The Seakeeping Characteristics ai a Small Waterplane Area ...

20
The Seakeeping Characteristics ai a Small Waterplane Area, Twin-Hull (SWATH) Ship Jairies A. Foin, Miircjarel D. Oohi and Kaihiyn K. tv'icCreighl David W. Taylor Naval Ship llesea'ch c,nd Development Conler Boihesda. Maryland, U.S.A. ABSTRACT Tliis paper addresses tilt: rnotioiin a Small WaierplcTiti Areo, Twin-riul! (SWATH) shiu in a scov/ay, The ci)rii:.r!t statui of full scriie trials, mo'iel experience and proJ'ction c-pc.l;iiity is preseriisd ond the (v/tlrou)ivTriic factors contrihufinq to Un- Qcneia'iy low iiir/iiorii af SV/ATH ships Gie idenfifiod, .Correlation bei'.veen Ironsfer functions from modifiod strip theory pcedic-i ion.s. ur,d IM:I .scale r(;sa!t,s for SSP l<Ai.V..ALINO, a •SWATH ship, is given cionq witii response spectra frnm fuli scale itiais includiny ;lie offecr of autoiyiotic n^otion coniroi. Comparisons of niodid and full scale motions in Se;.i Stoirs '( ond 5 are shown. Predictions of natural periods aie given as o function of speed and are compared to trial results. Tiie design philosopfiy for SV/ATH natural periods is dascriijed and fitodiction ot severest motions to be ected in an encourdercd .seav/ey is made by a 3loii.,,!cc!l cstiiriotinn leehn'oue. The overall good niotions o;vd ho.bitobility cporccteristics to be expected of br- SW.'XTr! type of ship are sb.ov.Ti tor a range of speeds end headings lo tb.e sea. .'-•-i^fliiODUadON Ttie analysis of rhe seakeeping pe; forrronce of any ïi.ip design depends on good rheorerical predictions validated tiy rnodei experiments and full scole iricis. For n^'w type of ship tbie depenciei'ce on experimental data is vnr,| lo buiid confici'-^nee in liie onoiyiicai tools and to if'jin !ns:gi;t into tiic tiydrcdynarnic ph'.H'iomena uniqiie to l'iat sf-iip t>'pe. In rliis paper a fuli scale trial of a pi'ciolype is used to .ricin confiticnce in on cnaiytical i;".erhod ihot is the.n cpiiiied to tb.e design problems of exi feme vol us prediction ond nmui-oi p.eriods estinioïion. This paper has two primary objective.:. One is io pre.se.nt the SMworihiness 1r:al data on SSP KAiiViAtJblO flic ship hyd;odynomics community v/itli on 'fV'erpretaiion of the shipbs motion be'^iayior. riis ofbioi' is .'t..! nnn 5 irate how trial;, model c-sperirnents and lical predictions enhance rlie developr.irn t of Slv.;coping design consideroiions for .SVv'-\Tt 1 ships. 2. THt:' g.A/ATH CONCEPT The SWATbl ship presents a uniqne chalb.'nge to naval architects and hydiodynaniicists, since its seai<eeping chorccterisl ies car, i)e dicioled by the designer to a for greoter exient than for convenfior;al irionoiiuils. SVA\TH ships con offer excellent moiio'-'s and su.>tai;-:ed speed capability in a seaway. The ,SWATI"i concepif was derived from conventional catamarans and ocean oil-drilling plaifonns. it combines tb.c speed and iarge desk area of the conventicnal cufamaten with fhe seakindliness end platform .stability of Hie drilling rig. A SV.'ATid s:-,;p consisis of iwo sireamüned sunmerged hulls that are torpedodibe in sbcpe connected to an aijove water structurul box by one cr iwo thin struts on each side. Propellers located behind each huil provide the propulsive force. Control surfaces -on the submerged lower liul! enhance sfability and can be activated to contiol trim and further reduce motions vvf;en tiie ship is underway. A lypicol SWATH design v/ou!d have only 20 percent of the walerplone area of a conventionai rnonoliijll. The reduced waterplane orea and redistribution of ouoyent volume into siibirierged bulls reduce tbie excitotion forces of ttie seav/ay ond increase tlie neturol periods of molion of llie craft. The relatively infiegu'ent occunence of storm v/aves v/ith long periods makes it possibl .i for snips with etiuoilv long noturai periods to avoid synch.ronous respoiise in the most commo,il>' occurring scnv/ays, Tiiis decoupling of tbe ship from wove excitatie;) forces is the fundamental idea behind trio SVv'ATH concepi. The reduced v/aterpiane area also ollows the SWATr i siiip lo be more responsive tc Ihe forces generated by control suifoces tiian a conventional ship. Ofher parameiers >A/b!cIi strongly infli.ience seakeeping are longitudinal metacentric lieiglvt (CrMi_'), transverse rnetacenrric heigfir (GM-|-), sepaiafion of longitudinal center of buoyancy ond center of flolofion (l.CB-LCr), slïut configuration ond size, end area ond position of ihe coiit;ol sur'facss. The influence of tliese parameiers as reflected by tho natural perioos of a SVv'A'lH sliip v/ili be discussed later. The U.S. Navy's dcvclapn-,e;if of Ihe SVAMi-l ccncepJ began in 1369 wilh the desion of SSP KAIMALibiO by 1 . V - 4 - 1

Transcript of The Seakeeping Characteristics ai a Small Waterplane Area ...

The Seakeeping Characteristics ai a Small Waterplane Area, Twin-Hull (SWATH) Ship Jairies A. Foin, Miircjarel D. Oohi and Kaih iyn K. tv'icCreighl

David W. Taylor Naval Ship llesea'ch c,nd Development Conler

Boihesda. Maryland, U.S.A.

ABSTRACT

Tl i is paper addresses ti l t: rnot io i in a Smal l WaierplcTiti A r e o , T w i n - r i u l ! (SWATH) shiu in a scov/ay, The ci)rii:.r!t s t a t u i of fu l l scriie t r i a l s , mo ' ie l expe r ience and p r o J ' c t i o n c -pc . l ; i i i t y is preser i isd ond the (v/ t l rou) ivTr i ic f ac to rs c o n t r i h u f i n q to Un- Qcne ia ' i y low i i i r / i io r i i af SV/ATH ships Gie i d e n f i f i o d , . C o r r e l a t i o n bei'.veen I rons fe r func t ions f r o m m o d i f i o d s t r i p theory pcedic-i ion.s. ur,d I M : I .scale r(;sa!t,s fo r SSP l<Ai.V..ALINO, a •SWATH ship, is g iven c ionq w i t i i response spec t ra f r n m fuli scale i t i a i s inc lud iny ; l ie o f f e c r of auto iy io t ic n^ot ion c o n i r o i . Compar isons of niodid and fu l l scale mo t i ons in Se;.i S t o i r s '( ond 5 are shown. P red i c t i ons o f na tu ra l periods a ie g iven as o f u n c t i o n of speed and are compared to t r i a l resu l ts . T i ie design phi losopf iy fo r SV/ATH na tu ra l periods is dascr i i jed and f i t od i c t i on ot severest mo t i ons to be ec ted in an encourdercd .seav/ey is made by a 3loi i . , , !cc!l c s t i i r i o t i nn leehn 'oue. The overa l l good niot ions o;vd ho.b i tob i l i ty c p o r c c t e r i s t i c s to be expec ted o f br- SW.'XTr! t ype of ship are sb.ov.Ti tor a range of speeds end headings l o tb.e sea.

. '-•-i^fliiODUadON

Ttie analysis of rhe seakeeping pe; f o r r r o n c e o f any ï i . ip design depends on good rheo re r i ca l p red i c t i ons va l ida ted tiy rnodei expe r imen ts and fu l l scole i r i c i s . For

n^'w t ype of ship tbie depenciei'ce on e x p e r i m e n t a l da ta is vnr, | lo bu i id confici'-^nee in l i ie o n o i y i i c a i tools and to if ' j in !ns:gi;t i n t o t i i c t i ydrcdynarn ic ph'.H'iomena un iq i ie t o l ' ia t sf-iip t>'pe. In rliis paper a fu l i scale t r i a l o f a p i ' c io l ype is used t o .ricin con f i t i cnce in on c n a i y t i c a l i;".erhod i h o t is the.n cp i i i i ed to tb.e design p rob lems of exi f e m e vol us p r e d i c t i o n ond nmui-oi p.eriods e s t i n i o ï i o n .

Th is paper has t w o p r i m a r y ob jec t i ve . : . One is io pre.se.nt the SMwor ih i ness 1r:al da ta on SSP KA i iV iA t Jb lO • f l ic ship hyd ;odynomics c o m m u n i t y v / i t l i on ' fV 'e rpre ta i ion of the shipbs m o t i o n be'^iayior. r i i s ofbioi' is

.'t..! nnn 5 i r a t e how t r i a l ; , mode l c-sperirnents and l i ca l p red i c t i ons enhance r l ie deve lopr . i rn t o f

Slv. ;coping design cons idero i ions fo r .SVv'-\Tt 1 sh ips.

2. THt:' g.A/ATH CONCEPT

The SWATbl ship presents a uniqne chalb. 'nge to naval a r c h i t e c t s and h y d i o d y n a n i i c i s t s , s ince i ts seai<eeping c h o r c c t e r i s l ies car, i)e d i c i o l e d by the designer to a for g reo te r e x i e n t than for convenf ior ;a l i r iono i iu i ls . SVA\TH ships con o f f e r exce l l en t moiio'- 's and su.>tai;-:ed speed c a p a b i l i t y in a seaway. The ,SWATI"i concepif was de r i ved f r o m conven t i ona l ca tamarans and ocean o i l - d r i l l i n g p l a i f o n n s . i t combines tb.c speed and iarge desk area of the conven t i cna l c u f a m a t e n w i t h fhe seakindl iness end p l a t f o r m .s tab i l i ty of Hie d r i l l i n g r i g . A SV.'ATid s:-,;p consis is of i w o s i r e a m ü n e d sunmerged hul ls t h a t are t o r p e d o d i b e in sbcpe connec ted t o an a i jove w a t e r s t r u c t u r u l box by one cr i w o t h i n s t ru ts on each s ide. P rope l l e rs loca ted behind each hui l p rov ide the p ropu ls ive f o r c e . C o n t r o l sur faces -on the submerged lower l iu l ! enhance s f a b i l i t y and can be a c t i v a t e d to c o n t i o l t r i m and f u r t he r reduce mot ions vvf;en t i ie ship is unde rway .

A l yp i co l SWATH design v/ou!d have on ly 20 p e r c e n t o f the w a l e r p l o n e area of a conven t i ona i rnono l i i j l l . The reduced wa te rp l ane orea and r e d i s t r i b u t i o n o f ouoyent vo l ume in to s i ib i r ierged bul ls reduce tbie e x c i t o t i o n f o r ces o f t t ie seav/ay ond increase t l ie ne tu ro l per iods of m o l i o n of l l i e c r a f t . The r e l a t i v e l y in f iegu 'ent o c c u n e n c e of s t o r m v/aves v / i t h long per iods makes i t possibl . i for snips w i t h et iuo i lv long no tu ra i per iods to avo id synch.ronous respoiise in the most commo, i l> ' o c c u r r i n g scnv/ays, T i i i s decoup l ing of tbe ship f r o m wove e x c i t a t i e ; ) forces is the f undamen ta l idea behind tr io SVv'ATH c o n c e p i . The reduced v /a terp iane area also o l lows the SWATr i s i i ip l o be m o r e responsive t c Ihe fo rces gene ra ted by c o n t r o l su i f oces t i ian a conven t i ona l sh ip.

O fhe r p a r a m e i e r s >A/b!cIi s t r ong l y inf l i . ience seakeeping are long i tud ina l m e t a c e n t r i c l ieiglvt (CrMi_'), t ransverse r n e t a c e n r r i c heigf i r (GM-|-), sepa ia f i on of l ong i tud ina l cen te r o f buoyancy ond c e n t e r of f l o l o f i o n ( l . C B - L C r ) , s l ï u t c o n f i g u r a t i o n ond s ize, end area ond pos i t i on of ihe c o i i t ; o l sur ' facss. The i n f l uence of t l iese pa rame ie r s as r e f l e c t e d by tho na tu ra l per ioos of a SVv'A'lH sl i ip v / i l i be discussed l a te r .

The U.S. Navy 's dcvclapn-,e; i f of Ihe SVAMi-l ccncepJ began in 1369 w i l h the desion o f SSP K A I M A L i b i O by 1 .

V - 4 - 1

G. Lang of the Nnva l Ocean Systems CenTer (NOSC) in C a l i f o r n i a and the M O D C A T p r c g r a m a t the D a v i d T a y l o r Nava l Ship Research and D e v e l o p m e n t Cen te r ( D T N S R D C ) . M O D C A T v/as renair ied SWATH (Smal l Waterp lane A r e a T w i n Hu l l ) in l o d i f f e r e n t i a t e the concept f r o m ccc iven l iona l co tamorans . Over t l ic last t en years progress has been made in tlie p r e d i c t i o n o f d rag , s t a b i l i t y , m a n e u v e r i n g , m o t i o n s , and loads fo r SWATH ship designs, A summary of th is w o r k is con ta ined in Larnb and Fe in (Ref . I ) . in p a r t i c u l a r two -d imens iona l s t r i p t heo ry has been app l ied to SWATH ship mo t i ons p r e d i c t i o n by Lee and Curp f iey (Ref . 2). A c o m p u l e r p r o g r a m app ly ing th is t h e o r y has s l iown good c o r r e l a t i o n w i t h mode l tes ts for m o t i o n s , v/ave e x c i t a t i o n fo rces and osc i l l a t i on c o e f f i c i e n t s . Tho p red i c t i ons can be made fo r regular or i r regu la r v/aves. Th is techn ique is ra the r t i m e - c o n s u m i n g so s i m p l i f i e d tec lm iques fo r e s t i m a t i n g the p o t e n t i a l f l o w added mass and damp ing fo r two -d imens iona l SWATH sec t ions hove been deve loped by D a l z e l l (Re f . 3) und L e e (Ref . ' l ) . These p rog rams can be used to screen a w ide range of p o t e n t i a l designs in a shor t t i m e .

