XI-Mathematics SOLUTION - Faizan Ahmed

20
BOARD OF INTERMEDIATE EDUCATION, KARACHI INTERMEDIATE EXAMINATION, 2018 (ANNUAL) (Science pre-Engineering and Science General Groups) XI-Mathematics SOLUTION FROM THE DESK OF: FAIZAN AHMED

Transcript of XI-Mathematics SOLUTION - Faizan Ahmed

BOARD OF INTERMEDIATE EDUCATION, KARACHI

INTERMEDIATE EXAMINATION, 2018 (ANNUAL) (Science pre-Engineering and Science General Groups)

XI-Mathematics

SOLUTION

FROM THE DESK OF: FAIZAN AHMED

Code: MT-09 Time: 20 Minutes

SECTION โ€˜Aโ€™ (MCQs-Multiple Choice Questions) (20 Marks)

Q1. Choose the correct answer for each from the given options.

i. If 1,x-1, 3 are in A.P., then ๐‘ฅ =:

a. 0 b. 1 c. 2 d. 3 ii. The H.M.between 3 and 6 is:

a. 1

4 b.

9

2 c. ยฑ 18 d. 4

iii. If ๐‘Žโˆ’๐‘

๐‘โˆ’๐‘=

๐‘Ž

๐‘, then a,b,c are in:

a. A.P. b. ๐บ. ๐‘ƒ . c. H.P. d. A.G.P iv. The number of permutations of the letters of the word COMMITTEE

a. 9

2,2,2 b.

62,2,2

c. 9

2,2,1 d.

2,2,29

v. The middle term in the expansion of 2๐‘ฅ โˆ’1

๐‘ฅ2 20

is:

a. Ninth term b. tenth term c. ๐‘’๐‘™๐‘’๐‘ฃ๐‘’๐‘›๐‘ก๐‘• ๐‘ก๐‘’๐‘Ÿ๐‘š d. twelvth term

vi. If ๐‘› = 0, then ๐‘›+1 !

๐‘› !=:

a. 0 b. 1 c. n d. โˆž vii. ๐‘ ๐‘–๐‘›600๐‘๐‘œ๐‘ 300 โˆ’ ๐‘๐‘œ๐‘ 600๐‘ ๐‘–๐‘›300 =:

a. 1

2 b. โˆ’

3

2 c.

3

2 d. โˆ’

1

2

viii. If arc length s is equal to the radius r , then the central angle ๐œƒ is:

a. 0 radian b. 1

2 radian c. 2 radian d. 1 ๐‘Ÿ๐‘Ž๐‘‘๐‘–๐‘Ž๐‘›

ix. In a triangle ABC, if ๐›พ = 900, then the law of cosine reduces to:

a. ๐‘Ž2 = ๐‘2 + ๐‘2 b. ๐‘2 = ๐‘Ž2 โˆ’ ๐‘2 c. ๐‘2 = ๐‘Ž2 + ๐‘2 d. ๐‘2 = ๐‘Ž2 โˆ’ ๐‘2

x. In an escribed triangle ABC, โˆ†

๐‘Ÿ3=:

a. s b. (๐‘  โˆ’ ๐‘Ž) c. (๐‘  โˆ’ ๐‘) d. (๐‘  โˆ’ ๐‘)

xi. If ๐‘Ÿ๐‘๐‘œ๐‘ ๐œƒ = 4 and ๐‘Ÿ๐‘ ๐‘–๐‘›๐œƒ = 3, then ๐‘Ÿ =:

a. 3 b. 5 c. 6 d. 2 xii. 10.5 0 =:

a. ๐œ‹

18radians b.

7๐œ‹

120 radians c.

10.5

๐œ‹ radians d. 5๐œ‹ radians

xiii. If ๐ด = {2,3} and ๐ต = {3,4}, then ๐ด โˆ’ ๐ต โˆฉ ๐ต =:

a. โˆ… b. {โˆ…} c. {2} d. {3}

xiv. ๐ด๐‘ˆ๐ดโ€ฒ โ€ฒ =:

a. ๐ด b. ๐ดโ€ฒ c. โˆ… d. ๐‘ˆ

xv. The imaginary part of ๐‘– 3 + 5๐‘–2 is:

a. โˆ’2๐‘– b. 3๐‘– c. โˆ’2 d. โˆ’5 xvi. If ๐‘ง is a complex number, then ๐‘ง๐‘ง =:

a. ๐‘ง2 b. ๐‘ง 2 c. |๐‘ง| d. ๐‘ง 2

xvii. The product of the roots of the equation ๐‘ฆ2 + 1 = 7๐‘ฆ โˆ’ 7

a. 4 b. 8 c. 7 d. 1 xviii. If ๐œ” is a complex cube root of unity, then 2 โˆ’ ๐œ” โˆ’ ๐œ”2 2 =:

a. โˆ’1 b. 1 c. 3 d. 9 xix. If A,B,C are non-singular matrices, then ๐ถ๐ต๐ด โˆ’1

a. ๐ดโˆ’1๐ตโˆ’1๐ถโˆ’1 b. ๐ถโˆ’1๐ตโˆ’1๐ดโˆ’1 c. ๐ด๐ต๐ถ โˆ’1 d. ABC xx. ๐ด ๐ดโˆ’1 =:

a. ๐ด๐ดโˆ’1 b. ๐ด ๐ผ3 c. ๐‘Ž๐‘‘๐‘—๐ด d. ๐ด2

SECTION B

COMPLEX NUMBER, ALGEBRA, MATRICES

Q.2(i) QUESTION: Solve the complex equation for x and y: ๐‘ฅ + 2๐‘ฆ๐‘– 2 = ๐‘ฅ๐‘–. SOLUTION: (๐‘ฅ + 2๐‘ฆ๐‘–)2 = ๐‘ฅ๐‘–

(๐‘ฅ)2 + 2 ๐‘ฅ 2๐‘ฆ๐‘– + (2๐‘ฆ๐‘–)2 = ๐‘ฅ๐‘–

๐‘ฅ2 + 4๐‘ฅ๐‘ฆ๐‘– + 4๐‘ฆ2๐‘–2 = ๐‘ฅ๐‘–

๐‘ฅ2 + 4๐‘ฅ๐‘ฆ๐‘– + 4๐‘ฆ2(โˆ’1) = ๐‘ฅ๐‘– โˆต ๐‘– = โˆ’1 โ‡’ ๐‘–2 = โˆ’1

๐‘ฅ2 + 4๐‘ฅ๐‘ฆ๐‘– โˆ’ 4๐‘ฆ2 = ๐‘ฅ๐‘–

๐‘ฅ2 โˆ’ 4๐‘ฆ2 + 4๐‘ฅ๐‘ฆ๐‘– = 0 + ๐‘ฅ๐‘–

By comparing

4๐‘ฅ๐‘ฆ = ๐‘ฅ โ‡’ 4๐‘ฆ = 1

๐‘ฆ =1

4

Now, ๐‘ฅ2 โˆ’ 4๐‘ฆ2 = 0

๐‘ฅ2 โˆ’ 4 1

4

2

= 0

๐‘ฅ2 โˆ’1

4= 0

๐‘ฅ2 =1

4

๐‘ฅ = ยฑ1

2

๐‘†. ๐‘† = ยฑ1

2,

1

4 OR ๐‘†. ๐‘† =

1

2,

1

4 , โˆ’

1

2,

1

4

OR Q.2(i)

QUESTION: Solve the complex equation for x and y: ๐‘ฅ 1 + 2๐‘– + ๐‘ฆ 3 + 5๐‘– = โˆ’3๐‘– SOLUTION: ๐‘ฅ 1 + 2๐‘– + ๐‘ฆ 3 + 5๐‘– = โˆ’3๐‘– ๐‘ฅ + 2๐‘ฅ๐‘– + 3๐‘ฆ + 5๐‘ฆ๐‘– = โˆ’3๐‘– ๐‘ฅ + 3๐‘ฆ + 5๐‘ฆ๐‘– + 2๐‘ฅ๐‘– = โˆ’3๐‘– ๐‘ฅ + 3๐‘ฆ + ๐‘– 5๐‘ฆ + 2๐‘ฅ = 0 โˆ’ 3๐‘– By Comparing ๐‘ฅ + 3๐‘ฆ = 0 ๐‘ฅ = โˆ’3๐‘ฆ ---- 1 And 5๐‘ฆ + 2๐‘ฅ = โˆ’3 5๐‘ฆ + 2(โˆ’3๐‘ฆ) = โˆ’3 5๐‘ฆ โˆ’ 6๐‘ฆ = โˆ’3 โˆ’๐‘ฆ = โˆ’3

๐‘ฆ = 3

1 โ‡’ ๐‘ฅ = โˆ’3๐‘ฆ ๐‘ฅ = โˆ’3 3 = โˆ’9 ๐‘†. ๐‘† = โˆ’9,3

2(ii) QUESTION:

Solve: ๐‘ฅ +1

๐‘ฅ

2

= 4 ๐‘ฅ โˆ’1

๐‘ฅ

SOLUTION:

๐‘ฅ +1

๐‘ฅ

2

= 4 ๐‘ฅ โˆ’1

๐‘ฅ

๐‘ฅ 2 + 2 ๐‘ฅ 1

๐‘ฅ +

1

๐‘ฅ

2

= 4 ๐‘ฅ โˆ’1

๐‘ฅ

๐‘ฅ2 + 2 +1

๐‘ฅ2= 4 ๐‘ฅ โˆ’

