The Dipole Moment of Cis- and Trans- Chloroiodoethylene

94
Eastern Illinois University e Keep Masters eses Student eses & Publications 1970 e Dipole Moment of Cis- and Trans- Chloroiodoethylene Ashvin Gajendralal Gajjar Eastern Illinois University is research is a product of the graduate program in Chemistry at Eastern Illinois University. Find out more about the program. is is brought to you for free and open access by the Student eses & Publications at e Keep. It has been accepted for inclusion in Masters eses by an authorized administrator of e Keep. For more information, please contact [email protected]. Recommended Citation Gajjar, Ashvin Gajendralal, "e Dipole Moment of Cis- and Trans- Chloroiodoethylene" (1970). Masters eses. 4023. hps://thekeep.eiu.edu/theses/4023

Transcript of The Dipole Moment of Cis- and Trans- Chloroiodoethylene

Eastern Illinois UniversityThe Keep

Masters Theses Student Theses & Publications

1970

The Dipole Moment of Cis- and Trans-ChloroiodoethyleneAshvin Gajendralal GajjarEastern Illinois UniversityThis research is a product of the graduate program in Chemistry at Eastern Illinois University. Find out moreabout the program.

This is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Thesesby an authorized administrator of The Keep. For more information, please contact [email protected].

Recommended CitationGajjar, Ashvin Gajendralal, "The Dipole Moment of Cis- and Trans- Chloroiodoethylene" (1970). Masters Theses. 4023.https://thekeep.eiu.edu/theses/4023

CER TIFiCA TE

Graduate Degree Candidates who have written formal theses.

:T: Permission to reproduce theses.

niversity Library is rece1v1ng a number of requests from other

itions asking permission to reproduce dissertations for incl1,1sion

;ir library holdings. Although no copyright laws are involved,

�el that professional courtesy demands that permission be obtained 1 the author before we allow theses to be copied.

ase sign one of the following statements.

Jooth Library of Eastern Illinois University has my permission to

Lend my thesis to a reputable college or university for the purpose

of copying it for inclusion in that institution's library or research

holdings.

8/3 /?0 Date Author

I respectfully request Booth Library of Eastern Illinois University not .

allow my thesis be reproduced because �����������������

Date Author

/L81861.C57XG1454>C2/

The Dipole Moment of Cis- and Trans-

Chloroiodoethylene (TITLE)

BY

Ashvin Gajendralal Gajjar B . Sc . (1960) M.Sc. (1962)

The Gujarat University, Ahmedabad ,

THESIS

India

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Master of Science

IN THE GRADUATE SCHOOL, EASTERN ILLINOIS UNIVERSITY

CHARLESTON, ILLINOIS

1970 /

I HEREBY RECOMMEND THIS THESIS BE ACCEPTED AS FULFILLING

THIS PART OF THE GRADUATE DEGREE CITED ABOVE

ADVISER

;; /' .., DATE DEPARTMENT HEAD

1ltE DIPOLE t«>MBNT OP

CIS- AND TRANS-

CHLOROIODOETHYLENE

By

Ashvin Gajondralal �jjar Bachelor of Sciellco

The Gujarat University Ahmadabad, India

April, 1960

Master of Science The Gujarat University

Ahmedabad, India April, 1962

Submitted in partial fulfillment of the requirements for the degree of Master

of Science in Chemistry at the Graduate School of Eastern Illinois University

Oi.ARLESTON, ILLINOIS 1970

nIB DIPOU: K>MENTS OF

CIS AND TltANS -

CHLOROIOlJOE'lliYLENE

Thesis Approved ·

Dr. 0. W. cbdon

ur� J • w. tl.u.1a

Dr. R. H

.' Dr. S. R. Steolo

(ii)

ACKNOWLEDGEMENT

The author expresses his sincere appreciation to Mr. Giles

Henderson for suggesting the problem and for providing guidance,

inspiration and assistance throughout the investigation.

The author would like to give thanks to other members of the

faculty for their active interest and help.

The author wishes to thank Dr. J. w. Ellis for his help in

modification of the dielectric cell, Mr. Walter Boyd for his

assistance with the mass and nmr spectra and Mrs. Terry Hawickhorst

for typing this manuscript.

Gxat6ful acknowledgement is also mad6 to the Easte111 Illinois

Univer5ity Research Grant Collllllittee for their support.

Also thG author wants to thank his parents for their patience

and encouragement during his study.

(iii)

Chapter

1

II

Ill

IV.

Taule of Contents

Page

Introduction . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . 1

(a) Dipole Moment........ . . . . . . . . . • . . . . . . . . . . . . . . . l

(b) Dielectric Theory • • • • • • ••••••• • •• • •• • • •••• • • • • 8 (c) Measurements in Solution • •• • • • • •••••••• • • • • • • • 12 (d) Influence of Solvent on Polari�ation • • • • • • • • • • 15

(e) Dielectric Measurements •••••• • • • • • • •••• • • •• • • • 17

(f) Histor ical Preparation of C2H2Cll • • • • • • • • • •• • • 19

Experimental ....... � . . . . . . . . . . . . . . . . . . . . • • . . . . . . . . 21

(a) Measurements • • • • • •••••••• • • • • • • •• . • • • • • • • • • • • • 21

(b) Rosoarch Plan •••• , •• • ••••• , ••••• , ••••••••••••• 22

(c) Starting Materials for Synthesis and Primary S taridards . . . . . . . . . . . • . . • • • • . • • • . . • • . • • . . . . . . . . 25

(d) Purification of M�terials • • • • • • • • • • . • • • • . • . • • • 25

{e) Preparations . . . .. . . . . . ,. . . . . . . . . . . . . . . . . . 41 . . . . . 27

(f) Dielectric cell and Measurements • • • • • • . . . • • • • . 30

(g) Dielectr ic Calibration • • • • • • • • • • • • • • . • . . • • • • • • 31

(h) Dipole Moment Calculatlons • • • • • • • • . • . • • • • . • • • • 32

(a) Result and Discussion • • • • • • • •• • • • • • • • • • • • • • • • • 35

(b) Conclusion and Summary................... • • • • • 38

(c) Suggested Resear ch • • • • • • • • • • • • • • • • • • • • • • • • • • • • 39

Bibliography.. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

(iv)

LIST OF PIGURHS Paa•

1 Dipole momont in els and trans isomors 3

2 Para-chloroiodoboniono 7

3 Induced charges in molecules, caus ing dis�ortion 8 polari&ation, re1ultin1 frolll the presence of charged plattts

4 Slock diagram of dielectric measurements 17 S Hotorodyno beat apparatus 41

6 Dielectric coll 43

7 Plot of nitrobonieno in cyclohoxane 44

8 PlQt of i)dobenzene in benzene 45

9 Plot of ch.loroiodoewylono in bcm�eno 46

10 Plot of c.hloroiodoethylone in cycloboxane 47

ll (a) & (b) Infrared spectrum of trans-chlorovinyl .. rcuric chloride

12 Vpc of trans -chloroiodoethylene

1.3 Vpc of cie-trana-chloroiodoethylene

14 (a) Nar of trans-chloroiodoothylene

(b) Expanded spectrum of trans-chloroiodoothylone

15 (a) & (b) Infrared spoctr.wn of trans-chloroiodoethylene

16 (a) ' (b) Infrared spectrum of cis-trans-chlorovinyl morcuric cbloriao

17 l�mr of cis-trans -chlorovinyl mercuric chloride

18 (a) � (b) Infrared spectrum of cia-trans-chloro­iodoethylone

48-49

50

so

Sl

52

53-54

55-56

57

58-59

LIST OF FIGUJU:S (continued) Page

19 (a) Nmr of cis-trans-chloroiodoethylene mixture 60

(b) Expanded spectrum of cis and trans-chloroiodoethylene 61

20 Vpc of 87.s-aa.soc fraction 62

21 Vpc of 9l.6-94.o0c fraction

22 Nmr spectrum of 87.s-ss.s0c fraction

23 Nar spectrum of 93.6-94.0oC fraction

24 Vpc of crude product obtained froa ICl + HC•at

62

63

64

65

LISl' Of lAfsLES

l Illustration of tho Dipole Moments

2 Illustration of th• Uipole Rulo

l Influence of Solvent on Polarization

4 Physical Constants of Chloroiodoothyleno

S(a) Pnyaical Constants of the Dielectric Standards

(b) Dielectric Conatanta of Nitrobenieno in B�nzone

o Polynoaial Coef f icionta

7 Function £valuation and Standard Deviation

8 Oioloctric Calibration

9(a) Tho Dipole Mo .. nt of le><lobonzene in Benzene

(b) The Dipole Moment of Nitrobeniene in Cyclohexa."le

Page

s

6

16

20

34

34

66

67

69

70

71

(c) The Dipole Moment of Chloroiodoothylone in Cyclohexane 72

(d) The Dipole Moment of Chloroiodoothylono in Benzene 73

10 Masa Spoctrua of Chloroiodooth)lono 74

11 Physical Constanta of cis and �rans-Cl1loroiodoethyleno 40

Chapter 1

INTRODUCTIOO

The dipole moments ·o� £!.!_and trans-chloroiodoethyleno,

measured and reported by Errera (�OJ aro µ cis • 0.57 D and . -

µ trans • 1.27 D. In view of the olectronoaativity of chlorine and

iodine ono would expect the dipole moment of tho � isomer to be

groator than the corresponding trans isomer. The purpose of this

research is to reinvestigate the structure assignment and tho

dipole moments.

(a) Dipole Mo110nt: (1-S)

lbo interpretation of electric dipole moments is one of the

aost useful mothods for determining the structure of organic and

inorganic C011pounds. Molecules are composed of eloctrons and

nuclei in a stato of vibration about certain fixed points in space.

At any given instant the centers of action of the positive and

negative electrical charaos may not be coincident and the molecule

may aomentarily po1soss a dipole lllOllent.

If A and B represent the normal electrical centers of positive

and neaative charges, both of which are equa! to e since the

molecule as a whole is electrically neutral,

cl A •• .....__ __ .....,;_ __ �)------·· <3

e+ e-

then the "dipole moment" (µ) of the molecule is given by

).I. ed (1)

where ).I • dipole moment in Debye Units (D)

e • electronic charge in esu (4.8 x io-10 esu)

d • distance between two atoas in A0 (1 x l0-8 cm)

A molecule possesses a dipole moment whenever the center of

positive charge does not coincide with the center· of negative

charge. The dipole mOllents are vector quantities, since they have

magnitud� and direction. Dipole moments are the results of bonding

of ato1111 of different electronegativity.

The symmetry of a molecule will detet'lline the direction of the

dipole. The more symmetrical the molecule the smaller the dipole

mome�t. In an electric field all molecules have an induced dipole

moment (which is aligned approximately parallel to the field

direction) owing to distortion polarization. Molecules made of

atoms of different electronegativity and lacking symmetry will have

a permanent dipole 1110ment of constant magnitude � and a direction

which is fixed relative to the molecular skeleton. Molecules with a

permanent dipole will be influenced by an electric field such that

orientation polari�ation will be the major component. Tile sum of

tho orientation and distortion polarization is known as the molar

polarization.

It was suggested by van Arkel (6) that the boiling points of

the cis and trans isomers of isoaeric olef ins were in fact determined

by thoir dipolo moments. Since cis and trans olefins almost always

2

differ in dipole 11011ents, the dipole rule should apply, i.e. the

isoaer of high•r dipole aomont should have the higher physical

constants. Por an olefin of the type abC • Cba, where a and b aro

any substituents, tho cia isOllOr would have the greater dipole

moaent and consequently the higher boiling point, density and

refractive index. Consider an olefin of th• type aHC • Oil> where

C-a and C-b have appreciable bond moments and C-H doos not, the

trans isomer will always have the lower dipole JIOlllOnt. nds

phonoaenon is due to the cancellation of the dipole voctors, of tho

trans isoaor aa opposed to the aclciition of those vector forces in

tho cis isomer. On tho other hand if a is any electron withdrawing

group and b is any electron donating iroup, one would expect the

dipole 11e>aent (and boiling point) of the trans isome� always to bo

greater than tne corresponding cis isomer as illusi �ated in Tablo l

and Pig. 1. Examples are shown in Taule 2.

Cis Trans

Fig. 1

l

lt is found that the boiling point , density and refractive

index usually correlate well with the dipole moment (ClOi•QiI is

incongruent to the rule). Tilus whereas in the case of 1,2-dichloro­

othylene, 2-butene, diethyl butenedioate , and cyclodocene , tho cis

isomer has the hieher constants, in the case of 1-chloro-l-propeno,

crotononitrile, and cyclooctene the trans iso .. r has the higher

constants.

4

Formal a

C2H2AsCl2

C2H2BrCl

C2tt2HgCl2

Table l (7) Illustration of �he Oipolo Moaents

Compound Nuo µ.D

Cis-2-Chlorovinyldich- 1.79. loroarsine 2.6lb'

Trans-2-Chlorovinyldi- 2.21b CliiOroarsine

Cis-1. 2-ChlorobrollO- 1.56 ethyl_!l}O _____

-------------·-·-- ------ ----- ---

State or

Solvent

Benzene Benzene

Benzene

Benzene .S�cified

t0c

20 25

25

Not

Trans-1.2-ChlorobrollO- O Benzene Not ethylene Specified

Cis-1,2-Dichloro-l- 2.76 Not Not Mercury_ etjlyl�_�o _ ___

_ -�- _ Sptl�Jfi�d_ __ m Specified

Trans-1.2·Dichloro-l­Mercury ethylene

1.64 Not Specified

Not S�cif ied

&i*>hler. K., Helv. Chia. Acta. 21, 789-92 (1938).

!olothod or Pa

\ of Pc

0 s

s

bMcUowell, c. A • • H. G. Eablea, and E. A. Moelwyn-ffughes, J. Chea. Soc·· • • 1206-8 (1948).

Ul

6

Table 2

Illustrations of tho Dipole Rule (8) Compound b.p.' 0c.

(760 JRDl) N�O 20 d4 g/al

OiCl•CHCl: cis 60.3 1.4486 1.2835 iiifta 48.4 1.4454 1.2565

ai3CH•QfCl: trans 37.4 1.4054 0.9350 cis 32.8 l.40SS 0.9347

Oi3CH1110l0i3: cis :s. 7 1.3931 0.6213 (-250)

trans 0.9 1.3848 0.6044 (-250)

Qi30i•Oi�: trans 122 1.4216 0.8239 C:lS 108 1.4182 0.8244

ft02COl•CHC02Et: cia 223 1.4415 1.067 trans 218 1.4411 1.052

Cyclooctene: trans 75 (78 •) 1.4741 0.8456 (25°) (2S0)

cla 74-75 (84 •) 1.4684 0.8448 (250) (250)

Cyc:lodecene: cis 194-195 1.4858 0.8760 (740 ma)

trans 194-195 1.4821 0.8674 (740 mm)

OiCl•CHia µ•l.27 D 113 1.5715 2.1048 (15°) l&•0.57 D 117 1.5829 2.2080 (150)

&sxception to the rule.

The anomaly of ClQi•CHl could be explained on arounds that the

iodine aay be electron donating rather than electron withdrawing: + I•Cll·Oi·Cl, however, the explanation ••ems unlikely, since the larger

of the two observed llOIMllta, 1.27 D is saallor than the JIOllent of

vinyl chloride Ot2•QiCl (1.44 D). Tho fact that tho 1.27 D moment

is about halfway botwMn that of cis ClCH-CHCl and � ICH•Otl,

rather aakes one believe that it should be assianed to the �

isoaer of ClQl-Qil. Tho reported values of dipole ae>11ents for

chlorobonzene and iodoben&ene aro 1.56 D and l.l8 D respectively.

