐Ÿ๐Ÿ ๐Ÿ ๐Ÿ

)

Solution:

The characteristic equation is 3 โˆ’ s1

2 + s2 โˆ’ s3=0

s1 = sum of the main diagonal element

= 2 + 3 + 2 = 7

s2 = sum of the minors of the main diagonalelement

= |3 12 2

| + |2 11 2

| + |2 21 3

| = 4 + 3 + 4 = 11

s3 = |A| = |2 2 11 3 11 2 2

| = 2(6 โˆ’ 2) โˆ’ 2(2 โˆ’ 1) + 1(2 โˆ’ 3)

= 8 โˆ’ 2 โˆ’ 1 = 5

Characteristic equation is 3 โˆ’ 72 + 11โˆ’ 5 = 0

โ‡’ = 1 ,2 โˆ’ 6+ 5 = 0

โ‡’ = 1, ( โˆ’ 1)(โˆ’ 5) = 0

The Eigen values are = 1, 1,5

Example: 1.7 Determine the Eigen values for the matrix (โˆ’๐Ÿ ๐Ÿ โˆ’๐Ÿ‘๐Ÿ ๐Ÿ โˆ’๐Ÿ”

โˆ’๐Ÿ โˆ’๐Ÿ ๐ŸŽ)

Solution:

Engineering Mathematics -II

6

The characteristic equation is 3 โˆ’ s1

2 + s2 โˆ’ s3=0

s1 = sum of the main diagonal element

= โˆ’2 + 1 + 0 = โˆ’1

s2 = sum of the minors of the main diagonalelement

= |1 โˆ’6

โˆ’2 0| + |

โˆ’2 โˆ’3โˆ’1 0

| + |โˆ’2 22 1

| = โˆ’12 โˆ’ 3 โˆ’ 6 = โˆ’21

s3 = |A| = |โˆ’2 2 โˆ’32 1 โˆ’6

โˆ’1 โˆ’2 0| = โˆ’2(0 โˆ’ 12) โˆ’ 2(0 โˆ’ 6) โˆ’ 3(โˆ’4 + 1)

= 24 + 12 + 9 = 45

Characteristic equation is 3 +

2 โˆ’ 21โˆ’ 45 = 0

โ‡’ = โˆ’3 , 2 โˆ’ 2โˆ’ 15 = 0

โ‡’ = โˆ’3, (+ 3)(โˆ’ 5) = 0

The Eigen values are = โˆ’3,โˆ’3,5

Exercise: 1.1

Find the Eigen values for the following matrices:

1.(3 44 โˆ’3

) Ans: = 5; โˆ’5

2.(2 โˆ’1

โˆ’8 4) Ans: = 0,6

3.(โˆ’15 4 310 โˆ’12 620 โˆ’4 2

) Ans: = โˆ’10,โˆ’20,5

4.(2 0 00 2 01 0 2

) Ans: = 1,2,3

5.(1 0 โˆ’11 2 12 2 3

) Ans: = 1,2,3

Eigen values and Eigen vectors for Non โ€“ Symmetric matrix

Example: 1.8 Find the Eigen values and Eigen vectors for the matrix (๐Ÿ– โˆ’๐Ÿ” ๐Ÿ

โˆ’๐Ÿ” ๐Ÿ• โˆ’๐Ÿ’๐Ÿ โˆ’๐Ÿ’ ๐Ÿ‘

)

Solution:

The characteristic equation is 3 โˆ’ s1

2 + s2 โˆ’ s3=0

s1 = sum of the main diagonal element

= 8 + 7 + 3 = 18

s2 = sum of the minors of the main diagonalelement

= |7 โˆ’4

โˆ’4 3| + |

8 22 3

| + |8 โˆ’6

โˆ’6 7| = 5 + 20 + 20 = 45

s3 = |A| = |8 โˆ’6 2

โˆ’6 7 โˆ’42 โˆ’4 3

| = 8(21 โˆ’ 16) + 6(โˆ’18 + 8) + 2(24 โˆ’ 14)

Engineering Mathematics -II

7

= 40 โˆ’ 40 + 20 = 0

Characteristic equation is 3 โˆ’ 182 + 45 = 0

โ‡’ (2 โˆ’ 18+ 45) = 0

โ‡’ = 0, (โˆ’ 15)(โˆ’ 3) = 0

โ‡’ = 0,3,15

To find the Eigen vectors:

Case( i) When = 0 the eigen vector is given by(A โˆ’ I)X = 0 where X = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

)

โ‡’ (8 โˆ’ 0 โˆ’6 2โˆ’6 7 โˆ’ 0 โˆ’42 โˆ’4 3 โˆ’ 0

)(

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) = (000)

8x1 โˆ’ 6x2 + 2x3 = 0โ€ฆ (1)

โˆ’6x1 + 7x2 โˆ’ 4x3 = 0โ€ฆ (2)

2x1 โˆ’ 4x2 + 3x3 = 0โ€ฆ (3)

From (1) and (2)

x1

24โˆ’14=

x2

โˆ’12+32=

x3

56โˆ’36

x1

10=

x2

20=

x3

20

x1

1=

x2

2=

x3

2

X1 = (123)

Case (ii) When = 3 the eigen vector is given by(A โˆ’ I)X = 0 where X = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

)

โ‡’ (8 โˆ’ 3 โˆ’6 2โˆ’6 7 โˆ’ 3 โˆ’42 โˆ’4 3 โˆ’ 3

)(

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) = (000)

5x1 โˆ’ 6x2 + 2x3 = 0โ€ฆ (4)

โˆ’6x1 + 4x2 โˆ’ 4x3 = 0โ€ฆ (5)

2x1 โˆ’ 4x2 + 0x3 = 0โ€ฆ (6)

From (4) and (5)

x1

24โˆ’8=

x2

โˆ’12+20=

x3

20โˆ’36

x1

16=

x2

8=

x3

โˆ’16

x1

2=

x2

1=

x3

โˆ’2

X2 = (21

โˆ’2)

Engineering Mathematics -II

8

Case (iii) When = 15 the eigen vector is given by(A โˆ’ I)X = 0 where X = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

)

โ‡’ (8 โˆ’ 15 โˆ’6 2

โˆ’6 7 โˆ’ 15 โˆ’42 โˆ’4 3 โˆ’ 15

)(

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) = (000)

7x1 โˆ’ 6x2 + 2x3 = 0โ€ฆ (7)

โˆ’6x1 โˆ’ 8x2 โˆ’ 4x3 = 0โ€ฆ (8)

2x1 โˆ’ 4x2 โˆ’ 12x3 = 0โ€ฆ(9)

From (7) and (8)

x1

24+16=

x2

โˆ’12โˆ’28=

x3

56โˆ’36

x1

40=

x2

โˆ’40=

x3

20

x1

2=

x2

โˆ’2=

x3

1

X3 = (2

โˆ’21

)

Hence the corresponding Eigen vectors are X1 = (123) ; X2 = (

21

โˆ’2) ; X3 = (

2โˆ’21

)

Example: 1.9 Determine the Eigen values and Eigen vectors of the matrix (๐Ÿ• โˆ’๐Ÿ ๐ŸŽ

โˆ’๐Ÿ ๐Ÿ” โˆ’๐Ÿ๐ŸŽ โˆ’๐Ÿ ๐Ÿ“

)

Solution:

The characteristic equation is 3 โˆ’ s1

2 + s2 โˆ’ s3= 0

s1 = sum of the main diagonal element

= 7 + 6 + 5 = 18

s2 = sum of the minors of the main diagonalelement

= |6 โˆ’2

โˆ’2 5| + |

7 00 5

| + |7 โˆ’2

โˆ’2 6| = 26 + 35 + 38 = 99

s3 = |A| = |7 โˆ’2 0

โˆ’2 6 โˆ’20 โˆ’2 5

| = 182 โˆ’ 20 + 0 = 162

Characteristic equation is 3 โˆ’ 182 + 99โˆ’ 162 = 0

โ‡’ = 3, (2 โˆ’ 15+ 54) = 0

โ‡’ = 3, ( โˆ’ 9)(โˆ’ 6) = 0

โ‡’ = 3, 6, 9

To find the Eigen vectors:

Case (i) When = 3 the eigen vector is given by(A โˆ’ I)X = 0 where X = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

)

Engineering Mathematics -II

9

โ‡’ (7 โˆ’ 3 โˆ’2 0โˆ’2 6 โˆ’ 3 โˆ’20 โˆ’2 5 โˆ’ 3

)(

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) = (000)

4x1 โˆ’ 2x2 + 0x3 = 0โ€ฆ (1)

โˆ’2x1 + 3x2 โˆ’ 2x3 = 0โ€ฆ (2)

0x1 โˆ’ 2x2 + 2x3 = 0โ€ฆ (3)

From (1) and (2)

x1

4โˆ’0=

x2

0+8=

x3

12โˆ’4

x1

4=

x2

8=

x3

8

x1

1=

x2

2=

x3

2

X1 = (122)

Case (ii) When = 6 the eigen vector is given by(A โˆ’ I)X = 0 where X = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

)

โ‡’ (7 โˆ’ 6 โˆ’2 0โˆ’2 6 โˆ’ 6 โˆ’20 โˆ’2 5 โˆ’ 6

)(

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) = (000)

x1 โˆ’ 2x2 + 0x3 = 0โ€ฆ (4)

โˆ’2x1 + 0x2 โˆ’ 2x3 = 0โ€ฆ (5)

0x1 โˆ’ 2x2 โˆ’ x3 = 0โ€ฆ (6)

From (4)and (5)

x1

4โˆ’0=

x2

0+2=

x3

0โˆ’4

x1

4=

x2

2=

x3

โˆ’4

x1

2=

x2

1=

x3

โˆ’2

X2 = (21

โˆ’2)

Case (iii) When = 9 the eigen vector is given by(A โˆ’ I)X = 0 where X = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

)

โ‡’ (7 โˆ’ 9 โˆ’2 0โˆ’2 6 โˆ’ 9 โˆ’20 โˆ’2 5 โˆ’ 9

)(

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) = (000)

โˆ’2x1 โˆ’ 2x2 + 0x3 = 0โ€ฆ (7)

โˆ’2x1 โˆ’ 3x2 โˆ’ 2x3 = 0โ€ฆ (8)

0x1 โˆ’ 2x2 โˆ’ 4x3 = 0โ€ฆ (9)

From (7) and (8)

x1

4โˆ’0=

x2

0โˆ’4=

x3

6โˆ’4

Engineering Mathematics -II

10

x1

4=

x2

โˆ’4=

x3

2

x1

2=

x2

โˆ’2=

x3

1

X3 = (2

โˆ’21

)

Hence the corresponding Eigen vectors are X1 = (122) ; X2 = (

21

โˆ’2) ; X3 = (

2โˆ’21

)

Example: 1.10 Determine the Eigen values and Eigen vectors of the matrix (๐Ÿ‘ ๐Ÿ ๐Ÿ’๐ŸŽ ๐Ÿ ๐Ÿ”๐ŸŽ ๐ŸŽ ๐Ÿ“

)

Solution:

The characteristic equation is 3 โˆ’ s1

2 + s2 โˆ’ s3=0

s1 = sum of the main diagonal element

= 3 + 2 + 5 = 10

s2 = sum of the minors of the main diagonalelement

= |2 60 5

| + |3 40 5

| + |3 10 2

| = 10 + 15 + 6 = 31

s3 = |A| = |3 1 40 2 60 0 5

| = 30

Characteristic equation is 3 โˆ’ 102 + 31โˆ’ 30 = 0

โ‡’ = 2, (2 โˆ’ 8+ 15) = 0

โ‡’ = 2, ( โˆ’ 5)(โˆ’ 3) = 0

โ‡’ = 2,3,5

To find the Eigen vectors:

Case( i) When = 2 the eigen vector is given by(A โˆ’ I)X = 0 where X = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

)

โ‡’ (3 โˆ’ 2 1 4

0 2 โˆ’ 2 60 0 5 โˆ’ 2

)(

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) = (000)

x1 + x2 + 4x3 = 0 โ€ฆ(1)

0x1 + 0x2 + 6x3 = 0โ€ฆ (2)

0x1 + 0x2 + 3x3 = 0โ€ฆ (3)

From (1) and (2)

x1

6โˆ’0=

x2

0โˆ’6=

x3

0โˆ’0

x1

6=

x2

โˆ’6=

x3

0

x1

1=

x2

โˆ’1=

x3

0

Engineering Mathematics -II

11

X1 = (1

โˆ’10

)

Case (ii) When = 3 the eigen vector is given by(A โˆ’ I)X = 0 where X = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

)

โ‡’ (3 โˆ’ 3 1 4

0 2 โˆ’ 3 60 0 5 โˆ’ 3

)(

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) = (000)

0x1 + x2 + 4x3 = 0โ€ฆ (4)

0x1 โˆ’ x2 + 6x3 = 0โ€ฆ (5)

0x1 + 0x2 + 2x3 = 0โ€ฆ (6)

From (4) and (5)

x1

4+6=

x2

0โˆ’0=

x3

0โˆ’0

x1

10=

x2

0=

x3

0

x1

1=

x2

0=

x3

0

X2 = (100)

Case (iii) When = 5 the eigen vector is given by(A โˆ’ I)X = 0 where X = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

)

โ‡’ (3 โˆ’ 5 1 4

0 2 โˆ’ 5 60 0 5 โˆ’ 5

)(

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) = (000)

โˆ’2x1 + x2 + 4x3 = 0โ€ฆ (7)

0x1 โˆ’ 3x2 + 6x3 = 0โ€ฆ (8)

0x1 + 0x2 + 0x3 = 0โ€ฆ (9)

From (7) and (8)

x1

6+12=

x2

0+12=

x3

6โˆ’0

x1

18=

x2

12=

x3

6

x1

3=

x2

2=

x3

1

X3 = (321)

Hence the corresponding Eigen vectors are X1 = (1

โˆ’10

) ; X2 = (100) ; X3 = (

321)

Example: 1.11 Find the Eigen values and Eigen vectors of the matrix (๐š ๐›

โˆ’๐› ๐š)

Solution:

The characteristic equation is 2 โˆ’ s1 + s2 = 0

Engineering Mathematics -II

12

s1 = sum of the main diagonal element

= a+ a = 2a

s2 = |A| = | a bโˆ’b a

| = a2 + b2

Characteristic equation is 2 โˆ’ 2a+ a2 + b2 = 0

=โˆ’bยฑโˆšb2โˆ’4ac

2a

=2aยฑโˆš4a2โˆ’4(a2+b2)

2

=2aยฑโˆšโˆ’4b2

2

=2aยฑi2b

2

= a ยฑ ib

The Eigen values are = a ยฑ ib

To find the Eigen vectors:

Case (i) When = a + ib the eigen vector is given by(A โˆ’ I)X = 0 where X = (x1

x2)

(a โˆ’ (a + ib) b

โˆ’b a โˆ’ (a + ib)) (

x1

x2)=(

00)

โˆ’ibx1 + bx2 = 0โ€ฆ (1)

โˆ’bx1 โˆ’ ibx2 = 0โ€ฆ (2)

โˆด (1) โ‡’ โˆ’๐‘–๐‘x1 = โˆ’bx2

x1

b=

x2

ibโ‡’

x1

1=

x2

i

X1 = (1i)

Case (ii) When = a โˆ’ ib the eigen vector is given by(A โˆ’ I)X = 0 where X = (x1

x2)

(a โˆ’ (a โˆ’ ib) b

โˆ’b a โˆ’ (a โˆ’ ib)) (

x1

x2)=(

00)

ibx1 + bx2 = 0โ€ฆ (3)

โˆ’bx1 + ibx2 = 0โ€ฆ (4)

โˆด (3) โ‡’ ๐‘–๐‘x1 = โˆ’bx2

x1

โˆ’b=

x2

ibโ‡’

x1

โˆ’1=

x2

i

X2 = (โˆ’1i

)

Exercise: 1.2

Find the Eigen values and Eigenvectors of the following matrices:

1.(1 0 00 3 โˆ’10 โˆ’1 3

) Ans: = 1; (1,0,0); = 2; (0,1,1); = 4; (0,โˆ’1,1)

Engineering Mathematics -II

13

2.(2 4 โˆ’64 2 โˆ’6

โˆ’6 โˆ’6 โˆ’15) Ans: = โˆ’2; (1,โˆ’1,0); = 9; (2,2,โˆ’1); = โˆ’18; (1,1,4)

3.(2 2 02 1 1

โˆ’7 2 โˆ’3) Ans: = 1; (2,โˆ’1, โˆ’4); = 3; (2,1,โˆ’2); = โˆ’4; (1,โˆ’3,13)

4.(4 โˆ’20 โˆ’10

โˆ’2 10 46 โˆ’30 โˆ’13

) Ans: = 0; (5,1,0); = โˆ’1; (2,0,1); = 2; (0,1,โˆ’2)

5.(2 2 02 2 00 0 1

) Ans: = 0; (1,โˆ’1,0); = 1; (0,0,1); = 4; (1,1,0)

Problems on Symmetric matrices with repeated Eigen values

Example: 1.12 Determine the Eigen values and Eigen vectors of the matrix (๐Ÿ” โˆ’๐Ÿ ๐Ÿ

โˆ’๐Ÿ ๐Ÿ‘ โˆ’๐Ÿ๐Ÿ โˆ’๐Ÿ ๐Ÿ‘

)

Solution:

The characteristic equation is 3 โˆ’ s1

2 + s2 โˆ’ s3=0

s1 = sum of the main diagonal element

= 6 + 3 + 3 = 12

s2 = sum of the minors of the main diagonalelement

= |3 โˆ’1

โˆ’1 3| + |

6 22 3

| + |6 โˆ’2

โˆ’2 3| = 8 + 14 + 14 = 36

s3 = |A| = |6 โˆ’2 2

โˆ’2 3 โˆ’12 โˆ’1 3

| = 32

Characteristic equation is 3 โˆ’ 122 + 36โˆ’ 32 = 0

โ‡’ = 2, (2 โˆ’ 10+ 16) = 0

โ‡’ = 2, ( โˆ’ 2)(โˆ’ 8) = 0

โ‡’ = 2,2,8

To find the Eigen vectors:

Case (i) When = 8 the eigen vector is given by(A โˆ’ I)X = 0 where X = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

)

โ‡’ (6 โˆ’ 8 โˆ’2 2โˆ’2 3 โˆ’ 8 โˆ’12 โˆ’1 3 โˆ’ 8

)(

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) = (000)

โˆ’2x1 โˆ’ 2x2 + 2x3 = 0โ€ฆ (1)

โˆ’2x1 โˆ’ 5x2 โˆ’ x3 = 0โ€ฆ (2)

2x1 โˆ’ x2 โˆ’ 5x3 = 0โ€ฆ (3)

From (1) and (2)

x1

2+10=

x2

โˆ’4โˆ’2=

x3

10โˆ’4

Engineering Mathematics -II

14

x1

12=

x2

โˆ’6=

x3

6

x1

2=

x2

โˆ’1=

x3

1

X1 = (2

โˆ’11

)

Case (ii) When = 2 the eigen vector is given by(A โˆ’ I)X = 0 where X = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

)

โ‡’ (6 โˆ’ 2 โˆ’2 2โˆ’2 3 โˆ’ 2 โˆ’12 โˆ’1 3 โˆ’ 2

)(

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) = (000)

4x1 โˆ’ 2x2 + 2x3 = 0โ€ฆ (4)

โˆ’2x1 + x2 โˆ’ x3 = 0โ€ฆ (5)

2x1 โˆ’ x2 + x3 = 0 โ€ฆ(6)

In (1) put x1 = 0 โ‡’ โˆ’2x2 = โˆ’2x3

โ‡’x2

1=

x3

1 โ‡’ ๐‘‹2 = (

011)

In (1) put x2 = 0 โ‡’ 4x1 + 2x3 = 0

โ‡’ 4x1 = โˆ’2x3

โ‡’x1

โˆ’1=

x3

2 โ‡’ ๐‘‹3 = (

โˆ’102

)

Hence the corresponding Eigen vectors are X1 = (2

โˆ’11

) ; X2 = (011) ; X3 = (

โˆ’102

)

Example: 1.13 Find the Eigen values and Eigen vectors of the matrix (๐Ÿ ๐Ÿ ๐Ÿ๐Ÿ ๐Ÿ‘ ๐Ÿ๐Ÿ ๐Ÿ ๐Ÿ

)

Solution:

The characteristic equation is 3 โˆ’ s1

2 + s2 โˆ’ s3=0

s1 = sum of the main diagonal element

= 2 + 3 + 2 = 7

s2 = sum of the minors of the main diagonalelement

= |3 12 2

| + |2 11 2

| + |2 21 3

| = 4 + 3 + 4 = 1

s3 = |A| = |2 2 11 3 11 2 2

| = 5

Characteristic equation is 3 โˆ’ 72 + 11โˆ’ 5 = 0

โ‡’ = 1, (2 โˆ’ 6+ 5) = 0

โ‡’ = 1, ( โˆ’ 1)(โˆ’ 5) = 0

โ‡’ = 1, 1, 5

Engineering Mathematics -II

15

To find the Eigen vectors:

Case (i) When = 5 the eigen vector is given by(A โˆ’ I)X = 0 where X = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

