THE 22 MONTH SWIFT -BAT ALL-SKY HARD X-RAY SURVEY

27
ACCEPTED BY THE ASTROPHYSICAL J OURNAL SUPPLEMENT Preprint typeset using L A T E X style emulateapj v. 08/22/09 THE 22-MONTH Swift-BATALL-SKY HARD X-RAY SURVEY J. TUELLER 1 , W. H. BAUMGARTNER 1,2,12,18 , C. B. MARKWARDT 1,3,12 , G. K. SKINNER 1,3,12 , R. F. MUSHOTZKY 1 , M. AJELLO 4 , S. BARTHELMY 1 , A. BEARDMORE 5 , W. N. BRANDT 7 , D. BURROWS 7 , G. CHINCARINI 8 , S. CAMPANA 8 , J. CUMMINGS 1 , G. CUSUMANO 10 , P. EVANS 5 , E. FENIMORE 11 , N. GEHRELS 1 , O. GODET 5 , D. GRUPE 7 , S. HOLLAND 1,12 , J. KENNEA 7 , H. A. KRIMM 1,12 , M. KOSS 3,1,12 , A. MORETTI 8 , K. MUKAI 1,2,12 , J. P. OSBORNE 5 , T. OKAJIMA 1,13 , C. PAGANI 7 , K. PAGE 5 , D. PALMER 11 , A. PARSONS 1 , D. P. SCHNEIDER 7 , T. SAKAMOTO 1,14 , R. SAMBRUNA 1 , G. SATO 17 , M. STAMATIKOS 1,14 , M. STROH 7 , T.N. UKWATTA 1,15 , L. WINTER 16 Draft version September 17, 2009 ABSTRACT We present the catalog of sources detected in the first 22 months of data from the hard X-ray survey (14– 195 keV) conducted with the BAT coded mask imager on the Swift satellite. The catalog contains 461 sources detected above the 4.8σ level with BAT. High angular resolution X-ray data for every source from Swift XRT or archival data have allowed associations to be made with known counterparts in other wavelength bands for over 97% of the detections, including the discovery of 30 galaxies previously unknown as AGN and several new Galactic sources. A total of 266 of the sources are associated with Seyfert galaxies (median redshift z 0.03) or blazars, with the majority of the remaining sources associated with X-ray binaries in our Galaxy. This ongoing survey is the first uniform all sky hard X-ray survey since HEAO-1 in 1977. Since the publication of the 9-month BAT survey we have increased the number of energy channels from 4 to 8 and have substantially increased the number of sources with accurate average spectra. The BAT 22-month catalog is the product of the most sensitive all-sky survey in the hard X-ray band, with a detection sensitivity (4.8σ) of 2.2 × 10 -11 erg cm -2 s -1 (1 mCrab) over most of the sky in the 14–195 keV band. Subject headings: Catalogs — Survey: X-rays 1. INTRODUCTION Surveys of the whole sky which are complete to a well- defined threshold not only provide a basis for statistical pop- ulation studies but are also a vehicle for the discovery of new phenomena. Compared with lower X-ray energies, where var- ious missions from Uhuru (Forman et al. 1978) to ROSAT have systematically surveyed the sky and where slew surveys 1 NASA/Goddard Space Flight Center, Astrophysics Science Division, Greenbelt, MD 20771 2 Joint Center for Astrophysics, University of Maryland Baltimore County, Baltimore, MD 21250 3 Department of Astronomy, University of Maryland College Park, Col- lege Park, MD 20742 4 SLAC National Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, Menlo Park, CA 94025 5 X-Ray and Observational Astronomy Group/ Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH, United Kingdom 7 Department of Astronomy & Astrophysics, The Pennsylvania State Uni- versity, 525 Davey Lab, University Park, PA 16802 8 Osservatorio Astronomico di Brera(OAB)/ Istituto Nazionale di As- trofisica (INAF), 20121 Milano, Italy 9 ASDC/ ESA of ESRIN, Via Galileo Galilei, 00044 Frascati (RM), Italy 10 IASF-Palermo/ Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo/ Istituto Nazionale di Astrofisica (INAF), 90146 Palermo, Italy 11 LANL/Los Alamos National Laboratory, Los Alamos, NM 87545 12 CRESST/ Center for Research and Exploration in Space Science and Technology, 10211 Wincopin Circle, Suite 500, Columbia, MD 21044 13 Department of Physics & Astronomy, The Johns Hopkins University, 3400 North Charles Street Baltimore, Maryland 21218 14 Oak Ridge Associated Universities (ORAU), OAB-44, P.O. Box 117 Oak Ridge, TN 37831 15 Department of Physics/ The George Washington University (GWU), 2121 I Street, N.W., Washington, DC 20052 16 Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309 17 Institute of Space and Astronautical Science, JAXA, Kanagawa 229- 8510, Japan 18 Corresponding author: [email protected] of later missions have added detail, our knowledge of the sky at hard X-rays (> 10 keV) has been rather patchy and insen- sitive. The sensitivity of the HEAO-A4 13–180 keV survey (Levine et al. 1984) was such that only 77 sources were de- tected. Recently INTEGRAL-IBIS has provided some observa- tions (Bird et al. 2007; Beckmann et al. 2006, 2009; Krivonos et al. 2007) that are much more sensitive but have concen- trated on certain regions of the sky; the exposure in the latest IBIS ‘all-sky’ catalog varies from one part of the sky to an- other by a factor of a thousand, some regions of the sky hav- ing only a few thousand seconds of observation. The RXTE all-sky slew survey (Revnivtsev et al. 2004) covers much of the sky in the 3-20 keV band and detects 294 sources, but the coverage is not uniform or complete and the sensitivity is weighted to lower energies such that the BAT and RXTE sources are not the same. A survey in the hard X-ray band is important for several reasons. Observations below 15 keV can be drastically af- fected by photoelectric absorption in certain sources, giving a false indication of their luminosity. Populations of heav- ily absorbed or Compton-thick Active Galactic Nuclei (AGN) have been hypothesized in order to explain the portion of the spectrum of the diffuse hard X-ray background ascribed to unresolved sources (Gilli et al. 2007), but such objects have not been found in the necessary numbers, prompting ques- tions as to the composition and evolution of a population of AGN that could explain its form (Treister et al. 2009). Hard X-ray emission is also being discovered from an unexpect- edly large number of previously unknown Galactic sources, notably from certain cataclysmic variables, symbiotic stars and heavily obscured high mass X-ray binaries (Bird et al. 2007). The Burst Alert Telescope (BAT) on Swift (Gehrels et al. arXiv:0903.3037v2 [astro-ph.HE] 17 Sep 2009

Transcript of THE 22 MONTH SWIFT -BAT ALL-SKY HARD X-RAY SURVEY

ACCEPTED BY THE ASTROPHYSICAL JOURNAL SUPPLEMENTPreprint typeset using LATEX style emulateapj v. 08/22/09

THE 22-MONTH Swift-BAT ALL-SKY HARD X-RAY SURVEY

J. TUELLER1 , W. H. BAUMGARTNER1,2,12,18 , C. B. MARKWARDT1,3,12 , G. K. SKINNER1,3,12 , R. F. MUSHOTZKY1 , M. AJELLO4 ,S. BARTHELMY1 , A. BEARDMORE5 , W. N. BRANDT7 , D. BURROWS7 , G. CHINCARINI8 , S. CAMPANA8 , J. CUMMINGS1 ,G. CUSUMANO10 , P. EVANS5 , E. FENIMORE11 , N. GEHRELS1 , O. GODET5 , D. GRUPE7 , S. HOLLAND1,12 , J. KENNEA7 ,

H. A. KRIMM1,12 , M. KOSS3,1,12 , A. MORETTI8 , K. MUKAI1,2,12 , J. P. OSBORNE5 , T. OKAJIMA1,13 , C. PAGANI7 , K. PAGE5 ,D. PALMER11 , A. PARSONS1 , D. P. SCHNEIDER7 , T. SAKAMOTO1,14 , R. SAMBRUNA1 , G. SATO17 , M. STAMATIKOS1,14 , M. STROH7 ,

T.N. UKWATTA1,15 , L. WINTER16

Draft version September 17, 2009

ABSTRACTWe present the catalog of sources detected in the first 22 months of data from the hard X-ray survey (14–

195 keV) conducted with the BAT coded mask imager on the Swift satellite. The catalog contains 461 sourcesdetected above the 4.8σ level with BAT. High angular resolution X-ray data for every source from Swift XRT orarchival data have allowed associations to be made with known counterparts in other wavelength bands for over97% of the detections, including the discovery of ∼ 30 galaxies previously unknown as AGN and several newGalactic sources. A total of 266 of the sources are associated with Seyfert galaxies (median redshift z∼ 0.03) orblazars, with the majority of the remaining sources associated with X-ray binaries in our Galaxy. This ongoingsurvey is the first uniform all sky hard X-ray survey since HEAO-1 in 1977.

Since the publication of the 9-month BAT survey we have increased the number of energy channels from 4to 8 and have substantially increased the number of sources with accurate average spectra. The BAT 22-monthcatalog is the product of the most sensitive all-sky survey in the hard X-ray band, with a detection sensitivity(4.8σ) of 2.2×10−11 erg cm−2 s−1 (1 mCrab) over most of the sky in the 14–195 keV band.Subject headings: Catalogs — Survey: X-rays

1. INTRODUCTIONSurveys of the whole sky which are complete to a well-

defined threshold not only provide a basis for statistical pop-ulation studies but are also a vehicle for the discovery of newphenomena. Compared with lower X-ray energies, where var-ious missions from Uhuru (Forman et al. 1978) to ROSAThave systematically surveyed the sky and where slew surveys

1 NASA/Goddard Space Flight Center, Astrophysics Science Division,Greenbelt, MD 20771

2 Joint Center for Astrophysics, University of Maryland Baltimore County,Baltimore, MD 21250

3 Department of Astronomy, University of Maryland College Park, Col-lege Park, MD 20742

4 SLAC National Laboratory and Kavli Institute for Particle Astrophysicsand Cosmology, 2575 Sand Hill Road, Menlo Park, CA 94025

5 X-Ray and Observational Astronomy Group/ Department of Physics andAstronomy, University of Leicester, Leicester, LE1 7RH, United Kingdom

7 Department of Astronomy & Astrophysics, The Pennsylvania State Uni-versity, 525 Davey Lab, University Park, PA 16802

8 Osservatorio Astronomico di Brera(OAB)/ Istituto Nazionale di As-trofisica (INAF), 20121 Milano, Italy

9 ASDC/ ESA of ESRIN, Via Galileo Galilei, 00044 Frascati (RM), Italy10 IASF-Palermo/ Istituto di Astrofisica Spaziale e Fisica Cosmica di

Palermo/ Istituto Nazionale di Astrofisica (INAF), 90146 Palermo, Italy11 LANL/Los Alamos National Laboratory, Los Alamos, NM 8754512 CRESST/ Center for Research and Exploration in Space Science and

Technology, 10211 Wincopin Circle, Suite 500, Columbia, MD 2104413 Department of Physics & Astronomy, The Johns Hopkins University,

3400 North Charles Street Baltimore, Maryland 2121814 Oak Ridge Associated Universities (ORAU), OAB-44, P.O. Box 117

Oak Ridge, TN 3783115 Department of Physics/ The George Washington University (GWU),

2121 I Street, N.W., Washington, DC 2005216 Center for Astrophysics and Space Astronomy, University of Colorado,

389 UCB, Boulder, CO 8030917 Institute of Space and Astronautical Science, JAXA, Kanagawa 229-

8510, Japan18 Corresponding author: [email protected]

of later missions have added detail, our knowledge of the skyat hard X-rays (> 10 keV) has been rather patchy and insen-sitive. The sensitivity of the HEAO-A4 13–180 keV survey(Levine et al. 1984) was such that only 77 sources were de-tected.

Recently INTEGRAL-IBIS has provided some observa-tions (Bird et al. 2007; Beckmann et al. 2006, 2009; Krivonoset al. 2007) that are much more sensitive but have concen-trated on certain regions of the sky; the exposure in the latestIBIS ‘all-sky’ catalog varies from one part of the sky to an-other by a factor of a thousand, some regions of the sky hav-ing only a few thousand seconds of observation. The RXTEall-sky slew survey (Revnivtsev et al. 2004) covers much ofthe sky in the 3-20 keV band and detects 294 sources, butthe coverage is not uniform or complete and the sensitivityis weighted to lower energies such that the BAT and RXTEsources are not the same.

A survey in the hard X-ray band is important for severalreasons. Observations below 15 keV can be drastically af-fected by photoelectric absorption in certain sources, givinga false indication of their luminosity. Populations of heav-ily absorbed or Compton-thick Active Galactic Nuclei (AGN)have been hypothesized in order to explain the portion of thespectrum of the diffuse hard X-ray background ascribed tounresolved sources (Gilli et al. 2007), but such objects havenot been found in the necessary numbers, prompting ques-tions as to the composition and evolution of a population ofAGN that could explain its form (Treister et al. 2009). HardX-ray emission is also being discovered from an unexpect-edly large number of previously unknown Galactic sources,notably from certain cataclysmic variables, symbiotic starsand heavily obscured high mass X-ray binaries (Bird et al.2007).

The Burst Alert Telescope (BAT) on Swift (Gehrels et al.

arX

iv:0

903.

3037

v2 [

astr

o-ph

.HE

] 1

7 Se

p 20

09

2 TUELLER ET AL.

2004) has a large field of view and is pointed at a large num-ber of different directions which are well distributed over thesky. The resultant survey provides the most uniform hard X-ray survey to date and achieves a sensitivity sufficient to detectvery large numbers of sources, both Galactic and extragalac-tic. Markwardt et al. (2005) have published the results fromthe first three months of BAT data, and Tueller et al. (2008)have published a survey of sources seen in the first 9 monthsof Swift observations, concentrating on the 103 AGN seen atGalactic latitudes greater than 15. We present here a catalogof all sources detected in the first 22 months of operations,(2005 Dec 15 – 2006 Oct 27) increasing the number of AGNto 266 and including all other sources seen across the entiresky.

2. Swift-BATSwift is primarily a mission for the study of gamma-ray

bursts. Swift combines a wide field instrument, BAT, to de-tect and locate gamma-ray bursts (GRBs) with two narrowfield instruments to study the afterglows (the X-ray Telescope(XRT) (Burrows et al. 2005) and the Ultra-Violet/OpticalTelescope (UVOT) (Roming et al. 2005)). Swift-BAT is awide field (∼2 sr) coded aperture instrument with the largestCdZnTe detector array ever fabricated (5243 cm2 consistingof 32,768 4mm detectors on a 4.2mm pitch) (Barthelmy et al.2005). BAT uses a mask constructed of 52,000 5x5x1 mmlead tiles distributed in a half-filled random pattern andmounted in a plane 1m above the detector array.

This configuration results in a large field of view and apoint-spread-function (PSF) that varies between 22′ in thecenter of the field of view (FOV) and ∼14′ in the cornersof the FOV (50off axis). When many snapshot images (asnapshot is the image constructed from a single survey ob-servation of ∼ 5minutes) are mosaicked together the effectivePSF is ∼19.5′.

Point sources are found using a fast Fourier Transform con-volution of the mask pattern with the array of detector rates;this effectively uses the shadow of the mask cast by a sourceonto the detector array to create a sky image.

Over much of the BAT field of view, the mask shadow doesnot cover the whole array. The partial coding fraction is de-fined as the fraction of the array that is used to make the imagein a particular direction and varies across the FOV. The BATfield of view is 0.34, 1.18 and 2.29 sr for areas on the sky withgreater than 95%, 50% and 5% partial coding fractions.

Swift is in low Earth orbit, but because it can slew rapidlyit can avoid looking at the Earth. The narrow field instru-ments cannot be pointed within 45of the Sun, within 30ofthe Earth limb, or within 20of the Moon.

The pointing plan for Swift is optimized to observe GRBs.This strategy produces observations spread out over a fewdays and at nearly random positions in the sky. The BAT FOVis so large that most of the sky is accessible to BAT on anygiven day, but the pointing is deliberately biased toward theanti-Sun direction in order to facilitate ground based opticalfollow-up observations of gamma-ray bursts. Even thoughthe Swift pointing plan is optimized for GRB observations,BAT’s large FOV and Swift’s random observing strategy re-sult in very good sky coverage (50–80% at >20 mCrab in oneday) for transients (Krimm et al. (2006)18). Over a longerterm, this observing strategy produces an even more uniform

18 online at: http://swift.gsfc.nasa.gov/docs/swift/results/transients/

sky coverage (see Figure 1), with an enhanced exposure at theecliptic poles caused by avoiding the Sun and Moon. Thishigh coverage factor means that the BAT survey can providereasonably well sampled light curves and average fluxes com-piled from data taken throughout the period covered by thesurvey.

The effective exposure time of each point in the field ofview is the equivalent on-axis time (partial coding fractiontimes observing time); therefore the observing time for a placeon the sky is generally much larger than is displayed in theeffective exposure map. All of the source count rates from theBAT survey are normalized to this effective exposure.

The observing efficiency of Swift-BAT is high for a satel-lite in low Earth orbit, but observing inefficiencies (passagesthrough the South Atlantic Anomaly (SAA) 16%, slewing16%, down time < 1%) still result in a loss of 33% of thetotal observing time.

The BAT 22-month survey includes data taken between 15Dec 2004 and 27 Oct 2006; there are 39.6 Ms of usable datain the 22 month survey. A typical point on the sky is withinthe BAT FWHM FOV∼ 10% of the time, and the survey datascreening rejects 0.5% of the data (see §3.1). These two ef-fects result in an effective exposure of 3.9 Ms for a typicalpoint on the sky. The histogram of the effective exposure (Fig-ure 2) shows that most of the sky has an effective exposuretime between 1.7 and 4.3 Ms, with a few regions receiving asmuch as 5.6 Ms.

The BAT PSF is determined by the mask tile cell and de-tector cell sizes. For an on-axis source, the PSF is approx-imately Gaussian with a FWHM of 22.5 arcminutes. In thenative Cartesian tangent plane coordinate system of BAT im-ages, the PSF has nearly a constant shape and size through-out the field of view. However, because tangent plane unitsare not spaced at equal celestial angles, the true PSF shapeis compressed for off-axis sources, varying approximately asσPSF = 22.5′/(1 + tan2θ) where θ is the angle of the sourcefrom the pointing axis. When averaged over many pointings,and weighted by partial coding and solid angle, the mean PSFis∼19.5 arcminutes FWHM. We use this 19.5 arcminute PSFwhen analyzing the BAT survey mosaicked skymaps sincethey are composed of many contributing snapshot observa-tions.

3. BAT SURVEY PROCESSINGThe following sections describe the BAT survey analysis

techniques as implemented in the batsurvey software tool.General information on coded mask imaging can be found inSkinner (1995, 2008), Fenimore & Cannon (1981), and Caroliet al. (1986).

3.1. BAT Survey Data Collection and Initial FilteringThe BAT instrument monitors the sky in “survey" mode

when not within a few minutes of responding to a gamma-ray burst. In this mode detected events are binned into his-tograms by the instrument flight software and the histogramcounts are periodically telemetered to the ground (typically ona 5 minute interval). These histograms contain detector (spa-tial) and pulse height (energy) information. On the ground thehistograms are further adjusted to place all detectors on thesame energy scale, and then for the standard survey analysisare re-binned into the eight survey energy bands: 14–20 keV,20–24 keV, 24–35 keV, 35–50 keV, 50–75 keV, 75–100 keV,100–150 keV, and 150–195 keV.

SWIFT-BAT 22 MONTH HARD X-RAY SURVEY 3

FIG. 1.— The top panel shows the effective exposure map for the 22-month Swift-BAT survey in a Hammer-Aitoff projection on Galactic coordinates. Theecliptic poles and equator are also shown; the largest exposures are toward the north and south ecliptic poles (the units on the colorbar are Ms). The bottompanel shows the measured 5σ sensitivity across the sky in units of mCrab in the 14–195 keV band. The bright spots at l=344.1, b=-44.0 (GRB060614), l=271.8,b=-27.2 (GRB060729), and l=254.7, b=-1.4 (GRB060428a) are areas of high systematic noise due to very long exposures (> 800 ks) performed early in themission before dithering in roll angle was instituted.

Several quality filters are applied to the BAT survey data.First, the spacecraft must be in stable pointing mode, whichmeans that the attitude control “10 arcmin settled" flag mustbe set. The spacecraft star tracker must be reporting “OK"status, and the boresight direction must be at least 30 abovethe Earth’s limb. Second, BAT must be producing good qual-ity data, which means that the overall array event rate mustnot be too high or low (3000 cts s−1 < rate < 12,000 cts s−1);a count rate lower than 3000 cts s−1 means that the detector isnot operating correctly, and a rate higher than 12,000 cts s−1

only occurs during passages through the SAA. A minimumnumber of detectors must be enabled (> 18,000 detectors outof 32,768), and no histogram bins can be reported as missingdata because of bad telemetry. In addition, histogram time in-tervals that cross the UTC midnight boundary are discardedsince the spacecraft has at times been commanded to make

small maneuvers during that time. These temporal filters pro-duce a set of good time intervals over which the histogramsare summed. The finest time sampling of this survey anal-ysis is approximately a single pointed snapshot (which havedurations of ∼150–2000 s). The good time intervals are fur-ther checked so that the spacecraft pointing does not changeappreciably during the interval (1.5 arcmin in pointing, 5 ar-cmin in roll), and data are excluded if the pointing has varied.Short intervals of 150 seconds or less are discarded in orderto ensure enough counts across the detector for the balancingstage (see §3.2) of the processing to work correctly.

After temporal filtering each pointed snapshot is reducedto a set of eight detector count maps, one for each energyband. Since the systematic noise in the sky images depends onthe quality of individual detectors, significant effort is madein optimizing the spatial filtering of the data (i.e, the mask-ing of undesirable detectors). All detectors disabled by the

4 TUELLER ET AL.

!

!"#

!"$

!"%

!"&

'

'"#

! ' # ( $ ) % *

+,-.##./012345-678,9.:+;<=.>2.?@A

BCD.E0F><.G<?H2;01

6IJ0KL<>.:MKA

FIG. 2.— Spatial uniformity in the 22-month BAT hard X-ray survey. The left panel is the effective exposure time histogram (bin size = 40 ks), and the rightpanel compares the fraction of sky seen by the BAT and INTEGRAL surveys as a function of effective exposure times.

BAT flight software are masked. In addition the detectorcounts maps are searched for noisy (“hot") detectors using thebathotpix algorithm; any detectors found to be noisy aremasked. Finally, detectors with known noisy properties (i.e.high variance compared to Poisson statistics) are discarded.The “fixed pattern” noise (see §3.3) is also subtracted fromeach map.

3.2. Removal of Bright SourcesBright point sources and the diffuse sky background con-

tribute systematic pattern noise to the entire sky image, at ap-proximately 1% of the source amplitude, due to the codedmask deconvolution technique. By subtracting the contribu-tions of these sources from the detector images, the systematicnoise can be significantly reduced. We used the batcleanalgorithm to remove bright sources and diffuse background atthe snapshot level. The diffuse background is represented asa smooth polynomial in detector coordinates. Bright sourcesare represented by the point source response in the detectorplane. The source responses are generated using ray tracingto determine the shadow patterns. Bright sources are identi-fied by making a trial sky map, and any point source detectedabove 9σ in any energy band is marked for cleaning. In ourexperience–and based on the properties of the BAT mask—nonew bright sources become detectable after the batcleancalculation, so it is not necessary to iterate the process again.In order to preserve the original bright source intensities, weinsert the fluxes from the uncleaned maps into the cleanedmaps around the locations of these sources.