If iodine is electron clonatina then th• expected dipole moaont for

para-chloroiodob•nzone ia 2.94 D. On the other hand if iodine is

electron withdrawing, tho expectod moaent is 0.32 o. Tho dipole

moll8nt of para-cbloroiodobenzene reported by Guryanova et. al,(9)

as 0.46 O, differs but slightly froa the difference of chlorobenzeno

and ioclobenieno Fig. 2. This also speaks against resonance forms

with positive iodine being of major importance.

Fi&. 2

7

In view of tho general accuracy of the dipole rule and many

dipole aiomont studies of cis and trans 110 .. ra of olefins, the

1eoaetric isomeric atructure assignment• of els and trans chloro-

i�thylene se .. incorrect.

(b) Dielectric Theory:

The concept of electric dipole moment was introduced into

dielectric theory in 1912 by Debye in order to accoWlt for the

effect of temperature. His theory (10) was based on P. Langevin•s

treatment of uanetic dipole moment. If a •diua contains electric

dipoles and is placed in a uniform electric field, tho dipoles will

tend to alian theaselv.s along th• field, so that all the positive

pole• point one way and all tho negative ones the other. This will

result in a separation of charges in the bulk of the material· and

hence in the appearance of surf ace charges of :such sign as to reduce

the applied field.

8888 8 8888 8 8888 8

Fig. l

Induced charges in molecules, causing distortion polarization,

resulting from tho presence of charged plates

8

If the applied field is generated by the original charges on the

plates of a condenser, then, because the field between them is

reduced, the potential difference will be loss than if there were a

vacuum between th• plates. Since the condenser will still hold the

original charges, its electrical capacity is said to be increased

by the presence of tho dielectric medium. If a vacuum separates the

plates, for eX&IQple, tho field strength may be designated by E0

for

a given charge, but when a wiiform material substance is present

this intensity is reduced to E for the saae charge. The ratio of

E0 to B is a constant, called the dielectric coiutant, e , of the

aedium between tho charged plates, thus the dielectric constant is

defined:

E. :.

The Clausius-Mosotti equation allows the calculation of either

the polarizability of a molecule a or the molar distortion polar-

ization PM from measurements of the dielectric constant of the

dielectric material for a pure substance.

Mosotti (1850) and Clausius (1879) deduced mathematically an

equation which · . .1.· be written in th'-" form

9

Where e: is the dielectric constant and M the molecular weight of

the substance constituting the medium, p its density and N0 the

Avogadro nwabor, a is a constant for the medium and is called the

"molecular polari1ability" (which is independent of field intensity

if the field is not so intense that dielectric saturation occurs.)

The quantity a is defined in terms of the equation . at • aF (4)

where 111 is the average dipole moment induced in "a molecul'e by a

field of strength F.

If the JDOlecules have no permanent dipole moment, only

distortion polarization takes place. Tho corresponding polariz-

ability is donotod by a0• If each molecule has a permanent dipole

DlOlllOnt of magnitude µ, there is a tendency for the moment to become

oriented parallel to the field direction, but this tendency is

almost random. If tho molecules were oriented with the axis of its

dipole in the direction of P, the potential energy of the molecule

would be V • -µP, but the axis will ordinarily make an angle with

the direction of P, so that

\J = - ( f c.o� B ) F ( S) which is small in comparison with kT W'lder ordinary expeTimental

conditions. By use of the Boltzmann distribution the average

moment per molecule in the direction of field is foWld to be

� ,..._::. [ u. tOS s e.-V /"'T J :. [ LLc.o�e e. f-"-F c.o�e/R.1] \ - P..V. 1- .. \t.

� u.[ c.os e ( 1 + �� c.o�-�) J I - P. T AV I

10

whore tno average is taken over �ll orientations in space. The

average of cos e vanishes. but the average of its square is 1/3 as

found uy i>el>ye

'fhe t.otal polarizabili ty h �iven by

- E � - <Ao � 3RT and the molar polarization can b� written as

E.-1 M E +2. 'f : PT"\ :.

PM : PcL -+ p� t..'i) where Pd is th� distortion polarization and Pµ is the orientation

polarizat..:.on. lmn edi.!:l.telr it is clear that a plot of PM vs. l/T

utilizing measurements of c: as a function of temperature will yield

both a0 and .,i. 'fhis tecimique is readily applicable to gases .

·rlle q�:ant:i ty 4 nNo ot.... is called the "molar polarization" due � to distortio11 or to induced uipoles, and given the symbol PM. i)y

substituting the known values for Avogadrc's number and n, the

expression tor Po reuuced to 2.54 x 10i4a.

M -

f The molar polarization PM for any substance may be calculated

from the dielectric constant and its molecular weight and aensity.

11

Since the dielectric constant is not easily determined, especially

as the values for gases arc not far from wlity, an alternative

method is frequently used. Howevor, it is known from electro-

magnetic theory that in the absence of hiah magnetic polar-

izability, the refractive index n of a medium is related to the

dielectric constant by the relation a, e. :.. 'Y'\, (. 1.0)

We then obtain from equation (9) the relation of Lorentz

and Lorens . M

f (.11) where Rtot is known as the "molar refraction". The measurement of

no can be made conveniently in an Abbe or othor type of refractometer.

Thus Pc can be measured independently from PM., and Pµ can be

determined by difference. By this means µ can be calculated from

measurements made at a single temperature.

(c) Measurements in Solution: (11) For a dilute solution of polar :nclecules 2 in non-polar solvent 1

the expression for the molar polar.izat30T' can be written as

� E. -1 . XJ..M 1 + )( � M 1 I 12) rM: X.1.Pi M + Xa. P1 M = E.+ J. f

'-where X's are mole fractions, M's are molecular weights and E and p

are dielectric constants and density of a solution respectively. All

P's are total polariiation. Thus PM can be calculated from density

and dielectric constant measurements on dilute solutions. Since a

nonpolar solvent has only distortion polarization, which is not

12

greatly affected by interactions between molecules, we can take

P1M to have the same value in solution as in the pure solvent:

!1-l M1. (. 1l) p1.rt\ = E.1+!1 . f1

We can then get the solutu �oiarization P2M by rearranging Eq. (12).

fiM =- t ( PM - pi"'l x1) 2. (.1'1)

Values of P2M calculated using Eq. (14) are found to vary with

X.2, generally increasing as X.2 decreases. This effect arises from

strong soluto-solute interactions due to permanent dipoles. This

difficulty can be eliminated by extrapolating P2M to infinite

dilution (X2•0) to obtain P2M0•

Procedures that do not rely strongly on measurements on the

pure solvent are therefore to be preferred.

Tho procedure of Halverstacit and Kumler (12) requires precise

measurements of solution densities and dielectric constants.

However, the procedu-ru lessens to some extent the need for high

absolute accuracy.

Another easier and ·more accurate procedur·e is that of

Hedostrand (13) which is given below.

In dilute solutions, the dielectric constant c and density

p are very nearly linear functions of solute concentrations X2.

E.=E1+Cl..�'l. �=fD1+bX.�

( 1S) ( .1C.)

13

From Eq. {3) �nd using Eqs. (13), (15), and (16). it is

possible to rearrange terms and obtain the limiting expression

( s.,)

By measuring the s�ope of £ vs. X2 and the slope of p vs. X2

enable us to calculate the limiting molar polarization of the solute

in solution. lf we assume that the molar distortion polarization in

an infinitely dilute solution is equal to that in the pure solute,

then

(1') fV'b. -

f 4

whore n2 is tho index of refraction and p 2 is the density measured

for the solute in the pure state. We can obtain the molar

orientation polarization of the solute at infinite dilution:

� � • ::. P2 M. - P. ct. = 4 lT N 0 • t£ f'-t � 3 ?>AT

By substituting numerical Values of the physical constant•, we

obtain

( l.�)

where P2µ is given in cubic centimeters per mole and T is given in

degrees Kelvin. The units io-18 esu-cm in which dipole moments are

conventionally given are called Debyes.

An alternative oxpre�sion for Piµ has been given by Smith (14), .

who improved a method of calculation fiTst suggested by

Guggenheim (15). lbis method requires a knowledge of the index of I

14

rofrac�ion n of th<t solution and assume that

a. � "\"\ : 'Vl. I + C. )( 2. ( 2.1)

where C, like a and b, is a constant dete1'11ined by experimont. It

follows that

This expression is an approximate one which holli� when

is small and M2 and l> are not too largo.

(d) Influence of solvent on polarization:

Until 1932 it was generally believed that, provided there was

no coapow1d fo:rmation, nur any change in the positions of the

electrons or in the configuration of the solute wider examination,

the solvent had uo influence on tlv.> polarization provi<lod tho

results were extrapolated to infinite dilution. In the same year

Muller {16) published accurate raeasuroments for chlorobenzeno in a

number of solvents, and theso have been folloW'ed by data for other

solutes, which show beyond a doubt that tho solvent does have an

appreciable effoc�. Somo of the polnrization values obtained for

chlorobonzeno and methylene chloride are listed in Table 3.

15

Table 3

lnfluonce of Sol vent on Polarization

of Chlorobeniene and Methylene Ch_l_o_ri_ d_ o _______ _

· Solvent c

Carbon disulphide 2 . �

Senzono 2.28

Carbon tetra.chloride 2 .25

Docalin 2 . 1 6

Cyclohexane 2 . (12

Hexane l.91

Polari&ation at 20°

Chlorobonzeno

75.S

81.0

81.0

83.0

84 . 0

86. 0

Methylene Chloride

62 68 70

69

71.5

16

It is appareni: from the r�sul ts that ·.1.;, t:lt� ,ueloct·ric constant

of the solvent is decreased the polnritation of the solute increases:

t��s implies that the effect is due to some kind of electric al inter-'

action and that tho correct valm� would be obtained by extrapolation

toe: •l which would correspond to a vact..&um. Muller (17) proposed

th• empirical formula

p 1-4- (.S � l\,t n·o..,) p� ( V�c.��W\)

• where k is constaHt f'o r all substances and is equal to 0.075 -

O.OOS. This rolationship is not satisfactory in all cases, but. it

is sufficient to show that the value of P\,I in a solvent having a

dielectric constant of about 2 should bo about 7 per cont lower than

the true value.

(e) Oiolectric Measurements:

The dieloctrometer employs a llC;)thod known as the heterodyn e

beat method. It 1ives reliable results foT solutions of low

conductance. A block diagram is given in Pig. 4.

C P.VS"'TA L osc.� LL ... TOf'.

VAfUASLI: rll.E.�tJNCV

L Osc.t U .. l\TOP. ..... -.. ........... .._,;_;i

Pig. 4

i7

Tho crystal oscillator aenerates a constant frequency signal

f0, which is usually about 2.6 mH:,. The frequency f of the variable

oscillator depends on the values of L and C in the circuit,

41f1f2L C. = l (.44)

The inductanco L is fixed. The capacitance C, will be the sum of

tho several capacities: Cx (tho coll capacitance), Cp (tho

capacitance of a variable precision air capacitor), er (tho internal

capacitor) and any stray capacitance due to leads. Tho output of

these two 01cillator1 is mixed in the mixer stage. Tho output of

the lllixer is given by f-f0, which is monitored bya.dotector. Tho

frequency at which f•fo is called the :.oro boat frequency. Sinco

capacitance 11 related to frequency by Eq. (24), wo can measure the

dielectric constant by a frequency method. By finding the beat

frequency at one reproducible point, t�e dielectric constant can bo

found froa the dielectric calibration table. A pair of headphones

may be used as a detector since tho output of the mixer is audible.

The Wlcortainity would be large as th� •ero beat frequency is

approached, since wo can hear '! a few cycles por second. An

oscilloscope may bo used in place of hoadphonos and tho accuracy will

bo increased gToatly. T'ne error in such a measurement will be less

than ! ono cycle per second. n,e beat frequency f-f0 is applied to

tho vertical plates of the cathode ray tube and a fixed audio

frequency fa is applied to the h�ri�ontal plates.

18

(f) Historical Preparation of C2tt2Cll

H. Van De Walle .and A. Henne (18) prepared the geometric

isomers of chloroiodoethylone by absorbing acetylene gas in a

solution of ICl in aqueous HCl. Crude QICl•OU was obtained and we.s

separated into it• isoaers by fractional distillation of the

aixture with an equal weight of n-propyl alcohol; tho a1eotropic

mixture of tho trans isoaer containing 4' alcohol h.is a boiling

point of &7.s-aa.s0• The aieotropic mixture of the cis i•o•r

containina 44.4\ alcohol has a boilin1 point of 93.6-94.0°. The

constants of the trans anci els iso•rs are illustrated in Table 4.

The configuration of the cia and trana-c:hloroiodoethylone has

been assigned by H. Van De Walle et al.1on the basis that one isome�

•liainat•• hydro1en iodide with alcoholic KOH about twice as fast as

the other. Since this elimination should ao more easily for trans

substituents (19) tho faster isomer should have the hydrogen and

iodine trans i.e. the chlorine and iodine cis:

OiCl•Oll + KOH---) CIC-CH + KI + H20

The dipole llOMnt of both isomers measured and reported by

Errera (20) for cbloroiodoothylone are µ� • 0.57 D and µtrans •

1.27 o.

19

Table 4

QiLOROIODOBTHYLENli

B.P. of azeotropic mixture with propyl alcohol

8oilin1 Point (760 am)

Pnezing Point

Densities d�

Index of (Na line) refraction

Molar Polari&ation *

Dielectric Constant *

Rate of reaction with alcoholic KOH

Trans

87.s-sa.soc

lll-114

• -41.0 -0.1

2.llSS

2.1048

1.57146

35.3

2.95

o.ss

*Determination by M. J. Errera (.10) •

Cis

116-117

0 • -36 .4 -0.l

2.2399

2.2080

1.58288

31.1

2.72

1.00

20

(a) Moasureaents:

Chapter II

Experimental

Vapor phase chromatograms (vpc)g unless otherwise indicated,

were obtained with a Carl basic gas chroaatograph using a "Heath

Built Servo Recorder" and 1/8 inch x S ft. colUtJn of 8\ di-n­

nonylphthalate on 90-100 mesh Ankron ABS with a helium flow

rate of 20 al/min. Melting points were taken in capillary tubes on

a Thoaas-Hoover apparatus and are W\Corrected. The infrared (ir)

spectra were recorded on a Perkin-Elmer 337 infrared spectrometer.

The nuclear magnetic resonance (ruar) spectra wore recorded using

Varian models A 56/60 and A60 spectrometers in the usual manner.

Mass spectra were recorded on Consolidated Electrodynamic

Corporation (C.B.C.) 21-104 mass spectrometer. Indices of r�fraction

were measured with an Abbe rofractoaeter. All weight measurements

wore carried out using a Sartori\w Model 2743'. balance.� Ultraviolet

spectra were recorded using a Bockman Model DBG spectrophotometer.

Thin layer chromatograms (tlc) were run on silica gel G with methanol

as a solvent and detection was made with iodine vapor, the azeotropic

mixture of the two isomers was separated using semi-micro. spinning

band distillation column (stainless steel band). The dipole

moments were obtalned from dielectric measurements made with a

21

dielectrometor constructed in our laboratorya. 11lis instrument

utilizes a circuit similar to that reported b y Chain (21) (Fig. 5) and a modified dielectric cell b purchased from Balsbau�h

Laboratories, Uuxbury, Massachusetts (Pig. 6).

(b) Researcll Plan

I. Prepare �is and trans-chloroiodoethylene by absorbing acetylene

gas in mercuric chloride solution and then react the resultin�

vinylmercul"ic chloride (22} ""ith iodine as reported by

Beletskaya et al., (24) according to Scheme I.