SSi^ K A I M A L I N O was the f i r s t e x p e r i m e n t a l p r o i o i y p e for SWATH ships. The goal of the U.S. Navy 's SWATH p r o g r a m is la rger p r o t o t y p e s tho t con d e m o n s t r a t e the advantages of SWATH .ships in r e l a t i o n to f-lava miss ions. T l ie M i t s u i Semi -Submerged C a t a m a r a n (SSC) Mesa-80 (Re f . 5) is a recent add i t i on to the f a m i l y o f SWATH p r o t o t y p e s . Its a t t r i b u t e s w i l l g r e a t i y advance the deve lopment o f SWATH teehno iogy ,

3. SEM 1-SUBMERGËD P L A T F O R M (SSP) K A I M A L I N O

3.1 D e s c r i p t i o n

Semi -Submerged P l a t f o r m (SSP) K A I M A L I N O is the f i r s t SWATH ship b u i l t in the U n i t e d S ta tes . Des igned by T . G. Lang ( f^ef. 6), i t was in tended as a w o r k b o a t for the fdaval Ocean Sys iems Cen te r (NOSC) Hav /a i i L a b o r a t o r y , i t has p roven va luab le bo th as a w o r k b o a t and as a p l a t f o r m for d e m o n s t r a t i n g t l i e seakeeping advantages of the aVATbl concep t . C o n s t r u c t e d in 1973 by tbe C u r t i s Bay Coast Guard S|-iipyard in B a l t i m o r e , M a r y l a n d , the ship was m o d i f i e d at D i l l i n g h a m Sh ipya rd in H a w a i i by t he a d d i t i o n o f d i sp lacemen t inc reas ing buoyancy b l i s te rs in 1975. The c u n ent d i sp lacemen t is 220 tonnes .

The p a r t i c u l a r s of SSP K / M M A L I N O are p resen ted in T a b l e I. O r i g i n a l des ign va lues and values foi- the most recen t seakeeping t r i a l s are g i v e n . The a d d i t i o n o f t he b l i s te rs is respons ib le for mos t of the changes. As ske tched in F i g u r e I , the sfi ip cons is ts of two c y l i n d r i c a l lov/er hu l ls connec ted to fhe upper box by t w o s t ru ts per h u l l . Buoyoncy b l i s te rs ore l oca ted on the inboard side o f each h u l l , e x t end ing v / i th cons tan t th i ckness f r o m a p p r o x i m a t e l y 7 to 16 m e t e r s a f t o f t he nose and t e r m i n a t i n g a t 21 m e t e r s a f t o f the nose. T a p e r e d all m o v a b l e c o n t r o l f ins (ca l led canards) o re l oca ted inboard just o f t o f the noses. A cons lan f chord f l opped h y d r o f o i l .spans t h e space b e t w e e n t h e hul ls a f t o f amidsh ips . F^udders are m o u n t e d in the p rope l l e r s l i p s t r e a m behind each h u l l . The f o r w a r d s t r u t s increase in cho rd and th ickness f r o m a p o i n t jus t beiov/ the w a t e r l i n e to the c o n n e c t i o n to the box , the oft s t r u t s also increase in th ickness as tlie box is approached . B o t h s t a r b o a r d s t ru t s are o u t f i t t e d w i t h spray ra i l s above the w a t e r l i n e t h a t help in d e f l e c t i n g sheets o f w a t e r t h a t m i g h t c l i m b the s t r u t s in waves . The above w a t e r box is f l a t b o t t o m e d e x c e p t fo r s l an ted , shaped sec t ions on the f o r w a r d end. These sec t ions tend t o cushion s lams in head s e a s .

SSP K A I M A L d N O has n a t u r a l l y good m o t i o n c h a r a c t e r i s t i c s in m a n y sea c o n d i t i o n s . A n a u t o m a t i c

T a b l e 1 Cl i a r a c t e r i s t i c s o f t h o S S P KAIA / IAL i r ' JO

Original Design

As Tostod 1976 and 1979

Length, Undeiwater, m 24.8 24.8

Length, Overall, m 26.9 26.9

Displacement, M T S W 192.2 220.0

Draft, m .t.3 4.8

Beam, IViaximum Submerged, m 15.1 15.1

KG, Height of Center ot Cïravity above Baseline, m 4.7 4.6

Diameter of Lower Hulls, m 1.98 1.E8

KB, Heiglit of CB above Baseline 1.75 1.65

G M l , m 4.42 3.84

GMj , m 2.01 1.01

Waterplane Area, 23.0 23.0

Longitudinal Distance CG Forward of Aft Perpendicular, m 12.9 13.4

Longitudinal Distance CF Forward of Aft Perpendicular, ni 13.5 13.5

Pitch Radius of Gyration, m 7.1 7.0

Roll Radius of Gyration, m 4.8 5.5

Aft Foil, Projected Area, m^ 25.1 25.1

Fnn/i/ard Canards, Total Area, m^ 7.1 7.1

F ig . 1 S k e t c h o f S S P KAil\;LAL!rslO S h o v / i n g

i n s t r u m e n t L o c a t i o n s

m o t i o n c o n t r o l sys tem designed to reduce mot ions in all sea cond i t i ons was designed and documen ted by Higdon (Ref . 7). The sys tem uses t l ie f o r w a r d canards end the s te rn fo i l f laps to m i n i m i z e p i t ch and ro l l mo t i ons , r ieave is not r n i n i i n i zed but i t can be c o n t r o l l e d so as to m i n i m i z e r e l a t i v e m o t i o n v / i th respec t to t l ie v/ove in order to reduce v /ater c o n t a c t s in low encounter f requency s i t ua t i ons such as f o l l o w i n g seas. This con t ro l mode re l ies on pressure (he igh t ) sensors loca ted in the u n d e r w a t e r hul ls in con junc t i on w i t h min imi ized iner t ia l p i t c h and r o l l . Pleading c o n t r o l is m a i n t a i n e d by the rudders keyed to a yaw r a te gyroscope. The ship has 153 k i l o w a t t s (20Ü horsepov/er) ava i l ab le fo r f in and rudder a c t u a t i o n , v /h ich scales up to values t ha t are unacceptab le for la rger SWATH designs. Hov /ever , m o r e e f f i c i e n t a c t u a t o r s cou ld p rov ide a c c e p t a b l e c o n t r o l de f l ec t i on

\ ' - 4 - 2

rates for less power on larger ships as shown by H igdon

'^^'^'^SSP K A l M A L l I d O is o u t f i t t e d w i f h two 1660 k i l o w a t t (2230 horsepower) a i r c r a f t t ype gas tu rb ine engines in t he inner box t l i o t dr ive c o n t r o l l a b l e p i t c h p rope l le rs th rough

a chain d r i ve sys tem. SSP K A I M A I J N O reoched 25 kno ts in 1974 be fo re the b l i s te rs we re added. C u r r e n t to rque l im i t a t i ons on d r i ve t r a i n componen ts reduce the top speed to aboul 18 kno ts .

SSP K A I M A L I t T O does no t represent c u r r e n t design phi losophy fo r SWATH ships; fo r examp le , t l ie f u l l span s iern fo i l is larger t han e i the r s t a b i l i t y or c o n t r o l requ i res. The smal l o v e r a l l size o f SSP K A I M A L I N O makes her m o t i o n in h igh sea s l a tes worse than larger SWATH ships. In a d d i t i o n , her w a t e r p l a n e area and m e t a c e n t r i c heights resu l t in na tu ra l m o t i o n per iods a t low speeds tha t are not o p t i m u m fo r la rger SWATH ship designs. These d i f f e rences ore discussed in de ta i l in L a m b and Fe i n (Ref . I) w i t h i n the c o n t e x t of c u r r e n t SV/ATH design p r a c t i c e . Neve r the less SSP K A I M A L I N O does & -instrate the advantages of t l ie SWATH c o n c e p t . I t ol prov ides a means for r e l a t i n g fu l l scale p e r f o r m a n c e to t h e o r e t i c a l and e x p e r i m e n t a l mode l w o r k , ^ ffius v e r i f y i n g the design too ls that apply to any SWATH ship.

3.2 Mode l E x p e r i m e n t s

Mode l expe r imen ts we re conduc ted a t D T N S R D C on G 1/7.8 scale mode l of SSP K A I M A L I N O in 1971 as the design was being f i n a l i z e d . The o b j e c t i v e of the exper iments v/as to eva lua te t l ie design and i d e n t i f y p rob lem areas. Ttie 3.35 m e t e r (11 f o o t ) long mode l bu i l t üi D T N S R D C v/as o u t f i t t e d fo r d rag , p ropu ls ion , s t a b i l i t y , seakeeping, and s t r u c t u r a l measu remen ts . Lxper iments were c o n d u c t e d on C a r r i a g e 2 (DTNSRDC's Deep Water S t ro igh t l i ne Basin) and in the seakeeping tank of i h e Maneuver ing and Seakeeping F a c i l i t y ( M A S K ) . For the seokeeping expe r imen ts t l ie model was s e l f - p r o p e l l e d and te the red by power cables and s a f e t y l ines to the t o w i n g ca r r iage . P i t c h and roll angles were measured by gyroscopes. R e l a t i v e bow m o t i o n was ob ta ined f r o m on u l t rason ic t ransducer moun ted on the bow. A n occe le rome te r p laced a t the f o r w o r d m o s t po in t o f the model measured bow v e r t i c a l a c c e l e r a t i o n . Head ing was r - - ' n t a i n e d by s e r v o - c o n t r o l l e d rudders t h a t r e a c t e d to

Y and yov/ ra te feedback . P o w e r i n g was c o n t r o l l e d f r o m the ca r r i age and v a r i e d to keep s lock in the cab les and sa fe ty l ines regard less of the wave induced surge. Ttie a f i f o i l and canards w e i e f i xed at angles requ i red to give level t r i m and design s inkage in c a l m w a t e r a t the speed under s tudy . The i r regu la r waves w e r e p rov ided by pneumat ic wavemokers d r i ven by m a g n e t i c t ape , f he waves a p p r o x i m a t e d P i e r s o n - M o s k o w i t z sea spec t ra f o r Sea Sta tes ') and 5. A l l headings v/ere i nves t i ga ted over a range o f speeds f r o m k.2 to 21 kno ts f u l l sca le . The bov/ acce le ra t i on was higl iest in head seas wh i l e p i t c h m o t i o n was largest in f o l l o w i n g seas. I^o s i g n i f i c a n t s l a m m i n g was noted at any head ing. These ea r l y resu l t s d id not g i ve a comp le te p i c t u r e of seakeeping o f SSP K A I M A L I N O bu t they did shov/ t ha t there were no ma jo r p rob lems . L a r g e mot ions in s te rn q u a r t e r i n g and f o l l o w i n g seas w e r e o f some concern though they v/ere assoc ia ted w i t i i long per iods. The conc lus ions o f these e x p e r i m e n t s v/ere genera l ly v e r i f i e d by subsequent f u l l scale t r i a l s .

ATsecond ser ies o f m o d e l e x p e r i m e n t s was c o n d u c t e d in 1973 as c o n s t r u c t i o n of the ship v/as end ing . The ob jec t i ve v/as to i nves t i ga te synehronous cond i t i ons v/here the encounter per iod in waves cor responded to t i ie ship's • - i u ra l per iods . A 1.5 m e t e r long r a d i o - c o n t r o l l e d mode l

dgned by HOSC was u t i l i z e d . This mode l a l l o w e d for more t i m e a t speed in i h e M A S K f a c i l i t y and cou ld be run

w i i f i o u t power f r o m the tov / ing c a r r i a g e . The mode l v/as i n s t r u m e n t e d t o measure i m p a c t pressures, p ' t c l i , r o l l , r e l a t i v e bow m o t i o n , and bow v e r t i c a l a c c e l e r a t i o n . The e x p e r i m e n t s cons is ted o f t he d e t e r m i n a t i o n o f c a l m w a t e r na tu ra l pe r iods a t z e r o speed, evo lua t i on of regu la r wave responses and i nves t i ga t i ons in a seaway r e p r e s e n t i n g a f u l l scale moda l pe r iod of 9.5 seconds and s i g n i f i c a n t wave he igh t o f ' t m e t e r s .

The na tu ra l pe r iods at ze ro speed were 0.49 seconds fo r p i t c h , 8.06 seconds fo r heave and 15.7 seconds fo r r o l l in f u l l scale t e r m s . The regu lar wave work emphas ized encounter f r equenc ies t h a t m i g h t e x c i t e synchronous m o t i o n s . La rges t m o t i o n s were found in f o l l o v /mg seas when ship speed was c lose to the wave speed. In t h a t case a large bow down s t a t i c t r i m occu r red due to i he a c t i o n of the v/ave on the f u l l span a f t f o i l . Th is c o n d i t i o n , w h i c h cou ld lead to the upper s t r u c t u r e bow be ing bu r ied in the wave and i h e p rope l l e r b roach ing , was la te r observed in f u l l scale t r i a l s .

In t he i r r egu la r wave expe r imen t s s i g n i f i c a n t s l a m m i n g was expe r i enced in head Sea S ta te 6 a t soeeds above 10 kno ts f u l l sca le . It should be no ted that al l these mode l e x p e r i m e n t s v/ere conduc ted w i t h c o n t r o l s f i x e d . Severe m o t i o n s and i m p c c i s a t speed cou ld be e x p e c t e d to be a l l e v i a t e d by the use o f a u t o m a t i c c o n t r o l .

3.3 Fu l l Scale T r i a l s

SSP K A I M A L I N O has undergone e x i e n s i v e t r i a l s beg inn ing in I97'4. The f i r s t series ot t r i a l s v/as c o n d u c t e d (as were i h e mode l expe r imen ts ) on t l ie o r i g i na l c o n f i g u r a t i o n . These we re c o m p l e t e d in 1975 ond inc luded i nves t i ga t i ons of pov /e r ing , s t r u c t u r a l loads, c o n t r o l response, m a n e u v e r i n g , and seakeepi r iq , i h e t r i a l cond i t i ons v/ere la te r repea ted a f l e r SSP K A I M A L I N O was o u t f i t t e d w i t h buoyancy b l i s te rs . In a d d i t i o n , c o n t r o l sys tem e v a l u a t i o n t r i a l s , he l i cop te r landing t r i a l s , and compar i son i r i o l s w i t h t w o Coast Guard ships i iave been c o n d u c t e d . The pov/er ing resu l ts arc d o c u m e n t e d by Stenson (Re f . 9) and Woo and M.ouck (Re f . 10). The maneuve r i ng resu l ts are s u m m a r i z e d in Larnb and F e i n (Re f . 1). F i g u r e 2 is a pho tog raph o f SSP KA1MAI . . IN0 undergo ing t r i a l s .