At the batclean stage the maps are also “balanced" sothat systematic count rate offsets between large scale spatialregions on the detector are removed. Sources shining throughthe mask do not produce this kind of coherent structure, there-fore this balancing stage helps to remove systematic noise.This process involves dividing the array into detector modulesides (128 detectors, [= 16×8]), which are separated by gapsof 8.4–12.6 mm from neighboring detector module sides. The

mean counts in both the outer edge detectors (44 detectors),and the inner detectors (84 detectors), are subtracted for eachmodule separately, so that the mean rate is as close as pos-sible to zero. Count rate variations from module to moduleare believed to occur because of variations in the quality ofCZT detector material and because of dead time variations inthe module electronics caused by noisy pixels. Variations be-tween outer edge and inner detectors in each module are dueto cosmic ray scattering and X-ray illumination of detectorsides. The BAT coded mask modulates the count rate of cos-mic sources on essentially detector-to-detector spatial scales,so the subtraction of the mean count rates averaged over manytens of detectors does not affect the coded signal.

Very bright sources which are partially coded will castshadows of the mask support structures on the edges of themask. These shadows are not coded by the mask, are highlyenergy dependent, and thus must be treated carefully. This isdone by masking detectors in regions of the detector plane af-fected by mask-edge regions for bright sources (∼0.3 Crab orbrighter) determined via ray tracing.

After subtracting bright sources and background, detectorswhose counts are more than 4σ from the mean are discardedin order to further remove contributions from noisy detectors.

3.3. Fixed Pattern NoiseNon-uniform detector properties cause variations between

the background count rates measured in different detectors.These spatial differences form a relatively stable pattern overtimescales much longer than a day and are not addressedby the batclean algorithm. These spatial differences alsocomprise a fixed noise in detector coordinates which is trans-formed by the survey processing into unstructured noise inthe sky image. This fixed pattern is determined by construct-ing long term averages of the residual BAT count rates ofeach individual detector, after subtracting the contributions ofbright sources as described above. In this construction, vari-able terms average to zero and only the stable pattern remains.

SWIFT-BAT 22 MONTH HARD X-RAY SURVEY 5

This pattern maps are then subtracted from each snapshot de-tector image. The benefit of removing this fixed pattern noiseis that each individual detector is addressed, thereby remov-ing systematic noise on a finer scale than the balancing stagementioned previously.

The contributions of some detectors to this fixed pattern istime dependent as a result of temporal variations in detectorperformance. We address this time dependence in each de-tector by fitting a polynomial to the daily average value. Thefits are done on data spanning weeks to many months, and thepolynomial used has ∼ 1 order per 30 days fit.

This approach (subtracting the long-term average fixed pat-tern noise from the data) avoids removing any legitimate sig-nal from sources since Swift changes its pointing direction onmuch shorter time scales.

In practice, the entire survey processing must be run onceinitially for all of the data, with the pattern contribution set tozero, in order to determine the residual rates mentioned above.Once the pattern maps have been computed, the processing isrun a second time using those values.

3.4. Sky MapsSky maps are produced for each snapshot using the

batfftimage algorithm which cross-correlates the detec-tor count maps with the mask aperture pattern. Sky mapsare sampled at 8.6 arcmin on-axis, which corresponds to halfthe natural element spacing for the coded mask. The natu-ral sky projection for these maps is tangent-plane; thus, thesky-projected grid spacing becomes finer by a factor of ∼2at the extreme edges of the field of view. The angular ex-tent of a sky map from one snapshot covers the region in thesky where the BAT has some non-zero response. This field ofview is approximately 120×60, although the sensitivity ismuch reduced at the edges of the field of view due to projec-tion effects through the mask (foreshortening of the mask andshadowing due to the mask thickness at large off-axis angles)and partial coding.

The snapshot maps are corrected for partial coding, geo-metric projection effects, and the number of active detectors.Thus, they represent the BAT count rate per fully illuminateddetector, corrected approximately to the on-axis response. Anexamination of the measured count rates of the Crab nebula(considered to be a stable point source for the BAT) showssome systematic residual trends as a function of off-axis an-gle and energy. These effects are primarily due to absorptionby passive materials in the field of view, whose absorptionlengths scale approximately as secθ, where θ is the off-axisangle. The absorptions can be as high as 50% at the lowestenergies and largest angles, but are typically smaller. Aftercorrection for these effects, the count rate estimates are accu-rate to within a few percent.

Partial coding and noise maps which represent the partialexposure of each pixel in the sky map are created for eachpointed snapshot. The partial coding maps are further ad-justed to correct for the fact that some parts of the sky areocculted by the Earth during the observation. For each ob-servation, a map of the average Earth occultation is computedshowing the fraction of the observation time each pixel is oc-culted, and the partial coding map is multiplied by this oc-cultation map to account for the reduced effective observingtime. The noise maps are generated by computing the localr.m.s. of the pixel values in an annulus around each position(see §3.6).

Individual pointed snapshot sky maps are discarded if the

differences between the model used in the bright source re-moval and the cleaned, binned detector plane data lead to areduced chi-square value greater than 1.25. This filtering ex-cluded primarily data around the bright X-ray source Sco X-1, which produces such strong count rate modulations thatthey aren’t reduced to zero at the Poisson statistical level bybatclean. This does produce a significant exposure deficitaround Sco X-1 and the Galactic center region.

3.5. MosaickingThe sky images from each snapshot are weighted by inverse

variance (i.e. noise−2) and combined into all-sky maps. Eachsnapshot sky map contributing to the mosaic is trimmed suchthat all areas of the snapshot have greater than 15% partialcoding. The sky is divided into six facets in Galactic coordi-nates, with grid spacing of the pixels 5 arcmin at the center ofeach facet. The Zenithal Equal Area projection was used inorder to minimize distortion far from the center of projection.Each individual sky image is projected and resampled onto theall-sky grids by bilinear interpolation, as are the partial codingand noise maps. The final result is a set of weighted flux maps,propagated noise maps and effective exposure maps for eachenergy band and facet combination, plus an additional one forthe total energy band of 14–195 keV.

This analysis procedure produces a sky image where eachpixel represents the best estimate of the flux for a point sourceat the corresponding position in the sky (see Fenimore & Can-non (1981) for more information on coded mask image recon-struction).

3.6. Source DetectionA “blind" source detection algorithm was used to search

for sources in the mosaicked significance maps using the fullsurvey bandpass of 14–195 keV. The significance map is theratio of the counts map to the local noise map.

The RMS noise map is calculated from the mosaicked skymap using an annulus of radius 30 pixels (2.5) with an innerexclusion radius of 8 pixels (40′). An 8 pixel radius aroundthe position of all known BAT sources is also excluded fromthe regions used for background calculation. We do not at-tempt to fit the PSF of the source for the noise calculation andhence the positions of sources must be eliminated from thiscalculation to get an accurate measure of the underlying noisein the image.

The noise is assumed to be a smooth function of image po-sition and so the value at the center of the annulus is wellapproximated by the average value in the annulus. This calcu-lated noise includes both statistical and systematic noise andis therefore a better estimate of the total noise in the imagethan the noise calculated from a PSF fit. The noise from ev-ery source is distributed over the whole image, just as the sig-nal from the source is distributed over the detector array, sono local enhancement of noise at the position of the source isexpected.

The blind search algorithm first finds all peaks in the mapby searching for pixels that are higher than each of the sur-rounding 8 pixels. If the significance in a peak pixel is greaterthan our detection threshold of 4.8σ (see §4.4), the excessis considered to be a detection in the blind search for newsources.

4. THE Swift-BAT 22-MONTH CATALOGThe catalog of sources detected by Swift-BAT using the first

22 months of data includes sources at all Galactic latitudes.

6 TUELLER ET AL.

TABLE 1COUNTERPART TYPES IN THE Swift-BAT 22-MONTH CATALOG

Class Source Type # in catalog

0 Unidentifieda 191 Galactic b 32 Extragalacticc 173 Galaxy Clusters 74 Seyfert Galaxies 2295 Beamed AGNd 326 CVs / Stars 367 Pulsars / SNR 158 X-ray Binaries 121

a Sources listed as unidentified have an object with unknown physical type asa counterpart. Some of these objects are associated with a source detected atanother wavelength.b Sources classified as galactic are so assigned because of observed transientbehavior in the X-ray band along with insufficient evidence to place them inanother class.c Sources in the extragalactic class are seen as extended in optical or near-IRimagery, but do not have firm evidence (such as an optical spectrum) fromother wavebands confirming whether they harbor an AGN.d Sources classified as “beamed AGN” include blazars, BL Lacs, FSRQs,quasars, and other high redshift AGN.

The 22-month catalog and associated data in electronic formcan be found online at the Swift website.19

Figure 3 shows the distribution of sources on the sky colorcoded by source type, with the symbol size proportional tothe source flux in the 14–195 keV band. Table 1 gives thedistribution of objects according to their source type. Sourcesclassified as “unidentified” are those where the physical typeof the underlying object (e.g., AGN, CV, XRB, etc) is un-known. These sources have a primary name derived from theBAT position. Some unidentified BAT sources are associatedwith sources in the X-ray or gamma-ray bands (with posi-tions unable to sufficiently determine an optical counterpart orphysical source type), and these sources can be distinguishedby having a name in the catalog derived from the observa-tion in the other waveband. The few sources classified onlyas “Galactic” generally lie in the plane and have shown sometransient behavior which indicates a Galactic source, but noother information is available that would allow further clas-sification. “Extragalactic” sources are detected as extendedsources in optical or near-IR imaging, but do not have otherindications of being an AGN. The “Beamed AGN” categoryincludes BL Lacs, blazars, and FSRQs.

Table 5 is the listing of all the sources detected above the4.8σ level in a blind search of the 22-month Swift-BAT surveymaps. The first column is the source number in the 22-monthcatalog. The second column of the table is the BAT name,constructed from the BAT source position given in columnsthree and four. In cases where the source has been previouslypublished with a BAT name corresponding to a slightly differ-ent location (e.g., a source position from a previous BAT cata-log with less data), we have used the first published name buthave given the correct 22-month BAT coordinates in columnstwo and three. The fifth column is the significance of the blindBAT source detection in sigma units. Instances where morethan one possible counterpart to a single BAT source is likelyare indicated with ditto marks in columns 2–5.

The sixth column gives the name of the identified counter-part to the BAT hard X-ray source with the most preciselyknown position. These are often optical galaxies, or 2MASS

19 http://swift.gsfc.nasa.gov/docs/swift/results/bs22mon/

sources, and are associated with a source detected in themedium-energy X-ray band (3–10 keV) in Chandra, XMM-Newton, or XRT images. Counterpart determination is dis-cussed in §4.2. The seventh column gives an alternate namefor the counterpart. We have preferred to list a well knownname (e.g., Sco X-1) or a name from a hard X-ray instrumentor high energy detection. The best available coordinates of thecounterpart (J2000) are given in the table in columns 8 and 9.

The 10th and 11th columns give the 14–195 keV flux of theBAT source (in units of 10−11 ergs sec−1 cm−2) and its 1σ error.The BAT flux for each counterpart is extracted from the hardX-ray map at the location of the counterpart given in columns8 and 9. The flux determination method is described in §4.5.

The 12th column indicates whether there is source confu-sion: there is source confusion either if there is more than onepossible XRT counterpart or if two likely hard X-ray sourceslie close enough together to make a proper extraction of theflux not possible with the standard method. The treatment ofconfused sources is discussed in more detail in §4.3. We de-fine two classes of source confusion: “confused” sources, and“confusing” sources. A source is “confusing” for the purposesof this column if a fit to the map indicates that the source con-tributes to the hard X-ray flux of a neighboring source. A“confused” source has received more than 2% of its flux froma neighboring source. A confused source is labeled with an“A” in this column, and a confusing source with a “B” (thecase of a very bright source next to a weak one would resultin the bright source labeled with a “B” and the weak sourcewith an “A”). A source that is both confused and confusing(e.g., the case where there are two similar strength sourcesclose to each other, such as when there are two possible XRTcounterparts to a single BAT source) is labeled with an “AB”.

When a source has an entry in column 12, a best estimate ofthe counterpart flux is listed in column 10 from a simultaneousfit of all the counterparts in the region to the BAT map. Whenthe entry is “A” or “AB” in column 12 (indicating a confusedsource), the error on the flux is not well defined, and column11 is left blank. (See §4.5).

The 13th and 14th columns list the source hard X-ray hard-ness ratio and its error computed as described in §4.7. Thehardness ratio is defined here as the ratio of the count ratein the 35–150 keV band divided by the count rate in the 14–150 keV band.

The 15th and 16th columns give the redshift and BAT lu-minosity of the counterpart if it is associated with a galaxyor AGN. The source luminosity (with units log[ergs s−1]in the 14–195 keV band) is computed using the redshiftand flux listed in the table and a cosmology where H0 =70 km s−1 Mpc−1, Ωm = 0.30, and ΩΛ = 0.70.

The 17th column lists a source type with a short verbal de-scription of the counterpart.

4.1. Source Positions and UncertaintiesThe BAT position is determined by using the BAT public

software tool batcelldetect to fit the peak in the map tothe BAT PSF (a two dimensional Gaussian with a FWHM of19.5 arcminutes). The batcelldetect program performsa least-square fit using the local rms noise to weight the pixelsin the input map. These fit positions were used to generate theBAT positions in the catalog and the names of newly detectedBAT sources.

The PSF fit using batcelldetect also reports a formalposition uncertainty based on the least-square covariance ma-

SWIFT-BAT 22 MONTH HARD X-RAY SURVEY 7

FIG. 3.— All sky map showing classification of the BAT 22-month survey sources. The figure uses a Hammer-Aitoff projection in Galactic coordinates; theflux of the source is proportional to the size of the circle. The source type is encoded by the color of the circle.

trix. However, because neighboring pixels in the coded maskimages are inherently correlated, the formal uncertainty re-ported by this technique will not be representative of the trueuncertainty. Therefore we choose to use the offset betweenthe fit position and the counterpart position as an indicator ofthe BAT position error.

The batcelldetect program also has the option of fit-ting source locations using an input catalog of starting po-sitions. We have used this capability to test the stability ofthe source positions found by batcelldetect by using aninput catalog where all the starting positions have been off-set by 8 arcminutes in a random direction from the sourceposition found in the blind search. We have performed thistest with several different offsets and find that the fit con-verges to within 1 arcminute of the counterpart position forBAT sources that are not confused. For a few sources, the fitsometimes converges onto a side peak instead of the primarypeak, but this error is not repeated in additional tests startingfrom other randomized positions. This type of systematic er-ror in the position determination does not occur in the blindsearch (§3.6) since we use the maximum pixel to start the fitinstead of a randomized spot 8 arcminutes from the blind po-sition. Anomalous offsets in the source position are identifiedby examination of the image and refitting.

In order to judge the accuracy of the BAT positions, weplot in Figure 4 the angular separation between the BAT po-sition and the counterpart position against the significance ofthe BAT source detection. The accuracy of the BAT posi-tion improves as the significance of the detection becomesstronger. There are 461 BAT sources in Table 5 with detec-tion significances greater than 4.8σ; there are 479 possiblecounterparts, and of these 25 are located grater than 5 arcmin-utes from the BAT position. Therefore, there is only a ∼ 5%chance of a BAT-detected source (> 4.8σ) having a counter-

FIG. 4.— The BAT position error as a function of the BAT detection signifi-cance. The angular separation between the counterpart position and the fittedBAT position is used to determine a measured position error for each source.This measured position error is plotted as a function of BAT detection signif-icance. The dashed line in the plot shows the 96% error radius as a functionof BAT source detection significance. Sources with large position errors arealmost always low galactic latitude sources falling in regions of high sourcedensity and locally higher noise.

8 TUELLER ET AL.

part farther away than 5 arcminutes.In Figure 4 we also plot a line showing our estimate of the

BAT position error for a given source significance. This es-timate for the error radius (in arcminutes) can be representedwith the function

BAT error radius =

√√√√( 30(S/N − 1

))2

+ (0.25)2, (1)

where S/N is the BAT detection significance. This empiricalfunction includes a systematic error of 0.25 arcmin deducedfrom the position errors of very significant sources. This errorradius includes 96% of the sources that are greater than 5from the Galactic plane and 15 from the Galactic center. Theerror radius encloses 85% of sources in the Galactic plane.Sources known to be confused are not included in the plot.

4.2. CounterpartsCounterparts to the BAT sources were primarily discovered

by examining X-ray images taken with instruments with goodangular resolution. Chandra resolution is sometimes requiredon the plane, otherwise XMM-Newton, Suzaku or ASCA im-ages were examined. ROSAT images and source catalogswere of relatively low importance for counterpart identifica-tion because of ROSAT’s lack of effective area in the hardX-ray band, because of the poor correlation between ROSATflux and the BAT hard X-ray flux (see Tueller et al. (2008),Figure 7), and because of the high chance probability of find-ing a ROSAT source in the BAT error circle.

If no archival X-ray images existed for the location of aBAT source, we requested Swift-XRT followup observationsof the field containing the BAT source. A 10 ks obser-vation with XRT is deep enough to detect almost all BATsources. BAT extragalactic sources are usually AGN con-tained in bright (J ∼ 13), nearby galaxies at redshift z < 0.1and are easily identified in an XRT observation.

The X-ray counterpart to an unabsorbed BAT source is avery bright XRT source, which is easily detected with a 2 ksXRT observation. However, most of the new BAT sources areheavily absorbed in the X-ray band and were not detected byROSAT. We have found empirically that XRT can detect es-sentially all of the BAT sources (including the absorbed ones)in a 10 ks observation.

We require consistency of the BAT and the X-ray spectrum(> 3 keV) when simultaneously fit with an absorbed powerlaw allowing only a renormalization between BAT and XRTto account for variability. This consistency of the spectra isrequired for all sources not previously known to be hard X-rayemitters, except transients and sources known to have highlyvariable spectra where the BAT spectrum averaged over yearscannot be directly compared to the XRT measurement from asingle observation.

A small fraction of XRT follow-up observations in the 5–10 ks range detected multiple sources consistent with the BATposition. In these cases the counterpart to the BAT source wasalmost always identified by limiting the bandpass of the X-rayimage to the higher energy 3–10 keV band. This bandpassfiltering usually reduced the number of sources in the field toa single hard source.

In the few cases where two or more hard sources still remainafter bandpass filtering, all are considered possible counter-parts to the BAT source and listed in the catalog with a flag in-dicating that the counterpart identification suffers from source

confusion. There are 18 more possible counterparts in Table 5than there are blind BAT sources (461) because of the 15 caseswhere there are one or more possible counterparts to a singleBAT source.

Because the counterpart identification requires an X-raypoint source with a small error radius (∼ 4 arcsec), a posi-tional coincidence with a known source or bright galaxy, andan X-ray spectrum consistent with the BAT flux, we believethat the counterpart misidentification rate is extremely small.All of the identified counterparts listed in Table 5 are hardX-ray sources.

4.3. Confused SourcesSources are labeled as confused in our table when the high-

est pixel associated with the BAT source in the mosaickedmaps (the “central pixel” value) has a significant contribu-tion from adjacent sources. This includes the cases when twopossible X-ray counterparts lie within a single BAT pixel andwhen two BAT sources are close enough that each contributesflux to the location of the adjacent source.

Using the positions of the X-ray counterparts as an inputcatalog, we calculated the fractional contribution of each BATsource to its neighbors. We used the significance measuredin the blind search and the 19.5 arcminute FWHM GaussianBAT PSF to calculate the intensity of each source at the po-sition of its neighbors. The central pixel value for each BATsource was assumed to be the sum of the source plus all thecontributions from its neighbors. This creates a set of linearequations that can be solved for the true significance of eachsource. We solved these equations with the constraint thatsources were not allowed to have negative significance. Thisprocedure was devised to determine cases where the BAT sig-nificance is altered because of the presence of a very strongnearby source.

If we found that the resulting fit S/N from the technique thataccounted for contributions from neighbors was lower thanthe central pixel S/N from the blind search by 2%, we labeledit as confused.

4.4. Detection Significances and LimitsThe detection significance for the BAT sources in the cat-

alog is extracted from the mosaicked significance map at theBAT position (see §3.6). The significance is taken from thehighest pixel value in the blind search.

Figure 5 shows the distribution of individual pixel signifi-cances from the mosaicked map of the entire sky. As is usualfor a coded mask imager, the noise distribution is a Gaussianfunction centered at zero significance, with a width of σ = 1and a total integrated area equal to the number of pixels inthe map. The large tail at positive significance is due to realastrophysical sources present in the map.

The distribution of the pixel significances in Figure 5closely follows a Gaussian distribution for the negative sig-nificances. The positive side of the distribution also follows aGaussian, but with the addition of pixels with enhanced sig-nificances because of the presence of real sources in the map.

Examination of the negative fluctuations provides a goodmeasure of the underlying noise distribution. There is only1 negative pixel in the entire map with a magnitude greaterthan 5σ. We therefore choose our detection limit to be 4.8σ.This detection limit is also the same as used in the 9-monthversion of the Swift-BAT catalog. While it is clear that thereare several real sources with significances somewhat smaller

SWIFT-BAT 22 MONTH HARD X-RAY SURVEY 9

FIG. 5.— Histogram showing the significances of the pixels in the 22-monthsurvey. The gray line is not a fit to the data; it is a Gaussian distribution withσ = 1 and normalized to the peak of the observed distribution.

FIG. 6.— The integral distribution of sky coverage versus sensitivityachieved in the survey. The 1 mCrab sensitivity limit (for 50% sky cover-age) corresponds to a flux of 2.3× 10−11 ergs cm−2 s−1 in the 14–195 keVband.

than 4.8σ, we choose this value in order to minimize falsesources caused by random fluctuations. We expect randomfluctuations to account for 1.54 sources at the 4.8σ level inour sky map of 1.99×106 independent pixels.

Figure 6 shows the integral distribution of sky coverage ver-sus sensitivity achieved in the survey. We achieve a sensitivityof better than 1 mCrab for half the sky, which corresponds toa flux of < 2.3×10−11 ergs cm−2 s−1 in the 14–195 keV band.

4.5. Counterpart Fluxes

Fluxes of the counterparts to BAT sources were extractedfrom the mosaicked maps using the pixel containing the posi-tion of the identified counterpart. For sources where a coun-terpart is not known, we use the fitted BAT position to deter-mine the flux.

We have chosen to normalize source fluxes in the 8 surveybands to the Crab because the systematic uncertainties in thesurvey averaged Crab spectrum are smaller than the uncer-tainties in the BAT survey response matrix. The source fluxesin each band were computed by comparing the source countrate to the measured rate of the Crab Nebula in each band:

BAT source flux =(

BAT source count rateCrab count rate

)Crab flux, (2)

where the Crab flux in each band is given by

Crab flux =∫ b

aE F(E) dE, (3)

where a and b are the lower and upper BAT band edges and Ethe energy in keV.

We take the Crab counts spectrum to be

F(E) = 10.17 E−2.15(

photonscm2 sec keV

), (4)

determined by fitting a power-law model to BAT on-axis cal-ibration observations taken early in the Swift mission. Thesevalues are consistent with characterizations of the Crab spec-trum using data from Integral/SPI (Jourdain & Roques 2008),Integral/IBIS (Jourdain et al. 2008), HETE/FREGATE (Oliveet al. 2003), SAX/PDS (Fiore et al. 1999), and GRIS (Bartlett1994).

The total Crab flux is then

Crab flux =∫ 195 keV

14 keVE F(E) dE = 2.44×10−8

( ergscm2 sec

).

(5)Sources with a spectral index very different from the Crab

can have a small but significant residual systematic error inthe fluxes determined with this method.

In order to gauge this error we generated counts spectra fordifferent models in the eight survey bands using the BAT on-axis spectral response matrix. The Crab comparison flux de-termination method described above was used to obtain themodel fluxes in each of the eight survey bands. The flux er-rors between the computed fluxes and the model fluxes in theindividual bands were always < 10% for a range of modelspectral indices between 1 and 3 and so we deem this tech-nique acceptable for producing the source fluxes in each ofthe survey bands.

We fit the 8-channel spectra with a power law model inorder to produce an overall hard X-ray flux for each BATsource. We used XSPEC and a diagonal matrix to fit the 8-channel spectra with the pegpwrlw model over the entire14–195 keV BAT survey energy range in order to extract thesource flux in this band. This approach was selected becauseit weights the energy bands by their individual uncertainties;a simple sum of the bands would produce a very large errordue to the high weight it assigns to the noisiest bands at thehighest energies.