II. Prepare cis and trans-ehloroiodoethylene by absorbing acetylene

gas in iodine inonoc1,1oride solution and then separate both the

isom3rs by forming an azeotropic mixture with propyl alcohol

and distilling as descriue<j by Van de Walle et al., in Scheme II.

III. Obtain correct structure assignment for both isomers from

deta:i l �d s;Jectroscopic studies such as -C-11 out of plane bending

in the infrared S)>ectrum and the chemical shift and coupling

cons tan Ls in the nucltHll' 1nagnetlc resonance spect�um.

8This instrument was constructed by Mr. James Belcher.

bcoll modified by Or. J. W. Ellis.

22

23

Scheme 1

S"tN'niBSlS OF CHLOROIODOETiiYLENE PROM MERCURIC QiLORIDB

\-\C ==. C. 4

(i) 6N Hydrochloric Acid (22)

\-\<:j c I�

Cl l

(iv) 12 in ether (24) CdI2 Elevated temperature

(ii) Isomerization (23) Bz202 and E_-xylene

;H -=- c + Hqcl I

.._I t�CltYIS c ""' o �1 l"l ' T • /50... 1:,.p 114-llSC..

Irradiation with (18) Uv light

CI / 1-1'3 c I -c. =- c.

�/ ..........._ H

12 in ether Cdl2

Cl /I Elevated temperature

.11 · 5 °/o

+ '--c. = c. \-1/ ............. I-{

'2>� · S 0/o C..I /I

'<::. C. +.Hae.II �/ -H -..)

0

PrOH (18) Azeotropic mixture

distilled

l'Yl·P.1sc:l

Cl /H -c.. -=- c.. • P-2.o 11

\1 / ......... I B· P. <31 ·S-- � ·s·ec.. 1 E.1d·1Ga.<l- a.lcoho I .

Pure trans isomer

C.l /I. 'c.. ::. c . P-z. o 1-f

H/ '- H .,

l B .. P.�3·� -qL\·O c

E.1<.b.�- o...\coho \ Pure cis isomer

Scheme II

SYNTitESlS OP QlLOROIODOBTHYLBNE PROM IODINBK>NOCiLORIDE

�c. =:.CH

J. 6N Hydrochloric Acid (18)

r <:.I

Pr OH Azootropic mixture

distilled

I Two additional Product

Cl .1 t -c.. :::=. c. . P'GO H

\.i"' ........._H :1·5' -'b'b·SoC. �- P. C\ �-<O - q l..\ ·c>°

Extract alcohol

j Extract alcohol

Pure trans Pure cis isomer

24

IV. Obtlliu tile inaices of refraction, donsities1 and boiling points

for both the isomers and compare with the values reported oy

H . Van de Walle.

V. Obtain the dipole monents from dielectric measurements Md

compare with the value report�d by ETTera.

(c) Starting Materials for Synthesis and Primary Standards

The bonzene, chloroform, chlorobenzene, iodobenzene, carbon

tetrachloride, cyclohexano, nitrobeniene. toluene, propyl alcohol,

bon%oyl puroxi<le, cadmium iodide (crystal) a.&'"ld sodium metal, �Mrf}

'Baker Analys�d' reagent gra.de. Para-xylene was purchased fror•

tiastman J<odilk Company. The arL'>iydr0>1!: diethyl ethe1·, analytic.il

grade, was purchased from Eastman ur.:anic Chemical�. Iodine

monochloride was purchased from Alfa Inorganics, Vcntron, ncv�::.·ly,

Mass. Her.curie chloride �ms A.<..:.S. code 1964 reagent �ra<le as

supplied by Speciali ty Chemical� f\i vision. The Mc-leculc::r Si(;Vcs 'M 514' Type 4A, grade 514 as suppli�d by Fisher Scientific. Co.

Acetylene was purchased from local suppliers.

(d) Purification of Mate�inls (25-26):

Benzene:

Rctagent grade benzene (500 ml) was boiled for 10 hours with 40 g of �mhydrous aluminWil Chlorid:? ;m.c' then distillc<!. Tiic

distillate was wuhed several times wi tu water an<l fine.Uy rcfluxud

for 2 hours with acetic acid and mercuric oxide. After wasin ng wit!:

water and sodium hydroxide it was rcfluxe� over sodium metal for

12 hours o.n<l then fractionally distilled over sodium.

25

Cyclohexane:

Cyclohexane wu puaed through an alU11ina colUlln 3 ca. in

diameter and 30 ca. long and fractionally distilled through a 30 ca.

fractionatin& coluan after refluxing over P4010 for twelve hours.

Only th• aiddlo fraction was saved.

Chloroform:

Cblorofora was washed three ti .. 1 vith concentrated sulfuric

acid, neutralized with NaHC03 and washed with water. After drying

over Maso4, it was fractionally diatillod under a nitroaen

atmosphere, aavin& only tho Id.dell• fraction.

Toluene:

Toluene waa purified according to Mathews (27), succosaive

shaking with sulfuric acid, 1odiua hydroxide and mercury followed

by dryin1 over phosphorus pentoxido and then fractionally distilled.

lodobon1ene:

lodobenzene was purified by drying over anhydrous calcium

chloride and distilled saving only the middle fraction.

Para-xylenec

P-xylene was dried over anhydrous calciua chloride, then

refluxed over socliWR ••t•l for 6 hours and fractionally distilled.

Nitroben1ene:

Nitroben1ene wa.s fractionally distilled after refluxing over

P4010 for 12 hours. The aiddlo fraction waa fractionally crystall­

i1ed four tiaea and finally vacuua diatilled shortly before the

measureaents wore made.

26

Carbon Tetrachloride:

Carbon totrachlorido was fractionally distilled after refluxing

over P4010 for 12 hours. Only tho aiddlo fraction was saved.

Chlorobenzene:

Commercial chlorobenzene was purified according to McAlpine

et, al.,(28), by shaking repeatedly with portions of sulfuric acid

undl the acid no longer became color•d. It was washed with water

and then with dilute potas1iua bicarbonate solution, dried with

calcium chloride and distilled. After refluxing over P40lO for

12 hours it was fractionally distilled, and only the 11liddle

fraction was saved.

All these liquids were stored in the dark over Linde 4A

molecular sieves and under nitrogen.

(•) Preparations

(i) Trans 2-Cblorovinyl Mercuric Chloride:

The procedure is very si•ilar to that of Nesmeyanov as

described in Scho .. I (1). Seventy-two grams (0.28 mole) of mercuric chloride was added

to a 250 ml two-necked roW\d bottomed flask and dissolved in

hydrochloric acid. Acetylene gas was first purified by bubbling

throu&h a 25 al solution containing 7.2 g (0.028 110le) of mercuric

chlorido and then bubbled through the above solution. Tho reaction

aixturo was cooled in a salt ice bath to maximize tho yield. A

whit• precipitate of chlorovinyl mercuric chloride was formed. After

27

passing acetylene 1as for eigh hours, the white precipitate was

filtered throuah a auction funnel and dried in a vacuua desicator

over anhydrous calcium chloride for three to four days. The

filtrate was saved aud acetylene gas was bubbled through it until

further precipitation was complete. The resulting chlorovinyl

mercuric chloride was recrystallized from chloroform by using a

Soxhl•t extractor. The melting point of the needle shaped crystals

was fowid to be 121-122° (Nesaeyanov (22) reports 123-1240, Wells

et. al (29) reports 122-1230, Matsuda et. al (30) reports

123.2-124.S) . This isomer was characteriaed by tlc and also by

infrared and ultraviolet spectra.

(ii) lsaaeriaation. of tho trana-chlorovinyl norcuric chloride to

tho cis isomor using benioyl peroxide and dry �yleno as described

in Scheme 1 (ii).

lao•rization of the trans to the .£!!_ isomer has boon reported

by Nesmeyanov et al.,(22) to occur by the action of peroxides

(AG202 , 8&202, or Na202) in solution (xylene, MePh, dioxane or

CCl4) and a conversion of 90\ has boon claime d � Repetition o f the

aue procedure by Wells, ot al.,(29) using sodiWD dry xylene and

dry ben&oyl peroxide claimed 65\ conversion as indicated by the nmr

spectrum.

Tho procedure employed was substantially that of Well s , ot al .?

A mixture of 10.0 g. (O.Ol mole) trana-chlorovinyl mercuric:

chloride and 0.2 & of dry benzoyl peroxide in 25 ml of xylene , which

had boen dried over Na, was stirred for 10 hours in an oil bath at

28

90-95°

. The resulting mixture was filtered while hot and the

filtrate cooled to give 8 . 5 g (75%) of product . An additional

1 . 5 g could be obtained by concentrating the mother liquid. The

material was recrystallized from carbon tetrachloride; m . p. 74 . 5°

(reports 76-7 (31) , 78-9 (32) ) .

(111) Cis-chloroiodoethylene from i•o .. rize compound as described

in Scheme I (iii) .

Ten grau of the "cis" isomer (obtained from isomeriiation of

trans chlorovinyl aercuric chloride a . p . 78°) and 8 . 6473 g (0 .034

mole) iodine � n diethyl ether in the presence of O.S g cadmium iodide

was stirred for about two hours at 34-35° using an oil bath, water

condenser, and a mechanical stirrer . A pink precipitate of HgCll

was immediately formed . The resulting reaction mixture was distilled

under reduced pres•ure leaving HgCll in the distilling flask and

the pro�uct separated from ether by ordinary distillation.

'nle resulting product was characterized by vpc, nmr, and ir

analysis. The result of these analyses suggested that the presumed

� isomer (m.p. 78°) was actually a stochiometric mixture of cis

and trans isomers. (See discussion)

After removal of ether, th'e reaction mixture was treated with

n-propanol and subjected to spinning band distillation to resolve the

geometric isomers as reported by H . Van do Walle et . al . , (Scheme I

(iv) ) . The distillate fractions with boiling point ranges 87.S-88.S

and 93.6-94 .00C were collected and analysed by vpc and nmr .

29

(v) Cbloroiocloethylene froa iodine monochloride and acetylene as

�•cri.,.d in Scbomo II (v). Ten al of iodine .,nochloride was added to a 250 ml two-necked

round bottoaed flask and dissolved in 40 al of 6 M hydrochloric

acid. Acetylene gas was fint purified by bubbling through a

solution of 7 . 2 g (0.028 mole) of mercuric chloride in 25 al of

H20 and then throueh the iodine aonochloride solution which vas

cooled by a salt-ice bath. A colorless oily solution formed as a

second layer. This layer was extracted with diethyl other and the

etherial solution subjected to distillation using a spinning band

column. 'nle fraction boiling at 114-5° was collected.

Th• vpc, ir and nar spectra of tho product mixture were

critically compared with those of obtained in reaction (iv).

(f) Dielectric cell and measurements :

A llOdel 2TN20LV dielectric cell purchased from Balsbaugh

Laboratories , Duxbury, Ma.ssachusett•� was modified in our

laboratory (Pi&. 6) . This cell permits dielectric 11ea1ureaents

up to c •l.O and uses 1 2 . 0 to 15.0 ml solution. Capacitance changes

were measured uaina the tunine aechanisa of a war surplus model

BC.l21N frequency aoter, in place of the u.ual precision linear

capacitor. Althoueh the BC221N provides a hi&h quality gear train

and vernier dial .. chanisa, the capacitance 1• non-linear with

respect to dial readin1s, hence an accurate calibration technique

i• required. 'nlo solution used in these studies in general bad

JO

concentrations in the range l o-2 to 10-3 mole fraction (x) of soluto .

The solutions are introduced into and removed fr<>11 the cell by raoans

of a vacuum from a wator aspirator. The total volume of solution

u.sod for each dielectric aeasuroment was 25 Ill . All of the air that

entered the cell first passed through a drying tubo containina

indicating Driorite . Generally four or five solutions of varying

coucontrations wore used in obte.ining the plots of mole fraction

Cx) vs . dielectric constant Cc ) and the density i> ) for a given

compowid . Because of the high stability of this instrument, each

samplo was allow�d to thermally equilibrate in the cell for five

JAinutos before a reading was aado . In order to maintain a wiifora

temperature thouahout a measurement, the portion of the cell

containina tho solution was i1111Dersed in a constant temperature

+ bath at 25.00 - o.osoc.

(g) Dielectric Calibration : l3J) Tho dielectrometer could be calibrated either in terms of

capacitance or directly in dielectric constant as a function of

dial readina. Although the capacitance calibration method is more

convenient and faster, tht1 latter method was elect�d because of its

higher accuracy.

A di1ital calibration of this instrument was achieved by a

nonlinear least-squares fit of the dielectric constants of a series

of standard materials as a function of dial settings . The physical

constants of the dielectric standards are illustrated in Table S (a)

and S(b) .

ll

Tilo parameters of the calibration function (an orthogonal

polynomial) wero obtained by the use of l'rogram numbe;r l . (Table 6)

lbis program is written in Fortran IV for tho IBM 360 Operating

Systeia . This proiTam calculates the calibration parameters

for polynomials ranging from third order to sixth order. (Table 7)

The standard deviation of each polynomial was calculated by

program number 2 . The polyn01t!al of minimwa standard devistion

was selected for tho calibration function . These parameters were

used in program number l, to obtain a calibration table (soo Table 8

in results) .

(h) Dipole moment calculat ions �

The dipole 11oment of nitrobenzene was calculated using the

Gugeonhoilll (15) p:rocedure by plotting dielectric constant (e ) vs.

mole fraction (x) , and indices of refraction square of the solutions

(n2)· vs. mo lo fractions (x) , and using Eqs . (15) , (21) , (22) and

('O) (Fig. 7(a) and 7(b) .

The dipole momont of iodobenzone was calculated by the

Hodestra.nd (13) procedure by plotting dielectric constant (& ) vs .

mole fraction (x.) and clensi ty of the solutions � ) vs . mole

fraction (x) and using Eqs. (15) , (16) , (17) , (18) , (19) and {20)

(Fig. 8(a) and 8(b) ) .

The dipole moments of cr,loroiodoethylene are measured in benieno

(Pig. 9 ( a) and (b)) and cyclohexane (Pia. lO(a) and (b)) solvents .

Tho dipole moment was ootained by tho use of computer program 4.

32

This program is written in Fortran IV for tho IBM 360 Operating

System. This program calculates the least-squares paraaeters

(slope and intercept) and utiliies thea in tho calculation of the

dipole 1!0meat.

The results obtained for iodobenzono, nitrobonzene, and

chloroiodoethylono aro lllualrated in Table 9 (a) , (b) , (c) and (d) .

33

34

Table 5 (a)

Phlsical constant:> of the dielectric standards

Formula Compow1d Dielectric 25 no B.P. Nau Constant

t

C6Hl2 Cyclohexano 2.015 l . 4236 80.2 (740 u) CCl4 Carbon tetra- 2 . 228 1 . 4580 76.4 (750 am)

chloride

'6116 Ben1ene 2 . 274 1.4979 79 . 6 (743 llllD) ct,HsO!l Toluene 2 . 379 1.5215 llO. 0 ( 745 mm) Qi(;l3 Chloroform 4.720 1.4423 61.0 (750 DID) C6HsCl Chlorobonzeno 5 . 708 1 . 4942 109.0 (742.2 mm)

Tablo S (b)

Oielectric const&nts of nitrobenzene in benzene

Compow1d Mole fraction Dielectric Cx> Constant

c O.b402 2.750 21.522

o . �891 3.000

l . 7123 3.500

laonzene Solution

2vanclenbroucke , A. C . et al . , "The Review of Scientific Inst. 11 Vol . 39, S58-S62 (1968).