F ig . 2 SSP KAII ' i/1ALir\!0 U n d e r g o i n g T r i a l s

The f i r s t ser ies of seakeeping t r i a l s in 1975 v/as conduc ted in the K c i w i Channel b e t w e e n the islands of Oahu and M o l o k o i (See F igu re 3) , Measu remen ts v/ere made of t he ship's r i g i d body mo t ions ( p i t c h , r o l l , r e l a t i v e bow m o t i o n ) , a c c e l e r a t i o n s (surge, sway , heave , bow

\ ' - 4 - 3

v e r t i c a l and po r t v e r t i c a l ) , ra tes {yaw, p i t c h , and r o l l ) , and i m p o c t oressures a t 20 loca t ions . The seaway was measured by a f r ee f l o a t i n g buoy tha t was dep loyed by the chase boa t . The buoy con ta ined a double i n t e g r o t m g o c c e l e r o m e t e r and t e l e m e t e r e d the wove he igh t s ignal back to t he ship. The buoy tended to d r i f t and a t t i m e s was far enough f r o m the ope ra t i ng area t o m a k e t h e re levancy of some of the wave i r ieasurernents ques t ionab le . S i g n i f i c a n t wave he igh t was about 1.75 m e t e r s .

T a b l e 2 S e a k e e p i n g T r i a l C o n d i t i o n s

160°V/

Niihau

Trials Sites

t 1975 Trial

2 1976 Trial

3 First 3 Days

4 Last Day -

158^W Predominant ' North Wave Direclion

(All Trials)

?2°N

•i- — ^ - - ^ 21°t

~ 1979 Trial

19/9 Trial 50 km

F ig . 3 H a w a i i a n I s l a n d s T r i a l s L o c a t i o n s

T r i a l s v/ere conduc ted a t nomina l speeds o f 16.5, 12.5 and 9.5 kno ts . A v e r a g e speeds, s i gn i f i can t wave he igh ts , and t r i a l cond i t i ons are l i s ted in Tab le 2. The c o n t r o l sys tem v/as not emp loyed for these t r ia ls so canards and the s te rn f o i l w e r e f i x e d at d e f l e c t i o n s des igna ted for mean t r i m a t the g iven speed. The t r i a l s p rocedure cons is ted o f ad jus t i ng t l ie ship to level f r i m a t ze ro speed and reco rd i ng d i s p l a c e m e n t . B e f o r e each run Ihe ship was set on course o t t he des i red heading t o fhe waves as d e t e r m i n e d by a deck observer . As w i t h any f u l l scale t r i a l , t h e r e was some doubt about t he d i r e c t i o n a l i t y o f the seav/ay a l t hough the d i r e c t i o n of p r i m a r y energy was c a r e f u l l y obse rved . A t least 30 m inu tes o f da ta we re taken for each t r i a l c o n d i t i o n . Mo changes in p ropu ls ion or c o n t r o l d e f l e c t i o n w e r e p e r m i t t e d du r i ng the da ta c o l l e c t i o n pe r i od . Few impac ts were n o t e d , fhe on ly case whe re deck wetness o c c u r r e d was in f o l l ow ing seas when t l ie wave speed approached the ship speed and a la rge a m p l i t u d e bu t g e n t l e bow " p l o w - i n " o c c u r r e d . P rope l l e r b roach ing o c c u r r e d in s im i l a r cond i t i ons in g u a r t e r i n g seas. As r e p o r t e d by K a l l i o (Re f . 1 I ) , the da ta we re inadequate fo r power spec t ra l ana lys is ; nowever , s i g n i f i c a n t va lues of t he mo t i ons and a c c e l e r a t i o n s w e r e ob ta i ned a t a l l head ings.

In Nove inbe r o f 1976 low speed t r i a l s v /ere c o n d u c t e d by D T N S R D C on SSP K A I M A L I N O to o b t a i n bending m o m e n t s in beam seas. In c o n j u n c t i o n w i t h t ha t e f f o r t , t he m o t i o n s , bov/ v e r t i c a l a c c e l e r a t i o n , and seav/ay were measured a t a l l headings a t the nomina l speed o f 5 kno ts . These resu l t s p rov ided i n f o r m a t i o n about SSP K A I M A L I N O m o t i o n s in a h igh Sea S ta te 5 a t low speed. The ship had been m o d i f i e d p r io r t o these expe r imen t s by the a d d i t i o n o f buoyancy b l i s te rs on the inboard lovver hu l l s . The ship was o p e r a t i n g on on ly one p rope l l e r dur ing these t r i a l s . P i t c h and ro l l w e r e measured a t t he s tab le t a b l e ( l o ca ted about 6 m e t e r s f o r w a r d o f the C G on the c e n t e r l i n e ) w h i l e bow m o t i o n was d e t e r m i n e d f r o m an u l t r a s o n i c he igh t sensor loca ted 1.0 m e t e r f o r w a r d o f the bow on the ship c e n t e r l i n e . Bow v e r t i c a l a c c e l e r a t i o n was measured as in the e a r l i e r t r i a l s in the p i l o t house. Wave s p e c t r a v /ere aga in ob ta i ned f r o m a f r e e f l o a t i n g buoy and in these t r i a l s the buoy v/as dep loyed f r o m the ship and was v e r y near the t r i a l l o ca t i on near Oahu Is land.

Title Sea

Dato Location g , ^ , ^

Significant Wuva Ht

m

r,'uiTil)er of Conditions

Speeds Control

Evaluated

Seakcfiping Evalu.ilton

7/28/75 KAIWI STRAIT

'1 1.8 6 9.8.12.8 no

7/31/75 KAIWI STRAIT

•i 1.7 10 9.8,17 No

Structural Evaluation

11/26/76 North-East of Oahu

5 3.fl 6 6 No

Control Evaluation

1/21/79 South-East of Kauai

5 2.9 10 15.5 Yes

1/23/79 South-East of Kauai

4 2.5 4 0,10 Yos

1/25/79 South-East of Kauai

1 2.0 18 3.5,10,15.5 Yes

1/31/79 r-lorih-East of Oahu

5 3.2 19 7,10,15.5 Yes"

• One blisUT mihsinj, data not leportod herein. ^

Sign i f i can t wave he igh t is g iven in Tab le 2. The t r ia l s we re conduc ted w i t h o u t the use of the c o n t r o l s y s t e m , as the speed v/as too lov/ for s u f f i c i e n t c o n t r o l e f f e c t i v e n e s s . Spec t ra f r o m these t r i a l s w i l l be disccssed in Sec t ion 5.

The most recen t seakeeping t r i a l s were conduc ted in January of 1979 in order ro ex tend the range o f seakeeping resu l t s , to ob ta in da ta t t ia f cou ld be used to genera te t r a n s f e r func t ions , and to q u a n t i f y the e f f e c t of a u t o m a t i c c o n t r o l on the mo t i ons of SSP KAIMALI I^JO. These t r i a l s v/ere conduc ted o f f Kaua i and Oahu as no ted in F igu re 3. Mea.surernents were made of r i g i d body m o t i o n s , acce le ra t i ons and the seaway. I m p a c t pressures and s t ra ins we re recorded bu t not ana lyzed since there w e r e f ew i m p o c t s . The t ronsducer loca t ions in th is t r i a l are shown in F i g u r e I . Waves were again mea.sured by a f r ee f l o a t i n g buoy in c lose p r o x i m i t y to the t r i a l a rea . When not in t he wa te r the buoy was a t t a c h e d fo the deck and t h e r e b y p rov ided a v e r t i c a l d isp lacernent measu remen t near the l ong i tud ina l cen te r of g r a v i t y (CG) t ha t was a l m o s t equ iva len t t o heove .

In p repa ra t i on for each p a r t i c u l a r r u n , the ship was s tead ied on course a t a p p r o x i m a t e l y t he des i red speed. The speed v a r i e d s l i gh t l y due to w i n d ond v/uvo cond i t i ons . The ship course v/as set to m a i n t a i n a heading w h i c h was cons tan t r e l a t i v e to the p redom inan t seciv/oy as d e t e r m i n e d by observa t ions . Once tine head ing and speed w e r e se t , manua l c o n t r o l se t t i ngs we re made or the c o n t r o l sys tem was t u r n e d on, and t hen the da ta c o l l e c t i o n po r t i on of a run began. C o l l e c t i o n t i m e was governed by the need fo r .su f f i c ien t encoun te rs a t t he g iven speed and heading and va r i ed f r o m 20 to 50 m i n u t e s . No chonges in manua l c o n t r o l s u r f a c e d e f l e c t i o n or p ropu ls ion set t ings were made dur ing the runs. Resu l ts f r o m these t r i a l s w i l l be discussed in f o r t h c o m i n g sec t ions .

In a d d i t i o n , SSP K A I M A L I N O p a r t i c i p a t e d in a three ship c o m p a r a t i v e t r i a l t h a t was conduc ted in M a y of 1978. It is documen ted by Woolover and p e t e r s (Re f . 12). SSP K A I M A L I N O v/as run a longs ide a 100 ton.no pa t ro l c r a f t .30 m e t e r s long, and a 3000 tonne Coast Guard C u t t e r . The t r i a l s w e r e c o n d u c t e d in Sea S ta te 3. Emphasis v/as on human f a c t o r s and c o m p a r a t i v e re la t ionsh ips ra ther than on a t « o l u t e d a t a . The resul ts d e m o n s t r a t e t h a t SSP K A I M A L I N O has super ior mo t ions to a ship o f 10 t i m e s g r e a t e r d i sp lacemen t tn the same Sea S ta te 3.

I

J A O J I O N S RESULTS F O R SSP K A I M A L I N O

The resu l ts o f seakeep ing e x p e r i m e n t s a re descr ibable in severa l ways . One is in the f o r m of_ l l i e r a t i o of s i gn i f i can t responses to s i gn i f i can t v/ave h e i g l i t . A s ign i f i can t value is the overage of t f ie o n e - t h i r d h ighest values and may be ob ta ined f r o m a t i m e h i s to ry of the mo i i ons or wave excurs ions . A n o t h e r m e l h o d of analys is is the power spec t ra l dens i t y d i s t r i b u t i o n w h i c h re l a tes the energy of the m o t i o n oi- wave to the f r equency . SSP KAIMAL l l x lO fu l l sca le t r i a l s s p e c t r a l da ta are p resen ted in the next sec t i on . A t h i r d m e t h o d of analys is used in Sect ion 6.3 invo lves the t rans fe r f u n c f i o n s . "fhe t r a n s f e r func t ions prov ide the un i t response of a m o t i o n to a un i t v/ave height th roughou t t l i e f r equency range.

The ra t ios o f s i gn i f i can t responses to s i g n i f i c a n t v/ave he igh t are presented in F igu res 4 to 13 for the model and fu l l scale sh ip . The data were ob ta ined in Sea Sta les ' l and 5. The wave spec t ra for the mode l exper imen ts v/ere d i f f e r e n t f r o m those in the f u l l sca le t r i a l s , The e f f e c t o f c o n t r o l a t h igh speed is also inc luded

p i t ch and ro l l in F igu res 10 t h r o u g h 13.

F igures 4 th rough 7 show the e f f e c t of speed on f r ee body mot ions w i l h o u l any f o r m of c o n l r o l in head seas. The resul ts show l i n e a r i t y t h roughou t the wave l ie igh t ronge exam ined . C o n e i a t i o n b e t w e e n mode l and niW scale is good for p i t c h t h roughou t the .speed range, i h e model resul ts we re ob ta i ned fromi the 1971 and 1973 expe r imen ts . F r o m a m a x i m u m at zero speed, p i t c h decreases to a m i n i m u m nt 10 kno ts , then peaks at abou t 14 kno ts . B e t w e e n 10 and 14 knots t l ie v/ave drag hump occurs . A t 10 knots t he ship is " c l i m b i n g " i ts .se l f -gencra led bow wove and thus i t is heav i l y damped in p i t c h . A t 14 kno ts the s l i i p -gene ro ted wave is beh ind the ship ond may ac t in a des tab i l i z i ng manner . T r i a l cond i t ions a f t e r t h e add i t i on of t l ie buoyancy b l i s te rs ore ind ica ted by so l id po in ts . T l ie da ta w i t l i buoyancy b l i s te rs shov/ good ag reemen t w i t h the ea r i i e r da ta v /h ich ind ica tes t ha t t he b l i s te rs , w h i c h ore c e n t e r e d a t the long i tud ina l C G , have l i t t l e e f f e c l on p i t c h m o t i o n .

F igu re 5 presents ro l l in head seas. The mode l expe r imen ts v/h ich v/ere c o n d u c t e d in a u n i d i r e c t i o n a l head sea show m i n i m a l ro l l m o t i o n wh i l e the fu l l sca le t r i a l resu l ts shov/ s i g n i f i c a n t r o l l . Th is may be a t t r i b u t e d l o the f a c t t h a t v/ave components are present in t he real

v i r o n m e n t f r o m o the r than the d i r e c t i o n of the . edorninont energy . The v e r t i c a l a c c e l e r a t i o n in F i g u r e 6 remains r e l a t i v e l y cons tan t w i l h speed, s l i g h t l y increas ing a t the h igher speeds. The i-atio o f s i g n i f i c a n t re la t i ve bow m o t i o n to s i gn i f i can t wove he igh t in F i g u r e 7 shows a lmos t no speed e f f e c t . Excep t for a s ing le po in t near 16 kno ts , t he mode l da ta ag ree qu i t e we l l w i t i i t he f u l l scale resu l t s .

F igu res 8 and 9 show .speed dependence of the p i t c h and ro l l mo t i ons in beam seas. P i t c h in beam seas a t speeds belov/ 5 knots is s l i g h t l y h igher fo r the f u l l scale t r i a l s t l ian fo r t he mode l resu l t s . The d i f f e r e n c e is probab ly due to u n c e r t a i n t i e s in heading and v/ave d i r e c t i o n , but even so i h e mode l da ta do show the presence of p i t c h in beam seas. The p i t c h is j i r o b a b l y due to the f o re and a f t a s y m m e t r y of the s l i ip . I he la rge o f t f o i l e xc i t es p i t c h as the ship responds to the beam waves , ond since the re is no area fo r v /a rd to cance l th is e f f e c t a riel p i t c h m o t i o n ensues. The mode l ro l l m o i i o n s ag ree qu i te we l l v / i t i i t he fu l l sca le over the speed range in F igure 9. A g a i n the b l i s te rs seem t o hove l i t t l e e f f e c t on s i gn i f i can t r o l l . The peak in p i t c h and ro l l a t abou t 14 !;nots is aga in p resent in beam seas. R o l l f o l l o w s the same t r e n d w i t h speed as p i t c h , dec reas ing to abou t 10

ots and then showing on increase in t l i s v/ave d rag hump •-lime.

O Full Scale Trials

e Full Scale Trials w i th Üuoyai icy [Blister

A Model Experimonts

8 12

Speed (knots)

Ficj. 4 P i t c h M o t i o n f o r S S P K A I M A L i r v I O in H e a d

S o o s

Fig.