The 1σ error in the overall flux was determined by using theerror function in XSPEC and is given in Table 5. For the high-est significance BAT sources (> 100 sigma), this proceduredoes not produce a good fit (reduced χ2 1), but this is to be

10 TUELLER ET AL.

expected from the very high significances of each point andthe coarse energy binning. To evaluate the systematic error inthe fitting we performed fits to our model spectra generatedfrom the response matrix. For power law spectra, the system-atic error in the flux is dominated by the error in the individualdata points as calculated above. Sources with hardness ratiosless than 0.1 are not well fit with a power law, and the system-atic uncertainty in the flux can be significantly larger.

The fluxes for sources marked as confused were calculatedin a slightly different way. Instead of using the count rateextracted from the map at the counterpart position, we per-formed a simultaneous fit to find the fluxes of all the sources inthe confused region as described in §4.3. For these sources wedo not quote an error on the flux estimate because the behav-ior of the errors with this fitting technique is not well known.Any source with a confused flag should be considered as de-tected by BAT but the flux should be considered as an upperlimit.

4.6. Sensitivity and Systematic ErrorsIn this section, we compare the expected statistical errors

with the actual measured statistical noise in the final mosaicmaps. From the perspective of pure Poisson counting statis-tics, the uncertainties are governed primarily by the propertiesof the coded mask and the background (see Skinner (2008)for details). The expected 5σ noise level can be expressed as(adapting from Skinner (2008) Eqn. 23 and 25):

5σPoisson = 5

√2b

αNdet T, (6)

where b is the per-detector rate, including background andpoint sources in the field of view; Ndet is the number of activedetectors (Ndet ≤ 32768); T is the effective on-axis exposuretime; and α is a coefficient dependent on the mask pattern anddetector pixel size (α = 0.733 for BAT). The partial coding,p, enters the expression through the “effective on-axis expo-sure” time, T = pTo, where To is the actual exposure time. Us-ing nominal values (b = 0.262 cts s−1 detector−1; Ndet = 23500(the exposure-weighted mean number of enabled detectors);and Crab rate = 4.59× 10−2 cts s−1 detector−1), we find theestimated Poisson 5σ noise flux level to be

f5σ = 0.99 mCrab(

T1 Ms

)−1/2

. (7)

We consider this to be a lower limit to the expected Poissonnoise level for a given effective exposure. In reality, the back-ground rate b may be higher than the nominal value by upto 50% depending on the particle environment of the space-craft. Also, along the Galactic plane the contributions ofbright sources such as the Crab, Sco X-1 and Cyg X-1, arenot strictly negligible, and will raise the overall level of b byup to ∼10%. All of these adjustments would cause a Poissonnoise level larger than given by equation 7, by an amount thatdepends on the specific satellite conditions during the survey.We estimate that, averaged over the entire survey duration, thetrue Poisson noise level may be 5–15% higher than the lowerlimit quoted above.

Figure 7 compares the measured noise and expected noiseversus effective on-axis exposure. We see that both noisemeasures are decreasing approximately as T −1/2, which sug-gests that the dominant errors are uncorrelated over time. Italso suggests that pointing strategies such as roll-angle dither-

FIG. 7.— Measured 5σ BAT sensitivity limit for pixels in the all-sky map,as a function of effective exposure time, T , for the 3-month (red; Markwardtet al. (2005)), 9-month (green; Tueller et al. (2008)) and 22-month (blue;this work) survey analyses. The contours indicate the number of pixels witha given sensitivity and effective exposure. The contour levels are linearlyspaced. The red dashed line represents the original T −1/2 sensitivity curvequoted in Markwardt et al. (2005). The black dashed line represents a lowerlimit to the expected Poisson noise level (see §4.6). The measured noise isapproximately 30–45% higher than the expected Poisson noise.

ing have been successful in reducing pointing-related system-atic errors. However, the measured noise is still higher thanthe expected Poisson noise by ∼30–45%, and we take this tobe a measure of the unmodeled systematic variations on thedetector plane.

The largest likely contributors to systematic variations areimproper subtractions of diffuse background, and of brightsources. BAT count rates are background-dominated — thebackground rate is equivalent to ∼6–9 Crab units — so thecoded mask analysis is particularly sensitive to imperfect sub-traction of spatial background variations. While the patternmap method and the functions fitted during the cleaning stageproduce a good model of the detector background, some im-perfections remain. One effect is that detector-to-detector sen-sitivity differences, coupled with varying exposures to the X-ray background, can lead to excess residuals.

For similar reasons, bright sources may also contribute sys-tematic noise. The brightest sources are clustered along theGalactic plane, and thus contribute noise in those preferredlocations. Indeed, we note that the measured noise is ∼50%higher in the Galactic center region, where there is a concen-tration of bright point sources. This is a larger factor thancan be accounted for by a larger count rate. Modeling ofpoint sources may be imperfect for the same reasons as forthe background. Also, there may be other effects such as sideillumination of detectors that may contribute additional noise.Here, “side illumination” refers to the facets of the individualCdZnTe detectors which do not face the pointing direction,but are still sensitive to X-rays. Off-axis sources will shinethrough the mask and illuminate the sides, producing an addi-tional (although fainter) coded signal. At the moment, illumi-

SWIFT-BAT 22 MONTH HARD X-RAY SURVEY 11

nation of the sides of detectors is not modeled at the imagingor cleaning steps, and thus there will be an additional noisedue to the effect.

Proper modeling of these systematic error contributors willbe the subject of future work. At this stage we do not havean in-depth analysis of the quantitative contributions of eacheffect to the systematic noise, and in some cases the analysismay be prohibitively difficult. Still, at the current exposurelevels, the noise level seems to be decreasing with exposure,and we do not appear to be reaching an ultimate systematiclimit in this analysis.

4.7. Spectral AnalysisIn §4.5 we use a simple power-law fit to the data to esti-

mate the source flux. However, because the catalog containssources with various different physical natures and spectralshapes, we choose to use the more robust characterizationgiven by a hardness ratio to describe the BAT spectra.

Hardness ratios for the Swift-BAT sources were calculatedby taking the sum of the count rate in the 35–150 keV bandand dividing by the count rate in the 14–150 keV band. Errorson the hardness ratio were calculated by propagating the er-rors on the count rates in the individual 8 bands except whenthe source is listed as confused. Figure 8 shows a map of thesource positions on the sky, with the source flux representedby the size of the point and the source hardness by the color(red is softer and blue is harder). Figure 9 shows the hardnessratios of the 22-month BAT sources by source class.

A mapping can be made between hardness ratio and power-law index for sources that have spectral shapes well describedby a simple power-law model (e.g., the majority of AGN inour catalog). This mapping is well represented by

Γ = 3.73 − 4.52 HR, (8)

where Γ is the power-law index and HR is the hardness ra-tio as defined above. Figure 10 shows the correlation be-tween power-law index and hardness ratio for the BAT surveysources. The correlation holds well for sources with hard-nesses above about 0.15, but begins to break down for softersources. An illustration of this problem is the soft BAT spec-tra of clusters of galaxies, which have thermal spectra withtemperatures ∼ 10 keV and are usually detected only in thelowest energy BAT band and are not well fit by a power-lawmodel. We leave to a later paper a more careful spectral anal-ysis using models appropriate to the physical nature of thesources.

5. Swift-BAT SURVEY SOURCESAlthough it is for extragalactic astronomy that the present

survey represents the greatest step forward, a comparison ofthe results for Galactic sources with earlier work also has in-teresting implications.

Of the 479 sources in Table 5, 97% have reasonably firmassociations either with objects known in other wavebands orwith previously known X-ray or gamma-ray sources. Morethan 60% of the associations are with extragalactic objects.At high Galactic latitudes (|b|> 10) the density of identifiedextragalactic sources is 22.6 sr−1, and it is only only slightlyreduced at low latitudes to 19.2 sr−1. This suggests that only∼ 7 extragalactic sources in the plane are missed through re-duced sensitivity, lack of information in other wavebands, orconfusion, and illustrates the uniformity of the survey.

153 BAT AGN were previously reported in the BAT 9-month AGN survey (Tueller et al. 2008). Winter et al. (2009)

provide X-ray spectral fits for these sources and provide mea-sures of the luminosity, nH , etc. for the sources in the 9-monthcatalog. Most of the sources in the 9-month catalog also ap-pear here in the 22-month catalog; however, variability in thesources has caused 11 sources to drop out of the 22-month listthat were in the 9-month catalog.

5.1. New sourcesDuring the survey BAT has detected a number of new

sources that are transients or other Galactic objects not pre-viously reported as hard X-ray sources. Some of these havebeen reported in Astronomer’s Telegrams or elsewhere, othersappear for the first time in this compilation. For conveniencethese are summarized in Table 2.

In Table 3 we note other sources that are detected in thissurvey and where XRT follow-up has provided additional in-formation, but where a unique optical, IR, or radio counter-part is still lacking, or where there is only a BAT detection.Some of these are almost certainly Galactic objects as may bejudged from their proximity to the Galactic plane.

Table 4 list the new AGN discovered in the 22-month Swift-BAT survey. Table 4 lists those objects discovered with BATwhose AGN nature could be confirmed with an optical spec-trum. In column 3 of the table we list the source of the opticaldata, and columns 4 and 5 list our own typing of the spectrumand the redshift. The optical spectra are mostly obtained fromdata in the public domain such as SDSS or 6df, but in a fewcases we have obtained data from our own observations takenat the 2.1m telescope on Kitt Peak.

5.2. Extragalactic SourcesMost of the extragalactic identifications are with relatively

nearby Seyfert galaxies and many of the remainder are withbeamed AGN (blazars, BL Lac, FSRQ, etc) sources at muchhigher z.

Figure 11 shows some typical BAT source host galaxy im-ages from the Palomar digital sky survey. The field of viewis 2 arcmin across for each subimage. The figure was pro-duced by dividing the hardness-luminosity plane into 70 binsand randomly choosing a BAT source from that category todisplay. Of note are the high fraction of spiral galaxy hosts(as opposed to ellipticals), and the high number of interactinggalaxies.

The 234 sources that have an identification with a well es-tablished Seyfert galaxy more than double the number in anyprevious hard X-ray survey. The distribution of column densi-ties, spectral indices, and luminosities for the survey sourceswill be presented in a separate paper. As elsewhere in this pa-per, we emphasize that this catalog is based on mean flux lev-els over the entire 22 month period. The detections of sourceswith significant temporal variability over the survey periodand the implications of such variability will be discussed else-where (Skinner et al., in preparation).

Figure 12 shows a histogram of the redshifts of all the AGNfound in the 22-month catalog. The distribution of the Seyfertgalaxy redshifts from the 22-month survey (left panel of Fig-ure 12) is highly biased towards low redshifts (z∼ 0.03) witha tail extending out to z ∼ 0.1 and a few more distant objectsout to z∼ 0.3. The right panel of Figure 12 shows the redshiftdistribution of the beamed AGN. This distribution is quite dif-ferent from the Seyfert galaxies in the left panel, with redshiftsthat extend to z∼ 4 and with no objects at z< 0.033. Since wehave no selection biases with respect to these beamed AGN

12 TUELLER ET AL.

TABLE 2NEW HIGH ENERGY SOURCES IN THE 22-MONTH CATALOG THAT ARE GALACTIC, OR PROBABLY GALACTIC, AND

WERE FIRST DETECTED AS HARD X-RAY SOURCES BY Swift-BAT

Source First Notesreported

SWIFT J0026.1+0508 Here Of several sources in an XRT follow-up observation, only one is hard and it istaken to be the counterpart. It could be a CV.

SWIFT J0732.5−1331 ATel 697 CV of subtype DQ Her. ATels 757, 760, 763.SWIFT J1010.1-5747 ATel 684 = CD−57 3057. ATel 669 gives XRT position for BAT source SWIFT J1011.1-

5748 = IGRJ 10109-5746 associated with Symbiotic star CD-57 3057 (ATel715).

SWIFT J1515.2+1223 Here In a 7400 s XRT follow-up, only one source is detected in the hard band at(α,δ) = (151447, + 122244). No known counterparts at this position.

SWIFT J1546.3+6928 Here The BAT source is confused. There are TWO hard (>3 keV) sources in theXRT image, 1RXS J154534.5+692925 AND 2MASS J15462424+6929102.There are some indications that the ROSAT source is extended, perhaps an in-teracting pair (making a possible third source). The 2MASS object is extendedand clearly a galaxy.

SWIFT J1559.6+2554 ATel 668/9 = T CrB. The Swift source is identified with this symbiotic star in XRT follow-up.

SWIFT J1626.9−5156 ATel 678 Peculiar (HMXB?) transient. 15.37 s pulsations. Optical counterpart2MASS16263652−5156305. Short (100–1000s) flares (Reig et al. 2008).

SWIFT J1753.5−0130 ATel 546 Short period (3.2 hr; ATel 1130) BH LMXB transient observed with manyother instruments following BAT detection.

SWIFT J1907.3-2050 Here = V1082 Sgr. XRT follow-up shows a strong hard source coincident with thepulsating variable star. Steiner et al. (1988) have found that this star in itshard state has properties similar to a CV of subtype DQ Her. Thorstensen etal. (2009) has determined an orbital period of 20.821 hr for this object whichclassifies it as a long period CV.

SWIFT J1922.7−1717 ATel 669 Transient observed with RXTE and Integral after BAT detection (Falanga etal. 2006)

SWIFT J1942.8+3220 Here = V2491 Cyg. We find a weak hard X-ray source whose position is consistentwith V2491 Cyg in data taken before its eruption as Nova Cyg 2008b. (seealso Ibarra et al. (2009), ATel 1478)

SWIFT J2037.2+4151 ATel 853 Transient; later seen with Integral (ATel 967)SWIFT J231930.4+261517 ATel 1309 XRT data show that this source is the same as 1RXS J231930.9+261525, re-

ported and identified as a CV of subtype AM Her in ATel 1309. Mkn 322 andUGC 12515 may also contribute to the BAT counts

SWIFT J2327.6+0629 Here There is no clear source in the XRT field.

TABLE 3UNIDENTIFIED NEW SOURCES

Source la () b () Notes

SWIFT J0826.2−7033 284.21 −18.09 = 1ES 0826−703, 1RXS J082623.5−703142. The 4.1" radius XRT position is1.2" from T Tau star 2MASS J08262350−7031431.

SWIFT J1515.2+1223 16.44 +53.28 Nearest XRT source is a weak one 7.8’ away, just outside the 5’ radius BATerror circle.

SWIFT J1546.3+6928 104.27 40.74 Two hard XRT sources lie within the BAT error circle. One is associated with1RXS J154534.5+692925, about which nothing is known, the other is coinci-dent with the extended source 2MASX J15462424+6929102, which is identi-fied with LEDA 2730634, a side-on spiral galaxy.

SWIFT J1706.6−6146 328.72 −12.40 = IGRJ17062−6143. Bright XRT counterpart gives precise position but no ap-parent optical/IR/Radio counterpart.

SWIFT J1709.8−3627 349.55 2.07 = IGR J17098−3628. IGR J17091−3624 is only 8.5’ away. XRT provides posi-tions for both (ATel 1140). The BAT position corresponds to IGR J17098−3628,but the XRT error circle contains a complex of IR sources and a radio sourceand it is not clear which are counterparts.

NOTE. — These sources have new information but no firm identification with an optical/IR/Radio object.a Galactic coordinates are given as an indication of whether the sources is likely to be Galactic.

SWIFT-BAT 22 MONTH HARD X-RAY SURVEY 13

FIG. 8.— All sky map showing spectral hardness of BAT 22-month survey sources. The figure uses a Hammer-Aitoff projection in Galactic coordinates; thesize of the circle is proportional to the flux of the source. Blue sources are harder, and red sources are softer.

TABLE 4NEW AGN DETECTED IN THE Swift-BAT 22-MONTH SURVEY WITH OPTICAL SPECTROSCOPIC

CONFIRMATION

BAT Name Host Galaxy Optical Spectruma Galaxy Type redshift

SWIFT J0100.9-4750 2MASX J01003490-4752033 6df Sy1.8SWIFT J0623.8-3215 ESO 426- G 002 6df Sy2SWIFT J0923.9-3143 2MASX J09235371-3141305 6df Sy1.8SWIFT J1513.8-8125 2MASX J15144217-8123377 6df Sy1.8

SWIFT J0249.1+2627 2MASX J02485937+2630391 KP XBONGb 0.058SWIFT J0353.7+3711 2MASX J03534246+3714077 KP Sy2 0.01828SWIFT J0543.9-2749 MCG -05-14-012 KP XBONG 0.0099SWIFT J0544.4+5909 2MASX J05442257+5907361 KP Sy1.9 0.06597SWIFT J1246.6+5435 NGC 4686 KP XBONG 0.0167SWIFT J1621.2+8104 CGCG 367-009 KP Sy2 0.0274SWIFT J1830.8+0928 2MASX J18305065+0928414 KP Sy2 0.019SWIFT J2118.9+3336 2MASX J21192912+3332566 KP Sy1 0.0507SWIFT J2341.8+3033 UGC 12741 KP Sy2 0.0174

a The optical spectra sources are as follows: 6df = Six degree field galaxy survey, SDSS = Sloan DigitalSky Survey, KP = 2.1 m at Kitt Peak.b XBONG = (hard) X-ray Bright, Optically Normal Galaxy

14 TUELLER ET AL.

FIG. 9.— Hardness ratios of BAT 22-month sources by source class.

SWIFT-BAT 22 MONTH HARD X-RAY SURVEY 15

FIG. 10.— The correlation between power law index and hardness ratio forthe BAT survey sources.

(as opposed to optical searches for blazars) these different red-shift distributions are a fundamental property of these classesand are directly related to their luminosity functions and evo-lution (Ajello et al. 2009).

Figure 13 is a histogram of the luminosities of the Seyfertgalaxies detected in the BAT 22-month survey. The luminos-ity distribution of the Seyfert galaxies continues to show a dif-ference between the type Is and type IIs as noted in Winter etal. (2008). This indicates that the true luminosity distributionis indeed different for these two classes, which is inconsistentwith the unified model of AGN. A K-S test of these two lumi-nosity distributions shows that they are drawn from the sameparent distribution with a probability of only 0.30.

As in earlier hard X-ray surveys, the second most commoncategory of extragalactic sources are beamed AGN, which in-clude types such as blazars, BL Lacs, FSRQs, etc. Thereare 32 objects in this category. The highest redshift is forQSO J0539−2839 at z = 3.104.

We have detected 10 clusters of galaxies at> 4.8σ; Perseus,Coma, Ophiuchus, Cygnus A, Abell 2319, Abell 754,Abell 3266, Abell 2142, Abell 3571, and Triangulum Aus-tralis. The BAT spectra of Cygnus A and Abell 2142 inthe 14–100 keV band are dominated by the AGN componentin or around the clusters. The other 8 clusters are all hot(kT ∼10 keV); their BAT spectra are consistent with an ex-tension of the thermal emission modeled with ASCA/XMM-Newton/Chandra archival data in the 2–10 keV band and donot require any additional component for a good fit. In otherwords, there is no evidence of a non-thermal diffuse compo-nent in these clusters. We estimated the upper limit of the non-thermal emission by adding a power-law model to the spectralfit for the 10 detected clusters. The upper limit is ∼ 6×10−12

ergs cm−2 s−1 on average and the lower limit for the magneticfield B ranges from ∼ 0.2–1 µG, assuming inverse Comptonscattering of Cosmic Microwave Background photons by rel-ativistic electrons in the cluster. More details are describedin the papers by Ajello et al. (2009) and Okajima et al. (ApJ,

submitted).Some 20 sources are clearly identified, largely through

follow-up Swift-XRT observations, with galaxies from whichno sign of nuclear activity has yet been reported in other wave-bands. Their mean luminosity is only slightly lower thanthat of those classed as Seyferts on the basis of optical spec-tra (1043.53 compared with 1043.75 erg s−1). These are prob-ably low-z counterparts to the X-ray bright, optically nor-mal (XBONG) sources discovered in the Chandra and XMM-Newton deep fields (Barger et al. 2005; Comastri et al. 2002).

5.3. Galactic Sources5.3.1. X-ray Binaries

As can be seen from Table 5, approximately two-thirds ofthe Galactic sources are X-ray binaries. Of those whose na-ture is known, about 40% are high mass X-ray binaries, whichreflects the BAT’s sensitivity to hard-spectrum X-ray sources.60% are low mass X-ray binaries, which typically have softerspectra but can have a higher total flux. The low mass X-ray binary population is concentrated near the Galactic planeand bulge, whereas the high mass X-ray binary population ismore distributed, including significant contributions from theMagellanic clouds.

The sensitivity of the survey is such that high luminositysources (> Lx ∼ 1036 erg s−1) are detectable anywhere in theGalaxy and the catalog is complete for sources that emit con-tinuously at this level. However, since many X-ray binariesare transient it is likely that there are a significant number ofadditional X-ray binaries that are not seen in the present anal-ysis (which is based on fluxes averaged over 22 months), butthat can be detected in specific shorter intervals. This will bethe subject of further work. The detection of outbursts fromtransients that do not repeat, or that repeat only on timescalesof several years, should scale approximately linearly with thelength of the survey.

5.3.2. CVs and Other Accreting White Dwarf Systems

Accreting white dwarf binaries constitute the second mostcommon category of Galactic sources. Of these, 31 have beenidentified as cataclysmic variables (CVs) or CV candidates.Of the 31 CVs detected with BAT, 14 are in the Barlow etal. (2006) (INTEGRAL) list, while 17 are new detections inhard X-ray surveys. Because the INTEGRAL catalog goesdeeper near the Galactic plane but the BAT catalog is moresensitive at higher latitude, the lists of CVs in the two catalogsare complementary. With the expanded list, we confirm thatthe hard X-ray selected CVs are dominated by magnetic CVsof the intermediate polar (IP) subtype, also known as DQ Hertype stars (see also Brunschweiger et al. (2009)).

In addition, 4 hard X-ray bright symbiotic stars have beendetected by BAT, as summarized by Kennea et al. (2007), andthere is now a candidate to be the fifth member of the class. Fi-nally, BAT has also detected one Be star, gam Cas, for whichan accreting white dwarf companion is one of three possibili-ties proposed as the origin of the X-ray emission (Kubo et al.1998).

5.3.3. SNRs and Non-Accretion Powered Pulsars

We detect hard X-ray emission from 8 pulsars and/or theirassociated Pulsar Wind Nebula (PWN) or supernova rem-nants (SNRs). Our upper limit on PSR J1846−0258 is con-sistent with the flux level at which it was detected in along INTEGRAL-IBIS observation and reported in Bird et al.

16 TUELLER ET AL.

FIG. 11.— Typical host galaxies of BAT detected Seyfert galaxies. The individual images are taken from the Palomar Digital Sky Survey, and are 2′ on a side.The BAT hardness-luminosity plane is divided into 70 bins, and a BAT source from that bin randomly selected to display.

FIG. 12.— Histograms showing the redshift distribution of the AGN in the 22-month survey. The left panel shows the Seyfert distribution, and the right panelshows the beamed AGN distribution. The beamed AGN panel has redshift bins that are 0.5 units wide.

SWIFT-BAT 22 MONTH HARD X-RAY SURVEY 17

FIG. 13.— The distribution of Seyfert galaxy luminosities in the BAT 22-month survey.

(2007). In the case of HESS J1813−178 it appears that weare detecting emission that is from the point source seen atlower energies (Funk et al. (2007)) rather than directly relatedto the slightly extended VHE gamma-ray emission. The onlySNR-related source that is not associated with a PWN is CasA.

5.3.4. The Galactic Center

Because of the limited resolution of the BAT instrumentthe emission reported as from Sgr A* should be regarded asthe net emission from a region of ∼ 6′ radius centered on theGalactic center. It is possible that a number of sources con-tribute.