)

โ‡’ (2 โˆ’ 5 2 1

1 3 โˆ’ 5 11 2 2 โˆ’ 5

)(

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) = (000)

โˆ’3x1 + 2x2 + x3 = 0โ€ฆ (1)

x1 โˆ’ 2x2 + x3 = 0โ€ฆ (2)

x1 + 2x2 โˆ’ 3x3 = 0โ€ฆ (3)

From (1) and (2)

x1

2+2=

x2

1+3=

x3

6โˆ’2

x1

4=

x2

4=

x3

4

x1

1=

x2

1=

x3

1

X1 = (111)

Case (ii) When = 1 the eigen vector is given by(A โˆ’ I)X = 0 where X = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

)

โ‡’ (2 โˆ’ 1 2 1

1 3 โˆ’ 1 11 2 2 โˆ’ 1

)(

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) = (000)

x1 + 2x2 + x3 = 0โ€ฆ (4)

x1 + 2x2 + x3 = 0 โ€ฆ(5)

x1 + 2x2 + x3 = 0 โ€ฆ(6)

In (1) put x1 = 0 โ‡’ 2x2 = โˆ’x3

โ‡’x2

โˆ’1=

x3

2 โ‡’ ๐‘‹2 = (โˆ’

012)

In (1) put x2 = 0 => x1 = โˆ’x3

โ‡’x1

โˆ’1=

x3

1 โ‡’ ๐‘‹3 = (

โˆ’101

)

Hence the corresponding Eigen vectors are X1 = (111) ; X2 = (โˆ’

012) ; X3 = (

โˆ’101

)

Example: 1.14 Find the Eigen values and Eigen vectors of the matrix (๐Ÿ” โˆ’๐Ÿ” ๐Ÿ“๐Ÿ๐Ÿ’ โˆ’๐Ÿ๐Ÿ‘ ๐Ÿ๐ŸŽ๐Ÿ• โˆ’๐Ÿ” ๐Ÿ’

)

Solution:

The characteristic equation is 3 โˆ’ s1

2 + s2 โˆ’ s3=0

s1 = sum of the main diagonal element

Engineering Mathematics -II

16

= 6 โˆ’ 13 + 4 = โˆ’3

s2 = sum of the minors of the main diagonalelement

= |โˆ’13 10โˆ’6 4

| + |6 57 4

| + |6 โˆ’614 โˆ’13

| = 8 โˆ’ 11 + 6 = 3

s3 = |A| = |6 โˆ’6 514 โˆ’13 107 โˆ’6 4

| = โˆ’1

Characteristic equation is 3 + 32 + 3+ 1 = 0

โ‡’ = โˆ’1, (2 + 2+ 1) = 0

โ‡’ = 1, ( + 1)(+ 1) = 0

โ‡’ = โˆ’1,โˆ’1, โˆ’1

To find the Eigen vectors:

When = โˆ’1 the Eigen vector is given by(A โˆ’ I)X = 0 where X = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

)

โ‡’ (6 + 1 โˆ’6 514 โˆ’13 + 1 107 โˆ’6 4 + 1

)(

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) = (000)

7x1 โˆ’ 6x2 + 5x3 = 0โ€ฆ (1)

14x1 โˆ’ 12x2 + 10x3 = 0โ€ฆ (2)

7x1 โˆ’ 6x2 + 5x3 = 0โ€ฆ (3)

In (1) put x1 = 0 โ‡’ โˆ’6x2 = โˆ’5x3

โ‡’x2

5=

x3

6 โ‡’ ๐‘‹1 = (

056)

In (1) put x2 = 0 โ‡’ 7x1 = โˆ’5x3

โ‡’x1

โˆ’5=

x3

7 โ‡’ ๐‘‹2 = (

โˆ’507

)

In (1) put x3 = 0 โ‡’ 7x1 = 6x2

โ‡’x1

6=

x2

7 โ‡’ ๐‘‹3 = (

670)

Hence the corresponding Eigen vectors are X1 = (056) ; X2 = (

โˆ’507

) ; X3 = (670)

Example: 1.15 Find the Eigen values and Eigen vectors of the matrix (๐Ÿ ๐Ÿ ๐ŸŽ๐ŸŽ ๐Ÿ ๐Ÿ๐ŸŽ ๐ŸŽ ๐Ÿ

)

Solution:

The characteristic equation s 3 โˆ’ s1

2 + s2 โˆ’ s3=0

s1 = sum of the main diagonal element

= 2 + 2 + 2 = 6

Engineering Mathematics -II

17

s2 = sum of the minors of the main diagonalelement

= |2 10 2

| + |2 00 2

| + |2 10 2

| = 4 + 4 + 4 = 12

s3 = |A| = |2 1 00 2 10 0 2

| = 8

Characteristic equation is 3 โˆ’ 62 + 12โˆ’ 8 = 0

โ‡’ = 2, (2 โˆ’ 4+ 4) = 0

โ‡’ = 2, ( โˆ’ 2)(โˆ’ 2) = 0

โ‡’ = 2 ,2, 2

To find the Eigen vectors:

When = 2 the Eigen vector is given by(A โˆ’ I)X = 0 where X = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

)

โ‡’ (2 โˆ’ 2 1 0

0 2 โˆ’ 2 10 0 2 โˆ’ 2

)(

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) = (000)

0x1 + x2 + 0x3 = 0โ€ฆ (1)

0x1 + 0x2 + x3 = 0โ€ฆ (2)

0x1 + 0x2 + 0x3 = 0โ€ฆ (3)

From (1) and (2)

x1

1 โˆ’ 0=

x2

0 โˆ’ 0=

x3

0 โˆ’ 0

x1

1=

x2

0=

x3

0

Hence the corresponding Eigen vectors are X1 = X2 = X3 = (100)

Exercise: 1.3

Find the Eigen values and Eigenvectors of the following matrices:

1.(2 2 11 3 11 2 2

) Ans: = 1; (2,โˆ’1,0); = 1; (1,0,โˆ’1); = 5; (1,1,1)

2.(2 1 12 3 23 3 4

) Ans: = 1; (0,1,โˆ’1); = 1; (1,0,โˆ’1); = 7; (1,2,3)

3.(1 2 20 2 1

โˆ’1 2 2) Ans: = 1; (1,1,โˆ’1); = 1; (1,1,โˆ’1); = 2; (2,1,0)

4.(โˆ’3 โˆ’9 โˆ’121 3 40 0 1

) Ans: = 0; (3,โˆ’1,0); = 0; (3,โˆ’1,0); = 1; (12,โˆ’4,โˆ’1)

5. (โˆ’2 2 โˆ’32 1 โˆ’6

โˆ’1 โˆ’2 0) Ans: = โˆ’3; (3,0,1); = โˆ’3; (โˆ’2,1,0); = 5; (1,2,โˆ’1)

Engineering Mathematics -II

18

1.4 PROPERTIES OF EIGEN VALUES AND EIGEN VECTORS

Property: 1(a) The sum of the Eigen values of a matrix is equal to the sum of the elements of the

principal (main) diagonal.

(or)

The sum of the Eigen values of a matrix is equal to the trace of the matrix.

1. (b) product of the Eigen values is equal to the determinant of the matrix.

Proof:

Let A be a square matrix of order ๐‘›.

The characteristic equation of A is |๐ด โ€“ ๐œ†๐ผ| = 0

(๐‘–. ๐‘’. )๐œ†๐‘› โˆ’ ๐‘†1๐œ†๐‘›โˆ’1 + ๐‘†2๐œ†

๐‘›โˆ’2 โˆ’ โ‹ฏ+ (โˆ’1)๐‘†๐‘› = 0 ... (1)

where S1 = Sum of the diagonal elements of A.

. . .

. . .

. . .

Sn = determinant of A.

We know the roots of the characteristic equation are called Eigen values of the given matrix.

Solving (1) we get ๐‘› roots.

Let the ๐‘› be ๐œ†1, ๐œ†2, โ€ฆ ๐œ†๐‘› .

i.e., ๐œ†1, ๐œ†2, โ€ฆ ๐œ†๐‘› . are the Eignvalues of A.

We know already,

ฮปn โˆ’ (Sum of the roots ฮปnโˆ’1 + [sum of the product of the roots taken two at a time] ฮปnโˆ’2 โˆ’

โ€ฆ + (โˆ’1)n(Product of the roots) = 0 ... (2)

Sum of the roots = ๐‘†1๐‘๐‘ฆ (1)&(2)

(๐‘–. ๐‘’. ) ๐œ†1 + ๐œ†2 + โ‹ฏ + ๐œ†๐‘› = ๐‘†1

(๐‘–. ๐‘’. ) ๐œ†1 + ๐œ†2 + โ‹ฏ + ๐œ†๐‘› = ๐‘Ž11 + ๐‘Ž22 + โ‹ฏ + ๐‘Ž๐‘›๐‘›

Product of the roots = Snby (1)&(2)

(๐‘–. ๐‘’. )ฮป1ฮป2 โ€ฆ ฮปn = det of A

Property: 2 A square matrix A and its transpose ๐€๐“ have the same Eigenvalues.

(or)

A square matrix A and its transpose ๐€๐“ have the same characteristic values.

Proof:

Let A be a square matrix of order ๐‘›.

The characteristic equation of A and AT are

Sum of the Eigen values = Sum of the main diagonal elements

Product of the Eigen values = |A|

Engineering Mathematics -II

19

|A โˆ’ ฮปI| = 0 โ€ฆโ€ฆ . (1)

and |AT โˆ’ ฮปI| = 0 โ€ฆโ€ฆ . (2)

Since, the determinant value is unaltered by the interchange of rows and columns.

We know |A| = |AT|

Hence, (1) and (2) are identical.

โˆด The Eigenvalues of A and AT are the same.

Property: 3 The characteristic roots of a triangular matrix are just the diagonal elements of the

matrix.

(or)

The Eigen values of a triangular matrix are just the diagonal elements of the matrix.

Proof: Let us consider the triangular Characteristic equation of is

matrix. |A โˆ’ ฮปI| = 0

A = [๐‘Ž11 0 0๐‘Ž21 ๐‘Ž22 0๐‘Ž31 ๐‘Ž32 ๐‘Ž33

] i.e., |๐‘Ž11 โˆ’ ๐œ† 0 0

๐‘Ž21 ๐‘Ž22 โˆ’ ๐œ† 0๐‘Ž31 ๐‘Ž32 ๐‘Ž33 โˆ’ ๐œ†

| = 0

On expansion it gives (๐‘Ž11 โˆ’ ๐œ†)(๐‘Ž22 โˆ’ ๐œ†)(๐‘Ž33 โˆ’ ๐œ†) = 0

i.e., ๐œ† = ๐‘Ž11, ๐‘Ž22, ๐‘Ž33

which are diagonal elements of the matrix A.

Property: 4 If ๐€ is an Eigenvalue of a matrix A, then ๐Ÿ

๐€, (๐€ โ‰  ๐ŸŽ) is the Eignvalue of ๐€โˆ’๐Ÿ.

(or)

If ๐€ is an Eigenvalue of a matrix A, what can you say about the Eigenvalue of matrix ๐€โˆ’๐Ÿ. Prove your

statement.

Proof:

If X be the Eigenvector corresponding to ๐œ†,

then ๐ด๐‘‹ = ๐œ†๐‘‹ ... (i)

Pre multiplying both sides by Aโˆ’1, we get

Aโˆ’1AX = Aโˆ’1ฮปX

(1) โ‡’ X = ฮปAโˆ’1X

X = ฮปAโˆ’1X

รท ฮป โ‡’ 1

ฮปX = Aโˆ’1X

(๐‘–. ๐‘’. ) Aโˆ’1X =1

ฮปX

This being of the same form as (i), shows that 1

๐œ† is an Eigenvalue of the inverse matrix Aโˆ’1.

Property: 5 If ๐€ is an Eigenvalue of an orthogonal matrix, then ๐Ÿ

๐€ is an Eigenvalue.

Proof:

Engineering Mathematics -II

20

Definition: Orthogonal matrix.

A square matrix A is said to be orthogonal if AAT = ATA = I

i.e., AT = Aโˆ’1

Let A be an orthogonal matrix.

Given ๐œ† is an Eignevalue of A.

โ‡’1

๐œ†is an Eigenvalue of Aโˆ’1

Since, AT = Aโˆ’1

โˆด1

๐œ† is an Eigenvalue of AT

But, the matrices A and AT have the same Eigenvalues, since the determinants

|A โˆ’ ฮปI|and |AT โˆ’ ฮปI| are the same.

Hence, 1

๐œ† is also an Eigenvalue of A.

Property: 6 If ๐€๐Ÿ, ๐€๐Ÿ, โ€ฆ ๐€๐’. are the Eignvalues of a matrix A, then ๐€๐ฆ has the Eigenvalues

๐›Œ๐Ÿ๐ฆ, ๐›Œ๐Ÿ

๐ฆ, โ€ฆ . , ๐›Œ๐ง๐ฆ (๐ฆ ๐›๐ž๐ข๐ง๐  ๐š ๐ฉ๐จ๐ฌ๐ข๐ญ๐ข๐ฏ๐ž ๐ข๐ง๐ญ๐ž๐ ๐ž๐ซ)

Proof:

Let ๐ด๐‘– be the Eigenvalue of A and ๐‘‹๐‘– the corresponding Eigenvector.

Then ๐ด๐‘‹๐‘– = ๐œ†๐‘–๐‘‹๐‘– โ€ฆ (1)

We have A2Xi = A(AXi)

= A(ฮปiXi)

= ฮปiA(Xi)

= ฮปi(ฮปiXi)

= ฮปi2Xi

|โˆฃ| 1y A3Xi = ฮปi3Xi

In general, AmXi = ฮปimXi โ€ฆ . (2)

Hence, ๐œ†๐‘–๐‘š is an Eigenvalue of Am.

The corresponding Eigenvector is the same ๐‘‹๐‘–.

Note: If ฮป is the Eigenvalue of the matrix A then ฮป2 is the Eigenvalue of A2

Property: 7 The Eigen values of a real symmetric matrix are real numbers.

Proof:

Let ฮป be an Eigenvalue (may be complex) of the real symmetric matrix A. Let the corresponding

Eigenvector be X. Let A denote the transpose of A.

We have AX = ฮปX

Pre-multiplying this equation by 1 ร— ๐‘› matrix ๐‘‹โ€ฒฬ…, where the bar denoted that all elements of ๐‘‹โ€ฒฬ… are the

complex conjugate of those of ๐‘‹โ€ฒ, we get

Xโ€ฒAX = ฮปXโ€ฒX โ€ฆ . (1)

Taking the conjugate complex of this we get Xโ€ฒ AX = ฮปXโ€ฒX or

Engineering Mathematics -II

21

Xโ€ฒA X = ฮป Xโ€ฒ X since, A = A for A is real.

Taking the transpose on both sides, we get

(Xโ€ฒAX)โ€ฒ = (ฮป Xโ€ฒ X)โ€ฒ(๐‘–. ๐‘’. , )Xโ€ฒ Aโ€ฒ X = ฮป Xโ€ฒ ๐‘‹

(๐‘–. ๐‘’. )Xโ€ฒ Aโ€ฒ X = ฮป Xโ€ฒ ๐‘‹ since Aโ€ฒ = A for A is symmetric.

But, from (1), Xโ€ฒ A X = ฮป Xโ€ฒ ๐‘‹ Hence ฮป Xโ€ฒ ๐‘‹ = ฮป Xโ€ฒ ๐‘‹

Since, Xโ€ฒ X is an 1 ร— 1 matrix whose only element is a positive value, ฮป = ฮป (๐‘–. ๐‘’. ) ๐œ† is real).

Property: 8 The Eigen vectors corresponding to distinct Eigen values of a real symmetric matrix are

orthogonal.

Proof:

For a real symmetric matrix A, the Eigen values are real.

Let ๐‘‹1, ๐‘‹2 be Eigenvectors corresponding to two distinct eigen values ๐œ†1 , ๐œ†2 [๐œ†1 , ๐œ†2 are real]

AX1 = ฮป1X1 โ€ฆ . (1)

AX2 = ฮป2X2 โ€ฆ . (2)

Pre multiplying (1) by X2โ€ฒ, we get

X2โ€ฒAX1 = X2โ€ฒฮป1X1

= ฮป1X2โ€ฒX1

Pre-multiplying (2) by X1โ€ฒ, we get

X1โ€ฒAX2 = ฮป2X1โ€ฒX2 โ€ฆ . (3)

But(X2โ€ฒAX1)โ€ฒ = (ฮป1X2โ€ฒX1)โ€ฒ

X1โ€ฒA X2 = ฮป1X1โ€ฒX2

(๐‘–. ๐‘’) X1โ€ฒA X2 = ฮป1X1โ€ฒX2 ..... (4) [โˆต Aโ€ฒ = A]

From (3) and (4)

ฮป1X1 โ€ฒ X2 = ฮป2X1โ€ฒ X2

(i.e.,)(ฮป1 โˆ’ ฮป2)X1 โ€ฒ X2 = O

ฮป1 โ‰  ฮป2, X1 โ€ฒ X2 = O

โˆด X1 , X2 are orthogonal.

Property: 9 The similar matrices have same Eigen values.

Proof:

Let A, B be two similar matrices.

Then, there exists an non-singular matrix P such that B = Pโˆ’1 AP

B โˆ’ ฮปI = Pโˆ’1AP โˆ’ ฮปI

= Pโˆ’1AP โˆ’ Pโˆ’1 ฮปIP

= Pโˆ’1(A โˆ’ ฮปI)P

|B โˆ’ ฮปI| = |Pโˆ’1| |A โˆ’ ฮปI| |P|

= |A โˆ’ ฮปI| |Pโˆ’1P|

Engineering Mathematics -II

22

= |A โˆ’ ฮปI| |I|

= |A โˆ’ ฮปI|

Therefore, A, B have the same characteristic polynomial and hence characteristic roots.

โˆด They have same Eigen values.

Property: 10 If a real symmetric matrix of order 2 has equal Eigen values, then the matrix is a scalar

matrix.

Proof :

Rule 1 : A real symmetric matrix of order ๐‘› can always be diagonalised.

Rule 2 : If any diagonalized matrix with their diagonal elements are equal, then the matrix is a scalar matrix.

Given A real symmetric matrix โ€˜Aโ€™ of order 2 has equal Eigen values.

By Rule: 1 A can always be diagonalized, let ฮป1 and ฮป2 be their Eigenvalues then

we get the diagonlized matrix = [ฮป1 00 ฮป2

]

Givenฮป1 = ฮป2

Therefore, we get = [ฮป1 00 ฮป2

]

By Rule: 2 The given matrix is a scalar matrix.

Property: 11 The Eigen vector X of a matrix A is not unique.

Proof :

Let ฮป be the Eigenvalue of A, then the corresponding Eigenvector X such that A X = ฮป X .

Multiply both sides by non-zero K,

K (AX) = K (ฮปX)

โ‡’ A (KX) = ฮป (KX)

(๐‘–. ๐‘’. )an Eigenvector is determined by a multiplicative scalar.

(๐‘–. ๐‘’. ) Eigenvector is not unique.

Property: 12 ๐€๐Ÿ, ๐€๐Ÿ, โ€ฆ ๐€๐’ be distinct Eigenvalues of an ๐’ ร— ๐’ matrix, then the corresponding

Eigenvectors ๐—๐Ÿ, ๐—๐Ÿ , โ€ฆ ๐—๐ง form a linearly independent set.

Proof:

Let ๐œ†1, ๐œ†2, โ€ฆ ๐œ†๐‘š(๐‘š โ‰ค ๐‘›) be the distinct Eigen values of a square matrix A of order ๐‘›.

Let X1, X2 , โ€ฆ Xm be their corresponding Eigenvectors we have to prove โˆ‘ ๐›ผ๐‘–๐‘š๐‘–=1 Xi =

0 implies each ๐›ผ๐‘– = 0, ๐‘– = 1,2, โ€ฆ ,๐‘š

Multiplying โˆ‘ ๐›ผ๐‘–๐‘š๐‘–=1 Xi = 0 by (A โˆ’ ๐œ†1I),we get

(A โˆ’ ๐œ†1I)๐›ผ1X1 = ๐›ผ1(๐ดX1 โˆ’ ๐œ†1X1 ) = ๐›ผ1(0) = 0

When โˆ‘ ๐›ผ๐‘–๐‘š๐‘–=1 Xi = 0 Multiplied by

(A โˆ’ ๐œ†2I)(A โˆ’ ๐œ†2I)โ€ฆ (A โˆ’ ๐œ†๐‘–โˆ’1I)(A โˆ’ ๐œ†๐‘–I) (A โˆ’ ๐œ†๐‘–+1I)โ€ฆ (A โˆ’ ๐œ†๐‘šI)

We get, ๐›ผ๐‘–(๐œ†๐‘– โˆ’ ๐œ†1)(๐œ†๐‘– โˆ’ ๐œ†2)โ€ฆ (๐œ†๐‘– โˆ’ ๐œ†๐‘–โˆ’1)(๐œ†๐‘– โˆ’ ๐œ†๐‘–+1)โ€ฆ (๐œ†๐‘– โˆ’ ๐œ†๐‘š) = 0

Since, ฮปโ€™s are distinct, ๐›ผ๐‘– = 0

Engineering Mathematics -II

23

Since, ๐‘– is arbitrary, each ๐›ผ๐‘– = 0, ๐‘– = 1, 2,โ€ฆ ,๐‘š

โˆ‘ ๐›ผ๐‘–๐‘š๐‘–=1 Xi = 0 implies each ๐›ผ๐‘– = 0, ๐‘– = 1,2, โ€ฆ , ๐‘š

Hence, X1, X2 , โ€ฆ Xm are linearly independent.