0 4 8 12

Speed ( id iots)

5 Ro l l fV Io t i on f o r S S P KAI fV IAL I fMO in H e a d S e a s

Spaed (knots)

F ig . G V e r t i c a l A c c e l e r a t i o n f o r S S P K A I M A L l P v O i n

H e a d S e a s

1.5

CQ DC «

XJ z>

e <

3 O n

1.0

0.5 h

A

n

4 8 12 1 6 20

Speed (knots)

F ig . 7 R e l a t i v e B o w M o t i o n f o r 3 S P K A i M A L i N O i n

H e a d S e a s

V - 4 • 5

O)

-Q

Q .ü D.

O Full Scale Trials

O Full Scale Trials w i th Buoyancy Blister

A Model Experiment

1 / } A

a 12

Speed (knots)

16 20

F i g . 8 P i t c h i V i o t i o n fo r

S e a s

S S P KAI IVIALI i^JO i n B e a m

0 1 6

F i g .

4 8 12

Speed (Knots)

Ro l l M o t i o n f o r S S P K A I M A L I N O in B e a m S e a s

4,0

O! XJ +j x: O) '03 ;c > 10

.3.0

2.0

•o

71 t-<

O Q

1.0

A Mode! Expenments — Uncontrol led

O Full Scale Trials - Uncontrol led

• Full Scale Trials

Q

Automat ic Control

: /\ •

1

Heading (deg)

180

Head

F i g . 10 P i t c h M o t i o n fo r S S P K A l M A L i i - y O a t 10 iCno ts

The e f f e c t s of a u t o m a t i c m o t i o n c o n t r o l are c l e a r l y d e m o n s t r a t e d in F igu res 10 th roug t i 13 whe re the da ta is p l o t t e d as a f u n c t i o n of head ing . The fu l l scale da ta were ob ta i ned dur ing the c o n t r o l sys tem e v a l u a t i o n t r i a l s o f 1979. The mode l da ta in F igu res 10 and I I are f r o m e x p e r i m e n t s in Sea Sta tes 5 and 6 ( w i t h o u t b l i s te rs ) . T h e r e are no mode l da ta w i t h a c t i v e c o n t r o l . A g r e e m e n t b e t w e e n mode l and fu l l scale p i t c h m o t i o n is exce l l en t a t a l l headings fo r 10 kno ts . R o l l m a g n i t u d e is low fo r the mode ls in head and f o l l o w i n g seas because of the pure ly u n i d i r e c t i o n a l e n v i r o n m e n t in the t o w i n g tank but agrees v / i t h t r i a l s qu i t e w e l l of the other headings. The e f f e c t o f m o t i o n con t ro l at 10 knots is s i g n i f i c a n t . M a x i m u m p i t c h m o t i o n w h i c h occurs in q u a r t e r i n g seas is reduced to abou t o n e - t h i i d i ts u n c o n t r o l l e d va lue . R o l l is I 'educed by a p p r o x i m a t e l y one-ha l f a t a l l head ings. The c o n t r o l e v a l u a t i o n t r i a l s resul ts show a la rge r e d u c t i o n in s i g n i f i c a n i va lues o f mo t i ons at 10 and 15.5 knots and some r e d u c t i o n at 7 kno ts . A t lower speeds the c o n t r o l su r f ace e f f e c t i v e n e s s is not s u f f i c i e n t t o a f f e c t the m o t i o n s .

Fol lowing

F i g . 11 R o i ! M o t i o n f o r S S P K A I M A L I N O a t 10 K n o t »

F i g .

Fol lowing Heading (dog)

12 P i ^ c h M o t i o n f o r Ö-SP K A I M A U i M O a t 15.5

K n o t s

V - 4 • 6

R g .

Fol lowing Heading (deg)

13 Ro l l M o t i o n f o r S S P K A I i V l A L I I M O a t V3.5 K n o t s

A t 15.5 kno ts (F igures 12 and 13) l o l i and p i t c l i a re both ma>dmum in f o l l o w i n g seas. The c o n t r o l sys tem reduces s i g n i f i c a n t ro l l m o t i o n by 90 percent a t i h i s speed in f o l l o w i n g seas and by about 70 pe rcen t at o the r headings, P i i c l i is reduced by over 50 pe rcen t a t a l l l ieodings. These s i g n i f i c c n i va lues d e m o n s t r a t e the e f fec t i veness o f m o t i o n c o n t r o l . S i gn i f i can t values are impor tan t in es tab l i sh ing seakeeping c r i i e r i a for designs since m o t i o n l i m i t s fo r weapon sys iems or a i r c r a f t operat ions o ie ge i ie ra l l y expressed in t e r m s of s i gn i f i can t responses.

5. DISCUSSION O F F U L L S C A L E T R I A L S P E C T R A

Pov/er spec t ra l dens i t ies as f unc t i ons of encoun te r f iequency were ob ta ined by Fou r i e r analys is of t i ie mot ions da ta and are p resen ted fo r t h r e e speeds in Fil :s IA, 15 and 16. The response spec t ra in como ina t i on v / i th the wave spec t ra o f encoun te r p rov ide a good ins igh l in to t l ie sources o f the m o t i o n s . The 5 knot speed data we re ob ta ined in 1976 and the 10 and 15.5 kno t speeds are f r o m the c o n t r o l e v a l u a t i o n t r i a l s of 1979. For tha t w o t i igher speeds, spec t ra w i f h and w i t h o u t a u t o m a t i c m o t i o n c o n t r o l a re g i v e n . R e l a t i v e bow m o t i o n (RB/y\) v/as measured in 1976 but no t in 1979. V e r t i c a l mo t ion near the C G was ob ta ined fo r most cond i t i ons in 1979 and is p resen ted in p lace of f^BM for t he i i igher speeds. Wave spec t ra are p resen ted in F igu res 17, 18 and 19 for each t r i a l day fo r v /h ich m o t i o n spec t ra we re obta ined. T i ie moda l peiTod o f t he wave spec t ra is 'na ico ied on each m o t i o n s p e c t r u m by the symbo l T Q to show the l oca t i on of the m a x i m u m wove energy in the encounter f r eguency d o m a i n .

The resu l ts fo r a 5 kno t speed f r o m the 1976 t r i a l s in " f i igh Sea S ta te 5 appear in F i g u r e Rl . For each head ing R B M , p i t c h and ro l l are p resen ted . The R B M depends on Pdch, heave and the e n c o u n t e r e d v/ave a t t h e bow. A.t ' l igh f requenc ies and lov/ speed SSP K A I M A L I N O tends to p l a t f o r m the waves . T f ia t is, t he ship tends not to '•-Mierienee m o t i o n as i t encoun te rs t he waves . Since the ' ' 'BM s p e c t r u m reaches a m a x i m u m in t he h igh f r equency Jf l where p i t c h and ro l l a re s m a l l , th is i nd i ca tes t h a t '•5 r e l a t i v e m o t i o n may be due p r i m a r i l y fo heave and the

m o t i o n o f the shor ter v/aves. A t lower f requenc ies c o n t o u r i n g occurs as the ship f o l l ows the v /ave. Th is leads to lower RBf/\ energy a t those f requenc ies even though s i gn i f i c an t p i t c h and ro l l energy mioy be p resen t . In a l l cases the R B M peak energy occurs at f requenc ies higher than the v/ave moda l f requency ( i nd i ca ted by T ^ on the f i gu res ) . The RBfv^ is la rges t in head and bow seas and shov/s double or secondary peaks of these headings.

The p i t c h spec t ra a t 5 l<nofs are a l l s ingle peaked and the peaks fend fo occur a t oig = 0.65 r ad / sec , w h i c h is c lose to t he e s t i m a t e d na tu ra l f r equency in p i t c h a t t h i s speed, f 'o r head and bov/ seas the peak cor responds to the peak of the encoun te red wove spec t ra i n d i c a t i n g cons iderab le e x c i t a t i o n near the na tu ra l f r equency for these headings. P i t c h response is m i n i m u m in beam seas as e x p e c t e d .

The ro l l spec t ra ore not as u n i f o r m as the p i t c h spec t ra and tend to bc somev/ l ia t b roader . The p r i m a r y peak in the ro l l response occurs of t f ie peak in t he wave spec t ra at a l ! headings v / i t h the excep t i on of I iead seas. A secondory peak is ev iden t a t 0.8 rad /sec in q u a r t e r i n g seas. The head sea to l l s p e c t r u m is f la t v / i i h srnui l peaks above and below the v/ave modal f r e q u e n c y .

The spec t ra fo r 10 knots ere c o n t a i n e d in F i g u r e 15. The spec t ra are p resen led for v e r t i c a l m o t i o n near fhe C G , p i t c h , and r o l l . The data w e r e ob ta ined du r i ng f h e c o n t r o l e v a l u a t i o n t r i a l s on January 25, 1979, in a Sea S ta te 4. T l ie resul ts are p resen ted w i t h and w i t h o u t u t i l i z a t i o n of a u t o m a t i c c o n t r o l . The c o n t r o l l e d cases ore i nd i ca ted by the dcshed l ines. The c o n t r o l sys tem on SSP K A I M A L I N O is in tended to m i n i m i z e p i i c h and ro l l but not v e r t i c a l m o t i o n . The v e r t i c a l m o t i o n componen t due to p i t c h and /o r ro l l is reduced in some cases, bu t heave is sm.all in a l l c o n d i t i o n s , even v / i t hou t c o n t r o l . The v e r t i c a l m o t i o n peak cor responds to the wave moda l pe r i od in al l cases excep t head seas. A secondary peak a t lower f r equency in head and bov/ seas cor responds to a peak in fhe ro l l s p e c t r u m .

The p i t c h spec t ra at 10 knots show m a x i m u m energy in q u a r t e r i n g seas. Wove moda l per iods co r respond to p i t c h energy peaks in beam, q u a r t e r i n g and f o l l o w i n g seas. In head seas the p i t c h response is ve r y f l a t , w i t l i a sma l l response over a v/ ide range of f requenc ies . In bow seas t he re is a secondary peak o l the moda l f r e q u e n c y o f fhe waves a t about 0.85 rad /sec wh i l e t he p r i m a r y peak is a t 0.72 rad /sec . In a l l cond i t i ons the c o n t r o l sys tem g r e a t l y decreases fhe p i t c h response. For e x a m p l e , in f o l l o w i n g seas the c o n t r o l s ore least e f f e c t i v e bu t s t i l l reduce t l ie peak value by over 50 p e r c e n t . A t lov/ f r equenc ies in q u a r t e r i n g ond f o l l o w i n g seas the c o n t r o l l e d response exceeds fhe u n c o n t r o l l e d response. These long pe r iod mo t i ons are o f t r i b u l o b l e t o t he c o n t r o l system's feedback loop response.

The ro l l spec t ra a t 10 knots for SSP K A 1 M A L 1 I 4 0 shov/ m a x i m u m response in I jeam seas w i t h o i m o s t as g rea t a response in q u a r t e r i n g and bow seas. C o n t r o l is e f f e c t i v e in reduc ing ro l l mo t i ons in a l l sea headings. In a l l cases the m a i n r o l l peak is assoc ia ted w i t h t h e wave moda l pe r iod and t l ie re is a secondary peak a t u lower f r equency t h a t can be a t t r i b u t e d fo t he n a t u r a l p e r i o d in r o l l . The low f requency peak is in the f r equency range w h e r e measu remen ts o re d o u b t f u l v /h ich leads t o d i f f i c u l t i e s in f i x i n g i ts m a g n i t u d e . A t f i i r d pealc a t a h igher f r equency than Ihe wave peak is no ted fo r bow and q u a r t e r i n g seas. I h i s is due to a s i gn i f i can t c o m p o n e n t of wave energy a t those f requenc ies of e n c o u n t e r .

It is also o f i n te res t to po in t out t h a t in beam seas at 10 knots t he wave m o d a l pe r i od v/as a p i ) r o x i m a t e l y t f ie some as the na tu ra l pe r iods o f heave and p i t c h , caus ing subs tan t ia l response in t l iese modes . The n a t u r a l p e r i o d in ro l l of the ship a t th is speed is about 21 seconds or

Z

i n

rn

Z rn O ^ Ü Z z

Y - 4 - 7

Ouariering Seas

E Ê

a 1.0

0.5

Gow SeJS l / i ' l S S " !

o L 0

Beam Seas

1 2 3 Encounter Frequencv, (rad/aecl

Beam Sfias

Head Seas

• q 1 2 J

Encounter Frequency, lUj (rad/sec)

Encounter Frequency, (1)9 Irad/secl

F i g . 14 M o t i o n G p e c t r n f o r S S P K A I M A L I N O a t 5 K n o t s

V - 4 - 0

K O.S

m O.'l

Encounter rrequency, a>e (red/secl

0 1 2 3

Encounter Frequency, oJc (fad/sec)

"g> 1-0

E

1 O.b

. 1 ^

Uncontrülltid Controlled

0 1 2 3

Encounter Frequency, oig (rad/sec)

F ig . I S M o t i o n S p e c t r a f o r S S P K A I M A L i W O a t 10 K n o t s

V - 4 - 9

Following Seas (0 = 0°)

Wo Da ta

0

3 f

/I

CO c /

1 ' - /

3 / 1 '

Quartering Seas

S 10

E

Beam Sons

Bow Seas

Head Seas (/3= 180»)

- No Da ta

-

-1 . 1 0 1 2 3

Encounter Frequency, OJQ (rad/sec)

Head Seas

1 2 3

Encounter Frequency, ojg (rad/sec)

Head Seas

' Uncontrolled - (^cnifoüed

0 1

Encounler Fiequency, 2 3

CÜQ (rad/sec)

r k j . 16 'VSot ion S p e c t r a f o r SSP KAIMAUiMO a t 15.5 K n o t s

V - 4 - 10

f

0 1 2 3

Frequency, co (rad/sec)

Fig. 17 VA/avG S p e c t r u m f o r

5 K n o t M o t i o n S p e c t r a

O 1 2

Frequency, to (rad/sec)

F ig . 10 W a v e S p e c t r u m f o r

10 K n o t fV lo t i on S p e c t r a

1 2 3

Frequency, cu (rad/sec)

F ig . 19 W a v e S p e c t r u m f o r

1Ö.5 K n o t M o t i o n S p e c t r a

app rox ima te l y t v / i ce it.s pitci- i pe r i od . A l t h o u g h l i t t l e wove energy ex is ts at fhe ro i l na tu ra l f r e q u e n c y , some small ro l l m o t i o n does appear . Hov/ever the p r i m e response in ro l l occurs v / i l i i i n l! ic some f i e q u e n c y r e g i m e as p i t c h v/h ich lias large e x c i t a t i o n at i ts na tu ra l f reouency. This behavior is exh ib i t ed in bow and qil . 'r ing seas as v /e l l . Thus, at least f o r th is speed, i l iere appeors l o be s i g n i f i c a n i coup l ing be tween the t h ree modes ( p i t c h , heave and ro l l ) of m o t i o n .