Chapter III

(a) Results and 1:>1scus11011:

(i) Trans-Chlorovinyl Mercuric Chloride

Thin layer chromatography shows a single component (Rf o.52 cm) . The infrared spectrua shows "C-H in the region between lOSo-.:uoo cm-1

which indicates olofinic C·H s tretching, "C•C at 1570 cm-1 which

indicates wisaturation and �C_H at 940 cm-1 which indicate� out of

plane C-H bending vibration£ for olefins (Fig. 11 (a) a (b) . Tho

strong band at 940 cm-1 is clearly assigned to the trans isomer (34 , 35) .

Tb� compound exhibits ultraviolet absorption with �StoH 212 which is in max

excellent agrHment with the vs.lues reportod by Friedlina e t . al (l6)

(212 mµ) .

{ii) The iodination of trans-chlorovinyl mercuric chloride

Tho product obtained from the iodination of tran!ii-c!llorovinyl

morcuric chloride was ch&racterized by vpc at 115°. The chromatogram

shows one major peak with a retention time of 1 . 12 min (Pig. 12) .

The proton nar spectl'Wll shows an AB pattern with JAB •ll . S cps and

6AB•l0 . 7 cps which cl•arly indicates the trans configuration (Pig. 14

(a) 6 (b) ) . Tho infrared spectl'Wll shows vc-H at 3080 cm-1 which

indicates olofinic C-H stretching, vc.c at 1545 c:m-1 , which indicates

wisaturation and ac-H at 902 c:a-1 which indicates olefinic c-H out

of plane bending. The strong band at 902 ca-1 is characteristic of

trans configuration (Fig. 15 (a) & (b) ) . Tho mus •pec:trua shows a

base peak P-127, in conjunction with an isotopic clust•r at (P + 2)-

3..>

127, characteristic of chlorine with m/o • 6 1 . Tho parent peak has

a/o • 1B8. wi'tl1 a prominant P .... .! z.t ro./e • 190, c:haractoristic of

chlorine. Other spectral feature� may be fowid in Table 10. 11\e

boiling point and refractivo index are fowid to be 115° (750 ma) and n55 1 . 5831 respectively. Tne dipole moments measured in benieno

and cyclohoxane solvents are founu to bo 0 . 549 D ! o . os U and 0 . 5 19 O + - o.vs D respectively (Table 9c & 9d) .

(iii) lsomerization of the trans-chlorovinyl mercuric chloride

The thin layer chroutogl"am of the product shows one major

component (Rf o . 73 cm) . The infrared spectrum shows vc.H in the

region b@twoen 3000 to 3075 ClJl-l which indicatos olefinic C-H

stretching, vc•C at lSSS c;m-l which indicates unsaturation and

vc .. u at 930 cm-l and 692 c1rl which indicates out of plano C-H

bendina vibrations for an olefin. 11\e two strong bands at 930 c1rl

and 692 Clll-1 seem to correspond to th• trans and cis isomers

rospoctively (Fi&. 16 (a) & (b) ) . This indicatos that this compoWld

is probably a mixture of £!.!.. anti trans isomers. A detu.ile4.l 1unr

investigation by Wells et al.,(37) revealed that indood this product

is a coordinate complex of l : l .£!.!_ and trans isomers . The nmr

spectrum of this compouno is identical with that reported by Wells

et al.,(Fig . 17) . The compoWld t)xilibits ultraviolet absorption

with A=H ;n1 11µ.

(iv) Isolation of cis-<:hlorovinyl mercuric chloride from the cis

trans llixtun of chlorovinyl mercuric chloride

The cis-trans mixture of chlorovinyl 11ercuric chloride, was

36

treated with pyridine giving the lmowu complex of tho trans chloride

with pyridine , 111 . p . a•0, leavtnz l� rotdduo of pure =!!_-chlorovinyl

urcuric chloride a.p. ss0 (38) . £.�:-chlorovinyl •rcuric chloride

does not fora a complex with pyridine . The cis iso.er obtained by

this •thod was very poor in yield,

(v) Iodination of cis·trans aixture

The product obtained from tho iodination of the cis-tzans mixture

wu characterized by vpc at uso . The chromatogram shows three

major peaks with retention ti.mos of l , 12 , 1 . 36 , and 2 . 00 ain. respect­

ively (Pig. 13) . '111• first peak h .. t � tho samo retention time as

that of pure trans- chloroiodoothylO'lle . The second peak corresponds

to the cis isomer which wu identified by nmr. The third peak

corTetponda to some new co11p0Wld. The infrared spectra of the

product mixture reveals both geometric isoaors a.s well as a new

compowid exhibits vc-H at 2925 ca-1, characteristic of saturated

hydrocarbon (Pia. 18) . The nmr spectra of the product mixture has

two Al patterns centered at 5•392 cps and 6•409 cps corresponding

to tho trans and � iso•r• respectively . The absorption at 6•419.

and 6•135 cps, correspond to tho olefin and methylene proton of

tho third component (Pig. 19 (a) g (b) ) .

(vi) Isolation of cis and trans is01Mtrs of chloroiodoethylene

The three component aixturo, as described in (iii) was treated

with oqual voluae of propyl alcohol and fractionally distilled using

a spinnina band column. The two fractions · with boiling ranges from

37

87.s-sa.s0 , shows JAB•ll.S cps and 4AB•l0 . 7 cps which clearly indicates

tho trans i1omer (Pig. 22) and the fraction collected between 93Q6-

�4.o0 ahowa JAB•S.8 and 4AB•4 . 4 , correapondina to the £!.!_ isomer

(Pig. 23) . The reaainin1 third coaponent was not identified due to

poor yield,

(vii) Chloroiodoethylene froa iodine 110nochloride

The cruel• product wu characterized by vpc at 11so . The

chro11&to1r• show• four peaks with retention •iMa of 0. 18, 1 . 12,

1.�6, and 4 . 12 min (Pig. 24) . The peak at 0 . 1 8 ain. is probably due

to Cili�Cl2 (18) • The 1ec:ond peat. has the same retention times as

that of pure trans chloroiodoethylene obtained froa trans chlorovinyl

mercuric chloride. Tbe third peak i• very saall in intensity and

corresponda to !:.!!_ chloroiodoethylone as identified by its nar

1pectl'\lll. tt. Van de Walle et al.,reports that this iso•r was

obtained a.s a aajor product by this method. Tile fourth peak with a

retention tillo Ari- 4 , 12 min . is du. to SOiie higher boiling now

product. Physical constants for the trams isomer· with those reported

by H . Van de Walle et al . , are listed in Table 11 .

Conclusion and Sumary

H. Van de Wall• ' • and A . Henn• ' • structure assian-nts for £!.!_

and trans chloroiodoethyl��me are conoct. The di polo moment measure­

ments Md• by l:rnra were :aiauaiped and iisaccuTate. The correct

dipole llOllent for trans isomer ii 0.549 D t 0 . 005 D in benione and

O . Sli D ! 0 .005 D in cyclohexano . 'nle io4ination of trans chloro-

38

vinyl mercuric chloride proceeds with retention of confiauration .

A possible aocbanisa is the S5i typo

C l / H ' c. :: c.

/ ">... _, c- l H � · Hs :r. �

c. I / H 'c. = C. + H ca ' ' I

M / "- .t

Tho chloroiodoethylene does not exhibit any ultraviolet

induced isomerization. The ir, nmr and mass spectra for the

chloroiodoothylene are reported for tho first time.

(c) Su11ested Research :

1 . Oeteraine the structure of the cia-trana coordinated species

obtained from isomerization of trans-chlorovinyl 11ercuric

chloride by x-ray diffraction .

2 . Develop synthesis and aeuure the dipole moment of cis

chlorovinyl lllercuric chloride ., The dipole aoaent reported by

Neameyanov et . al .,(39) for £!.!_ and trans-chlorovinyl mercuric

chloride as 2 . 76 O and 1 .64 D respectivoly. The dipole moment

of cia isomer is incorrect because it is not the pure cis isomer - -

but it is a coordinated species of cis and trans 11omor1.

Recently Nesaoyanov et . al.�40) reported a now method to synthesize

the pure cis isoaer.

l . When trans-chlorovinyl mercuric ·chloride was treated with iodine,

at room teaporature , in diothyl ether without catalyst, it gives

five additional products . Isolate all these products and

39

detersaine their structures .

4 . The iodination of the stochiomotric mixture of the cis-trans

chlorovinyl mercuric cnlori<Je in the presence of diethyl ether

a.ud cadmium ioaido at elovateu te1!'1porature gives a third now

compow1d. lsolatE' t110 product ana <letermin" its :s t ructure.

S . Confir11 the kinetics of dehydrohalogonntion of ch loroiodoethylone.

6 . Determine the mechanism o f the iodination o f chlorovinyl mercuric

chiorid�.

Table 11

Chloroiodo��_!l_ylene

tt. Van ue Wal le • s Value

cis trans aVpc CollJ:>Onent --ICl + hC•Ch --

B . P . of az�o- 9:5.6-94 . 0 87 . 5 -�IJ . 5 8 7 . S - �8 . S tl'Opic mixture with propyl alcohol

B . P . 116-117 lll-114 114-1 15°

n5s 1 .58288 1 . 57146 1 . 5831

" 0 . 5 7 D 1 . 27 !} o . ss I>

8Trans conformation a$ determined oy nmr and ir spectra

2 of

40

/\/V·--� o10_T_(:r- ; ·:)"�-- -;;1 . �� - "( ::.::.: :.:: . - -·p . (1' - C::JA - · -

N ·-

_ _ --·- ·· ··1

r0 (ij � ; : i ce· (( 111 - - - · · · - - - - .r-,11- - - -· - · · - · · -· - · f

I

> - - �,: : !=---,vv·-1i ' r - - - ··-· N

I

: '-:-:[· I : <?._J '--··-Il l· � I

I : I '---vA./v"-- :1· I <._0 (1) l 1 1 I I '['' • :-:::

I u (( --·-- - -- ---

' (C: I -.../\/\/'- ---·-----! i � L: �R-�" :"c-���:

1·;:-:�-==:?,I,,

.:-:" :·. TH--

� I ,-- --- - "

I -- - -- - ---1 I i.._ I I - - -· - - -

I I Cc� r - - - - -....,_; - - -- -

·

I I I lO -·- "° I (.)

1P11, . : I : t•1 r r-11 I : cc Lr. I I : ·---./VV' - '-\

I I I

--;; I I I �

I I I

X I

I 1 1

I I : r· OL _ I : I I I .: . 111· : :

0, N I I 81 CY. II• I I I

I I 1 1 I I .JI

I 11 �I

I �I

I I ><I I I I I I I

I I I I I

r() I 1 ·I

J I I

r--: (_" I I I .. I "

I (•- -· --··· .L. , ,-- , ... j I I

� I ./ r' I ; <( bj�1liJ fd i I

I I

' --0- 111· J -�- � n C\J f.-1� f,''�' ' 'r.- [�F - _111, > 1--�,, 1. �- - ,. . .. ,, --·-.

�-0)_ I cc (\j UL 0- (.t') - ---- --..;:::./ (•_

I .. - -· ... . . _ r

I .. .. -- ·- - · - -· .. -L . - - - -- -· - · ·- . . l . . .... . . . . . -· · · .. . · -

l{) c�

I -1 I

I I I I I I r I I I I I I

I 1 I I I I I I I I

0 I v.: I > I

I I

( ( ( <.. r'

c.: C' L <' L. (rJ :.1 -�-CJ �� lJ 0. (•.

< .-; ... (.I () (1) I 0 �: :..-..... "(} 0 � . 0 -e .

_q _1_

F:i.t,�l:Ce 1 o C:i_j.'Ctti·t of t,hc Hotrod.j,..j1.:_: ... �3u.·:;. l•?i:;�i�.:tt\�5 for Dicloctric"c.�,ns·::.:-�nt :-�s.;.cu1·c��.:.0rt"c

C i � c;, c5 , C7 C9 c10. C't 1 C1 2 C1 4 c1 5 c16

�1

C1 J, C1 a. C20

Cl7

:=�. P.10, 11 7, ::.1 9 RJ, :t7, n.s, �1u, rrzo :::>'• ·'"" as ?.5, R1 J �j, R1 5 �:1 1 :12 R; 4 �13 �1 �3 �l�

VI V2 . VJ Vl} :c .. ''• 51 I � J') - · J � ). p--.c .::> 1

p�? ..,_

l� 13

1 L!·O·J�::·t�:':. tl·:o-g<:.!1g \:'�r:f.�blE: 0, 1 .. ;:'.f � 600 volt �;, 1;.::1· . 4 �

O .. 30.v�·1t::. ft :i.r t�i:-!:·:!el'

33.5-·:::.:nf. \·c.1·i�.':ile 0 • 0� ';�:.!f • ?.Ii CJ.. 0.01 -:·!.f, 60•J ... 1.rolt. r:t:p,.!:;,."' 8-r.1.£'. !;.50 •. volt eJ.a·::t.;:.·o1;rt:l.c: 0. 002 ... r-,f. :i:ic a I' . 0 . 25�.;1).fe oOO-•.rolt p-1:::01" II p I , "'."'\ l ' l ' ') I • t.;-... !:�- . · ;·:;....1 · -·,T'J ·c z e:c 1�2'0.l.y�::.c 1 On:n.f. 25 .. ";.roJ.t� �lt3(; LroJ.�:-·l:,ic

500 .. 0�:!:1 1 .-.-:·: .. 1 ... ::, t "t'f'\l'."I '"'''"1 �- • . ,. •. .:. vu ... ,l-..,'-' �· ··· '"':iu,·.:. t..i l, 1 5 , 000 .. o:�:i 1 • . ::.-;.t·� 25 ""0 ,...!,,. • • ·- � . .!. t '-' '-' ... ... ...... . . , ...... � � 0 . 1 -:�:c��:"'.::l t-�;:.:.t".: 1 5v'\ '"l'"'vi 1 . ,. , .:. � �· ... :.- .. , : • • -,,. 'J .,,

75, COO-ch:1 1 ..:.-.ltt 2000.:..obr-;. 1 -·.::-. tt

'!\.�bes, �tc .

6SJ7 6!P"" • • v\J

. . 6sA7 6J5 Cri·zt:.1 0 .. 5: :��. . :-:;; t & •• 7irbe �:.::.:; : t '1.�11 ··:,·.:v-;:.��.:; s ·.·ri tc:�: Pi:on'� J:-..�1� Scc:·:�t fv;· cv:::·:i .. :;.:!. :-:i:·e cor;:1'1=t-:-r to

(liel�c �ric c8l.1-Scc1���t f:>1 .. co::.::}.�] .. t:i!'·3 <.:0:1::r.:� to� to

C0�_J4 .. 2 : � . . c : C:i:�1.;2 . 6. :� �

42

Dl!:Lc. · • - (._ LL · '" C'l'Rt l. ·-

Fi.g . 6

43

3 . 1

3 . 0

2 . 9

2 . 8

2 . 7

2 . 6

2 . 5

2 . 4

2 . 3

2 . 2

2 . 1

2 . 0

1 . 9

r I I � · t I I i r : i i i.. I ! I l ' i

i . ! � l I ' ! r I i ' l l L � l ' .

r . . ! ,,' ' .

,,, .·

,.

· .... I

--- ·- . .. --a

,'

·'

'\.