Property: 13 If two or more Eigen values are equal it may or may not be possible to get linearly

independent Eigenvectors corresponding to the equal roots.

Property: 14 Two Eigenvectors ๐—๐Ÿand ๐—๐Ÿ are called orthogonal vectors if ๐‘ฟ๐Ÿ ๐‘ป ๐—๐Ÿ = ๐ŸŽ

Property: 15 If A and B are ๐’ ร— ๐’ matrices and B is a non singular matrix, then A and ๐‘ฉโˆ’๐Ÿ ๐€๐ have

same eigenvalues.

Proof:

Characteristic polynomial of ๐ตโˆ’1 AB

= |Bโˆ’1 AB โˆ’ ฮปI| = |Bโˆ’1 AB โˆ’ Bโˆ’1(ฮปI)B|

= |Bโˆ’1 (A โˆ’ ฮปI)B| = |Bโˆ’1||A โˆ’ ฮปI||B|

= |Bโˆ’1| |B| |A โˆ’ ฮปI| = |Bโˆ’1B||A โˆ’ ฮปI|

= Characterisstisc polynomial of A

Hence, A and Bโˆ’1 AB have same Eigenvalues.

Problems based on properties

Example: 1.16 Find the sum and product of the Eigen values of the matrix[โˆ’๐Ÿ ๐Ÿ โˆ’๐Ÿ‘๐Ÿ ๐Ÿ โˆ’๐Ÿ”

โˆ’๐Ÿ โˆ’๐Ÿ ๐ŸŽ]

Solution:

Sum of the Eigen values =Sum of the main diagonal elements

= (โˆ’2) + (1) + (0)

= โˆ’1

Product of the Eigen values = |โˆ’2 2 โˆ’32 1 โˆ’6

โˆ’1 โˆ’2 0|

= โˆ’2(0 โˆ’ 12) โˆ’ 2(0 โˆ’ 6) โˆ’ 3(โˆ’4 + 1)

= 24 + 12 + 9 = 45

Example: 1.17 Find the sum and product of the Eigen values of the matrix A= [๐Ÿ ๐Ÿ ๐Ÿ‘

โˆ’๐Ÿ ๐Ÿ ๐Ÿ๐Ÿ ๐Ÿ ๐Ÿ

]

Solution:

Sum of the Eigen values = Sum of its diagonal elements = 1 + 2 + 1 = 4

Product of Eigen values = |C| = |1 2 3

โˆ’1 2 11 1 1

|

= 1(2 โˆ’ 1) โˆ’ 2(โˆ’1 โˆ’ 1) + 3(โˆ’1 โˆ’ 2)

= 1(1) โˆ’ 2(โˆ’2) + 3(โˆ’3)

= 1 + 4 โˆ’ 9 = โˆ’4

Engineering Mathematics -II

24

Example: 1.18 The product of two Eigen values of the matrix ๐‘จ = [๐Ÿ” โˆ’๐Ÿ ๐Ÿ

โˆ’๐Ÿ ๐Ÿ‘ โˆ’๐Ÿ๐Ÿ โˆ’๐Ÿ ๐Ÿ‘

]is 16. Find the third

Eigenvalue.

Solution:

Let Eigen values of the matrix A be ๐œ†1, ๐œ†2, ๐œ†3.

Given ๐œ†1๐œ†2 = 16

We know that, ๐œ†1๐œ†2๐œ†3 = |A|

[Product of the Eigen values is equal to the determinant of the matrix]

โˆด ๐œ†1๐œ†2๐œ†3 = | 6 โˆ’2 2โˆ’2 3 โˆ’1 2 โˆ’1 3

|

= 6(9 โˆ’ 1) + (โˆ’6 + 2) + 2(2 โˆ’ 6)

= 6(8) + 2(โˆ’4) + 2(โˆ’4)

= 48 โˆ’ 8 โˆ’ 8

โ‡’ ๐œ†1๐œ†2๐œ†3 = 32

โ‡’ 16 ๐œ†3 = 32

โ‡’ ๐œ†3 =32

16= 2

Example: 1.19 Two of the Eigen values of [ ๐Ÿ” โˆ’๐Ÿ ๐Ÿโˆ’๐Ÿ ๐Ÿ‘ โˆ’๐Ÿ ๐Ÿ โˆ’๐Ÿ ๐Ÿ‘

]are 2 and 8. Find the third Eigen value.

Solution:

We know that, Sum of the Eigen values = Sum of its diagonal elements

= 6 + 3 + 3 = 12

Given ๐œ†1 = 2, ๐œ†2 = 8, ๐œ†3 = ?

We get, ๐œ†1 + ๐œ†2 + ๐œ†3 = 12

2 + 8 + ๐œ†3 = 12

๐œ†3 = 12 โˆ’ 10

๐œ†3 = 2

โˆด The third Eigenvalue = 2

Example: 1.20 If 3 and 15 are the two Eigen values of ๐‘จ = [ ๐Ÿ– โˆ’๐Ÿ” ๐Ÿโˆ’๐Ÿ” ๐Ÿ• โˆ’๐Ÿ’ ๐Ÿ โˆ’๐Ÿ’ ๐Ÿ‘

] ๐Ÿ๐ข๐ง๐ |๐€|, without

expanding the determinant.

Solution:

Given ๐œ†1 = 3, ๐œ†2 = 15, ๐œ†3 = ?

We know that, Sum of the Eigen values = Sum of the main diagonal elements

โ‡’ ๐œ†1 + ๐œ†2 + ๐œ†3 = 8 + 7 + 3

3 + 15 + ๐œ†3 = 18

Engineering Mathematics -II

25

โ‡’ ๐œ†3 = 0

We know that, Product of the Eigen values = |A|

โ‡’ (3)(15)(0) = |A|

โ‡’ |A| = (3)(15)(0)

โ‡’ |A| = 0

Example: 1.21 If 2, 2, 3 are the Eigen values of ๐‘จ = [ ๐Ÿ‘ ๐Ÿ๐ŸŽ ๐Ÿ“โˆ’๐Ÿ โˆ’๐Ÿ‘ โˆ’๐Ÿ’ ๐Ÿ‘ ๐Ÿ“ ๐Ÿ•

] find the Eigen values of ๐€๐“.

Solution:

By Property โ€œA square matrix A and its transpose AT have the same Eigen valuesโ€.

Hence, Eigen values of AT are 2, 2, 3

Example: 1.22 If the Eigen values of the matrix ๐‘จ = [๐Ÿ ๐Ÿ๐Ÿ‘ โˆ’๐Ÿ

] are ๐Ÿ, โˆ’๐Ÿ then find the Eigen values of

๐€๐“.

Solution:

Eigen values of ๐ด = Eigen values ๐‘œ๐‘“ AT

โˆด Eigen values ๐‘œ๐‘“ AT are 2, โˆ’2.

Example: 1.23 Find the Eigen values of ๐€ = [๐Ÿ ๐Ÿ ๐ŸŽ๐ŸŽ ๐Ÿ ๐Ÿ๐ŸŽ ๐ŸŽ ๐Ÿ

]without using the characteristic equation idea.

Solution:

Given A = [2 1 00 2 10 0 2

] clearly given matrix A is an upper triangular matrix. Then by property, the

characteristic roots of a triangular matrix are just the diagonal elements of the matrix.

Hence, the Eigen values are 2, 2, 2.

Example: 1.24 Find the Eigen values of ๐€ = [๐Ÿ ๐ŸŽ ๐ŸŽ๐Ÿ ๐Ÿ‘ ๐ŸŽ๐ŸŽ ๐Ÿ’ ๐Ÿ’

]

Solution:

Given A = [2 0 01 3 00 4 4

]

Clearly given matrix A is a lower triangular matrix

Hence, by property the Eigen values of A are 2, 3, 4.

Example: 1.25 Two of the Eigen values of ๐‘จ = [๐Ÿ‘ โˆ’๐Ÿ ๐Ÿ

โˆ’๐Ÿ ๐Ÿ“ โˆ’๐Ÿ๐Ÿ โˆ’๐Ÿ ๐Ÿ‘

] are 3 and 6. Find the Eigen values of

๐€โˆ’๐Ÿ.

Solution:

Sum of the Eigen values = Sum of the main diagonal elements

= 3 + 5 + 3 = 11

Engineering Mathematics -II

26

Let K be the third Eigen value

โˆด 3 + 6 + ๐‘˜ = 11

โ‡’ 9 + ๐‘˜ = 11

โ‡’ ๐‘˜ = 2

โˆด The Eigenvalues of Aโˆ’1 are 1

2 ,

1

3 ,

1

6

Example: 1.26 Two Eigen values of the matrix ๐€ = [๐Ÿ ๐Ÿ ๐Ÿ๐Ÿ ๐Ÿ‘ ๐Ÿ๐Ÿ ๐Ÿ ๐Ÿ

] are equal to 1 each. Find the

Eigenvalues of ๐€โˆ’๐Ÿ.

Solution:

Given A = [2 2 11 3 11 2 2

]

Let the Eigen values of the matrix A be ๐œ†1, ๐œ†2, ๐œ†3

Given condition is ๐œ†2 = ๐œ†3 = 1

We have, Sum of the Eigen values = Sum of the main diagonal elements

โ‡’ ๐œ†1 + ๐œ†2 + ๐œ†3 = 2 + 3 + 2

โ‡’ ๐œ†1 + 1 + 1 = 7

โ‡’ ๐œ†1 + 2 = 7

โ‡’ ๐œ†1 = 5

Hence, the Eigen values of A are 1, 1, 5

Eigen values of Aโˆ’1 are 1

1 ,

1

1 ,

1

5 , i. e. , 1, 1,

1

5

Example: 1.27 Find the Eigen values of the inverse of the matrix ๐€ = [๐Ÿ ๐Ÿ ๐ŸŽ๐ŸŽ ๐Ÿ‘ ๐Ÿ’๐ŸŽ ๐ŸŽ ๐Ÿ’

]

Solution:

We know that, the given matrix is a upper triangular matrix.

Therefore, the Eigen values of A are 2, 3, 4

Example: 1.28 Find the Eigen values of ๐€๐Ÿ‘given ๐€ = [๐Ÿ ๐Ÿ ๐Ÿ‘๐ŸŽ ๐Ÿ โˆ’๐Ÿ•๐ŸŽ ๐ŸŽ ๐Ÿ‘

]

Solution:

Given A = [1 2 30 2 โˆ’70 0 3

]

Clearly given A is an upper triangular matrix

Hence, the Eigen values are 1, 2, 3

(๐‘–. ๐‘’. ) The Eigen values of the given matrix A are 1, 2, 3.

By the property, the Eigen values of the matrix A3 are 13, 23 , 33. i.e., 1, 8, 27.

Engineering Mathematics -II

27

Example: 1.29 If 1 & 2 are the Eigen values of a ๐Ÿ ร— ๐Ÿ matrix A, what are the Eigenvalues of ๐€๐Ÿ‘ and

๐€โˆ’๐Ÿ?

Solution:

We know that, if ๐œ†1, ๐œ†2, . โ€ฆ๐œ†๐‘› are the Eigenvalues of A, then ๐œ†1๐‘š , ๐œ†2

๐‘š โ€ฆ ๐œ†๐‘›๐‘š are the Eigenvalues of Am.

Given 1 and 2 are the Eigen values of A.

โˆด 12 and 22 i.e., 1 and 4 are the Eigen values of ๐ด2 ; 1 ๐‘Ž๐‘›๐‘‘ 1

2 are the Eigenvalues of Aโˆ’1.

Example: 1.30 If ๐›ผ ๐š๐ง๐ ๐›ฝ are the Eigen values of [๐Ÿ‘ โˆ’๐Ÿ

โˆ’๐Ÿ ๐Ÿ“], form the matrix whose Eigenvalues are

๐›ผ๐Ÿ‘ ๐’‚๐’๐’… ๐›ฝ๐Ÿ‘.

Note: If ๐œ†1, ๐œ†2, . โ€ฆ ๐œ†๐‘› are the Eigenvalues of A, then ๐œ†1๐‘˜, ๐œ†2

๐‘˜ , ๐œ†3๐‘˜ โ€ฆ ๐œ†๐‘›

๐‘˜ are the Eigenvalues of Ak for any

positive integer.

Solution:

Let ๐ด = (3 โˆ’1

โˆ’1 5), Let ๐›ผ , ๐›ฝ be the Eigen values of A

โ‡’ A2 = A.A

= (3 โˆ’1

โˆ’1 5) (

3 โˆ’1โˆ’1 5

) = (10 โˆ’8โˆ’8 26

)

โ‡’ A3 = A2A

= (10 โˆ’8โˆ’8 26

) (3 โˆ’1

โˆ’1 5) = (

38 โˆ’50โˆ’50 138

)

Hence, the required matrix is (38 โˆ’50

โˆ’50 138)

Example: 1.31 Form the matrix whose Eigen values are ๐œถ โˆ’ ๐Ÿ“ , ๐œท โˆ’ ๐Ÿ“, ๐œธ โˆ’ ๐Ÿ“ where ๐œถ , ๐œท, ๐œธ are the

Eigenvalues of ๐‘จ = [โˆ’๐Ÿ โˆ’๐Ÿ โˆ’๐Ÿ‘๐Ÿ’ ๐Ÿ“ โˆ’๐Ÿ”๐Ÿ• โˆ’๐Ÿ– ๐Ÿ—

]

Solution:

Note: The matrix A โˆ’ KI has the Eigen values ๐œ†1 โˆ’ ๐‘˜, ๐œ†2 โˆ’ ๐‘˜, . โ€ฆ ๐œ†๐‘› โˆ’ ๐‘˜.

Hence, the required matrix is A โˆ’ 5I = [โˆ’1 โˆ’2 โˆ’34 5 โˆ’67 โˆ’8 9

] โˆ’ 5 [1 0 00 1 00 0 1

]

= [โˆ’6 โˆ’2 โˆ’34 0 โˆ’67 โˆ’8 4

]

Example: 1.32 Two Eigen values of ๐€ = [๐Ÿ ๐Ÿ ๐Ÿ๐Ÿ ๐Ÿ‘ ๐Ÿ๐Ÿ ๐Ÿ ๐Ÿ

] are equal and they are ๐Ÿ

๐Ÿ“ times to the third. Find

them.

Solution:

Let the third Eigen value be ๐œ†3.

We know that, ๐œ†1 + ๐œ†2 + ๐œ†3 = 2 + 3 + 2 = 7

Engineering Mathematics -II

28

Given ๐œ†1 = ๐œ†2 โ€ฆ(2) ๐œ†1 =1

5๐œ†3 โ€ฆ(3) ๐œ†2 =

1

5๐œ†3 โ€ฆ(4)

(1) โ‡’ 2๐œ†1 + ๐œ†3 = 7 by (2)

2

5๐œ†3 + ๐œ†3 = 7 by (3)

โ‡’ 7

5๐œ†3 = 7

(3) โ‡’ ๐œ†1 =1

5(5) = 1

(2) โ‡’ [โˆต ๐œ†1 = ๐œ†2]

Hence, the Eigen values are 1, 1, 5.

Example: 1.33 If 2, 3 are the Eigen values of [๐Ÿ ๐ŸŽ ๐ŸŽ๐ŸŽ ๐Ÿ ๐ŸŽ๐’‚ ๐ŸŽ ๐Ÿ

], find the value of a.

Solution:

Let A = [2 0 00 2 0๐‘Ž 0 2

]

Let ๐œ†1, ๐œ†2, ๐œ†3 by the Eigenvalues of A.

Given ๐œ†1 = 2, ๐œ†2 = 3

We know that, ๐œ†1 + ๐œ†2 + ๐œ†3 = Sum to the main diagonal elements

โ‡’ 2 + 3 + ๐œ†3 = 2 + 2 + 2

โ‡’ 5 + ๐œ†3 = 6

โ‡’ ๐œ†3 = 1

We know that, ๐œ†1 ๐œ†2 ๐œ†3 = |A|

โ‡’ (2)(3)(1) = |2 0 00 2 0๐‘Ž 0 2

|

โ‡’ 6 = 2(4 โˆ’ 0) โˆ’ 0(0 โˆ’ 0) + 1(0 โˆ’ 2๐‘Ž)

โ‡’ 6 = 8 โˆ’ 2๐‘Ž

โ‡’ 2๐‘Ž = 8 โˆ’ 6 = 2

โˆด ๐‘Ž = 1

Example: 1.34 If the Eigen values of A of order ๐Ÿ‘ ร— ๐Ÿ‘ are 2, 3 and 1, then find the Eigen values of

adjoint of A.

Solution:

Given the Eigen values of A are 2, 3, 1

The Eigen values of Aโˆ’1 are 1

2 ,

1

3 , 1,

Formula: adj A = |A| Aโˆ’1

|A| = Product of the Eigenvalues of ๐ด = (2)(3)(1) = 6

โˆด adj A = 6 Aโˆ’1

โ‡’ ๐œ†3 = 5

โ‡’ ๐œ†3 = 5

๐œ†2 = 1

Engineering Mathematics -II

29

โˆด The Eivenvalues of adj A are 6 (1

2) , 6 (

1

3) , 6 (1), i. e. , 3, 2, 6

Example: 1.35 If ๐Ÿ,โˆ’๐Ÿ, โˆ’๐Ÿ‘ are the Eigenvalues of the matrix A, then find the Eigenvalues of the matrix

๐€๐Ÿ โˆ’ ๐Ÿ๐ˆ.

Solution:

Given the Eigen values of A are 2,โˆ’1,โˆ’3

The Eigen values of A2 โˆ’ 2I are 2,โˆ’1, 7

Since 22 โˆ’ 2(1) = 2, (โˆ’1)2 โˆ’ 2(1) = โˆ’1, (โˆ’3)2 โˆ’ 2(1) = 7

Example: 1.36 What are the Eigen values of the matrix ๐€ + ๐Ÿ‘๐ˆ if the Eigenvalues of the matrix ๐‘จ =

[๐Ÿ โˆ’๐Ÿ

โˆ’๐Ÿ“ ๐Ÿ’] are 6 and โˆ’๐Ÿ? why ?

Solution:

The Eigen values of A are 6 and โˆ’1

The Eigen values of A + 3I are 6 + 3and โˆ’1 + 3

i.e., The Eigen values of A + 3I are 9 and 2

Reason:

If ๐œ†1, ๐œ†2, โ€ฆ ๐œ†๐‘› are Eigenvalues of A, then

๐œ†1 + ๐‘˜, ๐œ†2 + ๐‘˜, ๐œ†๐‘› + ๐‘˜ are the Eigenvalues of A + kI, then

Example: 1.37 Find the Eigen values of ๐Ÿ‘๐€ + ๐Ÿ๐ˆ, where ๐‘จ = [๐Ÿ“ ๐Ÿ’๐ŸŽ ๐Ÿ

]

Solution:

The Eigen values of A are 5 and 2.

The Eigen values of 3A + 2I are 3(5) + 2 and 3(2) + 2

(๐‘–. ๐‘’. ) The Eigen values of 3A +2๐ผ are 17 and 8

Exercise: 1.4

1. If A = [1 2 โˆ’21 0 3

โˆ’2 โˆ’1 3] , then find the sum and product of all Eigenvalues of A.

Ans: Sum = 4; Product = โˆ’13

2. Find the product of the Eigen values of

(a) A = [3 โˆ’4 41 โˆ’2 41 โˆ’1 3

] Ans: Product = โˆ’6

(b) A = [ 1 2 โˆ’2 1 0 3โˆ’2 โˆ’1 โˆ’3

] Ans: Product = โˆ’1

3. If the Eigen values of the matrix ๐ด = [1 1 31 5 13 1 1

] are โˆ’2, 3, 6, then find the Eigenvalues of AT.

Ans: 2, 3, 6,

Engineering Mathematics -II

30

4. Find the Eigen values of A = [1 3 40 2 50 0 3

] Ans: 1, 2, 3

5. Find the Eigen values of the inverse of the matrix A = [1 3 40 2 50 0 3

] Ans: 1,1

2,1

3,

6. Find the Eigen values of A2 if A = [2 1 00 3 40 0 4

] Ans: 4, 9, 16

7. Obtain the Eigen values of A3where A = [3 21 2

] Ans: 1, 64

1.5 DIAGONALISATION OF A MATRIX BY ORTHOGONAL TRANSFORMATION

Orthogonal matrix

Definition

A matrix โ€˜Aโ€™ is said to be orthogonal if ๐ด๐ด๐‘‡ = ๐ด๐‘‡๐ด = ๐ผ

Example: 1.38 Show that the following matrix is orthogonal (๐œ๐จ๐ฌ๐›‰ ๐ฌ๐ข๐ง๐›‰โˆ’๐ฌ๐ข๐ง๐›‰ ๐œ๐จ๐ฌ๐›‰

)

Solution:

Let A = (cosฮธ sinฮธโˆ’sinฮธ cosฮธ

)

โ‡’ AT = (cosฮธ โˆ’sinฮธ sinฮธ cosฮธ

)

AAT = (cosฮธ sinฮธโˆ’sinฮธ cosฮธ

) (cosฮธ โˆ’sinฮธ sinฮธ cosฮธ

)

= ( cos2ฮธ + sin2ฮธ โˆ’cosฮธsinฮธ + cosฮธsinฮธโˆ’sinฮธcosฮธ + sinฮธcosฮธ sin2ฮธ + cos2ฮธ

)

= (1 00 1

) = I

โˆด A is orthogonal.