The response spec t ra at 15.5 knots ob ta ined in a Sea State 5 (on January 2 1 , 1979) du r ing the c o n t r o l evaluat ion t r i a l are g iven in F igu re 16. Response of ver t i ca l m o l i o n near t he C G , p i t ch and ro l l arc i nc l uded , though v e r t i c a l m o t i o n was noi ava i lab le for the head and fo i iow ing sea cases. A m o n g i l ie cases ova i l ab l e , v e r t i c o l mot ion response is g rea tes t in q u a r t e r i n g seas. C o n t r o l of p i tch and ro l l has l i t t l e e f f e c t on the v e r t i c o l m o t i o n excepi in c |uar ter ing seas. In o i l coses the p r i m a r y peaks for v e r t i c a l m o t i o n co r respond i o t he f r equency o f m a x i m u m wave energy . A secondary peak in q u a r t e r i n g seas at oig = 0.72 rad /sec may resu l t f r o m i h e f a c t t ha t Ihere is s i g n i f i c a n t wave energy neor the heave and p i t c h noturai per ioas .

P i t c h response is more than on order of m a g n i t u d e larger in fo l l ov / i ng and q i j o r i e r i n g seas than in head, bow or beam seas. P i l c i i response is p r i m a r i l y v/ove induced in l>eum, q u a r t e r i n g and f o i i o w i n g seas, and in f o l l o w i n g seas ihe encoun te red v/ove s p e c t r u m has cons iderab le energy near ihe na tu ra l p i t c h pe r iod at i h e 15.5 kno t speed. The Icirge responses in q u a r t e r i n g end f o l l o w i n g seas occu r at lov scjuencies where the waves t r a v e l a t speeds c lose t o the ^,iip speed. The large s te rn c o n t r o l fo i l in the SSP con induce large mo t i ons under sucl i c o n d i t i o n s . In bow seas pircf i response is f l a t over a broad range w i t l i the most energy a t = O.A rad /sec . The head sea p i t c h response specirum, is d i s t i n c t i v e in t h a t the re is l i t t l e response, of liie wove moda l pe r iod but ins tead peak values of response occur a t encoun te r f r equenc ies o f O.A and 1.8 rad / sec . Tlie higti f r equency peak is in a reg ion v/here t he re is ' d i l a p i t c h response fo r any o ther head ing . A c t i v e -on t ro l s i g n i f i c a n t l y decreases the p i t c l i response fo r a l l headings.

Ro l l spec t ra a t 15.5 knots exh ib i t wave moda l p e r i o d induced ro l l i ng f o r a l l sea f ieodings. A l so t f i e re is a •ccondary peak in heod, i iow and beam seas of a l owe r ' requency of encoun te r v / l i i ch is a p p r o x i r n a f e i y 0.35 •ad/sec, c lose to the e s t i m a t e d ro l l natu i 'a l f r e q u e n c y . In ' o l l ow ing seas i h i s same f r equency is c lose to t l i e i nodo l i'<-'i'iod o f the encoun te red waves , r e s u l i i n g in an a m o u n t '•'f ro l l response g r e a t e r than i h e ro l l response in beam J^Qs and only s l i g h t l y less t f ian the ro l l in q u o r f e r i n g seas. • ont ro l o f r o l l m o t i o n is ve r y e f f e c t i v e a t a l l headings as ' ' ' n t r o l l e d responses a te a lmos t i ns i gn i f i can i c o m p a r e d to j ' ls u n c o n i r o l l e d cases. In p a r t i c u l a r , the severe r o l l i n g in

'ng seas is v i r t u a l l y e l i m i n a t e d by the c o n t r o l

F i gu res 17, 18 and 19 g ive the v/ave spec t ra in the v/aye f r equency doma in fo r each o f the t h r e e days on w h i c h t l ie data in the response spec t ra were o b t a i n e d . There is ve r y l i t t l e wave energy i ie lov /o jg = 0.3 rad /sec w h i c h causes d i f f i c u l t i e s in de f i n i ng lov/ f r equency e f f e c t s in fhe m o t i o n spec t ra . .Each wave s p e c t r u m is s ing le peaked though the re are some ind ico f ions of seconda i y humps. The s i g n i f i c o n i wave he ights for these spec t ra ore g iven in Tab le 2.

O v e r a l l , the .seakeeping t r i a l s of SSP K A I M A L I N O d e m o n s t r a t e d t l i a t the ship cou ld ope ra te over l i s f u l l speed range in v/ave cond i t i ons up to o high Sea S ta te 5. Excess ive s l a m m i n g v/as not encoun te red a t any head ing e i t he r v / i t h or w i t h o u t a u t o m a t i c m o t i o n c o n t r o l . S l amming a t 15.5 knots in a head Sea S ta te 5 v/as v i r t u a l l y e l i m i n a t e d by t r i m m i n g the ship bov/ up tv/o degrees. The ship's tendency to heave ( f o l l o w i n g the waves) l iel [)ed in m o d e r a t i n g t t ie impac ts . A t no l i m e did i l ie ship s low down due l o sea cond i t i ons even though t l ie ave rage magn i t ude of i l ie o n e - t e n t h h ighest v/aves (double a m p l i i u d e ) was more i hon t w i c e the c lea rance he ight o f 1.8 m e t e r s . Du r i ng i l ie Sea S ta te 5 t r i a l s on January 2 1 , 1979, the average of the o n e - t e n t h h ighest waves v/os 3.65 me te r s w h i c h is 15 pe rcen t of the leng th of Ihe ship. On tha t doy SSP K A I M A L I I J O o p e r a l e d to r over 10 hours a t speeds around 15.5 knots at a v a r i e t y of headings v / i th no deg rada t i on of c r e w or ship pe r fo rm iance .

6. C O M P A R I S O N WITH T H E O R E T I C A L M O T I O N

PREDICTIO! -

6.1 SWATH Ship P r e d i c t i o n M e i l i o d o l o q y

C o n f i d e n c e in the a b i l i t y of t heo ry to p red i c t t rends and genera l magn i tudes of m o t i o n is p a r t i c i j l a r l y i m p o r t a n t for i he SWATH ship designer s ince the SW/\TFI concept locks the ex tens ive exper ience in design ava i l ab le to t he monohu l l designer . Whi le mode l e x p e r i m e n t s are requ i red b e f o r e a design is f i n a l i z e d , t h e o r e t i c a l p red i c t i ons must be used to ana lyze the m o t i o n o~' p o t e n t i a l c o n f i g u r a t i o n s a t an ea r l y s tage of des ign.

The deve lopmen t of the t h e o r y used at DTNSRL')C to descr ibe i h e ino t ions of SWATH ships is p resen ted by L e e and Cu rphey (Ref . 2) . S t r i p t heo ry prov ides five basis t o r th is deve lopmen t . Tha t is, i t is assumed t h a i the f i o w c l one t ransverse two -d imens iona l sec t i on of fhe sl i ip Is independent of the f l o w ot ono ihe r s e c t i o n , Ti i is app roach has been used success fu l l y to p r e d i c t i h e mo t i ons o f conven t i ona l d i sp lacement ships; however , SWATI-i ships d i f f e r f r o m conven t i ona l d i sp lacemen i ships in s i g n i f i c a n t v/oys, c r e a t i n g a m o r e c o m p l e x p r o b l e m . For e x a m p l e , the i n i e r a c f i o n e f f e c t s r esu l t i ng f r o m t l ie closeness of t h e t w o hul ls must be desc r ibed . The re l a t i ve i ) - sma l l wa te rp l ane area of SWATH ships imp l ies a sma l l heave

V - 4 - 1]

0) T J XJ

+̂ "cL

E E < < > > CO

He

5

3 2

0

S W A T H 6C

=• «- Model

— — Theory

F i g .

0 200 400

Wave Length (m)

20 H e a v e T r a n s f e r F u n c t i o n f o r S W A T H 6C a t

Z e r o S p e e d in B e a m S e a s

a. Ë <

200 400

Wave Length (m)

F i g . 21 H e a v e T r a n s f e r F u n c t i o n f o r S W A T H 6C a t 20 K n o t s in B e a m S e a s

SV-/ATI-I 6C

— Model Ttiooi-y

200 400

Wavo Length (rn)

(300

F i g . 22 F i s i a t i ve B o w iV i o t i on T r a n s f e r F u n c t i o n f o r S W A T H 8C a t Z e r o S p e e d in B e a m S e a s

•a

Q. E <

F i g .

0 200 400

Wave Length (m)

23 H e l a t i v e R o w IV io t i on T r a n s f e r F u n c t i o n f o r

S W A T i ' i 6G a t 2.0 K n o t s i n B e a m S e a s

r es to r i ng f o r c e . Consequen t l y , v iscous damp ing e f f e c t s w h i c h may be ignored in m o d e l l i n g the v e r t i c a l plane mo t i ons of conven t i ona l d isp lacement ships become r e l a t i v e l y i m p o r t a n t fo r SV/ATH ships. The e f f e c t of f o r w a r d speed on the v/ave t r a i n is not mode l l ed fo r e i ther SVV'ATH or canven t i ono l ships. For the SWATH ship fhe wai<e c r e a t e d by a s t ru t w i l l a f f e c t the f l o w at sect ions a f t of i t . It con be e x p e c t e d tha t th is e f f e c t w i l l be g rea te r for ships v / i th t w o s t ru t s per hul l than fo r ships w i t h one long s t ru t and t h a t slender s t r u t s w i l l genera te less wal<e t l ian t h i cke r ones.

C o r r e l a t i o n o f t h e o r y v / i t h model e x p e r i m e n t s has shown genera l l y good a g r e e m e n t for a range of speeds end headings. A ser ies of e x p e r i m e n t s for the SWATH 6 series v/as c a r r i e d out f^y K a l l i o ( R e f . 13). These were models for a 2900 t o n n e , 73 m e t e r design w i t h var ious G M L ' s . The c o n f i g u r a t i o n s , denoted / \ , B , and G , hod t h e same lower hul ls bu t d i f f e r e n t s t r u t c o n f i g u r a t i o n s . The 6A and fhe 6B are s ingle s t r u t c o n f i g u r a t i o n s whereas Ihe 6G is u t w i n s t r u t c o n f i g u r a t i o n . C o r r e l a t i o n be tween t heo ry and mode l e x p e r i m e n t s is gene ra l l y good; however , c e r t a i n p rob lems e m e r g e . Z e r o speed p red i c t i ons are somewhat incons is ten t in q u a l i t y . Th is is p robab ly due l o prob lems in the genera l m o d e l l i n g o f the non l inear v isccus d a m p i n g . A t h igher .speed, behav ior is w e l l descr ibed but for some cond i t i ons some d isc repanc ies in magn i tude ex i s t . Com,parisons of Ka l l i o ' s model e x p e r i m e n t s arid p red i c t i ons fo r the 6C c o n f i g u r a t i o n s are pi-esented in F igu res 20 to 23 fo r zero and 20 kno ts in beam seas, f i e o v e and r e l a t i v e bow m o t i m response per u n i t v/ave a m p l i t u d e are g iven as o f u n c t i o n of w o v e l eng th . M zero speed the peak value o f heave is v/el l p r e d i c t e d though it is p r e d i c t e d to occur a t a s l i gh t l y g r e a t e r wave length than found in the measu remen ts . The d isc repancy in heave afso seems to be r e f l e c t e d in the r e l a t i v e bow m o t i o n p red i c t i ons . The c o r r e l a t i o n for 20 knots is very good as shown in F igures 20 and 22.

6.2 E x c i t a t i o n F o r c e Compar i sons for SSP K A I M A L I N O

The good c o r r e l a t i o n v / i th mode l scale t ransfer f unc t i ons for SWATH 6C imp l ies t ha t p r e d i c t i o n s fo r SSP K A I M A L I N O , also a t w i n s t ru t des ign , should ba reasonab le . U r i f o r t u n o f e l y , the re are no mode ! scale t r ans fe r f unc f i ons ava i l ab le for SSP K A I M A L I N O w i th v /h ich to ,mal';e t h e o r e t i c a l compar isons . F lov/evcr , morJel scale resu l ts do ex is t for t he v/ave e x c i t i n g heave force and p i t c h m o m e n t . Since f i i ey are on i m p o r t a n t e lement in m o t i o n p r e d i c t i o n , t hey g ive some i n d i c a t i o n o f the re l evancy of the m o t i o n p red i c t i ons for SSP K A i M A L I N O , The fo rces and m o m e n t s on the rnodei in head seas were ob ta ined as p a r t of on e x p e r i m e n t a l p r o g r a m docutr iented by Fe in and Stoh l (Re f . RO. The mode l d id no t have b l i s t e r s , whereas the p red i c t i ons inc lude the e f f e c t of b l i s te rs . The b l i s te rs we re shown to have smal l e f f e c t on the head sea m o t i o n in F igu res h and 5; even though mo t i ons are t h e same, e x c i t i n g forces are not necessari ly t l ie same.

The nond imens iona l heave fo rce (F3o(e)) and phase («3) v / i t h respec t to the v/ave ore g iven in t e rms o f nond imens iona l encounter f r e q u e n c y . The ncndimensio i i -

a l i z a i i o n for encoun te r f r equency is:

N/17 ( t )

w h e r e

L.

is t h e encounter f requency in rad / sec , is nomina l l eng th in me te r s and is g r a v i t a t i o n a l cons tan t in m/.sec2.

4 - 12

|s)orio'iiriensional heave f o r c e is g iven by:

mgh

wl iere

300

(2)

F 3 0 is fhe measured f o r c e a m p l i t u d e in newfons , m is mass of the ship in k i l og rams and h is wove height in m e t e r s .

la

3

0

SSP Model

O Model

ThGor>'

O

Q

o

4

[•iq. 24 H e a v o E x c i t i n g F o r c e i n H e a d S e a s a t 7 K n o t s

2,5 H o a v e F x c i t i n g F o r c e in H e a d S a a s a t 15.5

K n o t s

F ig . 26 H e a v e F o r c e P h a s e A n g l e in F ioad Seas a t 7

K n o t s

F ig . 27 H e a v e F o r c e P h a s e A n g l e in H e a d S e a s a t 15.5

K n o t s

The resu l l s for v/ave e x c i t a t i o n f o r c e and phase at 7 and 15.5 knots ore g iven in F igu res 2't to 27. These resu l ts ore t y p i c a l of the c o r r e l a t i o n a t o the i ' speeds. A g r e e m e n t be tween theo ry and mode l resu l ts for heave e x c i t i n g f o r c e we re qu i t e good a t a l l speeds. M a g n i t u d e and pos i t i on of fhe peaks ore we l l p r e d i c t e d in F i g u r e 25 fo r t he h igh speed. For the 7 kno t speed, F i g u r e 24 shows good ag reemen t up tot.'.'^ = 2.6, v /h ich is equ i va l en t to on encoun te r f r equency o f 1.7 rad /sec fo r t l ie s f i ip . This covers the range of f requenc ies found in mos t sea s pec t r a . Phases agree c lose ly f o r bo th speeds over the e n t i r e f r equency range,

6 . 3 T rans fe r F u n c t i o n Compar isons for SSP K A I M A L I N O

A l t h o u g h mode l scale t rans fe r f unc t i ons ai'e not ava i l ab l e fo r SSP K A I M A L I t ^ O , t rans fe r f u n c t i o n s can , in p r i n c i p l e , be e x t r a c t e d f r o m the f u l l sca le t r i a l du ta , a l t hough th is is not an ideal approach because of p rob lems ossoc ia fed w i t h wove measurements and d e t e r m i n a t i o n of d i r e c t i o n a l i t y aspecis of the seaway.