6. CONCLUSIONSThe 22 month BAT catalog reinforces and enhances the re-

sults from the 3 month (Markwardt et al. 2005) and 9 month(Tueller et al. 2008) catalogs and shows that the BAT surveycontinues to increase in sensitivity roughly as the square rootof time and is far from being confusion or systematics lim-ited. Future papers will discuss the X-ray spectral and tim-ing properties of these sources as well as the nature of theoptical identifications, in a manner similar to that of Winteret al. (2008, 2009). We have also obtained extensive opticalimaging and spectroscopy of the AGN population (Koss, inpreparation; Winter et al. (2009)), more detailed X-ray obser-vations as well as Spitzer IR spectroscopy (Melendez et al.2009) and radio data which will be presented in future publi-cations. These results will allow the first large scale catego-rization of the AGN phenomenon from a large uniform andunbiased sample as well as a detailed comparison with resultsobtained with other selection techniques.

REFERENCES

Ajello, M., et al. 2007, Deepest Astronomical Surveys, 380, 163Ajello, M., Greiner, J., Kanbach, G., Rau, A., Strong, A. W., & Kennea,

J. A. 2008, ApJ, 678, 102Ajello, M., et al. 2009, ApJ, 690, 367Ajello, M., et al. 2009, ApJ, submittedBade, N., et al. 1998, A&AS, 127, 145Barger, A. J., Cowie, L. L., Mushotzky, R. F., Yang, Y., Wang, W.-H.,

Steffen, A. T., & Capak, P. 2005, AJ, 129, 578Barlow, E. J., Knigge, C., Bird, A. J., J Dean, A., Clark, D. J., Hill, A. B.,

Molina, M., & Sguera, V. 2006, MNRAS, 372, 224Barthelmy, S. D., Cline, T. L., Butterworth, P., Kippen, R. M., Briggs, M. S.,

Connaughton, V., & Pendleton, G. N. 2000, Gamma-ray Bursts, 5thHuntsville Symposium, 526, 731

Barthelmy, S. D., et al. 2005, Space Science Reviews, 120, 143Bartlett, Lyle. Ph.D. Thesis, Astronomy Department, University of

Maryland College Park.Beckmann, V., Gehrels, N., Shrader, C. R., & Soldi, S. 2006, ApJ, 638, 642Beckmann, V., et al. 2009, arXiv:0907.0654Bikmaev, I. F., Sunyaev, R. A., Revnivtsev, M. G., & Burenin, R. A. 2006,

Astronomy Letters, 32, 221Bikmaev, I. F., Burenin, R. A., Revnivtsev, M. G., Sazonov, S. Y., Sunyaev,

R. A., Pavlinsky, M. N., & Sakhibullin, N. A. 2008, Astronomy Letters,34, 653

Bodaghee, A., Walter, R., Zurita Heras, J. A., Bird, A. J., Courvoisier,T. J.-L., Malizia, A., Terrier, R., & Ubertini, P. 2006, A&A, 447, 1027

Bodaghee, A., et al. 2007, A&A, 467, 585Bird, A. J., et al. 2007, ApJS, 170, 175Brunschweiger, J., Greiner, J., Ajello, M., & Osborne, J. 2009,

arXiv:0901.3562Burenin, R. A., Mescheryakov, A. V., Revnivtsev, M. G., Sazonov, S. Y.,

Bikmaev, I. F., Pavlinsky, M. N., & Sunyaev, R. A. 2008, AstronomyLetters, 34, 367

Burrows, D. N., et al. 2005, Space Science Reviews, 120, 165Butler, S. C., et al. 2009, ApJ, 698, 502Caroli, E., Stephen, J. B., Spizzichino, A., di Cocco, G., & Natalucci, L.

1986, Data Analysis in Astronomy II, 77Chakrabarty, D., Wang, Z., Juett, A. M., Lee, J. C., & Roche, P. 2002, ApJ,

573, 789Cieslinski, D., Steiner, J. E., & Jablonski, F. J. 1998, A&AS, 131, 119Coe, M. J., et al. 1994, MNRAS, 270, L57Comastri, A., et al. 2002, ApJ, 571, 771Falanga, M., Belloni, T., & Campana, S. 2006, A&A, 456, L5Fenimore, E. E., & Cannon, T. M. 1981, Appl. Opt., 20, 1858

Fiore, F., Guainazzi, M., & Grandi, P. SAX Cookbook,http://heasarc.gsfc.nasa.gov/docs/sax/abc/saxabc/saxabc.html

Forman, W., Jones, C., Cominsky, L., Julien, P., Murray, S., Peters, G.,Tananbaum, H., & Giacconi, R. 1978, ApJS, 38, 357

Funk, S., et al. 2007, A&A, 470, 249Gehrels, N., et al. 2004, ApJ, 611, 1005Gilli, R., Comastri, A., & Hasinger, G. 2007, A&A, 463, 79Homer, L., Anderson, S. F., Margon, B., Downes, R. A., & Deutsch, E. W.

2002, AJ, 123, 3255Ibarra, A., et al. 2009, arXiv:0902.3943Israel, G. L., et al. 2001, A&A, 371, 1018Jourdain, E., Götz, D., Westergaard, N. J., Natalucci, L., & Roques, J. P.

2008, Proceedings of the 7th INTEGRAL Workshop. 8 - 11 September2008 Copenhagen, Denmark. Online athttp://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=67, p.144

Jourdain, E., & Roques, J. P. 2008, Proceedings of the 7th INTEGRALWorkshop. 8 - 11 September 2008 Copenhagen, Denmark. Online athttp://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=67, p.143

Juett, A. M., & Chakrabarty, D. 2005, ApJ, 627, 926Kennea, J. A., Mukai, K., Tueller, J., Sokoloski, J., Luna, J., Burrows, D., &

Gehrels, N. 2007, Bulletin of the American Astronomical Society, 38, 149Krimm, H., et al. 2006, The Astronomer’s Telegram, 904, 1Krivonos, R., Revnivtsev, M., Lutovinov, A., Sazonov, S., Churazov, E., &

Sunyaev, R. 2007, A&A, 475, 775Kubo, S., Murakami, T., Ishida, M., & Corbet, R. H. D. 1998, PASJ, 50, 417Levine, A. M., et al. 1984, ApJS, 54, 581Markwardt, C. B., Tueller, J., Skinner, G. K., Gehrels, N., Barthelmy, S. D.,

& Mushotzky, R. F. 2005, ApJ, 633, L77Masetti, N., et al. 2008, A&A, 482, 113Masetti, N., et al. 2009, A&A, 495, 121McBride, V. A., et al. 2008, A&A, 477, 249Melendez, M., et al. 2009, American Astronomical Society Meeting

Abstracts, 213, #421.10Olive, J.-F., et al. 2003, Gamma-Ray Burst and Afterglow Astronomy 2001:

A Workshop Celebrating the First Year of the HETE Mission, 662, 88Reig, P., Belloni, T., Israel, G. L., Campana, S., Gehrels, N., & Homan, J.

2008, A&A, 485, 797Renaud, M., et al. 2006, ApJ, 647, L41Revnivtsev, M., Sazonov, S., Jahoda, K., & Gilfanov, M. 2004, A&A, 418,

927Rodriguez, J., Tomsick, J. A., & Chaty, S. 2009, A&A, 494, 417Roming, P. W. A., et al. 2005, Space Science Reviews, 120, 95Shafter, A. W., Davenport, J. R. A., Güth, T., Kattner, S., Marin, E., &

Sreenivasamurthy, N. 2008, PASP, 120, 374

18 TUELLER ET AL.

Skinner, G. K. 1995, Experimental Astronomy, 6, 1Skinner, G. K. 2008, Appl. Opt., 47, 2739Steiner, J. E., Cieslinski, D., & Jablonski, F. J. 1988, Progress and

Opportunities in Southern Hemisphere Optical Astronomy. The CTIO25th Anniversary Symposium, 1, 67

Thorstensen, J. R., Peters, C. S., Sheets, H. A., & Skinner, J. N. 2009,American Astronomical Society Meeting Abstracts, 213, #491.07

Tomsick, J. A., Chaty, S., Rodriguez, J., Walter, R., & Kaaret, P. 2008, ApJ,685, 1143

Treister, E., Urry, C. M., & Virani, S. 2009, ApJ, 696, 110Tueller, J., Mushotzky, R. F., Barthelmy, S., Cannizzo, J. K., Gehrels, N.,

Markwardt, C. B., Skinner, G. K., & Winter, L. M. 2008, ApJ, 681, 113

Walter, R., et al. 2006, A&A, 453, 133Wilson, C. A., Patel, S. K., Kouveliotou, C., Jonker, P. G., van der Klis, M.,

Lewin, W. H. G., Belloni, T., & Méndez, M. 2003, ApJ, 596, 1220Winter, L. M., Mushotzky, R. F., Tueller, J., & Markwardt, C. 2008, ApJ,

674, 686Winter, L. M., Mushotzky, R. F., Reynolds, C. S., & Tueller, J. 2009, ApJ,

690, 1322

SWIFT-BAT 22 MONTH HARD X-RAY SURVEY 19TA

BL

E5

CA

TAL

OG

OF

SO

UR

CE

SIN

TH

E22

-MO

NT

HSw

ift-B

AT

SU

RV

EY

#B

AT

Nam

eaR

Ab

Dec

S/N

Cou

nter

part

Nam

eO

ther

Nam

eC

tptR

Ac

Ctp

tDec

Flux

der

ror

Ce

Hra

tfH

err

Red

shif

tgL

umh

Type

1SW

IFT

J000

6.2+

2012

1.55

520

.192

7.05

MR

K03

351.

5813

20.2

029

2.47

0.41

0.31

0.07

0.02

5843

.57

Sy1.

22

SWIF

TJ0

010.

5+10

572.

613

10.9

587.

59M

RK

1501

2.62

9210

.974

94.

100.

550.

400.

050.

0893

44.9

1Sy

1.2

3SW

IFT

J002

5.8+

6818

6.44

368

.303

5.76

2MA

SXJ0

0253

292+

6821

442

6.38

7068

.362

33.

020.

660.

510.

090.

0120

42.9

9Sy

24

SWIF

TJ0

026.

1+05

086.

550

5.12

15.

55SW

IFT

J002

615.

1+05

0417

6.56

315.

0715

4.13

1.12

0.59

0.12

?5

SWIF

TJ0

028.

9+59

177.

224

59.2

8424

.30

V70

9C

asR

XJ0

028.

8+59

177.

2036

59.2

894

8.91

0.39

0.25

0.02

CV

/DQ

Her

6SW

IFT

J003

6.0+

5951

9.00

059

.842

5.76

QSO

B00

33+5

951E

S00

33+5

958.

9694

59.8

346

1.96

0.34

0.19

0.07

0.08

6044

.56

BL

Lac

7SW

IFT

J003

7.2+

6123

9.29

761

.380

6.45

BD

+60

73IG

RJ0

370+

6122

9.29

0261

.360

12.

850.

470.

350.

06H

MX

B8

SWIF

TJ0

042.

9−23

3210

.745

−23

.503

7.00

NG

C23

5A10

.720

0−

23.5

410

4.12

0.48

0.35

0.05

0.02

2243

.67

Sy1

9SW

IFT

J004

8.8+

3155

12.1

7631

.978

28.8

5M

rk34

812

.196

431

.957

013

.66

0.56

0.42

0.02

0.01

5043

.84

Sy2

10SW

IFT

J005

1.8−

7320

12.9

53−

73.3

2811

.40

RX

J005

2.1-

7319

2E00

50.4

-733

513

.092

1−

73.3

181

5.70

0.42

0.28

0.03

HM

XB

11SW

IFT

J005

1.9+

1724

12.9

9217

.465

7.36

MR

K11

4812

.978

317

.432

92.

800.

410.

240.

060.

0640

44.4

4Sy

112

SWIF

TJ0

055.

4+46

1213

.854

46.2

006.

521R

XS

J005

528.

0+46

1143

13.8

671

46.1

953

1.97

0.28

0.10

0.07

CV

/DQ

Her

13SW

IFT

J005

6.7+

6043

14.1

8360

.711

24.0

3G

amm

aC

as4U

0054

+60

14.1

772

60.7

167

7.08

0.26

0.08

0.02

Star

/Be

14SW

IFT

J005

9.4+

3150

15.0

0731

.828

9.50

Mrk

352

14.9

720

31.8

269

4.16

0.50

0.37

0.05

0.01

4943

.31

Sy1

15SW

IFT

J010

0.9−

4750

15.3

07−

47.8

866.

44E

SO19

5-IG

021

NE

D03

15.1

457

−47

.867

62.

080.

450.

350.

080.

0483

44.0

6Sy

1.8

16SW

IFT

J010

9.0+

1320

17.2

4413

.340

8.60

3C03

317

.220

313

.337

24.

060.

520.

380.

050.

0597

44.5

4Sy

217

SWIF

TJ0

113.

8−14

5018

.449

−14

.841

5.49

MR

K11

5218

.458

7−

14.8

456

2.50

0.45

0.28

0.07

0.05

2744

.22

Sy1.

518

SWIF

TJ0

117.

8+65

1619

.443

65.2

7051

.69

V66

2C

as4U

0114

+65

19.5

112

65.2

916

17.1

40.

370.

220.

01H

MX

B/N

S19

SWIF

TJ0

117.

8−73

2719

.448

−73

.450

111.

96SM

CX

-14U

0115

-73

19.2

714

−73

.443

338

.20

0.29

0.08

0.00

HM

XB

/NS

20SW

IFT

J012

2.9+

3420

20.7

3734

.329

5.98

SHB

LJ0

1230

8.7+

3420

492E

0120

.3+3

404

20.7

860

34.3

469

2.12

0.43

0.28

0.08

0.27

2045

.69

BL

Lac

21SW

IFT

J012

3.8−

3504

20.9

62−

35.0

1411

.37

NG

C52

6A20

.976

6−

35.0

654

5.96

0.51

0.39

0.03

0.01

9143

.69

Sy1.

522

SWIF

TJ0

123.

9−58

4620

.984

−58

.772

12.3

8Fa

iral

l920

.940

8−

58.8

057

5.07

0.45

0.33

0.03

0.04

7044

.42

Sy1

23SW

IFT

J012

4.5+

3350

21.1

2633

.827

4.80

NG

C05

1321

.111

933

.799

52.

060.

430.

250.

090.

0195

43.2

5Sy

224

SWIF

TJ0

134.

1−36

2523

.529

−36

.473

6.58

NG

C06

1223

.490

6−

36.4

933

5.35

0.61

0.50

0.05

0.02

9844

.04

Rad

ioga

laxy

25SW

IFT

J013

8.6−

4001

24.6

88−

39.9

5112

.97

ESO

297-

018

24.6

548

−40

.011

47.

370.

540.

450.

030.

0252

44.0

3Sy

226

SWIF

TJ0

146.

0+61

4326

.512

61.7

1813

.28

PSR

J014

6+61

26.5

934

61.7

509

12.2

90.

890.

650.

04A

XP

27SW

IFT

J015

2.8−

0329

28.1

93−

3.50

15.

67M

CG

-01-

05-0

4728

.204

2−

3.44

682.

780.

460.

280.

070.

0172

43.2

7Sy

228

SWIF

TJ0

201.

0−06

4830

.269

−6.

855

18.2

0N

GC

788

30.2

769

−6.

8155

9.33

0.57

0.46

0.03

0.01

3643

.59

Sy2

29SW

IFT

J020

6.2−

0019

31.5

65−

0.28

75.

55M

rk10

1831

.566

6−

0.29

143.

610.

640.

470.

080.

0424

44.1

8Sy

1.5

30SW

IFT

J020

9.7+

5226

32.4

6452

.484

11.7

5L

ED

A13

8501

32.3

929

52.4

425

5.48

0.53

0.37

0.04

0.04

9244

.50

Sy1

31SW

IFT

J021

6.3+

5128

34.0

7551

.387

6.95

2MA

SXJ0

2162

987+

5126

246

34.1

243

51.4

402

2.93

0.48

0.34

0.07

?lik

ely

Sy2

32SW

IFT

J021

8.0+

7348

34.2

7973

.846

6.99

[HB

89]0

212+

735

34.3

784

73.8

257

3.33

0.57

0.43

0.06

2.36

7048

.16

BL

Lac

33SW

IFT

J022

5.0+

1847

36.2

6018

.785

5.42

RB

S03

1536

.269

518

.780

22.

710.

600.

420.

082.

6900

48.2

1B

LL

ac34

SWIF

TJ0

228.

1+31

1837

.024

31.2

9914

.34

NG

C93

137

.060

331

.311

76.

560.

500.

300.

030.

0167

43.6

1Sy

1.5

35SW

IFT

J023

1.6−

3645

37.9

69−

36.6

806.

09IC

1816

37.9

625

−36

.672

12.

580.

480.

390.

070.

0170

43.2

2Sy

1.8

36SW

IFT

J023

4.1+

3233

38.5

1332

.576

5.69

NG

C09

7338

.583

832

.505

63.

090.

580.

420.

080.

0162

43.2

6Sy

237

SWIF

TJ0

234.

6−08

4838

.658

−8.

758

7.70

NG

C98

538

.657

4−

8.78

763.

450.

460.

330.

050.

0430

44.1

7Sy

138

SWIF

TJ0

235.

3−29

3438

.784

−29

.617

7.91

ESO

416-

G00

238

.806

1−

29.6

047

3.40

0.60

0.46

0.06

0.05

9244

.46

Sy1.

939

SWIF

TJ0

238.

2−52

1339

.518

−52

.175

10.1

7E

SO19

8-02

439

.582

1−

52.1

923

4.98

0.50

0.41

0.04

0.04

5544

.38

Sy1

40SW

IFT

J024

0.5+

6118

40.1

3261

.307

7.04

LS

I+61

303

V61

5C

as40

.131

961

.229

33.

090.

520.

350.

06H

MX

B41

SWIF

TJ0

241.

3−08

1640

.326

−8.

272

7.08

NG

C10

5240

.270

0−

8.25

583.

750.

670.

430.

070.

0050

42.3

2Sy

242

SWIF

TJ0

242.

6+00

0040

.638

0.00

07.

07N

GC

1068

40.6

696

−0.

0133

3.72

0.53

0.37

0.06

0.00

3842

.07

Sy2

43SW

IFT

J024

4.8+

6227

41.1

7262

.441

16.5

4[H

B89

]024

1+62

241

.240

462

.468

58.

590.

570.

390.

030.

0440

44.5

9Sy

144

SWIF

TJ0

249.

1+26

2742

.275

26.4

556.

002M

ASX

J024

8593

7+26

3039

142

.247

226

.510

93.

910.

820.

470.

080.

0579

44.5

0Sy

245

SWIF

TJ0

251.

3+54

4142

.684

54.7

225.

182M

FGC

0228

042

.677

554

.704

93.

300.

570.

430.

080.

0152

43.2

3G

alax

y46

SWIF

TJ0

252.

7−08

2243

.064

−8.

534

5.10

MC

G-0

2-08

-014

43.0

975

−8.

5104

2.43

0.47

0.28

0.08

0.01

6843

.19

Sy2,

hidd

en47

SWIF

TJ0

255.

2−00

1143

.774

−0.

199

17.5

3N

GC

1142

43.8

008

−0.

1836

10.1

30.

600.

430.

020.

0289

44.2

9Sy

248

SWIF

TJ0

256.

2+19

2544

.047

19.4

087.

11X

YA

ri2E

0253

.3+1

914

44.0

375

19.4

414

3.12

0.46

0.28

0.06

CV

/DQ

Her

49SW

IFT

J025

6.4−

3212

44.1

15−

32.2

307.

29E

SO41

7-G

006

44.0

898

−32

.185

63.

060.

460.

360.

060.

0163

43.2

6Sy

250

SWIF

TJ0

304.

1−01

0845

.951

−1.

096

7.47

NG

C11

94L

ED

A11

537

45.9

546

−1.

1037

3.64

0.60

0.43

0.07

0.01

3643

.18

Sy1

51SW

IFT

J031

1.1+

3241

47.7

7832

.685

4.89

2MA

SXJ0

3104

435+

3239

296

47.6

850

32.6

580

1.85

0.44

0.28

0.10

0.12

7044

.89

Sy52

SWIF

TJ0

311.

5−20

4547

.855

−20

.706

5.28

RX

J031

1.3-

2046

47.8

284

−20

.771

72.

980.

600.

500.

080.

0660

44.5

0Sy

1.5

53SW

IFT

J031

8.7+

6828

49.6

2068

.477

4.85

2MA

SXJ0

3181

899+

6829

322

49.5

791

68.4

921

3.16

0.58

0.40

0.07

0.09

0144

.81

Sy1.

954

SWIF

TJ0

319.

7+41

3249

.960

41.5

1524

.24

NG

C12

7549

.950

741

.511

76.

850.

280.

140.

020.

0176

43.6

8Sy

255

SWIF

TJ0

324.

8+34

1051

.198

34.1

685.

91B

203

21+3

3N

ED

0251

.171

534

.179

44.

830.

830.

500.

070.

0610

44.6

4Sy

156

SWIF

TJ0

324.

9+40

4451

.270

40.7

036.

29U

GC

0272

451

.356

540

.773

12.

860.

580.

380.

080.

0477

44.1

9Sy

2bi

nary

AG

N

20 TUELLER ET AL.TA

BL

E5

—C

ontin

ued

#B

AT

Nam

eaR

Ab

Dec

S/N

Cou

nter

part

Nam

eO

ther

Nam

eC

tptR

Ac

Ctp

tDec

Flux

der

ror

Ce

Hra

tfH

err

Red

shif

tgL

umh

Type

57SW

IFT

J032

8.4−

2846

52.1

38−

28.7

535.

15PK

S03

26-2

8852

.152

2−

28.6

989

3.25

0.73

0.54

0.09

0.10

8044

.99

Sy1.

958

SWIF

TJ0

329.

3−13

2052

.335

−13

.397

4.84

SWIF

TJ0

329.

3-13

2052

.334

7−

13.3

966

2.09

0.63

0.43

0.09

59SW

IFT

J033

1.1+

4355

52.7

7543

.923

13.6

9G

KPe

r3A

0327

+438

52.7

993

43.9

047

4.83

0.35

0.18

0.04

CV

/DQ

Her

60SW

IFT

J033

3.6−

3607

53.3

77−

36.1

1120

.10

NG

C13

6553

.401

6−

36.1

404

7.19

0.44

0.35

0.02

0.00

5542

.68

Sy1.

861

SWIF

TJ0

334.

9+53

0853

.737

53.1

3231

2.24

BQ

Cam

EX

O03

31+5

3053

.749

553

.173

290

.31

0.27

0.08

0.00

HM

XB

/NS

62SW

IFT

J033

6.6+

3217

54.1

4632

.281

6.55

4C32

.14

54.1

255

32.3

082

3.09

0.51

0.34

0.06

1.25

8047

.45

QSO

63SW

IFT

J033

6.5−

2509

54.2

00−

25.2

435.

36E

SO48

2-14

SWIF

TJ0

336.

8-25

1554

.263

2−

25.2

492

2.25

0.56

0.42

0.08

0.04

3744

.00

Sy2

64SW

IFT

J034

2.0−

2115

55.4

77−

21.2

079.

64E

SO54

8-G

081

55.5

155

−21

.244

44.

570.

490.

400.

040.

0145

43.3

3Sy

165

SWIF

TJ0

349.

2−11

5957

.320

−11

.954

7.28

QSO

B03

47-1

211E

S03

47-1

2.1

57.3

467

−11

.990

82.

840.

440.

270.

060.

1800

45.4

1B

LL

ac66

SWIF

TJ0

350.

1−50

1957

.601

−50

.328

7.03

2MA

SXJ0

3502

377-

5018

354

57.5

990

−50

.309

93.

090.

490.

420.

060.

0365

43.9

8Sy

X6d

f67

SWIF

TJ0

353.

4−68

3058

.148

−68

.531

5.24

PKS

0352

-686

58.2

396

−68

.521

41.

650.

370.

260.

080.

0870

44.4

9B

LL

ac68

SWIF

TJ0

353.