,/

N c

,..... Q) 1-t C1l ::l cr' (/) c 0 •rl .µ u ro 1-t 4-1 <J) 1-t

4-1 0 >< <J) -0 c H '-....J

--·' ·�� ....... ��---���---��....,���· 1 2 3

Mole Fraction x x io-2

t a)

4

2 . 037

2 . 036

2 . 035

2 . 034

2 . 033

2 . 032

2 . 03 1

2 . 030

2 . 02 9

2 . 028

2 . 02 7

[ I I j

r I ; I .. I ' t r ' I I j l ' I ,-! l r ' I -

r I ' , i ' . , 2 . 026 i:l

i

.. 0 ' , I I ' , I

2 . 025 l '--·'------1----'--

1 2 3

Mole Fraction x x 10-2 (b)

4

NITROBENZENE IN CYCLOHEXANE

..;::.. ..;::..

2 . 39 r 2 . 38 1.

I

2 . 37 ,_

I 2 . 36 l-

. , 2 . 35 I I '

2 . 34 l·-2 . 33

I I ' I

2 . 32 I

I J· I . l

2 . 31 I r I

l-'

2 . 30

2 . 29

2 . 2 8

2 . 27

, , • , I ,

I I �- I '

I I .'

I

I I -- I ' , ' ·' ..

\.f I ' ---£--• •• ,._,,., - ., .,a-

1 .

I/

2 3

Mole Fraction x x lo - 2

(a) , 4

a.

>­µ 'M C/) i:: v

Cl

0 . 92 0

0 . 91 0

0 . 900

0 . 890

0 . 880

0 . 870

0 . 860

t � � ,P I , I , r/./ y' t

IODOBENZENE IN BENZENE

Fig . 8

1 2 3

Mole Fraction x x l o-2

(b)

4

+:­Vl

' t 2 . 296 ! .

i . 2 . 294

2 . 292 I . .

2 . 290 I '.-j I

2 . 288 � l i

2 . 286 ·•

2 . 284

2 . 282

a. � µ •r1 Vl � (!) a

2 . 280 .· p . // ' .

2 . 278

2 . 276

. .

r ,,'

): , ,, � �.

(_".- -·�· . . �� ...... ��--��.._�__,---�__,...____.... 1 2 3

MoJe Fraction x x 10- 2

(Cl)

4

0 . 91 0

0 . 900

0 . 890

0 . 880

0 . 870

0 . 860

t _/ r. I-

i· r r r- // I ; tr r

1 2 3 4 Mole Fraction x x i o-2

(b)

CllLOROIODOETHYLENE IN BENZENE

Fig . 9 .::.. °'

2 . 054 i.

2 . 052 l l_ ' I i 2 . 050 '· ! i

2 . 0� 8 � ' .

2 . 046 '-i I j

2 . 04'1 I

. . I '

2 . 042 l r I I

2 . 040 !_ ' I I ! 2 . 038 l.

! ' i

2 . 036 '� I t

I 2 034 I • 1-l I 2 . 032 l . 2 . 030 '/ '- -

' I ' , , ,

' ' ' '

I

I ' , ,

c

I

1 2 3

Mol0 Fraction x x 10-2 (a)

a. >. µ ..... (/) s:: <!) 0

' -_ .. 4

0 . 83 [ I I 0 . 82 r L

0 . 81 � � 0

o . so r / o . 79 t

I /o /0

I ,0 0 . 78 [ ,//

' ,// 0 . 77 (.·:::· �-_!_---1..---..L---:--

1 2 3 4

Mole Fraction x x 10-2 (b)

OiLOROIODOETHYLENE IN CYCLOHEXANE

Fig. 1 0

A '-.!

-. . I J i . . I ! 60: i" i

I I I J 40t !

i I 201 f I I I I

O ' ...___ _____ _ _ _ _ _ , --4000

------ ---

----------- .

--------------··

·

--

--\--· -· ·----.. - ·- . -·"·-·--·

--

- ··--- -_ .... -----·-

·-

__.

. '

.(l " i

Jl---­

I

I I I I l i

I ! j l

I I l

. 3500 3000 2500 ·------: 2000 1500

Frequency (CM- 1 )

TRANS CHLOROVINYL MERCURIC CHLORIDE

Fig. 1.'l (q ) .+::>. 00

j I

60 I r �----\ t '

40 I r I i I ! I

20 L I I '-'---1- -.-�

1300

[ �

... ____ ...._ __ _

1200

I I

llOO

\

\ � i �

\ (\,. lJ l

I (

·-- - L --------L·--------• - r • , I 1000 900 800 700 600 500 400

Frequency (CM- 1)

TRANS CHLOROVINYL MERCURIC CHLORIDE

Fig . '.11. (b) � \D

t I

L. __ ---'J L__ VPC OF TRr\J\S CllLOP..OIODOET!�Y. : . :E

F i g . 1 :2 --·-- ... --· ' • ... \ • I ' - ·-� d .\ t V 1· ._.

1- i g . 1 3

so

I\ :I I

r

J

400

f

fig. 14 (a)

51 300

I . --r ,�----·· -· - --�--·------"'-.,._ ... _ .. •- •: ,.•:,. I •

I , , · .. '

j •

. �., -r:.::::; ":> c::=::::::=::_ --. ,

-· - .��·----------

------------------ ----·------ -------

52

r.l -

.

i ,, I . �· r I I

. 1

1 . 20 l I I I J j ) . ::.. ! � ; f . l ) . 301 J -. I ,. I

. 40 � I . so � I

. t-0 l .j 4000

-- -350()

' 3000 2500

Frequency (cM- 1)

TRANS CHLOROIODOETHYLENE

Fig . 15 (a)

i

2000 1500

(/1 vi

�· c

i

54 0 0 � 0 0 LI) 0 0 \() 0 0 I' 0 0 00 0 0 0) 0 0 0 rl

0 0 N rl

u.l z u.l .....:l >--� U.l 0 Cl 0 H 0 � 0 .....:l ::i:: u U) � � E-<

-·--J � --------· -----··- -- · .. ·--------:::> 0 0 0 0 0 .�

,..... .0 ..._,

LI) rl

� ·rl ii.

r

40 l � 20

I o_.

4000 3500 3000 2500

Frequency JCM-1)

CIS-TRANS CHLOROVINYL MERCURIC CHLORIDE

Fig . 1. b (Ci )

l ii

..

2000 1500

1 , t l

i

Ul Ul

80

\ / 60 I I /

40 :_

. .

20

ll !1 u

-'·-----..... . --- -

1300

\ I

\ I

t�i ! :

I -------- - ·---- '*'�, .... _ .. ___ ... __ ...... t .. -----...... - .,_ ............ _ _ ' . -·---·--··-_ ... , _ ...... \----··-· .. -·--... •---------1200 l lOO 1000 900 800

Frequency (CM- 1)

CIS-TRANS CHLOROVINYL MERCURIC CHLORIDE

Fig . 1.{,(b)

700

I I I I j

600 500 400 (Jl °'

\ I

4.0 5.0

400

I I I T" "

r-1"°: _ .... . I I ,-, -. 'l 11 57 I\

300 ! , I

l ;j !I I

I I\ l , ------i

l

I · I I I

I I .

\ ! �----. .' t j , 1�'f' '.!j \

· ·. ' ;

• 11 I I :I j : ji f

1 _J __ ..- - -

I I :1 I

� 1, � � � _,, , '11 } ·1 1 · i

j • . I , / /' I . I? I ; 1 "j I ' ! ".\ .. � l \ . I '· � • \ :�\ \ I \ l..} I, ' ' I ·' ,.I ' I .• . ' ·'""" J ' ·' • 1., • ·' • '/ • ;· • • . , · '. •· . _. • • 1 i !.J-··.' j I " ; . 1 r • , .1 •'I •t '1 t I '1 I • ·,. •I • • '...-• I ' I f ' . { .. " • I I . ' l ' '· . . . , . · -- I . I I . "' 1 -·-,·,--.1 -•""' ' I I

I. ·-___ .. ___ -·-· ... _ _....,..,,,

1i, \ , ""� l ' ' "" ' " ' I . "A. J j\,)11,t .. '·, i I . . ' • ( I . ' • \ ,"ii . . . ·1-;J\:'. f , .,I I 1 1 1 ' . , j'j J . • '; ' "

: l .; : f . .. J y ., ' '

·' •I I 1' I •I I . I I I. I f I } I

�:.:x OF CIS-TR .. \.'.!$ Cl!LO:<.Ov!;·:�T.:::;�cURIC c. 'UD!D.2 : :J '.(Tl:;<::

Fig. 1 7

·� .r.-.. �-W••"'-"• '� .... ...,., l,._.,�.__._,..•_.��..._..-.I__.,.,,.-.,.�..,....._, • •• • r :--r. � . ... • .• - :..?;:11• '.., • ... ·� • .. _..

C:::..J ·-,..�--· _.l ..... � .... ,!.,, ___ _ • _ • .t .,._ l.-.-• .... _;_,,,.._.:,.,,__ ...... l ....... 1 •• �- .,. ' .. 1n .... ! .. , . .. .',

0

0

<:: . :: .. _

0 .-i

� n_ ..,, ... _... �

·----�L-----__;L-.----t......-L--• 0 N

0 LI)

0 0 LI) .-i

0 0 0 N

0 0 LI) N

0 0 0 I"')

0 0

r I

0 0 0 .q-

58

U.l z U.l � >-

r-.. � "' rl t..t.l � I 0 � Cl u 0 � ...._, H M

0 >. a: eo (.) 0 -� s:: � t.t.. <I) :i:: ;:3 u er' <I) (/) H

� t.t..

E-< I

(/) H u

0

0

----

(----­�-- -·-·-

- - ------ --- ______ ;.:;::..-:-.. -::-. ---·.;-.:..�.

__C ______ � �����,���---'-��� ....... ��-\�--'L-� \.

0 M

0 N

:::> ..,.., 0 :::> If)

0 -a 0 "

I

I

1 ·.

I

J 0

M

59

0 0 �

· o 0 I.I)

0 0 '°

0 0 "

0 0 00

0 0 °'

0 0 0 M

0 0 M M

0 0 N M

0 0 t'") M

[..U z t.Ll ....:l

,..._ >--::i:: E- ,..,.

M Ul .J. I 0 \.. � Cl u 0 c( ........ ....... ....

0 >- c:::::: OJ 0 0 "M s:: ....:l u.. (1.) :I: ;:s u er (1.) V) $-t � u..

E-I

V) H u

. -. I I I I I I I I I ' I I ' I --, --r-·-�-.,---r----r----r----· .... , --·-, .-....... --...--.,.._� . ., ... --· _,_, --f'1·, �--r'-_..,..-�-,....... .... ---,r----.-···

400

I I 1 · I 1 , :

' I , 'J • I �

60

300

' ... ;,.

1v\) I AJ . f \._} r r ij 1( v----�-------------:1 I I I ·

I W·I:<. OF ,SIS-TRPJ'IS CHLO:;.'.)IQDOJ:Tf-l';'Ll!�:E �·:I XTU!<.E

.. t • ..,. -· '· • I Fi� . 19 (r,) J t t I • I . ... ., .... . � .•• , ,...__ ..... . �� .. ., . .. ......... ...... - · tr • • .•

_I __ ·' · ..... .. _ . . _ .......... ...... t. ____ .... ...... ..! .... ...... -;............. . ..... . '·� ... .. ...... •

-�

-·-·----

J :r II\

�r r-f{)

!!l ,, en t?<

l Toi

rf" l{l

r? rt)

;) .s ,,

� V\>

\JI Of �

er ... 0

� � 0

1 .::r

r:-,.... 0 .:r

-3" � ,, " vo

� T 1� ---.. ______

o:J I th " dl r,,.-<

.J�-0

,�- ...... :h ·-- , -�) � --�

61

i:..Ll z i:..Ll -:i >--:i:: � i:..Ll 0 Cl 0 H 0 Ct:: 0 -:i :i:: u

U)

� �

Cl ,....... � ,.0

.._,

� I (j) .-l

t.t.. tl/) 0 ·r-i

:::E: :=i

t.t..

Ct:: � u i:..Ll 0... U)

Ct:: :::E: z

Cl i:..Ll Cl

� 0... >< i:..Ll

I I . i l

I I 1 l •

. .

\ I i

_L ___ l l _______ J Vpc of 8 7 . 5 - 88 . S0c Fraction Vpc of 9 3 . 6- 94 . 0°c Fraction

F i g . 20 Fi� . 2 1

62

63

400 300

Ni-iR SPECTRUM OF 8 7 . S - 8 8 . S0c FRr'\CTION

,..'.--J__.__.1 , F�.g1• 22 '.-J.-...'----'-··4··..:-�. --.!..--·--··· .. --·· ··�-�J .. --!.-.---·�..l--1..,__:._...1--_J __ ...._:." . .. :. _ _ ' t-......-1--LJ- ' .-!.-....?..-.J_.,,�-··-·....!--'-v-L _ _ . ____ ··-- :···-··--·· !, ___ .__ ! . • ..

�. I, r-'

-�-'

--a ·� f r- I r -r--" r== 1 ,.

64

400 300

NMR SPECTRU'.' ! OF 9 3 . 6 - 9 4 . o0c FRACTION

VPC OF CRUDE PRODUCT OBTAnlED F�O: I !Cl

Fig . 2 4

+ HC -

65

CH

Table 6

Polynomial Coefficients

1HE POLYNOMIAL OF ORDER 3 THAT BEST FITS THE CURVE IS

POWER OF X

· o 1 2 3

1HE POLYNOMIAL OF ORDER

POWER OF X

0 1 2 3 4

1HE POLYNOMIAL OF ORDER

THE

POWER OF x 0

. 1 2 3 4 5

POLYNOMIAL OF ORDERS

POWER OF X

0 1 2 3 4 5 6

4

s

6

COEFFICIENT

- • 2 7 1 1 7939E 01 0 . 45721270E-02 - . 95992527E-06 0 . 10751020E-09

THAT BEST FITS THE CURVE IS

COEFFICIENT

- . 44698534E 01 0 . 86278394£-02 - . 42467873E-OS 0 . 12202466E-08 - . 1336Jl854E-12

THAT BEST FITS THE CURVE IS

COEFFICIENT

- . 62134361E 01 0 . 136618SOE-01 - . 9 7969305E-OS 0 . 41478820E-08 - . 87395922E-12 ·o . 71985545E-16

THAT BEST FITS THE CURVE

COEFFICIENT

0 . 12427124E 04 - . 43289852E 01 0 . 60851015E-02 - . 44207636E-OS 0 . 1 7529069E-08 - . 35986025E-12 0 . 29895988E-16

IS

66

Table 7

Function Evaluation and Standard Deviation

v "

1 0 0 0 . 0

y F U 1\lC T I Oi·l · -

1 . 0 0 0 l . 0 0 8

1 3 64 . 8 2 . 0 1 5 2 . 0 1 3

1-'t.4.6 • 3 . . . ··-- -. . .

14·61 . 3

1 50 5 . 2

- 1-669 . 9 --·

1 7 9 5 . 0

2040 . 0

2.666 . 1 .. - - · · - - - · -

32 59 . 4

?. . 2 2 8 2 ·. 2 1 8

2 . 2 74 2 . 2 5 5

2 . 3 7 9 2 . 3 6 2

·- ··- . 2 . 7 5 0 -----·---· 2 . • 7 4 7 ..

3 . 0 0 0 3 . 0 2 '�

3 . 5 00 3 . 5 3 3

4 . 7 2 0 -- - ·- - . 4 • 6 9 2

5 . 7 0 8 5 . 7 1 5

S TA N D A R D D E V I A T I O N = 0 . 0 1 9

" . --·--- -A --·- - ·- - -- y _ --- - ·- -

1 0 0 0 . 0 l . o o o

1 3 64 . 8 2 . 0 1 5

_ l 446 . 3 -- - 2 . 22 8

1 4 6 1 . 3 2 . 2 74

1 50 5 . 2 2 . 3 7 9

.. 1 .6 6 9 ._9 ______ --·· . - - .. --· ·- ·- -. .. 2 • 7 5 0

1 7 9 5 . 0 3 . 0 0 0

2 0 40 . 0 3 . 5 00

F U i\J C T I 0 f\I .