1

๐‘ฅ

๐‘ฅ2 โˆ’ 2 +1

๐‘ฅ2+ 4 = 4 ๐‘ฅ โˆ’

1

๐‘ฅ

๐‘ฅ โˆ’1

๐‘ฅ

2

+ 4 = 4 ๐‘ฅ โˆ’1

๐‘ฅ ----(1)

Let ๐‘ฆ = ๐‘ฅ โˆ’1

๐‘ฅ

1 โ‡’ ๐‘ฆ2 + 4 = 4๐‘ฆ ๐‘ฆ2 โˆ’ 4๐‘ฆ + 4 = 0 ๐‘ฆ โˆ’ 2 2 = 0 ๐‘ฆ โˆ’ 2 = 0

๐‘ฆ = 2

But ๐‘ฅ โˆ’1

๐‘ฅ= ๐‘ฆ

๐‘ฅ โˆ’1

๐‘ฅ= 2

๐‘ฅ2 โˆ’ 1

๐‘ฅ= 2

๐‘ฅ2 โˆ’ 1 = 2๐‘ฅ ๐‘ฅ2 โˆ’ 2๐‘ฅ โˆ’ 1 = 0

๐‘ฅ =โˆ’๐‘ยฑ ๐‘2โˆ’4๐‘Ž๐‘

2๐‘Ž

๐‘ฅ =โˆ’(โˆ’2)ยฑ (โˆ’2)2โˆ’4 1 (โˆ’1)

2(1)

๐‘ฅ =2ยฑ 4+4

2=

2ยฑ 8

2=

2ยฑ 4ร—2

2=

2ยฑ2 2

2=

2 1ยฑ 2

2

๐‘ฅ = 1 ยฑ 2

๐‘†. ๐‘† = 1 ยฑ 2

2(iii) QUESTION: For what values of โ€˜mโ€™ will the equation have equal roots? ๐‘š + 1 ๐‘ฅ2 + 2 ๐‘š + 3 ๐‘ฅ + 2๐‘š + 3 = 0 SOLUTION: ๐‘š + 1 ๐‘ฅ2 + 2 ๐‘š + 3 ๐‘ฅ + 2๐‘š + 3 = 0 ----(1)

๐ด = ๐‘š + 1, ๐ต = 2 ๐‘š + 3 , ๐ถ = 2๐‘š + 3

As roots of (1) are equal

i.e. ๐ต2 โˆ’ 4๐ด๐ถ = 0

2 ๐‘š + 3 2 โˆ’ 4 ๐‘š + 1 2๐‘š + 3 = 0

4 ๐‘š2 + 6๐‘š + 9 โˆ’ 4 2๐‘š2 + 3๐‘š + 2๐‘š + 3 = 0

รท ๐‘–๐‘›๐‘” ๐‘๐‘ฆ 4, ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก

๐‘š2 + 6๐‘š + 9 โˆ’ 2๐‘š2 + 5๐‘š + 3 = 0

๐‘š2 + 6๐‘š + 9 โˆ’ 2๐‘š2 โˆ’ 5๐‘š โˆ’ 3 = 0

โˆ’๐‘š2 + ๐‘š + 6 = 0 โŸน ๐‘š2 โˆ’ ๐‘š โˆ’ 6 = 0

๐‘š2 โˆ’ 3๐‘š + 2๐‘š โˆ’ 6 = 0

๐‘š ๐‘š โˆ’ 3 + 2 ๐‘š โˆ’ 3 = 0 ๐‘š โˆ’ 3 ๐‘š + 2 = 0

๐ธ๐‘–๐‘ก๐‘•๐‘’๐‘Ÿ: ๐‘š โˆ’ 3 = 0 โ‡’ ๐‘š = 3

๐‘‚๐‘Ÿ: ๐‘š + 2 = 0 โ‡’ ๐‘š = โˆ’2

2(iv) QUESTION:

If ๐‘จ = ๐’”๐’Š๐’๐œฝ โˆ’๐’„๐’๐’”๐œฝ๐’„๐’๐’”๐œฝ ๐’”๐’Š๐’๐œฝ

and ๐‘ฉ = ๐’”๐’Š๐’๐œฝ ๐’„๐’๐’”๐œฝ

โˆ’๐’„๐’๐’”๐œฝ ๐’”๐’Š๐’๐œฝ then prove that ๐‘จ๐‘ฉ = ๐‘ฉ๐‘จ = ๐‘ฐ๐Ÿ

SOLUTION:

๐ด = ๐‘ ๐‘–๐‘›๐œƒ โˆ’๐‘๐‘œ๐‘ ๐œƒ๐‘๐‘œ๐‘ ๐œƒ ๐‘ ๐‘–๐‘›๐œƒ

and ๐ต = ๐‘ ๐‘–๐‘›๐œƒ ๐‘๐‘œ๐‘ ๐œƒ

โˆ’๐‘๐‘œ๐‘ ๐œƒ ๐‘ ๐‘–๐‘›๐œƒ

??๐ด๐ต = ๐ต๐ด = ๐ผ2

AB = ๐‘ ๐‘–๐‘›๐œƒ โˆ’๐‘๐‘œ๐‘ ๐œƒ๐‘๐‘œ๐‘ ๐œƒ ๐‘ ๐‘–๐‘›๐œƒ

๐‘ ๐‘–๐‘›๐œƒ ๐‘๐‘œ๐‘ ๐œƒ

โˆ’๐‘๐‘œ๐‘ ๐œƒ ๐‘ ๐‘–๐‘›๐œƒ

= ๐‘ ๐‘–๐‘›2๐œƒ + ๐‘๐‘œ๐‘ 2๐œƒ ๐‘ ๐‘–๐‘›๐œƒ๐‘๐‘œ๐‘ ๐œƒ โˆ’ ๐‘ ๐‘–๐‘›๐œƒ๐‘๐‘œ๐‘ ๐œƒ๐‘ ๐‘–๐‘›๐œƒ๐‘๐‘œ๐‘ ๐œƒ โˆ’ ๐‘ ๐‘–๐‘›๐œƒ๐‘๐‘œ๐‘ ๐œƒ ๐‘๐‘œ๐‘ 2๐œƒ + ๐‘ ๐‘–๐‘›2๐œƒ

= 1 00 1

= ๐ผ2

BA= ๐‘ ๐‘–๐‘›๐œƒ ๐‘๐‘œ๐‘ ๐œƒ

โˆ’๐‘๐‘œ๐‘ ๐œƒ ๐‘ ๐‘–๐‘›๐œƒ

๐‘ ๐‘–๐‘›๐œƒ โˆ’๐‘๐‘œ๐‘ ๐œƒ๐‘๐‘œ๐‘ ๐œƒ ๐‘ ๐‘–๐‘›๐œƒ

= ๐‘ ๐‘–๐‘›2๐œƒ + ๐‘๐‘œ๐‘ 2๐œƒ โˆ’๐‘ ๐‘–๐‘›๐œƒ๐‘๐‘œ๐‘ ๐œƒ + ๐‘ ๐‘–๐‘›๐œƒ๐‘๐‘œ๐‘ ๐œƒโˆ’๐‘ ๐‘–๐‘›๐œƒ๐‘๐‘œ๐‘ ๐œƒ + ๐‘ ๐‘–๐‘›๐œƒ๐‘๐‘œ๐‘ ๐œƒ ๐‘๐‘œ๐‘ 2๐œƒ + ๐‘ ๐‘–๐‘›2๐œƒ

= 1 00 1

= ๐ผ2

๐ด๐ต = ๐ต๐ด = ๐ผ2

2(v) QUESTION: Using the properties of determinants, evaluate the determinant:

1 ๐‘ฅ ๐‘ฆ๐‘ง1 ๐‘ฆ ๐‘ง๐‘ฅ1 ๐‘ง ๐‘ฅ๐‘ฆ

=

1 1 1๐‘ฅ ๐‘ฆ ๐‘ง

๐‘ฅ2 ๐‘ฆ2 ๐‘ง2

SOLUTION:

??

1 ๐‘ฅ ๐‘ฆ๐‘ง1 ๐‘ฆ ๐‘ง๐‘ฅ1 ๐‘ง ๐‘ฅ๐‘ฆ

=

1 1 1๐‘ฅ ๐‘ฆ ๐‘ง

๐‘ฅ2 ๐‘ฆ2 ๐‘ง2

L.H.S=

1 ๐‘ฅ ๐‘ฆ๐‘ง1 ๐‘ฆ ๐‘ง๐‘ฅ1 ๐‘ง ๐‘ฅ๐‘ฆ

ร— ๐‘–๐‘›๐‘” ๐‘…1 ๐‘๐‘ฆ ๐‘ฅ, ๐‘…2 ๐‘๐‘ฆ ๐‘ฆ ๐‘Ž๐‘›๐‘‘ ๐‘…3 ๐‘๐‘ฆ ๐‘ง

=1

๐‘ฅ๐‘ฆ๐‘ง

๐‘ฅ ๐‘ฅ2 ๐‘ฅ๐‘ฆ๐‘ง

๐‘ฆ ๐‘ฆ2 ๐‘ฅ๐‘ฆ๐‘ง

๐‘ง ๐‘ง2 ๐‘ฅ๐‘ฆ๐‘ง

Taking common ๐‘ฅ๐‘ฆ๐‘ง from ๐ถ3

=๐‘ฅ๐‘ฆ๐‘ง

๐‘ฅ๐‘ฆ๐‘ง ๐‘ฅ ๐‘ฅ2 1๐‘ฆ ๐‘ฆ2 1

๐‘ง ๐‘ง2 1

= ๐‘ฅ ๐‘ฅ2 1๐‘ฆ ๐‘ฆ2 1

๐‘ง ๐‘ง2 1

Taking transpose

=

๐‘ฅ ๐‘ฆ ๐‘ง

๐‘ฅ2 ๐‘ฆ2 ๐‘ง2

1 1 1

Interchanging ๐‘…2 and ๐‘…3

= (โˆ’1)