Modal Matrix

Modal matrix is a matrix in which each column specifies the eigenvectors of a matrix .It is

denoted by N.

A square matrix A with linearity independent Eigen vectors can be diagonalized by a similarly

transformation, ๐ท = ๐‘โˆ’1๐ด๐‘, where N is the modal matrix .The diagonal matrix D has as its diagonal

elements, the Eigen values of A.

Normalized vector

Eigen vector ๐‘‹๐‘Ÿ is said to be normalized if each element of ๐‘‹๐‘Ÿ is being divided by the square root

of the sum of the squares of all the elements of ๐‘‹๐‘Ÿ .i.e.,the normalized vector is ๐‘‹

|๐‘‹|

Engineering Mathematics -II

31

๐‘‹๐‘Ÿ = [

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

] ; Normalized vector of ๐‘‹๐‘Ÿ = [

๐‘ฅ1/โˆš๐‘ฅ12 + ๐‘ฅ2

2 + ๐‘ฅ32

๐‘ฅ2/โˆš๐‘ฅ12 + ๐‘ฅ2

2 + ๐‘ฅ32

๐‘ฅ3/โˆš๐‘ฅ12 + ๐‘ฅ2

2 + ๐‘ฅ32

]

Working rule for diagonalization of a square matrix A using orthogonal reduction:

i) Find all the Eigen values of the symmetric matrix A.

ii) Find the Eigen vectors corresponding to each Eigen value.

iii) Find the normalized modal matrix N having normalized Eigen vectors as its column vectors.

iv) Find the diagonal matrix ๐ท = ๐‘๐‘‡๐ด๐‘.The diagonal matrix D has Eigen values of A as its

diagonal elements.

Example: 1.39 Diagonalize the matrix (๐Ÿ ๐Ÿ โˆ’๐Ÿ๐Ÿ ๐Ÿ โˆ’๐Ÿ

โˆ’๐Ÿ โˆ’๐Ÿ ๐Ÿ)

Solution:

The characteristic equation is 3 โˆ’ s1

2 + s2 โˆ’ s3=0

s1 = sum of the main diagonal element

= 2 + 1 + 1 = 4

s2 = sum of the minors of the main diagonalelement

= |1 โˆ’2

โˆ’2 1| + |

2 โˆ’1โˆ’1 1

| + |2 11 1

| = โˆ’3 + 1 + 1 = โˆ’1

s3 = |A| = |2 1 โˆ’11 1 โˆ’2

โˆ’1 โˆ’2 1| = โˆ’4

Characteristic equation is 3 โˆ’ 42 โˆ’ + 4 = 0

โ‡’ = 1, (2 โˆ’ 3โˆ’ 4) = 0

โ‡’ = 1, ( + 1)(โˆ’ 4) = 0

โ‡’ = โˆ’1, 1, 4

To find the Eigen vectors:

Case (i) When = 1 the eigen vector is given by(A โˆ’ I)X = 0 where X = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

)

โ‡’ (2 โˆ’ 1 1 โˆ’1

1 1 โˆ’ 1 โˆ’2โˆ’1 โˆ’2 1 โˆ’ 1

)(

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) = (000)

x1 + x2 โˆ’ x3 = 0โ€ฆ (1)

x1 + 0x2 โˆ’ 2x3 = 0โ€ฆ (2)

โˆ’x1 โˆ’ 2x2 + 0x3 = 0โ€ฆ(3)

From (1) and (2)

x1

โˆ’2โˆ’0=

x2

โˆ’1+2=

x3

0โˆ’1

x1

โˆ’2=

x2

1=

x3

โˆ’1

Engineering Mathematics -II

32

X1 = (โˆ’21

โˆ’1)

Case( ii) When = โˆ’1 the eigen vector is given by(A โˆ’ I)X = 0 where X = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

)

โ‡’ (2 + 1 1 โˆ’1

1 1 + 1 โˆ’2โˆ’1 โˆ’2 1 + 1

)(

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) = (000)

3x1 + x2 โˆ’ x3 = 0โ€ฆ (4)

x1 + 2x2 โˆ’ 2x3 = 0โ€ฆ (5)

โˆ’x1 โˆ’ 2x2 + 2x3 = 0โ€ฆ(6)

From (4) and (5)

x1

โˆ’2+2=

x2

โˆ’1+6=

x3

6โˆ’1

x1

0=

x2

5=

x3

5

x1

0=

x2

1=

x3

1

X2 = (011)

Case (iii) When = 4 the eigen vector is given by(A โˆ’ I)X = 0 where X = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

)

โ‡’ (2 โˆ’ 4 1 โˆ’1

1 1 โˆ’ 4 โˆ’2โˆ’1 โˆ’2 1 โˆ’ 4

)(

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) = (000)

โˆ’2x1 + x2 โˆ’ x3 = 0โ€ฆ (7)

x1 โˆ’ 3x2 โˆ’ 2x3 = 0โ€ฆ (8)

โˆ’x1 โˆ’ 2x2 โˆ’ 3x3 = 0โ€ฆ (9)

From (7) and (8)

x1

โˆ’2โˆ’3=

x2

โˆ’1โˆ’4=

x3

6โˆ’1

x1

โˆ’5=

x2

โˆ’5=

x3

5

x1

โˆ’1=

x2

โˆ’1=

x3

1

X3 = (โˆ’1โˆ’11

)

Hence the corresponding Eigen vectors are X1 = (โˆ’21

โˆ’1) ; X2 = (

011) ; X3 = (

โˆ’1โˆ’11

)

To check X1, X2& X3 are orthogonal

X1TX2 = (โˆ’2 1 โˆ’1)(

011) = 0 + 1 โˆ’ 1 = 0

Engineering Mathematics -II

33

X2TX3 = (0 1 1) (

โˆ’1โˆ’11

) = 0 โˆ’ 1 + 1 = 0

X3TX1 = (โˆ’1 โˆ’1 1)(

โˆ’21

โˆ’1) = 2 โˆ’ 1 โˆ’ 1 = 0

Normalized Eigen vectors are

(

โˆ’2

โˆš61

โˆš6โˆ’1

โˆš6)

(

01

โˆš21

โˆš2

)

(

โˆ’1

โˆš3โˆ’1

โˆš31

โˆš3)

Normalized modal matrix

N =

(

โˆ’2

โˆš60

โˆ’1

โˆš31

โˆš6

1

โˆš2

โˆ’1

โˆš3โˆ’1

โˆš6

1

โˆš2

1

โˆš3)

NT =

(

โˆ’2

โˆš6

1

โˆš6

โˆ’1

โˆš6

01

โˆš2

1

โˆš2โˆ’1

โˆš3

โˆ’1

โˆš3

1

โˆš3)

Thus the diagonal matrix D = NTAN

=

(

โˆ’2

โˆš6

1

โˆš6

โˆ’1

โˆš6

01

โˆš2

1

โˆš2โˆ’1

โˆš3

โˆ’1

โˆš3

1

โˆš3)

(2 1 โˆ’11 1 โˆ’2

โˆ’1 โˆ’2 1)

(

โˆ’2

โˆš60

โˆ’1

โˆš31

โˆš6

1

โˆš2

โˆ’1

โˆš3โˆ’1

โˆš6

1

โˆš2

1

โˆš3)

= (1 0 00 โˆ’1 00 0 4

)

Example: 1.40 Diagonalize the matrix (๐Ÿ๐ŸŽ โˆ’๐Ÿ โˆ’๐Ÿ“โˆ’๐Ÿ ๐Ÿ ๐Ÿ‘โˆ’๐Ÿ“ โˆ’๐Ÿ‘ ๐Ÿ“

)

Solution:

The characteristic equation is 3 โˆ’ s1

2 + s2โˆ’ s3=0

s1 = sum of the main diagonal element

= 10 + 2 + 5 = 17

s2 = sum of the minors of the main diagonalelement

= |2 3

โˆ’3 5| + |

10 โˆ’5โˆ’5 5

| + |10 โˆ’2โˆ’2 2

| = 1 + 25 + 16 = 42

s3 = |A| = |10 โˆ’2 โˆ’5โˆ’2 2 3โˆ’5 โˆ’3 5

| = 0

Characteristic equation is 3 โˆ’ 172 + 42 = 0

Engineering Mathematics -II

34

โ‡’ (2 โˆ’ 17+ 42) = 0

โ‡’ = 0, 3, 14

To find the Eigen vectors:

Case (i) When = 0 the eigen vector is given by(A โˆ’ I)X = 0 where X = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

)

โ‡’ (10 โˆ’ 0 โˆ’2 โˆ’5

โˆ’2 2 โˆ’ 0 3โˆ’5 โˆ’3 5 โˆ’ 0

)(

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) = (000)

10x1 โˆ’ 2x2 โˆ’ 5x3 = 0โ€ฆ (1)

โˆ’2x1 + 2x2 + 3x3 = 0โ€ฆ (2)

โˆ’5x1 + 3x2 + 5x3 = 0โ€ฆ (3)

From (1) and (2)

x1

โˆ’6+10=

x2

10โˆ’30=

x3

20โˆ’4

x1

4=

x2

โˆ’20=

x3

16

x1

1=

x2

โˆ’5=

x3

4

X1 = (1

โˆ’54

)

Case (ii) When = 3 the eigen vector is given by(A โˆ’ I)X = 0 where X = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

)

โ‡’ (10 โˆ’ 3 โˆ’2 โˆ’5

โˆ’2 2 โˆ’ 3 3โˆ’5 โˆ’3 5 โˆ’ 3

)(

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) = (000)

7x1 โˆ’ 2x2 โˆ’ 5x3 = 0โ€ฆ (4)

โˆ’2x1 โˆ’ x2 + 3x3 = 0โ€ฆ (5)

โˆ’5x1 + 3x2 + 2x3 = 0โ€ฆ (6)

From (4) and (5)

x1

โˆ’6โˆ’5=

x2

10โˆ’21=

x3

โˆ’7โˆ’4

x1

โˆ’11=

x2

โˆ’11=

x3

โˆ’11

x1

1=

x2

1=

x3

1

X2 = (111)

Case (iii) When = 14 the eigen vector is given by(A โˆ’ I)X = 0 where X = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

)

โ‡’ (10 โˆ’ 14 โˆ’2 โˆ’5

โˆ’2 2 โˆ’ 14 3โˆ’5 โˆ’3 5 โˆ’ 14

)(

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) = (000)

Engineering Mathematics -II

35

โˆ’4x1 โˆ’ 2x2 โˆ’ 5x3 = 0โ€ฆ (7)

โˆ’2x1 โˆ’ 12x2 + 3x3 = 0โ€ฆ (8)

โˆ’5x1 + 3x2 โˆ’ 9x3 = 0โ€ฆ (9)

From (7) and (8)

x1

โˆ’6โˆ’60=

x2

10+12=

x3

48โˆ’4

x1

โˆ’66=

x2

22=

x3

44

x1

โˆ’6=

x2

2=

x3

4

X3 = (โˆ’312

)

Hence the corresponding Eigen vectors are X1 = (1

โˆ’54

) ; X2 = (111) ; X3 = (

โˆ’312

)

To check X1, X2& X3 are orthogonal

X1TX2 = (1 โˆ’5 4)(

111) = 1 โˆ’ 5 + 4 = 0

X2TX3 = (1 1 1) (

โˆ’312

) = โˆ’3 + 1 + 2 = 0

X3TX1 = (โˆ’3 1 2)(

1โˆ’54

) = โˆ’3 โˆ’ 5 + 8 = 0

Normalized Eigen vectors are

(

1

โˆš42โˆ’5

โˆš424

โˆš42)

(

1

โˆš31

โˆš31

โˆš3)

(

โˆ’3

โˆš141

โˆš142

โˆš14)

Normalized modal matrix

N =

(

1

โˆš42

1

โˆš3

โˆ’3

โˆš14

โˆ’5

โˆš42

1

โˆš3

1

โˆš144

โˆš42

1

โˆš3

2

โˆš14)

NT =

(

1

โˆš42

โˆ’5

โˆš42

4

โˆš421

โˆš3

1

โˆš3

1

โˆš3โˆ’3

โˆš14

1

โˆš14

2

โˆš14)

Thus the diagonal matrix D = NTAN

Engineering Mathematics -II

36

=

(

1

โˆš42

โˆ’5

โˆš42

4

โˆš421

โˆš3

1

โˆš3

1

โˆš3โˆ’3

โˆš14

1

โˆš14

2

โˆš14)

(10 โˆ’2 โˆ’5โˆ’2 2 3โˆ’5 โˆ’3 5

)

(

1

โˆš42

1

โˆš3

โˆ’3

โˆš14

โˆ’5

โˆš42

1

โˆš3

1

โˆš144

โˆš42

1

โˆš3

2

โˆš14)

= (0 0 00 3 00 0 14

)

Example: 1.41 Diagonalize the matrix (๐Ÿ” โˆ’๐Ÿ ๐Ÿ

โˆ’๐Ÿ ๐Ÿ‘ โˆ’๐Ÿ๐Ÿ โˆ’๐Ÿ ๐Ÿ‘

)

Solution:

The characteristic equation is 3 โˆ’ s1

2 + s2โˆ’ s3=0

s1 = sum of the main diagonal element

= 6 + 3 + 3 = 12

s2 = sum of the minors of the main diagonalelement

= |3 โˆ’1

โˆ’1 3| + |

6 22 3

| + |6 โˆ’2

โˆ’2 3| = 8 + 14 + 14 = 36

s3 = |A| = |6 โˆ’2 2

โˆ’2 3 โˆ’12 โˆ’1 3

| = 32

Characteristic equation is 3 โˆ’ 122 + 36โˆ’ 32 = 0

โ‡’ = 2, (2 โˆ’ 10+ 16) = 0

โ‡’ = 2,2,8

To find the Eigen vectors:

Case (i) When = 8 the eigen vector is given by(A โˆ’ I)X = 0 where X = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

)

โ‡’ (6 โˆ’ 8 โˆ’2 2โˆ’2 3 โˆ’ 8 โˆ’12 โˆ’1 3 โˆ’ 8

)(

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) = (000)

โˆ’2x1 โˆ’ 2x2 + 2x3 = 0โ€ฆ (1)

โˆ’2x1 โˆ’ 5x2 โˆ’ x3 = 0โ€ฆ(2)

2x1 โˆ’ x2 โˆ’ 5x3 = 0โ€ฆ (3)

From (1) and (2)

x1

2+10=

x2

โˆ’4โˆ’2=

x3

10โˆ’4

x1

12=

x2

โˆ’6=

x3

6

x1

2=

x2

โˆ’1=

x3

1

X1 = (2

โˆ’11

)

Engineering Mathematics -II

37

Case (ii) When = 2 the eigen vector is given by(A โˆ’ I)X = 0 where X = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

)

โ‡’ (6 โˆ’ 2 โˆ’2 2โˆ’2 3 โˆ’ 2 โˆ’12 โˆ’1 3 โˆ’ 2

)(

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) = (000)

4x1 โˆ’ 2x2 + 2x3 = 0โ€ฆ (4)

โˆ’2x1 + x2 โˆ’ x3 = 0โ€ฆ (5)

2x1 โˆ’ x2 + x3 = 0โ€ฆ (6)

Put x1 = 0 โ‡’ โˆ’2x2 = โˆ’2x3

x2

1=

x3

1

X2 = (011)

Case (iii) Let X3 = (abc) be a new vector orthogonal to both X1and X2

(๐‘–. ๐‘’) X1TX3 = 0 & X2

TX3 = 0

(2 โˆ’1 1) (abc) = 0 & (0 1 1) (

abc) = 0

2a โˆ’ b + c = 0โ€ฆ (7)

a + b + c = 0โ€ฆ (8)

From (7) and (8)

a

โˆ’1โˆ’1=

b

0โˆ’2=

c

2

a

โˆ’2=

b

โˆ’2=

c

2

a

โˆ’1=

b

โˆ’1=

c

1

X3 = (โˆ’1โˆ’11

)

Hence the corresponding Eigen vectors are X1 = (โˆ’211) ; X2 = (

011) ; X3 = (

โˆ’1โˆ’11

)

Normalized Eigen vectors are

(

2

โˆš6โˆ’1

โˆš61

โˆš6)

(

01

โˆš21

โˆš2

)

(

โˆ’1

โˆš3โˆ’1

โˆš31

โˆš3)

Normalized modal matrix

Engineering Mathematics -II

38

N =

(

2

โˆš60

โˆ’1

โˆš3โˆ’1

โˆš6

1

โˆš2

โˆ’1

โˆš31

โˆš6

1

โˆš2

1

โˆš3)

NT =

(

2

โˆš6

โˆ’1

โˆš6

1

โˆš6

01

โˆš2

1

โˆš2โˆ’1

โˆš3

โˆ’1

โˆš3

1

โˆš3)

Thus the diagonal matrix D = NTAN

=

(

2

โˆš6

โˆ’1

โˆš6

1

โˆš6

01

โˆš2

1

โˆš2โˆ’1

โˆš3

โˆ’1

โˆš3

1

โˆš3)

(6 โˆ’2 2

โˆ’2 3 โˆ’12 โˆ’1 3

)

(

2

โˆš60

โˆ’1

โˆš3โˆ’1

โˆš6

1

โˆš2

โˆ’1

โˆš31

โˆš6

1

โˆš2

1

โˆš3)

= (8 0 00 2 00 0 2

)

Example: 1.42 Diagonalize the matrix (๐Ÿ‘ ๐Ÿ ๐Ÿ๐Ÿ ๐Ÿ‘ โˆ’๐Ÿ๐Ÿ โˆ’๐Ÿ ๐Ÿ‘

)

Solution:

The characteristic equation is 3 โˆ’ s1

2 + s2โˆ’ s3=0

s1 = sum of the main diagonal element

= 3 + 3 + 3 = 9

s2 = sum of the minors of the main diagonalelement

= |3 โˆ’1

โˆ’1 3| + |

3 11 3

| + |3 11 3

| = 8 + 8 + 8 = 24

s3 = |A| = |3 1 11 3 โˆ’11 โˆ’1 3

| = 16

Characteristic equation is 3 โˆ’ 92 + 24โˆ’ 16 = 0

โ‡’ = 1, (2 โˆ’ 8+ 16) = 0

โ‡’ = 1, 4, 4

To find the Eigen vectors:

Case (i) When = 1 the eigen vector is given by(A โˆ’ I)X = 0 where X = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

)

โ‡’ (3 โˆ’ 1 1 1

1 3 โˆ’ 1 โˆ’11 โˆ’1 3 โˆ’ 1

)(

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) = (000)

2x1 + x2 + x3 = 0โ€ฆ (1)

x1 + 2x2 โˆ’ x3 = 0 โ€ฆ(2)

Engineering Mathematics -II

39

x1 โˆ’ x2 + 2x3 = 0 โ€ฆ(3)

From (1) and (2)

x1

โˆ’1โˆ’2=

x2

1+2=

x3

4โˆ’1

x1

โˆ’3=

x2

3=

x3

3

x1

โˆ’1=

x2

1=

x3

1

X1 = (โˆ’111

)

Case (ii) When = 4 the eigen vector is given by(A โˆ’ I)X = 0 where X = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

)

โ‡’ (3 โˆ’ 4 1 1

1 3 โˆ’ 4 โˆ’11 โˆ’1 3 โˆ’ 4

)(

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) = (000)

โˆ’x1 + x2 + x3 = 0โ€ฆ (4)

x1 โˆ’ x2 โˆ’ x3 = 0โ€ฆ (5)

x1 โˆ’ x2 โˆ’ x3 = 0โ€ฆ (6)

put x1 = 0 โ‡’ x2 = โˆ’x3

x2

1=

x3

โˆ’1

X2 = (0

โˆ’11

)

Case (iii) Let X3 = (abc) be a new vector orthogonal to both X1and X2

(๐‘–. ๐‘’) X1TX3 = 0 & X2

TX3 = 0

(โˆ’1 1 1)(abc) = 0 & (0 โˆ’1 1) (

abc) = 0

โˆ’a + b + c = 0โ€ฆ (7)

0a โˆ’ b + c = 0โ€ฆ (8)

From (7) and (8)

a

1+1=

b

0+1=

c

1+0

a

2=

b

1=

c

1

X3 = (211)

Hence the corresponding Eigen vectors are X1 = (โˆ’111

) ; X2 = (0

โˆ’1โˆ’1

) ; X3 = (211)

Normalized Eigen vectors are

Engineering Mathematics -II

40

(

โˆ’1

โˆš31

โˆš31

โˆš3)

(

0โˆ’1

โˆš2โˆ’1

โˆš2

)

(

2

โˆš61

โˆš61

โˆš6)

Normalized modal matrix

N =

(

โˆ’1

โˆš30

2

โˆš61

โˆš3

โˆ’1

โˆš2

1

โˆš61

โˆš3

โˆ’1

โˆš2

1

โˆš6)

NT =

(

โˆ’1

โˆš3

1

โˆš3

1

โˆš3

0โˆ’1

โˆš2

โˆ’1

โˆš22

โˆš6

1

โˆš6

1

โˆš6)

Thus the diagonal matrix D = NTAN

=

(

โˆ’1

โˆš3

1

โˆš3

1

โˆš3

0โˆ’1

โˆš2

โˆ’1

โˆš22

โˆš6

1

โˆš6

1

โˆš6)

(3 1 11 3 โˆ’11 โˆ’1 3

)

(

โˆ’1

โˆš30

2

โˆš61

โˆš3

โˆ’1

โˆš2

1

โˆš61

โˆš3

โˆ’1

โˆš2

1

โˆš6)

= (1 0 00 4 00 0 4

)

Example: 1.43 Reduce the matrix A=(๐Ÿ‘ โˆ’๐Ÿ

โˆ’๐Ÿ ๐Ÿ‘) to the diagonal form, find ๐€๐Ÿ‘.