0 . 9 9 8

2 . o 3 3

.2 . 2 3 2 -

2 . 2 6 8

2 . 370

- --- ··---------· - - 2 .7 3 8.

3 . 0 0 4

3 . 5 0 3

.. 2. 6 6 6 . l.._ - - - · -···-- -- . ---·-·- . -�� . 72 0. - - -·- _ _ _ : ___ --·-· · - - · - __ 4 . 7 2 0 ____ _ - -

3 2 5 9 . 4 5 . 7 0 8 5 . 7 0 8

.;) ' ·· I ! L• ,-• " " � - � .; - ; .. ' - ...... - ...... , ... . \.,." . .... - ..)

··---_x···· ·-- -�---·-- --·-- -- __ y -·-··- --- - --- - · -- - - -----F. U N C T I O h! - ·--··.--

1 0 0 0 . 0

1. 3 :)l;. 0 ��;

1 {.}/( 6 . 3

l '� 6 1 . 3

l 50 � . 2

1

/'.

0 0 0 0

"� J J. :J

2 0 22 c:

2 • ?. 7 t,

2 . �7 9

0 . 9 9 8

2 . (• : q

?. " 2 3 :.;

2 . 2 6 8

2 . 3 7 C

67

1 669 . 9 2 . 7 50 2 . 7 6 5

. 1 7 9 5 • 0 - - . - - - -· - -- - 3 . 0 0 0 3 . 00 1

2 0 40 . o 3 . 5 00 3 . 5 0 7

.. • -- -·

2 6 6 6 . 1 L; • 72 0

5 . 7 0 8 ·· - - --· · - · ---·-·-- - -5 . 7 0 3

S TA ND A R D D E V I A T I ON = 0 . 01 0

x y

- 1 0 0.0 . 0 - - · --··· ------·-·-- ·- ----1 . • 00 0 -

1 3 64 . 8 2 . 0 1 5

1 44 6 . 3 2 . 22 8

. 2 . 2 74

1 50 5 . 2 2 . 3 7 9

1 669 . 9 2 . -r 50

J_ 7.9 5 . • 0 ·---- - --·--- --- . . 3 . 00 0

2040 . 0 3 . 5 0 0

2 66 6 . l 4 . 7 2 0

3 2 5.9 .• 4 -- - - - ---.5 • -, 0 8

S TA NDARD D E V I A T I O N = 8 . 547

F U NC T I ON

-- ·-- -� 0 • 8 9 L� -·

1 . 3 3 6

1 . 840

1 . 8 9 1

2 . 00 4

1 . 8 4 0

1 . 45 7

1 . 344

- 3 . 9 2 6

...... ...... ...... J, ..... ... ... - - - - - - . - _._ .. , .. .. , .. .. £ ..... ..... "'li ... _ -· •• -

68

1 I .\I . • _ , ' T ' · 1 1 (' �\, � • . ) l (" 0 '\ . ·1 l c l '" . . : 1 r. 1 ') • \ I ,, '.>' \ • i I 1 0 2 �� . • • � l /' ·:, I :': . . 1 r� .ti I: • '

I r. tt . • • ; > J " L1 '> • r )

1 f 'i ·1 • . j ! (I 1\ . ' • ll. 1 I ' I � : . . . I I . : ! ' ) 4i "\. I I ' , l � i :· .. ! , . ' "'

I • • ., ' 1 , , j ' l l .' 1 l l 1 l '• •

I 1 I •

l ! l I l l ' i ) I ' ·, •

l I 1, I •

I I I, •

: I ' . '

� I •

1 ' • . . 1 l ' \ •

l. 1 7 •-: . ( \ I 1

! l 1 .

. ") .. . , 1_ ' .. i "

J:·! �_:4L-·--• • • '"1 1 1 H l • '. ! l 't·

·1 • 'j ."�fl_ .. _:_. . I • ':'1 i� f> ' . {) �) /. l . '1 �1.L ...... 1 . 1 1 () {� l . l l') l • l ? .1,_ - •

1 • 1 , � ., ! • l 1-) 7 I , l.J 3 l . l '� ') 1 . :-' � l !t l ? ' ,, • L :__ 1 , ? V i I . ? 'ii) I , ) r, 'i _ _ _

I . ) <�,, ) .. �, ,.,

l . 1 ] l l • ·.t �(� : • -� ,'1 1 ) ... .. . ; \ ) ! • -� 7 r1

) �1 '-\ ! • 't ) ,· ) I • 'J. l '• ' . '+:> "} : • ;I t 3. 1 • 1, :; '�

• �'t ., ? 1 ·' • � 1 . . . .

I • '1• l I 1 • '5 I 11 J. . j5 2'�, 1 • () lj ;·� 1 • ') 1-, i l

1' , ") .. t I : • � 1 \ h 1 • .:.,1) ·)

] • :) LfL-..,-1 • . ) ,, 7 J • J G1 l

----- -----1 -.� 1 . n l ._'\ ·�l I..> • I� t •q l . ;) . . -·

' .1 1 fJ • t') 1 1 1 ? I • " ] 1 ) 2� . 0 .. ! '1 � 1 . n ! 136 . 1) I Vtl . ll .�

I ) t1 (, • O 1 · 1 c; i . 0 i ') �.r. • C•

) 6 I • 0 1 ') (,�, . (' i ' : I . n 1 :'j 7 f., • ·) I <) ;;, 1 • (I I · I <� ��-� I l l • .1(} 1 . �! t ·)f)f • • (t 1 1 .'.,�.J • '. I 1 I ,I 11 • ') 1 1 1 1 . n I I l '• • . ; I 1 ? 1 • 1) 1 1 ? :) • :) ' l ".I 1 • i ) l l � (1 • . ') 1 l 1, l • l) 1 .!. 1. :) • ') 1 1 '� 1 . n I J. l) f, . (1 ' I I� J • !'! l 1 (,f.i . () 1 1 1 1 . n L l 76 •. 0 .. .. 1 1 Q' ! • (I' ! J :.rt . • f'l ! I n l ·• ,.,

l I '"1 f> • Cl I .> tl l • () 1 2 L) 6. • .() ' .' l l . () I -, 1 ', • I '

--

--------· ------l . tl•H , 1 00 ? . 0

l • ( l ), 7 .> l ,., {'\'7 • I) L . ,.,�{ '-\ .... _ ..:.- . __ l n l ?.�. n l , l ! "i () l f1 l 7 . () 1 . •)6f> 1 0 ? 2 . t)

1 . C ��2. ·- :. ... __ 10 2.7 • I_' _

1 . 0 0:\ 1 1)3 ? . 0 J . l l �-' ) '11 7 . 0 l • 1 ?.0 . .... . .1 tV+2 . n l . J L� 5 1 ')4 7 . t) I . 1 6 l

· � 1 . 1.- 1 �) J. • 1 ( \? l . ? d 7 1_ . ? ? ..,, 1 . :> r n l . ?. •) � 1 • ' '-, ll I • � ,, '-1 • ? 19 1 • .? 1 It l • ·3 % '1 1 • i. 1,1, 1 • < '> r. l • ".>. 7 .., I • � '.� n 1 • ! .. . , .,, 1 . • 1t J 7 1 . 4 1 ?.

.. 1 • .r, '• r, 1 • 1t 6 1 1 . t, ·1·5 1 • 't •J " � 1 • c; !) 4 I • ':i l 0 1 • r, �.? J • Lj 4 (.

1 , 1),.,() 1 • �' ., " I • c; g q

1 1) 1) ?. . " ..... ' 1. 0 ') 7 • '!)

1 ,.,h 2 . n 1 l)f., 7 . 0 } ') 7 ? . 0 1 " 7 7 . 0

1 f) Sl ? . 0 l r,� 7 . n l ,, (', � • !j l ;)O 7 . ·"' J t n ? . n 1 1 (: 7 . ,., 1 1 1 -z • .:) 1 1 1 7 • 1) 1 1 " :? . 0 l l ? 7 . ') 1 1 3 ' · "' l t ?, 7 . (\ 1 1 1. 2 . 0 l 1 1• 7 . () 1 1 52 . ') 1 J 5 7 . 0 " 1 1 6 � . 7) l H> 7 . f'

1 1 7 ? . ()

1 t 7 � . n 1 1 H 2 . i} 1 ' ':1 7 . 0 1 1 c. ? • ;)

l 1 ° 7 . f) l , f- t'\.? 1 ? 1)?. . i::i

_ 1 • I"· L ' . . .... ·-· . 1 2 0 7 • Q J , (, .\ \ I 1 ') 1 C • j) ) • I fl !1 l -� 1 7 • ')

1 . nrJ i+ l . '.) 2 l 1 . 1) 1 7 l • ') 5"3 1 • . 'II, (")

. - 1 . �3.5. . . .. . , J . 1 0 } l . l l 7 J . 1 ·- p l . 1 4 1 l • 1 h 4 1 • 1. 7<) 1 . 1 0 5 l . � l l) 1 • � 2 '> ] • ? 11 1 l . ?. 5 6 J . :?. 7 1 1 • g 8 7 l . l<' ? 1 . ? �.?-1 . �. ] ;> 1 • "\ 4 h 1 • 1,f, 1 1 • 'l. 7 {) 1 • lQ 1 l . . 4 0 11 J . 1. 2 1) 1 . 4 � 5 J . tt 4 0 l '• 1-t Ei 4 1. • It 7 q 1 • 1t9 ? t . :i ri 7

l =) •13 • n l 1 . ')()A . � l 00 4 . 0 . l • 0 1 l 1 001 . 0 . 1 . 0 ? 4 1 0n q . o . 1 . 02 1 1 o U , r!. .. . ... �- _ l.. 0 .'t .o --�- . . .l .O .\A. 0 . __ _:_: __ _ :..1 • 0 4 3 J O J ·i . 1 1 1 . 0 56 l O l q . o t . 0 59 i n z � . � t . 0 7 ' 1 0? 4 . o 1 . 0 75 i o 2 t' . • ·-� --·- -· l . o 3..s _____ 1.029 •. o __ --1 . 0 9 1 J :: ? ':\ . (J l • 1 0 It ,. l o ·-1 �) • o 1 • 1 .� n

l OVt . O l . 1 0 7 1 0'.3 9 . 0 1 . 1 2 3

--·-:-:�

l ;; .1, ·� , 1) --- .... :.... l . 1 ? 5 _ _ ,·: l O/t 4: •. () ... ---- l_. 1 3 q •.. -· .

l. !)lt<l . 'j . 1 . 1 5 1 1 0 5 3 . n 1 . 1 6 7 ' l !'J ') t:, . · 1 l �' (� "\ . •.) 1 n A� . o

-- .. ... J . 'l 'l ' 1 . 1 ·).C�

l . ?. l 1 l 1)7 � • 'I -· _ ____ l • ? '? 9 1 d 7 H • I ) } . :� It 4 l C q � . 0 l . ? 5 '1

. ...

} Q p f\ • r) 1 • 'J 7 I+ . �---· v • - ·- ---·-,. l 1) 0. �� • () l • � () f) l J '".��1 - '-' 1 l ')3 • ,,_ 1 I Ofl . 0 1 l l ' L ll 1 I 1 !) • ,·� l l 2 "\ • ,) J I ?R , '1 ] l .,, ·� . (1 1 l j 1� • 0 l 1 4 3 • 0

t . 1 1 1 .:; -· - - l -· '.\ -� ; ) -.--··-

1 . ·p 5 1 . 1 �, q 1 .-� :�I�-···

l . � 7 9 1 : 1 'f /. 1 . /ti) q l . '+ ?. � 1 . 4 ':\ q

J t 4 -:i • ''··- ---- L . '• '.l ? ___ _

1 1 5 � . o L 4 f.. 7 l l �j ., • l) " .. l • 'ts l l l b'" · " 1 1 r,r; Ji 1 1 7 3 . P

1 • 't- <l 5 i . s 1 n 1. ') ?. !_. L . �33 ... ___ _

l . '1 5 2

l 0 4 q . o i . 1 5 4 1 0 '1 1t . 0 1 . 1 1 0 1 0 '1 9 . (l .. .. . _ . . 1 . J. 8 5 .... - - - ·

l or ... '+ . o 1 . ?.O l l c r ... <1 . 0 1 . 2 1 6

1 0 7 4 . 0 - - 1 . 2.3 2 1 "1 7 9 . 0 l . ?'t 7

l C R 4 . 0 1 . 26 2 1 01-\ 9 . () -'-.'. .. __ l . 2 7 7

� � ..... c

1 00 4 . 0 1 . 2 9 3 00 l •)O 9 • (' 1 • 3 0 8 l l 0 4 ._ 0 -- - 1 . 3 2 3 l l O Q . O 1 . 3 1 A 1 1 1 4 ., 0 1 . 3 5 2 l l l C?�>() . ... 1 • 1 6.7

1 1 2 4 ;-'0 l . 3 8 7 l 1 2 9.� 0 l • 3 9 7 l � � 4 •

. 0 l . 4 1J

• l l 1Q . Q l . 4 2 6 t 1 '+ 4 . 0 1 • 44 1 1 l '• .9. 0 --· - J • � c:; 5 . -·-

1 l ':i It . 0 '.. 1 • 4 6 9 1 1 1; 9 . 0 l . Li- 8 4 1 1 (� It • 0 .. ·-' .1 . 4 9 A 1 1 6 ° . o ! . 5 1 2 1 1 74 . 0 1 . 5 ? 7 1 1 7 9 -· () ..,. . _ J. • 5 4 l 1 1 � 4 . • 0 1 . 5 5 5

1 . 132 1 l . '> 3 " l •. r.; 4 'J 1 • I)(, 1 l . ')1 '1 l • 1)0 1 l • �) 0 '1 J . '., 1 0 J • f11 3. 1 . r-. 1 .. 7

1 1 7;3 • .o._, __

�" J i H 1 . 0 ) l l !1'1 , () 1 . 5 6 f> 1 . 5 <' 0

i 1 w � . o . t . 5ti9 l l '> � . 0 1 1 t;:1 . (· 1 : q ?. . 1: l '.? 1) 11 . �) ! :? J 'i . 0 l ? J 1\ • 1:

1 . 5 � 4 l • !,L) g 1 . 0 2 2. -� ..

l • ,., A. (1 l • ',I�!)