๐‘ฅ ๐‘ฆ ๐‘ง1 1 1๐‘ฅ2 ๐‘ฆ2 ๐‘ง2

Interchanging ๐‘…1 and ๐‘…2

= (โˆ’1)(โˆ’1)

1 1 1๐‘ฅ ๐‘ฆ ๐‘ง

๐‘ฅ2 ๐‘ฆ2 ๐‘ง2

=

1 1 1๐‘ฅ ๐‘ฆ ๐‘ง

๐‘ฅ2 ๐‘ฆ2 ๐‘ง2 = ๐‘…. ๐ป. ๐‘†

SECTION B

GROUPS, SEQUENCES & SERIES, COUNTING PROBLEMS

Q.3(i) QUESTION: Let ๐บ = {1, ๐œ”, ๐œ”2}, where ๐œ” is a complex cube root of unity. Show that ๐บ, . is an abelian group, where โ€˜.โ€™ Is an ordinary multiplication. Note: For a group:

a) Associative law holds b) There exist an identity element w.r.t multiplication c) Every element has an inverse in G

For Abelian: multiplication is Commutative SOLUTION: ๐บ = {1, ๐œ”, ๐œ”2}

a) Associative law holds 1 ร— ๐œ” ร— ๐œ”2 = 1 ร— ๐œ” ร— ๐œ”2 1 ร— ๐œ”3 = ๐œ” ร— ๐œ”2 ๐œ”3 = ๐œ”3

1 = 1 โˆˆ ๐บ b) 1 is the identity element with respect to multiplication

As, 1 ร— 1 = 1 โˆˆ ๐บ 1 ร— ๐œ” = ๐œ” โˆˆ ๐บ 1 ร— ๐œ”2 = ๐œ”2 โˆˆ ๐บ

c) Each element has an inverse in G Inverse of 1 is 1โˆˆ ๐บ Inverse of ๐œ” is ๐œ”2 โˆˆ ๐บ Inverse of ๐œ”2 is ๐œ” โˆˆ ๐บ

๐บ, . is a group For Abelian:

1 ร— ๐œ” = ๐œ” ร— 1 = ๐œ” โˆˆ ๐บ 1 ร— ๐œ”2 = ๐œ”2 ร— 1 = ๐œ”2 โˆˆ ๐บ

๐œ” ร— ๐œ”2 = ๐œ”2 ร— ๐œ” = ๐œ”3 = 1 โˆˆ ๐บ โ€˜.โ€™ Is multiplication ๐บ, . is a Abelian group

Q.3(ii) QUESTION: If three books are picked at random from a shelf containing 3 novels, 4 book of poems and a dictionary. What is the probability that: (i) dictionary is selected (ii) one novel and 2 book of poems are selected SOLUTION: Total novels = 3 Total book of poems = 4 Total dictionary = 1 Total books = 3 + 4 + 1 = 8 Three books are selected at random ๐‘‚ ๐‘† = ๐ถ3.

8

(i) dictionary is selected Let A be the event that a dictionary is selected

๐‘ƒ ๐ด =๐‘‚ ๐ด

๐‘‚ ๐‘†

=๐ถ2.

7 ๐ถ1.1

๐ถ3.8

=21

56

=3

8

(ii) one novel and 2 book of poems are selected Let B be the event that one novel and 2 book of poems are selected

๐‘ƒ ๐ต =๐‘‚ ๐ต

๐‘‚ ๐‘†

=๐ถ1.

3 ๐ถ2.4

๐ถ3.8

=3 ร— 6

56

=9

28

OR Q.3(ii)

QUESTION: In how many ways can a party of 5 students and 2 teachers be formed out of 15 students and 5 teachers. SOLUTION: Total students = 15 Total teachers = 5 A party of 5 students and 2 teachers be formed ๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘ค๐‘Ž๐‘ฆ๐‘  = ๐ถ5.

15 ๐ถ2.5

= 3003 ร— 10 = 30030

Q.3(iii) QUESTION: Prove by the principle of Mathematical Induction. 1

1.2+

1

2.3+

1

3.4+. . . +

1

๐‘›(๐‘›+1)=

๐‘›

๐‘›+1, โˆ€๐‘› โˆŠ โ„•

SOLUTION: PROOF I:

Verifying p(n) for ๐‘› = 1 1

1.2=

1

1+1

1

2=

1

2 Verified

๐‘ƒ ๐‘› ๐‘–๐‘  ๐‘ก๐‘Ÿ๐‘ข๐‘’ ๐‘“๐‘œ๐‘Ÿ ๐‘› = 1

PROOF II:

Assuming that p(๐‘›) is true for ๐‘› = ๐‘˜

So we have, 1

1.2+

1

2.3+

1

3.4+. . . +

1

๐‘˜(๐‘˜+1)=

๐‘˜

๐‘˜+1 ----(1)

Kth term =1

๐‘˜(๐‘˜ + 1)

k + 1 th term =1

(๐‘˜ + 1)(๐‘˜ + 2)

Adding 1

(๐‘˜+1)(๐‘˜+2) both sides in (1)

1

1.2+

1

2.3+

1

3.4+. . . +

1

๐‘˜ ๐‘˜+1 +

1

๐‘˜+1 ๐‘˜+2 =

๐‘˜

๐‘˜+1 +

1

๐‘˜+1 ๐‘˜+2

=๐‘˜ ๐‘˜+2 +1

๐‘˜+1 ๐‘˜+2

=๐‘˜2+2๐‘˜+1

๐‘˜+1 ๐‘˜+2

= ๐‘˜+1 2

๐‘˜+1 ๐‘˜+2

=๐‘˜+1

๐‘˜+1+1

๐‘Š๐‘•๐‘–๐‘๐‘• ๐‘–๐‘  ๐‘ก๐‘Ÿ๐‘ข๐‘’ ๐‘“๐‘œ๐‘Ÿ ๐‘› = ๐‘˜ + 1

๐ป๐‘’๐‘›๐‘๐‘’, ๐‘ƒ ๐‘› ๐‘–๐‘  ๐‘ก๐‘ข๐‘Ÿ๐‘’ ๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘™๐‘™ ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™ ๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ๐‘  ๐‘›.

OR Q.3(iii)

QUESTION: Find the sum of the following series: 212 + 222 + 232 + . . . + 502 SOLUTION: 212 + 222 + 232 + . . . + 502

= 502 โˆ’ 212

โˆต ๐‘›2 =๐‘› ๐‘› + 1 (2๐‘› + 1)

6

=50 50 + 1 (2 ร— 50 + 1)

6โˆ’

21 21 + 1 (2 ร— 21 + 1)

6

=50 51 (101)

6โˆ’

21 22 (41)

6

= 42925 โˆ’ 3157 = 39768

Q.3(iv) QUESTION: Find the sum of an A.P., of nineteen terms whose middle term in 10. SOLUTION: Number of terms =n=19

๐‘€๐‘–๐‘‘๐‘‘๐‘™๐‘’ ๐‘ก๐‘’๐‘Ÿ๐‘š =๐‘›+1

2๐‘ก๐‘• ๐‘ก๐‘’๐‘Ÿ๐‘š

๐‘€. ๐‘‡ =20

2= 10๐‘ก๐‘• ๐‘ก๐‘’๐‘Ÿ๐‘š

In an A.P. nth term = Tn=a+(n-1)d ๐‘‡10 = ๐‘Ž + 10 โˆ’ 1 ๐‘‘ 10 = ๐‘Ž + 9๐‘‘ ๐‘Ž + 9๐‘‘ = 10 ---(1) In an A.P.

Sum of n terms = ๐‘†๐‘› =๐‘›

2{2๐‘Ž + ๐‘› โˆ’ 1 ๐‘‘}

Sum of 19 terms = ๐‘†19 =19

2{2๐‘Ž + 19 โˆ’ 1 ๐‘‘}

๐‘†19 =19

2{2๐‘Ž + 18๐‘‘}

๐‘†19 =19

2ร— 2 ๐‘Ž + 9๐‘‘

๐‘†19 = 19 10

๐‘†19 = 190 [๐‘ˆ๐‘ ๐‘–๐‘›๐‘” (1)]

Q.3(v) QUESTION:

Find the value of n so that ๐‘Ž๐‘›+1+๐‘๐‘›+1

๐‘Ž๐‘› +๐‘๐‘› may become the H.M. between a and b.