7+37

1158

.483

37.1

905.

212M

ASX

J035

3424

6+37

1407

758

.427

037

.235

01.

720.

450.

270.

090.

0183

43.1

1Sy

269

SWIF

TJ0

355.

5+31

0158

.882

31.0

2510

6.34

XPe

r4U

0352

+309

58.8

462

31.0

458

60.1

30.

580.

360.

00H

MX

B/N

S70

SWIF

TJ0

402.

4−18

0760

.600

−18

.102

5.20

ESO

549-

G04

960

.607

0−

18.0

480

2.65

0.61

0.57

0.11

0.02

6343

.62

Sy2

LIN

ER

71SW

IFT

J040

7.4+

0339

61.8

373.

748

6.92

3C10

561

.818

63.

7072

3.89

0.62

0.37

0.06

0.08

9044

.89

Sy2

72SW

IFT

J041

4.8−

0754

63.6

87−

7.97

15.

58IR

AS

0412

4-08

0363

.719

5−

7.92

782.

520.

480.

310.

070.

0379

43.9

3Sy

173

SWIF

TJ0

418.

3+38

0064

.595

38.0

3225

.59

3C11

1.0

64.5

887

38.0

266

14.1

20.

610.

400.

020.

0485

44.8

9Sy

174

SWIF

TJ0

422.

7−56

1165

.644

−56

.223

5.26

ESO

157-

G02

365

.600

8−

56.2

260

3.02

0.49

0.44

0.07

0.04

3544

.13

Sy2

75SW

IFT

J042

6.2−

5711

66.4

95−

57.1

815.

041H

0419

-577

66.5

035

−57

.200

12.

110.

330.

230.

070.

1040

44.7

7Sy

176

SWIF

TJ0

431.

3−61

2767

.822

−61

.458

5.10

AB

EL

L32

6667

.799

7−

61.4

063

1.23

0.22

0.16

0.09

0.05

8944

.01

Gal

axy

clus

ter

77SW

IFT

J043

3.0+

0521

68.2

625.

386

19.2

23C

120

68.2

962

5.35

4311

.89

0.63

0.39

0.02

0.03

3044

.48

Sy1

78SW

IFT

J043

8.2−

1048

69.5

54−

10.8

375.

85M

CG

-02-

12-0

5069

.559

1−

10.7

959

2.11

0.40

0.23

0.08

0.03

6443

.81

Sy1.

279

SWIF

TJ0

443.

9+28

5670

.983

28.9

404.

88U

GC

0314

270

.945

028

.971

83.

430.

630.

420.

080.

0217

43.5

6Sy

180

SWIF

TJ0

444.

1+28

1371

.029

28.2

2910

.28

2MA

SXJ0

4440

903+

2813

003

71.0

376

28.2

168

7.02

0.69

0.44

0.04

0.01

1343

.30

Sy2

81SW

IFT

J045

0.7−

5813

72.8

69−

58.2

055.

44R

BS

594

72.9

335

−58

.183

53.

170.

600.

480.

080.

0907

44.8

2Sy

1.5

82SW

IFT

J045

2.2+

4933

73.0

1949

.566

13.2

41R

XS

J045

205.

0+49

3248

73.0

208

49.5

459

6.87

0.56

0.39

0.03

0.02

9044

.12

Sy1

83SW

IFT

J045

3.4+

0404

73.3

124.

094

6.45

CG

CG

420-

015

73.3

573

4.06

164.

080.

680.

470.

080.

0294

43.9

1Sy

284

SWIF

TJ0

456.

3−75

3274

.065

−75

.538

4.86

ESO

033-

G00

273

.995

7−

75.5

412

2.61

0.45

0.33

0.07

0.01

8143

.29

Sy2

85SW

IFT

J050

3.0+

2302

75.7

2723

.004

6.14

LE

DA

0970

6875

.742

622

.997

73.

410.

630.

350.

070.

0577

44.4

3Sy

186

SWIF

TJ0

505.

8−23

5176

.455

−23

.861

13.9

52M

ASX

J050

5457

5-23

5113

976

.440

5−

23.8

539

7.16

0.54

0.43

0.03

0.03

5044

.31

Sy2

HII

87SW

IFT

J051

0.7+

1629

77.6

8816

.477

15.7

2IR

AS

0507

8+16

264U

0517

+17

77.6

896

16.4

989

9.34

0.68

0.38

0.03

0.01

7943

.83

Sy1.

588

SWIF

TJ0

514.

2−40

0278

.559

−40

.030

14.0

7N

GC

1851

XR

B4U

0513

-40

78.5

275

−40

.043

64.

010.

260.

170.

03L

MX

B/N

S89

SWIF

TJ0

516.

2−00

0979

.001

−0.

143

14.1

2A

rk12

079

.047

6−

0.14

987.

080.

570.

360.

030.

0323

44.2

3Sy

190

SWIF

TJ0

501.

9−32

3979

.865

−32

.686

13.7

8E

SO36

2-18

79.8

993

−32

.657

86.

220.

520.

430.

030.

0125

43.3

3Sy

1.5

91SW

IFT

J051

9.5−

4545

79.9

73−

45.8

028.

82PI

CTO

RA

79.9

570

−45

.779

03.

780.

460.

380.

040.

0351

44.0

3Sy

1/L

INE

R92

SWIF

TJ0

520.

9−71

5680

.226

−71

.930

5.85

LM

CX

-24U

0520

-72

80.1

168

−71

.964

81.

650.

160.

000.

08L

MX

B93

SWIF

TJ0

519.

5−31

4080

.762

−36

.458

7.74

PKS

0521

-36

80.7

416

−36

.458

63.

420.

490.

470.

050.

0553

44.4

0B

LL

ac94

SWIF

TJ0

524.

1−12

1080

.988

−12

.187

5.93

IRA

S05

218-

1212

81.0

271

−12

.166

62.

500.

540.

370.

080.

0490

44.1

5Sy

195

SWIF

TJ0

529.

2−32

4782

.408

−32

.859

18.9

8T

VC

ol3A

0527

-329

82.3

560

−32

.817

95.

110.

290.

190.

02C

V/D

QH

er96

SWIF

TJ0

532.

5−66

2383

.129

−66

.391

77.1

2L

MC

X-4

4U05

32-6

6483

.207

5−

66.3

705

31.6

40.

34B

0.15

0.00

HM

XB

/NS

97"

""

"R

XJ0

531.

2-66

09IG

RJ0

5319

-660

182

.805

4−

66.1

181

4.99

A0.

20H

MX

B/N

S98

SWIF

TJ0

534.

6+22

0483

.644

22.0

6732

82.7

6C

rab

Neb

ula/

Puls

ar83

.633

222

.014

523

86.1

50.

660.

350.

00PS

R/P

WN

99SW

IFT

J053

8.8+

2620

84.6

8926

.326

132.

18V

725

Tau

3A05

35+2

6284

.727

426

.315

881

.41

0.51

0.20

0.00

HM

XB

/NS

100

SWIF

TJ0

539.

0−64

0684

.762

−64

.098

7.08

LM

CX

-34U

0538

-64

84.7

342

−64

.082

33.

110.

480.

320.

06H

MX

B/N

S10

1SW

IFT

J053

9.5−

6943

84.8

69−

69.7

209.

22L

MC

X-1

4U05

40-6

984

.911

3−

69.7

433

3.98

0.39

0.25

0.04

HM

XB

/NS

102

SWIF

TJ0

539.

9−69

1984

.970

−69

.320

8.41

PSR

B05

40-6

985

.032

2−

69.3

348

4.80

0.53

0.38

0.04

PSR

103

SWIF

TJ0

539.

9−28

3984

.986

−28

.692

7.12

[HB

89]0

537-

286

84.9

762

−28

.665

55.

060.

690.

590.

073.

1040

48.6

3B

laza

r10

4SW

IFT

J054

2.6+

6051

85.6

4860

.842

7.03

BY

Cam

4U05

41+6

085

.703

860

.858

82.

910.

420.

210.

06C

V/A

MH

er10

5SW

IFT

J054

3.2−

4104

85.7

96−

41.0

636.

08T

XC

ol1H

0542

-407

85.8

343

−41

.032

01.

800.

260.

130.

07C

V/D

QH

er10

6SW

IFT

J054

3.9−

2749

85.9

37−

27.6

174.

90M

CG

-05-

14-0

1285

.887

3−

27.6

514

2.05

0.44

0.36

0.08

0.00

9942

.65

Gal

axy

107

SWIF

TJ0

544.

4+59

0986

.083

59.1

545.

232M

ASX

J054

4225

7+59

0736

186

.094

159

.126

72.

540.

670.

380.

090.

0660

44.4

3Sy

1.9

108

SWIF

TJ0

550.

7−32

1287

.689

−32

.279

9.05

PKS

0548

-322

87.6

699

−32

.271

63.

280.

430.

330.

050.

0690

44.5

8B

LL

ac10

9SW

IFT

J055

2.2−

0727

88.0

50−

7.44

054

.89

NG

C21

1088

.047

4−

7.45

6235

.01

0.70

0.43

0.01

0.00

7843

.67

Sy2

110

SWIF

TJ0

554.

8+46

2588

.736

46.4

7816

.32

MC

G+0

8-11

-011

88.7

234

46.4

393

9.64

0.61

0.37

0.02

0.02

0543

.96

Sy1.

511

1SW

IFT

J055

8.0+

5352

89.5

0153

.871

8.20

V40

5A

urR

XJ0

558.

0+53

5389

.497

053

.895

83.

170.

370.

150.

05C

V/D

QH

er11

2SW

IFT

J055

7.9−

3822

89.5

01−

38.3

0210

.44

2MA

SXJ0

5580

206-

3820

043

4U05

57-3

889

.508

3−

38.3

346

3.99

0.37

0.27

0.04

0.03

3944

.02

Sy1

113

SWIF

TJ0

602.

2+28

2990

.572

28.4

717.

89IR

AS

0558

9+28

2890

.544

628

.472

86.

820.

840.

380.

050.

0330

44.2

3Sy

1

SWIFT-BAT 22 MONTH HARD X-RAY SURVEY 21TA

BL

E5

—C

ontin

ued

#B

AT

Nam

eaR

Ab

Dec

S/N

Cou

nter

part

Nam

eO

ther

Nam

eC

tptR

Ac

Ctp

tDec

Flux

der

ror

Ce

Hra

tfH

err

Red

shif

tgL

umh

Type

114

SWIF

TJ0

601.

9−86

3691

.494

−86

.603

6.41

ESO

005-

G00

491

.423

5−

86.6

319

4.48

0.60

0.49

0.07

0.00

6242

.59

Sy2

115

SWIF

TJ0

615.

8+71

0194

.005

71.0

1325

.20

Mrk

393

.901

571

.037

515

.65

0.61

0.47

0.02

0.01

3543

.81

Sy2

116

SWIF

TJ0

617.

2+09

0794

.290

9.12

587

.32

V10

55O

ri4U

0614

+091

94.2

804

9.13

6951

.72

0.62

0.30

0.00

LM

XB

/NS

117

SWIF

TJ0

623.

8−32

1595

.920

−32

.200

6.56

ESO

426-

G00

295

.943

4−

32.2

166

2.72

0.45

0.40

0.07

0.02

2443

.49

Sy2

118

SWIF

TJ0

640.

4−25

5410

0.02

4−

25.8

6410

.94

ESO

490-

IG02

610

0.04

87−

25.8

954

4.29

0.45

0.31

0.04

0.02

4843

.78

Sy1.

211

9SW

IFT

J064

0.1−

4328

100.

234

−43

.340

5.16

2MA

SXJ0

6403

799-

4321

211

100.

1583

−43

.355

82.

000.

460.

370.

09?

Gal

axy

120

SWIF

TJ0

641.

3+32

5710

0.28

532

.880

6.59

2MA

SXJ0

6411

806+

3249

313

100.

3252

32.8

254

4.76

0.93

0.46

0.07

0.04

7044

.39

Sy2

121

SWIF

TJ0

651.

9+74

2610

3.02

074

.457

15.8

5M

rk6

103.

0511

74.4

271

7.61

0.55

0.42

0.03

0.01

8843

.78

Sy1.

512

2SW

IFT

J065

5.8+

3957

103.

959

39.9

576.

29U

GC

0360

110

3.95

6440

.000

24.

380.

670.

400.

060.

0171

43.4

6Sy

1.5

123

SWIF

TJ0

731.

5+09

5711

2.86

69.

955

5.80

BG

CM

i3A

0729

+103

112.

8708

9.93

962.

150.

400.

170.

07C

V/D

QH

er12

4SW

IFT

J073

2.5−

1331

113.

134

−13

.516

9.29

SWIF

TJ0

7323

7.6-

1331

09SW

IFT

J073

2.5-

1331

113.

1563

−13

.517

82.

970.

370.

190.

05C

V/D

QH

er12

5SW

IFT

J074

2.5+

4948

115.

675

49.8

2610

.57

Mrk

7911

5.63

6749

.809

74.

890.

520.

370.

040.

0222

43.7

4Sy

1.2

126

SWIF

TJ0

746.

3+25

4811

6.60

825

.814

8.10

SDSS

J074

625.

87+2

5490

2.2

116.

6078

25.8

173

7.79

1.01

0.61

0.06

2.97

9348

.77

Bla

zar

127

SWIF

TJ0

747.

5+60

5711

6.89

860

.970

5.05

MR

K10

116.

8714

60.9

335

3.12

0.54

0.46

0.07

0.02

9343

.79

Sy1.

212

8SW

IFT

J074

8.8−

6743

117.

207

−67

.722

76.8

7U

YVo

lE

XO

0748

-676

117.

1388

−67

.750

034

.49

0.44

0.31

0.00

LM

XB

/NS

129

SWIF

TJ0

750.

9+14

3911

7.81

614

.731

7.22

PQG

emR

XJ0

751.

2+14

4411

7.82

2514

.740

23.

030.

390.

120.

06C

V/D

QH

er13

0SW

IFT

J075

9.8−

3844

119.

893

−38

.749

10.0

32M

ASS

J075

9418

1-38

4356

0IG

RJ0

7597

-384

211

9.92

08−

38.7

600

5.62

0.56

0.38

0.04

0.04

0044

.32

Sy1.

213

1SW

IFT

J080

0.5+

2327

120.

028

23.4

196.

882M

ASX

J075

9534

7+23

2324

1C

GC

G11

8-03

611

9.97

2823

.390

14.

280.

720.

510.

070.

0292

43.9

2Sy

213

2SW

IFT

J080

0.1+

2638

120.

080

26.6

385.

37IC

0486

120.

0874

26.6

135

3.22

0.70

0.42

0.07

0.02

6943

.73

Sy1

133

SWIF

TJ0

804.

2+05

0712

1.02

45.

054

11.5

0Ph

oeni

xG

alax

y12

1.02

445.

1138

5.34

0.57

0.35

0.04

0.01

3543

.34

Sy2

134

SWIF

TJ0

823.

4−04

5712

5.81

0−

4.90

85.

30FA

IRA

LL

0272

125.

7546

−4.

9349

4.02

0.71

0.57

0.08

0.02

1843

.64

Sy2

135

SWIF

TJ0

826.

2−70

3312

6.59

8−

70.5

625.

191R

XS

J082

623.

5-70

3142

1ES

0826

-703

126.

5979

−70

.528

32.

080.

360.

220.

08SR

C/X

-ray

136

SWIF

TJ0

835.

2−45

1312

8.80

7−

45.2

1929

.44

Vel

aPu

lsar

PSR

B08

33-4

512

8.83

61−

45.1

764

18.1

90.

560.

400.

01PS

R13

7SW

IFT

J083

8.0+

4839

129.

507

48.6

557.

78E

IUM

aR

XJ0

838.

3+48

3812

9.59

1648

.633

83.

210.

360.

230.

05C

V/D

QH

er13

8SW

IFT

J083

8.4−

3557

129.

590

−35

.955

5.19

FAIR

AL

L11

4612

9.62

83−

35.9

926

3.27

0.51

0.30

0.06

0.03

1643

.87

Sy1.

513

9SW

IFT

J083

9.6−

1213

129.

944

−12

.218

6.00

3C20

612

9.96

09−

12.2

428

2.87

0.51

0.37

0.07

0.19

7645

.51

QSO

140

SWIF

TJ0

841.

4+70

5213

0.31

770

.932

16.5

4[H

B89

]083

6+71

013

0.35

1570

.895

18.

480.

570.

480.

032.

1720

48.4

8B

laza

r14

1SW

IFT

J090

2.1−

4034

135.

517

−40

.574

1074

.22

VE

LA

X-1

4U09

00-4

013

5.52

86−

40.5

547

393.

200.

370.

140.

00H

MX

B/N

S14

2SW

IFT

J090

4.3+

5538

136.

039

55.6

265.

512M

ASX

J090

4369

9+55

3602

513

6.15

4055

.600

81.

910.

400.

320.

080.

0370

43.7

8Sy

114

3SW

IFT

J090

8.9−

0933

137.

222

−9.

542

6.11

AB

EL

L07

5413

7.20

87−

9.63

661.

760.

230.

000.

100.

0542

44.0

9G

alax

ycl

uste

r14

4SW

IFT

J091

1.2+

4533

137.

821

45.5

466.

112M

ASX

J091

1299

9+45

2806

013

7.87

4945

.468

31.

810.

440.

300.

080.

0268

43.4

7Sy

214

5SW

IFT

J091

7.2−

6221

139.

137

−62

.288

8.24

IRA

S09

149-

6206

139.

0392

−62

.324

93.

260.

460.

320.

050.

0573

44.4

1Sy

114

6SW

IFT

J091

8.5+

1618

139.

637

16.3

158.

09M

rk70

413

9.60

8416

.305

33.

630.

510.

350.

050.

0292

43.8

5Sy

1.5

147

SWIF

TJ0

920.

5−55

1114

0.12

2−

55.1

9118

.57

2MA

SSJ0

9202

647-

5512

244

4U09

19-5

414

0.11

05−

55.2

070

9.00

0.42

0.28

0.02

LM

XB

148

SWIF

TJ0

920.

8−08

0514

0.17

4−

8.11

18.

91M

CG

-01-

24-0

1214

0.19

27−

8.05

614.

580.

510.

330.

050.

0196

43.6

0Sy

214

9SW

IFT

J092

3.7+

2255

140.

921

22.9

4710

.19

MC

G+0

4-22

-042

140.

9292

22.9

090

4.46

0.59

0.39

0.05

0.03

2344

.03

Sy1.

215

0SW

IFT

J092

4.2−

3141

141.

043

−31

.676

5.42

2MA

SXJ0

9235

371-

3141

305

140.

9739

−31

.691

91.

770.

410.

220.

090.

0422

43.8

7Sy

1.9

151

SWIF

TJ0

925.

0+52

1814

1.32

152

.292

14.1

4M

rk11

014

1.30

3652

.286

36.

150.

470.

390.

030.

0353

44.2

5Sy

115

2SW

IFT

J092

6.2+

1244

141.

548

12.7

405.

12M

RK

0705

141.

5137

12.7

343

2.13

0.45

0.30

0.09

0.02

9143

.62

Sy1.

215

3SW

IFT

J094

5.6−

1420

146.

434

−14

.313

8.95

NG

C29

9214

6.42

52−

14.3

264

4.82

0.63

0.41

0.05

0.00

7742

.80

Sy2

154

SWIF

TJ0

947.

6−30

5714

6.89

3−

30.9

7941

.91

MC

G-0

5-23

-016

146.

9173

−30

.948

920

.77

0.56

0.35

0.01

0.00

8543

.52

Sy2

155

SWIF

TJ0

947.

7+07

2614

6.93

47.

429

4.87

3C22

714

6.93

807.

4224

2.65

0.50

0.35

0.08

0.08

5844

.69

Sy1

BL

RG

156

SWIF

TJ0

950.

5+73

1814

7.61

973

.294

4.80

VII

Zw

292

147.

4410

73.2

400

1.74

AB

0.38

0.05

8144

.15

NL

RG

157

""

""

RIX

OS

F305

-011

147.

8070

73.3

100

1.47

AB

0.39

0.25

1045

.45

AG

N15

8SW

IFT

J095

9.5−

2248

149.

861

−22

.854

17.1

6N

GC

3081

149.

8731

−22

.826

310

.24

0.67

0.42

0.03

0.00

8043

.16

Sy2

159

SWIF

TJ1

001.

7+55

4315

0.42

355

.716

7.40

NG

C30

7915

0.49

0855

.679

83.

440.

440.

430.

050.

0037

42.0

2Sy

216

0SW

IFT

J100

9.3−

4250

152.

415

−42

.834

5.33

ESO

263-

G01

315

2.45

09−

42.8

112

2.61

0.51

0.30

0.07

0.03

3343

.82

Sy2

161

SWIF

TJ1

010.

0−58

1915

2.49

7−

58.3

1217

.65

GR

OJ1

008-

5715

2.44

17−

58.2

917

7.49

0.40

0.21

0.02

HM

XB

162

SWIF

TJ1

010.

1−57

4715

2.77

4−

57.8

085.

16C

D-5

730

57IG

RJ1

0109

-574

615

2.76

23−

57.8

039

2.25

0.36

0.13

0.07

Sym

b/W

D16

3SW

IFT

J101

3.5−

3601

153.

368

−35

.988

5.23

ESO

374-

G04

415

3.33

30−

35.9

827

2.82

0.60

0.39

0.08

0.02

8443

.72

Sy2

164

SWIF

TJ1

023.

5+19

5215

5.88

719

.840

29.5

4N

GC

3227

155.

8774

19.8

651

14.1

30.

500.

380.

010.

0039

42.6

7Sy

1.5

165

SWIF

TJ1

031.

7−34

5115

7.91

1−

34.8

5416

.57

NG

C32

8115

7.96

70−

34.8

537

9.01

0.66

0.43

0.03

0.01

0743

.36

Sy2

166

SWIF

TJ1

038.

8−49

4215

9.64

5−

49.7

695.

982M

ASX

J103

8452

0-49

4653

115

9.68

83−

49.7

816

4.89

0.76

0.55

0.07

0.06

0044

.63

Sy1

167

SWIF

TJ1

040.

7−46

1916

0.09

6−

46.4

896.

21L

ED

A09

3974

160.

0939

−46

.423

83.

680.

650.

390.

070.

0239

43.6

8Sy

216

8SW

IFT

J104

9.4+

2258

162.

402

23.0

047.

10M

rk41

716

2.37

8922

.964

43.

740.

510.

460.

060.

0328

43.9

7Sy

216

9SW

IFT

J105

2.8+

1043

163.

115

10.7

245.

322M

ASX

J105

2329

7+10

3620

516

3.13

7010

.606

02.

600.

610.

510.

090.

0878

44.7

0Sy

117

0SW

IFT

J110

4.4+

3812

166.

144

38.2

1263

.14

Mrk

421

166.

1138

38.2

088

19.1

90.

310.

240.

010.

0300

44.6

0B

LL

ac

22 TUELLER ET AL.TA

BL

E5

—C

ontin

ued

#B

AT

Nam

eaR

Ab

Dec

S/N

Cou

nter

part

Nam

eO

ther

Nam

eC

tptR

Ac

Ctp

tDec

Flux

der

ror

Ce

Hra

tfH

err

Red

shif

tgL

umh

Type

171

SWIF

TJ1

106.

5+72

3416

6.71

672

.545

30.4

7N

GC

3516

166.

6979

72.5

686

12.5

40.

450.

420.

010.

0088

43.3

4Sy

1.5

172

SWIF

TJ1

120.

9−60

3717

0.23

5−

60.6

1924

9.54

Cen

X-3

V77

9C

en17

0.31

58−

60.6

230

88.9

40.

270.

040.

00H

MX

B/N

S17

3SW

IFT

J112

7.5+

1906

171.

853

19.1

825.

162M

ASX

J112

7163

2+19

0919

81R

XS

J112

716.

6+19

0914

171.

8178

19.1

556

3.45

0.67

0.49

0.07

0.10

5544

.99

Sy1.

817

4SW

IFT

J113

0.1−

1447

172.