P r e d i c t i o n of t he mo t i ons for SSP K A I M A L I N O is moi-e d i f f i c u l t than fo r ships in fhe .SWATH 6 ser ies . The 6 C resu l ts i nd i ca te t ha t i l ie presence o f two s t r u t s per hul l does not in i t se l f c r e o i e p rob lems in p r e d i c t i n g SWATFI responses. H o w e v e r , a doiTiinant f e a t u r e o f SSP K A I M A L I N O is i ts la rge a f t miocinred h y d r o f o i l . The s te rn fo i l s used on the SWATH 6 ser ies do n o i span the

V - 4 - 1 3

sepa ra t i on between hul ls and are mucli siTialler in a rea r e l a t i v e to t he ship s ize. Observa t ions du r i ng f u l l scale SSP K A I M A L I N O t r i a l s i nd i ca te (hat v e n t i l a t i o n can occur as the he ight o f fhe f ree su r face over the f o i l va r ies a t some speeds, resu l t i ng in r e d u c t i o n of t l ie e f f e c t i v e n e s s o f t ho f o i l . Th is is not m o d e l l e d c u r r e n t l y in the SWATH p r e d i c t i o n p rog rams .

Wi th these rese rva t i ons , p r e d i c t i o n s for heave and p i t c h for SSP K A I M A L I N O t r a v e l l i n g in beam sees are p resen ted in F igures 28 to 34. Fu l l scale resu l l s were ava i l ab l e for th is heading a t 7, 10 and 15.5 kno ts fo r u n c o n t r o l l e d heave ( v e r t i c a l m o t i o n c o r r e c t e d to the C G ) and p i t c h m o t i o n . Heave is p resen ted in nond imens iona l f o r m and p i t d i in degrees per m e t e r . B o t h mo t i ons ore p resen ted as a f u n c t i o n o f t h e wave f r e q u e n c y , P r e d i c t i o n s are shov/n w i f h so l id l ines, fu l l scale resu l ts w i t h dashed l ines. The degree o f c o r r e l a t i o n for heave is no t as good as for the SWATH 6 C . The heave p red i c t i ons fo r SSP K A I M A L l h f O ore heav i l y damped v/hereas t h e f u l l sca le resul ts a i e no t . This p r e d i c t e d c h a r a c t e r i s t i c is p robab ly due to the m o d e l l i n g of t l ie e f f e c t o f the a f t f o i l . T l ie l i f t cu rve slope values were e s t i m a t e d by t heo ry and c o n f i r m e d by mode l resu l t s . D e g r a d a t i o n in l i f t due t o chonges in the f ree su r face cond i t i ons ore not inc luded in fhe t h e o r y . For 10 knots tv/o sets of resu l ts for n o m i n a l l y fhe same t r i a l cond i t i ons are g iven in F igu re 2 9 . 1 he t r ia l s v/ere conduc ted on the same day bu t separa ted by a numiber of hours . The resu l ts d i f f e r s o m e w l i ü t in m a g n i t u d e , a l t hough t l i ey exh i l ) i t t he some t rends . The ma jo r d i f f e r e n c e s occur over the f requency range where t h e r e v/as l i t t l e wove ene rgy , i l l u s t r o t i n g the d i f f i c u l t i e s in ob ta in i ng t r a n s f e r f unc t i ons f r o m fu l l scale t r i a l da ta ,

Trie c o r r e l a t i o n for p i t c h mict ion of SSP K A I M A L I N O is b e t t e r than for heave m o t i o n . The c o r r e l a t i o n fo r zero and 7 l<nots is qu i te good, though again the ag reemen t b e t w e e n t heo ry ond t r i a l s of 10 knots is no t . | -or this speed a large f ree su r face d e f o r m a t i o n was observed du r i ng the t r i a l s . The 10 knot resu l ts in F igu re 33 show

<

O LO

Q. f: <

0.5

Beam Seas

7 Knots

Trials

Theory

t ü e

F i g . 20 H e a v o T i a n s f a r F u n c t i o n f o r SSP K / M M A L I N O

a t 7 K n o t s

1.5

a. E <

•o

Q.

E

<

1,0

O.B

Beam Seas

10 Knots

—• • Trials

Theon/

9.5 1.0 1.;>

F ig . 29 H e a v e T r a n s f e r F u n c t i o n f o r S S P K A I M A L I N O a t 10 K n o t s

l.S

E -r

a E

0.5

0

Bcarn Seas

15.5 Knots

• ™- Trials

Theory

/ \

0 1.5 0.5 1.0

cüe

F ig . 30 H e a v o T r a n s f e r F u n c t i o n f o r S S P K A I M A L i i M O

a t 1:5.5 iCnots

d i f f e r e n c e s be tween t l ie t w o e x p e r i m e n t a l cond i t i ons as large as the d i f f e r e n c e s b e t w e e n the theory and one of the t r i a l resu l t s . The 15.5 kno t c o r r e l a t i o n is b e t t e r than at 10 knots .

The ove ra l l a c c u r o c y o f the SWA I H ship mictions p rog ram has been es tab l i shed using rnodei expe r imen ts . Its a p p l i c a b i l i t y t o SSP K A I M A L I N O m o t i o n p red i c t i on can be i n f e r r e d f r o m f h e reasonable c o r r e l a t i o n in the coses g i ven .

V l !

O) <D •O

O

O.

ra 5

a E <

Bearn Seas

Zero Speed

Trials

Theoiy

0.5 1.0 1.5

l ig. 31 P i t c h T r a n s f e r F u n c t i o n f o r S S P KAlIVlALirvlO

a t 7.0X0 S p e e d

5 1 ,

n. 'O

i l

Beam Seas

7 Knots

O O 0.5 1.0 1.5

OJf;

Figi >. P i t c h T r a n s f e r F u n c t i o n f o r S S P KAI [ ^ , / iAL INO

a t 7 K n o t s

4 r

>

V,-;

F -> C) <U <u Xi •O

O. de

2 O.

< "Q. E

< 1

/ »

Beam Seas

10 Knots

Trials

Theor\ '

0.5 1.0 1.5

W e

• iy. 33 P i t c h T r a n s f e r F u n c t i o n f o r S S P ICA i fv ' iA IJWO

I a t 10 K n o t s

D) CD

V xs

fc <̂ < | .

I < 1

O

Beam Seas

15.5 Knots

Trials

Theory

O 1.5 0.5 1.0

F ig . 34 P i t c h T r a n s f e r F u n c t i o n f o r f i S P K A i l V l A i m . l O

a t 15.5 K n o t s

7. DESIGlNl C O N S I D E R A T I O N S

7.1 l^iatural P e r i o d Resu l t s

Know ledge of the no tu ro ! per iods of m o t i o n in i ieove, p i t c h and ro l l o ie v i t a l to ono l yz ing the seakeep ing behav ior of a l l ships, espec ia l l y SWATH ships. T l ie designer of o SWATH sl i ip desires to avo id syncl i ronous m o t i o n cond i t i ons under norma l ope ra t i ons . As no ted ea r l i e r t l ie per iods are h igh ly dependent on p a r a m e t e r s l l i o l va ry w i d e l y in a SWATH des ign. The s tandard re la t ionsh ips fo r na tu ro l per iods as g iven in C o m s t o c k (Re t . 15) a re : heave pe r i od ,

Tz = 2ti A (1 + Cz)

g eg A \

( 3 )

p i t c i l pe r i od ,

Te = 2 rr

and ro l l pe r i od ,

lif = 2n

whore

K ^ d + Cp)

g G M l

K| + d2C,|,

g G M t

(5)

Avv A g p

C 0

is t he wa te rp l ane area in m?-, is t he sl i ip d i sp lacement we igh t in kilp^qr ams , is t he g r a v i t a t i o n a l cons lan t in i n / sec^ , is t h e dens i ty of v/ater in kg /n i ^ ^ is t l ie added mass c o e f t i c i e n r , is i h e added p i l c h m o m e n t o f i n e r t i a c o e f f i c i e n t , is t he added ro l l m o m e n t of i n e r t i a c o e f f i c i e n t , is f he p i t c l i radius of g y r a t i o n in .meters, is i h e ro l l radius o f g y r a t i o n in me te rs ond is ha l f the hul l c e n t e r l i n e sepa ra t i on in m e t e r s ,

hose equat ions i n d i c a t e , severa l f a c t o r s a f f e c t t he na tu ra l per iods , The added moss and m o m e n t c o e f f i c i en i s are a func I ion of lower hul l geornetry.^ The w a t e r p l a n e area and m e t a c e n t r i c l ie ig l i ts are a f u n c t i o n o f the g e o m e t r y near ihe w a t e r l i n e . The rad i i o f g y r a t i o n are dependent on ihe ship's mass d i s t r i b u t i o n .

Equat ions 3, 4 and 5 ignore coup l i ng be tween modes and damp ing bu t do p rov ide an e s t i m a t e of n a t u r a l pe r ­iods. Assum ing s imp le g e o m e f r i c o j adde^ mass o n d ^ n o -m e n t va lues fo r SSP K A I M A L I N O of C ^ = C , 0.9 as an a p p r o x i m a t i o n f o l l o w i n g N u m a f o (Re f , 16) and

V - 4 - 15

us ing t l ie data in Tab le I for the as - tes ted ship g ives: ~\\ = 8.6 seconds, T<#, = 9.7 seconds, and Ty^ 15.8 seconds. The per iods also we re c a l c u l a t e d using Lqua f 3, 't and 5 in wh i ch C,, C „ , and C^ , the added mass and

ob ta ined f r o m s t r i p added i n e r t i a c o e f f i c i e n t s , w e r e t i i e o r y . increases w i t h speed wh i l e and are independent o f speed. These values are p l o t t e d in F igu res 35, 36 and 37 a long v / i th t l ie na tu ra l per iods ob ta ined f r o m the 1976 t r i a l s and the 1979 c o n t r o l eva lua t i on Tr ia ls. The ship Ixid buoyancy b l i s te rs fo r these t r i a l s . The t r i a l n a t u r a l per iods are the per iods assoc ia ted w i t h the peaks of the t rans fe r f u n c t i o n s . Ana lys i s of da ta f o r some cond i t i ons resu l ted in d i f f e r e n t na tu ra l per iods . These have been inc luded in fhe f i gu res to d e m o n s t r a t e the a c c u r a c y w i t h v /h ich na tu ra l per iods may be ob ta ined by th i s t echn ique . I '^atural per iods ob ta ined in 1973 by app l y i ng impulses to a scale mode l o f the o r ig ina l design a t ze ro speed also ore inc luded .

Heave na tura l pei iods as d e t e r m i n e d f r o m the t r i a l data (F igure 35) are f a i r l y cons tan t w i t h speed as t heo ry p r e d i c t s . The s l igh t va r i a t i ons betv /een t l ieory and t r i a l s m o v be due to changes in t l ie v /o te r l i ne at var ious speeds w h i c h are not accoun ted for in the theory . P i t c l i na tu ra l pe r iod (F igure 36) tends to increase v / i th speed. The per iod based on added i ne r t i a f r o m s t r i p t heo ry shows this speed e f f e c t reasonably v /e l l . The ro l l pe r i od in F i g u r e 3 / is p r e d i c t e d by theory fo be i8 .5 seconds, i r r espec t i ve of sneed. Tl ie t r i a l resu l ts for ro l l o re sparse since of these long per iods there was ve ry l i t t l e v/ave energy and gene ra l i y un re l i ab le da ta . The t r i a l da ta t h a t are ava i l ab le agree f a i r l y we l l v / i th the t h e o r y . T l ie mode l test resu l t is lov/er than the t r i a l va lue . The mode l rep resen ted the o r i g ina l design c o n f i g u r a t i o n , and does not f u l l y represent the ship as tes ted . The e s t i m a t e d ro l l pe r i od is low. In th is case the value of Cih is based on the assumpt ion tha t r o l l i n g is equ iva len t to t i ie heav ing o f one hu l l up wh i l e the o ther moves d o w n .

There are c e r t a i n s t a t i c e r ro rs inheren t in c o m p a r i n g n a t u r a l per iods f r o m t r i a l s w i t h p r e d i c t e d va lues. One is u n c e r t a i n t y about t he exac t fue l and ba l las t load du r ing the t r i a l . Though the ship was ba l l as ted to the same c o n d i t i o n eve ry day , fue l use and we igh t s h i f t i n g con o c c u r . This e f f e c t on m e t a c e n t r i c he igh t and momen ts of i n e r t i a cannot be e s t i m a t e d . A lso viscous damp ing has a s t rong i n f l uence on p i t c h na tu ra l pe r iod unde rway . A b e t t e r m e t i i o d fo r o b t a i n i n g n a t u r a l per iods is to app ly a f o r c e impulse t o the ship v/h i le u n d e r w a y , w h i c h u n f o r t u n a t e l y has no t been done to SSP K A I M A L I N O since the a d d i t i o n o f the b l i s t e r s .

30

7.0

(I) (/)

O Estimated

• Model Experiment (1973)

V Full Scale Tnals (1976 and 1979)

—™-=" Theory

Speed (Knots)

F ig . .30 H o a v o IMatura l P e r i o d f o r S C P iCA! i \ / lAL I i \ iO

20

c o u 0) CO a>

H

Q Estimated

• Model Experiment (1973)

y Full Scale Trials (1976 and 1979)

~ ~ — Theoiy

' ° 8

5 1 0

Speed (Knots)

F ig . 3(3 P i t c h N a t u r a l P e r i o d f o r S S P K A I i V f A L I W O

3 0

Q Estimated

• Model Expcnment (1973)

V Full Scale Trials {1976 and 1979)

, Ti ieory

F ig . 37

10

Speed (Knots)

Ro l l N a t u r a l P e r i o d f o r S S P K A I I V i A L I N O

7.2 N a t u r a l Per iods and Des ign

The advantage of the long na tu ra l pe r iods at ta inable by SWATH ship designs is t ha t resonant cond i t i ons leading to large m o t i o n s and degraded o p e r a b i l i t y v / i l l not occur f o r mos t v/ove c o n d i t i o n s . The des igner desires p l a t f o r m i n g cond i t i ons to m i n i m i z e p i t c h and heave m o t i o n in head seas. If the na tu ra l per iods in p i t c h and heave ore about 20 pe rcen t g rea te r than fhe encountered m o d a l pe r i od of fhe seaway th is s u p e r c r i t i c a l behav io r can be a c c o m p l i s h e d .