SOLUTION:

H.M. between a and b is 2๐‘Ž๐‘

๐‘Ž+๐‘

According to the question: ๐‘Ž๐‘›+1 + ๐‘๐‘›+1

๐‘Ž๐‘› + ๐‘๐‘›=

2๐‘Ž๐‘

๐‘Ž + ๐‘

๐‘Ž + ๐‘ ๐‘Ž๐‘›+1 + ๐‘๐‘›+1 = 2๐‘Ž๐‘ ๐‘Ž๐‘› + ๐‘๐‘› ๐‘Ž๐‘›+2 + ๐‘Ž๐‘๐‘›+1 + ๐‘Ž๐‘›+1๐‘ + ๐‘๐‘›+2 = 2๐‘Ž๐‘›+1๐‘ + 2๐‘Ž๐‘๐‘›+1 ๐‘Ž๐‘›+2 + ๐‘Ž๐‘๐‘›+1 โˆ’ 2๐‘Ž๐‘๐‘›+1 + ๐‘Ž๐‘›+1๐‘ โˆ’ 2๐‘Ž๐‘›+1๐‘ + ๐‘๐‘›+2 = 0 ๐‘Ž๐‘›+2 โˆ’ ๐‘Ž๐‘๐‘›+1 โˆ’ ๐‘Ž๐‘›+1๐‘ + ๐‘๐‘›+2 = 0 ๐‘Ž๐‘Ž๐‘›+1 โˆ’ ๐‘Ž๐‘›+1๐‘ โˆ’ ๐‘Ž๐‘ + ๐‘๐‘๐‘›+1 = 0 ๐‘Ž๐‘›+1 ๐‘Ž โˆ’ ๐‘ โ€”๐‘๐‘›+1 ๐‘Ž โˆ’ ๐‘ = 0 ๐‘Ž โˆ’ ๐‘ ๐‘Ž๐‘›+1 โˆ’ ๐‘๐‘›+1 = 0 ๐‘Ž๐‘›+1 โˆ’ ๐‘๐‘›+1 = 0 ๐‘Ž๐‘›+1 = ๐‘๐‘›+1 ๐‘Ž๐‘›+1

๐‘๐‘›+1= 1

๐‘Ž

๐‘ ๐‘›+1

= ๐‘Ž

๐‘

0

By comparing ๐‘› + 1 = 0

๐‘› = โˆ’1

OR Q.3(v)

QUESTION: Find the first term of a G.P., whose second term is 3 and sum to infinity is 12. SOLUTION: In a G.P.: ๐‘‡๐‘› = ๐‘Ž๐‘Ÿ๐‘›โˆ’1 ๐‘‡2 = ๐‘Ž๐‘Ÿ2โˆ’1 = 3 ๐‘Ž๐‘Ÿ = 3 --- 1

๐‘† =๐‘Ž

1 โˆ’ ๐‘Ÿ = 12

๐‘Ž

1 โˆ’ ๐‘Ÿ = 12

ร— ๐‘–๐‘›๐‘” ๐‘๐‘ฆ ๐‘Ÿ, ๐‘๐‘œ๐‘ก๐‘• ๐‘ ๐‘–๐‘‘๐‘’๐‘  ๐‘Ž๐‘Ÿ

1 โˆ’ ๐‘Ÿ = 12๐‘Ÿ

3

1 โˆ’ ๐‘Ÿ = 12๐‘Ÿ [๐‘ข๐‘ ๐‘–๐‘›๐‘” (1)]

1

1 โˆ’ ๐‘Ÿ = 4๐‘Ÿ

1 = 4๐‘Ÿ 1 โˆ’ ๐‘Ÿ 1 = 4๐‘Ÿ โˆ’ 4๐‘Ÿ2 4๐‘Ÿ2 โˆ’ 4๐‘Ÿ + 1 = 0 2๐‘Ÿ โˆ’ 1 2 = 0 2๐‘Ÿ โˆ’ 1 = 0

๐‘Ÿ =1

2

1 โŸน ๐‘Ž๐‘Ÿ = 3

๐‘Ž 1

2 = 3

๐‘Ž = 6

SECTION B

TRIGONOMETRY

Q.4(i) QUESTION: A belt 24.75 meters long passes around a 3.5 cm diameter pulley. As the belt makes 3 complete revolutions in a minute, how many radians does the wheel turn in two second? SOLUTION: Length of belt = 24.75๐‘š

Diameter of the wheel of Pulley = 3.5๐‘๐‘š

โˆต ๐‘Ÿ =๐ท๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ

2

๐‘Ÿ =3.5

2๐‘๐‘š = 1.75๐‘๐‘š

๐‘Ÿ =1.75

100= 0.0175๐‘š

As the belt makes three complete revolutions in a minute

๐‘  = ๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘๐‘œ๐‘ฃ๐‘’๐‘Ÿ๐‘’๐‘‘ ๐‘๐‘ฆ ๐‘ก๐‘•๐‘’ ๐‘๐‘’๐‘™๐‘ก ๐‘–๐‘› ๐‘Ž ๐‘š๐‘–๐‘›๐‘ข๐‘ก๐‘’ = 3(24.75)

= 74.25๐‘š

๐‘  = ๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘๐‘œ๐‘ฃ๐‘’๐‘Ÿ๐‘’๐‘‘ ๐‘๐‘ฆ ๐‘ก๐‘•๐‘’ ๐‘๐‘’๐‘™๐‘ก ๐‘–๐‘› ๐‘Ž ๐‘ ๐‘’๐‘๐‘œ๐‘›๐‘‘ =74.25

60

๐‘  = 1.2375๐‘š

โˆต ๐‘  = ๐‘Ÿ๐œƒ

๐œƒ =๐‘ 

๐‘Ÿ=

1.2375

0.0175= 70.714

For 2 seconds ๐œƒ = 70.714 ร— 2

๐œƒ = 141.428๐‘Ÿ๐‘Ž๐‘‘๐‘–๐‘Ž๐‘›

๐‘ ๐‘’๐‘๐‘œ๐‘›๐‘‘

Q.4(ii) QUESTION: Find the period of ๐‘ก๐‘Ž๐‘›๐‘ฅ. SOLUTION: ๐ฟ๐‘’๐‘ก ๐‘“ ๐‘ฅ = ๐‘ก๐‘Ž๐‘›๐‘ฅ ๐‘“ ๐‘ฅ + ๐‘ = ๐‘ก๐‘Ž๐‘›(๐‘ฅ + ๐‘)

=๐‘ก๐‘Ž๐‘›๐‘ฅ + ๐‘ก๐‘Ž๐‘›๐‘

1 โˆ’ ๐‘ก๐‘Ž๐‘›๐‘ฅ๐‘ก๐‘Ž๐‘›๐‘

Replacing p with ๐œ‹, we get

๐‘“ ๐‘ฅ + ๐œ‹ =๐‘ก๐‘Ž๐‘›๐‘ฅ + ๐‘ก๐‘Ž๐‘›๐œ‹

1 โˆ’ ๐‘ก๐‘Ž๐‘›๐‘ฅ๐‘ก๐‘Ž๐‘›๐œ‹

= ๐‘ก๐‘Ž๐‘›๐‘ฅ + 0

1 โˆ’ ๐‘ก๐‘Ž๐‘›๐‘ฅ(0)

= ๐‘ก๐‘Ž๐‘›๐‘ฅ

1 โˆ’ 0

= ๐‘ก๐‘Ž๐‘›๐‘ฅ ๐‘“ ๐‘ฅ + ๐œ‹ = ๐‘“(๐‘ฅ)

๐ป๐‘’๐‘›๐‘๐‘’, ๐‘“ ๐‘ฅ ๐‘–๐‘  ๐‘ก๐‘•๐‘’ ๐‘๐‘’๐‘Ÿ๐‘–๐‘œ๐‘‘๐‘–๐‘ ๐‘“๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘๐‘’๐‘Ÿ๐‘–๐‘œ๐‘‘ ๐œ‹.

Q.4(iii) QUESTION: If a=b=c then prove that r: R : r1 = 1 : 2 : 3, where r, R, r1 have their usual meanings. SOLUTION: ? ? r: R โˆถ r1 = 1 โˆถ 2 โˆถ 3

๐‘Ÿ =โˆ†

๐‘ , ๐‘… =

๐‘Ž๐‘๐‘

4โˆ†, ๐‘Ÿ1 =

โˆ†

๐‘  โˆ’ ๐‘Ž

Given a=b=c

โˆ†= ๐‘† ๐‘† โˆ’ ๐‘Ž ๐‘† โˆ’ ๐‘ ๐‘† โˆ’ ๐‘ ----(1)

Where, ๐‘† =๐‘Ž+๐‘+๐‘

2

Here, ๐‘† =๐‘Ž+๐‘Ž+๐‘Ž

2=

3๐‘Ž

2

๐‘† โˆ’ ๐‘Ž = ๐‘† โˆ’ ๐‘ = ๐‘† โˆ’ ๐‘ =3๐‘Ž

2โˆ’

๐‘Ž

1=

๐‘Ž

2

๐‘† โˆ’ ๐‘Ž =๐‘Ž

2, ๐‘† โˆ’ ๐‘ =

๐‘Ž

2, ๐‘† โˆ’ ๐‘ =

๐‘Ž

2

1 โ‡’ โˆ†= 3๐‘Ž

2ร—

๐‘Ž

2ร—

๐‘Ž

2ร—

๐‘Ž

2

โˆ†= 3๐‘Ž4

16

โˆ†= 3 ๐‘Ž2

4

Now, ๐‘Ÿ =โˆ†

๐‘ =

3 ๐‘Ž2

4

3๐‘Ž

2

= 3 ๐‘Ž2

4ร—

2

3๐‘Ž=

3๐‘Ž

2ร—3 =

3๐‘Ž

6

๐‘… =๐‘Ž๐‘๐‘

4โˆ†=

๐‘Ž. ๐‘Ž. ๐‘Ž

4 ร— 3 ๐‘Ž2

4

=๐‘Ž

3=

๐‘Ž

3ร—

3

3=

3๐‘Ž

3

๐‘Ÿ1 =โˆ†

๐‘  โˆ’ ๐‘Ž=

3 ๐‘Ž2

4

๐‘Ž2

= 3 ๐‘Ž2

4ร—

2

๐‘Ž=

3๐‘Ž

2

Now, ๐‘Ÿ: ๐‘…: ๐‘Ÿ1 = 3๐‘Ž

6โˆถ

3๐‘Ž

3 โˆถ

3๐‘Ž

2

๐‘‹๐‘–๐‘›๐‘” ๐‘…. ๐ป. ๐‘† ๐‘๐‘ฆ 6

3๐‘Ž, ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก

๐‘Ÿ: ๐‘…: ๐‘Ÿ1 = 3๐‘Ž

6 ร—

6

3๐‘Ž:

3๐‘Ž

3ร—

6

3๐‘Ž โˆถ

3๐‘Ž

2ร—

6

3๐‘Ž

๐‘Ÿ: ๐‘…: ๐‘Ÿ1 = 1 โˆถ 2 โˆถ 3

Q5(iv) QUESTION: ๐‘ก๐‘Ž๐‘›2๐œƒ๐‘๐‘œ๐‘ก๐œƒ = 3 SOLUTION: ๐‘ก๐‘Ž๐‘›2๐œƒ๐‘๐‘œ๐‘ก๐œƒ = 3

2๐‘ก๐‘Ž๐‘›๐œƒ

1 โˆ’ tan2 ๐œƒร—

1

๐‘ก๐‘Ž๐‘›๐œƒ= 3

2

1 โˆ’ tan2 ๐œƒ= 3

2 = 3 1 โˆ’ tan2 ๐œƒ 2 = 3 โˆ’ 3 tan2 ๐œƒ 3 tan2 ๐œƒ = 3 โˆ’ 2 3 tan2 ๐œƒ = 1

tan2 ๐œƒ =1

3

๐‘ก๐‘Ž๐‘›๐œƒ = ยฑ1

3

Either:

๐‘ก๐‘Ž๐‘›๐œƒ =1

3

Or:

๐‘ก๐‘Ž๐‘›๐œƒ = โˆ’1

3

๐œƒ = tanโˆ’1 1

3

๐œƒ =๐œ‹

6

๐œƒ = tanโˆ’1 โˆ’1

3

๐œƒ = โˆ’๐œ‹

6

๐บ. ๐‘† = 2๐‘›๐œ‹ +๐œ‹

6 โˆช 2๐‘›๐œ‹ โˆ’

๐œ‹

6

๐‘› โˆˆ โ„ค

Q.4(v) QUESTION: Prove that: ๐‘‡๐‘Ž๐‘›โˆ’1 1

5+ ๐‘‡๐‘Ž๐‘›โˆ’1 1

4= ๐‘‡๐‘Ž๐‘›โˆ’1 9

19

SOLUTION:

? ? ๐‘‡๐‘Ž๐‘›โˆ’11

5+ ๐‘‡๐‘Ž๐‘›โˆ’1

1

4= ๐‘‡๐‘Ž๐‘›โˆ’1

9

19

๐ฟ๐‘’๐‘ก ๐‘ฆ = ๐‘‡๐‘Ž๐‘›โˆ’1 1

5+ ๐‘‡๐‘Ž๐‘›โˆ’1 1

4= ๐ด + ๐ต ------(1)

Where, ๐ด = ๐‘‡๐‘Ž๐‘›โˆ’1 1

5 and ๐ต = ๐‘‡๐‘Ž๐‘›โˆ’1 1

4

So, ๐‘‡๐‘Ž๐‘›๐ด =1

5 and ๐‘‡๐‘Ž๐‘›๐ต =

1

4

1 โ‡’ ๐‘ฆ = ๐ด + ๐ต Taking Tan of both sides ๐‘‡๐‘Ž๐‘›๐‘ฆ = ๐‘‡๐‘Ž๐‘›(๐ด + ๐ต)

๐‘‡๐‘Ž๐‘›๐‘ฆ =๐‘‡๐‘Ž๐‘›๐ด + ๐‘‡๐‘Ž๐‘›๐ต

1 โˆ’ ๐‘‡๐‘Ž๐‘›๐ด ๐‘‡๐‘Ž๐‘›๐ต

๐‘‡๐‘Ž๐‘›๐‘ฆ =

15

+14

1 โˆ’15

ร—14

=

4 + 520

1 โˆ’1

20 =

9201920

๐‘‡๐‘Ž๐‘›๐‘ฆ =9

19

๐‘ฆ = ๐‘‡๐‘Ž๐‘›โˆ’19

19

๐‘‡๐‘Ž๐‘›โˆ’1 1

5+ ๐‘‡๐‘Ž๐‘›โˆ’1 1

4= ๐‘‡๐‘Ž๐‘›โˆ’1 9

19 ๐น๐‘Ÿ๐‘œ๐‘š 1

OR Q.4(v)

QUESTION:

Prove that: ๐‘†๐‘–๐‘›โˆ’1๐ด + ๐‘†๐‘–๐‘›โˆ’1๐ต = sinโˆ’1 ๐ด 1 โˆ’ ๐ต2 + ๐ต 1 โˆ’ ๐ด2

SOLUTION: ๐ฟ๐‘’๐‘ก ๐‘ก = ๐‘†๐‘–๐‘›โˆ’1๐ด + ๐‘†๐‘–๐‘›โˆ’1๐ต = ๐‘ฅ + ๐‘ฆ ------(1) Where, ๐‘ฅ = ๐‘†๐‘–๐‘›โˆ’1๐ด and ๐‘ฆ = ๐‘†๐‘–๐‘›โˆ’1๐ต

So, ๐‘†๐‘–๐‘›๐‘ฅ = ๐ด ๐‘†๐‘–๐‘›2๐‘ฅ + cos2 ๐‘ฅ = 1 ๐ด2 + cos2 ๐‘ฅ = 1 cos2 ๐‘ฅ = 1 โˆ’ ๐ด2

๐ถ๐‘œ๐‘ ๐‘ฅ = 1 โˆ’ ๐ด2

and ๐‘ ๐‘–๐‘›๐‘ฆ = ๐ต

๐‘†๐‘–๐‘›2๐‘ฆ + cos2 ๐‘ฆ = 1 ๐ต2 + cos2 ๐‘ฆ = 1 cos2 ๐‘ฆ = 1 โˆ’ ๐ต2

๐ถ๐‘œ๐‘ ๐‘ฆ = 1 โˆ’ ๐ต2

1 โ‡’ ๐‘ก = ๐‘ฅ + ๐‘ฆ Taking Sin of both sides ๐‘ ๐‘–๐‘›๐‘ก = sin(๐‘ฅ + ๐‘ฆ) ๐‘ ๐‘–๐‘›๐‘ก = sinxcosy + cosxsiny

๐‘ ๐‘–๐‘›๐‘ก = A 1 โˆ’ ๐ต2 + B 1 โˆ’ ๐ด2

๐‘ก = sinโˆ’1 ๐ด 1 โˆ’ ๐ต2 + ๐ต 1 โˆ’ ๐ด2 Proved.

SECTION C Q.5(a) QUESTION:

SOLUTION: Let five shares in A.P. are: ๐‘Ž โˆ’ 4๐‘‘, ๐‘Ž โˆ’ 2๐‘‘, ๐‘Ž, ๐‘Ž + 2๐‘‘, ๐‘Ž + 4๐‘‘ A/c to the Ist condition: ๐‘Ž โˆ’ 4๐‘‘ + ๐‘Ž โˆ’ 2๐‘‘ + ๐‘Ž + ๐‘Ž + 2๐‘‘ + ๐‘Ž + 4๐‘‘ = 600 5๐‘Ž = 600

๐‘Ž = 120 A/c to the 2nd condition:

๐‘Ž โˆ’ 4๐‘‘ + ๐‘Ž โˆ’ 2๐‘‘ =1

7 ๐‘Ž + ๐‘Ž + 2๐‘‘ + ๐‘Ž + 4๐‘‘

2๐‘Ž โˆ’ 6๐‘‘ =1

7 3๐‘Ž + 6๐‘‘

14๐‘Ž โˆ’ 42๐‘‘ = 3๐‘Ž + 6๐‘‘ 14๐‘Ž โˆ’ 3๐‘Ž = 42๐‘‘ + 6๐‘‘ 11๐‘Ž = 48๐‘‘ โ‡’ 48๐‘‘ = 11๐‘Ž

๐‘‘ =11 ร— 120

48=

55

2

Five shares are when a=120 and d=55

2:

๐‘Ž โˆ’ 4๐‘‘, ๐‘Ž โˆ’ 2๐‘‘, ๐‘Ž, ๐‘Ž + 2๐‘‘, ๐‘Ž + 4๐‘‘

120 โˆ’ 4 55

2 , 120 โˆ’ 2

55

2 , 120, 120 + 2

55

2 , 120 + 4

55

2

10, 65, 120, 175, 230

OR Q.5(a)

QUESTION: Note: BIEK has made mistake here, by 35th term, it is impossible question. It is 34th term.

๐‘พ๐’“๐’๐’๐’ˆ ๐‘ธ๐’–๐’†๐’”๐’•๐’Š๐’๐’: ๐ผ๐‘› ๐‘Ž๐‘› ๐ป. ๐‘ƒ. , ๐‘ก๐‘•๐‘’ 10๐‘ก๐‘• ๐‘ก๐‘’๐‘Ÿ๐‘š ๐‘–๐‘  35, 35๐‘ก๐‘• ๐‘ก๐‘’๐‘Ÿ๐‘š ๐‘–๐‘  25.๐ผ๐‘“ ๐‘ก๐‘•๐‘’ ๐‘™๐‘Ž๐‘ ๐‘ก ๐‘ก๐‘’๐‘Ÿ๐‘š ๐‘–๐‘  2, ๐‘“๐‘–๐‘›๐‘‘ ๐‘ก๐‘•๐‘’ ๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘ก๐‘’๐‘Ÿ๐‘š๐‘ .