522

−14

.776

6.66

PKS

1127

-14

172.

5294

−14

.824

34.

700.

880.

520.

071.

1840

47.5

7B

laza

r17

5SW

IFT

J113

1.0−

6256

172.

758

−62

.925

14.1

4IG

RJ1

1305

-625

617

2.64

17−

62.9

300

5.44

0.44

0.23

0.03

HM

XB

176

SWIF

TJ1

132.

7+53

0117

3.18

453

.024

5.64

NG

C37

1817

3.14

5253

.067

92.

69A

B0.

610.

0033

41.8

1Sy

1L

INE

R17

7"

""

"U

GC

0652

7N

ED

0317

3.16

7852

.950

42.

68A

B0.

570.

0278

43.6

8Sy

217

8SW

IFT

J113

6.7+

6738

174.

179

67.5

975.

072M

ASX

J113

6300

9+67

3704

217

4.12

5367

.617

91.

610.

370.

270.

090.

1342

44.8

9B

LL

ac17

9SW

IFT

J113

9.0−

3743

174.

776

−37

.709

34.5

7N

GC

3783

174.

7572

−37

.738

619

.45

0.66

0.38

0.01

0.00

9743

.61

Sy1

180

SWIF

TJ1

142.

7+71

4917

5.98

571

.687

6.96

DO

Dra

YY

Dra

175.

9098

71.6

890

1.74

0.24

0.13

0.07

CV

/DQ

Her

181

SWIF

TJ1

144.

0−61

0517

5.98

8−

61.0

7811

.86

IGR

J114

35-6

109

1RX

SJ1

1435

8.1-

6107

36?

175.

9667

−61

.150

05.

060.

440.

210.

04H

MX

B/N

S18

2SW

IFT

J114

3.7+

7942

176.

070

79.6

2410

.84

UG

C06

728

176.

3168

79.6

815

2.95

0.37

0.32

0.05

0.00

6542

.44

Sy1.

218

3SW

IFT

J114

5.6−

1819

176.

401

−18

.427

9.28

2MA

SXJ1

1454

045-

1827

149

176.

4186

−18

.454

36.

380.

740.

440.

050.

0329

44.2

0Sy

118

4SW

IFT

J114

7.2−

6156

176.

810

−61

.937

73.3

71E

1145

.1-6

141

176.

8692

−61

.953

930

.96

0.44

0.23

0.01

HM

XB

/NS

185

SWIF

TJ1

157.

8+55

2917

9.44

655

.477

6.32

NG

C39

9817

9.48

3955

.453

63.

030.

480.

510.

070.

0035

41.9

1Sy

1L

INE

R18

6SW

IFT

J120

0.8+

0650

180.

206

6.83

85.

402M

ASX

J120

0579

2+06

4822

6C

GC

G04

1-02

018

0.24

136.

8064

2.45

0.48

0.32

0.08

0.03

6043

.87

Sy2

187

SWIF

TJ1

200.

2−53

5018

0.63

7−

53.8

048.

04L

ED

A38

038

180.

6985

−53

.835

54.

340.

610.

350.

050.

0280

43.8

9Sy

218

8SW

IFT

J120

3.0+

4433

180.

750

44.5

5711

.92

NG

C40

5118

0.79

0144

.531

34.

340.

350.

310.

030.

0023

41.7

1Sy

1.5

189

SWIF

TJ1

204.

5+20

1918

1.06

020

.293

5.98

AR

K34

718

1.12

3720

.316

23.

850.

580.

450.

060.

0224

43.6

4Sy

219

0SW

IFT

J120

6.2+

5243

181.

629

52.7

106.

96N

GC

4102

181.

5963

52.7

109

2.58

0.38

0.37

0.06

0.00

2841

.66

LIN

ER

191

SWIF

TJ1

209.

5+47

0218

2.31

447

.069

5.29

MR

K01

9818

2.30

8847

.058

32.

150.

420.

340.

070.

0242

43.4

6Sy

219

2SW

IFT

J120

9.4+

4340

182.

371

43.6

859.

21N

GC

4138

182.

3741

43.6

853

3.69

0.45

0.43

0.05

0.00

3041

.85

Sy1.

919

3SW

IFT

J121

0.5+

3924

182.

629

39.3

7912

1.30

NG

C41

5118

2.63

5739

.405

762

.23

0.46

0.42

0.00

0.00

3343

.18

Sy1.

519

4SW

IFT

J121

3.2−

6458

183.

339

−64

.914

6.22

SWIF

TJ1

2131

4.7-

6452

314U

1210

-64

183.

3208

−64

.880

02.

060.

360.

190.

07H

MX

B/N

S19

5SW

IFT

J121

7.3+

0714

184.

317

7.23

35.

40N

GC

4235

184.

2912

7.19

162.

400.

550.

390.

080.

0080

42.5

4Sy

119

6SW

IFT

J121

8.5+

2952

184.

626

29.8

237.

67M

rk76

618

4.61

0529

.812

92.

420.

290.

190.

050.

0129

42.9

6Sy

1.5

197

SWIF

TJ1

219.

4+47

2018

4.86

247

.365

4.83

M10

618

4.73

9647

.304

02.

800.

630.

510.

090.

0015

41.1

4Sy

1.9

LIN

ER

198

SWIF

TJ1

222.

4+75

2018

5.61

175

.326

7.02

MR

K02

0518

5.43

3375

.310

72.

370.

430.

370.

070.

0708

44.4

6B

LL

acSy

119

9SW

IFT

J122

3.7+

0238

185.

817

2.64

95.

31M

RK

0050

185.

8506

2.67

913.

530.

640.

470.

070.

0234

43.6

4Sy

120

0SW

IFT

J122

5.8+

1240

186.

467

12.6

5151

.62

NG

C43

8818

6.44

4812

.662

134

.64

0.52

0.43

0.01

0.00

8443

.74

Sy2

201

SWIF

TJ1

202.

5+33

3218

6.49

533

.507

5.60

NG

C43

9518

6.45

3833

.546

83.

120.

410.

360.

050.

0011

40.8

9Sy

1.9

202

SWIF

TJ1

226.

6−62

4418

6.65

7−

62.7

3567

5.04

GX

301-

218

6.65

67−

62.7

706

261.

130.

360.

060.

00L

MX

B/N

S20

3SW

IFT

J122

7.8−

4856

186.

952

−48

.932

5.26

1RX

SJ1

2275

8.8-

4853

4318

6.99

54−

48.8

956

3.17

0.60

0.31

0.07

CV

204

SWIF

TJ1

229.

1+02

0218

7.26

22.

043

68.6

63C

273

187.

2779

2.05

2438

.35

0.60

0.44

0.01

0.15

8346

.42

Bla

zar

205

SWIF

TJ1

234.

7−64

3318

8.69

1−

64.5

8015

.01

RT

Cru

188.

7239

−64

.565

67.

190.

490.

280.

03Sy

mb/

WD

206

SWIF

TJ1

235.

6−39

5418

8.89

6−

39.8

6735

.96

NG

C45

0718

8.90

26−

39.9

093

22.5

10.

680.

400.

010.

0118

43.8

5Sy

220

7SW

IFT

J123

8.9−

2720

189.

697

−27

.283

22.0

2E

SO50

6-G

027

189.

7275

−27

.307

813

.75

0.72

0.44

0.02

0.02

5044

.29

Sy2

208

SWIF

TJ1

239.

3−16

1118

9.82

1−

16.1

6610

.85

LE

DA

1701

94IG

RJ1

2392

-161

218

9.77

63−

16.1

799

6.87

0.76

0.45

0.04

0.03

6744

.33

Sy2

209

SWIF

TJ1

239.

6−05

1918

9.92

4−

5.31

319

.64

NG

C45

9318

9.91

43−

5.34

439.

790.

620.

410.

020.

0090

43.2

5Sy

121

0SW

IFT

J124

0.9−

3331

190.

183

−33

.557

5.38

ESO

381-

G00

719

0.19

56−

33.5

700

3.96

0.78

0.48

0.09

0.05

5044

.46

Sy1.

521

1SW

IFT

J124

1.6−

5748

190.

485

−57

.795

5.07

WK

K12

6319

0.35

70−

57.8

340

4.03

0.78

0.58

0.10

0.02

4443

.74

Sy1.

521

2SW

IFT

J124

6.6+

5435

191.

716

54.5

367.

22N

GC

4686

191.

6661

54.5

342

3.08

0.45

0.42

0.06

0.01

6743

.29

Gal

axy,

XB

ON

G21

3SW

IFT

J124

9.3−

5907

192.

332

−59

.111

21.7

44U

1246

-58

1A12

46-5

8819

2.41

40−

59.0

874

9.91

0.50

0.28

0.02

LM

XB

214

SWIF

TJ1

252.

3−29

1619

3.07

4−

29.2

736.

73E

XH

ya19

3.10

17−

29.2

491

2.54

0.35

0.15

0.07

CV

/DQ

Her

215

SWIF

TJ1

256.

2−05

5119

4.03

1−

5.78

66.

913C

279

194.

0465

−5.

7893

4.97

0.74

0.55

0.07

0.53

6246

.75

Bla

zar

216

SWIF

TJ1

257.

4−69

1519

4.35

7−

69.2

5418

.93

4U12

54-6

9019

4.40

48−

69.2

886

5.80

0.23

0.05

0.02

LM

XB

/NS

217

SWIF

TJ1

259.

7+27

5519

4.91

427

.923

8.29

Com

aC

lust

er19

4.95

3127

.980

73.

590.

190.

020.

030.

0231

43.6

4G

alax

ycl

uste

r21

8SW

IFT

J130

1.2−

6139

195.

298

−61

.655

5.71

GX

304-

119

5.32

17−

61.6

019

2.45

0.52

0.25

0.09

HM

XB

219

SWIF

TJ1

302.

0−63

5819

5.49

5−

63.9

648.

81IG

RJ1

3020

-635

919

5.49

83−

63.9

683

3.99

0.42

0.22

0.04

PSR

220

SWIF

TJ1

303.

8+53

4519

6.05

353

.783

8.86

SBS

1301

+540

195.

9978

53.7

917

4.02

0.43

0.41

0.04

0.02

9943

.92

Sy1

221

SWIF

TJ1

305.

4−49

2819

6.38

1−

49.5

0642

.73

NG

C49

4519

6.36

45−

49.4

682

32.9

80.

770.

500.

010.

0019

42.4

1Sy

222

2SW

IFT

J130

6.4−

4025

196.

618

−40

.404

7.96

ESO

323-

077

196.

6089

−40

.414

64.

700.

660.

350.

050.

0150

43.3

8Sy

1.2

223

SWIF

TJ1

309.

2+11

3919

7.27

611

.678

13.0

8N

GC

4992

197.

2733

11.6

341

6.16

0.52

0.44

0.03

0.02

5143

.95

Sy2

XB

ON

G22

4SW

IFT

J131

2.1−

5631

197.

920

−56

.492

5.12

2MA

SXJ1

3103

701-

5626

551

SWIF

TJ1

311.

7-56

2919

7.65

40−

56.4

490

1.96

0.71

0.46

0.13

?G

alax

y22

5SW

IFT

J132

2.2−

1641

200.

644

−16

.717

6.31

MC

G-0

3-34

-064

200.

6019

−16

.728

63.

150.

450.

250.

060.

0165

43.2

9Sy

1.8

226

SWIF

TJ1

325.

4−43

0120

1.37

2−

43.0

1413

8.27

Cen

A20

1.36

51−

43.0

191

92.6

20.

710.

420.

000.

0018

42.8

3Sy

222

7SW

IFT

J132

6.9−

6207

201.

713

−62

.114

48.1

74U

1323

-619

201.

6504

−62

.136

124

.60

0.53

0.29

0.01

LM

XB

/NS

SWIFT-BAT 22 MONTH HARD X-RAY SURVEY 23TA

BL

E5

—C

ontin

ued

#B

AT

Nam

eaR

Ab

Dec

S/N

Cou

nter

part

Nam

eO

ther

Nam

eC

tptR

Ac

Ctp

tDec

Flux

der

ror

Ce

Hra

tfH

err

Red

shif

tgL

umh

Type

228

SWIF

TJ1

335.

8−34

1620

3.92

8−

34.3

1713

.03

MC

G-0

6-30

-015

203.

9741

−34

.295

67.

820.

570.

320.

030.

0077

43.0

2Sy

1.2

229

SWIF

TJ1

338.

2+04

3320

4.56

34.

549

14.3

8N

GC

5252

204.

5665

4.54

268.

180.

590.

450.

030.

0230

43.9

9Sy

1.9

230

SWIF

TJ1

347.

4−60

3320

6.80

2−

60.6

4614

.51

4U13

44-6

020

6.90

00−

60.6

178

9.59

0.66

0.41

0.03

0.01

2943

.55

Sy1.

523

1SW

IFT

J134

9.3−

3018

207.

342

−30

.309

56.9

5IC

4329

A20

7.33

03−

30.3

094

33.0

80.

620.

370.

010.

0160

44.2

8Sy

1.2

232

SWIF

TJ1

349.

7+02

0920

7.42

32.

133

6.29

UM

614

207.

4701

2.07

912.

240.

470.

340.

080.

0327

43.7

4Sy

123

3SW

IFT

J135

2.8+

6917

208.

263

69.3

1315

.04

Mrk

279

208.

2644

69.3

082

5.30

0.38

0.35

0.03

0.03

0444

.05

Sy1.

523

4SW

IFT

J135

6.1+

3832

209.

013

38.5

306.

29M

RK

0464

208.

9730

38.5

746

2.21

0.32

0.25

0.07

0.05

0144

.12

Sy1.

523

5SW

IFT

J141

2.9−

6522

213.

224

−65

.363

43.4

2C

irci

nus

Gal

axy

213.

2913

−65

.339

027

.48

0.57

0.35

0.01

0.00

1442

.10

AG

N23

6SW

IFT

J141

3.2−

0312

213.

304

−3.

200

44.7

8N

GC

5506

213.

3119

−3.

2075

25.6

40.

500.

350.

010.

0062

43.3

4Sy

1.9

237

SWIF

TJ1

417.

9+25

0721

4.50

625

.098

13.7

3N

GC

5548

214.

4981

25.1

368

8.08

0.50

0.41

0.03

0.01

7243

.73

Sy1.

523

8SW

IFT

J141

9.0−

2639

214.

887

−26

.644

7.07

ESO

511-

G03

021

4.84

34−

26.6

447

4.71

0.65

0.44

0.06

0.02

2443

.73

Sy1

239

SWIF

TJ1

421.

4+47

4721

5.34

747

.781

5.12

SBS

1419

+480

215.

3742

47.7

902

2.11

0.39

0.34

0.07

0.07

2344

.43

Sy1.

524

0SW

IFT

J142

8.7+

4234

217.

180

42.6

748.

521E

S14

26+4

2821

7.13

6142

.672

42.

330.

290.

260.

050.

1290

45.0

1B

LL

ac24

1SW

IFT

J143

6.4+

5846

219.

104

58.7

955.

06M

RK

0817

219.

0920

58.7

943

2.21

0.36

0.35

0.07

0.03

1443

.70

Sy1.

524

2SW

IFT

J144

2.5−

1715

220.

546

−17

.253

14.5

7N

GC

5728

220.

5997

−17

.253

210

.54

0.71

0.43

0.03

0.00

9343

.31

Sy2

243

SWIF

TJ1

451.

0−55

4022

2.85

3−

55.6

407.

64W

KK

4374

222.

8881

−55

.677

34.

36A

B0.

390.

0180

43.5

0Sy

224

4"

""

"2M

FGC

1201

822

2.30

30−

55.6

050

3.71

AB

0.47

?G

alax

y24

5SW

IFT

J145

3.4−

5524

223.

344

−55

.408

6.20

1RX

SJ1

4534

1.1-

5521

46IG

RJ1

4515

-554

222

3.45

58−

55.3

622

2.28

0.35

B0.

100.

08C

V/A

MH

er24

6SW

IFT

J145

4.9−

5133

223.

719

−51

.550

5.09

WK

K44

3822

3.82

30−

51.5

710

2.02

0.54

0.34

0.11

0.01

6043

.07

NL

Sy1

247

SWIF

TJ1

457.

8−43

0822

4.46

4−

43.1

025.

99IC

4518

A22

4.42

16−

43.1

321

3.29

0.52

0.24

0.07

0.01

6343

.29

Sy2

248

SWIF

TJ1

504.

2+10

2522

6.01

010

.411

6.33

Mrk

841

226.

0050

10.4

378

2.93

0.53

0.37

0.06

0.03

6443

.96

Sy1

249

SWIF

TJ1

506.

7+03

5322

6.63

53.

842

5.42

2MA

SXJ1

5064

412+

0351

444

226.

6840

3.86

202.

12A

B0.

300.

0377

43.8

4Sy

225

0"

""

"M

RK

1392

226.

4860

3.70

701.

99A

B0.

340.

0361

43.7

8Sy

125

1SW

IFT

J151

2.8−

0906

228.

212

−9.

106

7.45

PKS

1510

-08

228.

2106

−9.

1000

6.56

0.76

0.48

0.06

0.36

0046

.46

QSO

252

SWIF

TJ1

513.

8−59

1022

8.43

9−

59.1

6539

.85

PSR

B15

09-5

8C

irpu

lsar

228.

4813

−59

.135

827

.50

0.72

0.42

0.01

PSR

/PW

N25

3SW

IFT

J151

3.8−

8125

228.

567

−81

.415

5.29

2MA

SXJ1

5144

217-

8123

377

228.

6751

−81

.393

92.

560.

480.

320.

070.

0684

44.4

6Sy

1.9

254

SWIF

TJ1

515.

0+42

0522

8.77

042

.009

5.12

NG

C58

9922

8.76

3542

.049

92.

150.

450.

430.

090.

0086

42.5

4Sy

225

5SW

IFT

J151

5.2+

1223

228.

799

12.4

314.

86SW

IFT

J151

5.2+

1223

SWIF

TJ1

5144

7.0+

1222

4422

8.69

5812

.378

92.

050.

540.

300.

09?

256

SWIF

TJ1

521.

0−57

1123

0.25

5−

57.1

8240

.35

BR

Cir

Cir

X-1

230.

1703

−57

.166

713

.76

0.26

0.03

0.01

LM

XB

257

SWIF

TJ1

533.

2−08

3623

3.38

7−

8.67

65.

33M

CG

-01-

40-0

0123

3.33

63−

8.70

053.

760.

570.

340.

070.

0227

43.6

4Sy

225

8SW

IFT

J153

5.9+

5751

233.

935

57.9

095.

25M

rk29

023

3.96

8257

.902

62.

550.

410.

330.

060.

0296

43.7

1Sy

125

9SW

IFT

J154

2.6−

5222

235.

658

−52

.362

69.2

3Q

VN

orH

1538

-522

235.

5971

−52

.386

130

.41

0.38

0.09

0.01

HM

XB

260

SWIF

TJ1

546.

3+69

2823

6.53

869

.466

5.77

2MA

SXJ1

5462

424+

6929

102

236.

6014

69.4

861

15.4

60.

55B

0.26

0.01

0.03

8044

.72

Sy2

261

""

""

1RX

SJ1

5453

4.5+

6929

2523

6.39

3869

.490

31.

69A

0.20

?SR

C/X

-RA

Y26

2SW

IFT

J154

7.9−

6232

236.

981

−62

.525

17.0

91X

MM

J154

754.

7-62

3404

4U15

43-6

223

6.97

62−

62.5

698

5.70

0.29

0.06

0.03

LM

XB

/NS

263

SWIF

TJ1

548.

0−45

2923

7.00

6−

45.4

7918

.06

NY

Lup

IGR

J154

79-4

529

237.

0608

−45

.477

810

.14

0.55

0.29

0.02

CV

/DQ

Her

264

SWIF

TJ1

548.

5−13

4423

7.06

8−

13.7

385.

92N

GC

5995

237.

1040

−13

.757

84.

510.

610.

360.

070.

0252

43.8

1Sy

226

5SW

IFT

J155

8.4+

2718

239.

602

27.2

988.

42A

BE

LL

2142

239.

5672

27.2

246

2.39

0.32

0.23

0.05

0.09

0944

.69

Gal

axy

clus

ter

266

SWIF

TJ1

559.

6+25

5423

9.90

325

.905

14.8

0T

CrB

Nov

aC

rB18

66/1

946

239.

8757

25.9

202

6.40

0.36

0.25

0.02

Sym

b/W

D26

7SW

IFT

J161

3.2−

6043

242.

997

−60

.644

7.41

WK

K60

9224

2.96

42−

60.6

319

3.99

0.58

0.30

0.06

0.01

5643

.34

Sy1

268

SWIF

TJ1

612.

9−52

2724

3.23

3−

52.4

4397

.13

QX

Nor

4U16

08-5

2224

3.17

92−

52.4

231

49.8

20.

520.

270.

00L

MX

B26

9SW

IFT

J161

7.5−

4958

244.

385

−49

.964

5.70

1RX

SJ1

6163

7.1-

4958

47IG

RJ1

6167

-495

724

4.28

00−

49.9

600

2.08

0.38

0.10

0.09

CV

270

SWIF

TJ1

619.

4−28

0824

4.85

6−

28.1

297.

75U

SNO

-A2.

0U

0600

-202

2709

1IG

RJ1

6194

-281

024

4.88

75−

28.1

272

4.74

0.45

0.19

0.05

Sym

b/N

S27

1SW

IFT

J161

9.2−

4945

244.

947

−49

.722

8.71

2MA

SSJ1

6193

220-

4944

305

IGR

J161

95-4

945

244.

8842

−49

.741

83.

550.

430.

150.

06?

Poss

ible

HM

XB

/FX

T27

2SW

IFT

J162

0.1−

1539

245.

014

−15

.650

4635

.67

V81

8Sc

oSc

oX

-124

4.97

95−

15.6

402

1821

.87

0.30

0.01

0.00

LM

XB

/NS

273

SWIF

TJ1

621.

2+81

0424

5.20

981

.081

6.74

CG

CG

367-

009

244.

8302

81.0

465

3.20

0.52

0.47

0.06

0.02

7443

.74

Sy2

274

SWIF

TJ1

620.

9−51

2924

5.22

2−

51.4

869.

642M

ASS

J162

0369

8-51

3036

3IG

RJ1

6207

-512

924

5.15

42−

51.5

100

4.34

0.47

0.22

0.05

HM

XB

275

SWIF

TJ1

626.

9−51

5624

6.71

8−

51.9

329.

09SW

IFT

J162

636.

2-51

5634

SWIF

TJ1

626.

6-51

5624

6.65

10−

51.9

428

3.84

0.36

0.11

0.05

XR

B/N

S27

6SW

IFT

J162

7.8−

4913

246.

956

−49

.209

25.0

44U

1624

-490

4U16

24-4

90/B

igdi

pper

247.

0118

−49

.198

58.

950.

270.

040.

02L

MX

B/N

S27

7SW

IFT

J162

8.1+

5145

247.

094

51.7

7910

.02

Mrk

1498

247.

0169

51.7

754

4.37

0.44

0.39

0.04

0.05

4744

.49

Sy1.

927

8SW

IFT

J163

2.1−

4753

248.

016

−47

.877

47.0

1A

XJ1

631.

9-47

52IG

RJ1

6320

-475

1;H

ESS

J163

2-47

824

8.00

79−

47.8

742

26.5

20.

460.

170.

01PS

R27

9SW

IFT

J163

2.1−

4849

248.

032

−48

.820

76.7

7IG

RJ1

6318

-484

824

7.96

67−

48.8

083

48.1

50.

540.

270.

01H

MX

B/N

S28

0SW

IFT

J163

2.4−

6729

248.

090

−67

.480

64.7

84U

1626

-67

248.

0700

−67

.461

926

.33

0.34

0.04

0.01

LM

XB

281

SWIF

TJ1

638.

7−64

2024

9.67

5−

64.3

355.

94Tr

AC

lust

er24

9.56

71−

64.3

472

2.36

0.34

0.00

0.09

0.05

0844

.16

Gal

axy

clus

ter

282

SWIF

TJ1

639.