1 1 <)4 . 0 . l . 5 '3 3 l l Q 9 . 0 1 . 597 � 1 2 8 � . 0 1 . 6 1 1 1 2 0 Q • () - -···· .. l • 6 2 i;. .. ·_ · .... l ? 1. 4 • 0 . 1 • t'-. � 8 ' t 2 1 9 . o t . 6 5 '

Table 9 (a)

THE D I P O L E � O � E N T OF I O D U 6 E N Z E N E I N B EM Z E N E

E

2 . 30 5

2 . 32 8

2 . 3 3 5

2 . 3 5 7 ·-

2 . 3 8 3

D

0 . 8 8 0 2

0 . 89 0 1

0 . 8 9 3 3

0 . 9 02 5

.o . 9 1 2 2

X 2

0 . 00 9 7 0

0 . 0 1 8 1 9

0 . 0 2 1 5 8

0 • 0 2 8 5 7 -----

0 . 0 37 5 2

0.I E L EC T R I C C Oh�S T.L\NT O F S O L V E�H = 2 . 2 7 7

A= o . z E q E 0 1

D E N S I T Y OF S O L VE � T = 0 . 86 8 9

B = 0 . 1 1 6 E 0 1

i"i 0 LA R P 0 L A R I Z A T I U i'. = 0 . 7 5 7 E 0 2

D I S TO RT I U f\: POL/ :. R I Z A T I 01\! = 0 . 3 9 3 1: CJ 2

O R I E N TA T I O N P O L A R I Z A T I O� = 0 . 3 6 4 E 0 2

0 I POL E l-i01·1 Ei\iT = l . 3 3 4 O E B Y E S

TIGANIK, (41) REPORTS 1 . 39 AT 20°c MURTY , c . R. , e t . al (42) REPORTS 1 . 29 AT 30°c

70

E

2 . 193

2 . 355

2. 5).9

2 . 6 85

Table 9 (h)

The Dipole !1lome11t of Nitrobenzcne in Cyclohexane

2 n

1 . 4242

1 . 4258

1 . 4268

1 . 4273

DIELECTRIC CONSTAl'iT OF SOLVENT :::: 2 . 028

A = 0 . 1639E 02

x2

0 . 0099980

0 . 0199604

0 . 0299985

0 . 0399676

INDEX OF REFRACTION OF SOLVENT SQUARE = 0 . 2026E 01

B :.: 0 . 3002E 00

ORIENTATION POLARIZATION = 0 . 321412 03

DIPOLE ��)ffiNT = 3 . 96 D

BrO\m ( 43) reports 3 . 96 D

Jenkins (44 ) reports 4 . 00 D

71

Table 9 (c)

E I)

2 . 0 3 6 o . 1 r: 2 6

2 . 0 3 9 0 . 7 8 5 1

2 . 0 4 2 0 . 7 9 2 2

2 • Q L;- 8 0 . 8034

2 . 0 5 l� 0 . 8 1 4 8

- - · . ... ··�-X 2

0 . 0 1 0 B 8

0 • ( ) l 4L�3

0 . 0 2 0 1 1

0 . 03066

0 . 0 l:·l 0 7

D I E L EC T R I C C Oi,I S T A i H O F .S O L V f f\'T = 2 . 0 30

A= 0 . 5 80 E (10

0 E i\I S n- Y 0 F S 0 L V b'! T = 0 • 7 7 0 3

H = 0 . 1 0 8 E O J.

;., 0 L 1'.f·� P 0 Ll \ R I Zt.\T I U i\1 = O . 3 � () I:: O 2

D ! S T O R T I UI'! POU.'.l\ I Z AT I O,"= li . 2 9t�E 0 2

O f U !:: NT i J.T I C1'� P O L ;.\ � -(1 2.h T l Ui'l= 0 . � 5 2 t O J.

D I POL E i·tOl, . Hl T = 0 . 5 1 9 0 E i3 Y E S

7 2

Table 9 (d)

11iE DIPOLE MOMENT OF CHLOROIODOETHYLENE IN BENZENE

E

2 . 280

2 . 282

2 . 286

2 . 290

2 . 293

D

0 . 8781

0 . 8831

0 . 8906

0 . 9027

0 . 9095

X2

0 . 00980

0 . 01429

0 . 02037

0 . 03080

0. 03630

" DIELECTRIC CONSTANT OF SOLVENT = 2 . 276

A= 0 .469E 00

DENSITY OF SOLVENT = 0 . 8663

B= 0 . 119E 01

MOLAR POLARIZATION= 0 . 3SOE 02

DISTORTION POLARIZATION= 0 . 288E 02

ORIENTATION POLARIZATION= 0 . 616E 0 1

DIPOLE MOMENT= 0 . 549 DEBYES

73

7<1

Tal.Jle 10

�lass Spectrum of Chloroj odoethylene

Compound m/e

c2H2c137 r p + 2 190

c2112 c 1 3 s r 1 8 8

rc137 164

rc135 162

CzH2I 153

CzHI 152

HI 1 2 8

I 12 7

c13 7cH=cu 63

c135C! l=CH 6 1

F O R T t� /\ i ·! I V

O Q O l 0 0 0 2

00 0 3

0 0 0 4

0 0 0 5 0 0 0 6

00 0 7

0 0 0 8

0 0 0 9

0 0 1 0

00 1 1 0 0 1 2 00 1 3

00 l 'i-_00 1 5

0 0 1 6

00 1 7

O O J. 8 0 0 1 9

0 0 2 0 00 2 1

0 0 2 � 00 2 3 0 0 2 L�

0 0 2 � 0 0 2 6

00 2 7

0 0 2 8 0 0 2 9

0 0 3 0

0 0 3 1 0 0 3 2

0 0 3 3 0 0 3 Li·

0 0 3 5

_0 0 3 6

0 0 3 7

0 0 3 8

0 0 3 9

0 0 40

0 0 4 1

_00 ':- 2 0 0 4 3

0 0 4 4

UI) L.-?

0 0 4 6

0 0 4 7

. � ·- -

-- - -

l:· U : V E L

c

2 0

3 0

1+0

� o 6 0

7 0

8 0

9 0 1 0 0

1 1 0

1 2 0

1 3 0 l '�O 1 5 0

1 60

1 7 0

1 b()

1 90 2 0 0

2 1 0

2 2 0 2 3 0 2 1;0 2 50 2 60

2 70

?. ti(; 2 9 0

300

3 1 0

3 2 0

3 3 0 3 !.:·0 3 5 0 3 60

3 7 0

3 80

3 9 0

400

4 1 0

4 2 0

430 t,1�0

'� :> v lt·bO 4 7 0

Program 1

1 8

75

D/'. T t = 70 2 0 2

L EA S -f S O U i\ R E S C U KVE F n··ni\lG i3Y O R T H OG01·�:\ L P O L Yl!O;·. I /:1 L S l) I i-i E i'! s I 0:\1 p ( 1 5 ' 1 L:- ) ' f\ ( 1 5 ) ' x ( 1 0 0 ) ' y ( l () 0 ) ' \·! ( l 0 0 ) k E i\ D ( 5 , 1 0 0 0 Hl X , 1'1 , M , K

. I F ( ,:, - h! ) 4 0 7 L;. 0 , 5 0

1·l=1·i- l

I F ( i( l 1 l 0 , 7 0 , 1 1 0

DO 90 I = l , r·i R E t; 0 ( 5 , 1 0 0 1 ) X ( I ) , Y ( I ) , \·J ( I ) C Of\!T I i\!U E

GO T O 1 5 0

0 CJ J. I.� O I = 1 , i-1 R. E f-\ 1) ( 5 , 1 00 1 l X ( I l ,_y ( I l � ' J( l ) = l . O

C OfH r1,l U E

DU l G O I = l , 1 5 U O l &O J = 1 , 1 1., P ( l , J ) :.:O o O C Oi :·J° l i'l U E

P ( l , l ) = l . O

X S U1·1 =O . O YSU1·i=O . O u 0 2 50 J ::: l ' i-i xsu; . = xs ui.; -:- x ( J l :::i-· 1 J l Y S U,·: =Y SU:-. +'.·! ( J ) C Oi'IT H ! U E P ( 2 , 2 l = l . O P ( 2 , J. ) = -i�S Ui-, / Y S lf·I

l)O SL;. 0 I = 3 ' 1"fr·1 I I = I - 1 I X = I - 2 X S U i l =O . 0

Y S U i•i= O . O

U S Ui·. =O . O Z S Ui·i= O . O

0 0 4 70 K = l , i!i su;·i Y = O . O SU,·!)�=O . O DO 42 0 L = l , I S U ;· i Y = S U :··1 Y + P ( I I , L ) :;: X ( K ) �:� :;: ( L - l )

SU: i X = SU ,•l X -:-P ( I ;� , L ) ::: X ( K ) :;: :;: ( L - 1 }

>:SU: . = X S u: \ + X ( K } ::: SU :.j Y ::: :;: 2 ::: ·. i ( K )

Y S U = Y S U.·1 + S 1..J, • • Y ::::;: z:::. ( :<. )

C O i\ T I 1':U E

) L; S � 4 9 , 50 0 5 1 . ::. z i 5 3 ) 5lL ) 5 5

1 5 6 ) 5 7

)58 J59 J60

l61

162

l63

164

l65 J66 167 !68 J6 9 70 171 72 B ·74

7 5 7 6 7 7 7 8 79 80 8 1 82 83

84 85 86

- l� 80 i::� 9 0

5 0 0

5 1 0

5 2 0

530 5 i::,.o

5 5 0 5 6 0

5 70

F.:. = X S U i,i/ Y S U H G =- U S U i·:/ Z S U i:i

P ( I , l ) = -13 ':' P ( I I , l > + G ::: P ( l X , l )

DO 5 1.�o J =2 , I ,JJ = J - 1 P ( I , J } = P ( I I , J J ) - B ':' P ( I I , J l + G ,;, P ( I X , J ) C 01,J ·1· I ;\JU E D O 6 7 O I = 1 , 1,Ji,! X S U i··1 = 0 . 0

Y S U M =O . O

5 8 0 D O 6 5 0 K = l , f.i

5 90 S Ui-IZ =O • 0 6 0 0 DO 6 2 0 L = l , I 6 1 0 S Ui'iZ = S Ui'i Z + P ( I , L ) ':'X ( K ) ,:,,;, ( L - 1 ) 6 2 0 C O M T HJU E

6 3 0 x s un = x s u H -:- y ( [,Z )::: s Ui·i z ::: �·! ( K ) 64 0 YS U H = YS u;,\ -:· S U11: Z ::::;: 2 ,;, \·! ( K l

6 5 0 C O l' ! T I i ,J U t:

6 6 0 IJ.. ( I ) = XS Ui.\/ YS Uf·1

6 1 0 c 01·rr H! U c

6 8 0 D O 7 9 0 I = l , N N

6 90 0 0 -1 l 0 ,J = 1 , I 7 0 0 P ( l 5 , J l = P ( l 5 , J ) +P ( l , J ) * A ( I )

7 1 0 C O!H Ii'WE

7 2 0 I F ( l - N X l 7 9 0 , 7 3 0 , 7 3 0

7 3 0 L = I - 1

740 W R I T E ( 6 , 1 0 0 3 ) L

7 5 0 IJ 0 7 �3 0 K = l , I

7 6 0 K K = f:- J.

7 7 0 :·rn I T i ( 6 , 1 00t.:. ) i� K , P ( l 5 , K )

.. . . 7 8 0 C O i'� T i r,�U t: 7 90 C Ol'H Il-!U E

8 0 0 GO T O 2 0

1 0 0 0 F 0 RH t\ T ( Lr J 5 )

100 1 FO Ri·'.A T ( 3 F l 0 . 8 l

1 0 0 3 F O Ri·i.iq ( / / / l Z X , ' T HE P O L Y�! O H I A. L CF O R DER 1 , u� , 1 T 1-11:; T B E S T . 1 c u R v E I s I I I 2 6 x ' I p 0 �·! E R. 0 F x 1. ' 1 2 x ' ' c 0 E F F I c I E N T I )

1 O 0 4 F 0 RH AT ( 2 9 X , I �- , 1 0 X , E l l� • 8 ) R E T U R N

76

F I T S T H f-:

0 0 0 1 0 0 0 2 0 0 0 �� 0 0 0 4 0 0 0 5 0006 0 0 0 7 0 0 0 8 0 0 0 9 00 1 0 0 0 1 1 00 1 2 0 0 1 3 00 1 4 0 0 1 5 0 0 1 6 0 0 1 7 00 J. B 0 0 1 9

00 2 0 0 0 2 1 00 27-0 0 2 3 00 2 4 0 0 2 5 0 0 2 6

0 0 2 7 00 2 <J

0 0 2 9 0030

c

c

Program 2 77

1 ., ... , ..

r U !' :c ·l° J. lJ;': i-\/1\ L l J f:.·f l (ii·: :'.1i,Jf) S T:\ 1 .U:\:�U u1:\ v 1 ·1·.( ( Ji'i F O !'l. L E1� Sl CUR V E f.'. i rr 1 1,•G D I H i: i'IS l Oi'! X ( l OO ) , Y ( J. 00 ) , F ( J. 0 0 )

I� E ,:, D ( 5 , 1 0 ) i·1 , L

l O F lt �;I ; A ., ( 2 1 5 )

DO 30 I = l , 1·. !-{ E J� () ( '.'> � ?. G ) X ( J ) , Y ( l )

2 0 � O n 1·if1 T ( 2 F l 0 . 0 )

::SO C 01H I 1•JUt D 0 l 0 0 I\ = 1 , l :u: 1\ !) ( 5 , '+ 0 ) i1 l , IA 2 1 A 3 , /.'.I� , A 5 , A 6 , /\ 7 , / H5

4 o r o H 1 , i• ·i < c r: i o • o )

S D=O . O

D O 50 i = J , i··1 Z l =A l + A 2 *X ( l ) + A 3 *X ( I l ** 2 + A 4 * X ( l ) ** 3 Z 2 = t\ 5 ::: X ( I } ::: ::: Lr • :- /.\ 6 ::: X ( I } ::: ::: 5 + A 7 ::: X ( I } ::":' 6 + t\ :·1 ::: X ( I l ::: ::: ·r F C i l =Z l + Z 2 S iJ = S tJ + ( F ( I ) -Y ( I l ) :::::: 2

S O = S C..JK T ( S U/ ( Xi·� - J . • ) } ':i R I .i f ( 6 , 6 0 )

6 o F u f{ . .• Ar ' 1 o • s )� � 1 �� 1 , 1 ::> x , 1 v 1 , 1 5 �< , 1 F u t'K r 1 n ,,, ' l DU 80 I = 1 , r·1 \ I R I T E ( 6 , 7 O ) X ( I ) , Y ( I ) 1 F ( I l

7 o F o r..; i'/\ ·r 1 • <J • ; F 7 • 1 , i 5 ;( , 1- ti • 3 ,J. :::> x , F 6 • 3 l e 0 C rn-.1 T J : i U E

U� i i t ( 6 , 9 0 l S!j 90 F U f�, ·i:\T 1 1 o • , 5 ;z : ' S T £, ... 1)�!-, D D E v r ;.. ·f r u;·i = • , F -t . 3 )

1 0 () C U 1,- ·1· i 1'.l J c R E T U l�1'l E N D

.::- . I '' .

Program 3

FORTRAN IV G LEVEL 18 MAIN

C DIELECTRIC CALIBRATION FUNCTION DIMENSION D(S) , E (S) WRITE (6, 19)

10 FORMAT (! HO, ' DIAL ' 2X, ' DIEL, CONST . ' ) READ ( 5 , 2 0) DMAX

20 FORMAT (FlO . O) READ(S , 30)Al , A2 , A3 , A4 , AS

30 FORMAT(6El0 . 0) X=999 . 0

40 po S S I = l , S X=X+ l . O D ( I) =X Zl=Al+A2*D ( I ) +A3*D ( I ) **2+A4*D ( I ) **3 Z2=AS *D(I) **4

S O E ( I ) =Zl+Z2 SS CONTINUE

78

WRITE (6,60) D ( l ) , E (l) , D (2) , E (2) , D (3) , E (3) , D (4) , E (4 ) ,D(S) , E (S ) . .