SOLUTION: In an H.P:

pth term = 10th term = ๐‘ฅ = 35, ๐‘ = 10

qth term = 35th term = ๐‘ฆ = 25, ๐‘ž = 35

rth term = last term = ๐‘ง = 2, ๐‘Ÿ == ๐‘› =?

We have,

1

๐‘ฅ

1

๐‘ฆ

1

๐‘ง

๐‘ ๐‘ž ๐‘Ÿ1 1 1

= 0

1

35

1

25

1

210 35 ๐‘›1 1 1

= 0

ร—ing ๐‘…1 by 350, we get

10 14 17510 35 ๐‘›1 1 1

= 0 ร— 350

Expanding by ๐ถ3, we get

175 10 351 1

โˆ’ ๐‘› 10 141 1

+ 1 10 1410 35

= 0

175 10 โˆ’ 35 โˆ’ ๐‘› 10 โˆ’ 14 + 250 โˆ’ 140 = 0 175 โˆ’25 โˆ’ ๐‘› โˆ’4 + 350 โˆ’ 140 = 0 โˆ’4375 + 4๐‘› + 210 = 0 4๐‘› โˆ’ 4165 = 0 4๐‘› = 4165

๐‘ง =4165

4 Not a positive integer

Hence, wrong Question

Q.5(b) QUESTION:

Prove law of Cosine: a2 =b

2 + c

2 โ€“ 2bccos๐›ผ

PROOF

Law of Cosine: c2 =a

2 + b

2 โ€“ 2abcos๐œธ

Proof: We place a โˆ†ABC in x-, y- coordinate system such that C(0,0) is at the origin and B(a,0) on

positive x-axis as shown in the figure.

As, cos 1800 โˆ’ ๐›พ =๐‘๐‘Ž๐‘ ๐‘’

๐‘๐‘’๐‘Ÿ=

๐ถ๐ฟ

๐ด๐ถ

cos 1800 ๐‘๐‘œ๐‘ ๐›พ + sin 1800 ๐‘ ๐‘–๐‘›๐›พ =๐ถ๐ฟ

๐‘

โˆ’1 ๐‘๐‘œ๐‘ ๐›พ + (0)๐‘ ๐‘–๐‘›๐›พ =๐ถ๐ฟ

๐‘

๐‘๐‘œ๐‘ ๐›พ =๐ถ๐ฟ

๐‘

๐ถ๐ฟ = โˆ’๐‘๐‘๐‘œ๐‘ ๐›พ

As, sin 1800 โˆ’ ๐›พ =๐‘๐‘’๐‘Ÿ

๐‘๐‘’๐‘Ÿ=

๐ด๐ฟ

๐ด๐ถ

sin 1800 ๐‘๐‘œ๐‘ ๐›พ โˆ’ cos 1800 ๐‘ ๐‘–๐‘›๐›พ =๐ถ๐ฟ

๐‘

0 ๐‘๐‘œ๐‘ ๐›พ โˆ’ (โˆ’1)๐‘ ๐‘–๐‘›๐›พ =๐ถ๐ฟ

๐‘

๐‘ ๐‘–๐‘›๐›พ =๐ถ๐ฟ

๐‘

๐ถ๐ฟ = ๐‘๐‘ ๐‘–๐‘›๐›พ

So, coordinates of A are (b.cos๐›พ, b.sin๐›พ)

We have distance formula as:

d = (๐‘ฅ2 โˆ’ ๐‘ฅ1)2 + (๐‘ฆ2 โˆ’ ๐‘ฆ1)2

Here ๐ด๐ต = c = (๐‘๐‘๐‘œ๐‘ ๐›พ โˆ’ ๐‘Ž)2 + (๐‘๐‘ ๐‘–๐‘›๐›พ โˆ’ 0)2

c = ๐‘2๐‘๐‘œ๐‘ 2๐›พ โˆ’ 2๐‘Ž๐‘๐‘๐‘œ๐‘ ๐›พ + ๐‘Ž2 + ๐‘2๐‘ ๐‘–๐‘›2๐›พ

c = ๐‘2๐‘๐‘œ๐‘ 2๐›พ + ๐‘2๐‘ ๐‘–๐‘›2๐›พ โˆ’ 2๐‘Ž๐‘๐‘๐‘œ๐‘ ๐›พ + ๐‘Ž2

c = ๐‘2(๐‘๐‘œ๐‘ 2๐›พ + ๐‘ ๐‘–๐‘›2๐›พ) โˆ’ 2๐‘Ž๐‘๐‘๐‘œ๐‘ ๐›พ + ๐‘Ž2

c = ๐‘2(1) โˆ’ 2๐‘Ž๐‘๐‘๐‘œ๐‘ ๐›พ + ๐‘Ž2 Squaring both sides

c2 = ๐‘2 โˆ’ 2๐‘Ž๐‘๐‘๐‘œ๐‘ ๐›พ + ๐‘Ž2

And hence, c2 = a

2 + b

2 โ€“ 2abcos๐›พ

Similarly: a

2 = b

2 + c

2 โ€“ 2bccos๐›ผ

b2 = a

2 + c

2 โ€“ 2accos๐›ฝ

OR Q.5(b)

QUESTION: Prove fundamental law: cos(๐›ผ โˆ’ ๐›ฝ) = cos๐›ผ. cos๐›ฝ + sin๐›ผ. sin๐›ฝ PROOF:

Fundamental Law: Consider a unit circle with centre at O(0,0) as shown in figure.

Let P(cos๐›ฝ, sin๐›ฝ) and Q(cos๐›ผ, sin๐›ผ) be any two points in unit circle.

We have distance formula as:

d = (๐‘ฅ2 โˆ’ ๐‘ฅ1)2 + (๐‘ฆ2 โˆ’ ๐‘ฆ1)2

Here ๐‘ƒ๐‘„ = (๐‘๐‘œ๐‘ ๐›ผ โˆ’ ๐‘๐‘œ๐‘ ๐›ฝ)2 + (๐‘ ๐‘–๐‘›๐›ผ โˆ’ ๐‘ ๐‘–๐‘›๐›ฝ)2 ------------------(1)

Now rotate the axes so that the positive direction of X-axis passes through the point P. Then with respect to this coordinate system, the coordinates of P and Q become (1,0) and (cos(๐›ผ โˆ’ ๐›ฝ), sin(๐›ผ โˆ’ ๐›ฝ)) respectively.

So, ๐‘ƒ๐‘„ = [ cos ๐›ผ โˆ’ ๐›ฝ โˆ’ 1]2 + [ sin ๐›ผ โˆ’ ๐›ฝ โˆ’ 0 ]2 ------------------(2)

Comparing (1) and (2), we get

(๐‘๐‘œ๐‘ ๐›ผ โˆ’ ๐‘๐‘œ๐‘ ๐›ฝ)2 + (๐‘ ๐‘–๐‘›๐›ผ โˆ’ ๐‘ ๐‘–๐‘›๐›ฝ)2 = [ cos ๐›ผ โˆ’ ๐›ฝ โˆ’ 1]2 + [ sin ๐›ผ โˆ’ ๐›ฝ โˆ’ 0 ]2

or (๐‘๐‘œ๐‘ ๐›ผ โˆ’ ๐‘๐‘œ๐‘ ๐›ฝ)2 + (๐‘ ๐‘–๐‘›๐›ผ โˆ’ ๐‘ ๐‘–๐‘›๐›ฝ)2 = [ cos ๐›ผ โˆ’ ๐›ฝ โˆ’ 1]2 + [ sin ๐›ผ โˆ’ ๐›ฝ โˆ’ 0 ]2

or cos2๐›ผ โ€“ 2cos๐›ผ.cos๐›ฝ + cos2๐›ฝ + sin2๐›ผ โ€“ 2sin๐›ผ.sin๐›ฝ + sin2๐›ฝ = cos2(๐›ผ โˆ’ ๐›ฝ) โ€“ 2cos(๐›ผ โˆ’ ๐›ฝ) + 1 + sin2(๐›ผ โˆ’ ๐›ฝ)

or sin2๐›ผ + cos2๐›ผ โ€“ 2cos๐›ผ.cos๐›ฝ โ€“ 2sin๐›ผ.sin๐›ฝ + sin2๐›ฝ + cos2๐›ฝ = sin2(๐›ผ โˆ’ ๐›ฝ)+ cos2(๐›ผ โˆ’ ๐›ฝ) + 1 โ€“ 2cos(๐›ผ โˆ’ ๐›ฝ)

or 1 โ€“ 2cos๐›ผ.cos๐›ฝ โ€“ 2sin๐›ผ.sin๐›ฝ + 1 = 1 + 1 โ€“ 2cos(๐›ผ โˆ’ ๐›ฝ)

or โ€“ 2cos๐›ผ.cos๐›ฝ โ€“ 2sin๐›ผ.sin๐›ฝ = โ€“ 2cos(๐›ผ โˆ’ ๐›ฝ) Dividing by -2, we get or cos๐›ผ.cos๐›ฝ + sin๐›ผ.sin๐›ฝ = cos(๐›ผ โˆ’ ๐›ฝ)

Hence, cos(๐›ผ โˆ’ ๐›ฝ) = cos๐›ผ.cos๐›ฝ + sin๐›ผ.sin๐›ฝ

Q.6(a) QUESTION:

Show that: 2 = 1 +1

22 +1.3

2!.24 +1.3.5

3!.26 + . . .