2−46

4124

9.79

6−

46.6

7617

.44

IGR

J163

93-4

643

249.

7583

−46

.676

79.

370.

380.

060.

02Sy

mb/

NS

283

SWIF

TJ1

640.

8−53

4325

0.19

9−

53.7

1810

0.33

V80

1A

ra4U

1636

-536

250.

2313

−53

.751

444

.22

0.44

0.18

0.00

LM

XB

284

SWIF

TJ1

641.

9−45

3125

0.48

7−

45.5

1611

.34

IGR

J164

18-4

532

2MA

SSJ1

6415

078-

4532

253

?25

0.43

75−

45.5

200

7.27

0.45

0.13

0.03

SRC

/GA

MM

A

24 TUELLER ET AL.TA

BL

E5

—C

ontin

ued

#B

AT

Nam

eaR

Ab

Dec

S/N

Cou

nter

part

Nam

eO

ther

Nam

eC

tptR

Ac

Ctp

tDec

Flux

der

ror

Ce

Hra

tfH

err

Red

shif

tgL

umh

Type

285

SWIF

TJ1

643.

1+39

5125

0.77

639

.858

6.43

3C34

525

0.74

5039

.810

33.

340.

640.

470.

070.

5928

46.6

9H

PQ28

6SW

IFT

J164

5.7−

4538

251.

424

−45

.635

175.

21G

X34

0+0

4U16

42-4

525

1.44

88−

45.6

111

77.9

30.

32B

0.02

0.00

LM

XB

/NS

287

SWIF

TJ1

647.

9−45

1125

1.97

1−

45.1

8412

.36

2MA

SSJ1

6480

656-

4512

068

IGR

J164

79-4

514

251.

9958

−45

.216

78.

73A

B0.

22H

MX

B/fa

sttr

ans

288

""

""

IGR

J164

65-4

507

251.

6480

−45

.117

02.

84A

B0.

1528

9SW

IFT

J164

8.0−

3037

252.

082

−30

.545

10.1

52M

ASX

J164

8152

3-30

3503

725

2.06

35−

30.5

845

8.36

0.70

0.40

0.04

0.03

1044

.27

Sy1

290

SWIF

TJ1

649.

3−43

5125

2.33

3−

43.8

569.

252M

ASS

J164

9269

5-43

4909

0IG

RJ1

6493

-434

825

2.33

75−

43.8

100

4.85

0.45

0.19

0.04

XR

B/N

S29

1SW

IFT

J165

0.5+

0434

252.

657

4.58

25.

39L

ED

A21

4543

252.

6781

4.60

503.

380.

610.

480.

090.

0321

43.9

0Sy

229

2SW

IFT

J165

2.9+

0223

253.

208

2.42

79.

38N

GC

6240

253.

2454

2.40

097.

300.

620.

440.

040.

0245

44.0

0Sy

229

3SW

IFT

J165

3.8−

3952

253.

448

−39

.859

49.7

8G

RO

J165

5-40

253.

5006

−39

.845

835

.24

0.65

0.35

0.01

LM

XB

/BH

294

SWIF

TJ1

654.

0+39

4625

3.49

439

.795

14.8

8M

rk50

125

3.46

7639

.760

25.

460.

390.

270.

030.

0337

44.1

5B

LL

ac29

5SW

IFT

J165

6.1−

5200

254.

032

−52

.005

5.75

1RX

SJ1

6560

5.6-

5203

4525

4.02

34−

52.0

614

3.81

0.77

0.41

0.08

0.05

4044

.42

Sy1.

229

6SW

IFT

J165

6.3−

3302

254.

041

−33

.001

8.86

2MA

SSJ1

6561

677-

3302

127

SWIF

TJ1

656.

3-33

0225

4.06

99−

33.0

369

8.50

0.81

0.47

0.05

2.40

0048

.58

Bla

zar

297

SWIF

TJ1

657.

7+35

1825

4.43

235

.305

281.

06H

ZH

erH

erX

-125

4.45

7635

.342

490

.54

0.28

0.07

0.00

LM

XB

/NS

298

SWIF

TJ1

700.

6−42

2225

5.14

1−

42.3

686.

10A

XJ1

700.

2-42

2025

5.10

50−

42.3

170

3.46

0.50

0.25

0.07

299

SWIF

TJ1

700.

8−41

3925

5.19

1−

41.6

5016

8.95

Roc

hest

ar10

BO

AO

1657

-415

255.

1996

−41

.673

197

.40

0.50

0.23

0.00

HM

XB

/NS

300

SWIF

TJ1

700.

9−46

1025

5.21

8−

46.1

7157

.73

XT

EJ1

701-

462

255.

2436

−46

.185

724

.02

0.30

0.01

0.01

LM

XB

301

SWIF

TJ1

702.

8−48

4925

5.70

8−

48.8

1638

.26

V82

1A

raG

X33

9-4

255.

7063

−48

.789

738

.26

0.80

0.48

0.01

LM

XB

302

SWIF

TJ1

703.

9−37

5325

5.97

9−

37.8

8358

1.69

V88

4Sc

o4U

1700

-377

255.

9866

−37

.844

136

2.89

0.49

0.23

0.00

HM

XB

/NS

303

SWIF

TJ1

705.

9−36

2425

6.47

4−

36.4

0025

9.90

V11

01Sc

oG

X34

9+2

256.

4354

−36

.423

111

7.09

0.31

0.00

0.00

LM

XB

/NS

304

SWIF

TJ1

706.

2−43

0325

6.54

4−

43.0

5873

.91

Ara

X-1

4U17

02-4

2925

6.56

38−

43.0

358

40.4

30.

480.

220.

00L

MX

B/N

S30

5SW

IFT

J170

6.7+

2401

256.

675

24.0

127.

49V

934

Her

4U17

00+2

425

6.64

3823

.971

83.

930.

460.

320.

05L

MX

B/N

S30

6SW

IFT

J170

6.6−

6146

256.

686

−61

.755

5.52

SWIF

TJ1

7961

6.4-

6142

40IG

RJ1

7062

-614

325

6.56

77−

61.7

113

3.81

0.63

0.39

0.07

307

SWIF

TJ1

708.

5−40

0825

7.13

7−

40.1

305.

47R

XJ1

7084

9.0-

4009

1025

7.20

50−

40.1

530

5.06

0.86

0.55

0.10

NS/

AX

P30

8SW

IFT

J170

8.7−

3216

257.

180

−32

.267

8.09

2XM

MJ1

7085

4.2-

3218

584U

1705

-32

257.

2267

−32

.316

06.

160.

680.

370.

05L

MX

B30

9SW

IFT

J170

8.9−

4404

257.

213

−44

.061

69.4

84U

1705

-440

257.

2270

−44

.102

029

.50

0.34

0.11

0.01

LM

XB

/NS

310

SWIF

TJ1

709.

8−36

2725

7.44

8−

36.4

586.

33SW

IFT

J170

945.

9-36

2759

IGR

J170

98-3

628

257.

4424

−36

.466

06.

08A

B0.

42SR

C/G

AM

MA

311

""

""

IGR

J170

91-3

624

257.

2750

−36

.411

03.

49A

B0.

40SR

C/G

AM

MA

312

SWIF

TJ1

710.

3−28

0625

7.58

1−

28.1

038.

291R

XS

J171

012.

3-28

0754

XT

EJ1

710-

281

257.

5513

−28

.131

75.

160.

500.

260.

04L

MX

B31

3SW

IFT

J171

2.2−

4051

258.

056

−40

.855

7.84

1RX

SJ1

7122

4.8-

4050

344U

1708

-40

258.

0958

−40

.843

33.

000.

300.

080.

05L

MX

B31

4SW

IFT

J171

2.5−

2322

258.

134

−23

.363

19.0

3O

phC

lust

er25

8.10

82−

23.3

759

9.70

0.36

0.07

0.02

0.02

8044

.24

Gal

axy

clus

ter

315

SWIF

TJ1

712.

7−24

1225

8.16

5−

24.1

959.

45V

2400

Oph

1RX

SJ1

7123

6.3-

2414

4525

8.15

19−

24.2

457

5.27

0.42

0.16

0.04

CV

/DQ

Her

316

SWIF

TJ1

712.

8−37

3725

8.19

2−

37.6

1411

.96

1RX

SJ1

7123

7.1-

3738

34SA

XJ1

712.

6-37

3925

8.14

17−

37.6

433

7.10

0.55

0.27

0.03

LM

XB

/NS

317

SWIF

TJ1

717.

1−62

4925

9.26

3−

62.8

5915

.53

NG

C63

0025

9.24

78−

62.8

206

10.3

50.

640.

370.

030.

0037

42.5

0Sy

231

8SW

IFT

J171

9.6−

4102

259.

907

−41

.035

6.32

1RX

SJ1

7193

5.6-

4100

54C

XO

UJ1

7193

5.8-

4100

5325

9.89

83−

41.0

151

3.59

0.43

0.12

0.05

CV

319

SWIF

TJ1

719.

7+49

0025

9.91

949

.003

5.22

AR

P10

2B25

9.81

0448

.980

41.

890.

450.

350.

090.

0242

43.4

0Sy

1L

INE

R32

0SW

IFT

J172

0.3−

3115

260.

076

−31

.249

6.99

2MA

SSJ1

7200

591-

3116

596

IGR

J172

00-3

116

260.

0254

−31

.283

93.

580.

420.

070.

06H

MX

B32

1SW

IFT

J172

5.1−

3616

261.

272

−36

.275

18.5

42M

ASS

J172

5113

9-36

1657

5E

XO

1722

-363

261.

2975

−36

.283

112

.03

0.45

0.12

0.02

HM

XB

/NS

322

SWIF

TJ1

725.

2−32

5826

1.30

8−

32.9

685.

16IG

RJ1

7254

-325

726

1.35

00−

32.9

500

3.25

0.53

0.24

0.07

SRC

/GA

MM

A32

3SW

IFT

J172

7.4−

3046

261.

862

−30

.774

52.6

64U

1722

-30

4U17

24-3

026

1.88

83−

30.8

019

32.4

00.

510.

240.

01L

MX

B32

4SW

IFT

J173

0.4−

0558

262.

590

−5.

964

10.8

41R

XS

J173

021.

5-05

5933

1H17

26-0

5826

2.58

96−

5.99

266.

780.

510.

290.

03C

V/D

QH

er32

5SW

IFT

J173

1.6−

1657

262.

903

−16

.953

87.0

4V

2216

Oph

GX

9+9

262.

9342

−16

.961

735

.58

0.29

0.00

0.00

LM

XB

/NS

326

SWIF

TJ1

731.

9−24

4426

2.96

4−

24.7

3714

9.22

V21

16O

phG

X1+

426

3.00

90−

24.7

456

109.

080.

570.

300.

00H

MX

B/N

S32

7SW

IFT

J173

2.1−

3349

263.

025

−33

.820

145.

26Sl

owbu

rste

r4U

1728

-33

262.

9892

−33

.834

770

.50

0.38

0.09

0.00

LM

XB

/NS

328

SWIF

TJ1

737.

5−29

0826

4.37

5−

29.1

0714

.84

AX

J173

7.4-

2907

GR

S17

34-2

9226

4.35

12−

29.1

800

12.3

30.

690.

380.

030.

0214

44.1

1Sy

132

9SW

IFT

J173

8.3−

2657

264.

578

−26

.953

33.2

4SL

X17

35-2

69SL

X17

35-2

6926

4.56

67−

27.0

044

24.9

40.

620.

330.

01L

MX

B/N

S33

0SW

IFT

J173

9.2−

4428

264.

792

−44

.473

147.

81V

926

Sco

4U17

35-4

426

4.74

29−

44.4

500

61.5

90.

290.

010.

00L

MX

B/N

S33

1SW

IFT

J174

0.0−

3651

265.

011

−36

.845

5.23

IGR

J174

04-3

655

265.

1110

−36

.927

02.

860.

490.

250.

07X

RB

332

SWIF

TJ1

740.

6−28

2126

5.14

3−

28.3

5015

.92

SLX

1737

-282

265.

2375

−28

.310

010

.20

AB

0.34

LM

XB

333

""

""

CX

OJ1

7005

8.6-

4611

08.6

XT

EJ1

739-

285

264.

9748

−28

.496

37.

68A

B0.

29L

MX

B33

4SW

IFT

J174

3.1−

3620

265.

769

−36

.339

5.80

XT

EJ1

743-

363

265.

7500

−36

.345

03.

530.

550.

300.

06SR

C/X

-ray

335

SWIF

TJ1

743.

7−29

4626

5.93

7−

29.7

6180

.30

1E17

40.7

-294

226

5.97

85−

29.7

452

76.1

00.

74B

0.40

0.00

LM

XB

/BH

336

SWIF

TJ1

746.

2−32

1426

6.56

1−

32.2

398.

02H

1743

-322

266.

5650

−32

.233

55.

950.

600.

300.

04L

MX

B33

7SW

IFT

J174

6.3−

2931

266.

564

−29

.509

44.9

02E

1742

-292

91A

1742

-294

266.

5229

−29

.515

323

.95

AB

0.17

LM

XB

338

SWIF

TJ1

746.

3−28

5026

6.58

5−

28.8

3732

.02

CX

OG

CJ1

7470

2.6-

2852

58SA

XJ1

747.

0-28

5326

6.76

08−

28.8

830

15.0

2A

B0.

25L

MX

B33

9"

""

"2E

1743

.1-2

842

266.

5800

−28

.735

313

.48

AB

0.19

LM

XB

340

""

""

IGR

J174

61-2

853

266.

5250

−28

.882

017

.33

AB

0.24

Mol

ecul

arcl

oud?

341

""

""

SGR

A*

266.

4168

−29

.007

814

.83

AB

0.26

Gal

actic

cent

er

SWIFT-BAT 22 MONTH HARD X-RAY SURVEY 25TA

BL

E5

—C

ontin

ued

#B

AT

Nam

eaR

Ab

Dec

S/N

Cou

nter

part

Nam

eO

ther

Nam

eC

tptR

Ac

Ctp

tDec

Flux

der

ror

Ce

Hra

tfH

err

Red

shif

tgL

umh

Type

342

SWIF

TJ1

747.

4−27

1926

6.85

3−

27.3

238.

40IG

RJ1

7473

-272

126

6.82

53−

27.3

441

7.87

0.77

B0.

420.

05X

RB

burs

ter

343

SWIF

TJ1

747.

4−30

0326

6.85

8−

30.0

5325

.58

AX

J174

7.4-

3000

SLX

1744

-299

266.

8579

−29

.999

414

.38

AB

0.20

LM

XB

/NS

344

""

""

AX

J174

7.4-

3003

SLX

1744

-300

266.

8558

−30

.044

715

.38

AB

0.21

LM

XB

345

SWIF

TJ1

747.

7−22

5326

6.92

0−

22.8

764.

82N

VSS

J174

729-

2252

4526

6.87

40−

22.8

790

3.37

0.61

0.32

0.08

?Po

ssib

leQ

SO34

6SW

IFT

J174

7.9−

2631

266.

969

−26

.509

60.0

5G

X3+

14U

1744

-26

266.

9833

−26

.563

625

.48

0.30

0.00

0.01

LM

XB

/NS

347

SWIF

TJ1

748.

8−32

5726

7.20

3−

32.9

566.

812M

ASS

J174

8551

2-32

5452

1IG

RJ1

7488

-325

326

7.22

97−

32.9

145

4.88

0.67

0.33

0.06

0.02

0043

.65

Sy1

348

SWIF

TJ1

749.

4−28

2226

7.35

2−

28.3

6817

.72

SWIF

TJ1

7493

8.1-

2821

16.9

IGR

J174

97-2

821

267.

4088

−28

.354

716

.34

0.78

0.45

0.02

LM

XB

349

SWIF

TJ1

750.

2−37

0126

7.56

0−

37.0

2017

.53

4U17

46-3

726

7.55

29−

37.0

522

7.33

0.32

0.03

0.02

LM

XB

/NS

350

SWIF

TJ1

753.

5−01

3026

8.38

5−

1.49

415

0.99

SWIF

TJ1

7532

8.5-

0127

04SW

IFT

J175

3.5-

0127

268.

3679

−1.

4525

129.

950.

720.

450.

00L

MX

B/B

HC

351

SWIF

TJ1

759.

9−22

0126

9.97

1−

22.0

2110

.09

XT

EJ1

759-

220

IGR

J175

97-2

201

269.

9417

−22

.015

06.

890.

490.

190.

03L

MX

B35

2SW

IFT

J180

1.1−

2504

270.

270

−25

.062

238.

67G

X5-

127

0.28

42−

25.0

792

127.

440.

330.

010.

00L

MX

B/N

S35

3SW

IFT

J180

1.1−

2544

270.

271

−25

.734

173.

081X

MM

J180

112.

7-25

4440

GR

S17

58-2

5827

0.30

12−

25.7

433

196.

300.

790.

440.

00L

MX

B/B

H35

4SW

IFT

J180

1.5−

2031

270.

385

−20

.509

113.

79G

X9+

127

0.38

46−

20.5

289

53.1

90.

330.

000.

00L

MX

B/N

S35

5SW

IFT

J180

8.7−

2024

272.

179

−20

.400

7.12

CX

OU

J180

839.

3-20

2439

SGR

1806

-20

272.

1638

−20

.411

06.

760.

850.

430.

06SG

R35

6SW

IFT

J181

4.6−

1709

273.

661

−17

.156

79.8

1V

5512

Sgr

GX

13+1

273.

6315

−17

.157

434

.91

0.32

0.04

0.00

LM

XB

/NS

357

SWIF

TJ1

815.

1−12

0827

3.77

1−

12.1

2881

.92

4U18

12-1

227

3.80

00−

12.0

833

58.1

70.

650.

350.

01L

MX

B/N

S35

8SW

IFT

J181

5.8−

1403

273.

948

−14

.051

265.

05N

PSe

rG

X17

+227

4.00

58−

14.0

364

127.

180.

310.

010.

00L

MX

B/N

S35

9SW

IFT

J181

7.8−

3301

274.

451

−33

.011

19.2

1X

TE

J181

7-33

027

4.43

14−

33.0

188

15.1

50.

620.

330.

02X

RB

/BH

C36

0SW

IFT

J182

2.0+

6421

275.

503

64.3

535.

35[H

B89

]182

1+64

327

5.48

8864

.343

41.

740.

350.

260.

080.

2970

45.6

9Sy

136

1SW

IFT

J182

3.7−

3023

275.

917

−30

.380

170.

724U

1820

-30

275.

9186

−30

.361

185

.23

0.35

0.02

0.00

LM

XB

/NS

362

SWIF

TJ1

824.

3−56

2427

6.07

3−

56.3

928.

04IC

4709

276.

0808

−56

.369

25.

300.

670.

370.

050.

0169

43.5

3Sy

236

3SW

IFT

J182

5.4+

0000

276.

344

0.00

714

.06

4U18

22-0

0027

6.34

21−

0.01

225.

380.

270.

000.

03L

MX

B/N

S36

4SW

IFT

J182

5.7−

3705

276.

426

−37

.075

101.

08V

691

CrA

4U18

22-3

7127

6.44

50−

37.1

053

45.1

50.

350.

050.

00L

MX

B36

5SW

IFT

J182

9.4+

4846

277.

359

48.7

704.

823C

380

277.

3820

48.7

460

2.56

0.54

0.47

0.10

0.69

2046

.73

Sy1.

5L

PQ36

6SW

IFT

J182

9.4−

2346

277.

360

−23

.763

244.

65V

4634

Sgr

Gin

ga18

26-2

427

7.36

75−

23.7

969

175.

790.

610.

300.

00L

MX

B/N

S36

7SW

IFT

J183

0.8+

0928

277.

686

9.50

66.

722M

ASX

J183

0506

5+09

2841

427

7.71

109.

4783

3.94

0.64

0.36

0.06

0.01

9043

.51

Sy2

368

SWIF

TJ1

833.

7−21

0527

8.41

8−

21.0

788.

52PK

S18

30-2

127

8.41

62−

21.0

611

9.41

0.91

0.51

0.05

2.50

0048

.67

Bla

zar

369

SWIF

TJ1

833.

7−10

3227

8.42

5−

10.5

3613

.54

SNR

G21

.5-0

0.9

278.

3833

−10

.560

08.

630.

630.

330.

03SN

R37

0SW

IFT

J183

5.0+

3240

278.

760

32.6

6516

.94

3C38

227

8.76

4132

.696

38.

420.

500.

350.

020.

0579

44.8

3Sy

137

1SW

IFT

J183

5.6−

3259

278.

907

−32

.990

33.3

8X

B18

32-3

3027

8.93

38−

32.9

914

24.3

10.

630.

360.

01L

MX

B/N

S37

2SW

IFT

J183

6.9−

5924

279.

225

−59

.403

5.56

FAIR

AL

L00

4927

9.24

29−

59.4

024

2.93

0.54

0.30

0.08

0.02

0243

.43

Sy2

373

SWIF

TJ1

837.

9−06

5727

9.46

4−

6.94

98.

21PS

RJ1

838-

0655

AX

J183

8.0-

0655

/HE

SSJ1

837-

069

279.

4279

−6.

9275

4.69

0.67

0.41

0.07

PSR

/PW

N37

4SW

IFT

J183

8.4−

6524

279.

638

−65

.448

17.2

9E

SO10

3-03

527

9.58

48−

65.4

276

11.1

40.

590.

350.

020.

0133

43.6

4Sy

237

5SW

IFT

J184

0.0+

0501

279.

992

5.02

598

.36

MM

Ser

SerX

-127

9.98

965.

0358

33.5

80.

240.

010.

00L

MX

B/N

S37

6SW

IFT

J184

1.2−

0458

280.

304

−4.

973

11.3

0A

XP

1E18

41-0

45K

es73

280.

3300

−4.

9364

10.8

90.

810.

540.

04A

XP

377

SWIF

TJ1

842.

0+79

4528

0.65

579

.768

25.2

43C

390.

328

0.53

7579

.771

410

.97

0.46

0.39

0.02

0.05

6144

.92

Sy1

378

SWIF

TJ1

844.

5−62

2128

1.12

0−

62.3

576.

93Fa

iral

l005

128

1.22

49−

62.3

648

4.57

0.66

0.44

0.07

0.01

4243

.31

Sy1

379

SWIF

TJ1

844.

9−04

3528

1.23

6−

4.58

15.

19A

XJ1

845.

0-04

33IG

RJ1

8450

-043

528

1.25

88−

4.56

533.

460.

670.

340.

07H

MX

B38

0SW

IFT

J184

5.7+

0052

281.

420

0.87

011

.48

Gin

ga18

43+0

028

1.41

250.

8917

6.28

0.52

0.27

0.04

HM

XB

381

SWIF

TJ1

846.

5−02

5728

1.62

3−

2.94

24.

88A

XJ1

846.

4-02

5828

1.60

20−

2.97

403.

450.

600.

390.

08PS

R38

2SW

IFT

J184

8.2−

0310

282.

054

−3.

161

14.8

2IG

RJ1

8483

-031

128

2.07

50−

3.16

179.

030.

560.

290.

03H

MX

B/N

S38

3SW

IFT

J185

3.0−

0843

283.

256

−8.

712

26.2

34U

1850

-086

283.

2703

−8.

7057

14.7

20.

590.

330.

02L

MX

B/N

S38

4SW

IFT

J185

5.0−

3110

283.

760

−31

.170

18.7

7V

1223

Sgr

283.

7593

−31

.163

59.

710.

460.

130.

02C

V/D

QH

er38

5SW

IFT

J185

5.5−

0237

283.

866

−2.

616

39.3

9X

TE

J185

5-02

628

3.88

04−

2.60

6721

.54

0.48

0.25

0.01

HM

XB

/NS

386

SWIF

TJ1

856.

1+15

3928

4.02

215

.644

5.47

2E18

53.7

+153

428

4.00

5315

.634

93.

160.

530.

390.

070.

0840

44.7

4Sy

138

7SW

IFT

J185

6.2−

7829

284.