If na tu ra l per iods are s u f f i c i e n t l y long the ext reme mo t i ons assoc ia ted w i t h resonance v/ i l l no t lead fo severe v e l o c i t i e s or acce le ra t i ons s ince encoun te r per iods v/ould be lov/. This was found to be t r ue in the case o f SSP K A I M A I _ 1 N 0 when ope ra t i ng in f o l l o w i n g seas a t 15.5 knots w i t h o u t c o n t r o l . P i t c h m o t i o n s o f 20 degrees c r e s f " t o - t r o u g h were reco rded bu t o p e r a b i l i t y was not adverse ly a f f e c t e d as long as the p rope l l e r remained submerged and the bov/ was not i m p a c t i n g . Simple a u t o m a t i c or even manua l c o n t r o l c o u i d eas i ly prevent

V - 4 - 1 6

,,rh ex t r emes of m o l i o n . S im i l a r t f i i nk ing appl ies to . ( i in sea r o l l i n g . A ve r y long t o l l pe r iod assures t f i a t

., •.r,nont cond i f i cns w i l l not occur in beam seas under ',i,C)5f al l cond i t i ons . ResonanI cond i t i ons t h a t m i g h t , riir in f o l l o w i n g seas a l m o d e r a t e speeds con be

, , ,n i ro l led by a u t o m a t i c m.otion r e d u c t i o n . Tf ius the t r end 1 SV\'ATH ship design is to tal<e advantage of long na tu ra l

• r r iods for good inherent seokeeping in most sea !( , ; idi t ions wliile re l y ing on o u t o m o i ic c o n t r o l and o ther nic-ans to decrease mot ions when resonant cond i t i ons ore nached in f o l l o w i n g seas at m o d e r a t e speeds.

The SWATH ship designer must also be aware o f the in jer re la t ionsh ips among the var ious n o i u r a l per iods , i ' i tch and ro l l per iods should be separa ted so th t i t , incomfor tab le " c o r k s c r e w i n g " mo t i ons w i l l not occur in i juar ter ing seas as in the case of SSP K A I M A L I M O at 15.5 !-iots when JQ (16 seconds) and T^ (21 seconds) were ln)*!i exc i ted a i i he some t i m e . The change in per iods w i t h -.•Ktpd under l ines ihe impo r tance of hov ing a good m o t i o n predict ion fechn iq t ie t ha t con be used in the ea r l y stages ,.: design. Ro l l and l ieove pei iods and p i t ch and heave fo r f i st iould also be separa ted if poss ib le . The iü ier re la t lonsh ips among the na tu ra l per iods is par t i cu la r ly i m p o i t o n t at low speeds v/here c o n t r o l f ins ,:;c not e f f e c t i v e in m o d i f y i n g m o t i o n s . The cho ice of i iMural pet iods mioy be d i c t a t e d by low speed behav io r , par t i cu la r ly i f ihe sli ip's miss ion requ i res a long d u r a t i o n at low speeds,

The na tu ra l per iods o i e c lose ly r e l a t e d i o t h r e e o the r 'lesign issues; the amoun t of v /o te rp lane a rea , the l.i idginq s t r u c t u r e cleat once he ig l i l and the m e t a c e n t r i c h'dghts. The l ieove na tu ra l pe r iod can be increased by decreasing wa te rp lane o rea . Sucl i a decrease olso w i l l ('rerease the hoove e x c i t i n g fo rce in v/aves, and p robab ly Gocreose res is tance as w e l l . I t must be r e m e m b e r e d riawever t ha t cs the v /a te rp lone area is decreased, the restoring f o r c e also is decreased. Th is con resu l t in the S ' iuot ion t h a i , s ' lould resonance occur at Ihese longer periods, i he m o i i o n s con be ra the r large even though the exci t ing f o r c e is smal l as shown in P ien and f_ee (Re f . 17). The f ina l se lec t i on of w a t e r p l a n e area must r e f l e c t a t'olance betv/een ihe above r e q u i r e m e n t s . O i l i e r issues tl.at v / i l l com.e i n t o the dec is ion ore s t r u c t u r a l and i r rongements cons idera t ions .

Long i t ud ina l m e t a c e n t r i c he igh t is a f u n c t i o n o f the :'iSl' ion of the v /a ie rp ione a rea . Inc reas ing G M L J-'cret.ses the p i t c h na tu ra l pe r i od bu t p rov ides a " s t i f f e r " '•liip in t e rms of p i t c h r e s t o r i n g f o r c e fo r s u r v i v i n g in txtreme seas. Increased c lea rance he igh t tends t o 7vcrease bo th m e t a c e n t r i c he igh ts v/hi le impos ing a -̂^ vere s t r u c t u r a l we igh t p e n a l t y . P l o t f o r m i i n g (not •'esponding in) a l l waves wou ld requ i re a h igh c l e a r a n c e , i ' l is is the approach t o k e n by designers o f c o l u m n ' ' ab i l i zed p l a t f o r m s . Ghang ing f r o m p l a t f o r m i n g to • inTouring as seaways ge t h igher w i t h longer assoc ia ted

•tiods is the des i rab le approach for SWATH ships. This ' " ' Is an uppei l i m i t on fhe des i red n a t u r a l pe r iods .

J to ina t ic c o n t r o l and bow up t r i m a re f u r t h e r ^ 'osiderat ions t l i a t may i n f l uence i h e f i na l c l ea rance

• -^ign o f a S.VATH ship.

Overa l l seakeeping is bo th a c o n s t r a i n t and on ' pe r tun i i y to tiie designer as h y d r o s t a t i c s , s t r u c t u r e s , ' tangemients, p o w e r i n g and oilier f a c t o r s are ba lanced to

ia in a good design., The dependence of seokeep ing on ^decentr ic he igh ts , m o m e n t s o f i n e r t i a and c iea ronce

' ' ints out t ha t t l i e ustiol v /e ight g rov / t h of ships can be a ' 'ioi.is p r o b l e m fo r a SvVATH h u l l . Thus , un t i l expe r i ence

•i'Jined in design and c o n s t r u c t i o n , t l i e SWATH ship v / i l i ' Ju i re larger marg ins than c o n v e n t i o n a l hulls. "•'S Teless the S'NAIH c o n c e p t o f f e r s the o p p o r t u n i t y

^-:. ign a l iu l i v / i t h low m o t i o n s end t h e r e f o r e enhances

i ts c a p a b i l i t y f o r naval opera t ions such os a i r c r a f t land ing and t a k e o f f , v/eopons f i r i n g , and tov / ing sonar .

7.3 PREDICTIO iM O F E X T R E M E M O T I O N S

In prev ious sec t ions the mo t i ons of SSP K A I M A L I N O have been p resen ted as ob ta ined in seas o f a spec i f i ed s e v e r i t y c h a r a c t e r i z e d by the spec i f i c wove spec t re g iven in F igu res 17, 18, and 19, The shape o f wove s p e c t r a , h o w e v e r , con va r y cons iderab ly (even though the s i g n i f i c a n t he igh ts o re the some) depend ing on d u r a t i o n and f e t c h of w i n d , s tage of g r o w t h and decay of a s t o r m , or i h e ex i s tence of s w e l l . Thus, du r ing her l i f e t i m e , a SWATH ship may encoun te r a vast v a r i e t y o f w o v e s i t u a t i o n s . For design c o n s i d e r a t i o n , t h e r e f o r e , i f is i m p o r t a n t to examine the e f f e c t of wave s e v e r i t y as we l l OS wove spec t ra l f o r m u l a t i o n s on t h e mogn i t t i do o f responses o f SWATH ships. For i h i s , c o m p u t a t i o n s of the p robab le e x t r e m e va lues of heave and p i t c h o f SSP K A I M A L I N O in o seaway hove been c a r r i e d out in th ree d i f f e r e n t m a t h e m a t i c a l spec t ra f o i i o w i n g the m e t h o d f o r shor t t e r m response p r e d i c t i o n p resen ted in R e f e r e n c e 18. The p robab le e x t r e m e value is the lai 'gest va lue l i ke l y t o occu r In a spec i f i ed ship ope ra t i on t i m e , l iere taken as i h e d u r a t i o n o f t he sea c o n d i t i o n . The B re t schne ide r , P i e r s o n - M o s k o w i t z and the Och i s i x - p a r a m e t e r spec t ra l f o r m u l a t i o n s w e r e used in the c o m p u t a i i o n s , and these w e r e app l ied to ihe t t ons fe r f unc t i ons ob ta ined f r o m on ana lys is o f SSP K / \ I M A L l f ^ O data ob ta ined in beam seas a t a speed of 10 kno ts .

G o m p u t o t i o n s using the B re tschne ide r and ihe Och i s ix -porome+er rep resen ta t i ons were mode for a i o m i l y of v/ave spec t ra f r o m w h i c h the upper and lower bounds of responses w i l h c o n f i d e n c e c o e f f i c i e n t o f 0,95 v/ere d e t e r m i n e d as v/el l as those responses most l i ke l y to o c c u r ; i h o t is. the responses in t he m o s t p robab le v/ave s p e c t r u m fo r a g iven sea seve r i t y . These responses v/ere t f i en c o m p a r e d v / i i h those c o m p u t e d using micasured spec t ra a t S t a t i o n India in the Idor th A t l a n t i c CvVeafher S t o t i o n I) in order i o d e t e r m i n e how v/ei l the bounds cover the v a r i a t i o n of responses in the measured s p e c i r a . The resu l t s are sliov/n in F igures 38 and 39 for p i t c l i and in F i gu res AO and 41 fo r heave for wove he ights up to 4.9 m e t e r s . Inc luded also in the f igures are ihe responses in the P i e r s o n - M o s k o w i t z s p e c t r u m . Vv'ove he igh ts g rea te r t h a n 4.9 m e t e r s (Sea S ta te 6) we re not i nves t i ga ted s ince c r a f t l i n e a r i t y has not been v e r i f i e d in seas of s e v e r i t y g r e a t e r t han t h i s .

The s c a t t e r o f the responses c o m p u t e d in l l ie measured S ta t i on India spec t ra sl iov/n by the crosses ind ica tes t ha t the p robab le e x t r e m e va lues o f bo t l i p i t c h and heave a m p l i i u d e va ry cons ide rab ly for a g i ven s i g n i f i c a n t wove he igh t . The P ie r son -Moskov / i t z s p e c i r u m unde rp red i c t s the mo t i ons in the lower wave he ights wh i l e i t tends fo p r e d i c t va lues somev/hat h igh in t ho h igher s i g n i f i c a n t v/ave he igh ts , 11 is also apparent f. iorn the f i gu res t h a t , in g e n e r a l , for bo th p i t c h and hoove m o t i o n s , t he upper and lower bounds of the values c o m p u t e d using t h e s i x - p o r o m e i e r spec t ra l f o r m u l a t i o n b e t t e r encompass fhe da ta f r o m tha measured spec t ra in t he N o r t h /"<t!arit ic t h a n do t i iose ob ta i ned using the B r e i s c i m e i d e r f o r m u l a t i o n . Wl i i le the f o r m e r appears to cover ttie range o f magn i t udes c o m p u t e d using the meosured spec t ra reasonab ly w e l l , the l a t t e r tends to o v e r p r e d i c t i he lov/er bounds and u n d e r p r e d i c t the upper bounds of bo th modes o f m o t i o n . The s i x - p a r a m e t e r spec t ra l f o r m u l a t i o n con b e t t e r descr ibe ihe shape of spec t ra (e .g . , double pecks) t han the B r e t s c hne i de r f o r m u l a t i o n . Th is a i l ows for o b e t t e r d e s c r i p t i o n o f some seaways, and p robab l y accoun ts for ihe good c o r r e l a t i o n be tween tha responses

V - 4 • 1?

28

24

20

SSP KAIMALINO Beam Seas

10 Knots Stat ion India

tl)

16 11) a : 1

E <

o

12

0

Max imum Probable

0

-f^.v.i',y~~"--piet3on-Moskowil/-

2

Minirnum

Ficj.

S i gn i f i can t W o v a He ig l i t ! m )

28 P r o b a b l e Ex t r tM t i e P i t c l i A r n n l i t u d f i s f o r

r v l t i a su red S p e c t r a a t S t a t i o n i n d i a , P i o r s o n -

M o s k o w i T / . a n d Uound.o o f B r e t s c h n e i d e r

S p e c t r a

20

20

a>

Ij

"D. E < x : o

I / ,

0

SSP KAIMALIMO Beam Seas

10 Knots Stat ion India

Most Probable M in imum

Max imum

-Pierson-Moskovi/ itz

_ „ l J _ _ _ L

0 6

F ig .

S i g n i f i c a n t W a v e H e i g h t (rn)

39 P r o b a b l e E x t r o m o P i t c h A r n p l i t i i d o s f o r

| \ / i sa3u red S p e c t r a a t S t a t i o n I n d i a f i n d B o u n d s

o f O c h i C-Parar i iQtar S p e o t r f i

SSP KAIMALINO Beam Seas

10 Knots Stat ion India

0)

•a

"5. E <

> ID 0) •X.