SOLUTION:

2 = 1 +1

22 +1.3

2!.24 +1.3.5

3!.26 + . . .

Comparing R.H.S with R.H.S of

1 + ๐‘ฅ ๐‘› = 1 + ๐‘›๐‘ฅ +๐‘› ๐‘› โˆ’ 1

2!๐‘ฅ2 + . . .

๐‘›๐‘ฅ =1

22=

1

4 โ€ โ€ โ€ (1)

Squaring both sides

๐‘›2๐‘ฅ2 =1

16 โ€ โ€ โ€ (2)

๐‘› ๐‘› โˆ’ 1

2!๐‘ฅ2 =

1.3

2!. 24

๐‘› ๐‘› โˆ’ 1 ๐‘ฅ2 =3.2!

2! .16

๐‘› ๐‘› โˆ’ 1 ๐‘ฅ2 =3

16

รท ๐‘–๐‘›๐‘” ๐‘๐‘ฆ 2 , ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก ๐‘› ๐‘› โˆ’ 1 ๐‘ฅ2

๐‘›2๐‘ฅ2=

3

16รท

1

16

๐‘› โˆ’ 1

๐‘›=

3

16ร— 16

๐‘› โˆ’ 1

๐‘›= 3 โŸน ๐‘› โˆ’ 1 = 3๐‘›

โˆ’1 = 3๐‘› โˆ’ ๐‘› 2๐‘› = โˆ’1

๐‘› = โˆ’1

2

1 โŸน ๐‘›๐‘ฅ =1

4

โˆ’1

2๐‘ฅ =

1

4

๐‘ฅ = โˆ’1

2

Now,

๐‘…. ๐ป. ๐‘† = 1 โˆ’1

2

โˆ’12

= 1

2 โˆ’

12

= 2 12

= 2 = ๐ฟ. ๐ป. ๐‘†

Q.6(b) QUESTION: Solve the following system of equations by Cramerโ€™s Rule:

๐‘ฅ + ๐‘ฆ + ๐‘ง = ๐‘‘, ๐‘ฅ + 1 + ๐‘‘ ๐‘ฆ + ๐‘ง = 2๐‘‘, ๐‘ฅ + ๐‘ฆ + (1 + ๐‘‘)๐‘ง = 0 SOLUTION:

๐‘ฅ + ๐‘ฆ + ๐‘ง = ๐‘‘ ๐‘ฅ + 1 + ๐‘‘ ๐‘ฆ + ๐‘ง = 2๐‘‘ ๐‘ฅ + ๐‘ฆ + 1 + ๐‘‘ ๐‘ง = 0 ๐‘‘ โ‰  0 The determinant of the coefficient is

๐ด = 1 1 11 1 + ๐‘‘ 11 1 1 + ๐‘‘

Expanding by ๐‘…1

= 1 1 + ๐‘‘ 1

1 1 + ๐‘‘ โˆ’ 1

1 11 1 + ๐‘‘

+ 1 1 1 + ๐‘‘1 1

= 1 + ๐‘‘ 2 โˆ’ 1 โˆ’ 1 + ๐‘‘ โˆ’ 1 + 1 โˆ’ (1 + ๐‘‘) = 1 + 2๐‘‘ + ๐‘‘2 โˆ’ 1 โˆ’ ๐‘‘ โˆ’ ๐‘‘ ๐ด = ๐‘‘2 โ‰  0, Non-singular

๐ด๐‘ฅ = ๐‘‘ 1 1

2๐‘‘ 1 + ๐‘‘ 10 1 1 + ๐‘‘

Expanding by ๐ถ1

= ๐‘‘ 1 + ๐‘‘ 1

1 1 + ๐‘‘ โˆ’ 2๐‘‘

1 11 1 + ๐‘‘

+ 0

= ๐‘‘ 1 + ๐‘‘ 2 โˆ’ 1 โˆ’ 2๐‘‘ 1 + ๐‘‘ โˆ’ 1 + 0 = ๐‘‘ 1 + 2๐‘‘ + ๐‘‘2 โˆ’ 1 โˆ’ 2๐‘‘(๐‘‘) = ๐‘‘ 2๐‘‘ + ๐‘‘2 โˆ’ 2๐‘‘2 = 2๐‘‘2 + ๐‘‘3 โˆ’ 2๐‘‘2

๐ด๐‘ฅ = ๐‘‘3

๐ด๐‘ฆ = 1 ๐‘‘ 11 2๐‘‘ 11 0 1 + ๐‘‘

Expanding by ๐‘…3

= 1 ๐‘‘ 1

2๐‘‘ 1 โˆ’ 0 + (1 + ๐‘‘)

1 ๐‘‘1 2๐‘‘

= ๐‘‘ โˆ’ 2๐‘‘ + 1 + ๐‘‘ 2๐‘‘ โˆ’ ๐‘‘ = โˆ’๐‘‘ + 1 + ๐‘‘ ๐‘‘ = โˆ’๐‘‘ + ๐‘‘ + ๐‘‘2

๐ด๐‘ฆ = ๐‘‘2

๐ด = 1 1 ๐‘‘1 1 + ๐‘‘ 2๐‘‘1 1 0

Expanding by ๐‘…3

= 1 1 ๐‘‘

1 + ๐‘‘ 2๐‘‘ โˆ’ 1

1 ๐‘‘1 2๐‘‘

+ 0

= 2๐‘‘ โˆ’ ๐‘‘(1 + ๐‘‘) โˆ’ 2๐‘‘ โˆ’ ๐‘‘ = 2๐‘‘ โˆ’ ๐‘‘ โˆ’ ๐‘‘2 โˆ’ ๐‘‘

๐ด๐‘ง = โˆ’๐‘‘2

By Cramerโ€™s rule

๐‘ฅ =|๐ด๐‘ฅ |

๐ด =

๐‘‘3

๐‘‘2= ๐‘‘

๐‘ฆ ==|๐ด๐‘ฆ |

|๐ด|=

๐‘‘2

๐‘‘2= 1

๐‘ง ==|๐ด๐‘ง |

|๐ด|=

โˆ’๐‘‘2

๐‘‘2= โˆ’1

The solution is: ๐‘ฅ = ๐‘‘, ๐‘ฆ = 1, ๐‘ง = โˆ’1

Q.7(a) QUESTION: Find the remaining trigonometric functions using radian function if ๐‘ ๐‘–๐‘›๐œƒ = 0.6 and ๐‘ก๐‘Ž๐‘›๐œƒ is negative. SOLUTION: As, ๐‘ ๐‘–๐‘›๐œƒ is positive and ๐‘ก๐‘Ž๐‘›๐œƒ is negative so ๐œŒ(๐œƒ) is in second quadrant

In a unit circle

๐‘ฅ2 + ๐‘ฆ2 = 1 ----(1)

Where ๐‘ฅ = ๐‘๐‘œ๐‘ ๐œƒ and ๐‘ฆ = ๐‘ ๐‘–๐‘›๐œƒ

Given, sin๐œƒ = ๐‘ฆ = 0.6

๐‘ฆ = 0.6 ---(2)

(1) โ‡’ ๐‘ฅ2 + 0.6 2 = 1

๐‘ฅ2 + 0.36 = 1

๐‘ฅ2 = 1 โˆ’ 0.36

๐‘ฅ2 = 0.64

๐‘ฅ = ยฑ0.8

As ๐œŒ(๐œƒ) is in second quadrant

๐‘ฅ = โˆ’0.8

๐‘ ๐‘–๐‘›๐œƒ = ๐‘ฆ = 0.6

๐‘๐‘œ๐‘ ๐‘’๐‘๐œƒ =1

๐‘ฆ=

1

0.6=

๐‘๐‘œ๐‘ ๐œƒ = ๐‘ฅ = โˆ’0.8

๐‘ ๐‘’๐‘๐œƒ =1

๐‘ฅ=

โˆ’1

0.8=

๐‘ก๐‘Ž๐‘›๐œƒ =๐‘ฆ

๐‘ฅ=

0.6

โˆ’0.8=

๐‘๐‘œ๐‘ก๐œƒ =๐‘ฅ

๐‘ฆ=

Q.7(a) QUESTION: Prove any two of the following:

(i) 1โˆ’๐‘ ๐‘–๐‘›๐œƒ

1โˆ’๐‘ ๐‘–๐‘›๐œƒ= ๐‘ ๐‘’๐‘๐œƒ โˆ’ ๐‘ก๐‘Ž๐‘›๐œƒ

(ii) ๐‘ ๐‘–๐‘›2๐œƒ

๐‘ ๐‘–๐‘›๐œƒโˆ’

๐‘๐‘œ๐‘ 2๐œƒ

๐‘๐‘œ๐‘ ๐œƒ= ๐‘ ๐‘’๐‘๐œƒ

(iii) ๐‘ ๐‘–๐‘›7๐œƒโˆ’๐‘ ๐‘–๐‘›5๐œƒ

๐‘๐‘œ๐‘ 7๐œƒ+๐‘๐‘œ๐‘ 5๐œƒ= ๐‘ก๐‘Ž๐‘›๐œƒ OR ๐‘ก๐‘Ž๐‘›

๐œƒ

2 =

๐‘ ๐‘–๐‘›๐œƒ

1+๐‘๐‘œ๐‘ ๐œƒ

SOLUTION:

(i) 1โˆ’๐‘ ๐‘–๐‘›๐œƒ

1+๐‘ ๐‘–๐‘›๐œƒ= ๐‘ ๐‘’๐‘๐œƒ โˆ’ ๐‘ก๐‘Ž๐‘›๐œƒ

๐ฟ. ๐ป. ๐‘† = 1โˆ’๐‘ ๐‘–๐‘›๐œƒ

1+๐‘ ๐‘–๐‘›๐œƒ

ร— ๐‘–๐‘›๐‘” ๐‘Ž๐‘›๐‘‘ รท ๐‘–๐‘›๐‘” ๐‘๐‘ฆ 1 โˆ’ ๐‘ ๐‘–๐‘›๐œƒ , ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก

= 1โˆ’๐‘ ๐‘–๐‘›๐œƒ

1+๐‘ ๐‘–๐‘›๐œƒร—

1โˆ’๐‘ ๐‘–๐‘›๐œƒ

1โˆ’๐‘ ๐‘–๐‘›๐œƒ

= 1โˆ’๐‘ ๐‘–๐‘›๐œƒ 2

1 2โˆ’ ๐‘ ๐‘–๐‘›๐œƒ 2

= 1โˆ’๐‘ ๐‘–๐‘›๐œƒ 2

1โˆ’sin 2 ๐œƒ

= 1โˆ’๐‘ ๐‘–๐‘›๐œƒ 2

cos 2 ๐œƒ

=1โˆ’๐‘ ๐‘–๐‘›๐œƒ

๐‘๐‘œ๐‘ ๐œƒ=

1

๐‘๐‘œ๐‘ ๐œƒโˆ’

๐‘ ๐‘–๐‘›๐œƒ

๐‘๐‘œ๐‘ ๐œƒ= ๐‘ ๐‘’๐‘๐œƒ โˆ’ ๐‘ก๐‘Ž๐‘›๐œƒ = ๐‘…. ๐ป. ๐‘†

(ii) ๐‘ ๐‘–๐‘›2

๐‘ ๐‘–๐‘›โˆ’

๐‘๐‘œ๐‘ 2

๐‘๐‘œ๐‘  = ๐‘ ๐‘’๐‘

๐ฟ. ๐ป. ๐‘† = ๐‘ ๐‘–๐‘›2๐œƒ

๐‘ ๐‘–๐‘›๐œƒโˆ’

๐‘๐‘œ๐‘ 2๐œƒ

๐‘๐‘œ๐‘ ๐œƒ

=๐‘ ๐‘–๐‘›2๐œƒ๐‘๐‘œ๐‘ ๐œƒ โˆ’๐‘๐‘œ๐‘ 2๐œƒ๐‘ ๐‘–๐‘›๐œƒ

๐‘ ๐‘–๐‘›๐œƒ๐‘๐‘œ๐‘ ๐œƒ

=๐‘ ๐‘–๐‘›(2๐œƒ โˆ’ ๐œƒ)

๐‘ ๐‘–๐‘›๐œƒ๐‘๐‘œ๐‘ ๐œƒ

=๐‘ ๐‘–๐‘›๐œƒ

๐‘ ๐‘–๐‘›๐œƒ๐‘๐‘œ๐‘ ๐œƒ

=1

๐‘๐‘œ๐‘ ๐œƒ

= ๐‘ ๐‘’๐‘๐œƒ = ๐‘…. ๐ป. ๐‘†

(iii) ๐‘ ๐‘–๐‘›7ฮธ โ€“sin 5ฮธ

๐‘๐‘œ๐‘ 7ฮธ +cos 5ฮธ= ๐‘ก๐‘Ž๐‘›ฮธ

๐ฟ. ๐ป. ๐‘† =๐‘ ๐‘–๐‘›7๐œƒ โˆ’ ๐‘ ๐‘–๐‘›5๐œƒ

๐‘๐‘œ๐‘ 7๐œƒ + ๐‘๐‘œ๐‘ 5๐œƒ

= 2 cos

7๐œƒ + 5๐œƒ2 sin

7๐œƒ โˆ’ 5๐œƒ2

2 cos7๐œƒ + 5๐œƒ

2cos

7๐œƒ โˆ’ 5๐œƒ2

โˆต ๐‘ ๐‘–๐‘›๐‘ˆ โˆ’ ๐‘ ๐‘–๐‘›๐‘‰ = 2 cos

๐‘ˆ + ๐‘‰

2๐‘ ๐‘–๐‘›

๐‘ˆ โˆ’ ๐‘‰

2

๐‘๐‘œ๐‘ ๐‘ˆ + ๐‘๐‘œ๐‘ ๐‘‰ = 2 cos๐‘ˆ + ๐‘‰

2๐‘๐‘œ๐‘ 

๐‘ˆ โˆ’ ๐‘‰

2

= cos

12๐œƒ2 sin

2๐œƒ2

cos12๐œƒ

2 cos2๐œƒ2

= cos 6๐œƒ๐‘ ๐‘–๐‘›๐œƒ

cos 6๐œƒ๐‘๐‘œ๐‘ ๐œƒ

=๐‘ ๐‘–๐‘›๐œƒ

๐‘๐‘œ๐‘ ๐œƒ

= ๐‘ก๐‘Ž๐‘›๐œƒ = ๐‘…. ๐ป. ๐‘† OR

(iii) ๐‘ก๐‘Ž๐‘›๐œƒ

2 =

๐‘ ๐‘–๐‘›๐œƒ

1+๐‘๐‘œ๐‘ ๐œƒ

๐‘…. ๐ป. ๐‘† =sin ๐œƒ

1 + ๐‘๐‘œ๐‘ ๐œƒ

=2๐‘ ๐‘–๐‘›

๐œƒ

2๐‘๐‘œ๐‘ 

๐œƒ

2

1+ ๐‘๐‘œ๐‘  2๐œƒ

2 โ€“ ๐‘๐‘œ๐‘ 2๐œƒ

2

โˆต sin ๐œƒ = 2๐‘ ๐‘–๐‘›๐œƒ

2๐‘๐‘œ๐‘ 

๐œƒ

2 & ๐‘๐‘œ๐‘ ๐œƒ = ๐‘๐‘œ๐‘ 2 ๐œƒ

2 โ€“ ๐‘๐‘œ๐‘ 2 ๐œƒ

2

=2๐‘ ๐‘–๐‘›

๐œƒ

2๐‘๐‘œ๐‘ 

๐œƒ

2

1โˆ’๐‘๐‘œ๐‘  2๐œƒ

2 + ๐‘ ๐‘–๐‘›2๐œƒ

2

=2๐‘ ๐‘–๐‘›

๐œƒ

2๐‘๐‘œ๐‘ 

๐œƒ

2

๐‘ ๐‘–๐‘›2๐œƒ

2 + ๐‘ ๐‘–๐‘›2๐œƒ

2

=2๐‘ ๐‘–๐‘›

๐œƒ

2๐‘๐‘œ๐‘ 

๐œƒ

2

2๐‘ ๐‘–๐‘›2๐œƒ

2

=๐‘๐‘œ๐‘ 

๐œƒ

2

๐‘ ๐‘–๐‘›๐œƒ

2

= ๐‘ก๐‘Ž๐‘›๐œƒ

2= ๐ฟ. ๐ป. ๐‘†

Q.7(C) QUESTION: Solve: ๐‘ฅ2 + ๐‘ฆ2 = 34, ๐‘ฅ๐‘ฆ + 15 = 0 SOLUTION:

๐‘ฅ2 + ๐‘ฆ2 = 34

๐‘ฅ๐‘ฆ + 15 = 0

๐‘ฅ๐‘ฆ = โˆ’15

๐‘ฆ = โˆ’15

๐‘ฅ ----(1)

2 โŸน ๐‘ฅ2 + โˆ’15

๐‘ฅ

2

= 34 ๐‘ˆ๐‘ ๐‘–๐‘›๐‘” (1)

๐‘ฅ2 +225

๐‘ฅ2 = 34

ร— ๐‘–๐‘›๐‘” ๐‘๐‘ฆ ๐‘ฅ2 , ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก

๐‘ฅ4 + 225 = 34๐‘ฅ2

๐‘ฅ4 โˆ’ 34๐‘ฅ2 + 225 = 0

๐‘ฅ4 โˆ’ 25๐‘ฅ2 โˆ’ 9๐‘ฅ2 + 225 = 0

๐‘ฅ2 ๐‘ฅ2 โˆ’ 25 โˆ’ 9 ๐‘ฅ2 โˆ’ 25 = 0

๐‘ฅ2 โˆ’ 25 ๐‘ฅ2 โˆ’ 9 = 0

Either: ๐‘ฅ2 โˆ’ 25 = 0

๐‘ฅ2 = 25 โŸน ๐‘ฅ = ยฑ5

Either: ๐‘ฅ2 โˆ’ 9 = 0

๐‘ฅ2 = 9 โŸน ๐‘ฅ = ยฑ3

(1) โŸน ๐‘ฆ = โˆ’15

๐‘ฅ

๐‘ฅ = 5

๐‘ฆ = โˆ’15

5

๐‘ฆ = โˆ’3, ๐‘ฅ = 5

๐‘ฅ = โˆ’5

๐‘ฆ = โˆ’15

โˆ’5

๐‘ฆ = 3, ๐‘ฅ = โˆ’5

๐‘ฅ = 3

๐‘ฆ = โˆ’15

3

๐‘ฆ = โˆ’5, ๐‘ฅ = 3

๐‘ฅ = โˆ’3

๐‘ฆ = โˆ’15

โˆ’3

๐‘ฆ = 5, ๐‘ฅ = โˆ’3

๐‘†. ๐‘† = 5, โˆ’3 , โˆ’5,3 , 3, โˆ’5 , (โˆ’3,5)