Solution:

The characteristic equation is 2 โˆ’ s1+ s2 = 0

s1 = sum of the main diagonal element

= 3+3=6

s2 = |A| = |3 โˆ’1

โˆ’1 3| = 9 โˆ’ 1 = 8

Characteristic equation is 2 โˆ’ 6+ 8 = 0

= 2,4

To find the Eigen vectors:

Case (i) When = 2 the eigen vector is given by(A โˆ’ I)X = 0 where X = (x1

x2)

โ‡’ (3 โˆ’ 2 โˆ’1โˆ’1 3 โˆ’ 2

)(x1

x2)=0

x1 โˆ’ x2 = 0

โˆ’x1 + x2 = 0

x1

1=

x2

1

Engineering Mathematics -II

41

X1 = (11)

Case (ii)When = 4 the eigen vector is given by(A โˆ’ I)X = 0 where X = (x1

x2)

โ‡’ (3 โˆ’ 4 โˆ’1โˆ’1 3 โˆ’ 4

)(x1

x2)=0

โˆ’x1 โˆ’ x2 = 0

โˆ’x1 โˆ’ x2 = 0

โ‡’ โˆ’x1 = x2

x1

1=

x2

โˆ’1

X2 = (1

โˆ’1)

Hence the corresponding Eigen vectors are X1 = (11) ; X2 = (

1โˆ’1

)

To check X1& X2 are orthogonal

X1TX2 = (1 1) (

1โˆ’1

) = 0

X2TX1 = (1 โˆ’1)(

11) = 0

Normalized Eigen vectors are

(

1

โˆš2โˆ’1

โˆš2

) (

1

โˆš21

โˆš2

)

Normalized modal matrix

N = (

1

โˆš2

1

โˆš21

โˆš2

โˆ’1

โˆš2

)

NT = (

1

โˆš2

1

โˆš21

โˆš2

โˆ’1

โˆš2

)

Thus the diagonal matrix D = NTAN

= (

1

โˆš2

1

โˆš21

โˆš2

โˆ’1

โˆš2

) (3 โˆ’1

โˆ’1 3)(

1

โˆš2

1

โˆš21

โˆš2

โˆ’1

โˆš2

)

= (2 00 4

)

To find A3: A3 = ND3NT

= (

1

โˆš2

1

โˆš21

โˆš2

โˆ’1

โˆš2

) (8 00 64

)(

1

โˆš2

1

โˆš21

โˆš2

โˆ’1

โˆš2

)

= (36 โˆ’28

โˆ’28 36)

Engineering Mathematics -II

42

Example: 1.44 Find the 3ร—3 square symmetric matrix A having Eigen values 2,3,6 and corresponding

Eigen vectors(๐Ÿ ๐ŸŽ โˆ’๐Ÿ)๐“, (๐Ÿ ๐Ÿ ๐Ÿ)๐“, ๐š๐ง๐(๐Ÿ โˆ’๐Ÿ ๐Ÿ)๐“.

Solution:

Given ฮป = 2,3,6; X1 = (10

โˆ’1) ; X2 = (

111) ; X3 = (

1โˆ’21

)

Normalized modal matrix

N =

(

1

โˆš2

1

โˆš3

1

โˆš6

01

โˆš3

โˆ’2

โˆš6โˆ’1

โˆš2

1

โˆš3

1

โˆš6)

; NT =

(

1

โˆš20

โˆ’1

โˆš21

โˆš3

1

โˆš3

1

โˆš31

โˆš6

โˆ’2

โˆš6

1

โˆš6)

D = (2 0 00 3 00 0 6

)

D = NTAN โ‡’ ๐ด = ๐‘๐ทNT

DNT = (2 0 00 3 00 0 6

)

(

1

โˆš20

โˆ’1

โˆš21

โˆš3

1

โˆš3

1

โˆš31

โˆš6

โˆ’2

โˆš6

1

โˆš6)

=

(

2

โˆš20

โˆ’2

โˆš23

โˆš3

3

โˆš3

3

โˆš36

โˆš6

โˆ’12

โˆš6

6

โˆš6)

A = NDNT =

(

1

โˆš2

1

โˆš3

1

โˆš6

01

โˆš3

โˆ’2

โˆš6โˆ’1

โˆš2

1

โˆš3

1

โˆš6)

(

2

โˆš20

โˆ’2

โˆš23

โˆš3

3

โˆš3

3

โˆš36

โˆš6

โˆ’12

โˆš6

6

โˆš6)

= (1 + 1 + 1 0 + 1 โˆ’ 2 โˆ’1 + 1 + 10 + 1 โˆ’ 2 0 + 1 + 4 0 + 1 โˆ’ 2

โˆ’1 + 1 + 1 1 + 0 โˆ’ 2 1 + 1 + 1)

= (3 โˆ’1 1

โˆ’1 5 โˆ’11 โˆ’1 3

)

Example: 1.45 Reduce the matrix A = (๐Ÿ ๐Ÿ ๐Ÿ‘๐Ÿ ๐Ÿ“ ๐Ÿ๐Ÿ‘ ๐Ÿ ๐Ÿ

) to the diagonal form, find ๐€๐Ÿ‘.

Solution:

The characteristic equation is 3 โˆ’ s1

2 + s2 โˆ’ s3=0

s1 = sum of the main diagonal element

= 1 + 5 + 1 = 7

s2 = sum of the minors of the main diagonalelement

= |5 11 1

| + |1 33 1

| + |1 11 5

| = 4 โˆ’ 8 + 4 = 0

Engineering Mathematics -II

43

s3 = |A| = |1 1 31 5 13 1 1

| = โˆ’36

Characteristic equation is 3 โˆ’ 72 + 36 = 0

โ‡’ = 3 ; (2 โˆ’ 4โˆ’ 12) = 0

โ‡’ = โˆ’2,6,3

To find the Eigen vectors:

Case (i) When = โˆ’2 the eigen vector is given by(A โˆ’ I)X = 0 where X = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

)

โ‡’ (1 + 2 1 3

1 5 + 2 13 1 1 + 2

)(

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) = (000)

3x1 + x2 + 3x3 = 0โ€ฆ (1)

x1 + 7x2 + x3 = 0โ€ฆ (2)

3x1 + x2 + 3x3 = 0โ€ฆ (3)

From (1) and (2)

x1

1โˆ’21=

x2

3โˆ’3=

x3

21โˆ’1

x1

โˆ’20=

x2

0=

x3

20

x1

โˆ’1=

x2

0=

x3

1

X1 = (โˆ’101

)

Case (ii) When = 3 the eigen vector is given by(A โˆ’ I)X = 0 where X = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

)

โ‡’ (1 โˆ’ 3 1 3

1 5 โˆ’ 3 13 1 1 โˆ’ 3

)(

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) = (000)

โˆ’2x1 + x2 + 3x3 = 0โ€ฆ (4)

x1 + 2x2 + x3 = 0โ€ฆ (5)

3x1 + x2 โˆ’ 2x3 = 0โ€ฆ (6)

From (4) and (5)

x1

1โˆ’6=

x2

3+2=

x3

โˆ’4โˆ’1

x1

โˆ’5=

x2

5=

x3

โˆ’5

x1

1=

x2

โˆ’1=

x3

1

X2 = (โˆ’111)

Engineering Mathematics -II

44

Case (iii) When = 6 the eigen vector is given by(A โˆ’ I)X = 0 where X = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

)

โ‡’ (1 โˆ’ 6 1 3

1 5 โˆ’ 6 13 1 1 โˆ’ 6

)(

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) = (000)

โˆ’5x1 + x2 + 3x3 = 0โ€ฆ (7)

x1 โˆ’ x2 + x3 = 0โ€ฆ (8)

3x1 + x2 โˆ’ 5x3 = 0โ€ฆ (9)

From (7) and (8)

x1

1+3=

x2

3+5=

x3

5โˆ’1

x1

4=

x2

8=

x3

4

x1

1=

x2

2=

x3

1

X3 = (121)

Hence the corresponding Eigen vectors are X1 = (โˆ’101

) ; X2 = (โˆ’111) ; X3 = (

121)

To check X1, X2& X3 are orthogonal

X1TX2 = (โˆ’1 0 1)(โˆ’

111) = โˆ’1 + 0 + 1 = 0

X2TX3 = (1 โˆ’1 1)(

121) = 1 โˆ’ 2 + 1 = 0

X3TX1 = (1 2 1)(

โˆ’101

) = โˆ’1 + 0 + 1 = 0

Normalized Eigen vectors are

(

โˆ’1

โˆš2

01

โˆš2

)

(

1

โˆš3โˆ’1

โˆš31

โˆš3)

(

1

โˆš62

โˆš61

โˆš6)

Normalized modal matrix

N =

(

โˆ’1

โˆš2

1

โˆš3

1

โˆš6

0โˆ’1

โˆš3

2

โˆš61

โˆš2

1

โˆš3

1

โˆš6)

NT =

(

โˆ’1

โˆš20

1

โˆš21

โˆš3

โˆ’1

โˆš3

1

โˆš31

โˆš6

2

โˆš6

1

โˆš6)

Engineering Mathematics -II

45

Thus the diagonal matrix D = NTAN

=

(

โˆ’1

โˆš20

1

โˆš21

โˆš3

โˆ’1

โˆš3

1

โˆš31

โˆš6

2

โˆš6

1

โˆš6)

(1 1 31 5 13 1 1

)

(

โˆ’1

โˆš2

1

โˆš3

1

โˆš6

0โˆ’1

โˆš3

2

โˆš61

โˆš2

1

โˆš3

1

โˆš6)

โ‡’ D = (โˆ’2 0 00 3 00 0 6

)

โ‡’ D3 = (โˆ’8 0 00 27 00 0 216

)

A3 = ND3NT

=

(

โˆ’1

โˆš2

1

โˆš3

1

โˆš6

0โˆ’1

โˆš3

2

โˆš61

โˆš2

1

โˆš3

1

โˆš6)

(โˆ’8 0 00 27 00 0 216

)

(

โˆ’1

โˆš20

1

โˆš21

โˆš3

โˆ’1

โˆš3

1

โˆš31

โˆš6

2

โˆš6

1

โˆš6)

= (41 63 4963 153 6349 63 41

)

Exercise: 1.5

1. Diagonalise the following using orthogonal transformation

a. A = (5 1 โˆ’11 3 โˆ’1

โˆ’1 โˆ’1 3

) Ans:๐ท(2,3,6)

b. A = (2 2 02 5 00 0 3

) Ans:๐ท(1,3,6)

c. A = (6 โˆ’2 2

โˆ’2 3 โˆ’12 โˆ’1 3

) Ans:๐ท(8,2,2)

d. A = (1 โˆ’1 โˆ’12

โˆ’1 1 โˆ’1โˆ’1 โˆ’1 1

) Ans:๐ท(2,2,โˆ’1)

2. a Reduce A = (3 โˆ’1 1

โˆ’1 5 โˆ’11 โˆ’1 3

) to diagonal form by an orthogonal transformation and also findA4 .

Ans: A4 = (251 โˆ’405 235

โˆ’405 891 โˆ’405235 โˆ’405 251

)

b. Reduce the matrix A=(2 0 40 6 04 0 2

) to the diagonal form, find A3.

Ans: A3 = (104 0 1120 216 0

112 0 104)

Engineering Mathematics -II

46

c. Reduce the matrix A=(1 1 10 2 1

โˆ’4 4 3) to the diagonal form, find A4.

Ans: A4 = (โˆ’99 115 65โˆ’100 116 65โˆ’160 160 81

)

3. Find the 3x3 square symmetric matrix A having Eigen values -2,1, 1 and corresponding Eigen

vectors(โˆ’111

) , (101)and (

12

โˆ’1) . Ans: A = (

0 1 11 0 โˆ’11 โˆ’1 0

)

1.6 REDUCTION OF QUADRATIC FORM TO CANON ICAL FORM BY

ORTHOGONAL TRANSFORMATION

Linear Form

The expression of the form ๐‘Ž1๐‘ฅ1 + ๐‘Ž2๐‘ฅ2 + โ‹ฏ+๐‘Ž๐‘›๐‘ฅ๐‘›, where ๐‘Ž1, ๐‘Ž2 โ€ฆ๐‘Ž๐‘› are constants is called

a linear form in the variables ๐‘ฅ1, ๐‘ฅ2 โ€ฆ๐‘ฅ๐‘›. This linear form can also be written as ๐‘Ž1๐‘ฅ1 + ๐‘Ž2๐‘ฅ2 + โ‹ฏ+๐‘Ž๐‘›๐‘ฅ๐‘› =

โˆ‘ ๐‘Ž๐‘–๐‘ฅ๐‘–๐‘›๐‘–=1

Bilinear Form

Any expression which is linear and homogeneous in each of the sets of variables

{๐‘ฅ1, ๐‘ฅ2 โ€ฆโ€ฆโ€ฆโ€ฆ . . ๐‘ฅ๐‘›}, {๐‘ฆ1, ๐‘ฆ2, โ€ฆโ€ฆ . ๐‘ฆ๐‘›} is called a bilinear form in these variables.

The general bilinear form of the two sets of variables {๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3}๐‘Ž๐‘›๐‘‘ {๐‘ฆ1, ๐‘ฆ2, ๐‘ฆ3} can be written as

๐‘“(๐‘ฅ, ๐‘ฆ) = ๐‘Ž11๐‘ฅ1๐‘ฆ1 + ๐‘Ž12๐‘ฅ1๐‘ฆ2 + ๐‘Ž13๐‘ฅ1๐‘ฆ3+

๐‘Ž21๐‘ฅ2๐‘ฆ1 + ๐‘Ž22๐‘ฅ2๐‘ฆ2 + ๐‘Ž23๐‘ฅ2๐‘ฆ3 + ๐‘Ž31๐‘ฅ3๐‘ฆ1 + ๐‘Ž32๐‘ฅ3๐‘ฆ2 + ๐‘Ž33๐‘ฅ3๐‘ฆ3 โ€ฆ (1)

This bilinear form can written as ๐‘“(๐‘ฅ, ๐‘ฆ) = โˆ‘ โˆ‘ ๐‘Ž๐‘–๐‘—๐‘ฅ๐‘–๐‘ฆ๐‘—3๐‘—=1

3๐‘–=1

Equation (1) can be written in matrix form as

๐‘“(๐‘ฅ, ๐‘ฆ) = (๐‘ฅ1 ๐‘ฅ2 ๐‘ฅ3) (

๐‘Ž11 ๐‘Ž12 ๐‘Ž13

๐‘Ž21 ๐‘Ž22 ๐‘Ž23

๐‘Ž31 ๐‘Ž32 ๐‘Ž33

)(

๐‘ฆ1

๐‘ฆ2

๐‘ฆ3

) = ๐‘‹โ€ฒ๐ด๐‘Œ

Where ๐‘‹โ€ฒ is the transpose of ๐‘‹ = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) ๐‘Ž๐‘›๐‘‘ ๐‘Œ = (

๐‘ฆ1

๐‘ฆ2

๐‘ฆ3

)

The matrix ๐ด = (

๐‘Ž11 ๐‘Ž12 ๐‘Ž13

๐‘Ž21 ๐‘Ž22 ๐‘Ž23

๐‘Ž31 ๐‘Ž32 ๐‘Ž33

) is called the matrix of the bilinear form.

Quadratic Form

A homogeneous polynomial of second degree in any number of variables is called a quadratic form.

The general Quadratic form in three variables {๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3} is given by

๐‘“(๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3) = ๐‘Ž11๐‘ฅ12 + ๐‘Ž12๐‘ฅ1๐‘ฅ2 + ๐‘Ž13๐‘ฅ1๐‘ฅ3+

๐‘Ž21๐‘ฅ1๐‘ฅ2 + ๐‘Ž22๐‘ฅ22 + ๐‘Ž23๐‘ฅ2๐‘ฅ3 + ๐‘Ž31๐‘ฅ3๐‘ฅ1 + ๐‘Ž32๐‘ฅ2๐‘ฅ2 + ๐‘Ž33๐‘ฅ3

2

This Quadratic form can written as ๐‘“(๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3) = โˆ‘ โˆ‘ ๐‘Ž๐‘–๐‘—๐‘ฅ๐‘–๐‘ฆ๐‘—3๐‘—=1

3๐‘–=1

Engineering Mathematics -II

47

๐‘“(๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3) = (๐‘ฅ1 ๐‘ฅ2 ๐‘ฅ3) (

๐‘Ž11 ๐‘Ž12 ๐‘Ž13

๐‘Ž21 ๐‘Ž22 ๐‘Ž23

๐‘Ž31 ๐‘Ž32 ๐‘Ž33

)(

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

)

= ๐‘‹โ€ฒ๐ด๐‘‹

Where ๐‘‹ = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) and A is called the matrix of the Quadratic form.

Note: To write the matrix of a quadratic form as

A = (

coeff. ofx2 1/2coeff. ofxy 1/2coeff. ofxz

1/2coeff. ofxy coeff. ofy2 1/2coeff. ofyz

1/2coeff. of xz 1/2coeff. ofyz coeff. of z2

)

Example: 1.46 Write down the Quadratic form in to matrix form

(i)๐Ÿ๐ฑ๐Ÿ + ๐Ÿ‘๐ฒ๐Ÿ + ๐Ÿ”๐ฑ๐ฒ

Solution:

A = (coeff. of x2 1/2coeff. of xy

1/2coeff. of xy coeff. ofy2 )

= (2 33 3

)

(ii) ๐Ÿ๐ฑ๐Ÿ + ๐Ÿ“๐ฒ๐Ÿ โˆ’ ๐Ÿ”๐ณ๐Ÿ โˆ’ ๐Ÿ๐ฑ๐ฒ โˆ’ ๐ฒ๐ณ + ๐Ÿ–๐ณ๐ฑ

Solution:

A = (

coeff. ofx2 1/2coeff. ofxy 1/2coeff. ofxz

1/2coeff. ofxy coeff. ofy2 1/2coeff. ofyz

1/2coeff. of xz 1/2coeff. ofyz coeff. of z2

)

= (2 โˆ’1 4

โˆ’1 5 โˆ’1/24 โˆ’1/2 โˆ’6

)

(iii) ๐Ÿ๐Ÿ ๐ฑ๐Ÿ๐Ÿ + ๐Ÿ’๐ฑ๐Ÿ

๐Ÿ + ๐Ÿ“๐ฑ๐Ÿ‘๐Ÿ โˆ’ ๐Ÿ’๐ฑ๐Ÿ๐ฑ๐Ÿ‘ + ๐Ÿ”๐ฑ๐Ÿ๐ฑ๐Ÿ‘ โˆ’ ๐Ÿ–๐ฑ๐Ÿ๐ฑ๐Ÿ

Solution:

A = (

coeff. of x12 1/2coeff. of x1x2 1/2coeff. of x1x3

1/2coeff. of x1x2 coeff. of x22 1/2coeff. of x2x3

1/2coeff. of x1x3 1/2coeff. of x2x3 coeff. of x32

)

= (12 โˆ’4 3โˆ’4 4 โˆ’23 โˆ’2 5

)

Example: 1.47 Write down the matrix form in to Quadratic form

(i)(๐Ÿ ๐Ÿ โˆ’๐Ÿ‘๐Ÿ โˆ’๐Ÿ ๐Ÿ‘

โˆ’๐Ÿ‘ โˆ’๐Ÿ ๐Ÿ“)

Solution:

Quadratic form is 2 x12 โˆ’ 2x2

2 + 6x32 + 2x1x2 โˆ’ 6x1x3 + 6x2x3

Engineering Mathematics -II

48

(ii)(๐Ÿ ๐Ÿ ๐Ÿ๐Ÿ ๐Ÿ‘ ๐Ÿ๐Ÿ ๐Ÿ ๐Ÿ”

)

Solution:

Quadratic form is x12 + 3x2

2 + 6x32 + 2x1x2 + 4x1x3 + 2x2x3.