S ign i f i can t W a v e H e i g h t (m)

F ig . 40 P r o b a b l e E x t r e m e H e a v o A m p l i t u d o s for M e a s u r e d S p e c t r a a t S t a t i o n I n d i a , P ieraon-I v i oskov ' / i t z a n d B o u n d s o f R r o t s c h n e i d o r S p e c t r a

<

SSP K A I M A Ü N Ü Beam Seas

10 Knots Stat ion india

M in imum

F ig . 41

Pie ison-Moskowi tz

I I 4 6

S i g n i f i c a n t W . ^ V G H e i g h t (rn)

P r o b a b i o C K t r c m a H e a v a A m p ü t i ê d o fo '

M e a s u r e d S p e c t r a a t S t a t i o n I n d i a a m i ESouncls

o f O c h i B - P a r a m o t o r S p o c t r a

V • 4 - 1 8

based on the s i x - p a r o m c t e r f o r m u l a t i o n and the S t a t i o n

India da ta . . Vv'hiile t l ie most probable e x t r e m e value o f a m o t i o n in

n spec i f ied seaway is t l i a t w h i c i i is most l i ke ly l o occu r , tli= p robab i l i t y Iho t the e x t r e m e value w i l l exceed the most probable va lue is q u i t e large ( t h e o r e t i c a l l y 63 r je rcent ) . Hence , i t is h igh l y des i rab le to p r e d i c t the ex t reme va lue fo r w h i c h fhe p r o b a b i l i t y of be ing exceeded Is a preassigned smal l va lue fi. Och i (Re fe rence 18) developed a ^ fo rmu la fo r p r e d i c t i n g th is e x t r e m e va lue which he co l ls the "des ign e x t r e m e va lue , " and i t is expressed as f o l l o w s ;

Yn(/3) \ / 2 l n "{60)H , rm; \ s T ^ (6)

2T i ( / 3 / k ) ^ n i o /

v/here

1 is the obse rva t i on t i m e in hours, is the area under t h e response s p e c t r u m , is ihe second m o m e n t of the response s p e c t r u m , is the 1 isk p a r a m e t e r and is i hs number of encounters w i t h a spec i f i ed sea in a ship's l i f e t i m e .

The r isk f a c t o r , /3, can be assigned at i l ie designer 's d i sc ie t i on but is g iven a va lue of 0.01 if i t >s des i red t o design for 99 percen t assurance tha i th is (s ingle amp l i t ude w i l l noi be exceeded . The nunnber of encounters w i t h a spec i f i ed sea, k, invo lves the ship opera t ion t i m e a t the spec i f i ed speed in i h e sea considered and t l ie m a x i m u m du ro l i on of t i ie sea.

As noted p rev ious ly , an i m p o r t o n t cons ide ra t i on in the design of SWATH sii ips is t l ie s iz ing of i he b r i dg ing s i r u c t u r e c lea rance he igh t , s ince i l must r e f l e c t a ba lance be tween requ i r emen ts t o l i m i t we igh t end to assure odequote t ransverse m e t a c e n i r i c he igh t , and t l ie requ i remen t for s u f f i c i e n t c lea rance t o m i n i m i z e w a t e r con tac t and s l amming on t l ie b r idg ing s t r u c t u r e .

T h e r e f o r e , i t may be o f i n te res i to examine how the e x t r e m e r e l a t i v e bow i n o i i o n t h a i rnay be expe r i enced by SSP K A I M A L I M O w i t h o u t any f o r m of c o n t r o l r e l a tes t o its c l ea rance he igh t of 1.83 m e t e r s . C o m p u t a t i o n s using Equa t ion 6 v/ere t h e r e f o r e c a r r i e d out for o head Sea Sta te 5 ( s i gn i f i can t wave he igh t of 3.05 me te r s ) o i a speed

7 knots using t l ie B re tschne ide r f o r m u l a t i o n for a range 1̂ moda l per iods a p p r o p r i a t e for the spec i f i ed wave

f ie ight . The r isk f a c t o r fi v/as token as 0.01 and the l i f e t i m e exposure , k, or Ihe number o f encoun te rs w i t h the spec i f i ed sea, head ing , and speed v/as assumed t o be a p p r o x i m a t e l y t e n . The c a l c u l a t i o n s were made fo r t he c e n t e r l i n e of fhe cross s t r u c t u r e a t the f o r w a r d m o s t loca t ion of the f la t b o t t o m just be fo re the s t a r t o f fhe cu rved bow. Tl ie re.sults ere p resen ted in F i g u r e 42_where they are shown as a f u n c t i o n of ope ra t i on t i m e . I f is seen that t he e x t r e m e va lue increases s i g n i f i c a n t l y du r i ng t h e f i r s t severa l hours and t h e r e a f t e r ii ici-eoses v e r y s lov / ly i h roughou t t he 44 hour pe r i od w h i c h is the e s l i i n a t e d du ra t i on of a sea of the .specif ied .sever i ty. The f i gu re olso shows tha t the e x t r e m e r e l a t i v e bov/ i n o t i o n of t he ship w i l l exceed the cross s t r u c t u r e c l ea rance ne igh t w i t h i n four hours ope ra t i on l i m e i f no m o t i o n c o n f r o i is used. Hov/ever , i ts p e r f o r m a n c e dur ing the rema inde r of the s t o r m (about AO hours in ih is cose) should noi degrade much a f t e r the i n i t i a l t i m e pe r i od .

A l t h o u g h v/ater c o n t a c t can be expec ted i t does no t necessar i ly imp ly a s l a m . Indeed, expe r ience o l joo rd SSP K A I M A L I N O dur ing t he seakeeping t r i a l s d id show i h a t wh i l e t he re was o f a i r amoun t of v/ater c o n t o c i v / i th the '••ridging s t r u c t u r e in bend Sea S ta te 5, ihese c o n t a c t s ended a t the lov/er speeds to be gen t l e wave siaps f h o f

T.

•: '

Q. E <

o ca

2.5

2.0

1.5

1.0

0 . 5

Design Extreme Value (/3= .01)

Height of Bridging Structure Clearance (1.83m)

10 20 30 40

Time in l-lours

50 Ö0

F ig . 42 E x i r o r n e V a l u e s o f R e l a t i v e B o w M o t i o n o f

SSP ICAir.'IALIiMO i n

K n o t s

iaaci bea b ta to o at 7

d id not i m p a r l on a r res t i ng m o t i o n to the ship. Though some v a r i a b i l i t y may exist b e t w e e n the assumpt ions mode i iere rega rd ing SSP K A I M A L I N O opera t i ons and t t ie a c t u a l o p e r a t i o n a l exper ience over her l i f e t i m e , i h i s analysis does d e m o n s t r a t e the i m p o r t a n c e of i h e r e l a l i onsh ip b e t w e e n c lea rance he igh t and r e l a t i v e bow m o t i o n .

8 ^ C O N C L U D I N G R E M A f ^ K S

The resul ts of the f u l l scale t r i a l s of SSP K A I M A L I N O d e m o n s t r a t e t he good m o t i o n s c h a r a c t e r i s t i c s o f SWATH ships and the l i e n e f i i s of o u l o m o t i c miot ion c o n t r o l . The ag reemen t b e i w e o n inc s i g n i f i c a n t values of mo t i ons f r o m mode l and fu l l scaie resul ts is reassur ing for the a p p l i c a t i o n of f u t u r e rnodei scale resu l t s . The t h e o r e t i c a l p r e d i c i i o n s agree l y i j h the t w i n - s t r u t SWATFI 6C mode l d a t a . Fo r SSP K A l M A i - l N O the ag reemen t be tween t f i eo ry and miodel e x c i t i n g fo rces is reasonab le , wh i l e fhe t r a n s f e r f u n d ions de r i ved f r o m the t r i a l s da ta hove on inheren t u n c e r t a i n t y t ha t miokes f i r m conc lus ions d i f f i c u l t . The m o t i o n resu l ts f o r SSf^ K A I M A L I t ^ O i l l u s l r o t e ihe i m p o r i o n c e of sepa ra t i on of notui-al per iods and t i ie i n f l uence o i these per iods on t l ie m o t i o n response. The e x t r e m e va lue p r e d i c t i o n s o f f e r a means o f app l y i ng exper i rments and t h e o r y t o design and ope ra t i ona l p rob lems .

The SWATH ship o f f e r s g r e a t p o t e n t i a l f o r ach iev ing good seakeep ing . To the designer th i s means inc reased o p e r a b i l i t y and e f f e c t i v e n e s s . T l ie smal w a t e r p l a n e area a l te rs t he seakeeping c h a i a c t e r i s t i c s and a l lows for a r e l a f i v e l y sma l l c o n t r o l f o r c e fo mo'-.e large changes in the m o t i o n responses. The SWATH c o n c e p t locks the long design h i s to ry o f rnonohul ls ; hov /ever , the too ls requireci for p r e d i c t i n g m o t i o n s , n a t u r a l pe r iods , and e x t r e m e va lues ore we l l deve loped . T i i r ough these p r e d i c t i o n i echn iques , t he e f f e c t s on seokeep ing o f n a i u r o l per iods , m e t a c e n t r i c he igh ts , w a t e r p l a n e o rea , and o the r p a r a m e t e r s are b e c o m i n g unde rs tood .

V 1')

REFEF<ENCES

1. L a m b , G . R. and F e i n , J . A . , "The D e v e l o p i n g Techno looy fo r SWATH Ships", p resen ted at A l A A / S N A M E Advanced" ^Aarine V e h i c l e s G o n f e r e n c e , B a l t i m o r e , M d , O c t . 1979.

2. L e e , C . iv\. a m d R. M . Gu rphey , " P r e d i c t i o n o f M o t i o n , S t a b i l i t y and Wove Loads o f S m a l l -W o t e r p l o n e - A r e a , Tv. ' in-Hul l Ships", T rans . Soc. N a v a l A r c h i t e c t s and M a r i n e Eng ineers , V o l . 85, 1977, pp. 9 4 - I 3 Ü .

3. D a l z e l l , J . F., " A S i m p l i f i e d E v a l u a t i o n M e t h o d fo r V e r t i c a l P l a n e , Ze ro Speed, Seakeep ing C l i a r a c t e r i s t i c s o f SWATH Vesse ls " , D L - 7 8 - 1 9 7 0 , Ju l y 1978, Stevens i n s t i t u t e o f Techno iogy , H o b o k e n , IM.J.

k. L e e , C . M . , " A p p r o x i m a t e E v a l u a t i o n of Added ,Va-:s ' o n d D a m p i n g G o e f f i c i e n t s of Tv/o D imens iona l SWATH Sec t i ons " , 7 8 / 0 8 ' i , O c t . 1978, D a v i d W. T a y l o r N o v e l Ship R & D C e n t e r , Be thesda , M d .

5. O s h i m a , M. , Fl. N o r i t o and Y . K u n i t o k e , "Expe r i ences W i t h 12 M e t e r L o n g Semi -Subrnerged G o t a i o a r a n (SSC) " M a r i n e A c e " and B u i l d i n g of SSG F e r r y f r r ' ( ' ' 6 Passengers" , A I A A / S N A M E A d v a n c e d M a r i n e V e h i c l e s G o n f e r e n c e Paper 79-2019, B a l t i m o r e , M d , O c t . 1 979.

G. L o n g , T . G. , H i g h t o w e r , J . D . and S t r i c k l a n d , A . T "Des ign and D e v e l o p m e n t of t h e 190-Ton Stable Semi -Submerged P l a t f o r m (SSP)", TP 397, Ju ly 197'(, N a v a l O c e a n Sys tems C e n t e r , San D i e g o , C o .

7, H i g d o n , D . T. , " A c t i v e M o t i o n R e d u c t i o n in SSP K A I M A L I N O in a Seaway" , A I A A / S N A M E A d v a n c e d M a r i n e V e h i c l e s C o n f e r e n c e Paper 78-740 , Son D i e g o , C o . , A p r i l 1978.

8, H i o d o n , D. T. , " A c t i v e M o t i o n FTeduction for a 3000 Ton SWATH Ship U n d e r w a y in Regu la r H e a d and F o l l o w i n g Waves" , 8 0 - 0 5 - 0 1 , May I98Ü, Seoco Inc . , K o i l u o , H a w a i i .

9, S tenson, R. J . , " F u l l - S c a l e P o w e r i n g T r i a l s of the S to l i le Semisubmerged P l a t f o r m , SSP K A I M A L I N O " , SPD S 5 0 - 0 I , A p r i l I97Ö, D a v i d W. T a y l o r N a v a l Ship R & D C e n t e r , Be t f iesdo, M d ,

10, Woo, E .L . and M o u c k , J . L . , " S t a n d a r d i z a t i o n T r i a l s o f the Stab le Sern i -Suhmerged P l a t f o r m , SSP K A I M A I J N O , w i t h a M o d i f i e d Buoyancy C o n f i g u r a t i o n " , 8 0 / 0 4 9 , A p r i l 1980, D a v i d W, T a y l o r Nava l Ship R & D C e n t e r , B e t h e s d a , M d ,

11 , K a l l i o , J .A . , "Seakeep ing T r i a l s o f the Stab le S e m i - S u b m e r g e d P l a t f o r m (SSP K A I M A L I N O ) " , S P D - 6 5 0 - 0 3 , A p r i l 1976, D a v i d W. T a y l o r N a v a l Ship R & D C e n t e r , B e t h e s d a , M d .

12, Woo lover , D . and P e t e r s , J .B . , " C o m p a r a t i v e Ship P e r f o r m a n c e Sea T r i a l s for t h e U.S. Coas t Gua rd C u t t e r s M e l l o n and Cope C c r v / i n and t l ie U.S. N a v y SWATH Ship K A I M A L I N O " , 80 /037 , M a r c h 1980, D a v i d W. T a y l o r N a v a l Ship R & D C e n t e r , B e t h e s d a , M d .

n K a l l i o , J . , "Seav/or lh iness C h a r a c t e r i s t i c s o f a 29CO- fon SVv'ATH", SPD-620 -03 Sep t . 1976, D a v i d W. T a y l o r N a v a l Ship R & D C e n t e r , B e t h e s d a , M d .

14. F e i n , J . A . and S t a h l , R., "Head and F o l l o w i n g Wave E x c i t i n g F o r c e E x p e r i m e n t s cn Tv/o SWA f H C o n f i g u r a t i o n s " , SPD 0 9 2 3 - 0 1 , June 1980, D a v i d W. T a y l o r N a v a l Ship R & D C e n t e r , Be thesda , ^Ad.

15. C o m s t o c k , J .P . (ed. ) , Pni!£ipJilL._2l_.N9X5i A r c h i t e c t u r e , Soc ie t y o f N o v a l A r c h i t e c t s and M a r i n e E?T^f^ïïii^7T977, pp. 659-670.

16. N u r n a t o , E., " P r e d i c t i n g ^ H y d r o d y n a m i c Behav io r of Smal l Wate rp lane A r e a , I w i n H u l l Ships" , P resen ted fo the N e w Y o r k Sec t ion o f Soc ie ty o f N a v a l A r c h i t e c t s and M a r i n e Eng ineers , M a y 1980.

17. P i e n , P.G and L e e , C M . , " M o t i o n and Res is tance of a L o w Wate rp lane A r e a C a t a m a r a n " , P resen ted a t fhe 9 th Sympos ium on t^iaval H y d r o m e c h a n i c s , P a r i s , F r a n c e , 1972,

18. O c h i , M .K . , 'Wave S t a t i s t i c s for the Des ign o f Ships and Ocean S t r u c t u r e s " , Trans. Soc. Nava l A r c h i t e c t s and M a r i n e Eng ineers , V o l , 86 , 1978, pp. 47-76 ,

V - 4 - 20