60 FORMAT (F7 . l , 4XF6 . 3 , 4XF7 . l , 4XF6 . 3 , 4XF7 . l ,4XF6 . 3 , 4 X 1 F7 . 1 , 4XF6 . 3 , 4 XF 7 . l , 4XF6 . 3 )

l F (DMAX-X) 80, 8 0 , 4 0 8 0 RETURN

END

()()() l

0 0 0 2

0 0 0 3

0 0 0 4

0(10 5

0 0 0 6

0 0 0 7

0 0 0 8

0 0 0 9

0 0 1 0

00 1 1

0 0 1 2

00 1 3

0 0 1 4

0 0 1 5

0 0 1 6

00 J. 7

00 1 8

00 1 9

0 0 2 0

0 0 2 1

0 0 2 2

00 2 3

0 0 2 l� 0 0 ? 5

0 0 2 6

00 2 7

0 0 2 8

0 0 2 9

0 0 3 0

e) O 3 1

0 0 3 2

0 0 33

0 0 3 4

00 3 5

0 0 3 6

0 0 3 7

0 0 3 8

0 0 3 9 . O O l�O

00 '�l 0 0 4 2

0 0 l;lt

0 0 4 5

O O .!t6

OOLt 7

c

1 0

2 0

30

40 ':· 5 5 0

6 0

7 0

1 0 0

1 2 0

Program 4 79

D I PC!L E i" o;.: E1 · ·T C: ii L\.lJ U\ T E 0 F R O ;·i D I l:L E C TH I C C Ul·JS T l·. 1,:T S

IJ i i 1 cr · S i tl1.! S 1�f.i P L F { 2 0 )

R E f1 0 ( 5 , l 0 ) S .1\ 1-1 P L E

F O H i·i/\ T ( 2 0 A 2 )

\·J R I T c ( 6 , 2 0 ) S A i 1 P l F FURl .. A T ( J.1 -: 0 , J. O X , 1 T f-! t: D I P O L E :-:C);·I F. l,·T oi-: 1 J. X , 2 t'/\ 2 )

�-: R I T E ( 6 , 3 O )

F O R l 1J\ T { 1 H0 , 1 3 X , ' E I ' 1 5 X , ' D ' , 1 5X , ' X 2 1 )

X 2 S U1 ·1 = 0 o 0

E S lJi·1 = 0 . 0

X 2 l:S Ud = O . 0

X X S Ui·:1 =0 . O

E E S U i•;=O·. 0

X2 IJS U t i = O . 0 D US U 1 ·1 = 0 . O

RE JH ) ( 5 ' Li-0 ) x l·l l ' x i·l 2 ' v ' 0 2 ' x l\I 2 ' T

r C I P.•iAT ( 6 F J. O . O l

1 -. l: ,i\ !) ( 5 � s () ) I I l 2 � 1, I "f

F O n.1-1.c� ·f ( 2 f l 0 . 0 ) I F ( �·iT 2 ) 6 O , } 7- O , 6 O r- E /\ i) ( 5 , 7 O l C: F O R i l.l\ T l i-: 1 0 . 0 )

1:1 T 1. = 1• ! T - 1:"!T 2

L>= �·I T I V x ? ;;;; ( l·'T 2 I )(: '? ) I ( I I T 2 1 x ], 2 + l '!T l I x f 1 l )

Y.?. S U1·1 =X 2S U : 1 + �� ?.

l: S l J1·1 = t S U i i + F.

X X S Ur·: = X X S U 1 1 + X 2 :::)�2

E E: S U 1·1 = E E S u;.i + E ::: E X2 E SlH= X2 E S l J h + X2 :;: E

u s UH =I) s lJ i·1 ·:-(J l.)0 S LJi-1 = D O S U h + D :;' D

X 2 DS U1·l ;;; X ?. fJS U H + X 2 :::o X l = X I + l . O

W R I T E ( 6 , 1 0 0 ) E , O , X 2

FO �t i t, T { 1 H 0 , 1 0 ;q: 6 • 3 , 1 0 X f 7 • l; � 1 ') X F 8 • 5 )

GO T U L:-5 X D = X I :::xx s u'.-X? Sl�; .. ::: ;� 2 SU :·i

f\ = ( X I :;: ;(2 E S Ui-!-X?. SU.·i':' t: SU ,.I ) I X D A A = A P, S { A )

E 1 = ( xx S Ui·! ::: E S Ul·i-X 2 S U i'·i =::x Zc s Ui·I ) I X O B = ( :< I ::;: X 2 D S U ; ·: - X ?. SU ;:; ::: D S U ; ·, l I X D

... -· ' • ' r - . . . . . . .. . - � '· \ . . , . ·- - �- . . . . . . ..

Pt\ = 3 • O :;: X :-i 1 ::: A A I ( ( E l + 2 • O ) ::: ( E 1 + 2 • Cl ) ::: D 1 )

P B = ( E 1 - 1 • 0 ) I ( ( t 1 + 2 . 0 ) :::r n ) PC = X 1·12 - ( X h 1 ::: B B ) I D 1 f' = ? t.\ -:- PS ::: P C

80

F O RT Rf'. M I V G L E V E L u; f·i A I I'-! D t\ T E = 7 0 2 0 L;.

0 Q L� S 004-9 0 0 5 0

0 0 5 1

00 5 2 J. .!1·0 0 0 5 3

0 0 5 4 1 50

0 0 5 5

0 0 5 6 l 6 0

0 0 5 7

00 5 8 1 7 0

0 0 5 9

0 0 6 0 J. 80

0 0 6 1

0 0 6 2 1 9 0

0 0 6 3

00 61'.� 200 0 0 6 3

0 0 66 2 1 0 00 6 7

0 0 6 8

P 2 = ( X f1lZ '::x;,� 2 - 1 . r) ) 'n�f·i 2 / ( ( Xi,! 2 ,:= x i1 !2+ 2 . 0 ) ::: 0 2 )

P 1 :..: P--P 2

u = o . 0 1 2 s':' s o 1zT ( P J. ':' T )

vi R r T E ( 6 , l L:O ) E l F O f�i-!.6. T ( l H O / / l l X ' D i t: L E C T R I C c o 1-..;S T A i°'! T O F S O L VF. h- T = 1 , J. XF 6 Q 3 ) \·! r<. I T c C 6 , l 5 0 ) /.\ F O R i.:;/\ T ( J. H O , J. OX , 1 A = 1 7 E l l . 3 )

\·.!R I T E ( 6 , 1 6 0 ) D l F o n, 1- 11\ T ( J. H CJ , J. ox , 1 D E i'l s I T v o F s o L v E 1,1 T = 1 , 1 x F 7 • 'i· l

':·! R I T E ( 6 , 1 7 0 ) B F O R h .i'.\ T ( l H 0 , 1 ox , 1 B = 1 , 1 x , E J. l . 3 )

l-J R I T E ( 6 , 1 8 0 l P F O ki·it\ T ( l H O ' 1 ox ' I !'! O L A R P O L! \ f{ I Z A'f I CJ/\:= I ' E 1.1 . 3 )

· H R I T E ( 6 , 1 9 0 ) P 2 F O F�i"°iA T ( l H O , J. OX , ' O J S T O R T I OI\! P O U\ R I Z .l \T ! O i-.i= ' , t: J. 1 . 3 ) \·! R I T E ( 6 , 2 0 0 ) P 1 F 0 � i·I /'.\ T ( l H 0 ' J_ 0 x ' I 0 R I Ef',i T t\ T I 0 j\i p 0 u .. R I z /), "I I ON::: I ' E 1 l 0 3 ) \·: R I T t ( 6 , 2 l O l U F ::..P<i, !-\ T ( J. H u , 1 ox , ' U i PO L E i·•lli . . E i,J T = 1 , F 6 . 3 , l. X , 1 D E ::,Y tS 1 ) R E T U Kt'l EN D

Chapter IV

Bibliography

1. Smyth, c. P . , "Dielectric Behavior and Structure", McGraw-Hill Book Co . , Inc . , New York, (1955) .

2. LePevre , R. J . w. , "Dipole Moments, Their Measurements and Applications in Chemistry", Cbeaic:al Publishing Co. of N . Y . Inc . , New York, (1938) .

3 . Glasstone , S . , "Recent Advances in Physic&l Chemistry," 3rd. ed. , P. Blakiston ' s Son & Co. , Inc . , Philadelphia, (1938).

-4 . Sutton , L . E . , "Dipole Moments" in "Oeteraination o f Oreanic Structures by Physical Methods", 3rd. ed . , Academic Pross Inc . , Now York, (19SS) , Vol. 1 , Chap. 9.

s. Partington , J . R . , "An Advanced Treatise on Physical Chemistry" , Lonamans , Green and Co. , London , (19S4) Vol. S , Soction Xl.

6 . Van Arkel, A. f . , Rec. Trav . Cbim . , 51 (1932) ; S2, 719 (1933) ; Sl, 91 (1934) .

- -

7. McLellan, A. L. , "Tables of Bxperimental Dipole Moments", W. H . Freeman and Co. , San Prancisco, (1963).

8. Bliel, E . L. 11Stereocho11istry o f Carbon Compowids", McGraw­Hill book Co . , Inc . , New York, (1962), Chap. 12.

9. Guryanova, E . N . , and Ya. l. Syrkin, Acta Physicochem. USSR, !!.· 657-8 (1939) .

10. l>obyo, P . , "Polar Molecules" The Chemical Catalog Co . , Now York, (1929) .

11. Thomson, H. B . , J . Chea. Educ . , _!!, 66 (1966).

ll. Halveratadt, I. P. , and Kumler, w. o . , J. AsA. Chem. Soc . , 64, 2988 (1942) .

ll. Uodestrand, G . , Z . Physik. Chem . , !z.., 44?8 (1929) .

14. Smith, J . w . , Trans . Faraday Soc. , 46, 394 (1950).

15. Guggonbolm, E . A. , Trans. Faraday Soc . , 4S, 744 (1949) .

81

16 . Muller . Physical z . � 33, 731 (1932) .

1 7 . Mullor, Physical z . , �, 68� (1933) ; 35, 346 (1934) ; 36 , S73 (1935) .

18. H. Van do Wallo and A. Hanno, Bull. Sci. Akad. Roy. Belg. � .. VII , 360-374 (1925) (Chem . Abstr., 20, 1050 (1926) ) .

1 9 . Lepinale, M . , Bull . Soc. Chim. , France. (4]�, 741 (1926) . >

2 0 . Brrara, J . , Physik , z. �. 689-90 (1928) .

2 1 .

22.

23.

24 .

2 5 .

26.

27.

28.

2 � .

.lO •

31 .

32.

Chien . , Jen-Yuan, J. Chea. Educ . , 24, 494 ( 1 947) .

Nesaeyanov, A . N . , and Preidlina, R. K. L. , livest. Akad. Nauk . SSSR, Otde l . Khim. Nault, 150 (1945) (Chea. Abstr. , 40, 3451 (1946) .

Neaaeyanov, A. H . , Borisov, A. E . , and Vilchevskava, V. 0 . , l&vest. Akad. Nauk, SSSR, Otdo l , Khim. Nauk , S78 (1949) (Chea. Abstr. � �· 3881 (1950) ) .

Beletskaya, I . P . , Reutov, O. A. , and Karpov , V. I . , (M.V. Lollonosov State Univ . , Moscow) I zvost. Akad. Nauk . , SSSR, Otde l . Khim. Nauk, 1961-S, (1961) , (Chea. AhstT . , �. 6670-1 , (1�6l) ) . Weissbergor "Technique of Organic: Cheaistry" Inter-Science Publishers , Inc: . , M .Y . , 2nd. ed • • Vol. VI I (1955) ,

Voa•l, A . I . , "A Test Book of Practical 0Tgan1c Chemistry" John Wiley g Sons . Inc . , New York , 3rd . ed. ( 1 966) .

Matnews , J . H . , J . Am. Chem. Soc � , 48 , 562 (1926) .

McA.lpine , K. s. , and c. P. Smyth, J . Choa. Phys. , !• SS (1935) .

Wells, P. R. , and Kitching, w . , Au.st . J . Chemo, 17, 1204 (1�64) ; (Chem. Abstr. , 62, 122ld (1965) ) .

-

Matsuda, K. , and Christophor, G . L. M. , u. s . 3, 040, 110 (1962) • (Chem. Abstr., 57, 1367oh. c . d . ( 1 962) ) .

Preidlina, R. K . , and NoginaJ o. , livest. Akad. Mauk . , SSSR, Otdel , Khim. Nauk . lOS, (1�47) ; (Chem. Abstr. 42, 4149 (1948) ) .

Nesaeyanov, A. N . and Borisov , A. E . , lzvest. Akad. Nauk . , SSSR, Inst* Org. Khim, Sintory Org. Soedinoii, Sbornik 2 , 146-1 (1952) ; Chem. Abstr. , 48, 567d ( 1 954) ) .

82

33. "Nonlil\ear Instrumental Ca!ibration1' (In preparation) Gile!'; Hendorsou and Ashvin Gaj jar.

34. Sheppard, N . , and D. M. Simpson . Quart . Rev . , !> 1 (1952) .

35 . Allinger, N . L . , J. Am . Chem. Soc . , 80, 1953 (1968) .

36. Priedlina and Nosmcyanov, Compt. Rend • .. Acad. Sci. USSR, 26 , 60 (1940) .

37. Banney, P. J . , Kitchin&, w . , and Wells , P� R . , (Univ. Quoensland, Brisbane, Australia) . Tetrahedron Lett . , 1 , 27-32 (196� (Chem. Abstr. , 69, 2216 Y (1968)}.

38. Kas11utina, M. V . , Okhlobystin, o. Yu (Inst. Blementoorg. Soedin . , Moscow, USSR) . livest . Akad. Nauk. SSSR, Sor . K.hia, 2 , 448-2 (1968) ; (Chem. Abstr. , �. 52251 b (196a) ) .

39. Nesmeya.nov , A. N . , and A. E . Borisov, Dokl . Akad. Nauk , SSSR3 60, 67-72 (1948) .

40. Nosaoyanov, A. N . , A. e . Borisov and N . V. Novikova, lives t . Akad. Nauk. SSSR, Ser. Khim, 4 , 857-60, (1970) ; (Chem. Title . , _!!, 0857 (1970)).

-

4 1 . Ti1anik, L . , z. Physik. Chem . 813, 425-6! (1931 ) .

42 . Murty , C . R . , and D . v. G. L. Narasilllha Rao, J . Sci. Ind. Research (India) , 158 , 350-2 (1956) .

43. Brown, T. L . , J . Am. Chem . Soc. , �. �232-5 (1959) .

44. Jenkins , H. O . � Nature 133, 106 (1934) .

83

v lta.

Name : Ashvin Gajondralal Gajjar

Permanent Address : Shiva Nivas , Athwa Line5 , Surat, Guj arat �tate, India

uegree and Date to be Conferred ; M . S . (Chemistry) August 1970

!>ate of Birth: Septemb(Jr H, 193.S

Place of Birth : Surat, India

S@condary Education : Matriculation from tho T . &T . V . Sarvajanik High School , Nanpura, Surat . March 1956

Collegiate Institutions Attendod

M . T . ll . College (The Gujarat University)

Sarvajauik College of Science (The Gu;arat University)

S�t•rn Illinois University

Major: Organic Chomir.try

Minor: Physics

Positions held:

Positions

Part-time demonstrator

Tutor-Lecturer

Tutor-Lecturer

Graduato Assistant

Dato Degree Date of Degree

1956- B.Sc. Apr�l 1960

1960

t�60- M.Sc. Apri l !Q62

1962

1968 .. 1970

Date

Oct � 1960�

Marcil 1961

H . S .

September 1962-

June 1964

JWle 1964-August 19i>8

Docember 1969-August 1970

A>1gusl 1970

In5titutions

Sarvajanik Col!o�e of Science , Surat

J. 6P. Arts an<l Science College, Broach

Bhavan • s College Dakor

Eastern Illinois University, Charlu�ton