NATURE OF QUADRATIC FORM DETERMINED BY PRINCIPAL MINORS

Let A be a square matrix of order n say ๐ด = [(

๐‘Ž11 ๐‘Ž12 ๐‘Ž13 โ‹ฏ ๐‘Ž1๐‘›

๐‘Ž21๐‘Ž22 ๐‘Ž23 โ‹ฑ ๐‘Ž2๐‘›

โ€ฆ โ‹ฏ โ€ฆ .

)]

The principal sub determinants of A are defined as below.

๐‘ 1 = ๐‘Ž11

๐‘ 2 = |๐‘Ž11 ๐‘Ž12

๐‘Ž21 ๐‘Ž22|

๐‘ 3 = |

๐‘Ž11 ๐‘Ž12 ๐‘Ž13

๐‘Ž21 ๐‘Ž22 ๐‘Ž23

๐‘Ž31 ๐‘Ž32 ๐‘Ž33

|

. . .

. . .

. . .

๐‘ ๐‘› = |๐ด|

The quadratic form ๐‘„ = ๐‘‹๐‘‡๐ด๐‘‹ is said to be

1. Positive definite: If ๐‘ 1,๐‘ 2,๐‘ 3โ€ฆโ€ฆโ€ฆ.๐‘ ๐‘› > 0

2. Positive semidefinite: If ๐‘ 1,๐‘ 2,๐‘ 3โ€ฆโ€ฆโ€ฆ.๐‘ ๐‘› โ‰ฅ 0 and atleast one ๐‘ ๐‘– = 0

3. Negative definite: If ๐‘ 1,๐‘ 3,๐‘ 5โ€ฆโ€ฆโ€ฆ. < 0 and๐‘ 2,๐‘ 4,๐‘ 6โ€ฆโ€ฆโ€ฆ. > 0

4. Negative semidefinite: If ๐‘ 1,๐‘ 3,๐‘ 5โ€ฆโ€ฆโ€ฆ. < 0 and๐‘ 2,๐‘ 4,๐‘ 6โ€ฆโ€ฆโ€ฆ. > 0 and atleast one ๐‘ ๐‘– = 0

5. Indefinite: In all other cases

Example: 1.48 Determine the nature of the Quadratic form 12๐ฑ๐Ÿ๐Ÿ + ๐Ÿ‘๐ฑ๐Ÿ

๐Ÿ + ๐Ÿ๐Ÿ๐ฑ๐Ÿ‘๐Ÿ + ๐Ÿ๐ฑ๐Ÿ๐ฑ๐Ÿ

Solution:

A = (12 1 01 3 00 0 12

)

๐‘ 1 = ๐‘Ž11=12 > 0

๐‘ 2 = |๐‘Ž11 ๐‘Ž12

๐‘Ž21 ๐‘Ž22| = |

12 11 3

| = 35 > 0

๐‘ 3 = |

๐‘Ž11 ๐‘Ž12 ๐‘Ž13

๐‘Ž21 ๐‘Ž22 ๐‘Ž23

๐‘Ž31 ๐‘Ž32 ๐‘Ž33

| = |12 1 01 3 00 0 12

| = 430 > 0 , Postive definite

Example: 1.49 Determine the nature of the Quadratic form ๐ฑ๐Ÿ๐Ÿ + ๐Ÿ๐ฑ๐Ÿ

๐Ÿ

Solution:

Let A = (1 0 00 2 00 0 0

)

Engineering Mathematics -II

49

๐‘ 1 = ๐‘Ž11 = 1 > 0

๐‘ 2 = |๐‘Ž11 ๐‘Ž12

๐‘Ž21 ๐‘Ž22| = 2 > 0

๐‘ 3 = |

๐‘Ž11 ๐‘Ž12 ๐‘Ž13

๐‘Ž21 ๐‘Ž22 ๐‘Ž23

๐‘Ž31 ๐‘Ž32 ๐‘Ž33

| = |1 0 00 2 00 0 0

| = 0 , Positive semidefinite

Example: 1.50 Determine the nature of the Quadratic form ๐ฑ๐Ÿ โˆ’ ๐ฒ๐Ÿ + ๐Ÿ’๐ณ๐Ÿ + ๐Ÿ’๐ฑ๐ฒ + ๐Ÿ๐ฒ๐ณ + ๐Ÿ”๐ณ๐ฑ

Solution:

Let A = (1 2 32 โˆ’1 13 1 4

)

๐‘ 1 = ๐‘Ž11 = 1 > 0

๐‘ 2 = |๐‘Ž11 ๐‘Ž12

๐‘Ž21 ๐‘Ž22| = โˆ’5 < 0

๐‘ 3 = |

๐‘Ž11 ๐‘Ž12 ๐‘Ž13

๐‘Ž21 ๐‘Ž22 ๐‘Ž23

๐‘Ž31 ๐‘Ž32 ๐‘Ž33

| = |1 2 32 โˆ’1 13 1 4

| = 0 , Indefinite

Example: 1.51 Determine the nature of the Quadratic form ๐ฑ๐ฒ + ๐ฒ๐ณ + ๐ณ๐ฑ

Solution:

Let A = (0 1/2 1/2

1/2 0 1/21/2 1/2 0

)

๐‘ 1 = ๐‘Ž11 = 0

๐‘ 2 = |๐‘Ž11 ๐‘Ž12

๐‘Ž21 ๐‘Ž22| = โˆ’1/4 < 0

๐‘ 3 = |

๐‘Ž11 ๐‘Ž12 ๐‘Ž13

๐‘Ž21 ๐‘Ž22 ๐‘Ž23

๐‘Ž31 ๐‘Ž32 ๐‘Ž33

| = |0 1/2 1/2

1/2 0 1/21/2 1/2 0

| =1

4> 0 , Indefinite

RANK, INDEX AND SIGNATURE OF A REAL QUADRATIC FORMS

Let ๐‘„ = ๐‘‹๐‘‡๐ด๐‘‹ be quadratic form and the corresponding canonical form is ๐‘‘1๐‘ฆ12 + ๐‘‘2๐‘ฆ2

2 + โ‹ฏ+๐‘‘๐‘›๐‘ฆ๐‘›2.

The rank of the matrix A is number of non โ€“zero Eigen values of A. If the rank of A is โ€˜rโ€™, the

canonical form of Q will contain only โ€œrโ€ terms .Some terms in the canonical form may be positive or zero or

negative.

The number of positive terms in the canonical form is called the index(p) of the quadratic form.

The excess of the number of positive terms over the number of negative terms in the canonical

form .i.e,๐‘ โˆ’ (๐‘Ÿ โˆ’ ๐‘) = 2๐‘ โˆ’ ๐‘Ÿ is called the signature of the quadratic form and usually denoted by s. Thus

๐‘  = 2๐‘ โˆ’ ๐‘Ÿ.

Example: 1.52 Reduce the Quadratic form๐ฑ๐Ÿ๐Ÿ + ๐Ÿ๐ฑ๐Ÿ

๐Ÿ + ๐ฑ๐Ÿ‘๐Ÿ โˆ’ ๐Ÿ๐ฑ๐Ÿ๐ฑ๐Ÿ + ๐Ÿ๐ฑ๐Ÿ๐ฑ๐Ÿ‘ + ๐Ÿ”๐ฑ๐Ÿ๐ฑ๐Ÿ‘ to canonical form

through an orthogonal transformation .Find the nature rank, index, signature and also find the non

zero set of values which makes this Quadratic form as zero.

Solution:

Engineering Mathematics -II

50

Given A = (1 โˆ’1 0

โˆ’1 2 10 1 1

)

The characteristic equation is 3 โˆ’ s1

2 + s2โˆ’ s3=0

s1 = sum of the main diagonal element

= 1 + 2 + 1 = 4

s2 = sum of the minors of the main diagonalelement

= |2 11 1

| + |1 00 1

| + |1 โˆ’1

โˆ’1 2| = 1 + 1 + 1 = 3

s3 = |A| = |1 โˆ’1 0

โˆ’1 2 10 1 1

| = 0

Characteristic equation is 3 โˆ’ 42 + 3 = 0

โ‡’ = 0 ; (2 โˆ’ 4+ 3) = 0

โ‡’ = 0,1,3

To find the Eigen vectors:

Case (i) When = 0 the eigen vector is given by(A โˆ’ I)X = 0 where X = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

)

โ‡’ (1 โˆ’1 0

โˆ’1 2 10 1 1

)(

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) = (000)

x1 โˆ’ x2 + 0x3 = 0โ€ฆ (1)

โˆ’x1 + 2x2 + x3 = 0โ€ฆ (2)

0x1 + x2 + x3 = 0โ€ฆ (3)

From (1) and (2)

x1

โˆ’1=

x2

โˆ’1=

x3

2โˆ’1

x1

โˆ’1=

x2

โˆ’1=

x3

1

X1 = (โˆ’1โˆ’11

)

Case (ii) When = 3 the eigen vector is given by(A โˆ’ I)X = 0 where X = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

)

โ‡’ (1 โˆ’ 3 โˆ’1 0โˆ’1 2 โˆ’ 3 10 1 1 โˆ’ 3

)(

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) = (000)

โˆ’2x1 โˆ’ x2 + 0x3 = 0โ€ฆ (4)

โˆ’x1 โˆ’ x2 + x3 = 0โ€ฆ (5)

0x1 + x2 โˆ’ 2x3 = 0โ€ฆ (6)

From (4) and (5)

x1

โˆ’1=

x2

2=

x3

2โˆ’1

Engineering Mathematics -II

51

x1

โˆ’1=

x2

2=

x3

1

X2 = (โˆ’121

)

Case (iii) When = 1 the eigen vector is given by(A โˆ’ I)X = 0 where X = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

)

โ‡’ (1 โˆ’ 1 โˆ’1 0โˆ’1 2 โˆ’ 1 10 1 1 โˆ’ 1

)(

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) = (000)

0x1 โˆ’ x2 + 0x3 = 0โ€ฆ (7)

โˆ’x1 + x2 + x3 = 0โ€ฆ (8)

0x1 + x2 + 0x3 = 0โ€ฆ (9)

From (7) and (8)

x1

โˆ’1โˆ’0=

x2

0โˆ’0=

x3

0โˆ’1

x1

โˆ’1=

x2

0=

x3

โˆ’1

x1

1=

x2

0=

x3

1

X3 = (101)

Hence the corresponding Eigen vectors are X1 = (11

โˆ’1) ; X2 = (

โˆ’121

) ; X3 = (101)

To check X1, X2& X3 are orthogonal

X1TX2 = (1 1 โˆ’1)(

โˆ’121

) = โˆ’1 + 2 โˆ’ 1 = 0

X2TX3 = (โˆ’1 2 1)(

101) = โˆ’1 + 0 + 1 = 0

X3TX1 = (1 0 1) (

11

โˆ’1) = 1 + 0 โˆ’ 1 = 0

Normalized Eigen vectors are

(

1

โˆš31

โˆš3โˆ’1

โˆš3)

(

โˆ’1

โˆš62

โˆš61

โˆš6)

(

1

โˆš2

01

โˆš2

)

Normalized modal matrix

N =

(

1

โˆš3

โˆ’1

โˆš6

1

โˆš21

โˆš3

2

โˆš60

โˆ’1

โˆš3

1

โˆš6

1

โˆš2)

Engineering Mathematics -II

52

NT =

(

1

โˆš3

1

โˆš3

โˆ’1

โˆš3โˆ’1

โˆš6

2

โˆš6

1

โˆš61

โˆš20

1

โˆš2)

Thus the diagonal matrix D = NTAN

=

(

1

โˆš3

โˆ’1

โˆš6

1

โˆš21

โˆš3

2

โˆš60

โˆ’1

โˆš3

1

โˆš6

1

โˆš2)

(1 โˆ’1 0

โˆ’1 2 10 1 1

)

(

1

โˆš3

1

โˆš3

โˆ’1

โˆš3โˆ’1

โˆš6

2

โˆš6

1

โˆš61

โˆš20

1

โˆš2)

D = (0 0 00 1 00 0 3

)

Canonical form = ๐‘Œ๐‘‡DY where Y = (

y1

y2

y3

)

๐‘Œ๐‘‡DY = (y1, y2, y3) (0 0 00 1 00 0 3

)(

y1

y2

y3

)

= 0๐‘ฆ12 + ๐‘ฆ2

2 + 3๐‘ฆ32

Rank = 2

Index = 2

Signature = 2 โ€“ 0 = 2

Nature is positive semi definite.

To find non zero set of values:

Consider the transformation X = NY

(

x1

x2

x3

) =

(

1

โˆš3

โˆ’1

โˆš6

1

โˆš21

โˆš3

2

โˆš60

โˆ’1

โˆš3

1

โˆš6

1

โˆš2)

(

y1

y2

y3

)

x1 =y1

โˆš3โˆ’

y2

โˆš6+

y3

โˆš2

x2 =y1

โˆš3+

2y2

โˆš6+ 0y3

x3 =โˆ’y1

โˆš3+

y2

โˆš6+

y3

โˆš2

Put y2 = 0 & y3 = 0

x1 =y1

โˆš3; x2 =

y1

โˆš3; x3 =

โˆ’y1

โˆš3

Put y1 = โˆš3

x1 = 1; x2 = 1; x3 = โˆ’1 which makes the Quadratic equation zero.

Engineering Mathematics -II

53

Example: 1.53 Reduce the Quadratic form ๐ฑ๐Ÿ๐Ÿ + ๐ฑ๐Ÿ

๐Ÿ + ๐ฑ๐Ÿ‘๐Ÿ โˆ’ ๐Ÿ๐ฑ๐Ÿ๐ฑ๐Ÿ to canonical form through an

orthogonal transformation .Find the nature rank,index,signature and also find the non zero set of

values which makes this Quadratic form as zero

Solution:

A = (1 โˆ’1 0

โˆ’1 1 00 0 1

)

The characteristic equation is 3 โˆ’ s1

2 + s2โˆ’ s3=0

s1 = sum of the main diagonal element

= 1 + 1 + 1 = 3

s2 = sum of the minors of the main diagonalelement

= |1 00 1

| + |1 00 1

| + |1 โˆ’1

โˆ’1 1| = 1 + 1 + 0 = 2

s3 = |A| = |1 โˆ’1 0

โˆ’1 1 00 0 1

| = 0

Characteristic equation is 3 โˆ’ 32 + 2 = 0

โ‡’ = 0 ; (2 โˆ’ 3+ 2) = 0

โ‡’ = 0,1,2

To find the Eigen vectors:

Case (i) When = 0 the eigen vector is given by(A โˆ’ I)X = 0 where X = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

)

โ‡’ (1 โˆ’1 0

โˆ’1 1 00 0 1

)(

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) = (000)

x1 โˆ’ x2 + 0x3 = 0โ€ฆ (1)

โˆ’x1 + x2 + 0x3 = 0โ€ฆ (2)

0x1 + 0x2 + x3 = 0โ€ฆ (3)

From (1) and (2)

x1

1โˆ’0=

x2

0+1=

x3

0

x1

1=

x2

1=

x3

0

X1 = (110)

Case (ii) When = 1 the eigen vector is given by(A โˆ’ I)X = 0 where X = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

)

โ‡’ (1 โˆ’ 1 โˆ’1 0โˆ’1 1 โˆ’ 1 00 0 1 โˆ’ 0

)(

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) = (000)

0x1 โˆ’ x2 + 0x3 = 0โ€ฆ (4)

Engineering Mathematics -II

54

โˆ’x1 + 0x2 + 0x3 = 0โ€ฆ(5)

0x1 + 0x2 + 0x3 = 0โ€ฆ (6)

From (4) and (5)

x1

0=

x2

0=

x3

โˆ’1

X2 = (00

โˆ’1)

Case (iii) When = 2 the eigen vector is given by(A โˆ’ I)X = 0 where X = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

)

โ‡’ (1 โˆ’ 2 โˆ’1 0โˆ’1 1 โˆ’ 2 00 0 1 โˆ’ 2

)(

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) = (000)

โˆ’x1 โˆ’ x2 + 0x3 = 0โ€ฆ (7)

โˆ’x1 โˆ’ x2 + 0x3 = 0โ€ฆ (8)

0x1 + 0x2 โˆ’ x3 = 0โ€ฆ (9)

From (7) and (8)

x1

1โˆ’0=

x2

0โˆ’1=

x3

0โˆ’0

x1

1=

x2

โˆ’1=

x3

0

X3 = (1

โˆ’10

)

Hence the corresponding Eigen vectors are X1 = (110) ; X2 = (

00

โˆ’1) ; X3 = (

1โˆ’10

)

To check X1, X2& X3 are orthogonal

X1TX2 = (1 1 0) (

00

โˆ’1) = 0 + 0 + 0 = 0

X2TX3 = (0 0 โˆ’1)(

1โˆ’10

) = 0 + 0 + 0 = 0

X3TX1 = (1 โˆ’1 0)(

110) = 1 โˆ’ 1 + 0 = 0

Normalized Eigen vectors are

(

1

โˆš21

โˆš2

0

)(00

โˆ’1)(

1

โˆš2โˆ’1

โˆš2

0

)

Normalized modal matrix

Engineering Mathematics -II

55

N = (

1

โˆš20

1

โˆš21

โˆš20

โˆ’1

โˆš2

0 โˆ’1 0

)

NT = (

1

โˆš2

1

โˆš20

0 0 โˆ’11

โˆš2

1

โˆš20

)

Thus the diagonal matrix D = NTAN

= (

1

โˆš2

1

โˆš20

0 0 โˆ’11

โˆš2

1

โˆš20

)(1 โˆ’1 0

โˆ’1 1 00 0 1

)(

1

โˆš20

1

โˆš21

โˆš20

โˆ’1

โˆš2

0 โˆ’1 0

)

D = (0 0 00 1 00 0 2

)

Canonical form = ๐‘Œ๐‘‡DY where Y = (

y1

y2

y3

)

๐‘Œ๐‘‡DY = (y1, y2, y3) (0 0 00 1 00 0 2

)(

y1

y2

y3

)

= 0๐‘ฆ12 + ๐‘ฆ2

2 + 2๐‘ฆ32

Rank = 2

Index = 2

Signature = 2 - 0 = 2

Nature is positive semi definite.

To find non zero set of values:

Consider the transformation X = NY

(

x1

x2

x3

) = (

1

โˆš20

1

โˆš21

โˆš20

โˆ’1

โˆš2

0 โˆ’1 0

)(

y1

y2

y3

)

x1 =y1

โˆš2+ 0 +

y3

โˆš2

x2 =y1

โˆš2+ 0 โˆ’

y3

โˆš2x3 = 0 โˆ’ y2 โˆ’ 0

Put y2 = 0 & y3 = 0

x1 =y1

โˆš2; x2 =

y1

โˆš2; x3 = 0

Put y1 = โˆš2

x1 = 1; x2 = 1; x3 = 0 which makes the Quadratic equation zero.