061

−78

.479

5.06

2MA

SXJ1

8570

768-

7828

212

284.

2823

−78

.472

52.

47A

B0.

420.

0420

44.0

1Sy

138

8"

""

"[H

B91

]184

6-78

628

3.48

60−

78.5

400

1.75

AB

0.49

0.07

6044

.39

Sy1

389

SWIF

TJ1

858.

9+03

2928

4.73

43.

480

5.12

XT

EJ1

858+

034

284.

6790

3.43

402.

200.

320.

030.

08H

MX

B/N

S39

0SW

IFT

J190

0.2−

2455

285.

050

−24

.914

79.7

7H

ET

EJ1

900.

1-24

5528

5.03

60−

24.9

205

55.7

40.

640.

330.

00L

MX

B/m

sPSR

391

SWIF

TJ1

901.

6+01

2928

5.40

11.

475

10.2

5X

TE

J190

1+01

428

5.42

081.

4385

6.73

0.60

0.34

0.04

SRC

/GA

MM

A39

2SW

IFT

J190

7.3−

2050

286.

882

−20

.830

5.78

V10

82Sg

r28

6.84

11−

20.7

808

2.75

0.53

0.25

0.08

CV

393

SWIF

TJ1

909.

6+09

4828

7.40

89.

804

66.6

24U

1907

+09

287.

4079

9.83

0326

.23

0.34

0.05

0.01

HM

XB

/NS

394

SWIF

TJ1

910.

8+07

3928

7.68

87.

645

58.1

02M

ASS

J191

0482

1+07

3551

64U

1909

+07

287.

7000

7.59

8325

.79

0.46

0.23

0.01

HM

XB

/NS

395

SWIF

TJ1

911.

2+00

3628

7.80

70.

603

21.2

5A

qlX

-128

7.81

670.

5850

13.1

70.

560.

320.

02L

MX

B39

6SW

IFT

J191

2.0+

0500

287.

999

5.00

327

.20

SS43

328

7.95

654.

9827

12.0

10.

430.

210.

02uQ

uasa

r39

7SW

IFT

J191

4.0+

0951

288.

496

9.85

331

.99

2MA

SSJ1

9140

422+

0952

577

IGR

J191

40+0

951

288.

5083

9.88

8316

.82

0.46

0.23

0.01

HM

XB

398

SWIF

TJ1

915.

3+10

5728

8.81

610

.953

840.

73G

RS

1915

+105

288.

7983

10.9

456

386.

660.

400.

170.

00L

MX

B/B

H

26 TUELLER ET AL.TA

BL

E5

—C

ontin

ued

#B

AT

Nam

eaR

Ab

Dec

S/N

Cou

nter

part

Nam

eO

ther

Nam

eC

tptR

Ac

Ctp

tDec

Flux

der

ror

Ce

Hra

tfH

err

Red

shif

tgL

umh

Type

399

SWIF

TJ1

918.

6−05

1628

9.65

4−

5.26

531

.84

V14

05A

ql4U

1916

-053

289.

6995

−5.

2381

16.1

70.

510.

220.

01L

MX

B/N

S40

0SW

IFT

J192

1.1+

4356

290.

273

43.9

2510

.36

AB

EL

L23

1929

0.18

8943

.961

92.

620.

260.

100.

050.

0557

44.2

9G

alax

ycl

uste

r40

1SW

IFT

J192

1.1−

5842

290.

275

−58

.694

8.23

ESO

141-

G05

529

0.30

90−

58.6

703

5.27

0.58

0.32

0.04

0.03

6044

.20

Sy1

402

SWIF

TJ1

922.

7−17

1629

0.69

2−

17.2

8320

.96

SWIF

TJ1

922.

7-17

16SW

IFT

J192

237.

0-17

1702

290.

6542

−17

.284

214

.69

0.67

0.33

0.02

XR

B/u

Qua

sar?

403

SWIF

TJ1

924.

5+50

1429

1.11

450

.239

7.87

CH

Cyg

2MA

SSJ1

9243

305+

5014

289

291.

1378

50.2

414

2.26

0.24

0.08

0.06

Sym

b/W

D40

4SW

IFT

J193

0.5+

3414

292.

656

34.1

937.

632M

ASX

J193

0138

0+34

1049

529

2.55

7534

.180

53.

260.

520.

400.

070.

0629

44.4

9Sy

140

5SW

IFT

J193

3.9+

3258

293.

426

32.9

385.

432M

ASS

J193

3471

5+32

5425

91R

XS

J193

347.

6+32

5422

293.

4483

32.9

061

2.30

0.49

0.37

0.08

0.05

7844

.26

Sy1.

240

6SW

IFT

J194

0.3−

1028

295.

076

−10

.473

10.2

5V

1432

Aql

295.

0478

−10

.423

65.

400.

490.

210.

04C

V/A

MH

er40

7SW

IFT

J194

2.6−

1024

295.

684

−10

.322

11.2

8N

GC

6814

295.

6694

−10

.323

57.

820.

690.

380.

040.

0052

42.6

7Sy

1.5

408

SWIF

TJ1

942.

8+32

2029

5.69

032

.339

4.81

V24

91C

yg29

5.75

8232

.320

51.

840.

540.

380.

11C

V/N

ova

409

SWIF

TJ1

943.

5+21

2029

5.95

721

.289

7.94

SWIF

TJ1

9435

3.0+

2121

19IG

RJ1

9443

+211

729

5.98

4221

.306

44.

420.

550.

380.

05SR

C/X

-ray

410

SWIF

TJ1

947.

3+44

4729

6.83

344

.790

5.13

2MA

SXJ1

9471

938+

4449

425

296.

8307

44.8

284

2.44

0.52

0.40

0.09

0.05

3944

.23

Sy2

411

SWIF

TJ1

949.

5+30

1229

7.42

330

.156

20.9

8K

S19

47+3

0029

7.37

7130

.206

78.

180.

380.

240.

02H

MX

B/N

S41

2SW

IFT

J195

2.4+

0237

298.

039

2.44

95.

453C

403

298.

0660

2.50

704.

270.

810.

550.

090.

0590

44.5

5Sy

241

3SW

IFT

J195

5.8+

3203

298.

953

32.0

4997

.31

TY

C26

73-2

004-

14U

1954

+31

298.

9264

32.0

970

35.5

20.

330.

170.

00L

MX

B41

4SW

IFT

J195

8.4+

3510

299.

602

35.1

7143

04.2

3C

ygX

-129

9.59

0335

.201

622

45.7

60.

520.

410.

00H

MX

B/B

H41

5SW

IFT

J195

9.4+

4044

299.

807

40.7

3125

.99

Cyg

nus

A29

9.86

8240

.733

912

.23

0.49

0.37

0.02

0.05

6144

.96

Sy2

416

SWIF

TJ1

959.

6+65

0729

9.99

065

.195

11.2

3Q

SOB

1959

+650

1ES

1959

+650

299.

9994

65.1

485

3.87

0.36

0.24

0.04

0.04

7044

.30

BL

Lac

417

SWIF

TJ2

000.

6+32

1030

0.06

332

.176

7.87

USN

O-A

2.0

1200

-141

3154

12M

ASS

J200

0218

5+32

1123

230

0.09

1332

.189

43.

250.

400.

260.

05H

MX

B41

8SW

IFT

J200

9.0−

6103

302.

159

−61

.078

8.71

NG

C68

6030

2.19

54−

61.1

002

6.50

0.73

0.40

0.05

0.01

4943

.51

Sy1

419

SWIF

TJ2

018.

8+40

4130

4.69

740

.691

5.36

2MA

SXJ2

0183

871+

4041

003

IGR

J201

87+4

041

304.

6613

40.6

834

3.36

0.55

0.47

0.08

0.01

4443

.19

Sy2

420

SWIF

TJ2

028.

5+25

4330

7.11

425

.784

14.8

8M

CG

+04-

48-0

0230

7.14

6125

.733

38.

770.

590.

450.

030.

0139

43.5

8Sy

242

1SW

IFT

J203

2.2+

3738

308.

053

37.6

2627

6.33

EX

O20

30+3

7530

8.06

3337

.637

599

.67

0.35

0.21

0.00

HM

XB

/NS

422

SWIF

TJ2

032.

5+40

5530

8.12

540

.915

753.

06C

ygX

-3V

1521

Cyg

308.

1074

40.9

578

238.

900.

320.

160.

00H

MX

B/N

S42

3SW

IFT

J203

3.4+

2147

308.

341

21.7

746.

484C

+21.

5530

8.38

3521

.772

93.

260.

490.

380.

060.

1735

45.4

4Q

SO42

4SW

IFT

J203

7.2+

4151

309.

214

41.8

717.

02SW

IFT

J203

705.

78-4

1500

5.1

SWIF

TJ2

037.

2+41

5130

9.30

0041

.850

01.

710.

190.

000.

07tr

ansi

ent

425

SWIF

TJ2

042.

3+75

0731

0.75

375

.121

13.4

94C

+74.

2631

0.65

5475

.134

05.

020.

410.

320.

030.

1040

45.1

4Sy

142

6SW

IFT

J204

4.0+

2832

311.

042

28.5

105.

83R

XJ2

044.

0+28

3331

1.01

8828

.553

42.

530.

460.

350.

070.

0500

44.1

7Sy

142

7SW

IFT

J204

4.2−

1045

311.

047

−10

.699

14.8

9M

rk50

931

1.04

06−

10.7

235

9.44

0.68

0.37

0.03

0.03

4444

.41

Sy1.

242

8SW

IFT

J205

2.0−

5704

312.

979

−57

.057

10.9

3IC

5063

313.

0098

−57

.068

88.

590.

720.

400.

040.

0114

43.3

9Sy

242

9SW

IFT

J211

4.4+

8206

318.

530

82.0

659.

442M

ASX

J211

4012

8+82

0448

331

8.50

4982

.080

14.

210.

510.

440.

050.

0840

44.8

7Sy

143

0SW

IFT

J211

7.5+

5139

319.

365

51.6

496.

882M

ASX

J211

7474

1+51

3852

331

9.44

8051

.648

33.

140.

520.

460.

06?

Gal

axy

431

SWIF

TJ2

118.

9+33

3631

9.71

533

.638

4.84

2MA

SXJ2

1192

912+

3332

566

319.

8714

33.5

491

1.53

0.44

0.39

0.12

0.05

0743

.97

Sy1

432

SWIF

TJ2

123.

5+42

1732

0.87

142

.279

4.99

V20

69C

yg32

0.93

7042

.301

01.

210.

290.

100.

12C

V43

3SW

IFT

J212

3.6+

2506

320.

911

25.0

954.

863C

433

320.

9356

25.0

700

1.74

0.44

0.29

0.08

0.10

1644

.66

Sy2

NL

RG

434

SWIF

TJ2

124.

6+50

5732

1.15

651

.000

43.1

54C

50.5

5IG

RJ2

1247

+505

832

1.16

4150

.973

817

.81

0.47

0.39

0.01

0.02

0044

.21

BL

RG

,not

Sy1

435

SWIF

TJ2

127.

4+56

5432

1.95

356

.892

9.99

SWIF

TJ2

1274

5.58

+565

635.

6IG

RJ2

1277

+565

632

1.93

7356

.944

43.

870.

390.

250.

040.

0147

43.2

7Sy

143

6SW

IFT

J212

9.9+

1209

322.

468

12.1

4722

.11

NG

C70

78A

C21

14U

2129

+12

322.

4929

12.1

674

9.16

0.45

0.27

0.02

LM

XB

437

SWIF

TJ2

132.

0−33

4332

2.97

2−

33.6

988.

266d

FJ2

1320

22-3

3425

432

3.00

92−

33.7

150

5.55

0.74

0.42

0.05

0.02

9344

.04

Sy1

438

SWIF

TJ2

133.

6+51

0532

3.40

951

.080

16.4

9R

XJ2

133.

7+51

0732

3.43

2051

.123

65.

230.

330.

190.

03C

V/D

QH

er43

9SW

IFT

J215

6.1+

4728

324.

064

47.5

236.

112M

ASX

J213

5539

9+47

2821

732

3.97

5047

.472

72.

680.

47B

0.41

0.07

0.02

5043

.58

Sy1

440

""

""

IGR

J213

47+4

737

323.

8460

47.5

770

1.50

A0.

44X

RB

441

SWIF

TJ2

135.

5−62

2232

4.06

7−

62.3

877.

371R

XS

J213

623.

1-62

2400

324.

0963

−62

.400

23.

880.

570.

350.

060.

0588

44.5

1Sy

144

2SW

IFT

J214

2.7+

4337

325.

686

43.6

2113

.88

SSC

yg32

5.67

8443

.586

14.

570.

330.

180.

03C

V/D

war

fN44

3SW

IFT

J214

4.7+

3816

326.

166

38.2

7425

7.42

Cyg

X-2

326.

1717

38.3

217

59.9

90.

180.

020.

00L

MX

B/N

S44

4SW

IFT

J215

2.0−

3030

328.

002

−30

.503

12.4

2PK

S21

49-3

0632

7.98

14−

30.4

649

10.5

80.

960.

540.

042.

3450

48.6

5B

laza

r44

5SW

IFT

J220

0.9+

1032

330.

144

10.5

676.

16M

RK

520

330.

1724

10.5

524

3.58

0.64

0.43

0.07

0.02

6643

.76

Sy1.

944

6SW

IFT

J220

1.9−

3152

330.

550

−31

.838

27.3

7N

GC

7172

330.

5080

−31

.869

818

.11

0.70

0.42

0.02

0.00

8743

.48

Sy2

447

SWIF

TJ2

202.

8+42

1833

0.69

842

.304

7.72

BL

Lac

330.

6804

42.2

778

4.40

0.51

0.44

0.06

0.06

8644

.70

BL

Lac

448

SWIF

TJ2

207.

8+54

3233

1.95

254

.539

61.6

4B

D+5

327

904U

2206

+54

331.

9843

54.5

185

22.4

40.

400.

280.

01H

MX

B/N

S44

9SW

IFT

J220

9.4−

4711

332.

301

−47

.191

8.06

NG

C72

1333

2.31

77−

47.1

667

5.75

0.67

0.44

0.05

0.00

5842

.64

Sy1.

545

0SW

IFT

J221

7.5−

0812

334.

467

−8.

371

13.0

2FO

AQ

R33

4.48

10−

8.35

135.

850.

360.

110.

03C

V/D

QH

er45

1SW

IFT

J222

3.9−

0207

335.

977

−2.

119

7.62

3C44

533

5.95

66−

2.10

344.

370.

580.

400.

050.

0562

44.5

2Sy

245

2SW

IFT

J222

3.8+

1143

335.

991

11.8

015.

71M

CG

+02-

57-0

0233

5.93

8011

.836

02.

080.

450.

320.

090.

0290

43.6

0Sy

1.5

453

SWIF

TJ2

229.

9+66

4633

7.35

466

.753

5.37

87G

B22

2741

.2+6

6312

433

7.29

9966

.784

62.

790.

610.

510.

080.

1130

44.9

6Sy

145

4SW

IFT

J223

2.5+

1141

338.

136

11.6

856.

20[H

B89

]223

0+11

433

8.15

1711

.730

84.

170.

650.

530.

071.

0370

47.3

8B

laza

rHP

455

SWIF

TJ2

235.

9−26

0233

8.90

6−

26.1

179.

31N

GC

7314

338.

9426

−26

.050

34.

630.

590.

370.

050.

0048

42.3

7Sy

1.9

SWIFT-BAT 22 MONTH HARD X-RAY SURVEY 27TA

BL

E5

—C

ontin

ued

#B

AT

Nam

eaR

Ab

Dec

S/N

Cou

nter

part

Nam

eO

ther

Nam

eC

tptR

Ac

Ctp

tDec

Flux

der

ror

Ce

Hra

tfH

err

Red

shif

tgL

umh

Type

456

SWIF

TJ2

235.

9+33

5833

9.00

633

.925

8.35

NG

C73

1933

9.01

4833

.975

73.

960.

520.

410.

050.

0225

43.6

6Sy

245

7SW

IFT

J223

6.7−

1233

339.

176

−12

.550

6.41

MR

K09

1533

9.19

38−

12.5

452

4.99

0.71

0.49

0.07

0.02

4143

.82

Sy1

458

SWIF

TJ2

246.

0+39

4134

1.46

239

.638

9.43

3C45

234

1.45

3239

.687

73.

780.

480.

370.

050.

0811

44.7

9Sy

245

9SW

IFT

J225

1.9+

2215

343.

008

22.2

815.

14M

G3

J225

155+

2217

342.

9729

22.2

937

3.11

0.63

0.52

0.09

3.66

8048

.59

QSO

460

SWIF

TJ2

253.

9+16

0834

3.47

716

.140

26.1

33C

454.

334

3.49

0616

.148

215

.89

0.65

0.53

0.02

0.85

9047

.76

Bla

zar

461

SWIF

TJ2

254.

1−17

3434

3.49

1−

17.5

7217

.90

MR

2251

-178

343.

5242

−17

.581

99.

170.

530.

350.

020.

0640

44.9

6Sy

146

2SW

IFT

J225

5.4−

0309

343.

838

−3.

154

8.83

AO

Psc

3A22

53-0

3334

3.82

49−

3.17

792.

920.

280.

070.

06C

V/D

QH

er46

3SW

IFT

J225

8.9+

4054

344.

761

40.8

966.

14U

GC

1228

234

4.73

1240

.931

52.

490.

500.

380.

070.

0170

43.2

1Sy

1.9

464

SWIF

TJ2

259.

7+24

5834

4.93

224

.942

7.17

KA

Z32

034

4.88

7124

.918

22.

880.

510.

370.

070.

0345

43.9

0Sy

146

5SW

IFT

J230

3.3+

0852

345.

800

8.83

915

.16

NG

C74

6934

5.81

518.

8740

6.66

0.44

0.32

0.03

0.01

6343

.60

Sy1.

246

6SW

IFT

J230

4.8−

0843

346.

168

−8.

697

18.3

8M

rk92

634

6.18

11−

8.68

5710

.17

0.57

0.39

0.02

0.04

6944

.72

Sy1.

546

7SW

IFT

J231

8.4−

4223

349.

630

−42

.380

16.2

4N

GC

7582

349.

5979

−42

.370

67.

920.

550.

400.

030.

0052

42.6

8Sy

246

8SW

IFT

J231

8.9+

0013

349.

734

0.22

09.

70N

GC

7603

349.

7359

0.24

404.

700.

510.

340.

040.

0295

43.9

7Sy

1.5

469

SWIF

TJ2

319.

4+26

1934

9.89

326

.307

5.14

MR

K32

235

0.01

3026

.216

00.

64A

0.19

0.02

6643

.02

Gal

axy

470

""

""

UG

C12

515

349.

9630

26.2

630

1.28

0.37

B0.

240.

110.

0265

43.3

1G

alax

y47

1"

""

"SW

IFT

J231

930.

4+26

1517

349.

8765

26.2

548

0.28

A0.

13C

V/A

MH

er47

2SW

IFT

J232

3.3+

5849

350.

830

58.8

1322

.84

Cas

A35

0.85

0058

.815

06.

780.

320.

190.

02SN

R47

3SW

IFT

J232

5.5−

3827

351.

334

−38

.484

5.64

LC

RS

B23

2242

.2-3

8432

035

1.35

08−

38.4

470

2.41

0.47

0.27

0.07

0.03

5943

.86

Sy1

474

SWIF

TJ2

325.

6+21

5735

1.41

021

.952

4.85

2MA

SXJ2

3255

427+

2153

142

351.

4760

21.8

870

1.63

0.42

0.22

0.10

0.12

0044

.79

Sy1

475

SWIF

TJ2

327.

6+06

2935

1.93

56.

418

4.92

SWIF

TJ2

327.

6+06

2935

1.93

506.

4180

2.55

0.62

0.40

0.09

?47

6SW

IFT

J232

8.9+

0328

352.

218

3.46

55.

04N

GC

7682

352.

2664

3.53

332.

27A

B0.

350.

0171

43.1

8Sy

247

7"

""

"N

GC

7679

352.

1944

3.51

142.

33A

B0.

350.

0171

43.1

9Sy

1/L

IRG

478

SWIF

TJ2

341.

8+30

3335

5.46

430

.614

6.69

UG

C12

741

355.

4811

30.5

818

4.00

0.59

0.52

0.07

0.01

7443

.44

Gal

axy

479

SWIF

TJ2

358.

4+33

3935

9.60

133

.642

4.85

SWIF

TJ2

358.

4+33

3935

9.60

1033

.642

02.

080.

610.

420.

10?

RE

FE

RE

NC

ES.

—B

ikm

aev

etal

.(20

08,2

006)

;Bod

aghe

eet

al.(

2006

,200

7);B

uren

inet

al.(

2008

);B

utle

ret

al.(

2009

);C

hakr

abar

tyet

al.(

2002

);C

oeet

al.(

1994

);H

omer

etal

.(20

02);

Isra

elet

al.(

2001

);Ju

ett&

Cha

krab

arty

(200

5);

Mar

kwar

dtet

al.(

2005

);M

aset

tiet

al.(

2008

,200

9);R

odri

guez

etal

.(20

09);

Tom

sick

etal

.(20

08);

Tuel

lere

tal.

(200

8);W

alte

reta

l.(2

006)

;Wils

onet

al.(

2003

)a

Ifa

BA

Tna

me

exis

tsin

the

9-m

onth

cata

log

(Tue

llere

tal.

2008

),th

enth

atna

me

isus

ed.I

fthe

reis

no9-

mon

thB

AT

nam

e,th

enth

eB

AT

nam

elis

ted

here

isth

ena

me

that

was

used

tore

ques

tXR

Tfo

llow

upob

serv

atio

ns(a

ndus

edin

the

HE

ASA

RC

arch

ive)

.Whe

nno

prev

ious

BA

Tna

me

fort

his

sour

ceex

ists

,we

listh

ere

aB

AT

nam

ede

rived

from

the

BA

Tpo

sitio

nin

this

cata

log.

bT

heB

AT

sour

cepo

sitio

nslis

ted

here

are

allu

nifo

rmly

gene

rate

dfr

oma

blin

dse

arch

ofth

e22

-mon

thda

taan

dar

eJ2

000

coor

dina

tes.

cT

heco

unte

rpar

tpos

ition

isth

em

osta

ccur

ate

posi

tion

know

nof

the

obje

ctin

the

’nam

e’co

lum

nin

J200

0co

ordi

nate

s,an

dis

usua

llyta

ken

from

NE

Dor

SIM

BA

D.I

fno

coun

terp

arti

skn

own,

the

blin

dB

AT

posi

tion

islis

ted.

dT

heflu

xis

extr

acte

dfr

omth

eB

AT

map

sat

the

posi

tion

liste

dfo

rthe

coun

terp

art,

isin

units

of10

−11

ergs

s−1 cm

−2 ,a

ndis

com

pute

dfo

rthe

14–1

95ke

Vba

nd.

eT

hem

eani

ngof

the

conf

usio

nfla

gis

asfo

llow

s:A

=’C

onfu

sed’

sour

ce,B

=’C

onfu

sing

’sou

rce,

AB

=B

oth

conf

used

and

conf

usin

g.To

mak

ese

nse

ofth

isco

nfou

ndin

gsc

enar

io,s

ee§4

and

§4.3

.f

The

hard

ness

ratio

isth

era

tioof

the

35–1

50ke

Vco

untr

ate

toth

e14

–150

keV

coun

trat

e.g

The

reds

hift

sar

eta

ken

from

the

onlin

eda

taba

ses

NE

Dan

dSI

MB

AD

orin

afe

wca

ses

from

ouro

wn

anal

ysis

ofth

eop

tical

data

.Abl

ank

indi

cate

sth

atth

eob

ject

isG

alac

atic

,and

a?

indi

cate

sth

atth

eob

ject

has

anun

know

nre

dshi

ft.

hT

helu

min

osity

isco

mpu

ted

from

the

flux

and

reds

hift

inth

ista

ble,

with

units

oflo

g[er

gss−

1 ]in

the

14–1

95ke

Vba

nd.