Engineering Mathematics -II

56

Example: 1.54 Reduce the Quadratic form ๐Ÿ๐ฑ๐Ÿ๐Ÿ + ๐ฑ๐Ÿ

๐Ÿ + ๐ฑ๐Ÿ‘๐Ÿ + ๐Ÿ๐ฑ๐Ÿ๐ฑ๐Ÿ โˆ’ ๐Ÿ๐ฑ๐Ÿ๐ฑ๐Ÿ‘ โˆ’ ๐Ÿ’๐ฑ๐Ÿ๐ฑ๐Ÿ‘ to canonical form

through an orthogonal transformation .Find the nature rank, index, signature

Solution:

A = (2 1 โˆ’11 1 โˆ’2

โˆ’1 โˆ’2 1)

The characteristic equation is 3 โˆ’ s1

2 + s2โˆ’ s3=0

s1 = sum of the main diagonal element

= 2 + 1 + 1 = 4

s2 = sum of the minors of the main diagonalelement

= |1 โˆ’2

โˆ’2 1| + |

2 โˆ’1โˆ’1 1

| + |2 11 1

| = โˆ’3 + 1 + 1 = โˆ’1

s3 = |A| = |2 1 โˆ’11 1 โˆ’2

โˆ’1 โˆ’2 1| = โˆ’4

Characteristic equation is 3 โˆ’ 42 โˆ’ + 4 = 0

= โˆ’1,1,4

To find the Eigen vectors:

Case (i) When = โˆ’1 the Eigen vector is given by(A โˆ’ I)X = 0 where X = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

)

โ‡’ (2 + 1 1 โˆ’1

1 1 + 1 โˆ’2โˆ’1 โˆ’2 1 + 1

)(

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) = (000)

3x1 + x2 โˆ’ x3 = 0โ€ฆ (1)

x1 + 2x2 โˆ’ 2x3 = 0โ€ฆ (2)

โˆ’x1 โˆ’ 2x2 + 2x3 = 0โ€ฆ (3)

From (1) and (2)

x1

โˆ’2+2=

x2

โˆ’1+6=

x3

6โˆ’1

x1

0=

x2

5=

x3

5

X1 = (011)

Case (ii) When = 1 the Eigen vector is given by(A โˆ’ I)X = 0 where X = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

)

โ‡’ (2 โˆ’ 1 1 โˆ’1

1 1 โˆ’ 1 โˆ’2โˆ’1 โˆ’2 1 โˆ’ 1

)(

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) = (000)

x1 + x2 โˆ’ x3 = 0โ€ฆ (4)

x1 + 0x2 โˆ’ 2x3 = 0โ€ฆ (5)

Engineering Mathematics -II

57

โˆ’x1 โˆ’ 2x2 + 0x3 = 0โ€ฆ (6)

From (4) and (5)

x1

โˆ’2+0=

x2

โˆ’1+2=

x3

0โˆ’1

x1

โˆ’2=

x2

1=

x3

โˆ’1

X2 = (2

โˆ’11

)

Case (iii) When = 4 the eigen vector is given by(A โˆ’ I)X = 0 where X = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

)

โ‡’ (2 โˆ’ 4 1 โˆ’1

1 1 โˆ’ 4 โˆ’2โˆ’1 โˆ’2 1 โˆ’ 4

)(

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) = (000)

โˆ’2x1 + x2 โˆ’ x3 = 0โ€ฆ (7)

x1 โˆ’ 3x2 โˆ’ 2x3 = 0โ€ฆ (8)

โˆ’x1 โˆ’ 2x2 โˆ’ 3x3 = 0โ€ฆ(9)

From (7) and (8)

x1

โˆ’2โˆ’3=

x2

โˆ’1โˆ’4=

x3

6โˆ’1

x1

โˆ’5=

x2

โˆ’5=

x3

5

x1

1=

x2

1=

x3

โˆ’1

X3 = (11

โˆ’1)

Hence the corresponding Eigen vectors are X1 = (011) ; X2 = (

2โˆ’11

) ; X3 = (11

โˆ’1)

To check X1, X2& X3 are orthogonal

X1TX2 = (0 1 1) (

2โˆ’11

) = 0 โˆ’ 1 + 1 = 0

X2TX3 = (2 โˆ’1 1)(

11

โˆ’1) = 2 โˆ’ 1 โˆ’ 1 = 0

X3TX1 = (1 1 โˆ’1)(

011) = 0 + 1 โˆ’ 1 = 0

Normalized Eigen vectors are

(

01

โˆš21

โˆš2

)

(

2

โˆš6โˆ’1

โˆš61

โˆš6)

(

1

โˆš31

โˆš3โˆ’1

โˆš3)

Normalized modal matrix

Engineering Mathematics -II

58

N =

(

02

โˆš6

1

โˆš31

โˆš2

โˆ’1

โˆš6

1

โˆš31

โˆš2

1

โˆš6

โˆ’1

โˆš3)

NT =

(

01

โˆš2

1

โˆš22

โˆš6

โˆ’1

โˆš6

1

โˆš61

โˆš3

1

โˆš3

โˆ’1

โˆš3)

Thus the diagonal matrix D = NTAN

=

(

02

โˆš6

1

โˆš31

โˆš2

โˆ’1

โˆš6

1

โˆš31

โˆš2

1

โˆš6

โˆ’1

โˆš3)

(2 1 โˆ’11 1 โˆ’2

โˆ’1 โˆ’2 1)

(

01

โˆš2

1

โˆš22

โˆš6

โˆ’1

โˆš6

1

โˆš61

โˆš3

1

โˆš3

โˆ’1

โˆš3)

D = (โˆ’1 0 00 1 00 0 4

)

Canonical form = ๐‘Œ๐‘‡DY where Y = (

y1

y2

y3

)

๐‘Œ๐‘‡DY = (y1, y2, y3) (0 0 00 1 00 0 3

)(

y1

y2

y3

)

= โˆ’๐‘ฆ12 + ๐‘ฆ2

2 + 4๐‘ฆ32

Rank = 3

Index = 2

Signature = 2 โ€“ 1 = 1

Nature is indefinite.

Example: 1.55 Reduce the Quadratic form ๐’™๐Ÿ + ๐’š๐Ÿ + ๐’›๐Ÿ๐Ÿ๐’™๐’š โˆ’ ๐Ÿ๐’š๐’› โˆ’ ๐Ÿ๐’›๐’™ to canonical form through

an orthogonal transformation .Find the nature rank, index, signature.

Solution:

A = (1 โˆ’1 โˆ’1

โˆ’1 1 โˆ’1โˆ’1 โˆ’1 1

)

The characteristic equation is 3 โˆ’ s1

2 + s2โˆ’ s3=0

s1 = sum of the main diagonal element

= 1 + 1 + 1 = 3

s2 = sum of the minors of the main diagonalelement

= |1 โˆ’1

โˆ’1 1| + |

1 โˆ’1โˆ’1 1

| + |1 โˆ’1

โˆ’1 1| = 0

s3 = |A| = |1 โˆ’1 โˆ’1

โˆ’1 1 โˆ’1โˆ’1 โˆ’1 1

| = โˆ’4

Engineering Mathematics -II

59

Characteristic equation is 3 โˆ’ 32 + 4 = 0

= โˆ’1,2,2

To find the Eigen vectors:

Case (i) When = โˆ’1 the eigen vector is given by(A โˆ’ I)X = 0 where X = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

)

โ‡’ (1 + 1 โˆ’1 โˆ’1โˆ’1 1 + 1 โˆ’1โˆ’1 โˆ’1 1 + 1

)(

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) = (000)

2x1 โˆ’ x2 โˆ’ x3 = 0โ€ฆ (1)

โˆ’x1 + 2x2 โˆ’ x3 = 0โ€ฆ (2)

โˆ’x1 โˆ’ x2 + 2x3 = 0โ€ฆ (3)

From (1) and (2)

x1

1+2=

x2

1+2=

x3

4โˆ’1

x1

3=

x2

3=

x3

3

X1 = (111)

Case (ii) When = 2 the eigen vector is given by(A โˆ’ I)X = 0 where X = (

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

)

โ‡’ (1 โˆ’ 2 โˆ’1 โˆ’1โˆ’1 1 โˆ’ 2 โˆ’1โˆ’1 โˆ’1 1 โˆ’ 2

)(

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

) = (000)

โˆ’x1 โˆ’ x2 โˆ’ x3 = 0โ€ฆ (4)

โˆ’x1 โˆ’ x2 โˆ’ x3 = 0โ€ฆ (5)

โˆ’x1 โˆ’ x2 โˆ’ x3 = 0โ€ฆ (6)

Put x1 = 0 โ‡’ โˆ’x2 = x3

x2

1=

x3

โˆ’1

X2 = (0

โˆ’11

)

Case (iii) Let X3 = (abc) be a new vector orthogonal to both X1and X2

(๐‘–. ๐‘’) X1TX3 = 0 & X2

TX3 = 0

(1 1 1) (abc) = 0 & (0 โˆ’1 1) (

abc) = 0

a + b + c = 0โ€ฆ (7)

0a โˆ’ b + c = 0โ€ฆ (8)

From (7) and (8)

Engineering Mathematics -II

60

a

1+1=

b

โˆ’1= โˆ’

c

โˆ’1+0

a

2=

b

โˆ’1=

c

โˆ’1

X3 = (2

โˆ’1โˆ’1

)

Hence the corresponding Eigen vectors are X1 = (111) ; X2 = (

0โˆ’11

) ; X3 = (2

โˆ’1โˆ’1

)

Normalized Eigen vectors are

(

1

โˆš31

โˆš31

โˆš3)

(

0โˆ’1

โˆš21

โˆš2

)

(

2

โˆš6โˆ’1

โˆš6โˆ’1

โˆš6)

Normalized modal matrix

N =

(

1

โˆš30

2

โˆš61

โˆš3

โˆ’1

โˆš2

โˆ’1

โˆš61

โˆš3

1

โˆš2

โˆ’1

โˆš6)

NT =

(

1

โˆš3

1

โˆš3

1

โˆš3

0โˆ’1

โˆš2

1

โˆš22

โˆš6

โˆ’1

โˆš6

โˆ’1

โˆš6)

Thus the diagonal matrix D = NTAN

=

(

1

โˆš3

1

โˆš3

1

โˆš3

0โˆ’1

โˆš2

1

โˆš22

โˆš6

โˆ’1

โˆš6

โˆ’1

โˆš6)

(1 โˆ’1 โˆ’1

โˆ’1 1 โˆ’1โˆ’1 โˆ’1 1

)

(

1

โˆš30

2

โˆš61

โˆš3

โˆ’1

โˆš2

โˆ’1

โˆš61

โˆš3

1

โˆš2

โˆ’1

โˆš6)

D = (โˆ’1 0 00 2 00 0 2

)

Canonical form = ๐‘Œ๐‘‡DY where Y = (

y1

y2

y3

)

๐‘Œ๐‘‡DY = (y1, y2, y3) (0 0 00 1 00 0 3

)(

y1

y2

y3

)

= โˆ’๐‘ฆ12 + 2๐‘ฆ2

2 + 2๐‘ฆ32

Rank = 3

Index = 2

Signature = 2 โ€“ 1 = 1

Nature is indefinite.

Engineering Mathematics -II

61

Exercise: 1.6

1. Reduce the Quadratic form2x12 + 5x2

2 + 3x32 + 4x1x2 to canonical form through an orthogonal

transformation .Find the nature, rank, index, signature.

Ans: N = (

1

โˆš50

2

โˆš52

โˆš50

1

โˆš5

0 1 0

) ๐ถ. ๐น = ๐‘ฆ12 + 3๐‘ฆ2

2 + 6๐‘ฆ32

; R = 3, I = 3, S = 3, N: positive definite.

2. Reduce the Quadratic form 3x12 โˆ’ 3x2

2 โˆ’ 5x32 โˆ’ 2x1x2 โˆ’ 6x2x3 โˆ’ 6x3x1 to canonical form through an

orthogonal transformation .Find the nature, rank, index, signature.

Ans: N =

(

โˆ’3

100

1

โˆš14

03

โˆš35

2

โˆš141

โˆš10

1

โˆš35

3

โˆš14)

๐ถ. ๐น = 4๐‘ฆ12 โˆ’ ๐‘ฆ2

2 โˆ’ 8๐‘ฆ32 ; R = 3, I = 1,S = - 1; N: Indefinite.

3. Reduce the Quadratic form 3x12 + 2x2

2 + 3x32 โˆ’ 2x1x2 โˆ’ 2x2x3 to canonical form through an orthogonal

transformation .Find the nature, rank, index, signature

Ans: N =

(

1

โˆš6

1

โˆš2

1

โˆš32

โˆš60

โˆ’1

โˆš31

โˆš6

โˆ’1

โˆš2

1

โˆš3)

๐ถ. ๐น = ๐‘ฆ12 + 3๐‘ฆ2

2 + 4๐‘ฆ32 ; R = 3,I = 3,S = 3, N: positive definite.

4. Reduce the Quadratic form 10x12 + 2x2

2 + 5x32 โˆ’ 4x1x2 + 6x2x3 โˆ’ 10x3x1 to canonical form through an

orthogonal transformation .Find the nature, rank, index, signature.

Ans: N =

(

1

โˆš42

1

โˆš3

โˆ’3

โˆš14

โˆ’5

โˆš42

1

โˆš3

1

โˆš144

โˆš42

1

โˆš3

2

โˆš14)

๐ถ. ๐น = 3๐‘ฆ22 + 14๐‘ฆ3

2 ; R = 2, I = 2, S = 2, N: positive semidefinite.

5. Reduce the Quadratic form 5x12 + 26x2

2 + 10x32 + 6x1x2 + 4x2x3 + 14x3x1 to canonical form

through an orthogonal transformation .Find the nature, rank, index, signature.

Ans: N =

(

โˆ’16

โˆš378

2

โˆš14

1

โˆš27

1

โˆš378

โˆ’1

โˆš14

5

โˆš2711

โˆš378

3

โˆš14

1

โˆš27)

๐ถ. ๐น = 14๐‘ฆ22 + 27๐‘ฆ3

2 ; R = 2, I = 2, S = 2, N: positive semidefinite.

1.7 CAYLEY HAMILTON THEOREM

Cayley Hamilton Theorem

Statement: Every square matrix satisfies its own characteristic equation.

Uses of Cayley Hamilton Theorem:

To calculate (i) the positive integral power of A and

(ii) the inverse of a non-singular square matrix A.

Engineering Mathematics -II

62

Problems based on Cayley โ€“ Hamilton theorem

Example: 1.56 Show that the matrix [๐Ÿ โˆ’๐Ÿ๐Ÿ ๐Ÿ

] satisfies its own characteristic equation.

Solution:

Let A = [1 โˆ’22 1

]

The characteristic equation of the given matrix is |A โˆ’ ฮปI| = 0

ฮป2 โˆ’ S1ฮป + S1 = 0

Where S1 = sum of the main diagonal elements.

= 1 + 1 = 2

S2 = |A| = |1 โˆ’22 1

| = 1 + 4 = 5

โˆด The characteristic equation is ฮป2 โˆ’ 2ฮป + 5 = 0

To prove: A2 โˆ’ 2A + 5I = O

A2 = ๐ด๐ด = (1 โˆ’22 1

) (1 โˆ’22 1

) = (โˆ’3 โˆ’44 โˆ’3

)

A2 โˆ’ 2A + 5I = (โˆ’3 โˆ’44 โˆ’3

) โˆ’ 2 (1 โˆ’22 1

) + 5 (1 00 1

)

= (โˆ’3 โˆ’44 โˆ’3

) + (โˆ’2 4โˆ’4 โˆ’2

) + (5 00 5

)

= (0 00 0

) = O

Therefore, the given matrix satisfies its own characteristic equation.

Example: 1.57 Verify Cayley โ€“ Hamilton theorem find ๐€๐Ÿ’and ๐€โˆ’๐Ÿ when ๐€ = [โˆ’๐Ÿ โˆ’๐Ÿ ๐Ÿโˆ’๐Ÿ ๐Ÿ โˆ’๐Ÿ ๐Ÿ โˆ’๐Ÿ ๐Ÿ

]

Solution:

The characteristic equation of A is |A โˆ’ ฮปI| = 0

i.e., ฮป3 โˆ’ S1ฮป2 + S2ฮป = 0 where

S1 = sum of its leading diagonal elements = 2 + 2 + 2 = 6

S2 = sum of the minors of its leading diagonal elements

= |2 โˆ’1

โˆ’1 2| + |

2 21 2

| + |2 โˆ’1

โˆ’1 2|

= (4 โˆ’ 1) + (4 โˆ’ 2) + (4 โˆ’ 1) = 3 + 2 + 3 = 8

S3 = |A| = 2(4 โˆ’ 1) + 1(โˆ’2 + 1) + 2(1 โˆ’ 2)

= 2(3) + 1(โˆ’1) + 2(โˆ’1) = 6 โˆ’ 1 โˆ’ 2 = 3

โˆด The characteristic equation of A is ฮป3 โˆ’ S1ฮป2 + S2ฮป โˆ’ S3 = 0

๐‘–. ๐‘’. , ฮป3 โˆ’ 6ฮป2 + 8ฮป โˆ’ 3 = 0

By Cayley-Hamilton theorem

[Every square matrix satisfies its own characteristic equation]

(๐‘–. ๐‘’. ) A3 โˆ’ 6A2 + 8A โˆ’ 3I = 0 โ€ฆ (1)

Engineering Mathematics -II

63

Verification:

A2 = ๐ด ร— ๐ด = [โˆ’2 โˆ’1 2โˆ’1 2 โˆ’1 1 โˆ’1 2

] [โˆ’2 โˆ’1 2โˆ’1 2 โˆ’1 1 โˆ’1 2

] = [7 โˆ’6 9

โˆ’5 6 โˆ’6 5 โˆ’5 7

]

A3 = ๐ด ร— A2 = [โˆ’2 โˆ’1 2โˆ’1 2 โˆ’1 1 โˆ’1 2

] [7 โˆ’6 9

โˆ’5 6 โˆ’6 5 โˆ’5 7

] = [29 โˆ’28 38

โˆ’22 23 โˆ’28 22 โˆ’22 29

]

โˆด A3 โˆ’ 6A2 + 8A โˆ’ 3I = [29 โˆ’28 38

โˆ’22 23 โˆ’28 22 โˆ’22 29

] โˆ’ 6 [7 โˆ’6 9

โˆ’5 6 โˆ’6 5 โˆ’5 7

]

+8 [โˆ’2 โˆ’1 2โˆ’1 2 โˆ’1 1 โˆ’1 2

] โˆ’ 3 [1 0 00 1 00 0 1

]

= [29 โˆ’28 38

โˆ’22 23 โˆ’28 22 โˆ’22 29

] โˆ’ [42 โˆ’36 54

โˆ’30 36 โˆ’3630 โˆ’30 42

] + [16 โˆ’8 16โˆ’8 16 โˆ’88 โˆ’8 16

] โˆ’ [3 0 00 3 00 0 3

]

= [0 0 00 0 00 0 0

] = O

To find ๐€๐Ÿ’:

(1) โ‡’ A3 โˆ’ 6A2 โˆ’ 8A + 3I โ€ฆ (2)

Multiply A on both sides, we get

A4 = 6A3 โˆ’ 8A2 + 3A = 6[6A2 โˆ’ 8A + 3I ] โˆ’ 8A2 + 3A by (2)

= 36A2 โˆ’ 48A + 18I โˆ’ 8A2 + 3A

A4 = 28A2 โˆ’ 45A + 18I โ€ฆ (3)

(1) โ‡’ A4 = 28[7 โˆ’6 9

โˆ’5 6 โˆ’6 5 โˆ’5 7

] โˆ’ 45 [2 โˆ’1 2

โˆ’1 2 โˆ’1 1 โˆ’1 2

] + 18 [1 0 00 1 00 0 1

]

= [196 โˆ’168 252

โˆ’140 168 โˆ’168 140 โˆ’140 196

] โˆ’ [90 โˆ’45 90

โˆ’45 90 โˆ’4545 โˆ’45 90

] + [18 0 00 18 00 0 18

]

= [124 โˆ’123 162โˆ’95 96 โˆ’123 95 โˆ’95 124

]

To find ๐€โˆ’๐Ÿ:

(1) ร— Aโˆ’1 โ‡’ A2 โˆ’ 6A + 8I โˆ’ 3 Aโˆ’1 = O

3 Aโˆ’1 = A2 โˆ’ 6A + 8I

3 Aโˆ’1 = [7 โˆ’6 9

โˆ’5 6 โˆ’6 5 โˆ’5 7

] โˆ’ 6 [2 โˆ’1 2

โˆ’1 2 โˆ’1 1 โˆ’1 2

] + 8 [1 0 00 1 00 0 1

]

= [7 โˆ’6 9

โˆ’5 6 โˆ’6 5 โˆ’5 7

] + [โˆ’12 6 โˆ’12 6 โˆ’12 6โˆ’6 6 โˆ’12

] + [8 0 00 8 00 0 8

]

3 Aโˆ’1 = [ 3 0 โˆ’3 1 2 0โˆ’1 1 3

]โ‡’ Aโˆ’1 =1

3[ 3 0 โˆ’3 1 2 0โˆ’1 1 3

]

Engineering Mathematics -II

64

Example: 1.58 Find ๐€โˆ’๐Ÿ if ๐€ = [๐Ÿ โˆ’๐Ÿ ๐Ÿ’๐Ÿ‘ ๐Ÿ โˆ’๐Ÿ๐Ÿ ๐Ÿ โˆ’๐Ÿ

], using Cayley- Hamilton theorem.

Solution:

The characteristic equation of A is |A โˆ’ ฮปI| = 0

(๐‘–. ๐‘’. ) ฮป3 โˆ’ S1ฮป2 + S2ฮป โˆ’ S3 = 0 where

S1 = sum of its leading diagonal elements

= 1 + 2 + (โˆ’1) = 2

S2 = sum of the minors of its leading diagonal elements

= |2 โˆ’11 โˆ’1

| + |1 42 โˆ’1

| + |1 โˆ’13 2

|

= (โˆ’2 + 1) + (โˆ’1 โˆ’ 8) + (2 + 3)

= (โˆ’1) + (โˆ’9) + 5 = โˆ’5

S3 = |A| = |1 โˆ’1 43 2 โˆ’12 1 โˆ’1

|

= 1(โˆ’2 + 1) + 1(โˆ’3 + 2) + (3 โˆ’ 4)

= 1(โˆ’1) + 1(โˆ’1) + 4(โˆ’1)

= โˆ’1 โˆ’ 1 โˆ’ 4 = โˆ’6

โˆด The Characteristic equation is ฮป3 โˆ’ 2ฮป2 โˆ’ 5ฮป + 6 = 0

By Cayley Hamilton Theorem we get

[Every square matrix satisfies its own characteristic equation]

โˆด A3 โˆ’ 2A2 โˆ’ 5A + 6I = O โ€ฆ (1)

To find ๐€โˆ’๐Ÿ

(1) ร— Aโˆ’1 โ‡’ A2 โˆ’ 2A โˆ’ 5I + 6 Aโˆ’1 = O

A2 โˆ’ 2A โˆ’ 5I + 6 Aโˆ’1 = O

6 Aโˆ’1 = โˆ’A2 + 2A + 5I

Aโˆ’1 =1

6[โˆ’A2 + 2A + 5I] โ€ฆ (2)

A2 = A ร— A

= [1 โˆ’1 43 2 โˆ’12 1 โˆ’1

] [1 โˆ’1 43 2 โˆ’12 1 โˆ’1

]

= [1 โˆ’ 3 + 8 โˆ’1 โˆ’ 2 + 4 4 + 1 โˆ’ 43 + 6 โˆ’ 2 โˆ’3 + 4 โˆ’ 1 12 โˆ’ 2 + 12 + 3 โˆ’ 2 โˆ’2 + 2 โˆ’ 1 8 โˆ’ 1 + 1

] = [6 1 17 0 113 โˆ’1 8

]

โˆ’A2 + 2A + 5I = [โˆ’6 โˆ’1 โˆ’1โˆ’7 0 โˆ’11โˆ’3 1 โˆ’8

] + 2 [1 โˆ’1 43 2 โˆ’12 1 โˆ’1

] + 5 [1 0 00 1 00 0 1

]

= [โˆ’6 โˆ’1 โˆ’1โˆ’7 0 โˆ’11โˆ’3 1 โˆ’8

] + [2 โˆ’2 86 4 โˆ’24 2 โˆ’2

] + [5 0 00 5 00 0 5

]

Engineering Mathematics -II

65

= [1 โˆ’3 7

โˆ’1 9 โˆ’131 3 โˆ’5

]

From (2) โ‡’ Aโˆ’1 =1

6[

1 โˆ’3 7โˆ’1 9 โˆ’131 3 โˆ’5

]

Example: 1.59 If ๐‘จ = [๐Ÿ ๐Ÿ๐ŸŽ ๐Ÿ

], then find ๐€๐ง interms of A and I.

Solution:

Let ๐ด = [1 20 2

]

The characteristic equation of A is |A โˆ’ ฮปI| = 0

S1 = sum of its leading diagonal elements

= 1 + 2 = 3

S2 = |A| = |1 20 2

| = 2 โˆ’ 0 = 2

Therefore, the characteristic equation of A is

ฮป2 โˆ’ 3ฮป + 2 = 0

โ‡’ (ฮป โˆ’ 2)(ฮป โˆ’ 1) = 0

โ‡’ ฮป = 2, ฮป = 1

Hence, the Eigen values of A are 1, 2.

To find ๐€๐ง

When ฮปn is divided by ฮป2 โˆ’ 3ฮป + 2

Let the quotient be Q(ฮป) and remainder be ๐‘Žฮป + b.

ฮปn = (ฮป2 โˆ’ 3ฮป + 2)Q(ฮป) + ๐‘Žฮป + b ... (1)

when ฮป = 1 when ฮป = 2

1n = ๐‘Ž + b 2n = 2๐‘Ž + b

2๐‘Ž + b = 2n ..... (2)

๐‘Ž + b = 2n ..... (3)

Solving (2) and (3), we get

(2) โ€“ (3) โ‡’ ๐‘Ž = 2n โˆ’ 1n

(2) โ€“ 2 ร— (3) โ‡’ ๐‘ = โˆ’2n + 2(1n)

i.e., ๐‘Ž = 2n โˆ’ 1n

๐‘ = 2(1n) โˆ’ 2n

Since, A2 โˆ’ 3A + 2I = O by Cayley-Hamilton Theorem

(1) โ‡’ An = ๐‘Ž๐ด + ๐‘I

An = (2n โˆ’ 1n)A + [2(1n) โˆ’ 2n]I

Example: 1.60 Use Cayley โ€“ Hamilton theorem to find the value of the matrix given by

(i)๐Ÿ(๐€) = ๐€๐Ÿ– โˆ’ ๐Ÿ“๐€๐Ÿ• + ๐Ÿ•๐€๐Ÿ” โˆ’ ๐Ÿ‘๐€๐Ÿ“ + ๐€๐Ÿ’ โˆ’ ๐Ÿ“๐€๐Ÿ‘ + ๐Ÿ–๐€๐Ÿ โˆ’ ๐Ÿ๐€ + ๐ˆ

Engineering Mathematics -II

66

(๐ข๐ข)๐€๐Ÿ– โˆ’ ๐Ÿ“๐€๐Ÿ• + ๐Ÿ•๐€๐Ÿ” โˆ’ ๐Ÿ‘๐€๐Ÿ“ + ๐Ÿ–๐€๐Ÿ’ โˆ’ ๐Ÿ“๐€๐Ÿ‘ + ๐Ÿ–๐€๐Ÿ โˆ’ ๐Ÿ๐€ + ๐ˆ if the matrix ๐‘จ = [๐Ÿ ๐Ÿ ๐Ÿ๐ŸŽ ๐Ÿ ๐ŸŽ๐Ÿ ๐Ÿ ๐Ÿ

]

Solution:

The characteristic equation of A is |A โˆ’ ฮปI| = 0

ฮป3 โˆ’ S1ฮป2 + S2ฮป โˆ’ S3 = 0 where

S1 = sum of the main diagonal elements

= 2 + 1 + 2 = 5

S2 = sum of the minors of main diagonal elements

= |1 01 2

| + |2 11 2

| + |2 10 1

|

= (2 โˆ’ 0) + (4 โˆ’ 1) + (2 โˆ’ 0) = 2 + 3 + 2 = 7

= (โˆ’1) + (โˆ’9) + 5 = โˆ’5

S3 = |A| = |2 1 10 1 01 1 2

|

= 2(2 โˆ’ 0) โˆ’ 1(0 โˆ’ 0) + 1(0 โˆ’ 1) = 4 โˆ’ 1 = 3

Therefore, the characteristic equation is ฮป3 โˆ’ 5ฮป2 + 7ฮป โˆ’ 3 = 0

By C โ€“ H theorem, we get

A3 โˆ’ 5A2 + 7A โˆ’ 3I = 0โ€ฆ (1)

Let i) ๐‘“(A) = A8 โˆ’ 5A7 + 7A6 โˆ’ 3A5 + A4 โˆ’ 5A3 + 8A2 โˆ’ 2A + I

ii) g(A) = A8 โˆ’ 5A7 + 7A6 โˆ’ 3A5 + 8A4 โˆ’ 5A3 + 8A2 โˆ’ 2A + I

(i) A5 + A

A3 โˆ’ 5A2 + 7A โˆ’ 3I A8 โˆ’ 5A7 + 7A6 โˆ’ 3A5 + A4 โˆ’ 5A3 + 8A2 โˆ’ 2A + I

A8 โˆ’ 5A7 + 7A6 โˆ’ 3A5

(โˆ’) A4 โˆ’ 5A3 + 8A2 โˆ’ 2A

A4 โˆ’ 5A3 + 7A2 โˆ’ 3A

(โˆ’) A2 + A + 1 I

๐‘“(๐ด) = (A3 โˆ’ 5A2 + 7A โˆ’ 3I )(A2 + A) + A2 + A + I

= ๐‘‚ + A2 + A + I by (1)

= A2 + A + I ... (2)

Now, A2 = [2 1 10 1 01 1 2

] [2 1 10 1 01 1 2

]

= [5 4 40 1 04 4 5

]

โˆด A2 + A + I = [5 4 40 1 04 4 5

] + [2 1 10 1 01 1 2

] + [1 0 00 1 00 0 1

]

Engineering Mathematics -II

67

= [8 5 50 3 05 5 8

]

(ii) A5 + 8A + 35I

A3 โˆ’ 5A2 + 7A โˆ’ 3I A8 โˆ’ 5A7 + 7A6 โˆ’ 3A5 + A4 โˆ’ 5A3 + 8A2 โˆ’ 2A + 1 I

A8 โˆ’ 5A7 + 7A6 โˆ’ 3A5

(โˆ’) 8A4 โˆ’ 5A3 + 8A2 โˆ’ 2A

8A4 โˆ’ 40A3 + 56A2 โˆ’ 24A

(โˆ’) 35A3 โˆ’ A2 + 22A + 1 I

35A3 โˆ’ 175 A2 + 245A โˆ’ 105I

(โˆ’) 127 A2 โˆ’ 223A + 106 I

g(๐ด) = (A3 โˆ’ 5A2 + 7A โˆ’ 3I)(A4 + 8A + 35I) + 127A2 โˆ’ 223A + 106I

= ๐‘‚ + 127A2 โˆ’ 223A + 106 I

= 127A2 โˆ’ 223A + 106 I

= 127 [5 4 40 1 04 4 5

] โˆ’ 223 [2 1 10 1 01 1 2

] + 106 [1 0 00 1 00 0 1

]

g(๐ด) = [295 285 2850 10 0

285 285 295

]

Example: 1.61 Use Cayley Hamilton theorem for the matrix ๐‘จ = [๐Ÿ ๐Ÿ’๐Ÿ ๐Ÿ‘

] to express as a linear

polynomial in โ€œAโ€ is ๐€๐Ÿ“ โˆ’ ๐Ÿ’๐€๐Ÿ’ โˆ’ ๐Ÿ•๐€๐Ÿ‘ + ๐Ÿ๐Ÿ๐€๐Ÿ โˆ’ ๐€ + ๐Ÿ๐ŸŽ ๐ˆ

Solution:

Given A = [1 42 3

]

The characteristic equation of A is |A โˆ’ ฮปI| = 0

i.e., ฮป2 โˆ’ S1ฮป + S2 = 0 where

S1 = sum of the main diagonal elements

= 1 + 3 = 4

S2 = |A| = |1 42 3

| = 3 โˆ’ 8 = โˆ’5

โˆด The characteristic equation A is ฮป2 โˆ’ 4ฮป โˆ’ 5 = 0

By Cayley Hamilton Theorem we get

A2 โˆ’ 4A + 5 I = ๐‘‚ ... (1)

To find: (i) A5 โˆ’ 4A4 โˆ’ 7A3 + 11A2 โˆ’ A + 10 I

A3 โˆ’ 2A + 3I

A2 โˆ’ 4A + 5 I = ๐‘‚

Engineering Mathematics -II

68

A5 โˆ’ 4A4 โˆ’ 7A3 โˆ’ 11A2 โˆ’ A โˆ’ 10I

A5 โˆ’ 4A4 โˆ’ 7A3

โˆ’2A3 โˆ’ 11A2 โˆ’ A

โˆ’2A3 โˆ’ 8A2 โˆ’ 10A

3A2 โˆ’ 11A โˆ’ 10I

3A2 โˆ’ 12A โˆ’ 15I

A + 5I

โˆด A5 โˆ’ 4A4 โˆ’ 7A3 + 11A2 โˆ’ A + 10 I = (A2 + 4A โˆ’ 5I)(A3 โˆ’ 2A + 3I) + A + 5I

= 0 + A + 5I = A + 5I by (1)

which is a linear polynomial in A.

Example: 1.62 Using Cayley Hamilton theorem find ๐€โˆ’๐Ÿ when ๐‘จ = [๐Ÿ ๐ŸŽ ๐Ÿ‘๐Ÿ ๐Ÿ โˆ’๐Ÿ๐Ÿ โˆ’๐Ÿ ๐Ÿ

]

Solution:

The Characteristic equation of A is |A โˆ’ ฮปI| = 0

ฮป3 โˆ’ S1ฮป2 + S2ฮป โˆ’ S3 = 0 where

S1 = sum of the main diagonal elements = 1 + 1 + 1 = 3

S2 = Sum of the minors of the main diagonal elements.

= |1 โˆ’1

โˆ’1 1| + |

1 31 1

| + |1 02 1

|

= (1 โˆ’ 1) + (1 โˆ’ 3) + (1 โˆ’ 0)

= 0 โˆ’ 2 + 1 = โˆ’1

S3 = |A| = |1 0 32 1 โˆ’11 โˆ’1 1

|

= 1(1 โˆ’ 1) โˆ’ 0(2 + 1) + 3(โˆ’2 โˆ’ 1)

= 0 โˆ’ 0 + 3(โˆ’3) = โˆ’9

โˆด The characteristic equation A is ฮป3 โˆ’ 3ฮป2 โˆ’ ฮป + 9 = 0

By Cayley - Hamilton Theorem every square matrix satisfies its own Characteristic equation

โˆด A3 โˆ’ 3A2 โˆ’ A + 9 I = ๐‘‚

Aโˆ’1 =โˆ’1

9[A2 โˆ’ 3A โˆ’ I] ... (1)

A2 = [1 0 32 1 โˆ’11 โˆ’1 1

] [1 0 32 1 โˆ’11 โˆ’1 1

]

= [1 + 0 + 3 0 + 0 โˆ’ 3 3 + 0 + 32 + 2 โˆ’ 1 0 + 1 + 1 6 โˆ’ 1 โˆ’ 11 โˆ’ 2 + 1 0 โˆ’ 1 โˆ’ 1 3 + 1 + 1

] = [4 โˆ’3 63 2 40 โˆ’2 5

]

Engineering Mathematics -II

69

โˆ’3๐ด = [โˆ’3 0 โˆ’9โˆ’6 โˆ’3 3โˆ’3 3 โˆ’3

]

(1) โ‡’ ๐ดโˆ’1 =โˆ’1

9 [(

4 โˆ’3 63 2 40 โˆ’2 5

) + (โˆ’3 0 โˆ’9โˆ’6 โˆ’3 โˆ’3โˆ’3 3 โˆ’3

) โˆ’ (1 0 00 1 00 0 1

)]

=โˆ’1

9[

0 โˆ’3 โˆ’3โˆ’3 โˆ’2 7โˆ’3 1 1

]

=1

9[0 3 33 2 โˆ’73 โˆ’1 โˆ’1

]

Example: 1.63 Verify Cayley- Hamilton for the matrix A= [๐Ÿ ๐Ÿ‘ ๐Ÿ•๐Ÿ’ ๐Ÿ ๐Ÿ‘๐Ÿ ๐Ÿ ๐Ÿ

]

Solution :

Given A = [1 3 74 2 31 2 1

]

The characteristic equation A is |๐ด โˆ’ ๐œ†๐ผ| = 0

๐œ†3 โˆ’ ๐‘†1๐œ†2 + ๐‘†2ฮป๐‘†3 = 0โ‹ฏ (1) where

S1 = Sum of the main diagonal elements

= 1 + 2 + 1 = 4

S2 = Sum of the minors of its leading diagonal elements

= |2 32 1

| + |1 71 1

| + |1 34 2

|

= (2 โˆ’ 6) + (1 โˆ’ 7) + (2 โˆ’ 12)

= โˆ’4 โˆ’ 6 โˆ’ 10 = โˆ’20

๐‘†3 = |๐ด| = |1 3 74 2 31 2 1

|

= 1(2 โˆ’ 6) โˆ’ 3(4 โˆ’ 3) + 7(8 โˆ’ 2)

= โˆ’4 โˆ’ 3(1) + 7(6)

= โˆ’4 โˆ’ 3 + 42 = 35

โˆด (1) โ‡’ ๐œ†3 โˆ’ 4๐œ†2 โˆ’ 20๐œ† โˆ’ 35 = 0

By Cayley โ€“Hamilton theorem

(2) โ‡’ ๐ด3 โˆ’ 4๐ด2 โˆ’ 20๐ด โˆ’ 351 = ๐‘‚

To find ๐ด2 ๐‘Ž๐‘›๐‘‘ ๐ด3:

๐ด2 = [1 3 74 2 31 2 1

] [1 3 74 2 31 2 1

]

= [1 + 12 + 7 3 + 6 + 14 7 + 9 + 74 + 8 + 3 12 + 4 + 6 28 + 6 + 31 + 8 + 1 3 + 4 + 2 7 + 6 + 1

]

Engineering Mathematics -II

70

= [20 23 2315 22 3710 9 14

]

๐ด3 = [20 23 2315 22 3710 9 14

] [1 3 74 2 31 2 1

]

= [20 + 92 + 23 60 + 46 + 46 140 + 69 + 2315 + 88 + 37 45 + 44 + 74 105 + 66 + 3710 + 36 + 14 30 + 18 + 28 + 70 + 27 + 14

]

= [135 152 232140 163 20860 76 111

]

๐ด3 โˆ’ 4๐ด2 โˆ’ 20๐ด โˆ’ 35 ๐ผ

= [135 152 232140 163 20860 76 111

] โˆ’ 4 [20 23 2315 22 3710 9 14

] โˆ’ 20 [1 3 74 2 31 2 1

] โˆ’ 35 [1 0 00 1 00 0 1

]

= [135 152 232140 163 20860 76 111

] + [โˆ’80 โˆ’92 โˆ’92โˆ’60 โˆ’88 โˆ’148โˆ’40 โˆ’36 โˆ’56

] + [โˆ’20 โˆ’60 โˆ’140โˆ’80 โˆ’40 โˆ’60โˆ’20 โˆ’40 โˆ’20

] + [โˆ’35 0 00 โˆ’35 00 0 โˆ’35

]

= [0 0 00 0 00 0 0

]

โˆด The given matrix A satisfies its own characteristic equation.

Hence, cayley Hamilton theorem is verified.

Exercise: 1.8

1.Verify Cayley โ€“ Hamilton Theorem and find its inverse.

(๐‘Ž) [7 2 โˆ’2

โˆ’6 โˆ’1 26 2 โˆ’1

] ๐€๐ง๐’”: ๐ดโˆ’1 =1

3[โˆ’3 โˆ’2 26 5 โˆ’2

โˆ’6 โˆ’2 5]

(๐‘) [3 1 1

โˆ’1 5 โˆ’11 โˆ’1 3

] ๐€๐ง๐’”: ๐ดโˆ’1 =1

20[

7 โˆ’2 โˆ’31 4 1

โˆ’2 2 8]

(๐ถ) [1 0 โˆ’22 2 40 0 2

] ๐€๐ง๐’”: ๐ดโˆ’1

[

1 0 1

โˆ’11

2โˆ’2

0 01

2 ]

(๐‘‘) [1 24 3

] ๐€๐ง๐’”: ๐ดโˆ’1 =1

5 [โˆ’3 24 โˆ’1

]

(๐‘’) [4 3 12 1 โˆ’21 2 1

] ๐€๐ง๐’”: ๐ดโˆ’1 =1

11 [

5 โˆ’1 โˆ’7โˆ’4 3 103 โˆ’5 โˆ’2

]

(๐‘“) [1 2 โˆ’22 5 โˆ’43 7 โˆ’5

] ๐€๐ง๐’”: ๐ดโˆ’1 = [3 โˆ’4 2

โˆ’2 1 0โˆ’1 โˆ’1 1

]

Engineering Mathematics -II

71

(๐‘”) [1 3 74 2 31 2 1

] ๐€๐ง๐’”: ๐ดโˆ’1 =1

35[โˆ’4 11 โˆ’5โˆ’1 โˆ’6 256 1 โˆ’10

]

2. If A = [1 2 22 1 22 2 1

] , then prove that ๐ด3 โˆ’ 3๐ด2 โˆ’ 9๐ด โˆ’ 5๐ผ = 0 Hence, find ๐ด4.

๐ด๐ง๐’”: ๐ด4 = [209 208 208208 209 208208 208 209

]

3. Find ๐ด๐‘› using Cayley โ€“Hamilton theorem, taking A = [7 23 6

] also find A3.

๐€๐ง๐’”: An = [9nโˆ’4n

5] [

7 23 6

] + [9.4nโˆ’4.9n

5] [

1 00 1

] and A3 = [463 266399 330

]

4. Calculate A4 for the matrix A = [2 1 20 2 30 0 5

] ๐€๐ง๐’”: [16 32 577180 16 6090 0 625

]

5. Verify Cayley โ€“Hamilton theorem for the matrix (i) A= [3 โˆ’1

โˆ’1 5] (ii) A = [

1 42 3

]

6. Using cayley โ€“Hamilton theorem, compute ๐ด3 for A= [1 42 3

] ๐€๐ง๐’”: [41 8442 83

]

7. Given that A = [1 2 10 1 โˆ’13 โˆ’1 1

] , Express ๐ด6 โˆ’ 5๐ด5 + 8๐ด4 โˆ’ 2๐ด3 โˆ’ 9๐ด2 + 35๐ด + 6๐ผ

as a linear polynomial in A, using cayley Hamilton theorem. ๐€๐ง๐’”: 4A +42 ๐ผ

8. Obtain the matrix ๐ด6 โˆ’25๐ด2 + 122๐ด ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐ด = [0 0 22 1 0

โˆ’1 โˆ’1 3] ๐€๐ง๐’”: [

โˆ’34 0 โˆ’20โˆ’20 โˆ’54 010 10 โˆ’74

]

9. Given that A = [1 0 32 1 โˆ’11 โˆ’1 1

] , compute the value of

(๐ด6 โˆ’ 5๐ด5 + 8๐ด4 โˆ’ 2๐ด3 โˆ’ 9๐ด2 + 31๐ด โˆ’ 36 ๐ผ), using Cayley โˆ’ Hamilton theorem. ๐€๐ง๐’”: [0 0 00 0 00 0 0

]

10. Find ๐ด๐‘› , using Cayley Hamilton theorem,when A = [5 31 3

], Hence find ๐ด4.

๐€๐ง๐’”: ๐ด๐‘› = [6๐‘›โˆ’2๐‘›

4] [5 3

1 3] + [

(3)2๐‘›โˆ’6๐‘›

2] [

1 00 1

] , [976 960320 336

]

11. Find ๐ด๐‘› , using Cayley Hamilton theorem,when A = [7 32 6

] , Also find A3.

๐€๐ง๐’”: ๐ด๐‘› = [9๐‘›โˆ’4๐‘›

5] [

7 32 6

] + [9.4๐‘›โˆ’4.9๐‘›

5] [

1 00 1

] , [463 399266 330

]